& RedHat

Red Hat Advanced Cluster Management
for Kubernetes 2.2

Manage applications

Read more to learn how to create applications by using Git repositories, Helm
repositories, and object storage repositories.

Last Updated: 2022-05-18

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage
applications

Read more to learn how to create applications by using Git repositories, Helm repositories, and
object storage repositories.

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn how to create applications by using Git repositories, Helm repositories, and
object storage repositories.

Table of Contents

CHAPTER 1. MANAGING APPLICATIONS ... i

1.1. APPLICATION MODEL AND DEFINITIONS
1.1.1. Applications
1.1.2. Channels
1.1.2.1. Supported Git repository servers
1.1.3. Subscriptions
1.1.4. Placement rules
1.2. APPLICATION CONSOLE
1.2.1. Applications overview
1.2.1.1. Single applications overview
1.2.2. Resource topology
1.2.3. Search
1.2.4. Advanced configuration
1.3. MANAGING APPLICATION RESOURCES
1.3.1. Managing apps with Git repositories
1.3.1.1. GitOps pattern
1.3.1.1.1. GitOps example
1.3.1.1.2. GitOps flow
1.3.1.1.3. More examples
1.3.2. Managing apps with Helm repositories
1.3.2.1. Sample YAML
1.3.3. Managing apps with Object storage repositories
1.3.3.1. Sample YAML
1.4. APPLICATION ADVANCED CONFIGURATION
1.4.1. Subscribing Git resources
1.4.1.1. Granting users and groups subscription admin privilege
1.4.1.2. Creating application resources in Git
1.4.1.3. Application namespace example
1.4.1.4. Resource overwrite example
1.4.1.4.1. Default merge option
1.4.1.4.2. Replace option
1.4.1.4.3. Reconcile option
1.4.1.4.3.1. Reconcile frequency
1.4.2. Configuring application channel and subscription for a secure Git connection
1.4.2.1. Connecting to a private repo with user and access token
1.4.2.2. Making an insecure HTTPS connection to a Git server
1.4.2.3. Using custom CA certificates for a secure HTTPS connection
1.4.2.4. Making an SSH connection to a Git server
1.4.2.5. Updating certificates and SSH keys
1.4.3. Setting up Ansible Tower tasks (Technology preview)
1.4.3.1. Prerequisites
1.4.3.2. Install Ansible Automation Platform Resource Operator:
1.4.3.3. Obtain the Ansible Tower URL and token
1.4.3.4. Obtaining a token
1.4.3.5. Ansible integration
1.4.3.6. Ansible operator components
1.4.3.6.1. Prehook
1.4.3.6.2. Posthook
1.4.3.6.3. Ansible placement rules
1.4.3.7. Ansible configuration
1.4.3.7.1. Ansible secrets

Table of Contents

»

O O O 0 0 0 N NOO O U1 U1 N

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

1.4.3.8. Set secret reconciliation
1.4.3.9. Ansible sample YAML
1.4.4. Configuring managed clusters for Argo CD
1.4.4.1. Prerequisites
1.4.4.2. Configuring Argo CD
1.4.5. Scheduling a deployment
1.4.6. Configuring package overrides
1.4.7. Channel samples
1.4.7.1. Channel YAML structure
1.4.7.2. Channel YAML table
1.4.7.3. Object storage bucket (ObjectBucket) channel
1.4.7.4. Helm repository (HelmRepo) channel
1.4.7.5. Git (Git) repository channel
1.4.8. Secret samples
1.4.8.1. Secret YAML structure
1.4.9. Subscription samples
1.4.9.1. Subscription YAML structure
1.4.9.2. Subscription YAML table
1.4.9.3. Subscription file samples
1.4.9.3.1. Subscription time window example
1.4.9.3.2. Subscription with overrides example
1.4.9.3.3. Helm repository subscription example
1.4.9.3.4. Git repository subscription example
1.4.9.3.4.1. Subscribing specific branch and directory of Git repository
1.4.9.3.4.2. Adding a .kubernetesignore file
1.4.9.3.4.3. Applying Kustomize
1.4.9.3.4.4. Enabling Git WebHook
1.4.9.3.4.4.1. Payload URL
1.4.9.3.4.4.2. Webhook secret
1.4.9.3.4.4.3. Configuring WebHook in Git repository
1.4.9.3.4.4.4. Enable WebHook event notification in channel
1.4.9.3.4.4.5. Subscriptions of webhook-enabled channel
1.4.10. Placement rule samples
1.4.10.1. Placement rule YAML structure
1.4.10.2. Placement rule YAML values table
1.4.10.3. Placement rule sample files
1.4.11. Application samples
1.4.11.1. Application YAML structure
1.4.11.2. Application YAML table
1.4.11.3. Application file samples

29
30

31

31

31
32
33
34
34
35
36
36
37
38
38
38
39
40
45
45
45
46
47
47
47
47
48
48
48
49
49
49
49
49
50

51
52
53
53
54

Table of Contents

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

CHAPTER 1. MANAGING APPLICATIONS

Review the following topics to learn more about creating, deploying, and managing your applications.
This guide assumes familiarity with Kubernetes concepts and terminology. Key Kubernetes terms and
components are not defined. For more information about Kubernetes concepts, see Kubernetes
Documentation.
The application management functions provide you with unified and simplified options for constructing
and deploying applications and application updates. With these functions, your developers and DevOps
personnel can create and manage applications across environments through channel and subscription-
based automation.
See the following topics:

® Application model and definitions

® Application console

® Managing application resources

® Managing apps with Git repositories

® Managing apps with Helm repositories

® Managing apps with Object storage repositories

® Application advanced configuration

® Subscribing Git resources

® Configuring application channel and subscription for a secure Git connection

® Setting up Ansible Tower tasks

® Configuring managed clusters for Argo CD

® Scheduling a deployment

® Configuring package overrides

® Channel samples

® Subscription samples

® Placement rule samples

® Application samples

1.1. APPLICATION MODEL AND DEFINITIONS

The application model is based on subscribing to one or more Kubernetes resource repositories (channel
resources) that contains resources that are deployed on managed clusters. Both single and multicluster
applications use the same Kubernetes specifications, but multicluster applications involve more
automation of the deployment and application management lifecycle.

See the following image to understand more about the application model:

https://kubernetes.io/docs/home/

CHAPTER 1. MANAGING APPLICATIONS

APPLICATION SUBSCRIPTION MODEL

Object Helm Git
storage repository repository

{ T f

Channel

Watch

Assemble

Application —_— Subscription

Watch
Placement rule

! |

Cluster1 Cluster n

Deployments Deployments

Secrets Secrets

View the following application resource sections:

1.1.1. Applications

Applications (application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are
used for grouping Kubernetes resources that make up an application.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes
applications are defined in YAML file spec sections. When you need to create or update an application
component resource, you need to create or edit the appropriate spec section to include the labels for
defining your resource.

1.1.2. Channels

Channels (channel.apps.open-cluster-management.io) define the source repositories that a cluster
can subscribe to with a subscription, and can be the following types: Git, Helm release, and Object
storage repositories, and resource templates on the hub cluster.

If you have applications that require Kubernetes resources or Helm charts from channels that require
authorization, such as entitled Git repositories, you can use secrets to provide access to these channels.
Your subscriptions can access Kubernetes resources and Helm charts for deployment from these
channels, while maintaining data security.

Channels use a namespace within the hub cluster and point to a physical place where resources are
stored for deployment. Clusters can subscribe to channels for identifying the resources to deploy to
each cluster.

Notes: It is best practice to create each channel in a unique namespace. However, a Git channel can
share a namespace with another type of channel, including Git, Helm, and Object storage.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

Resources within a channel can be accessed by only the clusters that subscribe to that channel.

1.1.2.1. Supported Git repository servers

e GitHub
e GitLab
® Bitbucket

® Gogs

1.1.3. Subscriptions

Subscriptions (subscription.apps.open-cluster-management.io) allow clusters to subscribe to a
source repository (channel) that can be the following types: Git repository, Helm release registry, or
Object storage repository.

Note: Self-managing the hub cluster is not recommended because the resources might impact the hub
cluster.

Subscriptions can deploy application resources locally to the hub cluster, if the hub cluster is self-
managed. You can then view the local-cluster subscription in the topology. Resource requirements
might adversely impact hub cluster performance.

Subscriptions can point to a channel or storage location for identifying new or updated resource
templates. The subscription operator can then download directly from the storage location and deploy

to targeted managed clusters without checking the hub cluster first. With a subscription, the
subscription operator can monitor the channel for new or updated resources instead of the hub cluster.

1.1.4. Placement rules
Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where
resource templates can be deployed. Use placement rules to help you facilitate the multicluster
deployment of your deployables. Placement policies are also used for governance and risk policies.
Learn more from the following documentation:

® Application console

® Managing application resources

® Managing apps with Git repositories

® Managing apps with Helm repositories

® Managing apps with Object storage repositories

® Application advanced configuration

® Subscribing Git resources

® Setting up Ansible Tower tasks

® Channel samples

CHAPTER 1. MANAGING APPLICATIONS

Subscription samples
Placement rule samples

Application samples

1.2. APPLICATION CONSOLE

The console includes a dashboard for managing the application lifecycle. You can use the console
dashboard to create and manage applications and view the status of applications. Enhanced capabilities
help your developers and operations personnel create, deploy, update, manage, and visualize
applications across your clusters.

See the following application console capabilities:

Important: Actions are based on your assigned role. Learn about access requirements from the Role-
based access control documentation.

Visualize deployed applications across your clusters, including any associated resource
repositories, subscriptions, and placement configurations.

Create and edit applications, and subscribe resources. By default, the hub cluster can manage
itself, and is named the local cluster. You can choose to deploy application resources to this
local cluster, though deploying applications on the local cluster is not best practice.

Use Advanced configuration to view or edit channels, subscriptions, and placement rules.
Access a topology view that encompasses application resources, including resource
repositories, subscriptions, placement rules, and deployed resources, including any optional pre

and post deployment hooks using Ansible Tower tasks (for Git repositories).

View individual status in the context of an application, including deployments, updates, and
subscriptions.

The console includes tools that each provide different application management capabilities. These
capabilities allow you to easily create, find, update, and deploy application resources.

Applications overview
Resource topology
Search

Advanced configuration

1.2.1. Applications overview

From the main Overview tab, see the following:

A table that lists all applications
The Search box to filter the applications that are listed
The application name and namespace

The number of remote and local clusters where resources are deployed through a subscription

../security#role-based-access-control

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

The links to repositories where the definitions for the resources that are deployed by the
application are located

An indication of Time window constraints, if any were created
The date when the application was created

More actions, such as Delete application. Actions are available if the user has permission to take
action.

1.2.1.1. Single applications overview

Click on an application name in the table to view details about a single application. See the following
information:

Cluster details, such as resource status.
Subscription details

Resource topology

Click the Editor tab to edit your application and related resources.

1.2.2. Resource topology

The topology provides a visual representation of the application that was selected including the
resources deployed by this application on target clusters.

You can select any component from the topology view to view more details.

View the deployment details for any resource deployed by this application by clicking on the
resource node to open the properties view.

View cluster CPU and memory from the cluster node, on the properties dialog.
Notes: The cluster CPU and memory percentage that is displayed is the percentage that is
currently utilized. This value is rounded down, so a very small value might display as 0.

For Helm subscriptions, see Configuring package overrides to define the appropriate
packageName and the packageAlias to get an accurate topology display.

View a successful Ansible Tower deployment if you are using Ansible tasks as prehook or
posthook for the deployed application.

Click the name of the resource node or select Actions > View application to see the details
about the Ansible task deployment, including Ansible Tower Job URL and template name.
Additionally, you can see errors if your Ansible Tower deployment is not successful.

Click Launch resource in Searchto search for related resources.

1.2.3. Search

The console Search page supports searching for application resources by the component kind for each
resource. To search for resources, use the following values:

../manage_applications#configuring-package-overrides

CHAPTER 1. MANAGING APPLICATIONS

Application resource Kind (search parameter)

Subscription Subscription
Channel Channel

Secret Secret
Placement rule PlacementRule
Application Application

You can also search by other fields, including name, namespace, cluster, label, and more.

From the search results, you can view identifying details for each resource, including the name,
namespace, cluster, labels, and creation date.

If you have access, you can also click Actions in the search results and select to delete that resource.

Click the resource name in the search results to open the YAML editor and make changes. Changes that
you save are applied to the resource immediately.

For more information about using search, see Search in the console.

1.2.4. Advanced configuration

Click the Advanced configuration tab to view terminology and tables of resources for all applications.
You can find resources and you can filter subscriptions, placement rules, and channels. If you have
access, you can also click multiple Actions, such as Edit, Search, and Delete.

Select a resource to view or edit the YAML.

1.3. MANAGING APPLICATION RESOURCES

From the console, you can create applications by using Git repositories, Helm repositories, and Object
storage repositories.

Important: Git Channels can share a namespace with all other channel types: Helm, Object storage, and
other Git namespaces.

See the following topics to start managing apps:
® Managing apps with Git repositories
® Managing apps with Helm repositories

® Managing apps with Object storage repositories

1.3.1. Managing apps with Git repositories

../web_console#search-in-the-console

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Git repositories in the following procedure. Learn
more about the application model at Application model and definitions.

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

10

1.

2.

From the console navigation menu, click Manage applications.

Click Create application.
For the following steps, select YAML: On to view the YAML in the console as you create your
application. See the YAML samples later in the topic.

Enter the following values in the correct fields:

® Name: Enter a valid Kubernetes name for the application.

® Namespace: Select a namespace from the list. You can also create a namespace by using a
valid Kubernetes name if you are assigned the correct access role.

Choose Git from the list of repositories that you can use.

Enter the required URL path or select an existing path.

If you select an existing Git repository path, you do not need to specify connection information if
this is a private repository. The connection information is pre-set and you do not need to view
these values.

If you enter a new Git repository path, you can optionally enter Git connection information if this
is a private Git repository.

Enter values for the optional fields, such as branch and path.

Notice the reconcile option. The merge option is the default selection, which means that new
fields are added and existing fields are updated in the resource. You can choose to replace. With
the replace option, the existing resource is replaced with the Git source.

Set any optional pre-deployment and post-deployment tasks.

Technology preview: Set the Ansible Tower secret if you have Ansible Tower jobs that you want
to run before or after the subscription deploys the application resources. The Ansible Tower
tasks that define Ansible jobs must be placed within prehook and posthook folders in this
repository.

You can select an Ansible Tower secret from drop-down menu if a secret was created in the
application namespace. In this instace, the connection information is set, and you do not need to

view these values.

If you enter a new Ansible Tower secret name to create a new secret, you need to enter the
Ansible Tower host and token.

From Select clusters to deploy, you can update the placement rule information for your
application. Choose from the following:

® Deploy on local cluster
® Deploy to all online clusters and local cluster

® Deploy application resources only on clusters matching specified labels

../security#role-based-access-control

1.

12.

1.3.1.1.

CHAPTER 1. MANAGING APPLICATIONS

® You have the option to Select existing placement configuration if you create an application
in an existing namespace with placement rules already defined.

. From Settings, you can specify application behavior. To block or activate changes to your

deployment during a specific time window, choose an option for Deployment window and your
Time window configuration.

You can either choose another repository or Click Save.

You are redirected to the Overview page where you can view the details and topology.

GitOps pattern

Learn best practices for organizing a Git repository to manage clusters.

1.3.1.1.1. GitOps example

Folders in this example are defined and named, with each folder containing applications or
configurations that are run on managed clusters:

Root folder managed-subscriptions: Contains subscriptions that target the common-
managed folder.

Subfolder apps/: Used to subscribe applications in the common-managed folder with
placement to managed-clusters.

Subfolder config/: Used to subscribe configurations in the common-managed folder with
placement to managed-clusters.

Subfolder policies/: Used to apply policies with placement to managed-clusters.

Folder root-subscription/: The initial subscription for the hub cluster that subscribes the
managed-subscriptions folder.

See the example of a directory:

common-managed/
apps/

app-name-0/
app-name-1/

config/

config001/
config002/

managed-subscriptions
apps/
config/
policies/

root-subscription/

1.3.1.1.2. GitOps flow

Your directory structure is created for the following subscription flow: root-subscription > managed-
subscriptions > common-managed.

1

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

12

1. Asingle subscription in root-subscription/ is applied from the CLI terminal to the hub cluster.

2. Subscriptions and policies are downloaded and applied to the hub cluster from the managed-

subscription folder.

® The subscriptions and policies in the managed-subscription folder then perform work on
the managed clusters based on the placement.

® Placement determines which managed-clusters each subscription or policy affects.

® The subscriptions or policies define what is on the clusters that match their placement.

3. Subscriptions apply content from the common-managed folder to managed-clusters that

match the placement rules. This also applies common applications and confugirations to all
managed-clusters that match the placement rules.

1.3.1.1.3. More examples

For an example of root-subscription/, see application-subscribe-all.

For examples of subscriptions that point to other folders in the same repository, see subscribe-
all.

See an example of the common-managed folder with application artifacts in the nginx-apps
repository.

See policy examples in Policy collection.

1.3.2. Managing apps with Helm repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Helm repositories in the following procedure. Learn
more about the application model at Application model and definitions.

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

1.

2.

From the console navigation menu, click Manage applications.

Click Create application.
For the following steps, select YAML: On to view the YAML in the console as you create your
application. See YAML samples later in the topic.

Enter the following values in the correct fields:
® Name: Enter a valid Kubernetes name for the application.

® Namespace: Select a namespace from the list. You can also create a namespace by using a
valid Kubernetes name if you are assigned the correct access role.

Choose Helm from the list of repositories that you can use.

Enter the required URL path or select an existing path, then enter the package version.

If you select an existing Helm repository path, you do not need to specify connection information
if this is a private repository. The connection information is pre-set and you do not need to view
these values.

https://github.com/stolostron/application-samples/tree/main/subscriptions/subscribe-all
https://github.com/stolostron/application-samples/tree/main/subscriptions
https://github.com/stolostron/application-samples/tree/main/subscriptions/nginx
https://github.com/stolostron/policy-collection
../security#role-based-access-control

CHAPTER 1. MANAGING APPLICATIONS

If you enter a new Helm repository path, you can optionally enter Helm connection information if

this is a private Helm repository.

6. From Select clusters to deploy, you can update the placement rule information for your
application. Choose from the following:

® Deploy on local cluster
® Deploy to all online clusters and local cluster
® Deploy application resources only on clusters matching specified labels

® You have the option to Select existing placement configuration if you create an application
in an existing namespace with placement rules already defined.

7. From Settings, you can specify application behavior. To block or activate changes to your
deployment during a specific time window, choose an option for Deployment window and your
Time window configuration.

8. You can either choose another repository or Click Save.

9. You are redirected to the Overview page where you can view the details and topology.

1.3.2.1. Sample YAML

The following example channel definition abstracts a Helm repository as a channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release.
{{ .Release.Name }} for the application topology to be displayed properly.

apiVersion: vi
kind: Namespace
metadata:
name: hub-repo
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: helm
namespace: hub-repo
spec:
pathname: [https://kubernetes-charts.storage.googleapis.com/] # URL points to a valid chart URL.
type: HelmRepo

The following channel definition shows another example of a Helm repository channel:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: predev-ch
namespace: ns-ch
labels:
app: nginx-app-details
spec:
type: HelmRepo
pathname: https://kubernetes-charts.storage.googleapis.com/

13

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

Note: To see REST API, use the APIs.

1.3.3. Managing apps with Object storage repositories

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Object storage repositories in the following
procedure. Learn more about the application model at Application model and definitions.

User required access: A user role that can create applications. You can only perform actions that your
role is assigned. Learn about access requirements from the Role-based access control documentation.

When you deploy Kubernetes resources using an application, the resources are located in specific
repositories. Learn how to deploy resources from Git repositories in the following procedure.

1.

2.

S.

14

From the console navigation menu, click Manage applications.

Click Create application.
For the following steps, select YAML: On to view the YAML in the console as you create your
application. See YAML samples later in the topic.

Enter the following values in the correct fields:

® Name: Enter a valid Kubernetes name for the application.

® Namespace: Select a namespace from the list. You can also create a namespace by using a
valid Kubernetes name if you are assigned the correct access role.

Choose Object storage from the list of repositories that you can use.

Enter the required URL path or select an existing path.

If you select an existing Object storage repository path, you do not need to specify connection
information if this is a private repository. The connection information is pre-set and you do not
need to view these values.

If you enter a new Object storage repository path, you can optionally enter Object storage
connection information if this is a private Object storage repository.

Enter values for the optional fields.
Set any optional pre and post-deployment tasks.

From Select clusters to deploy, you can update the placement rule information for your
application. Choose from the following:

® Deploy on local cluster
® Deploy to all online clusters and local cluster
® Deploy application resources only on clusters matching specified labels

® You have the option to Select existing placement configuration if you create an application
in an existing namespace with placement rules already defined.

From Settings, you can specify application behavior. To block or activate changes to your
deployment during a specific time window, choose an option for Deployment window and your
Time window configuration.

../apis#apis
../security#role-based-access-control

CHAPTER 1. MANAGING APPLICATIONS

10. You can either choose another repository or Click Save.

1. You are redirected to the Overview page where you can view the details and topology.

1.3.3.1. Sample YAML

The following example channel definition abstracts an object storage as a channel:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: dev
namespace: ch-obj
spec:
type: Object storage
pathname: [http://9.28.236.243:31311/dev] # URL is appended with the valid bucket name, which
matches the channel name.
secretRef:

name: miniosecret
gates:

annotations:

dev-ready: true

Note: To see REST API, use the APIs.

1.4. APPLICATION ADVANCED CONFIGURATION
Within Red Hat Advanced Cluster Management for Kubernetes, applications are composed of multiple
application resources. You can use channel, subscription, and placement rule resources to help you

deploy, update, and manage your overall applications.

Both single and multicluster applications use the same Kubernetes specifications, but multicluster
applications involve more automation of the deployment and application management lifecycle.

All of the application component resources for Red Hat Advanced Cluster Management for Kubernetes
applications are defined in YAML file spec sections. When you need to create or update an application
component resource, you need to create or edit the appropriate spec section to include the labels for
defining your resource.
View the following application advanced configuration topics:

® Subscribing Git resources

® Configuring application channel and subscription for a secure Git connection

® Setting up Ansible Tower tasks

® Configuring managed clusters for Argo CD

® Configuring package overrides

® Channel samples

® Subscription samples

® Placement rule samples

15

../apis#apis

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications
® Application samples

1.4.1. Subscribing Git resources

By default, when a subscription deploys subscribed applications to target clusters, the applications are
deployed to that subscription namespace, even if the application resources are associated with other
namespaces. A subscription administrator can change default behavior, as described in this topic.

Additionally, if an application resource exists in the cluster and was not created by the subscription, the
subscription cannot apply a new resource on that existing resource. See the following processes to
change default settings as the subscription administrator:

Required access: Cluster administrator

1.4.1.1. Granting users and groups subscription admin privilege

Learn how to grant subscription administrator access.
1. From the console, log in to your Red Hat OpenShift Container Platform cluster.

2. Create one or more users. See Preparing for users for information about creating users.
Users that you create are administrators for the app.open-cluster-
management.io/subscription application. With OpenShift Container Platform, a subscription
administrator can change default behavior. You can group these users to represent a
subscription administrative group, which is demonstrated in later examples.

3. From the terminal, log in to your Red Hat Advanced Cluster Management cluster.

4. Add the following subjects into open-cluster-management:subscription-admin
ClusterRoleBinding with the following command:

I oc edit clusterrolebinding open-cluster-management:subscription-admin

Note: Initially, open-cluster-management:subscription-admin ClusterRoleBinding has no
subject.

Your subjects might display as the following example:

subjects:

- apiGroup: rbac.authorization.k8s.io
kind: User
name: example-name

- apiGroup: rbac.authorization.k8s.io
kind: Group
name: example-group-name

1.4.1.2. Creating application resources in Git

You need to specify the full group and version for apiVersion in resource YAML when you subscribe.
For example, if you subscribe to apiVersion: v1, the subscription controller fails to validate the
subscription and you receive an error: Resource /v1, Kind=lmageStream is not supported.

If the apiVersion is changed to image.openshift.io/v1, as in the following sample, it passes the
validation in the subscription controller and the resource is applied successfully.

16

https://docs.openshift.com/container-platform/4.7/post_installation_configuration/preparing-for-users.html

CHAPTER 1. MANAGING APPLICATIONS

apiVersion: “‘image.openshift.io/v1’
kind: ImageStream
metadata:
name: default
namespace: default
spec:
lookupPolicy:
local: true
tags:
- name: 'latest’
from:
kind: Dockerlmage
name: 'quay.io/repository/open-cluster-management/multicluster-operators-
subscription:community-latest'

Next, see more useful examples of how a subscription administrator can change default behavior.

1.4.1.3. Application namespace example

In this example, you are logged in as a subscription administrator. Create a subscription to subscribe the
sample resource YAML file from a Git repository. The example file contains subscriptions that are
located within the following different namespaces:

Applicable channel types: Git
e ConfigMap test-configmap-1 gets created in multins namespace.
e ConfigMap test-configmap-2 gets created in default namespace.

e ConfigMap test-configmap-3 gets created in the subscription namespace.

apiVersion: v1
kind: Namespace
metadata:

name: multins
apiVersion: v1
kind: ConfigMap
metadata:

name: test-configmap-1

namespace: multins
data:

path: resource1
apiVersion: v1
kind: ConfigMap
metadata:

name: test-configmap-2

namespace: default
data:

path: resource2
apiVersion: v1
kind: ConfigMap
metadata:

17

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

name: test-configmap-3
data:
path: resource3

If the subscription was created by other users, all the ConfigMaps get created in the same namespace
as the subscription.

1.4.1.4. Resource overwrite example

Applicable channel types: Git, ObjectBucket (Object storage in the console)

In this example, the following ConfigMap already exists in the target cluster.

apiVersion: v1
kind: ConfigMap
metadata:
name: test-configmap-1
namespace: sub-ns
data:
name: user
age: 19

Subscribe the following sample resource YAML file from a Git repository and replace the existing
ConfigMap. See the change in the data specification:

apiVersion: v1
kind: ConfigMap
metadata:
name: test-configmap-1
namespace: sub-ns
data:
age: 20

1.4.1.4.1. Default merge option

See the following sample resource YAML file from a Git repository with the default apps.open-cluster-
management.io/reconcile-option: merge annotation. See the following example:

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: subscription-example
namespace: sub-ns
annotations:
apps.open-cluster-management.io/git-path: sample-resources
apps.open-cluster-management.io/reconcile-option: merge
spec:
channel: channel-ns/somechannel
placement:
placementRef:
name: dev-clusters

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is merged, as you can see in the following example:

18

CHAPTER 1. MANAGING APPLICATIONS

apiVersion: v1
kind: ConfigMap
metadata:
name: test-configmap-1
namespace: sub-ns
data:
name: user
age: 20

When the merge option is used, entries from subscribed resource are either created or updated in the
existing resource. No entry is removed from the existing resource.

Important: If the existing resource you want to overwrite with a subscription is automatically reconciled
by another operator or controller, the resource configuration is updated by both subscription and the
controller or operator. Do not use this method in this case.

1.4.1.4.2. Replace option

You log in as a subscription administrator and create a subscription with apps.open-cluster-
management.io/reconcile-option: replace annotation. See the following example:

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: subscription-example
namespace: sub-ns
annotations:
apps.open-cluster-management.io/git-path: sample-resources
apps.open-cluster-management.io/reconcile-option: replace
spec:
channel: channel-ns/somechannel
placement:
placementRef:
name: dev-clusters

When this subscription is created by a subscription administrator and subscribes the ConfigMap
resource, the existing ConfigMap is replaced by the following:

apiVersion: v1
kind: ConfigMap
metadata:
name: test-configmap-1
namespace: sub-ns
data:
age: 20

1.4.1.4.3. Reconcile option

You can also use apps.open-cluster-management.io/reconcile-option annotation in individual
resources to override the subscription-level reconcile option.

For example, if you add apps.open-cluster-management.io/reconcile-option: replace annotation in

the subscription and add apps.open-cluster-management.io/reconcile-option: merge annotationin a
resource YAML in the subscribed Git repository, the resource will be merged on the target cluster while

19

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

other resources replaced.

1.4.1.4.3.1. Reconcile frequency

You can now select reconcile frequency options: high, medium, low, and off in channel configuration to
avoid unnecessary resource reconciliations and therefore prevent overload on subscription operator.

Required access: Administrator and cluster administrator
See the following definitions of the settings:attribute:<value>:

® Off: The deployed resources are not automatically reconciled. A change in the subscription
custom resource triggers a reconciliation. You can add or update a label or annotation.

® |ow: The deployed resources are automatically reconciled every hour, even if there is no
change in the source Git repository.

e Medium: This is the default setting. The subscription operator compares the currently deployed
commit ID to the latest commit ID of the source repository every 3 minutes and apply changes
to target clusters when there is change. Every 15 minutes, all resources are re-applied from the
source Git repository to the target clusters, even if there is no change in the repository.

e High: The deployed resources are automatically reconciled every two minutes, even if there is
no change in the source Git repository.

You can set this using apps.open-cluster-management.io/reconcile-rate annotation in the channel
custom resource that is referenced by subscription.

See the following example:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: git-channel
namespace: sample
annotations:
apps.open-cluster-management.io/reconcile-rate: <value from the list>
spec:
type: GitHub
pathname: <Git URL>
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: git-subscription
annotations:
apps.open-cluster-management.io/git-path: <application1>
apps.open-cluster-management.io/git-branch: <branch1>
spec:
channel: sample/git-channel
placement:
local: true

In the previous example, all subscriptions that use sample/git-channel get low reconciliation frequency.

20

CHAPTER 1. MANAGING APPLICATIONS

Regardless ot the reconcile-rate setting in the channel, a subscription can turn the auto-reconciliation
off by specifying apps.open-cluster-management.io/reconcile-rate: off annotation in the subscription
CR.

See the following sample:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: git-channel
namespace: sample
annotations:
apps.open-cluster-management.io/reconcile-rate: high
spec:
type: GitHub
pathname: <Git URL>
apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: git-subscription
annotations:
apps.open-cluster-management.io/git-path: application1
apps.open-cluster-management.io/git-branch: branch1
apps.open-cluster-management.io/reconcile-rate: "off"
spec:
channel: sample/git-channel
placement:
local: true

See that the resources deployed by git-subscription are never automatically reconciled even if the
reconcile-rate is set to high in the channel.

1.4.2. Configuring application channel and subscription for a secure Git connection

Git channels and subscriptions connect to the specified Git repository through HTTPS or SSH. The
following application channel configurations can be used for secure Git connections:

® Connecting to a private repo with user and access token

® Making an insecure HTTPS connection to a Git server

® Using custom CA certificates for a secure HTTPS connection
® Making an SSH connection to a Git server

® Updating certificates and SSH keys

1.4.2.1. Connecting to a private repo with user and access token

You can connect to a Git server using channel and subscription. See the following procedures for
connecting to a private repository with a user and access token:

1. Create a secret in the same namespace as the channel. Set the user field to a Git user ID and

the accessToken field to a Git personal access token. The values should be base64 encoded.
See the following sample with user and accessToken populated:

21

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

apiVersion: vi
kind: Secret
metadata:
name: my-git-secret
namespace: channel-ns
data:
user: dXNlcgo=
accessToken: cGFzc3dvemQK

2. Configure the channel with a secret. See the following sample with the secretRef populated:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: sample-channel
namespace: channel-ns
spec:
type: Git
pathname: <Git HTTPS URL>
secretRef:
name: my-git-secret

1.4.2.2. Making an insecure HTTPS connection to a Git server

You can use the following connection method in a development environment to connect to a privately-
hosted Git server with SSL certificates that are signed by custom or self-signed certificate authority.
However, this procedure is not recommended for production:

Specify insecureSkipVerify: true in the channel specification. Otherwise, the connection to the Git
server fails with an error similar to the following:

I x509: certificate is valid for localhost.com, not localhost

See the following sample with the channel specification addition for this method:

apiVersion: apps.open-cluster-management.io/v1
ind: Channel
metadata:
labels:
name: sample-channel
namespace: sample
spec:
type: GitHub
pathname: <Git HTTPS URL>
insecureSkipVerify: true

1.4.2.3. Using custom CA certificates for a secure HTTPS connection

You can use this connection method to securely connect to a privately-hosted Git server with SSL
certificates that are signed by custom or self-signed certificate authority.

1. Create a ConfigMap to contain the Git server root and intermediate CA certificates in PEM

format. The ConfigMap must be in the same namespace as the channel CR. The field name
must be caCerts and use |. From the following sample, notice that caCerts can contain multiple

22

CHAPTER 1. MANAGING APPLICATIONS

certificates, such as root and intermediate CAs:

apiVersion: v1
kind: ConfigMap
metadata:

name: git-ca

namespace: channel-ns
data:

caCerts: |

Git server root CA

MIIFSDCCA8wCCQDInYMol7LSDTANBgkghkiGOwWOBAQsFADCBszELMAKGA1UEBhMC

QOExCzAJBgNVBAgMAK9OMRAwWDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBASMAOFDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
LndgdW5nLWh1YjEzLmRIdjA2LnJIZC1jaGVzdGVyZmllbGQuY29tMR8wWHQY JKoZI
hveNAQKBFhByb2tlakByZWRoYXQuY29tMB4XDTIWMTIwMzE4NTMxMIoXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAKNBMQswCQYDVQQIDAJPTIEQMA4GA1UEBwwH

VG9yb250bzEPMAOGA1UECgWwGUmMVKSGFOMQwwCgYDVQQLDANBQOOXRTBDBgNVBA

MM
PGdvZ3Mtc3ZjLWRIZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNiSyZWQtY2hl
c3RIcmZpZWxkLmNvbTEfMBOGCSqGSIb3DQEJARYQcm9rZWpAcmVkaGFOLmMNvbTCC
AilwDQYJKoZlhveNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDA06S3ZJ0Ic3
U9p/NLodnoTIC+cn0g8gNCAjf13zbGB3bfN9ZxI8Q5fv+wYwHrUOReCp6U/InyQy
60S3Q;j738F635inz1KdyhKtIWW2p9Ye9DUtx1IIfHkDVdXtynjHQbsFNIdRHcpQP
upM5pwPC3BZXgvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8IU
xn2y8ghm7MilUpXuwWhSYgCrEVgmTcB70Pc2YRZdSFolIMN9Et70MjQNOTXjoktH8
PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbgseqUr42+v+Qp2bBj1Sjw
+SEZfHTvSv8AqX0T6e06njr578+DgYIwsS1A1zcAdzp8gmDGagvJDzwenQVFmvaoM
gGHCdJihfy3vDhxuZRDse0V4Pz6tl6ikIM+tHrdL/bdLONdfJXNCgn2nKrM51fpw
diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/IBawgxGUsITboFH77a+Kwu40ug9ibtm5z
ISs/JY4Kiy4C2XJOIOR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
aD5ijFUopjQEKFrYh3093DB/URIQ+wHVa6+Kvu3uqE0cgbpQsLpbFVQ/I8xHvtIL
kYy6z6V/nj9ZYKQbg/kPAgMBAAEWDQY JKoZIhveNAQELBQADggIBAKZuc+lewYAv
jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
g2E8CwI09ZjZ6l+pHCugmNYoX1wdjaaDXIpwk8hGTSgy1LsOoYrC5ZysCi9dilu9
PQVGs/vehQRgLV9uZBigG6oZqdUqEimaLHrOcEAHB5RVcnFurzOgNbT+UySjsD63
9yJdCeQbeKAR9SC4hG13EbM/RZh0IgFupkmGts7QYULzT+0A0cCJpPLQI6M6qGYE
kh9aBB7FLykK1TeXVuANINU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
NkZqgP+df4Hp85sd+xhrgYieq7QGX2KOXAjgAW09htoBhOyW3mm783A7WcOiBMQvO
2UGZxMsR;jIP6UgB08LsV5ZBAefEIR344s0kJR1de/Sx2J9J/am7yOoqgbtKpQotlA
XSUKATuuQw4ctyZL DkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YID6F4Wh8Mc
20QU5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAlgFtyum6/8ZN9nZ9K
FSEKdlu+xeb6Y6xYtOmJJWFEmMCRIi4i7IL74EU/VNXwFmfP61adliUOST3w5t92cB
M26t73UCExXMXTCQvnpOki84PeR1kRk4

23

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

24

MIIFSDCCA8wCCQDInYMol7LSDTANBgkghkiGOwWOBAQsFADCBszELMAKGA1UEBhMC

QOExCzAJBgNVBAgMAK9OMRAwWDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBASMAOFDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
LndgdW5nLWh1YjEzLmRIdjA2LnJIZC1jaGVzdGVyZmllbGQuY29tMR8wWHQY JKoZI
hveNAQKkBFhByb2tlakByZWRoYXQuY29tMB4XDTIWMTIwMzE4NTMxMIoXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAKNBMQswCQYDVQQIDAJPTIEQMA4GA1UEBwwH

VG9yb250bzEPMAOGA1UECgWGUmMVKSGFOMQwwCgYDVQQLDANBQOOXRTBDBgNVBA

MM
PGdvZ3Mtc3ZjLWRIZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNiSyZWQtY2hl
c3RlcmZpZWxKLmNvbTEfMBOGCSqGSIb3DQEJARYQcm9rZWpAcmVkaGFOLMNvbTCC
AilwDQYJKoZlhveNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDA06S3ZJ0Ic3
U9p/NLodnoTIC+cn0g8gNCAjf13zbGB3bfN9ZxI8Q5fv+wYwHrUOReCp6U/InyQy
60S3Q;j738F635inz1KdyhKtIWW2p9Ye9DUtx1IIfHkDVdXtynjHQbsFNIdRHcpQP
upM5pwPC3BZXgvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8IU
xn2y8ghm7MilUpXuwWhSYgCrEVgmTcB70Pc2YRZdSFolIMN9OEt70MjQNOTXjoktH8
PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbgseqUr42+v+Qp2bBj1Sjw
+SEZfHTvSv8AqX0T6e06njr578+DgYIwsS1A1zcAdzp8gmDGagvJDzwenQVFmvaoM
gGHCdJihfy3vDhxuZRDse0V4Pz6tl6ikIM+tHrdL/bdLONdfJXNCgn2nKrM51fpw
diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/IBawgxGUsITboFH77a+Kwu40ug9ibtm5z
ISs/JY4Kiy4C2XJOIROR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
aD5ijFUopjQEKFrYh3093DB/URIQ+wHVa6+Kvu3uqEO0cgbpQsLpbFVQ/I8xHvtIL
kYy6z6V/nj9ZYKQbg/kPAgGMBAAEWDQY JKoZIhveNAQELBQADggIBAKZuc+lewYAv
jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
g2E8CwIO09ZjZ6l+pHCugmNYoX1wdjaaDXIpwk8hGTSgy1LsOoYrC5ZysCi9dilu9
PQVGs/vehQRgLV9uZBigG6oZqgdUqEimaLHrOcEAHB5RVcnFurzOgNbT+UySjsD63
9yJdCeQbeKAR9ISC4hG13EbM/RZh0IgFupkmGts7QYULzT+0A0cCJpPLQI6M6qGYE
kh9aBB7FLykK1TeXVuANINU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
NkZqP+df4Hp85sd+xhrgYieq7QGX2KOXAjgAWo09htoBhOyW3mm783A7WcOiBMQvO
2UGZxMsR;jIP6UgB08LsV5ZBAefEIR344s0kJR1de/Sx2J9J/am7yOoqgbtKpQotlA
XSUKATuuQw4ctyZL DkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YID6F4Wh8Mc
20QU5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqgBpBRAJFI2fAlgFtyum6/8ZN9nZ9K
FSEKdlu+xeb6Y6xYtOmJJWFEMCRIi4i7IL74EU/VNXwWFmfP61adliUOST3w5t92cB
M26t73UCExXMXTCQvnpOki84PeR1kRk4

MIIFSDCCA8wCCQDInYMol7LSDTANBgkghkiGOwWOBAQsFADCBszELMAKGA1UEBhMC

QOExCzAJBgNVBAgMAK9OMRAwWDgYDVQQHDAdUb3JvbnRvMQ8wDQYDVQQKDAZSZW
RI

YXQxDDAKBgNVBAsSMAOFDTTFFMEMGA1UEAww8Z29ncy1zdmMtZGVmYXVsdC5hcHBz
LndgdW5SnLWh1YjEzLmRIdjA2LnJIZC1jaGVzdGVyZmlIbGQuY29tMR8wWHQY JKoZI
hveNAQKBFhByb2tlakByZWRoYXQuY29tMB4XDTIWMTIwMzE4NTMxMIoXDTIzMDky

MzE4NTMxMlowgbMxCzAJBgNVBAYTAKNBMQswCQYDVQQIDAJPTIEQMA4GA1UEBwwH

CHAPTER 1. MANAGING APPLICATIONS

VG9yb250bzEPMAOGA1UECgwGUmMVKSGFOMQwwCgYDVQQLDANBQOOXRTBDBgNVBA

MM
PGdvZ3Mtc3ZjLWRIZmF1bHQuYXBwcy5yanVuZy1odWIxMy5kZXYwNiSyZWQtY2hl
c3RIcmZpZWxkLmNvbTEfMBOGCSqGSIb3DQEJARYQcmIrZWpAcmVkaGFOLmMNvbTCC
AilwDQYJKoZlhveNAQEBBQADggIPADCCAgoCggIBAM3nPK4mOQzaDA06S3ZJ0Ic3
U9p/NLodnoTIC+cn0g8gNCAjf13zbGB3bfN9ZxI8Q5fv+wYwHrUOReCp6U/InyQy
60S3Q;j738F635inz1KdyhKtIWW2p9Ye9DUtx1IIfHkDVdXtynjHQbsFNIdRHcpQP
upM5pwPC3BZXgvXChhlfAy2m4yu7vy0hO/oTzWIwNsoL5xt0Lw4mSyhlEip/t8IU
xn2y8ghm7MilUpXuwWhSYgCrEVgmTcB70Pc2YRZdSFoIMN9OEt70MjQNOTXjoktH8
PyASJIKIRd+48yROIbUn8rj4aYYBsJuoSCjJNwujZPbgseqUr42+v+Qp2bBj1Sjw
+SEZfHTvSv8AqX0T6e06njr578+DgYIwsS1A1zcAdzp8gmDGagvJDzwenQVFmvaoM
gGHCdJihfy3vDhxuZRDse0V4Pz6tl6ikIM+tHrdL/bdLONdfJXNCgn2nKrM51fpw
diNXs4Zn3QSStC2x2hKnK+Q1rwCSEg/IBawgxGUsITboFH77a+Kwu40ug9ibtm5z
ISs/JY4Kiy4C2XJOIROR2XZYkdKaX4x3ctbrGaD8Bj+QHiSAxaaSXIX+VbzkHF2N
aD5ijFUopjQEKFrYh3093DB/URIQ+wHVa6+Kvu3uqEOcgbpQsLpbFVQ/I8xHvtIL
kYy6z6V/nj9ZYKQbg/kPAgGMBAAEWDQY JKoZIhveNAQELBQADggIBAKZuc+lewYAv
jaaSeRDRoToTb/yN0Xsi69UfK0aBdvhCa7/0rPHcv8hmUBH3YgkZ+CSA5ygajtL4
g2E8CwIO9ZjZ6l+pHCugmNYoX1wdjaaDXIpwk8hGTSgy1LsOoYrC5ZysCi9dilu9
PQVGs/vehQRgLV9uZBigG6oZqgdUqEimaLHrOcEAHB5RVenFurzOgNbT+UySjsD63
9yJdCeQbeKAR9SC4hG13EbM/RZh0IgFupkmGts7QYULzT+0A0cCJpPLQI6M6qGYE
kh9aBB7FLykK1TeXVuANINU4EMyJ/e+uhNkS9ubNJ3vuRuo+ECHsha058yi16JC9
NkZqgP+df4Hp85sd+xhrgYieq7QGX2KOXAjgAW09htoBhOyW3mm783A7WcOiBMQvO
2UGZxMsR;jIP6UgB08LsV5ZBAefEIR344s0kJR1de/Sx2J9J/am7yOoqgbtKpQotlA
XSUKATuuQw4ctyZL DkUpzrDzgd2Bt+aawF6sD2YqycaGFwv2YD9t1YID6F4Wh8Mc
20QU5EGrkQTCWZ9pOHNSa7YQdmJzwbxJC4hqBpBRAJFI2fAlgFtyum6/8ZN9nZ9K
FSEKdlu+xeb6Y6xYtOmJJWFEmMCRIi4i7IL74EU/VNXwWFmfP61adliUOST3w5t92cB
M26t73UCExXMXTCQvnpOki84PeR1kRk4

2. Configure the channel with this ConfigMap. See the following sample with the git-ca name from
the previous step:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:

name: my-channel

namespace: channel-ns
spec:

configMapRef:

name: git-ca
pathname: <Git HTTPS URL>
type: Git

1.4.2.4. Making an SSH connection to a Git server

1. Create a secret to contain your private SSH key in sshKey field in data. If the key is passphrase-
protected, specify the password in passphrase field. This secret must be in the same
namespace as the channel CR. Create this secret using a kubectl command to create a secret
generic git-ssh-key --from-file=sshKey=./.ssh/id_rsa, then add base64 encoded passphrase.
See the following sample:

apiVersion: vi
kind: Secret
metadata:

name: git-ssh-key

25

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

namespace: channel-ns
data:

sshKey:
LSO0tLS1CRUdAJTIBPUEVOU1NIIFBSSVZBVEUgSOVZLS0tLSOKYjNCbGJuTnphQzFyWIhrdG
RqRUFBQUFBQ21GbGN6STFOaTFgZEhJQUFBQUdZbUS55ZVhCMEFBQUFHQUFBQUJD
K3YySHhWSIwCm8zejh1endzV3NWODMvSFVKOEtGeVBmMWk50eE5TQUgcFA3Yk1yR2tIRF
FPd3J6MGIKOUIRMOtKVXQzWEEOZmd6eNVIr'VFVhcTdsZWxxVk1HcXI2WHF2UVJ5MKcONKRI
RVIYUGpabVZMcGVuaGtRYU5HYmpaMmZOdQpWUGpiOVhZRmd4bTNnYUpJU3BNeTFL
WjQ5MzJvOFByaDZEdzRYVUF1a28wZGdBaDdndVpPaE53b0pVYNNmMYIZRcOxMS1RrCnQw
blZ1anRvd2NEVGx4TIplUjcwbGVUSHAGQTYwekMOelpMNkRPc3RMY|jV2LzZhMjFHRIMwVm
VXQ3YVMIpMOE 1sbjVUZWwKSytoUWtxRnJBL3BUc10zVXNjSG1GUiI9PV25FPQotLSO0tLUVO
RCBPUEVOU1NIIFBSSVZBVEUgS0VZLSO0tLSOK

passphrase: cGFzc3cwecmQK
type: Opaque

2. Configure the channel with the secret. See the following sample:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: my-channel
namespace: channel-ns
spec:
configMapRef:
name: git-known-hosts
secretRef:
name: git-ssh-key
pathname: <Git SSH URL>
type: Git

The subscription controller does an ssh-keyscan with the provided Git hostname to build the
known_hosts list to prevent an Man-in-the-middle (MITM) attack in the SSH connection. If you
want to skip this and make insecure connection, use insecureSkipVerify: true in the channel
configuration. This is not best practice, especially in production environments.

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: my-channel
namespace: channel-ns
spec:
secretRef:
name: git-ssh-key
pathname: <Git SSH URL>
type: Git
insecureSkipVerify: true

1.4.2.5. Updating certificates and SSH keys

If a Git channel connection configuration requires an update, such as CA certificates, credentials, or SSH
key, you need to create a new secret and ConfigMap in the same namespace and update the channel to
reference that new secret and ConfigMap. For more information, see Using custom CA certificates for a
secure HTTPS connection.

26

CHAPTER 1. MANAGING APPLICATIONS

1.4.3. Setting up Ansible Tower tasks (Technology preview)

Red Hat Advanced Cluster Management is integrated with Ansible Tower automation so that you can
create prehook and posthook AnsibleJob instances for Git subscription application management. With
Ansible Tower jobs, you can automate tasks and integrate with external services, such as Slack and
PagerDuty services. Your Git repository resource root path will contain prehook and posthook
directories for Ansible Tower jobs that run as part of deploying the app, updating the app, or removing
the app from a cluster.

Required access: Cluster administrator

1.4.3.1. Prerequisites

® OpenShift Container Platform 4.5 or later

® You must have Ansible Tower version 3.7.3 or a later version installed. It is best practice to install
the latest supported version of Ansible Tower. See Red Hat AnsibleTower documentation for
more details.

® |nstall the Ansible Automation Platform Resource Operator to connect Ansible jobs to the
lifecycle of Git subscriptions. For best results when using the AnsibleJob to launch Ansible

Tower jobs, the Ansible Tower job template should be idempotent when it is run.

Check PROMPT ON LAUNCH on the template for both INVENTORY and EXTRA VARIABLES. See Job
templates for more information.

1.4.3.2. Install Ansible Automation Platform Resource Operator:

1. Login to your OpenShift Container Platform cluster console.
2. Click OperatorHub in the console navigation.

3. Search for and install the Ansible Automation Platform Resource Operator .

1.4.3.3. Obtain the Ansible Tower URL and token

The Ansible Tower URL is the same URL that is used to log in to Tower. This is required by the
Application console or the Tower access secret when configuring an application with Ansible prehooks
and posthooks.

See the following example URL: hitps://ansible-tower-web-svc-tower.apps.my-openshift-
cluster.com.

1.4.3.4. Obtaining a token

1. Login to your Ansible Tower console.
2. Click Users in the console navigation.
3. Search for the correct user.
4. Click the Edit usericon.

5. Click TOKENS in the user section.

6. Click the + button to add a token.

27

https://docs.ansible.com/ansible-tower/
https://docs.ansible.com/ansible-tower/latest/html/userguide/job_templates.html
https://ansible-tower-web-svc-tower.apps.my-openshift-cluster.com

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

7. Leave the APPLICATION field blank.
8. Inthe DESCRIPTION field, provide your intended use for this token.
9. Select Write in the SCOPE drop-down menu.

10. Click SAVE and record the TOKEN that is provided.

1.4.3.5. Ansible integration

You can integrate Ansible Tower jobs into Git subscriptions. For instance, for a database front-end and
back-end application, the database is required to be instantiated using Ansible Tower with an Ansible
Job, and the application is installed by a Git subscription. The database is instantiated before you deploy
the front-end and back-end application with the subscription.

The application subscription operator is enhanced to define two subfolders: prehook and posthook.
Both folders are in the Git repository resource root path and contain all prehook and posthook Ansible
jobs, respectively.

When the Git subscription is created, all of the pre and post AnsibleJob resources are parsed and stored
in memory as an object. The application subscription controller decides when to create the pre and post
AnsibleJob instances.

1.4.3.6. Ansible operator components

When you create a subscription CR, the Git-branch and Git-path points to a Git repository root location.
In the Git root location, the two subfolders prehook and posthook should contain at least one
Kind:AnsibleJob resource.

1.4.3.6.1. Prehook

The application subscription controller searches all the Kind:AnsibledJob CRs in the prehook folder as
the prehook AnsibleJob objects, then generates a new prehook AnsibleJob instance. The new instance
name is the prehook AnsibleJob object name and a random suffix string.

See an example instance name: database-sync-1-2913063.

The application subscription controller queues the reconcile request again in a 1 minute loop, where it
checks the prehook AnsibleJob status.ansibleJobResult. When the prehook
status.ansibleJobResult.status is successful, the application subscription continues to deploy the
main subscription.

1.4.3.6.2. Posthook

When the app subscription status is updated, if the subscription status is subscribed or propagated to all
target clusters in subscribed status, the app subscription controller searches all of the AnsibleJob Kind
CRs in the posthook folder as the posthook AnsibleJob objects. Then, it generates new posthook
Ansibledob instances. The new instance name is the posthook AnsibledJob object name and a random
suffix string.

See an example instance name: service-ticket-1-2913849.

1.4.3.6.3. Ansible placement rules

With a valid prehook AnsibleJob, the subscription launches the prehook AnsibleJob regardless of the

28

CHAPTER 1. MANAGING APPLICATIONS

decision from the placement rule. For example, you can have a prehook AnsibleJob that failed to
propagate a placement rule subscription. When the placement rule decision changes, new prehook and
posthook AnsibleJob instances are created.

1.4.3.7. Ansible configuration

You can configure Ansible Tower configurations with the following tasks:

1.4.3.7.1. Ansible secrets

You must create an Ansible Tower secret CR in the same subscription namespace. The Ansible Tower
secret is limited to the same subscription namespace.

Create the secret from the console by filling in the Ansible Tower secret name section. To create the
secret using terminal, edit and apply the following yaml:

Run the following command to add your YAML file:

I oc apply -f
See the following YAML sample:

Note: The hamespace is the same namespace as the subscription namespace. The stringData:token
and host are from the Ansible Tower.

apiVersion: vi
kind: Secret
metadata:
name: toweraccess
namespace: same-as-subscription
type: Opaque
stringData:
token: ansible-tower-api-token
host: https://ansible-tower-host-url

When the app subscription controller creates prehook and posthook AnsibleJobs, if the secret from
subscription spec.hooksecretref is available, then it is sent to the AnsibleJob CR
spec.tower_auth_secret and the AnsibleJob can access the Ansible Tower.

1.4.3.8. Set secret reconciliation

For a main-sub subscription with prehook and posthook AnsibleJobs, the main-sub subscription should
be reconciled after all prehook and posthook AnsibleJobs or main subscription are updated in the Git
repository.

Prehook AnsibleJobs and the main subscription continuously reconcile and relaunch a new pre-
AnsibleJob instance.

1. After the pre-AnsibleJob is done, re-run the main subscription.

2. If there is any specification change in the main subscription, re-deploy the subscription. The
main subscription status should be updated to align with the redeployment procedure.

3. Reset the hub subscription status to nil. The subscription is refreshed along with the
subscription deployment on target clusters.

29

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

When the deployment is finished on the target cluster, the subscription status on the target
cluster is updated to "subscribed™” or "failed"”, and is synced to the hub cluster subscription
status.

4. After the main subscription is done, relaunch a new post-AnsibleJob instance.

5. Verify that the DONE subscription is updated. See the following output:

® subscription.status == "subscribed"

® subscription.status == "propagated” with all of the target clusters "subscribed"
When an AnsibleJob CR is created, A Kubernetes job CRis created to launch an Ansible Tower job by
communicating to the target Ansible Tower. When the job is complete, the final status for the job is
returned to AnsibleJob status.ansibleJobResult.

Notes:

The AnsibleJob status.conditions is reserved by the Ansible Job operator for storing the creation of
Kubernetes job result. The status.conditions does not reflect the actual Ansible Tower job status.

The subscription controller checks the Ansible Tower job status by the
AnsibledJob.status.ansibleJobResult instead of AnsibledJob.status.conditions.

As previously mentioned in the prehook and posthook AnsibleJob workflow, when the main subscription

is updated in Git repository, a new prehook and posthook AnsibleJob instance is created. As a result,
one main subscription can link to multiple AnsibleJob instances.

Four fields are defined in subscription.status.ansibleJobs:
® |astPrehookJobs: The most recent prehook AnsibleJobs
® prehookJobsHistory: All the prehook AnsibleJobs history
® |astPosthookJobs: The most recent posthook AnsibleJobs

® posthookJobsHistory: All the posthook AnsibleJobs history

1.4.3.9. Ansible sample YAML

See the following sample of an AnsibleJob .yaml file in a Git prehook and posthook folder:

apiVersion: tower.ansible.com/vialpha1i
kind: AnsibleJob
metadata:
generateName: demo-job-001
namespace: default
spec:
tower_auth_secret: toweraccess
job_template_name: Demo Job Template
extra_vars:
cost: 6.88
ghosts: ["inky","pinky","clyde","sue"]
is_enable: false
other_variable: foo
pacman: mrs
size: 8

30

CHAPTER 1. MANAGING APPLICATIONS

targets_list:

- aaa

- bbb

- cce

version: 1.23.45

1.4.4. Configuring managed clusters for Argo CD

You can manually sync any type of supported managed cluster to enable Argo CD cluster collection so
that you can deploy applications from Argo CD to your ACM managed cluster.

1.4.4.1. Prerequisites
® You need toinstall Argo CD on your Red Hat Advanced Cluster Management for Kubernetes.

® You need one or more managed cluster.

1.4.4.2. Configuring Argo CD

You can enable or disable the ArgoCD cluster collection for one or more managed cluster. See the
following KlusterletAddonConfig sample resource for the cluster1 managed cluster. The setting in
spec.applicationManager.argocdCluster is set to true or false:

apiVersion: agent.open-cluster-management.io/v1
kind: KlusterletAddonConfig
metadata:

name: cluster1

namespace: clusteri
spec:

applicationManager:

argocdCluster: <true/false>

When you enable the Argo CD cluster collection, the managed cluster secret is auto-created in the hub
managed cluster namespace. See the following sample where the cluster secret is in the cluster1
namespace:

apiVersion: vi
kind: Secret
metadata:
name: clusteri-cluster-secret
namespace: clusteri
labels:
apps.open-cluster-management.io/secret-type: acm-cluster
type: Opaque
stringData:
name: clusteri
server: https://<url-name-here>
config: |
{
"bearerToken": "<the bear token>",
"tisClientConfig": {
"insecure": true

}
}

31

https://argoproj.github.io/argo-cd/getting_started/#1-install-argo-cd

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

When the managed cluster secret is synced up to the Argo CD namespace, the cluster secret resembles
the following sample where the label is specific to Argo CD secret-type, and the namespace is changed
to argocd:

apiVersion: vi
kind: Secret
metadata:
labels:
argocd.argoproj.io/secret-type: cluster
apps.open-cluster-management.io/acm-cluster: "true"
name: clusteri-cluster-secret
namespace: argocd
type: Opaque
stringData:
name: clusteri
server: https://<url-name-here>
config: |
{
"bearerToken": "<bearer token>",
"tIsClientConfig": {
"insecure": true

}
}

1.4.5. Scheduling a deployment

If you need to deploy new or change Helm charts or other resources during only specific times, you can
define subscriptions for those resources to begin deployments during only those specific times.
Alternatively, you can restrict deployments.

For instance, you can define time windows between 10:00 PM and 11:00 PM each Friday to serve as
scheduled maintenance windows for applying patches or other application updates to your clusters.

You can restrict or block deployments from beginning during specific time windows, such as to avoid
unexpected deployments during peak business hours. For instance, to avoid peak hours you can define a
time window for a subscription to avoid beginning deployments between 8:00 AM and 8:00 PM.

By defining time windows for your subscriptions, you can coordinate updates for all of your applications
and clusters. For instance, you can define subscriptions to deploy only new application resources
between 6:01 PM and 11:59 PM and define other subscriptions to deploy only updated versions of
existing resources between 12:00 AM to 7:59 AM.

When a time window is defined for a subscription, the time ranges when a subscription is active changes.
As part of defining a time window, you can define the subscription to be active or blocked during that
window.

The deployment of new or changed resources begins only when the subscription is active. Regardless of
whether a subscription is active or blocked, the subscription continues to monitor for any new or

changed resource. The active and blocked setting affects only deployments.

When a new or changed resource is detected, the time window definition determines the next action for
the subscription.

® For subscriptions to HelmRepo, ObjectBucket, and Git type channels:

32

CHAPTER 1. MANAGING APPLICATIONS

® |f the resource is detected during the time range when the subscription is active, the resource
deployment begins.

e |f the resource is detected outside the time range when the subscription is blocked from
running deployments, the request to deploy the resource is cached. When the next time range
that the subscription is active occurs, the cached requests are applied and any related
deployments begin.

® When a time window is blocked, all resources that were previously deployed by the application
subscription remain. Any new update is blocked until the time window is active again.

End user may wrongly think when the app sub time window is blocked, all deployed resources will be
removed. And they will be back when the app sub time window is active again.

If a deployment begins during a defined time window and is running when the defined end of the time
window elapses, the deployment continues to run to completion.

To define a time window for a subscription, you need to add the required fields and values to the
subscription resource definition YAML.

® As part of defining a time window, you can define the days and hours for the time window.

® You can also define the time window type, which determines whether the time window when
deployments can begin occurs during, or outside, the defined time frame.

e |f the time window type is active, deployments can begin only during the defined time frame.
You can use this setting when you want deployments to occur within only specific maintenance
windows.

e |f the time window type is block, deployments cannot begin during the defined time frame, but
can begin at any other time. You can use this setting when you have critical updates that are
required, but still need to avoid deployments during specific time ranges. For instance, you can
use this type to define a time window to allow security-related updates to be applied at any time
except between 10:00 AM and 2:00 PM.

® You can define multiple time windows for a subscription, such as to define a time window every
Monday and Wednesday.

1.4.6. Configuring package overrides

Configure package overrides for a subscription override value for the Helm chart or Kubernetes resource
that is subscribed to by the subscription.

To configure a package override, specify the field within the Kubernetes resource spec to override as
the value for the path field. Specify the replacement value as the value for the value field.

For example, if you need to override the values field within the spec for a Helm release for a subscribed
Helm chart, you need to set the value for the path field in your subscription definition to spec.

packageOverrides:
- packageName: nginx-ingress
packageOverrides:
- path: spec
value: my-override-values

The contents for the value field are used to override the values within the spec field of the Helm spec.

33

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

® ForaHelm release, override values for the spec field are merged into the Helm release
values.yaml file to override the existing values. This file is used to retrieve the configurable
variables for the Helm release.

® |f you need to override the release name for a Helm release, include the packageOverride
section within your definition. Define the packageAlias for the Helm release by including the
following fields:

o packageName to identify the Helm chart.
o packageAlias to indicate that you are overriding the release name.

By default, if no Helm release name is specified, the Helm chart name is used to identify the
release. In some cases, such as when there are multiple releases subscribed to the same chart,
conflicts can occur. The release name must be unique among the subscriptions within a
namespace. If the release name for a subscription that you are creating is not unique, an error
occurs. You must set a different release name for your subscription by defining a
packageOverride. If you want to change the name within an existing subscription, you must first
delete that subscription and then recreate the subscription with the preferred release name.

+

packageOverrides:
- packageName: nginx-ingress
packageAlias: my-helm-release-name

1.4.7. Channel samples

View samples and YAML definitions that you can use to build your files. Channels (channel.apps.open-
cluster-management.io) provide you with improved continuous integration and continuous delivery
capabilities for creating and managing your Red Hat Advanced Cluster Management for Kubernetes
applications.

To use the Kubernetes CLI tool, see the following procedure:
a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an APl server. Replace filename with the name
of your file:

I kubectl apply -f filename.yaml
c. Verify that your application resource is created by running the following command:
I kubectl get Application

Note: Kubernetes namespace (Namespace) channel is not available this release.

1.4.7.1. Channel YAML structure

The following YAML structures show the required fields for a channel and some of the common optional
fields. Your YAML structure needs to include some required fields and values. Depending on your
application management requirements, you might need to include other optional fields and values. You
can compose your own YAML content with any tool.

34

CHAPTER 1. MANAGING APPLICATIONS

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name:
namespace: # Each channel needs a unique namespace, except Git channel.
spec:
sourceNamespaces:
type:
pathname:
secretRef:
name:
gates:
annotations:
labels:

1.4.7.2. Channel YAML table

Field Description

apiVersion Required. Set the value to apps.open-cluster-
management.io/v1.

kind Required. Set the value to Channel to indicate that
the resource is a channel.

metadata.name Required. The name of the channel.

metadata.namespace Required. The namespace for the channel; Each
channel needs a unique namespace, except Git
channel.

spec.sourceNamespaces Optional. Identifies the namespace that the channel

controller monitors for new or updated deployables
to retrieve and promote to the channel.

spec.type Required. The channel type. The supported types
are: HelmRepo, Git, and ObjectBucket (Object
storage in the console)

spec.pathname Required for HelmRepo, Git, ObjectBucket
channels. For a HelmRepo channel, set the value to
be the URL for the Helm repository. For an
ObjectBucket channel, set the value to be the URL
for the Object storage. For a Git channel, set the
value to be the HTTPS URL for the Git repository.

spec.secretRef.name Optional. Identifies a Kubernetes Secret resource to
use for authentication, such as for accessing a
repository or chart. You can use a secret for
authentication with only HelmRepo,
ObjectBucket, and Git type channels.

35

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

Field Description

spec.gates Optional. Defines requirements for promoting a
deployable within the channel. If no requirements are
set, any deployable that is added to the channel
namespace or source is promoted to the channel.
gates do not apply forHelmRepo and Git channel
types, only for ObjectBucket channel types.

spec.gates.annotations Optional. The annotations for the channel.
Deployables must have matching annotations to be
included in the channel.

metadata.labels Optional. The labels for the channel.

The definition structure for a channel can resemble the following YAML content:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: predev-ch
namespace: ns-ch
labels:
app: nginx-app-details
spec:
type: HelmRepo
pathname: https://kubernetes-charts.storage.googleapis.com/

1.4.7.3. Object storage bucket (ObjectBucket) channel

The following example channel definition abstracts an Object storage bucket as a channel:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: dev
namespace: ch-obj
spec:
type: ObjectBucket
pathname: [http://9.28.236.243:31311/dev] # URL is appended with the valid bucket name, which
matches the channel name.
secretRef:

name: miniosecret
gates:

annotations:

dev-ready: true

1.4.7.4. Helm repository (HelImRepo) channel

The following example channel definition abstracts a Helm repository as a channel:

36

CHAPTER 1. MANAGING APPLICATIONS

Deprecation notice: For 2.2, specifying insecureSkipVerify: "true" in channel ConfigMap reference to
skip Helm repo SSL certificate is deprecated, as it is displayed in the following example:

apiVersion: vi
data:
insecureSkipVerify: "true" # deprecated
kind: ConfigMap
metadata:
name: insecure-skip-verify
namespace: hub-repo

See the replacement in the following current sample, with spec.insecureSkipVerify: true that is used in
the channel instead:

apiVersion: vi
kind: Namespace
metadata:
name: hub-repo
apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: Helm
namespace: hub-repo
spec:
pathname: [https://9.21.107.150:8443/helm-repo/charts] # URL points to a valid chart URL.
insecureSkipVerify: true
type: HelmRepo

The following channel definition shows another example of a Helm repository channel:

Note: For Helm, all Kubernetes resources contained within the Helm chart must have the label release.
{{ .Release.Name }} for the application topology to be displayed properly.

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:
name: predev-ch
namespace: ns-ch
labels:
app: nginx-app-details
spec:
type: HelmRepo
pathname: https://kubernetes-charts.storage.googleapis.com/

1.4.7.5. Git (Git) repository channel
The following example channel definition shows an example of a channel for the Git Repository. In the

following example, secretRef refers to the user identity used to access the Git repo that is specified in
the pathname. If you have a public repo, you do not need the secretRef:

apiVersion: apps.open-cluster-management.io/v1
kind: Channel
metadata:

37

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

name: hive-cluster-gitrepo
namespace: gitops-cluster-lifecycle
spec:
type: Git
pathname: https://github.com/stolostron/gitops-clusters.git
secretRef:
name: github-gitops-clusters
apiVersion: vi
kind: Secret
metadata:
name: github-gitops-clusters
namespace: gitops-cluster-lifecycle
data:
user: dXNlcgo= # Value of user and accessToken is Base 64 coded.
accessToken: cGFzc3dvemQ

1.4.8. Secret samples

Secrets (Secret) are Kubernetes resources that you can use to store authorization and other sensitive
information, such as passwords, OAuth tokens, and SSH keys. By storing this information as secrets, you
can separate the information from the application components that require the information to improve
your data security.

To use the Kubernetes CLI tool, see the following procedure:
a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

I kubectl apply -f flename.yaml
c. Verify that your application resource is created by running the following command:

I kubectl get Application

The definition structure for a secret can resemble the following YAML content:

1.4.8.1. Secret YAML structure

apiVersion: vi
kind: Secret
metadata:
annotations:
apps.open-cluster-management.io/deployables: "true"
name: [secret-name]
namespace: [channel-namespace]
data:
AccessKeylD: [ABCdeF1=] #Base64 encoded
SecretAccessKey: [gHIjk2ImnoPQRST3uvw==] #Base64 encoded

1.4.9. Subscription samples

38

CHAPTER 1. MANAGING APPLICATIONS

View samples and YAML definitions that you can use to build your files. As with channels, subscriptions
(subscription.apps.open-cluster-management.io) provide you with improved continuous integration
and continuous delivery capabilities for application management.

To use the Kubernetes CLI tool, see the following procedure:
a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an apiserver. Replace filename with the name
of your file:

I kubectl apply -f flename.yaml
c. Verify that your application resource is created by running the following command:

I kubectl get Application

1.4.9.1. Subscription YAML structure

The following YAML structure shows the required fields for a subscription and some of the common
optional fields. Your YAML structure needs to include certain required fields and values.

Depending on your application management requirements, you might need to include other optional
fields and values. You can compose your own YAML content with any tool:

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name:
namespace:
labels:
spec:
sourceNamespace:
source:
channel:
name:
packageFilter:
version:
labelSelector:
matchLabels:
package:
component:
annotations:
packageOverrides:
- packageName:
packageAlias:
- path:
value:
placement:
local:
clusters:
name:
clusterSelector:
placementRef:
name:

39

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

kind: PlacementRule
overrides:
clusterName:
clusterOverrides:
path:
value:

1.4.9.2. Subscription YAML table

Field Description

apiVersion Required. Set the value to apps.open-cluster-
management.io/v1.

kind Required. Set the value to Subscription to indicate
that the resource is a subscription.

metadata.name Required. The name for identifying the subscription.

metadata.namespace Required. The namespace resource to use for the
subscription.

metadata.labels Optional. The labels for the subscription.

spec.channel Optional. The namespace name
("Namespace/Name") that defines the channel for
the subscription. Define either the channel, or the
source, or the sourceNamespace field. In
general, use the channel field to point to the
channel instead of using the source or
sourceNamespace fields. If more than one field is
defined, the first field that is defined is used.

spec.sourceNamespace Optional. The source namespace where deployables
are stored on the hub cluster. Use this field only for
namespace channels. Define either the channel, or
the source, or the sourceNamespace field. In
general, use the channel field to point to the
channel instead of using the source or
sourceNamespace fields.

spec.source Optional. The path name ("URL") to the Helm
repository where deployables are stored. Use this
field for only Helm repository channels. Define either
the channel, or thesource, or the
sourceNamespace field. In general, use the
channel field to point to the channel instead of
using the source or sourceNamespace fields.

40

CHAPTER 1. MANAGING APPLICATIONS

Field Description

spec.name

spec.packageFilter

spec.packageFilter.version

spec.packageFilter.annotations

spec.packageOverrides

spec.packageOverrides.packageName

spec.packageOverrides.packageAlias

spec.packageOverrides.packageOverrides

spec.placement

Required for HelmRepo type channels, but optional
for ObjectBucket type channels. The specific name
for the target Helm chart or deployable within the
channel. If neither the name or packageFilter are
defined for channel types where the field is optional,
all deployables are found and the latest version of
each deployable is retrieved.

Optional. Defines the parameters to use to find
target deployables or a subset of a deployables. If
multiple filter conditions are defined, a deployable
must meet all filter conditions.

Optional. The version or versions for the deployable.
You can use a range of versions in the form >1.0, or
<3.0. By default, the version with the most recent
"creationTimestamp" value is used.

Optional. The annotations for the deployable.

Optional. Section for defining overrides for the
Kubernetes resource that is subscribed to by the
subscription, such as a Helm chart, deployable, or
other Kubernetes resource within a channel.

Optional, but required for setting an override.
Identifies the Kubernetes resource that is being
overwritten.

Optional. Gives an alias to the Kubernetes resource
that is being overwritten.

Optional. The configuration of parameters and
replacement values to use to override the
Kubernetes resource.

Required. Identifies the subscribing clusters where
deployables need to be placed, or the placement rule
that defines the clusters. Use the placement
configuration to define values for multicluster
deployments.

41

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

Field Description

spec.placement.local Optional, but required for a stand-alone cluster or
cluster that you want to manage directly. Defines
whether the subscription must be deployed locally.
Set the value to true to have the subscription
synchronize with the specified channel. Set the value
to false to prevent the subscription from subscribing
to any resources from the specified channel. Use this
field when your cluster is a stand-alone cluster or
you are managing this cluster directly. If your cluster
is part of a multicluster and you do not want to
manage the cluster directly, use only one of
clusters, clusterSelector, orplacementRef to
define where your subscription is to be placed. If your
cluster is the Hub of a multicluster and you want to
manage the cluster directly, you must register the
Hub as a managed cluster before the subscription
operator can subscribe to resources locally.

spec.placement.clusters Optional. Defines the clusters where the subscription
is to be placed. Only one of clusters,
clusterSelector, orplacementRef is used to
define where your subscription is to be placed for a
multicluster. If your cluster is a stand-alone cluster
that is not your hub cluster, you can also use local

cluster.

spec.placement.clusters.name Optional, but required for defining the subscribing
clusters. The name or names of the subscribing
clusters.

spec.placement.clusterSelector Optional. Defines the label selector to use to identify

the clusters where the subscription is to be placed.
Use only one of clusters, clusterSelector, or
placementRef to define where your subscription is
to be placed for a multicluster. If your cluster is a
stand-alone cluster that is not your hub cluster, you
can also use local cluster.

spec.placement.placementRef Optional. Defines the placement rule to use for the
subscription. Use only one of clusters,
clusterSelector, orplacementRef to define
where your subscription is to be placed for a
multicluster. If your cluster is a stand-alone cluster
that is not your Hub cluster, you can also use local
cluster.

spec.placement.placementRef.name Optional, but required for using a placement rule.
The name of the placement rule for the subscription.

42

CHAPTER 1. MANAGING APPLICATIONS

Field Description

spec.placement.placementRef kind

spec.overrides

spec.overrides.clusterName

spec.overrides.clusterOverrides

spec.timeWindow

spec.timeWindow.type

spec.timeWindow.location

spec.timeWindow.daysofweek

spec.timeWindow.hours

spec.timeWindow.hours.start

Optional, but required for using a placement rule. Set
the value to PlacementRule to indicate that a
placement rule is used for deployments with the
subscription.

Optional. Any parameters and values that need to be
overridden, such as cluster-specific settings.

Optional. The name of the cluster or clusters where
parameters and values are being overridden.

Optional. The configuration of parameters and
values to override.

Optional. Defines the settings for configuring a time
window when the subscription is active or blocked.

Optional, but required for configuring a time window.
Indicates whether the subscription is active or
blocked during the configured time window.
Deployments for the subscription occur only when
the subscription is active.

Optional, but required for configuring a time window.
The time zone of the configured time range for the
time window. All time zones must use the Time Zone
(tz) database name format. For more information,
see Time Zone Database.

Optional, but required for configuring a time window.
Indicates the days of the week when the time range is
applied to create a time window. The list of days
must be defined as an array, such as daysofweek:
["Monday", "Wednesday", "Friday"].

Optional, but required for configuring a time window.
Defined the time range for the time window. A start
time and end time for the hour range must be
defined for each time window. You can define
multiple time window ranges for a subscription.

Optional, but required for configuring a time window.
The timestamp that defines the beginning of the time
window. The timestamp must use the Go
programming language Kitchen format
"hh:mmpm™. For more information, seeConstants.

43

https://www.iana.org/time-zones
https://godoc.org/time#pkg-constants

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

Field Description

spec.timeWindow.hours.end Optional, but required for configuring a time window.

Notes:

The timestamp that defines the ending of the time
window. The timestamp must use the Go
programming language Kitchen format
"hh:mmpm". For more information, seeConstants.

When you are defining your YAML, a subscription can use packageFilters to point to multiple
Helm charts, deployables, or other Kubernetes resources. The subscription, however, only
deploys the latest version of one chart, or deployable, or other resource.

For time windows, when you are defining the time range for a window, the start time must be set
to occur before the end time. If you are defining multiple time windows for a subscription, the
time ranges for the windows cannot overlap. The actual time ranges are based on the
subscription-controller container time, which can be set to a different time and location than
the time and location that you are working within.

Within your subscription spec, you can also define the placement of a Helm release as part of
the subscription definition. Each subscription can reference an existing placement rule, or define

a placement rule directly within the subscription definition.

When you are defining where to place your subscription in the spec.placement section, use only
one of clusters, clusterSelector, or placementRef for a multicluster environment.

If you include more than one placement setting, one setting is used and others are ignored. The
following priority is used to determine which setting the subscription operator uses:

a. placementRef
b. clusters

c. clusterSelector

Your subscription can resemble the following YAML content:

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: nginx
namespace: ns-sub-1
labels:
app: nginx-app-details
spec:
channel: ns-ch/predev-ch
name: nginx-ingress
packageFilter:
version: "1.36.x"
placement:
placementRef:

kind: PlacementRule
name: towhichcluster

overrides:

44

https://godoc.org/time#pkg-constants

CHAPTER 1. MANAGING APPLICATIONS

- clusterName: "/"
clusterOverrides:
- path: "metadata.namespace”
value: default

1.4.9.3. Subscription file samples

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:

name: nginx

namespace: ns-sub-1

labels:

app: nginx-app-details

spec:

channel: ns-ch/predev-ch

name: nginx-ingress

1.4.9.3.1. Subscription time window example

The following example subscription includes multiple configured time windows. A time window occurs
between 10:20 AM and 10:30 AM occurs every Monday, Wednesday, and Friday. A time window also
occurs between 12:40 PM and 1:40 PM every Monday, Wednesday, and Friday. The subscription is active
only during these six weekly time windows for deployments to begin.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: nginx
namespace: ns-sub-1
labels:
app: nginx-app-details
spec:
channel: ns-ch/predev-ch
name: nginx-ingress
packageFilter:
version: "1.36.x"
placement:
placementRef:
kind: PlacementRule
name: towhichcluster
timewindow:
windowtype: "active" #Enter active or blocked depending on the purpose of the type.
location: "America/Los_Angeles"
daysofweek: ["Monday", "Wednesday", "Friday"]
hours:
- start: "10:20AM"
end: "10:30AM"
- start: "12:40PM"
end: "1:40PM"

1.4.9.3.2. Subscription with overrides example

45

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

The following example includes package overrides to define a ditfterent release name ot the Helm
release for Helm chart. A package override setting is used to set the name my-nginx-ingress-
releaseName as the different release name for the nginx-ingress Helm release.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: simple
namespace: default
spec:
channel: ns-ch/predev-ch
name: nginx-ingress
packageOverrides:
- packageName: nginx-ingress
packageAlias: my-nginx-ingress-releaseName
packageOverrides:
- path: spec
value:
defaultBackend:
replicaCount: 3
placement:
local: false

1.4.9.3.3. Helm repository subscription example

The following subscription automatically pulls the latest nginx Helm release for the version 1.36.x. The
Helm release deployable is placed on the my-development-cluster-1 cluster when a new version is
available in the source Helm repository.

The spec.packageOverrides section shows optional parameters for overriding values for the Helm
release. The override values are merged into the Helm release values.yaml file, which is used to retrieve
the configurable variables for the Helm release.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: nginx
namespace: ns-sub-1
labels:
app: nginx-app-details
spec:
channel: ns-ch/predev-ch
name: nginx-ingress
packageFilter:
version: "1.36.x"
placement:
clusters:
- name: my-development-cluster-1
packageOverrides:
- packageName: my-server-integration-prod
packageOverrides:
- path: spec
value:
persistence:
enabled: false

46

CHAPTER 1. MANAGING APPLICATIONS

useDynamicProvisioning: false
license: accept
tls:
hostname: my-mcm-cluster.icp
SS0:
registrationlmage:
pullSecret: hub-repo-docker-secret

1.4.9.3.4. Git repository subscription example

1.4.9.3.4.1. Subscribing specific branch and directory of Git repository

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: sample-subscription
namespace: default
annotations:
apps.open-cluster-management.io/git-path: sample_app_1/dir1
apps.open-cluster-management.io/git-branch: branch1
spec:
channel: default/sample-channel
placement:
placementRef:
kind: PlacementRule
name: dev-clusters

In this example subscription, the annotation apps.open-cluster-management.io/git-path indicates that
the subscription subscribes to all Helm charts and Kubernetes resources within the sample_app_1/dir1
directory of the Git repository that is specified in the channel. The subscription subscribes to master
branch by default. In this example subscription, the annotation apps.open-cluster-management.io/git-
branch: branch1 is specified to subscribe to branch1 branch of the repository.

1.4.9.3.4.2. Adding a.kubernetesignore file

You can include a .kubernetesignore file within your Git repository root directory, or within the
apps.open-cluster-management.io/git-path directory that is specified in subscription’s annotations.

You can use this .kubernetesignore file to specify patterns of files or subdirectories, or both, to ignore
when the subscription deploys Kubernetes resources or Helm charts from the repository.

You can also use the .kubernetesignore file for fine-grain filtering to selectively apply Kubernetes
resources. The pattern format of the .kubernetesignore file is the same as a .gitignore file.

If the apps.open-cluster-management.io/git-path annotation is not defined, the subscription looks for
a.kubernetesignore file in the repository root directory. If the apps.open-cluster-management.io/git-
path field is defined, the subscription looks for the .kubernetesignore file in the apps.open-cluster-
management.io/git-path directory. Subscriptions do not search in any other directory for a
.kubernetesignore file.

1.4.9.3.4.3. Applying Kustomize

If there is kustomization.yaml or kustomization.yml file in a subscribed Git folder, kustomize is
applied.

47

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

You can use spec.packageOverrides to override kustomization at the subscription deployment time.

apiVersion: apps.open-cluster-management.io/v1
kind: Subscription
metadata:
name: example-subscription
namespace: default
spec:
channel: some/channel
packageOverrides:
- packageName: kustomization
packageOverrides:
- value: |
patchesStrategicMerge:
- patch.yaml

In order to override kustomization.yaml file, packageName: kustomization is required in
packageOverrides. The override either adds new entries or updates existing entries. It does not remove
existing entries.

1.4.9.3.4.4. Enabling Git WebHook

By default, a Git channel subscription clones the Git repository specified in the channel every minute
and applies changes when the commit ID has changed. Alternatively, you can configure your subscription
to apply changes only when the Git repository sends repo PUSH and PULL webhook event notifications.

In order to configure webhook in a Git repository, you need a target webhook payload URL and
optionally a secret.

1.4.9.3.4.4.1. Payload URL

Create a route (ingress) in the hub cluster to expose the subscription operator's webhook event listener
service.

oc create route passthrough --service=multicluster-operators-subscription -n open-cluster-
management

Then, use oc get route multicluster-operators-subscription -n open-cluster-management command

to find the externally-reachable hostname. The webhook payload URL is https://<externally-reachable

hosthame>/webhook.

1.4.9.3.4.4.2. Webhook secret

Webhook secret is optional. Create a Kubernetes secret in the channel namespace. The secret must
contain data.secret. See the following example:

apiVersion: vi
kind: Secret
metadata:
name: my-github-webhook-secret
data:
secret: BASE64 _ENCODED_SECRET

The value of data.secret is the base-64 encoded WebHook secret you are going to use.

48

https:

CHAPTER 1. MANAGING APPLICATIONS

Best practice: Use a unique secret for each Git repository.

1.4.9.3.4.4.3. Configuring WebHook in Git repository

Use the payload URL and webhook secret to configure WebHook in your Git repository.

1.4.9.3.4.4.4. Enable WebHook event notification in channel

Annotate the subscription channel. See the following example:

oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-
management.io/webhook-enabled="true"

If you used a secret to configure WebHook, annotate the channel with this as well where
<the_secret_names is the kubernetes secret name containing webhook secret.

oc annotate channel.apps.open-cluster-management.io <channel name> apps.open-cluster-
management.io/webhook-secret="<the_secret_name>"

1.4.9.3.4.4.5. Subscriptions of webhook-enabled channel

No webhook specific configuration is needed in subscriptions.

1.4.10. Placement rule samples

Placement rules (placementrule.apps.open-cluster-management.io) define the target clusters where
deployables can be deployed. Use placement rules to help you facilitate the multicluster deployment of
your deployables.

To use the Kubernetes CLI tool, see the following procedure:
a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an APl server. Replace filename with the name
of your file:

I kubectl apply -f flename.yaml
c. Verify that your application resource is created by running the following command:

I kubectl get Application

1.4.10.1. Placement rule YAML structure

The following YAML structure shows the required fields for a placement rule and some of the common
optional fields. Your YAML structure needs to include some required fields and values. Depending on
your application management requirements, you might need to include other optional fields and values.
You can compose your own YAML content with any tool.

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule

name:

namespace:

49

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

resourceVersion:
labels:
app:
chart:
release:
heritage:
selfLink:
uid:
spec:
clusterSelector:
matchLabels:
datacenter:
environment:
clusterReplicas:
clusterConditions:
ResourceHint:
type:
order:
Policies:

1.4.10.2. Placement rule YAML values table

Field Description

apiVersion Required. Set the value to apps.open-cluster-
management.io/v1.

kind Required. Set the value to PlacementRule to
indicate that the resource is a placement rule.

metadata.name Required. The name for identifying the placement
rule.
metadata.namespace Required. The namespace resource to use for the

placement rule.

metadata.resourceVersion Optional. The version of the placement rule resource.

metadata.labels Optional. The labels for the placement rule.

spec.clusterSelector Optional. The labels for identifying the target
clusters

spec.clusterSelector.matchLabels Optional. The labels that must exist for the target
clusters.

status.decisions Optional. Defines the target clusters where

deployables are placed.

status.decisions.clusterName Optional. The name of a target cluster

50

CHAPTER 1. MANAGING APPLICATIONS

Field Description

status.decisions.clusterNamespace Optional. The namespace for a target cluster.
spec.clusterReplicas Optional. The number of replicas to create.
spec.clusterConditions Optional. Define any conditions for the cluster.
spec.ResourceHint Optional. If more than one cluster matches the labels

and values that you provided in the previous fields,
you can specify a resource specific criteria to select
the clusters. For example, you can select the cluster
with the most available CPU cores.

spec.ResourceHint.type Optional. Set the value to either cpu to select
clusters based on available CPU cores or memory
to select clusters based on available memory
resources.

spec.ResourceHint.order Optional. Set the value to either @sc for ascending
order, or desc for descending order.

spec.Policies Optional. The policy filters for the placement rule.

1.4.10.3. Placement rule sample files

Existing placement rules can include the following fields that indicate the status for the placement rule.
This status section is appended after the spec section in the YAML structure for a rule.

status:
decisions:
clusterName:
clusterNamespace:

Field Description

status The status information for the placement rule.

status.decisions Defines the target clusters where deployables are
placed.

status.decisions.clusterName The name of a target cluster

status.decisions.clusterNamespace The namespace for a target cluster.

® Example 1

I apiVersion: apps.open-cluster-management.io/v1

51

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

kind: PlacementRule
metadata:
name: gbapp-gbapp
namespace: development
labels:
app: gbapp
spec:
clusterSelector:
matchLabels:
environment: Dev
clusterReplicas: 1
status:
decisions:
- clusterName: local-cluster
clusterNamespace: local-cluster

® Example 2

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
name: towhichcluster
namespace: ns-sub-1
labels:
app: nginx-app-details
spec:
clusterReplicas: 1
clusterConditions:
- type: ManagedClusterConditionAvailable
status: "True"
clusterSelector:
matchExpressions:
- key: environment
operator: In
values:
- dev

1.4.11. Application samples

View samples and YAML definitions that you can use to build your files. Applications
(Application.app.k8s.io) in Red Hat Advanced Cluster Management for Kubernetes are used for
viewing the application components.

To use the Kubernetes CLI tool, see the following procedure:

a. Compose and save your application YAML file with your preferred editing tool.

b. Run the following command to apply your file to an API server. Replace filename with the name
of your file:

I kubectl apply -f flename.yaml
c. Verify that your application resource is created by running the following command:

I kubectl get Application

52

CHAPTER 1. MANAGING APPLICATIONS

1.4.11.1. Application YAML structure

To compose the application definition YAML content for creating or updating an application resource,
your YAML structure needs to include some required fields and values. Depending on your application
requirements or application management requirements, you might need to include other optional fields
and values.

The following YAML structure shows the required fields for an application and some of the common
optional fields.

apiVersion: app.k8s.io/vibetat
kind: Application
metadata:

name:

namespace:
spec:

selector:

matchLabels:
label_name: label value

1.4.11.2. Application YAML table

Field Value Description

apiVersion app.k8s.io/vibetat Required
kind Application Required
metadata

name: The name for identifying Required

the application resource.

namespace: The namespace
resource to use for the
application.

spec

selector.matchlLabels key:value pair that are a Required
Kubernetes label and value found
on the subscription or
subscriptions this application will
be associated with. The label
allows the application resource to
find the related subscriptions by
performing a label name and
value match.

53

Red Hat Advanced Cluster Management for Kubernetes 2.2 Manage applications

The spec for defining these applications is based on the Application metadata descriptor custom
resource definition that is provided by the Kubernetes Special Interest Group (SIG). Only the values
shown in the table are required.

You can use this definition to help you compose your own application YAML content. For more
information about this definition, see Kubernetes SIG Application CRD community specification.

1.4.11.3. Application file samples

The definition structure for an application can resemble the following example YAML content:

apiVersion: app.k8s.io/vibetat
kind: Application
metadata:

name: my-application

namespace: my-namespace
spec:

selector:

matchLabels:
my-label: my-label-value

54

https://github.com/kubernetes-sigs/application

	Table of Contents
	CHAPTER 1. MANAGING APPLICATIONS
	1.1. APPLICATION MODEL AND DEFINITIONS
	1.1.1. Applications
	1.1.2. Channels
	1.1.2.1. Supported Git repository servers

	1.1.3. Subscriptions
	1.1.4. Placement rules

	1.2. APPLICATION CONSOLE
	1.2.1. Applications overview
	1.2.1.1. Single applications overview

	1.2.2. Resource topology
	1.2.3. Search
	1.2.4. Advanced configuration

	1.3. MANAGING APPLICATION RESOURCES
	1.3.1. Managing apps with Git repositories
	1.3.1.1. GitOps pattern

	1.3.2. Managing apps with Helm repositories
	1.3.2.1. Sample YAML

	1.3.3. Managing apps with Object storage repositories
	1.3.3.1. Sample YAML

	1.4. APPLICATION ADVANCED CONFIGURATION
	1.4.1. Subscribing Git resources
	1.4.1.1. Granting users and groups subscription admin privilege
	1.4.1.2. Creating application resources in Git
	1.4.1.3. Application namespace example
	1.4.1.4. Resource overwrite example

	1.4.2. Configuring application channel and subscription for a secure Git connection
	1.4.2.1. Connecting to a private repo with user and access token
	1.4.2.2. Making an insecure HTTPS connection to a Git server
	1.4.2.3. Using custom CA certificates for a secure HTTPS connection
	1.4.2.4. Making an SSH connection to a Git server
	1.4.2.5. Updating certificates and SSH keys

	1.4.3. Setting up Ansible Tower tasks (Technology preview)
	1.4.3.1. Prerequisites
	1.4.3.2. Install Ansible Automation Platform Resource Operator:
	1.4.3.3. Obtain the Ansible Tower URL and token
	1.4.3.4. Obtaining a token
	1.4.3.5. Ansible integration
	1.4.3.6. Ansible operator components
	1.4.3.7. Ansible configuration
	1.4.3.8. Set secret reconciliation
	1.4.3.9. Ansible sample YAML

	1.4.4. Configuring managed clusters for Argo CD
	1.4.4.1. Prerequisites
	1.4.4.2. Configuring Argo CD

	1.4.5. Scheduling a deployment
	1.4.6. Configuring package overrides
	1.4.7. Channel samples
	1.4.7.1. Channel YAML structure
	1.4.7.2. Channel YAML table
	1.4.7.3. Object storage bucket (ObjectBucket) channel
	1.4.7.4. Helm repository (HelmRepo) channel
	1.4.7.5. Git (Git) repository channel

	1.4.8. Secret samples
	1.4.8.1. Secret YAML structure

	1.4.9. Subscription samples
	1.4.9.1. Subscription YAML structure
	1.4.9.2. Subscription YAML table
	1.4.9.3. Subscription file samples

	1.4.10. Placement rule samples
	1.4.10.1. Placement rule YAML structure
	1.4.10.2. Placement rule YAML values table
	1.4.10.3. Placement rule sample files

	1.4.11. Application samples
	1.4.11.1. Application YAML structure
	1.4.11.2. Application YAML table
	1.4.11.3. Application file samples

