
Red Hat 3scale API Management 2.9

Providing APIs in the Developer Portal

A properly configured Developer Portal provides plenty of functionalities for API
management.

Last Updated: 2020-10-26

Red Hat 3scale API Management 2.9 Providing APIs in the Developer
Portal

A properly configured Developer Portal provides plenty of functionalities for API management.

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents the uses of the Developer Portal on Red Hat 3scale API Management 2.9.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PART I. OPENAPI SPECIFICATION (OAS)

CHAPTER 1. CREATING A NEW SERVICE BASED ON OAS
1.1. INTRODUCTION
1.2. PREREQUISITES
1.3. FEATURES OF OPENAPI SPECIFICATION
1.4. USING OPENAPI SPECIFICATION

1.4.1. Detecting OpenAPI definition from the filename path
1.4.2. Detecting OpenAPI definition from a URL
1.4.3. Detecting OpenAPI definition from stdin

CHAPTER 2. CONFIGURING OAS
2.1. USING OAS 3.0 WITH 3SCALE

2.1.1. Configuring the Developer Portal with OAS 3.0
2.1.2. Updating the Developer Portal with OAS 3.0

2.2. USING OAS 2.0 WITH 3SCALE
2.3. UPGRADE SWAGGER UI 2.1.3 TO 2.2.10

PART II. API DOCUMENTATION

CHAPTER 3. ADDING SPECIFICATIONS TO 3SCALE
3.1. NAVIGATE TO SERVICE SPECIFICATIONS IN ACTIVEDOCS
3.2. CREATE A SERVICE SPECIFICATION
3.3. WORKING WITH YOUR FIRST ACTIVEDOC

CHAPTER 4. CREATE AN OAS SPECIFICATION
4.1. ABOUT OPENAPI SPECIFICATION (OAS)
4.2. 3SCALE ACTIVEDOCS AND OAS
4.3. CREATING THE SPECIFICATION OF YOUR API

4.3.1. Learning by example: the Petstore API
4.3.2. More on the OAS specification

4.3.2.1. OAS object
4.3.2.2. Info object
4.3.2.3. Paths object

4.3.3. OAS design and editing tools
4.3.4. ActiveDocs auto-fill of API keys

CHAPTER 5. ACTIVEDOCS & OAUTH
5.1. PREREQUISITES
5.2. CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS

CHAPTER 6. PUBLISH ACTIVEDOCS IN THE DEVELOPER PORTAL

3

4

5
5
5
5
5
6
6
6

7
7
7
8
8
9

10

11
11
11

12

14
14
14
15
15
15
16
16
16
16
17

19
19
19

23

Table of Contents

1

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

2

PREFACE
This guide provides information about features and functionalities to boost your Developer Portal.

PREFACE

3

PART I. OPENAPI SPECIFICATION (OAS)

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

4

CHAPTER 1. CREATING A NEW SERVICE BASED ON OAS

1.1. INTRODUCTION

This documentation outlines the features of OpenAPI Specification (OAS) in Red Hat 3scale API
Management 2.9 and provides steps to update an existing service or create a new one.

The following are special considerations about OAS in 3scale:

You can also import OpenAPI specifications with the 3scale toolbox. For more details, see
Importing OpenAPI definitions .

Regarding OAS3.0, 3scale 2.8 introduces some changes. For more details, refer to Section 2.1,
“Using OAS 3.0 with 3scale”.

1.2. PREREQUISITES

OpenAPI Specification (OAS)

A 3scale 2.9 instance tenant credentials (token or provider_key)

1.3. FEATURES OF OPENAPI SPECIFICATION

NOTE

ActiveDocs are created/updated when importing OpenAPI (OAS)

Service’s system_name can be passed as an option parameter and defaults to info.title field
from OAS.

Methods are created for each operation from the OAS.

Method names are taken from operation.operationId field.

All existing mapping rules are deleted before importing a new API definition.

Methods will be not deleted if they exist before running the command.

Mapping rules are created on each operation from the OAS.

The OpenAPI definition resource can be provided by one of the following channels:

Filename in the available path

URL format - toolbox will try to download from given address.

Read from stdin standard input stream.

1.4. USING OPENAPI SPECIFICATION

NAME
 openapi - Import API definition in OpenAPI specification

CHAPTER 1. CREATING A NEW SERVICE BASED ON OAS

5

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html-single/operating_3scale/index#importing-openapi-definitions

USAGE
 3scale import openapi [opts] -d <dst> <spec>

DESCRIPTION
 Using an API definition format like OpenAPI, import to your 3scale API

OPTIONS
 -d --destination=<value> 3scale target instance.
 Format: "http[s]://<authentication>@3scale_domain"

 -t --target_system_name=<value> Target system name

OPTIONS FOR IMPORT
 -c --config-file=<value> 3scale toolbox
 configuration file
 (default:
 $HOME/.3scalerc.yaml)
 -h --help show help for this command
 -k --insecure Proceed and operate even
 for server connections
 otherwise considered
 insecure
 -v --version Prints the version of this
 command

1.4.1. Detecting OpenAPI definition from the filename path

The allowed formats are json and yaml. The format is automatically detected from filename extension.

$ 3scale import openapi -d <destination> /path/to/your/spec/file.[json|yaml|yml]

1.4.2. Detecting OpenAPI definition from a URL

The allowed formats are json and yaml. The format is automatically detected from URL’s path
extension.

$ 3scale import openapi -d <destination> http[s]://domain/resource/path.[json|yaml|yml]

1.4.3. Detecting OpenAPI definition from stdin

The command line parameter for the OpenAPI resource is -.

The allowed formats are json and yaml. The format is automatically detected internally with parsers.

$ tool_to_read_openapi_from_source | 3scale import openapi -d <destination> -

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

6

CHAPTER 2. CONFIGURING OAS
This documentation outlines the configuration procedures for OpenAPI Specification (OAS) in Red Hat
3scale API Management 2.9.

2.1. USING OAS 3.0 WITH 3SCALE

This section provides information about using OpenAPI Specification 3.0 (OAS 3.0) with 3scale.

You can configure 3scale with OAS 3.0, using a limited support. For example:

swagger-ui has been updated in the Developer Portal to support OAS 3.0

swagger-ui is now included as a webpack asset (node_modules). Formerly, it was added from
Content Delivery Networks (CDNs).

In the Admin Portal, any new OAS 3.0 document will be identified automatically and processed
accordingly, by using the features provided by swagger-ui. Note that this functionality requires
a configuration on the Developer Portal side.

You can add OAS 3.0 specifications to ActiveDocs and display them in the Developer Portal,
considering the following points:

You must upgrade the templates manually.

The ActiveDoc will not have additional features; such as credential injection when attempting
requests, and autocompletion using real data like service name.

2.1.1. Configuring the Developer Portal with OAS 3.0

To configure OAS 3.0 in the Developer Portal, add a new page or replace the default Documentation
page with the following snippet:

{% content_for javascripts %}
 {{ 'active_docs.js' | javascript_include_tag }}
{% endcontent_for %}

{% assign spec = provider.api_specs.first %}

<h1>Documentation</h1>

<div class="swagger-section">
 <div id="message-bar" class="swagger-ui-wrap"></div>
 <div id="swagger-ui-container" class="swagger-ui-wrap"></div>
</div>

<script type="text/javascript">
 (function () {
 var url = "{{spec.url}}";
 var serviceEndpoint = "{{spec.api_product_production_public_base_url}}"
 SwaggerUI({ url: url, dom_id: "#swagger-ui-container" }, serviceEndpoint);
 }());
</script>

This snippet includes the new version of swagger-ui, and renders the first ActiveDoc available. Note

CHAPTER 2. CONFIGURING OAS

7

This snippet includes the new version of swagger-ui, and renders the first ActiveDoc available. Note
that it will also render OAS 2.0 but without any of the usual ActiveDocs features.

2.1.2. Updating the Developer Portal with OAS 3.0

If you have configured OAS 3.0 in 3scale 2.8 and want to continue using OAS 3.0, you need to update
the template.

This is the template that you should have configured:

{% content_for javascripts %}
 {{ 'active_docs.js' | javascript_include_tag }}
{% endcontent_for %}

<h1>Documentation</h1>

<div class="swagger-section">
 <div id="message-bar" class="swagger-ui-wrap"> </div>
 <div id="swagger-ui-container" class="swagger-ui-wrap"></div>
</div>

<script type="text/javascript">
 (function () {
 var url = "{{provider.api_specs.first.url}}";

 SwaggerUI({ url: url, dom_id: "#swagger-ui-container" });
 }());
</script>

To update the template, replace the default Documentation page with the snippet included in
Section 2.1.1, “Configuring the Developer Portal with OAS 3.0” .

2.2. USING OAS 2.0 WITH 3SCALE

This section provides information about using OpenAPI Specification 2.0 (OAS 2.0) with 3scale.

You can add OAS 2.0 specifications to ActiveDocs and display them in the Developer Portal,
considering the following points:

You must upgrade the templates manually.

The ActiveDoc will not have additional features; such as credential injection when attempting
requests, and autocompletion using real data like service name.

To configure OAS 2.0 in the Developer Portal, add a new page or replace the default Documentation
page with the following snippet:

<h1>Documentation</h1>
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.css %}

{% include 'shared/swagger_ui' %}

<script type="text/javascript">
 $(function () {

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

8

 window.swaggerUi.options['url'] = "{{provider.api_specs.first.url}}";
 window.swaggerUi.load();
 });
</script>

2.3. UPGRADE SWAGGER UI 2.1.3 TO 2.2.10

If you are using a version of 3scale that contains Swagger UI 2.1.3, you can upgrade to Swagger UI
version 2.2.10.

Previous implementations of Swagger UI 2.1.3 in the 3scale developer portal rely on the presence of a
single {% active_docs version: "2.0" %} liquid tag in the Documentation page. With the introduction
of support for Swagger 2.2.10 in 3scale, the implementation method changes to multiple cdn_asset and
include liquid tags.

NOTE

Previous versions of Swagger UI in 3scale will continue to be called using the legacy
active_docs liquid tag method.

Perform the following steps to upgrade Swagger UI 2.1.3 to 2.2.10:

1. Log in to your 3scale AMP admin portal

2. Navigate to the Developer Portal → Documentation page, or the page in which you want to
update your Swagger UI implementation

3. In the code pane replace the {% active_docs version: "2.0" %} liquid tag with the following
assets with the cdn_asset liquid tag and the new partial shared/swagger_ui:

{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.css %}

{% include 'shared/swagger_ui' %}

4. By default, Swagger UI loads the ActiveDocs specification published in APIs > ActiveDocs.
Load a different specification by adding the following window.swaggerUi.options line before
the window.swaggerUi.load(); line, where <SPEC_SYSTEM_NAME> is the system name of
the specification you want to load:

window.swaggerUi.options['url'] = "{{provider.api_specs.<SPEC_SYSTEM_NAME>.url}}";

CHAPTER 2. CONFIGURING OAS

9

PART II. API DOCUMENTATION

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

10

CHAPTER 3. ADDING SPECIFICATIONS TO 3SCALE
By the end of the section, you will have ActiveDocs set up for your API.

3scale offers a framework to create interactive documentation for your API.

With OpenAPI Specification (OAS), you have functional documentation for your API, which will help your
developers explore, test and integrate with your API.

3.1. NAVIGATE TO SERVICE SPECIFICATIONS IN ACTIVEDOCS

Navigate to [your_API_name] → ActiveDocs in your Admin Portal. This will lead you to the list of your
service specifications for your API (initially empty).

You can add as many service specifications as you want. Typically, each service specification
corresponds to one of your APIs. For example, 3scale has specifications for each 3scale API , such as
Service Management, Account Management, Analytics, and Billing.

3.2. CREATE A SERVICE SPECIFICATION

When you add a new service spec, you will have to provide:

Name

System name (required to reference the Servcie specification from the Developer Portal)

Whether you want the specification to be public or not

A description that is only meant for your own consumption

API JSON spec, which you can see in the figure below.

The API JSON specification is the "secret ingredient" of ActiveDocs.

You must generate the specification of your API according to the specification proposed by OpenAPI
Specification (OAS). In this tutorial we assume that you already have a valid OAS-compliant
specification of your API.

CHAPTER 3. ADDING SPECIFICATIONS TO 3SCALE

11

https://github.com/swagger-api/swagger-spec
https://github.com/3scale/porta/tree/master/doc/active_docs
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md

3.3. WORKING WITH YOUR FIRST ACTIVEDOC

Once you have added your first ActiveDoc, you can see it listed in [your_API_name] → ActiveDocs. You
can edit it as necessary, delete it, or switch it from public to private. You can also detach it from your API
or attach it to any other API. You can see all your ActiveDocs (attached to an API or not) in Audience →
Developer Portal → ActiveDocs

You can also preview what your ActiveDocs looks like by clicking on the name you gave the service
specification (in the example it was called it Pet Store). You can do this even if the specification is not
public yet.

This is what your ActiveDoc will look like:

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

12

CHAPTER 3. ADDING SPECIFICATIONS TO 3SCALE

13

CHAPTER 4. CREATE AN OAS SPECIFICATION
This section will help you to create an OpenAPI Specification (OAS) compliant specification for your
REST API, which is required to power ActiveDocs on your Developer Portal. If you only want to read the
code, all the examples are on OAS Petstore example source code .

4.1. ABOUT OPENAPI SPECIFICATION (OAS)

3scale ActiveDocs are based on the specification of RESTful web services called Swagger (from
Wordnik). This example is based on the Extended OpenAPI Specification Petstore example and draws all
the specification data from the OpenAPI Specification 2.0 specification document .

OAS is not only a specification. It also provides a full feature framework around it:

1. Servers for the specification of the resources in multiple languages (NodeJS, Scala, and
others).

2. A set of HTML/CSS/Javascripts assets that take the specification file and generate the
attractive UI.

3. A OAS codegen project, which allows generation of client libraries automatically from a
Swagger-compliant server. Support to create client-side libraries in a number of modern
languages.

4.2. 3SCALE ACTIVEDOCS AND OAS

ActiveDocs is an instance of OAS. With ActiveDocs, you do not have to run your own OAS server or deal
with the user interface components of the interactive documentation. The interactive documentation is
served and rendered from your 3scale Developer Portal.

3scale 2.8 introduces with a limited support OAS 3.0 in ActiveDocs. This means that some features
working with ActiveDocs, such as autocompletion, are not yet fully integrated, and consequently 3scale
defaults to OAS 2.0 when creating new accounts. For more details about OAS 3.0 and ActiveDocs, refer
to Section 2.1, “Using OAS 3.0 with 3scale” .

Prerequisites

Ensure that the template used in the Developer Portal implements the same OAS version
specified in the Admin Portal.

Procedure

1. Build a specification of your API compliant with OAS.

2. Add the specification to your Admin Portal.

With these steps the interactive documentation will be available. Your developers will be able to launch
requests against your API through your Developer Portal.

If you already have a OAS-compliant specification of your API, you can add it in your Developer Portal
(see the tutorial on the ActiveDocs configuration).

3scale extended the OAS specification in several ways to accommodate certain features that were
needed for our own interactive API documentation:

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

14

https://github.com/swagger-api/swagger-spec/blob/master/examples/v2.0/json/petstore-expanded.json
https://github.com/swagger-api/swagger-core
http://www.wordnik.com/
https://github.com/swagger-api/swagger-spec/blob/master/examples/v2.0/json/petstore-expanded.json
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-codegen

Auto-fill of API keys

OAS proxy to allow calls to non-CORS enabled APIs

4.3. CREATING THE SPECIFICATION OF YOUR API

We recommend that you first read the specification from the original source. See the OAS Specification.

On the OAS site there are multiple examples of specifications. If you like to learn by example, you can
follow the example of the Petstore API by the OAS API Team.

4.3.1. Learning by example: the Petstore API

The Petstore API is an extremely simple API. It is meant as a learning tool, not for production.

The Petstore API is composed of 4 methods:

GET /api/pets - returns all pets from the system

POST /api/pets - creates a new pet in the store

GET /api/pets/{id} - returns a pet based on a single ID

DELETE /api/pets/{id} - deletes a single pet based on the ID

The Petstore API is integrated with 3scale, and for this reason you must add an additional parameter for
authentication. For example, with the User Key authentication method, the parameter is sent in the
header. For information about other authentication methods, see Authentication patterns .

You need to add the parameters:

user_key: {user_key}

The user_key will be sent by the developers in their requests to your API. The developers will obtain
those keys on your Developer Portal. On receiving the key, you must to perform the authorization check
against 3scale using the Service Management API.

For your developers, the documentation of your API represented in cURL calls would look like this:

curl -X GET "http://example.com/api/pets?tags=TAGS&limit=LIMIT" -H "user_key: {user_key}"
curl -X POST "http://example.com/api/pets" -H "user_key: {user_key}" -d "{ "name": "NAME", "tag":
"TAG", "id": ID }"
curl -X GET "http://example.com/api/pets/{id}" -H "user_key: {user_key}"
curl -X DELETE "http://example.com/api/pets/{id}" -H "user_key: {user_key}"

However, if you want the documentation to look like the OAS Petstore Documentation , you must create
a Swagger-compliant specification like the associated Petstore swagger.json file. You can use this
specification out-of-the-box to test your ActiveDocs. But remember that this is not your API. You can
learn more in the next section.

4.3.2. More on the OAS specification

The OAS specification relies on a resource declaration that maps to a hash encoded in JSON. Take the
Petstore swagger.json file as an example and go step by step.

CHAPTER 4. CREATE AN OAS SPECIFICATION

15

https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html-single/administering_the_api_gateway/index#authentication-patterns
http://petstore.swagger.io/

4.3.2.1. OAS object

This is the root document object for the API specification. It lists all the highest level fields.

WARNING

The host must be a domain and not an IP address. 3scale will proxy the requests
made against your Developer Portal to your host and render the results. This
requires your host and basePath endpoint to be whitelisted by us for security
reasons. You can only declare a host that is your own. 3scale reserves the right to
terminate your account if we detect that you are proxying a domain that does not
belong to you. This means that local host or any other wildcard domain will not work.

4.3.2.2. Info object

The Info object provides the metadata about the API. This will be presented in the ActiveDocs page.

4.3.2.3. Paths object

The paths object holds the relative paths to the individual endpoints. The path is appended to the
basePath to construct the full URL. The paths may be empty, due to ACL constraints.

Parameters that are not objects use primitive data types. In Swagger, these are based on the types
supported by the JSON-Schema Draft 4. There is an additional primitive data type "file" but it will work
only if the API endpoint has CORS enabled (so the upload won’t go through api-docs gateway).
Otherwise, it will get stuck on the gateway level.

Supported datatypes

Currently OAS supports the following dataTypes:

integer with possible formats: int32 and int64. Both formats are signed.

number with possible formats: float and double

plain string

string with possible formats: byte, date, date-time, password and binary

boolean

4.3.3. OAS design and editing tools

The following tools are useful for designing and editing your OpenAPI specification:

The open source Apicurio Studio enables you to design and edit your OpenAPI-based APIs in a
web-based application. Apicurio Studio provides a design view so you do not need detailed
knowledge of the OpenAPI specification. The source view enables expert users to edit directly
in YAML or JSON. For more details, see Getting Started with Apicurio Studio.

Red Hat also provides a lightweight version of Apicurio Studio named API Designer, which is

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

16

http://json-schema.org/latest/json-schema-core.html#anchor8
https://www.apicur.io/
https://apicurio-studio.readme.io/docs

Red Hat also provides a lightweight version of Apicurio Studio named API Designer, which is
included with Fuse Online on OpenShift. For more details, see Developing and Deploying API
Provider Integrations.

The JSON Editor Online is useful if you are very familiar with the JSON notation. It gives a
pretty format to compact JSON and provides a JSON object browser.

The Swagger Editor enables you to create and edit your OAS API specification written in YAML
in your browser and preview it in real time. You can also generate a valid JSON specification,
which you can upload later in your 3scale Admin Portal. You can use the live demo version with
limited functionality or deploy your own OAS Editor.

4.3.4. ActiveDocs auto-fill of API keys

Auto-fill of API keys is a useful extension to the OAS specification in 3scale ActiveDocs. In the
parameters, you can define the x-data-threescale-name field with the following values depending on
your API authentication mode:

user_keys: Returns the user keys for applications of the services that use API key
authentication only.

app_ids: Returns the IDs for applications of the services that use App ID/App Key (OAuth and
OpenID Connect are also supported for backwards compatibility).

app_keys: Returns the keys for applications of services that use App ID/App Key (OAuth and
OpenID Connect are also supported for backwards compatibility).

API key authentication example

The following example shows using "x-data-threescale-name": "user_keys" for API key authentication
only:

"parameters": [
 {
 "name": "user_key",
 "description": "Your access API Key",
 "type": "string",
 "in": "query",
 "x-data-threescale-name": "user_keys",
 "required": true
 },
]

App ID/App Key authentication example

For App ID/App Key authentication mode, specify "x-data-threescale-name": "app_ids" for the
parameter that represents the application ID, and "x-data-threescale-name": "app_keys" for the
parameter that represents the application key.

When you have declared your parameters, ActiveDocs will automatically prompt the ActiveDocs user to
log in to the Developer Portal to get their keys as shown in the following screenshot:

CHAPTER 4. CREATE AN OAS SPECIFICATION

17

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/developing_and_deploying_api_provider_integrations
http://www.jsoneditoronline.org/
https://github.com/swagger-api/swagger-editor
http://editor.swagger.io

If the user is already logged in, ActiveDocs will show the latest five keys that could be relevant for them
so that they can test right away without having to copy and paste their keys.

NOTE

The x-data-threescale-name field is an extension to the OAS specification that will be
ignored outside the domain of ActiveDocs.

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

18

CHAPTER 5. ACTIVEDOCS & OAUTH
By the end of this tutorial, you will have a set of ActiveDocs that allow your users to test and call your
OAuth-enabled API from one place.

5.1. PREREQUISITES

You need to have a Red Hat Single Sign-On instance set up, and OpenID Connect integration
configured. See OpenID Connect integration documentation for information on how to set it up.

Additionally, you need to be familiar with how to set up ActiveDocs – see Add ActiveDocs and
Create an OAS specification.

5.2. CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS

This first example is for an API using the OAuth 2.0 client credentials flow. This API accepts any path and
returns information about the request (path, request parameters, headers, etc.). The Echo API is only
accessible using a valid access token. Users of the API are only able to call it once they have exchanged
their credentials (client_id and client_secret) for an access token.

In order for users to be able to call the API from ActiveDocs, they will need to request an access token.
Since this is just a call to an OAuth authorization server, you can create an ActiveDocs spec for the
OAuth token endpoint. This will allow you to call this endpoint from within ActiveDocs. In this case, for a
client credentials flow, the Swagger JSON spec looks like this:

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "OAuth for Echo API",
 "description": "OAuth2.0 Client Credentails Flow for authentication of our Echo API.",
 "contact": {
 "name": "API Support",
 "url": "http://www.swagger.io/support",
 "email": "support@swagger.io"
 }
 },
 "host": "red-hat-sso-instance.example.com",
 "basePath": "/auth/realms/realm-example/protocol/openid-connect",
 "schemes": [
 "http"
],
 "paths": {
 "/token": {
 "post": {
 "description": "This operation returns the access token for the API. You must call this before
calling any other endpoints.",
 "operationId": "oauth",
 "parameters": [
 {
 "name": "client_id",
 "description": "Your client id",
 "type": "string",
 "in": "query",

CHAPTER 5. ACTIVEDOCS & OAUTH

19

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html-single/administering_the_api_gateway/index#openid-connect
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html-single/providing_apis_in_the_developer_portal/index#add-activedocs
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html-single/providing_apis_in_the_developer_portal/index#create-activedocs-spec

For a resource owner OAuth flow, you’ll probably also want to add parameters for a username and
password, as well as any other parameters that you require in order to issue an access token. For this
client credentials flow example, you’re just sending the client_id and client_secret – which can be
populated from the 3scale values for signed-in users – as well as the grant_type.

Then in the ActiveDocs spec for our Echo API we need to add the access_token parameter instead of
the client_id and the client_secret.

 "required": true
 },
 {
 "name": "client_secret",
 "description": "Your client secret",
 "type": "string",
 "in": "query",
 "required": true
 },
 {
 "name": "grant_type",
 "description": "OAuth2 Grant Type",
 "type": "string",
 "default": "client_credentials",
 "required": true,
 "in": "query",
 "enum": [
 "client_credentials",
 "authorization_code",
 "refresh_token",
 "password"
]
 }
]
 }
 }
 }
}

{
 "swagger": "2.0",
 "info": {
 "version": "v1",
 "title": "Echo API",
 "description": "A simple API that accepts any path and returns information about the request",
 "contact": {
 "name": "API Support",
 "url": "http://www.swagger.io/support",
 "email": "support@swagger.io"
 }
 },
 "host": "echo-api.3scale.net",
 "basePath": "/v1/words",
 "schemes": [
 "http"
],
 "produces": [
 "application/json"

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

20

You can then include your ActiveDocs in the Developer Portal as usual. In this case, since you want to
specify the order in which they display to have the OAuth endpoint first, it looks like this:

],
 "paths": {
 "/{word}.json": {
 "get": {
 "description": "This operation returns information about the request (path, request parameters,
headers, etc.),
 "operationId": "wordsGet",
 "summary": "Returns the path of a given word",
 "parameters": [
 {
 "name": "word",
 "description": "The word related to the path",
 "type": "string",
 "in": "path",
 "required": true
 },
 {
 "name": "access_token",
 "description": "Your access token",
 "type": "string",
 "in": "query",
 "required": true
 }
]
 }
 }
 }
}

{% active_docs version: "2.0" services: "oauth" %}

<script type="text/javascript">
 $(function () {
 window.swaggerUi.load(); // <-- loads first swagger-ui

 // do second swagger-ui

 var url = "/swagger/spec/echo-api.json";
 window.anotherSwaggerUi = new SwaggerUi({
 url: url,
 dom_id: "another-swagger-ui-container",
 supportedSubmitMethods: ['get', 'post', 'put', 'delete', 'patch'],
 onComplete: function(swaggerApi, swaggerUi) {
 $('#another-swagger-ui-container pre code').each(function(i, e) {hljs.highlightBlock(e)});
 },
 onFailure: function(data) {
 log("Unable to Load Echo-API-SwaggerUI");
 },
 docExpansion: "list",

CHAPTER 5. ACTIVEDOCS & OAUTH

21

 transport: function(httpClient, obj) {
 log("[swagger-ui]>>> custom transport.");
 return ApiDocsProxy.execute(httpClient, obj);
 }
 });

 window.anotherSwaggerUi.load();

 });
</script>

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

22

CHAPTER 6. PUBLISH ACTIVEDOCS IN THE DEVELOPER
PORTAL

By the end of this tutorial, you will have published your ActiveDocs in your Developer Portal.

Once you have created an specification and you have added it to 3scale , it is time to publish the
specification and link it on your Developer Portal to be used by your API developers.

Add the following snippet to the content of any page of your Developer Portal. This must be done
through the CMS of your Developer Portal. Note that SERVICE_NAME should be the system name of
the service specification, pet_store in the example.

These are some additional considerations when publishing ActiveDocs in the Developer Portal:

You can specify only one service on one page. If you want to display multiple specifications, the
best way is to do it on different pages.

This snippet requires jQuery, which is included by default in the main layout of your Developer
Portal. If you remove the jQuery dependency from the main layout, you must add this
dependency on the page containing ActiveDocs.

Make sure you have Liquid tags enabled on the CMS page.

The version used in the Liquid tag {{ '{% active_docs version: "2.0" ' }}%} should correspond
to that of the Swagger spec.

If you want to fetch your specification from an external source, change the JavaScript code as follows:

Note that the line containing the source of the specification, window.swaggerUi.options['url'] =
"SWAGGER_JSON_URL";, is outside of the comments block.

<h1>Documentation</h1>
<p>Use our live documentation to learn about Echo API</p>
{% active_docs version: "2.0" services: "SERVICE_NAME" %}
{% cdn_asset /swagger-ui/2.2.10/swagger-ui.js %} {% cdn_asset /swagger-ui/2.2.10/swagger-ui.css
%} {% include 'shared/swagger_ui' %}
<script type="text/javascript">
 $(function () {
 {% comment %}
 // you have access to swaggerUi.options object to customize its behaviour
 // such as setting a different docExpansion mode
 window.swaggerUi.options['docExpansion'] = 'none';
 // or even getting the swagger specification loaded from a different url
 window.swaggerUi.options['url'] = "http://petstore.swagger.io/v2/swagger.json";
 {% endcomment %}
 window.swaggerUi.load();
 });
</script>

$(function () {
 window.swaggerUi.options['url'] = "SWAGGER_JSON_URL";
 window.swaggerUi.load();
});

CHAPTER 6. PUBLISH ACTIVEDOCS IN THE DEVELOPER PORTAL

23

Red Hat 3scale API Management 2.9 Providing APIs in the Developer Portal

24

	Table of Contents
	PREFACE
	PART I. OPENAPI SPECIFICATION (OAS)
	CHAPTER 1. CREATING A NEW SERVICE BASED ON OAS
	1.1. INTRODUCTION
	1.2. PREREQUISITES
	1.3. FEATURES OF OPENAPI SPECIFICATION
	1.4. USING OPENAPI SPECIFICATION
	1.4.1. Detecting OpenAPI definition from the filename path
	1.4.2. Detecting OpenAPI definition from a URL
	1.4.3. Detecting OpenAPI definition from stdin

	CHAPTER 2. CONFIGURING OAS
	2.1. USING OAS 3.0 WITH 3SCALE
	2.1.1. Configuring the Developer Portal with OAS 3.0
	2.1.2. Updating the Developer Portal with OAS 3.0

	2.2. USING OAS 2.0 WITH 3SCALE
	2.3. UPGRADE SWAGGER UI 2.1.3 TO 2.2.10

	PART II. API DOCUMENTATION
	CHAPTER 3. ADDING SPECIFICATIONS TO 3SCALE
	3.1. NAVIGATE TO SERVICE SPECIFICATIONS IN ACTIVEDOCS
	3.2. CREATE A SERVICE SPECIFICATION
	3.3. WORKING WITH YOUR FIRST ACTIVEDOC

	CHAPTER 4. CREATE AN OAS SPECIFICATION
	4.1. ABOUT OPENAPI SPECIFICATION (OAS)
	4.2. 3SCALE ACTIVEDOCS AND OAS
	4.3. CREATING THE SPECIFICATION OF YOUR API
	4.3.1. Learning by example: the Petstore API
	4.3.2. More on the OAS specification
	4.3.2.1. OAS object
	4.3.2.2. Info object
	4.3.2.3. Paths object

	4.3.3. OAS design and editing tools
	4.3.4. ActiveDocs auto-fill of API keys

	CHAPTER 5. ACTIVEDOCS & OAUTH
	5.1. PREREQUISITES
	5.2. CLIENT CREDENTIALS AND RESOURCE OWNER FLOWS

	CHAPTER 6. PUBLISH ACTIVEDOCS IN THE DEVELOPER PORTAL

