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PREFACE
This guide helps you to apply intermediate to advanced configuration features to your 3scale
installation. For basic details regarding installation, refer to Installing 3scale.

PREFACE
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PART I. THE API GATEWAY
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CHAPTER 1. OPERATING APICAST
This section describes the concepts to consider when working with advanced APIcast configurations.

1.1. PUBLIC BASE URL

The Public Base URL is the URL that your developers use to make requests to your API product, which
is exposed publicly with 3scale. This will be the URL of your APIcast instance.

If you are using one of the Self-managed deployment options, you can choose your own Public Base
URL for each one of the environments provided (staging and production) on a domain name you are
managing. This URL should be different from the one of your API backend, and could be something like 
https://api.yourdomain.com:443, where yourdomain.com is the domain that belongs to you. After
setting the Public Base URL make sure you save the changes and, if necessary, promote the changes in
staging to production.

NOTE

The Public Base URL that you specify must use a port that is available in your OpenShift
cluster. By default, the OpenShift router listens for connections only on the standard
HTTP and HTTPS ports (80 and 443). If you want users to connect to your API over some
other port, work with your OpenShift administrator to enable the port.

APIcast will only accept calls to the hostname specified in the Public Base URL. As an example for Echo 
API, if you specify https://echo-api.3scale.net:443 as the Public Base URL, the correct call would be:

curl "https://echo-api.3scale.net:443/hello?user_key=YOUR_USER_KEY"

In case you do not have a public domain for your API, you can use the APIcast IP address in the requests,
but you still need to specify a value in the Public Base URL  field even if the domain is not real. In this
case, make sure you provide the host in the Host header. For example:

curl "http://192.0.2.12:80/hello?user_key=YOUR_USER_KEY" -H "Host: echo-api.3scale.net"

If you are deploying on local machine, you can also just use "localhost" as the domain, so the Public Base
URL will look like http://localhost:80, and then you can make requests like this:

curl "http://localhost:80/hello?user_key=YOUR_USER_KEY"

In case you have multiple API products, set this Public Base URL appropriately for each product. APIcast
will route the requests based on the hostname.

1.2. MAPPING RULES

Based on the requests to your API, mapping rules define the metrics or methods that you want to report.
The following is an example mapping rule:
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This rule means that any GET requests that start with / will increment the metric hits by 1. This rule will
match any request to your API. But most likely, you will change this rule because it is too generic, and
often leads to double counts when more specific rules are added.

The following rules for the Echo API show more specific examples:

1.2.1. Mapping rules in products and backends

Mapping rules work at the API product and API backend levels. In this section, you will learn about the
behavior of mapping rules at each level, as well as see an example to describe how mapping rules
operate.

Mapping rules at the product level

The mapping rule takes precedence. This means that the product mapping rule is the first one to
be evaluated.

The mapping rule is always evaluated, independent of which backend receives the redirected
traffic.

Mapping rules at the backend level

When you add mapping rules to a backend, these are added to all the products bundling said
backend.

The mapping rule is evaluated after the mapping rules defined at the product level.

The mapping rule is evaluated only if the traffic is redirected to the same backend the mapping
rule belongs to.

The path of the backend for a product is automatically prepended to each mapping rule of the
backend bundled to said product.

Example of mapping rules with products and backends

For this example, we start with a backend and a product.

The Echo API backend:
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Has the private endpoint: https://echo-api.3scale.net

Contains 2 mapping rules with the following patterns:

/hello
/bye

The Cool API product:

Has this public endpoint: https://cool.api

Uses the Echo API backend with this routing path: /echo.

Mapping rules with the following patterns are automatically part of the Cool API product:

/echo/hello
/echo/bye

This means that a request sent to the public URL https://cool.api/echo/hello is redirected to 
https://echo-api.3scale.net/hello

Similarly, a request sent to https://cool.api/echo/bye redirects to https://echo-
api.3scale.net/bye

Now, consider an additional product called Tools For Devs using the same Echo API backend.

The Tools For Devs product:

Has public endpoint: https://dev-tools.api

Uses the Echo API backend with the following routing path: /tellmeback.

Mapping rules with the following patterns are automatically part of the Tools For Devs product:

/tellmeback/hello
/tellmeback/bye

Therefore, a request sent to the public URL https://dev-tools.api/tellmeback/hello is
redirected to https://echo-api.3scale.net/hello

Similarly, a request sent to https://dev-tools.api/tellmeback/bye redirects to https://echo-
api.3scale.net/bye

If you add a mapping rule with the /ping pattern to the Echo API backend, both products - Cool
API and Tools For Devs- are affected:

Cool API will have a mapping rule with this pattern: /echo/ping

Tools For Devs will have a mapping rule with this pattern: /tellmeback/ping

1.2.2. Matching of mapping rules

The matching of mapping rules is performed by prefix and can be arbitrarily complex. The notation
follows OpenAPI and ActiveDocs specifications:

A mapping rule must start with a forward slash (/).
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You can perform a match on the path over a literal string (for example, /hello).

Mapping rules can include parameters on the query string or in the body (for example, /{word}?
value={value}). APIcast fetches the parameters in the following ways:

GET method: From the query string.

POST, DELETE, or PUT method: From the body.

Mapping rules can contain named wildcards (for example, /{word}). This rule will match anything
in the placeholder {word}, making requests like /morning match the rule. Wildcards can appear
between slashes or between slash and dot. Parameters can also include wildcards.

By default, all mapping rules are evaluated from first to last, according to the sort you specified.
If you add a rule /v1, it will be matched for requests whose paths start with /v1 (for example, 
/v1/word or /v1/sentence).

You can add a dollar sign ($) to the end of a pattern to specify exact matching. For example, 
/v1/word$ will only match /v1/word requests, and will not match /v1/word/hello requests. For
exact matching, you must also ensure that the default mapping rule that matches everything (/)
has been disabled.

More than one mapping rule can match the request path, but if none matches, the request is
discarded with an HTTP 404 status code.

1.2.3. Mapping rules workflow

Mapping rules have the following workflow:

You can define a new mapping rule (see Add mapping rules).

Mapping rules will be grayed out on the next reload to prevent accidental modifications.

To edit an existing mapping rule, you must enable it first by clicking the pencil icon on the right.

To delete a rule, click the trash icon.

All modifications and deletions are saved when you promote the changes in Integration >
Configuration.

Add mapping rules

To add a new mapping rule, perform the following steps:

1. Click Add Mapping Rule.

2. Specify the following settings:

Verb: The HTTP request verb ( GET, POST, DELETE, or PUT).

Pattern: The pattern to match (for example, /hello).

Metric or method to increment: The metric or method name.

Increment by: The metric increment number (for example, 1).

Last?: If this mapping rule should be considered as the last one, to stop processing other
mapping rules.
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Position: Number that indicates the position of the execution of the mapping rule, to sort
the mapping rules.

3. Click Create Mapping Rule to apply the changes.

Stop other mapping rules

To stop processing other mapping rules, you can select Last? when creating a new mapping rule. For
example, if you have the following mapping rules defined in API Integration Settings and you have
different metrics associated with each rule:

(get) /path/to/example/search
(get) /path/to/example/{id}

When calling with (get) /path/to/example/search, APIcast stops processing the remaining mapping rules
and incrementing their metrics after the rule is matched.

1.3. HOST HEADER

This option is only needed for those API products that reject traffic unless the Host header matches the
expected one. In these cases, having a gateway in front of your API product will cause problems since
the Host will be the one of the gateway, e.g. xxx-yyy.staging.apicast.io

To avoid this issue you can define the host your API product expects in the Host Header field in the
Authentication Settings, and the hosted APIcast instance will rewrite the host.

1.4. PROTECTING YOUR API BACKEND

Once you have APIcast working in production, you might want to restrict direct access to your API
product without credentials. The easiest way to do this is by using the Secret Token set by APIcast.
Please refer to the Advanced APIcast configuration  for information on how to set it up.

1.5. USING APICAST WITH PRIVATE APIS

With APIcast it is possible to protect the APIs which are not publicly accessible on the Internet. The
requirements that must be met are:

Self-managed APIcast must be used as the deployment option.

APIcast needs to be accessible from the public internet and be able to make outbound calls to
the 3scale Service Management API.

The API product should be accessible by APIcast.

In this case you can set your internal domain name or the IP address of your API in the Private Base URL
field and follow the rest of the steps as usual. Note, however, that you will not be able to take advantage
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of the Staging environment, and the test calls will not be successful, as the Staging APIcast instance is
hosted by 3scale and will not have access to your private API backend). But once you deploy APIcast in
your production environment, if the configuration is correct, APIcast will work as expected.

1.6. CONFIGURING APICAST WITH OPENTRACING

OpenTracing is an API specification and method used to profile and monitor microservices. From version
3.3 onwards, APIcast includes OpenTracing Libraries and the Jaeger Tracer library.

1.6.1. Prerequisites

To add distributed tracing to your APIcast deployment, you need to ensure the following prerequisites:

Each external request should have a unique request ID attached, usually via a HTTP header.

Each service should forward the request ID to other services.

Each service should output the request ID in the logs.

Each service should record additional information, like start and end time of the request.

Logs need to be aggregated, and provide a way to parse via HTTP request ID.

1.6.2. Procedure

To configure OpenTracing, use the following environment variables:

OPENTRACING_TRACER: To define which tracer implementation to use. Currently, only Jaeger
is available.

OPENTRACING_CONFIG: To specify the default configuration file of your tracer. You can see
an example here.

OPENTRACING_HEADER_FORWARD: Optional. You can set this environment variable
according to your OpenTracing configuration.

For more information about these variables, refer to APIcast environment variables.

To test if the integration is properly working, you need to check if traces are reported in the Jaeger
tracing interface.

1.6.3. Additional information

The OpenTracing and Jaeger integration are available in the upstream project:
https://github.com/3scale/apicast

1.6.4. Installing Jaeger on your OpenShift instance

This section provides information about the installation of Jaeger on the OpenShift instance you are
running.
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WARNING

Jaeger is a third-party component, which 3scale does not provide support for, with
the exception of uses with APIcast. The following instructions are provided as a
reference example only, and are not suitable for production use.

1. Install the Jaeger all-in-one in the current namespace:

2. Create a Jaeger configuration file jaeger_config.json and add the following:

set a sampler constant of 1 to sample all requests

set the location and queue size of the reporter

set headers, including TraceContextHeaderName which we will use to track requests

3. Create a ConfigMap from our Jaeger configuration file and mount it into APIcast:



oc process -f https://raw.githubusercontent.com/jaegertracing/jaeger-openshift/master/all-in-
one/jaeger-all-in-one-template.yml | oc create -f -

{
    "service_name": "apicast",
    "disabled": false,
    "sampler": {
      "type": "const",
      "param": 1
    },
    "reporter": {
      "queueSize": 100,
      "bufferFlushInterval": 10,
      "logSpans": false,
      "localAgentHostPort": "jaeger-agent:6831"
    },
    "headers": {
      "jaegerDebugHeader": "debug-id",
      "jaegerBaggageHeader": "baggage",
      "TraceContextHeaderName": "uber-trace-id",
      "traceBaggageHeaderPrefix": "testctx-"
    },
    "baggage_restrictions": {
        "denyBaggageOnInitializationFailure": false,
        "hostPort": "127.0.0.1:5778",
        "refreshInterval": 60
    }
 }

oc create configmap jaeger-config --from-file=jaeger_config.json
oc set volumes dc/apicast --add -m /tmp/jaeger/ --configmap-name jaeger-config
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4. Enable OpenTracing and Jaeger with the configuration we have just added:

5. Find the URL the Jaeger interface is running on:

6. Open the Jaeger interface from the previous step, which shows data being populated from
Openshift Health checks.

7. The final step is to add OpenTracing and Jaeger support to your backend APIs so that you can
see the complete request trace. This varies in each back end, depending on the frameworks and
languages used. As a reference example, you can see Using OpenTracing with Jaeger to collect
Application Metrics in Kubernetes.

For more information on configuring Jaeger, see:

Jaeger on OpenShift development setup

Jaeger on OpenShift production setup

Distributed tracing on OpenShift Service Mesh

oc set env deploymentConfig/apicast OPENTRACING_TRACER=jaeger 
OPENTRACING_CONFIG=/tmp/jaeger/jaeger_config.json

oc get route
(…) jaeger-query-myproject.127.0.0.1.nip.io
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CHAPTER 2. OPERATING DOCKER-CONTAINERIZED
ENVIRONMENTS

2.1. TROUBLESHOOTING APICAST ON THE DOCKER-CONTAINERIZED
ENVIRONMENT

This section describes the most common issues that you can find when working with APIcast on a
Docker-containerized environment.

2.1.1. Cannot connect to the Docker daemon error

The docker: Cannot connect to the Docker daemon. Is the docker daemon running on this host?
error message may be because the Docker service hasn’t started. You can check the status of the
Docker daemon by running the sudo systemctl status docker.service command.

Ensure that you are run this command as the root user because the Docker containerized environment
requires root permissions in RHEL by default. For more information, see here).

2.1.2. Basic Docker command-line interface commands

If you started the container in the detached mode (-d option) and want to check the logs for the running
APIcast instance, you can use the log command: sudo docker logs <container>. Where ,<container> is
the container name ("apicast" in the example above) or the container ID. You can get a list of the
running containers and their IDs and names by using the sudo docker ps command.

To stop the container, run the sudo docker stop <container> command. You can also remove the
container by running the sudo docker rm <container> command.

For more information on available commands, see Docker commands reference.
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CHAPTER 3. ADVANCED APICAST CONFIGURATION
This section covers the advanced settings option of 3scale’s API gateway in the staging environment.

3.1. DEFINE A SECRET TOKEN

For security reasons, any request from the 3scale gateway to your API backend contains a header called 
X-3scale-proxy-secret-token. You can set the value of this header in Authentication Settings on the
Integration page.

Setting the secret token acts as a shared secret between the proxy and your API so that you can block
all API requests that do not come from the gateway if you do not want them to. This adds an extra layer
of security to protect your public endpoint while you are in the process of setting up your traffic
management policies with the sandbox gateway.

Your API backend must have a public resolvable domain for the gateway to work, so anyone who knows
your API backend can bypass the credentials checking. This should not be a problem because the API
gateway in the staging environment is not meant for production use, but it is always better to have a
fence available.

3.2. CREDENTIALS

The API credentials within 3scale are either user_key or app_id/app_key depending on the
authentication mode that you are using. OpenID Connect is valid for the API gateway in the staging
environment, but it cannot be tested in the Integration page.

However, you might want to use different credential names in your API. In this case, you need to set
custom names for the user_key if you are using the API key mode:

Alternatively, for the app_id and app_key:
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For instance, you could rename app_id to key if that fits your API better. The gateway will take the
name key and convert it to app_id before doing the authorization call to the 3scale backend. Note that
the new credential name has to be alphanumeric.

You can decide if your API passes credentials in the query string (or body if not a GET) or in the headers.

NOTE

APIcast normalizes header names when extracting credentials. This means they are case
insensitive, and underscores and hyphens are treated equally. For example, if you set the
App Key parameter as App_Key, other values such as app-key are also accepted as valid
app key headers.

3.3. CONFIGURING ERROR MESSAGES

This section describes how to configure APIcast error messages.

As a proxy, 3scale APIcast manages requests in the following ways:

If there are no errors, APIcast passes the request from the client to the API back end server, and
returns the API response to the client without modifications. In case you want to modify the
responses, you can use the Header Modification policy .

If the API responds with an error message, such as 404 Not Found or 400 Bad Request,
APIcast returns the message to the client. However, if APIcast detects other errors such as 
Authentication missing, APIcast sends an error message and terminates the request.

Hence, you can configure these error messages to be returned by APIcast:

Authentication failed: This error means that the API request does not contain the valid
credentials, whether due to fake credentials or because the application is temporarily
suspended. Additionally, this error is generated when the metric is disabled, meaning its value is 
0.

Authentication missing: This error is generated whenever an API request does not contain any
credentials. It occurs when users do not add their credentials to an API request.

No match: This error means that the request did not match any mapping rule and therefore no
metric is updated. This is not necessarily an error, but it means that either the user is trying
random paths or that your mapping rules do not cover legitimate cases.
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Usage limit exceeded: This error means that the client reached its rate limits for the requested
endpoint. A client may reach more than one rate limit if the request matches multiple mapping
rules.

To configure errors, follow these steps:

1. Navigate from [Your_product_name] > Integration > Settings.

2. Under Gateway response, choose the error type you want to configure.

3. Specify values for these fields:

Response Code: The three-digit HTTP response code.

Content-type: The value of the Content-Type header.

Response Body: The value of the response message body.

4. To save your changes, click Update Product.

3.4. CONFIGURATION HISTORY

Every time you click Promote v.[n] to Staging APIcast, where [n] represents the version number, the
current configuration is saved in a JSON file. The staging gateway will pull the latest configuration with
each new request. For each environment, staging or production, you can see a history of all the previous
configuration files:

1. Navigate from [Your_product_name] > Integration > Configuration.

2. Click the Configuration history link, located next to the environment of your interest: Staging
APIcast or Production APIcast.

Note that it is not possible to automatically roll back to previous versions. Instead, you access to a
history of all your configuration versions with their associated JSON files. Use these files to check what
configuration you had deployed at any point of time. If you want to, you can recreate any deployments
manually.

3.5. DEBUGGING

Setting up the gateway configuration is easy, but you may still encounter errors. In such cases, the
gateway can return useful debug information to track the error.

To get the debugging information from APIcast, you must add the following header to the API request: 
X-3scale-debug: {SERVICE_TOKEN} with the service token corresponding to the API service that you
are reaching to.

When the header is found and the service token is valid, the gateway will add the following information
to the response headers:

X-3scale-matched-rules: /v1/word/{word}.json, /v1
X-3scale-credentials: app_key=APP_KEY&app_id=APP_ID
X-3scale-usage: usage%5Bversion_1%5D=1&usage%5Bword%5D=1

X-3scale-matched-rules indicates which mapping rules have been matched for the request in a comma-
separated list.
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The header X-3scale-credentials returns the credentials that were passed to 3scale backend.

X-3scale-usage indicates the usage that was reported to 3scale backend. 
usage%5Bversion_1%5D=1&usage%5Bword%5D=1 is a URL-encoded 
usage[version_1]=1&usage[word]=1 and shows that the API request incremented the methods
(metrics) version_1 and word by 1 hit each.

3.6. PATH ROUTING

APIcast handles all the API services configured on a 3scale account (or a subset of services, if the 
APICAST_SERVICES_LIST environment variable is configured). Normally, APIcast routes the API
requests to the appropriate API service based on the hostname of the request, by matching it with the
Public Base URL . The first service where the match is found is used for the authorization.

The Path routing feature allows using the same Public Base URL  on multiple services and routes the
requests using the path of the request. To enable the feature, set the APICAST_PATH_ROUTING
environment variable to true or 1. When enabled, APIcast will map the incoming requests to the services
based on both hostname and path.

This feature can be used if you want to expose multiple backend services hosted on different domains
through one gateway using the same Public Base URL . To achieve this you can configure several API
services for each API backend (i.e. Private Base URL) and enable the path routing feature.

For example, you have 3 services configured in the following way:

Service A Public Base URL: api.example.com Mapping rule: /a

Service B Public Base URL: api2.example.com Mapping rule: /b

Service C Public Base URL: api.example.com Mapping rule: /c

If path routing is disabled (APICAST_PATH_ROUTING=false), all calls to api.example.com will try to
match Service A. So, the calls api.example.com/c and api.example.com/b will fail with a "No Mapping
Rule matched" error.

If path routing is enabled (APICAST_PATH_ROUTING=true), the calls will be matched by both host
and path. So:

api.example.com/a will be routed to Service A

api.example.com/c will be routed to Service C

api.example.com/b will fail with "No Mapping Rule matched" error, i.e. it will NOT match Service
B, as the Public Base URL  does not match.

If path routing is used, you must ensure there is no conflict between the mapping rules in different
services that use the same Public Base URL , i.e. each combination of method + path pattern is only used
in one service.
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CHAPTER 4. APICAST POLICIES
APIcast policies are units of functionality that modify how APIcast operates. Policies can be enabled,
disabled, and configured to control how they modify APIcast. Use policies to add functionality that is not
available in a default APIcast deployment. You can create your own policies, or use standard policies
provided by Red Hat 3scale.

The following topics provide information about the standard APIcast policies, creating your own custom
APIcast policies, and creating a policy chain.

APIcast Standard Policies

Creating custom APIcast policies

Creating a policy chain in 3scale API Management

Control policies for a service with a policy chain. Policy chains do the following:

specify what policies APIcast uses

provide configuration information for policies 3scale uses

specify the order in which 3scale loads policies

NOTE

Red Hat 3scale provides a method for adding custom policies, but does not support
custom policies.

In order to modify APIcast behavior with custom policies, you must do the following:

Add custom policies to APIcast

Define a policy chain that configures APIcast policies

Add the policy chain to APIcast

4.1. APICAST STANDARD POLICIES

3scale provides the following standard policies:

Section 4.1.1, “3scale Auth Caching”

Section 4.1.2, “3scale Batcher”

Section 4.1.3, “3scale Referrer”

Section 4.1.4, “Anonymous Access”

Section 4.1.5, “Camel Service”

Section 4.1.6, “Conditional Policy”

Section 4.1.7, “Content Caching”

Section 4.1.8, “CORS Request Handling”
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Section 4.1.9, “Custom metrics”

Section 4.1.10, “Echo”

Section 4.1.11, “Edge Limiting”

Section 4.1.12, “Header Modification”

Section 4.1.13, “IP Check”

Section 4.1.14, “JWT Claim Check”

Section 4.1.15, “Liquid Context Debug”

Section 4.1.16, “Logging”

Section 4.1.17, “Maintenance Mode”

Section 4.1.18, “OAuth 2.0 Mutual TLS Client Authentication”

Section 4.1.19, “OAuth 2.0 Token Introspection”
Note: For information on Prometheus, see Chapter 9, Exposing 3scale APIcast Metrics to
Prometheus.

Section 4.1.20, “Proxy Service”

Section 4.1.21, “Rate Limit Headers”

Section 4.1.22, “Retry”

Section 4.1.23, “RH-SSO/Keycloak Role Check”

Section 4.1.24, “Routing”

Section 4.1.25, “SOAP”

Section 4.1.26, “TLS Client Certificate Validation”

Section 4.1.27, “TLS Termination”

Section 4.1.28, “Upstream”

Section 4.1.29, “Upstream Connection”

Section 4.1.30, “Upstream Mutual TLS”

Section 4.1.31, “URL Rewriting”

Section 4.1.32, “URL Rewriting with Captures”

You can enable and configure standard policies in 3scale.

4.1.1. 3scale Auth Caching

The 3scale Auth Caching policy caches authentication calls made to APIcast. You can select an
operating mode to configure the cache operations.
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3scale Auth Caching is available in the following modes:

1. Strict - Cache only authorized calls.

"Strict" mode only caches authorized calls. If a policy is running under the "strict" mode and if a call fails
or is denied, the policy invalidates the cache entry. If the backend becomes unreachable, all cached calls
are rejected, regardless of their cached status.

2. Resilient – Authorize according to last request when backend is down.

The "Resilient" mode caches both authorized and denied calls. If the policy is running under the
"resilient" mode, failed calls do not invalidate an existing cache entry. If the backend becomes
unreachable, calls hitting the cache continue to be authorized or denied based on their cached status.

3. Allow - When backend is down, allow everything unless seen before and denied.

The "Allow" mode caches both authorized and denied calls. If the policy is running under the "allow"
mode, cached calls continue to be denied or allowed based on the cached status. However, any new calls
are cached as authorized.

IMPORTANT

Operating in the "allow" mode has security implications. Consider these implications and
exercise caution when using the "allow" mode.

4. None - Disable caching.

The "None" mode disables caching. This mode is useful if you want the policy to remain active, but do
not want to use caching.

Configuration properties

property description values required?

caching_type The caching_type
property allows you to
define which mode the
cache will operate in.

data type: enumerated
string [resilient, strict,
allow, none]

yes

Policy object example

{
  "name": "caching",
  "version": "builtin",
  "configuration": {
    "caching_type": "allow"
  }
}

For information on how to configure policies, see the Creating a policy chain  section of the
documentation.

4.1.2. 3scale Batcher
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The 3scale Batcher policy provides an alternative to the standard APIcast authorization mechanism, in
which one call to the 3scale backend (Service Management API) is made for each API request that
APIcast receives.

The 3scale Batcher policy caches authorization statuses and batches usage reports, thereby
significantly reducing the number of requests to the 3scale backend. With the 3scale Batcher policy you
can improve APIcast performance by reducing latency and increasing throughput.

When the 3scale Batcher policy is enabled, APIcast uses the following authorization flow:

1. On each request, the policy checks whether the credentials are cached:

If the credentials are cached, the policy uses the cached authorization status instead of
calling the 3scale backend.

If the credentials are not cached, the policy calls the backend and caches the authorization
status with a configurable Time to Live (TTL).

2. Instead of reporting the usage corresponding to the request to the 3scale backend immediately,
the policy accumulates their usage counters to report them to the backend in batches. A
separate thread reports the accumulated usage counters to the 3scale backend in a single call,
with a configurable frequency.

The 3scale Batcher policy improves the throughput, but with reduced accuracy. The usage limits and the
current utilization are stored in 3scale, and APIcast can only get the correct authorization status when
making calls to the 3scale backend. When the 3scale Batcher policy is enabled, there is a period of time
in which APIcast is not sending calls to 3scale. During this time window, applications making calls might
go over the defined limits.

Use this policy for high-load APIs if the throughput is more important than the accuracy of the rate
limiting. The 3scale Batcher policy gives better results in terms of accuracy when the reporting
frequency and authorization TTL are much less than the rate limiting period. For example, if the limits
are per day and the reporting frequency and authorization TTL are configured to be several minutes.

The 3scale Batcher policy supports the following configuration settings:

auths_ttl: Sets the TTL in seconds when the authorization cache expires.

When the authorization for the current call is cached, APIcast uses the cached value. After
the time set in the auths_ttl parameter, APIcast removes the cache and calls the 3scale
backend to retrieve the authorization status.

Set the auths_ttl parameter to a value other than 0. Setting auths_ttl to a value of 0 would
update the authorization counter the first time the request is cached, resulting in rate limits
not being effective.

batch_report_seconds: Sets the frequency of batch reports APIcast sends to the 3scale
backend. The default value is 10 seconds.

IMPORTANT

To use this policy, enable both the 3scale APIcast and 3scale Batcher policy in the
policy chain.

4.1.3. 3scale Referrer

The 3scale Referrer policy enables the Referrer Filtering feature. When the policy is enabled in the
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service policy chain, APIcast sends the value of the 3scale Referrer policy to the Service Management
API as an upwards AuthRep call. The value of the 3scale Referrer policy is sent in the referrer parameter
in the call.

For more information on how Referrer Filtering works, see the Referrer Filtering section under
Authentication Patterns.

4.1.4. Anonymous Access

The Anonymous Access policy exposes a service without authentication. It can be useful, for example,
for legacy applications that cannot be adapted to send the authentication parameters. The Anonymous
policy only supports services with API Key and App Id / App Key authentication options. When the policy
is enabled for API requests that do not have any credentials provided, APIcast will authorize the calls
using the default credentials configured in the policy. For the API calls to be authorized, the application
with the configured credentials must exist and be active.

Using the Application Plans, you can configure the rate limits on the application used for the default
credentials.

NOTE

You need to place the Anonymous Access policy before the APIcast Policy, when using
these two policies together in the policy chain.

Following are the required configuration properties for the policy:

auth_type: Select a value from one of the alternatives below and make sure the property
corresponds to the authentication option configured for the API:

app_id_and_app_key: For App ID / App Key authentication option.

user_key: For API key authentication option.

app_id (only for app_id_and_app_key auth type): The App Id of the application that will be
used for authorization if no credentials are provided with the API call.

app_key (only for app_id_and_app_key auth type): The App Key of the application that will be
used for authorization if no credentials are provided with the API call.

user_key (only for the user_key auth_type): The API Key of the application that will be used for
authorization if no credentials are provided with the API call.

Figure 4.1. Anonymous Access policy
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Figure 4.1. Anonymous Access policy

4.1.5. Camel Service

You can use the Camel Service policy to define an HTTP proxy where the 3scale traffic is sent over the
defined Apache Camel proxy. In this case, Camel works as a reverse HTTP proxy, where APIcast sends
the traffic to Camel, and Camel then sends the traffic on to the API backend.

The following example shows the traffic flow:
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All APIcast traffic sent to the 3scale backend does not use the Camel proxy. This policy only applies to
the Camel proxy and the communication between APIcast and API backend.

If you want to send all traffic through a proxy, you must use an HTTP_PROXY environment variable.

NOTE

The Camel Service policy disables all load-balancing policies, and traffic is sent to
the Camel proxy.

If the HTTP_PROXY, HTTPS_PROXY, or ALL_PROXY parameters are defined,
this policy overwrites those values.

The proxy connection does not support authentication. You use the Header
Modification policy for authentication.

4.1.5.1. Configuration

The following example shows the policy chain configuration:

"policy_chain": [
    {
      "name": "apicast.policy.apicast"
    },
    {
      "name": "apicast.policy.camel",
      "configuration": {
          "all_proxy": "http://192.168.15.103:8080/",
          "http_proxy": "http://192.168.15.103:8080/",
          "https_proxy": "http://192.168.15.103:8443/"
      }
    }
]

The all_proxy value is used if http_proxy or https_proxy is not defined.

4.1.5.1.1. Example use case
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The Camel Service policy is designed to apply more fine-grained policies and transformation in 3scale
using Apache Camel. This policy supports integration with Apache Camel over HTTP and HTTPS. For
more details, see Chapter 6, Transforming 3scale message content using policy extensions in Fuse .

For details on using a generic HTTP proxy policy, see Section 4.1.20, “Proxy Service”.

Example project

See the camel-netty-proxy example available from the Camel proxy policy on GitHub . This example
project shows an HTTP proxy that transforms the response body from the API backend to uppercase.

4.1.6. Conditional Policy

The Conditional Policy is different from other APIcast policies as it contains a chain of policies. It defines
a condition that is evaluated on each nginx phase , for example, access, rewrite, log and so on. When the
condition is true, the Conditional Policy runs that phase for each of the policies that it contains in its
chain.

IMPORTANT

The APIcast Conditional Policy is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The following example assumes that the Conditional Policy defines the following condition: the request 
method is POST.

APIcast --> Caching --> Conditional --> Upstream

                             |
                             v

                          Headers

                             |
                             v

                       URL Rewriting

In this case, when the request is a POST, the order of execution for each phase will be the following:

1. APIcast

2. Caching

3. Headers

4. URL Rewriting

5. Upstream
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When the request is not POST, the order of execution for each phase will be the following:

1. APIcast

2. Caching

3. Upstream

4.1.6.1. Conditions

The condition that determines whether to run the policies in the chain of the Conditional Policy can be
expressed using JSON and uses liquid templating.

This example checks whether the request path is /example_path:

Both the left and right operands can be evaluated either as liquid or as plain strings. Plain strings are the
default.

You can combine the operations with and or or. This configuration checks the same as the previous
example plus the value of the Backend header:

For more details see, policy config schema .

4.1.6.1.1. Supported variables in liquid

uri

{
  "left": "{{ uri }}",
  "left_type": "liquid",
  "op": "==",
  "right": "/example_path",
  "right_type": "plain"
}

{
  "operations": [
    {
      "left": "{{ uri }}",
      "left_type": "liquid",
      "op": "==",
      "right": "/example_path",
      "right_type": "plain"
    },
    {
      "left": "{{ headers['Backend'] }}",
      "left_type": "liquid",
      "op": "==",
      "right": "test_upstream",
      "right_type": "plain"
    }
  ],
  "combine_op": "and"
}
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host

remote_addr

headers['Some-Header']

The updated list of variables can be found here: ngx_variable.lua

This example executes the upstream policy when the Backend header of the request is staging:

4.1.7. Content Caching

The Content Caching policy allows you to enable and disable caching based on customized conditions.
These conditions can only be applied on the client request, where upstream responses cannot be used in
the policy.

If a cache-control header is sent, it will take priority over the timeout set by APIcast.

The following example configuration will cache the response if the Method is GET.

Example configuration

{
  "name": "apicast.policy.content_caching",

{
   "name":"conditional",
   "version":"builtin",
   "configuration":{
      "condition":{
         "operations":[
            {
               "left":"{{ headers['Backend'] }}",
               "left_type":"liquid",
               "op":"==",
               "right":"staging"
            }
         ]
      },
      "policy_chain":[
         {
            "name":"upstream",
            "version": "builtin",
            "configuration":{
               "rules":[
                  {
                     "regex":"/",
                     "url":"http://my_staging_environment"
                  }
               ]
            }
         }
      ]
   }
}
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  "version": "builtin",
  "configuration": {
    "rules": [
      {
        "cache": true,
        "header": "X-Cache-Status-POLICY",
        "condition": {
          "combine_op": "and",
          "operations": [
            {
              "left": "{{method}}",
              "left_type": "liquid",
              "op": "==",
              "right": "GET"
            }
          ]
        }
      }
    ]
  }
}

4.1.7.1. Supported configuration

Set the Content Caching policy to disabled for any of the following methods: POST, PUT, or 
DELETE.

If one rule matches, and it enables the cache, the execution will be stopped and it will not be
disabled. Sort by priority is important here.

4.1.7.2. Upstream response headers

The NGINX proxy_cache_valid directive information can only be set globally, with the 
APICAST_CACHE_STATUS_CODES and APICAST_CACHE_MAX_TIME. If your upstream requires a
different behavior regarding timeouts, use the Cache-Control header.

4.1.8. CORS Request Handling

The Cross Origin Resource Sharing (CORS) Request Handling policy allows you to control CORS
behavior by allowing you to specify:

Allowed headers

Allowed methods

Allowed credentials

Allowed origin headers

The CORS Request Handling policy will block all unspecified CORS requests.

NOTE

You need to place the CORS Request Handling policy before the APIcast Policy, when
using these two policies together in the policy chain.
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Configuration properties

property description values required?

allow_headers The allow_headers
property is an array in
which you can specify
which CORS headers
APIcast will allow.

data type: array of
strings, must be a CORS
header

no

allow_methods The allow_methods
property is an array in
which you can specify
which CORS methods
APIcast will allow.

data type: array of
enumerated strings
[GET, HEAD, POST,
PUT, DELETE, PATCH,
OPTIONS, TRACE,
CONNECT]

no

allow_origin The allow_origin
property allows you to
specify an origin domain
APIcast will allow

data type: string no

allow_credentials The 
allow_credentials
property allows you to
specify whether APIcast
will allow a CORS
request with credentials

data type: boolean no

Policy object example

{
  "name": "cors",
  "version": "builtin",
  "configuration": {
    "allow_headers": [
      "App-Id", "App-Key",
      "Content-Type", "Accept"
    ],
    "allow_credentials": true,
    "allow_methods": [
      "GET", "POST"
    ],
    "allow_origin": "https://example.com"
  }
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.9. Custom metrics

The Custom metrics policy adds the availability to add metrics after the response sent by the upstream
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The Custom metrics policy adds the availability to add metrics after the response sent by the upstream
API. The main use case for this policy is to add metrics based on response code status, headers, or
different NGINX variables.

4.1.9.1. Limitations of custom metrics

When authentication happens before the request is sent to the upstream API, a second call to
the back end will be made to report the new metrics to the upstream API.

This policy does not work with batching policy.

Metrics need to be created in the Admin Portal before the policy will push the metric values.

4.1.9.2. Examples for request flows

The following chart shows the request flow example of when authentication is not cached, as well as the
flow when authentication is cached.

User

Get /foo

APIcast

4.1.9.3. Configuration examples

This policy increments the metric error by the header increment if the upstream API returns a 400
status:

{
  "name": "apicast.policy.custom_metrics",
  "configuration": {
    "rules": [
      {
        "metric": "error",
        "increment": "{{ resp.headers['increment'] }}",
        "condition": {
          "operations": [
            {
              "right": "{{status}}",
              "right_type": "liquid",
              "left": "400",
              "op": "=="
            }
          ],
          "combine_op": "and"
        }
      }
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    ]
  }
}

This policy increments the hits metric with the status_code information if the upstream API return a 200
status:

{
  "name": "apicast.policy.custom_metrics",
  "configuration": {
    "rules": [
      {
        "metric": "hits_{{status}}",
        "increment": "1",
        "condition": {
          "operations": [
            {
              "right": "{{status}}",
              "right_type": "liquid",
              "left": "200",
              "op": "=="
            }
          ],
          "combine_op": "and"
        }
      }
    ]
  }
}

4.1.10. Echo

The Echo policy prints an incoming request back to the client, along with an optional HTTP status code.

Configuration properties

property description values required?

status The HTTP status code
the Echo policy will
return to the client

data type: integer no

exit Specifies which exit
mode the Echo policy
will use. The request
exit mode stops the
incoming request from
being processed. The 
set exit mode skips the
rewrite phase.

data type: enumerated
string [request, set]

yes

Policy object example
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{
  "name": "echo",
  "version": "builtin",
  "configuration": {
    "status": 404,
    "exit": "request"
  }
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.11. Edge Limiting

The Edge Limiting policy aims to provide flexible rate limiting for the traffic sent to the backend API and
can be used with the default 3scale authorization. Some examples of the use cases supported by the
policy include:

End-user rate limiting: Rate limit by the value of the sub (subject) claim of a JWT token passed
in the Authorization header of the request. This is configured as {{ jwt.sub }}.

Requests Per Second (RPS) rate limiting.

Global rate limits per service: Apply limits per service rather than per application.

Concurrent connection limit: Set the number of concurrent connections allowed.

4.1.11.1. Types of limits

The policy supports the following types of limits that are provided by the lua-resty-limit-traffic library:

leaky_bucket_limiters: Based on the leaky bucket algorithm, which builds on the average
number of requests plus a maximum burst size.

fixed_window_limiters: Based on a fixed window of time: last n seconds.

connection_limiters: Based on the concurrent number of connections.

You can scope any limit by service or globally.

4.1.11.2. Limit definition

The limits have a key that encodes the entities that are used to define the limit, such as an IP address, a
service, an endpoint, an identifier, the value for a specific header, and other entities. This key is specified
in the key parameter of the limiter.

key is an object that is defined by the following properties:

name: Defines the name of the key. It must be unique in the scope.

scope: Defines the scope of the key. The supported scopes are:

Per service scope that affects one service (service).

Global scope that affects all the services (global).
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name_type: Definies how the name value is evaluated:

As plain text (plain)

As Liquid (liquid)

Each limit also has some parameters that vary depending on their type:

leaky_bucket_limiters: rate, burst.

rate: Defines how many requests can be made per second without a delay.

burst: Defines the amount of requests per second that can exceed the allowed rate. An
artificial delay is introduced for requests above the allowed rate specified by rate. After
exceeding the rate by more requests per second than defined in burst, the requests get
rejected.

fixed_window_limiters: count, window. count defines how many requests can be made per
number of seconds defined in window.

connection_limiters: conn, burst, delay.

conn: Defines the maximum number of the concurrent connections allowed. It allows
exceeding that number by burst connections per second.

delay: Defines the number of seconds to delay the connections that exceed the limit.

Examples

Allow 10 requests per minute to service_A:

{
  "key": { "name": "service_A" },
  "count": 10,
  "window": 60
}

Allow 100 connections with bursts of 10 with a delay of 1 second:

{
  "key": { "name": "service_A" },
  "conn": 100,
  "burst": 10,
  "delay": 1
}

You can define several limits for each service. In case multiple limits are defined, the request can be
rejected or delayed if at least one limit is reached.

4.1.11.3. Liquid templating

The Edge Limiting policy allows specifying the limits for the dynamic keys by supporting Liquid variables
in the keys. For this, the name_type parameter of the key must be set to liquid and the name
parameter can then use Liquid variables. For example, {{ remote_addr }} for the client IP address, or {{ 
jwt.sub }} for the sub claim of the JWT token.
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Example

{
  "key": { "name": "{{ jwt.sub }}", "name_type": "liquid" },
  "count": 10,
  "window": 60
}

For more information about Liquid support, see Section 5.1, “Using variables and filters in policies” .

4.1.11.4. Applying conditions

Each limiter must have a condition that defines when the limiter is applied. The condition is specified in
the condition property of the limiter.

condition is defined by the following properties:

combine_op: The boolean operator applied to the list of operations. Values of or and and are
supported.

operations: A list of conditions that need to be evaluated. Each operation is represented by an
object with the following properties:

left: The left part of the operation.

left_type: How the left property is evaluated (plain or liquid).

right: The right part of the operation.

right_type: How the right property is evaluated (plain or liquid).

op: Operator applied between the left and the right parts. The following two values are
supported: == (equals) and != (not equals).

Example

"condition": {
  "combine_op": "and",
  "operations": [
    {
      "op": "==",
      "right": "GET",
      "left_type": "liquid",
      "left": "{{ http_method }}",
      "right_type": "plain"
    }
  ]
}

4.1.11.5. Configuring storage of rate limit counters

By default, the Edge Limiting policy uses the OpenResty shared dictionary for the rate limiting counters.
However, you can use an external Redis server instead of the shared dictionary. This can be useful when
multiple APIcast instances are deployed. You can configure the Redis server using the redis_url
parameter.
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4.1.11.6. Error handling

The limiters support the following parameters to configure how the errors are handled:

limits_exceeded_error: Specifies the error status code and message that will be returned to
the client when the configured limits are exceeded. The following parameters should be
configured:

status_code: The status code of the request when the limits are exceeded. Default: 429.

error_handling: Specifies how to handle the error, with following options:

exit: Stops processing request and returns an error message.

log: Completes processing request and returns output logs.

configuration_error: Specifies the error status code and message that will be returned to the
client in case of incorrect configuration. The following parameters should be configured:

status_code : The status code when there is a configuration issue. Default: 500.

error_handling: Specifies how to handle the error, with following options:

exit: Stops processing request and returns an error message.

log: Completes processing request and returns output logs.

4.1.12. Header Modification

The Header Modification policy allows you to modify the existing headers or define additional headers to
add to or remove from an incoming request or response. You can modify both response and request
headers.

The Header Modification policy supports the following configuration parameters:

request: List of operations to apply to the request headers

response: List of operations to apply to the response headers

Each operation consists of the following parameters:

op: Specifies the operation to be applied. The add operation adds a value to an existing header.
The set operation creates a header and value, and will overwrite an existing header’s value if one
already exists. The push operation creates a header and value, but will not overwrite an existing
header’s value if one already exists. Instead, push will add the value to the existing header. The 
delete operation removes the header.

header: Specifies the header to be created or modified and can be any string that can be used
as a header name (e.g. Custom-Header).

value_type: Defines how the header value will be evaluated and can either be plain for plain
text or liquid for evaluation as a Liquid template. For more information, see Section 5.1, “Using
variables and filters in policies”.

value: Specifies the value that will be used for the header. For value type "liquid" the value
should be in the format {{ variable_from_context }}. Not needed when deleting.

Policy object example
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{
  "name": "headers",
  "version": "builtin",
  "configuration": {
    "response": [
      {
        "op": "add",
        "header": "Custom-Header",
        "value_type": "plain",
        "value": "any-value"
      }
    ],
    "request": [
      {
        "op": "set",
        "header": "Authorization",
        "value_type": "plain",
        "value": "Basic dXNlcm5hbWU6cGFzc3dvcmQ="
      },
      {
        "op": "set",
        "header": "Service-ID",
        "value_type": "liquid",
        "value": "{{service.id}}"
      }
    ]
  }
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.13. IP Check

The IP Check policy is used to deny or allow requests based on a list of IPs.

Configuration properties

property description data type required?

check_type The check_type
property has two
possible values, 
whitelist or blacklist. 
blacklist will deny all
requests from IPs on the
list. whitelist will deny
all requests from IPs not
on the list.

string, must be either 
whitelist or blacklist

yes
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ips The ips property allows
you to specify a list of IP
addresses to whitelist or
blacklist. Both single IPs
and CIDR ranges can be
used.

array of strings, must be
valid IP addresses

yes

error_msg The error_msg
property allows you to
configure the error
message returned when
a request is denied.

string no

client_ip_sources The 
client_ip_sources
property allows you to
configure how to
retrieve the client IP. By
default, the last caller IP
is used. The other
options are X-
Forwarded-For and X-
Real-IP.

array of strings, valid
options are one or more
of X-Forwarded-For, 
X-Real-IP, last_caller.

no

property description data type required?

Policy object example

{
  "name": "ip_check",
  "configuration": {
    "ips": [ "3.4.5.6", "1.2.3.0/4" ],
    "check_type": "blacklist",
    "client_ip_sources": ["X-Forwarded-For", "X-Real-IP", "last_caller"],
    "error_msg": "A custom error message"
  }
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.14. JWT Claim Check

Based on JSON Web Token (JWT) claims, the JWT Claim Check policy allows you to define new rules to
block resource targets and methods.

4.1.14.1. About JWT Claim Check policy

In order to route based on the value of a JWT claim, you need a policy in the chain that validates the
JWT and stores the claim in the context that the policies share.
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If the JWT Claim Check policy is blocking a resource and a method, the policy also validates the JWT
operations. Alternatively, in case that the method resource does not match, the request continues to the
backend API.

Example: In case of a GET request, the JWT needs to have the role claim as admin, if not the request will
be denied. On the other hand, any non GET request will not validate the JWT operations, so POST
resource is allowed without JWT constraint.

{
  "name": "apicast.policy.jwt_claim_check",
  "configuration": {
      "error_message": "Invalid JWT check",
      "rules": [
          {
              "operations": [
                  {"op": "==", "jwt_claim": "role", "jwt_claim_type": "plain", "value": "admin"}
              ],
              "combine_op":"and",
              "methods": ["GET"],
              "resource": "/resource",
              "resource_type": "plain"
          }
      ]
  }
}

4.1.14.2. Configuring JWT Claim Check policy in your policy chain

To configure the JWT Claim Check policy in your policy chain, do the following:

Prerequisites:

You need to have access to a 3scale installation.

You need to wait for all the deployments to finish.

4.1.14.2.1. Configuring the policy

1. To add the JWT Claim Check policy to your API, follow the steps described in Enabling a
standard Policy and choose JWT Claim Check.

2. Click the JWT Claim Check link.

3. To enable the policy, select the Enabled checkbox.

4. To add rules, click the plus + icon.

5. Specify the resource_type.

6. Choose the operator.

7. Indicate the resource controlled by the rule.

8. To add the allowed methods, click the plus + icon.
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9. Type the error message to show to the user when traffic is blocked.

10. When you have finished setting up your API with JWT Claim Check, click Update Policy.

You can add more resource types and allowed methods by clicking the plus + icon in the
corresponding section.

11. Click Update Policy Chain to save your changes.

4.1.15. Liquid Context Debug

NOTE

The Liquid Context Debug policy is meant only for debugging purposes in the
development environment and not in production.

This policy responds to the API request with a JSON, containing the objects and values that are available
in the context and can be used for evaluating Liquid templates. When combined with the 3scale APIcast
or upstream policy, Liquid Context Debug must be placed before them in the policy chain in order to
work correctly. To avoid circular references, the policy only includes duplicated objects once and
replaces them with a stub value.

An example of the value returned by APIcast when the policy is enabled:

    {
      "jwt": {
        "azp": "972f7b4f",
        "iat": 1537538097,
        ...
        "exp": 1537574096,
        "typ": "Bearer"
      },
      "credentials": {
        "app_id": "972f7b4f"
      },
      "usage": {
        "deltas": {
          "hits": 1
        },
        "metrics": [
          "hits"
        ]
      },
      "service": {
        "id": "2",
        ...
      }
      ...
    }

4.1.16. Logging

The Logging policy has two purposes:
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To enable and disable access log output.

To create a custom access log format for each service and be able to set conditions to write
custom access log.

You can combine the Logging policy with the global setting for the location of access logs. Set the 
APICAST_ACCESS_LOG_FILE environment variable to configure the location of APIcast access logs.
By default, this variable is set to /dev/stdout, which is the standard output device. For further details
about global APIcast parameters, see Chapter 7, APIcast environment variables.

Additionally, the Logging policy has these features:

This policy only supports the enable_access_logs configuration parameter.

To enable the access logs, select the enable_access_logs parameter or disable the Logging
policy.

To disable access logging for an API:

1. Enable the policy.

2. Clear the enable_access_logs parameter

3. Click the Submit button.

By default, this policy is not enabled in policy chains.

4.1.16.1. Global configuration for all APIs

Logging options help to avoid issues with logs that are not correctly formatted in APIs. A custom
APIcast environment variable can be set and all APIs implement the Logging policy. Here is an example
of a policy that is loaded in all services: custom_env.lua

local cjson = require('cjson')
local PolicyChain = require('apicast.policy_chain')
local policy_chain = context.policy_chain

local logging_policy_config = cjson.decode([[
{
  "enable_access_logs": false,
  "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}"
}
]])

policy_chain:insert( PolicyChain.load_policy('logging', 'builtin', logging_policy_config), 1)

return {
  policy_chain = policy_chain,
  port = { metrics = 9421 },
}

To run APIcast with this specific environment:

docker run --name apicast --rm -p 8080:8080 \
    -v $(pwd):/config \
    -e APICAST_ENVIRONMENT=/config/custom_env.lua \
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    -e THREESCALE_PORTAL_ENDPOINT=https://ACCESS_TOKEN@ADMIN_PORTAL_DOMAIN \
    quay.io/3scale/apicast:master

These are key concepts of the Docker command to consider:

Current Lua file must be shared to the container -v $(pwd):/config.

APICAST_ENVIRONMENT variable must be set to the Lua file that is stored in the /config
directory.

4.1.16.2. Examples

This section describes some examples when working with the Logging policy. These examples consider
the following caveats:

If custom_logging or enable_json_logs property is enabled, default access log will be
disabled.

If enable_json_logs is enabled, the custom_logging field will be omitted.

Disabling access log

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false
  }
}

Enabling custom access log

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "[{{time_local}}] {{host}}:{{server_port}} {{remote_addr}}:{{remote_port}} \"
{{request}}\" {{status}} {{body_bytes_sent}} ({{request_time}}) {{post_action_impact}}",
  }
}

Enabling custom access log with the service identifier

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}",
  }
}

Configuring access logs in JSON format

{
  "name": "apicast.policy.logging",
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  "configuration": {
    "enable_access_logs": false,
    "enable_json_logs": true,
    "json_object_config": [
      {
        "key": "host",
        "value": "{{host}}",
        "value_type": "liquid"
      },
      {
        "key": "time",
        "value": "{{time_local}}",
        "value_type": "liquid"
      },
      {
        "key": "custom",
        "value": "custom_method",
        "value_type": "plain"
      }
    ]
  }
}

Configuring a custom access log only for a successful request

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}",
    "condition": {
      "operations": [
        {"op": "==", "match": "{{status}}", "match_type": "liquid", "value": "200"}
      ],
      "combine_op": "and"
    }
  }
}

Customizing access logs where the response status matches either 200 or 500

{
  "name": "apicast.policy.logging",
  "configuration": {
    "enable_access_logs": false,
    "custom_logging": "\"{{request}}\" to service {{service.id}} and {{service.name}}",
    "condition": {
      "operations": [
        {"op": "==", "match": "{{status}}", "match_type": "liquid", "value": "200"},
        {"op": "==", "match": "{{status}}", "match_type": "liquid", "value": "500"}
      ],
      "combine_op": "or"
    }
  }
}
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4.1.16.3. Additional information about custom logging

For custom logging, you can use Liquid templates with exported variables. These variables include:

NGINX default directive variable: log_format. For example: {{remote_addr}}.

Response and request headers:

{{req.headers.FOO}}: To get the FOO header in the request.

{{res.headers.FOO}}: To retrieve the FOO header on response.

Service information, such as {{service.id}}, and all the service properties provided by these
parameters:

THREESCALE_CONFIG_FILE

THREESCALE_PORTAL_ENDPOINT

4.1.17. Maintenance Mode

The Maintenance Mode policy allows you reject incoming requests with a specified status code and
message. It is useful for maintenance periods or to temporarily block an API.

Configuration properties

The following is a list of possible properties and default values.

property value default description

status integer, optional 503 Response code

message string, optional 503 Service Unavailable
- Maintenance

Response message

Maintenance Mode policy example

{
  "policy_chain": [
    {"name": "maintenance-mode", "version": "1.0.0",
    "configuration": {"message": "Be back soon..", "status": 503} },
  ]
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.18. OAuth 2.0 Mutual TLS Client Authentication

This policy executes OAuth 2.0 Mutual TLS Client Authentication for every API call.

An example of the OAuth 2.0 Mutual TLS Client Authentication policy JSON is shown below:

{
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  "$schema": "http://apicast.io/policy-v1/schema#manifest#",
  "name": "OAuth 2.0 Mutual TLS Client Authentication",
  "summary": "Configure OAuth 2.0 Mutual TLS Client Authentication.",
  "description": ["This policy executes OAuth 2.0 Mutual TLS Client Authentication ",
    "(https://tools.ietf.org/html/draft-ietf-oauth-mtls-12) for every API call."
  ],
  "version": "builtin",
  "configuration": {
    "type": "object",
    "properties": { }
  }
}

4.1.19. OAuth 2.0 Token Introspection

The OAuth 2.0 Token Introspection policy allows validating the JSON Web Token (JWT) token used for
services with the OpenID Connect (OIDC) authentication option using the Token Introspection
Endpoint of the token issuer (Red Hat Single Sign-On).

APIcast supports the following authentication types in the auth_type field to determine the Token
Introspection Endpoint and the credentials APIcast uses when calling this endpoint:

use_3scale_oidc_issuer_endpoint: APIcast uses the client credentials, Client ID  and Client
Secret, as well as the Token Introspection Endpoint from the OIDC Issuer setting configured on
the Service Integration page. APIcast discovers the Token Introspection endpoint from the 
token_introspection_endpoint field. This field is located in the .well-known/openid-
configuration endpoint that is returned by the OIDC issuer.

Example 4.1. Authentication type set to use_3scale_oidc_issuer_endpoint

"policy_chain": [
… 
  {
    "name": "apicast.policy.token_introspection",
    "configuration": {
      "auth_type": "use_3scale_oidc_issuer_endpoint"
    }
  }
… 
],

client_id+client_secret: This option enables you to specify a different Token Introspection
Endpoint, as well as the Client ID  and Client Secret  APIcast uses to request token information.
When using this option, set the following configuration parameters:

client_id: Sets the Client ID for the Token Introspection Endpoint.

client_secret: Sets the Client Secret for the Token Introspection Endpoint.

introspection_url: Sets the Introspection Endpoint URL.

Example 4.2. Authentication type set to client_id+client_secret

"policy_chain": [
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… 
  {
    "name": "apicast.policy.token_introspection",
    "configuration": {
      "auth_type": "client_id+client_secret",
      "client_id": "myclient",
      "client_secret": "mysecret",
      "introspection_url": "http://red_hat_single_sign-on/token/introspection"
    }
  }
… 
],

Regardless of the setting in the auth_type field, APIcast uses Basic Authentication to authorize the
Token Introspection call (Authorization: Basic <token> header, where <token> is Base64-encoded
<client_id>:<client_secret>  setting).
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The response of the Token Introspection Endpoint contains the active attribute. APIcast checks the
value of this attribute. Depending on the value of the attribute, APIcast authorizes or rejects the call:
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true: The call is authorized

false: The call is rejected with the Authentication Failed error

The policy allows enabling caching of the tokens to avoid calling the Token Introspection Endpoint on
every call for the same JWT token. To enable token caching for the Token Introspection Policy, set the 
max_cached_tokens field to a value from 0, which disables the feature, and 10000. Additionally, you
can set a Time to Live (TTL) value from 1 to 3600 seconds for tokens in the max_ttl_tokens field.

4.1.20. Proxy Service

You can use the Proxy Service policy to define a generic HTTP proxy where the 3scale traffic will be sent
using the defined proxy. In this case, the proxy service works as a reverse HTTP proxy, where APIcast
sends the traffic to the HTTP proxy, and the proxy then sends the traffic on to the API backend.

The following example shows the traffic flow:

All APIcast traffic sent to the 3scale backend does not use the proxy. This policy only applies to the
proxy and the communication between APIcast and API backend.

If you want to send all traffic through a proxy, you must use an HTTP_PROXY environment variable.

NOTE

The Proxy Service policy disables all load-balancing policies, and traffic is sent to
the proxy.

If the HTTP_PROXY, HTTPS_PROXY, or ALL_PROXY parameters are defined,
this policy overwrites those values.

The proxy connection does not support authentication. You use the Header
Modification policy for authentication.

4.1.20.1. Configuration

The following example shows the policy chain configuration:
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"policy_chain": [
    {
      "name": "apicast.policy.apicast"
    },
    {
      "name": "apicast.policy.http_proxy",
      "configuration": {
          "all_proxy": "http://192.168.15.103:8888/",
          "https_proxy": "https://192.168.15.103:8888/",
          "http_proxy": "https://192.168.15.103:8888/"
      }
    }
]

The all_proxy value is used if http_proxy or https_proxy is not defined.

4.1.20.1.1. Example use case

The Proxy Service policy was designed to apply more fine-grained policies and transformation in 3scale
using Apache Camel over HTTP. However, you can also use the Proxy Service policy as a generic HTTP
proxy service. For integration with Apache Camel over HTTPS, see Section 4.1.5, “Camel Service” .

Example project

See the camel-netty-proxy example on GitHub. This project shows an HTTP proxy that transforms the
response body from the API backend to uppercase.

4.1.21. Rate Limit Headers

The Rate Limit Headers policy adds RateLimit headers to response messages when your application
subscribes to an application plan with rate limits. These headers provide useful information about the
configured request quota limit and the remaining request quota and seconds in the current time window.

In the policy chain for a product, if you add the Rate Limit Headers policy it must be before the 3scale
APIcast policy. If the 3scale APIcast policy is before the Rate Limit Headers policy then the Rate Limit
Headers policy does not work.

4.1.21.1. RateLimit headers

The following RateLimit headers are added to each message:

RateLimit-Limit: Displays the total request quota in the configured time window, for example, 
10 requests.

RateLimit-Remaining: Displays the remaining request quota in the current time window, for
example, 5 requests.

RateLimit-Reset: Displays the remaining seconds in the current time window, for example, 30
seconds. The behavior of this header is compatible with the delta-seconds notation of the 
Retry-After header.

By default, there are no rate limit headers in the response message when the Rate Limit Headers policy
is not configured or when your application plan does not have any rate limits.

NOTE
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NOTE

If you are requesting an API metric with no rate limits but the parent metric has limits
configured, the rate limit headers are still included in the response because the parent
limits apply.

Additional resources

Internet-Draft: RateLimit Header Fields for HTTP

Configuring 3scale application plans and rate limits

Configuring 3scale API metrics

4.1.22. Retry

The Retry policy sets the number of retry requests to the upstream API. The retry policy is configured
per service, so users can enable retries for as few or as many of their services as desired, as well as
configure different retry values for different services.

IMPORTANT

As of 3scale 2.9, it is not possible to configure which cases to retry from the policy. This is
controlled with the environment variable APICAST_UPSTREAM_RETRY_CASES, which
applies retry requests to all services. For more on this, check out
APICAST_UPSTREAM_RETRY_CASES.

An example of the retry policy JSON is shown below:

4.1.23. RH-SSO/Keycloak Role Check

This policy adds role check when used with the OpenID Connect authentication option. This policy
verifies realm roles and client roles in the access token issued by Red Hat Single Sign-On (RH-SSO).
The realm roles are specified when you want to add role check to every client resource of 3scale.

{
  "$schema": "http://apicast.io/policy-v1/schema#manifest#",
  "name": "Retry",
  "summary": "Allows retry requests to the upstream",
  "description": "Allows retry requests to the upstream",
  "version": "builtin",
  "configuration": {
    "type": "object",
    "properties": {
      "retries": {
        "description": "Number of retries",
        "type": "integer",
        "minimum": 1,
        "maximum": 10
      }
    }
  }
}
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There are the two types of role checks that the type property specifies in the policy configuration:

whitelist (default): When whitelist is used, APIcast will check if the specified scopes are present
in the JWT token and will reject the call if the JWT doesn’t have the scopes.

blacklist: When blacklist is used, APIcast will reject the calls if the JWT token contains the
blacklisted scopes.

It is not possible to configure both checks – blacklist and whitelist in the same policy, but you can add
more than one instance of the RH-SSO/Keycloak Role Check policy to the APIcast policy chain.

You can configure a list of scopes via the scopes property of the policy configuration.

Each scope object has the following properties:

resource: Resource (endpoint) controlled by the role. This is the same format as Mapping Rules.
The pattern matches from the beginning of the string and to make an exact match you must
append $ at the end.

resource_type: This defines how the resource value is evaluated.

As plain text (plain): Evaluates the resource value as plain text. Example:
/api/v1/products$.

As Liquid text (liquid): Allows using Liquid in the resource value. Example: /resource_{{
jwt.aud }} manages access to the resource containing the Client ID.

methods: Use this parameter to list the allowed HTTP methods in APIcast, based on the user
roles in RH-SSO. As examples, you can allow methods that have:

The role1 realm role to access /resource1. For those methods that do not have this realm
role, you need to specify the blacklist.

The client1 role called role1 to access /resource1.

The role1 and role2 realm roles to access /resource1. Specify the roles in realm_roles. You
can also indicate the scope for each role.

The client role called role1 of the application client, which is the recipient of the access
token, to access /resource1. Use liquid client type to specify the JSON Web Token (JWT)
information to the client.

The client role including the client ID of the application client, the recipient of the access
token, to access /resource1. Use liquid client type to specify the JWT information to the 
name of the client role.

The client role called role1 to access the resource including the application client ID. Use 
liquid client type to specify the JWT information to the resource.

realm_roles: Use it to check the realm role (see the Realm Roles in Red Hat Single Sign-On
documentation).
The realm roles are present in the JWT issued by Red Hat Single Sign-On.

  "realm_access": {
    "roles": [
      "<realm_role_A>", "<realm_role_B>"
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    ]
  }

The real roles must be specified in the policy.

"realm_roles": [
  { "name": "<realm_role_A>" }, { "name": "<realm_role_B>" }
]

Following are the available properties of each object in the realm_roles array:

name: Specifies the name of the role.

name_type: Defines how the name must be evaluated; it can be plain or liquid (works the same
way as for the resource_type).

client_roles: Use client_roles to check for the particular access roles in the client namespace
(see the Client Roles in Red Hat Single Sign-On  documentation).
The client roles are present in the JWT under the resource_access claim.

  "resource_access": {
    "<client_A>": {
      "roles": [
        "<client_role_A>", "<client_role_B>"
      ]
    },
    "<client_B>": {
      "roles": [
        "<client_role_A>", "<client_role_B>"
      ]
    }
  }

Specify the client roles in the policy.

"client_roles": [
  { "name": "<client_role_A>", "client": "<client_A>" },
  { "name": "<client_role_B>", "client": "<client_A>" },
  { "name": "<client_role_A>", "client": "<client_B>" },
  { "name": "<client_role_B>", "client": "<client_B>" }
]

Following are the available properties of each object in the client_roles array:

name: Specifies the name of the role.

name_type: Defines how the name value must be evaluated; it can be plain or liquid (works the
same way as for the resource_type).

client: Specifies the client of the role. When it is not defined, this policy uses the aud claim as
the client.

client_type: Defines how the client value must be evaluated; it can be plain or liquid (works the
same way as for the resource_type).
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4.1.24. Routing

The Routing policy allows you to route requests to different target endpoints. You can define target
endpoints and then you will be able to route incoming requests from the UI to those using regular
expressions.

Routing is based on the following rules:

Request path rule

Header rule

Query argument rule

JSON Web Token (JWT) claim rule

When combined with the APIcast policy, the Routing policy should be placed before the APIcast one in
the chain, as the two policies that comes first will output content to the response. When the second gets
a change to run its content phase, the request will already be sent to the client, so it will not output
anything to the response.

4.1.24.1. Routing rules

If multiple rules exist, the Routing policy applies the first match. You can sort these rules.

If no rules match, the policy will not change the upstream and will use the defined Private Base
URL defined in the service configuration.

4.1.24.2. Request path rule

This is a configuration that routes to http://example.com when the path is /accounts:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/accounts"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.3. Header rule

This is a configuration that routes to http://example.com when the value of the header Test-Header is 
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This is a configuration that routes to http://example.com when the value of the header Test-Header is 
123:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "operations": [
              {
                "match": "header",
                "header_name": "Test-Header",
                "op": "==",
                "value": "123"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.4. Query argument rule

This is a configuration that routes to http://example.com when the value of the query argument 
test_query_arg is 123:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "operations": [
              {
                "match": "query_arg",
                "query_arg_name": "test_query_arg",
                "op": "==",
                "value": "123"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.5. JWT claim rule

To route based on the value of a JWT claim, there needs to be a policy in the chain that validates the
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To route based on the value of a JWT claim, there needs to be a policy in the chain that validates the
JWT and stores it in the context that the policies share.

This is a configuration that routes to http://example.com when the value of the JWT claim test_claim is
123:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "operations": [
              {
                "match": "jwt_claim",
                "jwt_claim_name": "test_claim",
                "op": "==",
                "value": "123"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.6. Multiple operations rule

Rules can have multiple operations and route to the given upstream only when all of them evaluate to
true (using the 'and' combine_op), or when at least one of them evaluates to true (using the 'or' 
combine_op). The default value of combine_op is 'and'.

This is a configuration that routes to http://example.com when the path of the request is /accounts and
when the value of the header Test-Header is 123:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "combine_op": "and",
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/accounts"
              },
              {
                "match": "header",
                "header_name": "Test-Header",

Red Hat 3scale API Management 2.9 Administering the API Gateway

58

http://example.com
http://example.com


                "op": "==",
                "value": "123"
              }
            ]
          }
        }
      ]
    }
  }

This is a configuration that routes to http://example.com when the path of the request is /accounts or
when the value of the header Test-Header is 123:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "combine_op": "or",
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/accounts"
              },
              {
                "match": "header",
                "header_name": "Test-Header",
                "op": "==",
                "value": "123"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.7. Combining rules

Rules can be combined. When there are several rules, the upstream selected is one of the first rules that
evaluates to true.

This is a configuration with several rules:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://some_upstream.com",
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          "condition": {
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/accounts"
              }
            ]
          }
        },
        {
          "url": "http://another_upstream.com",
          "condition": {
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/users"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.8. Catch-all rules

A rule without operations always matches. This can be useful to define catch-all rules.

This configuration routes the request to http://some_upstream.com if the path is /abc, routes the
request to http://another_upstream.com if the path is /def, and finally, routes the request to 
http://default_upstream.com if none of the previous rules evaluated to true:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://some_upstream.com",
          "condition": {
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/abc"
              }
            ]
          }
        },
        {
          "url": "http://another_upstream.com",
          "condition": {
            "operations": [
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              {
                "match": "path",
                "op": "==",
                "value": "/def"
              }
            ]
          }
        },
        {
          "url": "http://default_upstream.com",
          "condition": {
            "operations": []
          }
        }
      ]
    }
  }

4.1.24.9. Supported operations

The supported operations are ==, !=, and matches. The latter matches a string with a regular expression
and it is implemented using ngx.re.match

This is a configuration that uses !=. It routes to http://example.com when the path is not /accounts:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "operations": [
              {
                "match": "path",
                "op": "!=",
                "value": "/accounts"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.10. Liquid templating

It is possible to use liquid templating for the values of the configuration. This allows you to define rules
with dynamic values if a policy in the chain stores the key my_var in the context.

This is a configuration that uses that value to route the request:

 {
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    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "condition": {
            "operations": [
              {
                "match": "header",
                "header_name": "Test-Header",
                "op": "==",
                "value": "{{ my_var }}",
                "value_type": "liquid"
              }
            ]
          }
        }
      ]
    }
  }

4.1.24.11. Set the host used in the host_header

By default, when a request is routed, the policy sets the Host header using the host of the URL of the
rule that matched. It is possible to specify a different host with the host_header attribute.

This is a configuration that specifies some_host.com as the host of the Host header:

 {
    "name": "routing",
    "version": "builtin",
    "configuration": {
      "rules": [
        {
          "url": "http://example.com",
          "host_header": "some_host.com",
          "condition": {
            "operations": [
              {
                "match": "path",
                "op": "==",
                "value": "/"
              }
            ]
          }
        }
      ]
    }
  }

4.1.25. SOAP

The SOAP policy matches SOAP action URIs provided in the SOAPAction or Content-Type header of
an HTTP request with mapping rules specified in the policy.
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Configuration properties

property description values required?

pattern The pattern property
allows you to specify a
string that APIcast will
seek matches for in the
SOAPAction URI.

data type: string yes

metric_system_name The 
metric_system_nam
e property allows you to
specify the 3scale
backend metric with
which your matched
pattern will register a hit.

data type: string, must
be a valid metric

yes

Policy object example

{
  "name": "soap",
  "version": "builtin",
  "configuration": {
    "mapping_rules": [
      {
        "pattern": "http://example.com/soap#request",
        "metric_system_name": "soap",
        "delta": 1
      }
    ]
  }
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.26. TLS Client Certificate Validation

With the TLS Client Certificate Validation policy, APIcast implements a TLS handshake and validates
the client certificate against a whitelist. A whitelist contains certificates signed by the Certified Authority
(CA) or just plain client certificates. In case of an expired or invalid certificate, the request is rejected and
no other policies will be processed.

The client connects to APIcast to send a request and provides a Client Certificate. APIcast verifies the
authenticity of the provided certificate in the incoming request according to the policy configuration.
APIcast can also be configured to use a client certificate of its own to use it when connecting to the
upstream.

4.1.26.1. Setting up APIcast to work with TLS Client Certificate Validation

APIcast needs to be configured to terminate TLS. Follow the steps below to configure the validation of
client certificates provided by users on APIcast with the Client Certificate Validation policy.
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Prerequisites:

You need to have access to a 3scale installation.

You need to wait for all the deployments to finish.

4.1.26.1.1. Setting up APIcast to work with the policy

To set up APIcast and configure it to terminate TLS, follow these steps:

1. You need to get the access token and deploy APIcast self-managed, as indicated in Deploying
APIcast using the OpenShift template.

NOTE

APIcast self-managed deployment is required as the APIcast instance needs to
be reconfigured to use some certificates for the whole gateway.

2. For testing purposes only, you can use the lazy loader with no cache and staging environment
and --param flags for the ease of testing

oc new-app -f https://raw.githubusercontent.com/3scale/3scale-amp-openshift-
templates/master/apicast-gateway/apicast.yml --param CONFIGURATION_LOADER=lazy --
param DEPLOYMENT_ENVIRONMENT=staging --param CONFIGURATION_CACHE=0

3. Generate certificates for testing purposes. Alternatively, for production deployment, you can
use the certificates provided by a Certificate Authority.

4. Create a Secret with TLS certificates

oc create secret tls apicast-tls
--cert=ca/certs/server.crt
--key=ca/keys/server.key

5. Mount the Secret inside the APIcast deployment

oc set volume dc/apicast --add --name=certificates --mount-path=/var/run/secrets/apicast --
secret-name=apicast-tls

6. Configure APIcast to start listening on port 8443 for HTTPS

oc set env dc/apicast APICAST_HTTPS_PORT=8443 
APICAST_HTTPS_CERTIFICATE=/var/run/secrets/apicast/tls.crt 
APICAST_HTTPS_CERTIFICATE_KEY=/var/run/secrets/apicast/tls.key

7. Expose 8443 on the Service

oc patch service apicast -p '{"spec":{"ports":[{"name":"https","port":8443,"protocol":"TCP"}]}}'

8. Delete the default route

oc delete route api-apicast-staging
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9. Expose the apicast service as a route

oc create route passthrough --service=apicast --port=https --hostname=api-3scale-apicast-
staging.$WILDCARD_DOMAIN

NOTE

This step is needed for every API you are going to use and the domain changes
for every API.

10. Verify that the previously deployed gateway works and the configuration was saved, by
specifying [Your_user_key] in the placeholder.

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN?user_key=[Your_user_key] -v 
--cacert ca/certs/ca.crt

4.1.26.2. Configuring TLS Client Certificate Validation in your policy chain

To configure TLS Client Certificate Validation in your policy chain, do the following:

Prerequisites

You need 3scale login credentials.

You need to have configured APIcast with the TLS Client Certificate Validation policy .

4.1.26.2.1. Configuring the policy

1. To add the TLS Client Certificate Validation policy to your API, follow the steps described in
Enabling a standard Policy  and choose TLS Client Certificate Validation.

2. Click the TLS Client Certificate Validation link.

3. To enable the policy, select the Enabled checkbox.

4. To add certificates to the whitelist, click the plus + icon.

5. Specify the certificate including -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----
-.

6. When you have finished setting up your API with TLS Client Certificate Validation, click Update
Policy.

Additionally:

You can add more certificates by clicking the plus + icon.

You can also reorganize the certificates by clicking the up and down arrows.

To save your changes, click Update Policy Chain.

4.1.26.3. Verifying functionality of the TLS Client Certificate Validation policy

To verify the functionality of the TLS Client Certificate Validation policy, do the following:
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Prerequisites:

You need 3scale login credentials.

You need to have configured APIcast with the TLS Client Certificate Validation policy .

4.1.26.3.1. Verifying policy functionality

You can verify the applied policy by specifying [Your_user_key] in the placeholder.

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --
cacert ca/certs/ca.crt --cert ca/certs/client.crt --key ca/keys/client.key

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --
cacert ca/certs/ca.crt --cert ca/certs/server.crt --key ca/keys/server.key

curl https://api-3scale-apicast-staging.$WILDCARD_DOMAIN\?user_key\=[Your_user_key] -v --
cacert ca/certs/ca.crt

4.1.26.4. Removing a certificate from the whitelist

To remove a certificate from the whitelist, do the following:

Prerequisites

You need 3scale login credentials.

You need to have set up APIcast with the TLS Client Certificate Validation policy .

You need to have added the certificate to the whitelist, by configuring TLS Client Certificate
Validation in your policy chain.

4.1.26.4.1. Removing a certificate

1. Click the TLS Client Certificate Validation link.

2. To remove certificates from the whitelist, click the x icon.

3. When you have finished removing the certificates, click Update Policy.

To save your changes, click Update Policy Chain.

4.1.26.5. Reference material

For more information about working with certificates, you can refer to Red Hat Certificate System .

4.1.27. TLS Termination

This section provides information about the Transport Layer Security (TLS) Termination policy:
concepts, configuration, verification and file removal from the policy.

With the TLS Termination policy, you can configure APIcast to finish TLS requests for each API without
using a single certificate for all APIs. APIcast pulls the configuration setting before establishing a
connection to the client; in this way, APIcast uses the certificates from the policy and makes the TLS
terminate. This policy works with these sources:
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Stored in the policy configuration.

Stored on the file system.

By default, this policy is not enabled in policy chains.

4.1.27.1. Configuring TLS Termination in your policy chain

This section describes the prerequisites and steps to configure the TLS Termination in your policy chain,
with Privacy Enhanced Mail (PEM) formatted certificates.

Prerequisites

Certificate issued by user

A PEM-formatted server certificate

A PEM-formatted certificate private key

4.1.27.1.1. Configuring the policy

1. To add the TLS Termination policy to your API, follow the steps described in Enabling a standard
Policy and choose TLS Termination.

2. Click the TLS Termination link.

3. To enable the policy, select the Enabled checkbox.

4. To add TLS certificates to the policy, click the plus + icon.

5. Choose the source of your certificates:

Embedded certificate: Specify the path to the server certificate, and the path to the
certificate private key.

Certificate from local file system: Browse the files for the certificate private key, and the
server certificate.

6. When you have finished setting up your API with TLS Termination, click Update Policy.

Additionally:

You can add more certificates by clicking the plus + icon.

You can also reorganize the certificates by clicking the up and down arrows.

To save your changes, click Update Policy Chain.

4.1.27.2. Verifying functionality of the TLS Termination policy

Prerequisites

You need 3scale login credentials.

You need to have configured APIcast with the TLS Termination policy .
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4.1.27.2.1. Verifying policy functionality

You can test in the command line if the policy works with the following command:

curl “${public_URL}:${port}/?user_key=${user_key}" --cacert ${path_to_certificate}/ca.pem -v

where:

public_URL= The staging public base URL

port= The port number

user_key= The user key you want to authenticate with

path_to_certificate= The path to the CA certificate in your local file system

4.1.27.3. Removing files from TLS Termination

This section describes the steps to remove the certificate and key files from the TLS Termination policy.

Prerequisites

You need 3scale login credentials.

You need to have added the certificate to the policy, by configuring APIcast with the TLS
Termination policy.

4.1.27.3.1. Removing a certificate

1. Click the TLS Termination link.

2. To remove certificates and keys, click the x icon.

3. When you have finished removing the certificates, click Update Policy.

To save your changes, click Update Policy Chain.

4.1.28. Upstream

The Upstream policy allows you to parse the Host request header using regular expressions and replace
the upstream URL defined in the Private Base URL with a different URL.

For Example:

A policy with a regex /foo, and URL field newexample.com would replace the URL 
https://www.example.com/foo/123/ with newexample.com

Policy chain reference:

property description values required?
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regex The regex property
allows you to specify the
regular expression that
the Upstream policy will
use when searching for a
match with the request
path.

data type: string, Must
be a valid regular
expression syntax

yes

url Using the url property,
you can specify the
replacement URL in the
event of a match. Note
that the Upstream policy
does not check whether
or not this URL is valid.

data type: string, ensure
this is a valid URL

yes

property description values required?

Policy object example

{
  "name": "upstream",
  "version": "builtin",
  "configuration": {
    "rules": [
      {
        "regex": "^/v1/.*",
        "url": "https://api-v1.example.com",

      }
    ]
  }
}

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.29. Upstream Connection

The Upstream Connection policy allows you to change the default values of the following directives, for
each API, depending on how you have configured the API back end server in your 3scale installation:

proxy_connect_timeout

proxy_send_timeout

proxy_read_timeout

4.1.29.1. Configuring Upstream Connection in your policy chain

This section describes the steps to configuring the Upstream Connection policy in your policy chain.
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Prerequisites

You need to have access to a 3scale installation.

You need to wait for all the deployments to finish.

4.1.29.1.1. Configuring the policy

1. To add the Upstream Connection policy to your API, follow the steps described in Enabling a
standard policy and choose Upstream Connection.

2. Click the Upstream Connection link.

3. To enable the policy, select the Enabled checkbox.

4. Configure the options for the connections to the upstream:

send_timeout

connect_timeout

read_timeout

5. When you have finished setting up your API with Upstream Connection, click Update Policy.

To save your changes, click Update Policy Chain.

4.1.30. Upstream Mutual TLS

With the Upstream Mutual TLS policy, you can establish mutual TLS connections between APIcast and
upstream APIs based on the certificates set in the configuration. This policy supports multiple
certificates for different upstream APIs.

4.1.30.1. Configuring Upstream Mutual TLS in your policy chain

This section describes the steps to configuring the Upstream Mutual TLS policy in your policy chain.

Prerequisites

You need to have access to a 3scale installation.

Procedure

1. To add the Upstream Mutual TLS policy to your API, follow the steps described in Enabling a
standard policy and choose Upstream Mutual TLS.

2. Click the Upstream Mutual TLS link.

3. To enable the policy, select the Enabled checkbox.

4. Choose a Certificate type:

path: If you want to specify the path of a certificate, such as the one generated by
OpenShift.

embedded: If you want to use a third-party generated certificate, by uploading it from your
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embedded: If you want to use a third-party generated certificate, by uploading it from your
file system.

5. In Certificate, specify the client certificate.

6. Indicate the key in Certificate key.

7. When you have finished setting up your API with Upstream Mutual TLS, click Update Policy
Chain.

To promote your changes:

1. Go to [Your_product] page > Integration > Configuration.

2. Under APIcast Configuration , click Promote v# to Staging APIcast.

v# represents the version number of the configuration to be promoted.

4.1.31. URL Rewriting

The URL Rewriting policy allows you to modify the path of a request and the query string.

When combined with the 3scale APIcast policy, if the URL Rewriting policy is placed before the APIcast
policy in the policy chain, the APIcast mapping rules will apply to the modified path. If the URL Rewriting
policy is placed after APIcast in the policy chain, then the mapping rules will apply to the original path.

The policy supports the following two sets of operations:

commands: List of commands to be applied to rewrite the path of the request.

query_args_commands: List of commands to be applied to rewrite the query string of the
request.

4.1.31.1. Commands for rewriting the path

Following are the configuration parameters that each command in the commands list consists of:

op: Operation to be applied. The options available are: sub and gsub. The sub operation
replaces only the first occurrence of a match with your specified regular expression. The gsub
operation replaces all occurrences of a match with your specified regular expression. See the
documentation for the sub and gsub operations.

regex: Perl-compatible regular expression to be matched.

replace: Replacement string that is used in the event of a match.

options (optional): Options that define how the regex matching is performed. For information
on available options, see the ngx.re.match section of the OpenResty Lua module project
documentation.

break (optional): When set to true (checkbox enabled), if the command rewrote the URL, it will
be the last one applied (all posterior commands in the list will be discarded).

4.1.31.2. Commands for rewriting the query string

Following are configuration parameters that each command in the query_args_commands list consists
of:
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op: Operation to be applied to the query arguments. The following options are available:

add: Add a value to an existing argument.

set: Create the arg when not set and replace its value when set.

push: Create the arg when not set and add the value when set.

delete: Delete an arg.

arg: The query argument name that the operation is applied on.

value: Specifies the value that is used for the query argument. For value type "liquid" the value
should be in the format {{ variable_from_context }}. For the delete operation the value is not
taken into account.

value_type (optional): Defines how the query argument value is evaluated and can either be 
plain for plain text or liquid for evaluation as a Liquid template. For more information, see
Section 5.1, “Using variables and filters in policies” . If not specified, the type "plain" is used by
default.

Example

The URL Rewriting policy is configured as follows:

{
  "name": "url_rewriting",
  "version": "builtin",
  "configuration": {
    "query_args_commands": [
      {
        "op": "add",
        "arg": "addarg",
        "value_type": "plain",
        "value": "addvalue"
      },
      {
        "op": "delete",
        "arg": "user_key",
        "value_type": "plain",
        "value": "any"
      },
      {
        "op": "push",
        "arg": "pusharg",
        "value_type": "plain",
        "value": "pushvalue"
      },
      {
        "op": "set",
        "arg": "setarg",
        "value_type": "plain",
        "value": "setvalue"
      }
    ],
    "commands": [
      {
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        "op": "sub",
        "regex": "^/api/v\\d+/",
        "replace": "/internal/",
        "options": "i"
      }
    ]
  }

The original request URI that is sent to the APIcast:

https://api.example.com/api/v1/products/123/details?
user_key=abc123secret&pusharg=first&setarg=original

The URI that APIcast sends to the API backend after applying the URL rewriting:

https://api-backend.example.com/internal/products/123/details?
pusharg=first&pusharg=pushvalue&setarg=setvalue

The following transformations are applied:

1. The substring /api/v1/ matches the only path rewriting command and it is replaced by /internal/.

2. user_key query argument is deleted.

3. The value pushvalue is added as an additional value to the pusharg query argument.

4. The value original of the query argument setarg is replaced with the configured value setvalue.

5. The command add was not applied because the query argument addarg is not present in the
original URL.

For information on how to configure policies, see the Creating a policy chain in 3scale  section of the
documentation.

4.1.32. URL Rewriting with Captures

The URL Rewriting with Captures policy is an alternative to the Section 4.1.31, “URL Rewriting” policy and
allows rewriting the URL of the API request before passing it to the API backend.

The URL Rewriting with Captures policy retrieves arguments in the URL and uses their values in the
rewritten URL.

The policy supports the transformations configuration parameter. It is a list of objects that describe
which transformations are applied to the request URL. Each tranformation object consist of two
properties:

match_rule: This rule is matched to the incoming request URL. It can contain named arguments
in the {nameOfArgument} format; these arguments can be used in the rewritten URL. The URL
is compared to match_rule as a regular expression. The value that matches named arguments
must contain only the following characters (in PCRE regex notation): [\w-.~%!$&'()*,;=@:].
Other regex tokens can be used in the match_rule expression, such as ^ for the beginning of
the string and $ for the end of the string.

template: The template for the URL that the original URL is rewritten with; it can use named
arguments from the match_rule.
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The query parameters of the original URL are merged with the query parameters specified in the 
template.

Example

The URL Rewriting with Captures policy is configured as follows:

{
  "name": "rewrite_url_captures",
  "version": "builtin",
  "configuration": {
    "transformations": [
      {
        "match_rule": "/api/v1/products/{productId}/details",
        "template": "/internal/products/details?id={productId}&extraparam=anyvalue"
      }
    ]
  }
}

The original request URI that is sent to the APIcast:

https://api.example.com/api/v1/products/123/details?user_key=abc123secret

The URI that APIcast sends to the API backend after applying the URL rewriting:

https://api-backend.example.com/internal/products/details?
user_key=abc123secret&extraparam=anyvalue&id=123

4.2. ENABLING A POLICY IN THE ADMIN PORTAL

Perform the following steps to enable policies in the Admin Portal:

1. Log in to 3scale.

2. Choose the product API for which you want to enable the policy.

3. From [your_product_name], navigate to Integration > Policies.

4. Under the POLICIES section, click Add policy.

5. Select the policy you want to add and fill out the required fields.

6. Click the Update Policy Chain button to save the policy chain.

4.3. CREATING CUSTOM APICAST POLICIES

You can create custom APIcast policies entirely or modify the standard policies.

In order to create custom policies, you must understand the following:

Policies are written in Lua.

Policies must adhere to and be placed in the proper file directory.
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Policy behavior is affected by how they are placed in a policy chain.

The interface to add custom policies is fully supported, but not the custom policies themselves.

4.4. ADDING CUSTOM POLICIES TO APICAST

This document outlines details about adding custom policies to APIcast, considering different
deployments.

4.4.1. Adding custom policies to the APIcast deployments

If you have created custom policies, you must add them to APIcast. How you do this depends on where
APIcast is deployed:

You can add custom policies to the following APIcast self-managed deployments: APIcast on
OpenShift and the Docker containerized environment.

You cannot add custom policies to APIcast hosted.

WARNING

Never make policy changes directly onto a production gateway. Always test your
changes.

4.4.2. Adding custom policies to the embedded APIcast

To add custom APIcast policies to an on-premises deployment, you must build an OpenShift image
containing your custom policies and add it to your deployment. 3scale provides a sample repository you
can use as a framework to create and add custom policies to an on-premises deployment.

This sample repository contains the correct directory structure for a custom policy, as well as a template
which creates an image stream and BuildConfigs for building a new APIcast OpenShift image containing
any custom policies you create.

WARNING

When you build apicast-custom-policies, the build process pushes a new image to
the amp-apicast:latest tag. When there is an image change on this image stream
tag (:latest), both the apicast-staging and the apicast-production tags, by default,
are configured to automatically start new deployment. To avoid any disruptions to
your production service (or staging, if you prefer) it is recommended to disable
automatic deployment ("Automatically start a new deployment when the image
changes" checkbox), or configure a different image stream tag for production (e.g. 
amp-apicast:production).
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To add a custom policy to an on-premises deployment:

1. Create a docker-registry secret using the credentials you created in Creating registry service
accounts, following these considerations:

Replace your-registry-service-account-username with the username created in the
format, 12345678|username.

Replace your-registry-service-account-password with the password string below the
username, under the Token Information tab.

Create a docker-registry secret for every new namespace where the image streams reside
and which use registry.redhat.io.
Run this command to create a docker-registry secret:

oc create secret docker-registry threescale-registry-auth \
  --docker-server=registry.redhat.io \
  --docker-username="your-registry-service-account-username" \
  --docker-password="your-registry-service-account-password"

2. Fork the https://github.com/3scale/apicast-example-policy [public repository with the policy
example] or create a private repository with its content. You need to have the code of your
custom policy available in a Git repository for OpenShift to build the image. Note that in order to
use a private Git repository, you must set up the secrets in OpenShift.

3. Clone the repository locally, add the implementation for your policy, and push the changes to
your Git repository.

4. Update the openshift.yml template. Specifically, change the following parameters:

a. spec.source.git.uri: https://github.com/3scale/apicast-example-policy.git in the policy
BuildConfig – change it to your Git repository location.

b. spec.source.images[0].paths.sourcePath: /opt/app-root/policies/example in the custom
policies BuildConfig - change example to the name of the custom policy that you have
added under the policies directory in the repository.

c. Optionally, update the OpenShift object names and image tags. However, you must ensure
that the changes are coherent (example: apicast-example-policy BuildConfig builds and
pushes the apicast-policy:example image that is then used as a source by the apicast-
custom-policies BuildConfig. So, the tag should be the same).

5. Create the OpenShift objects by running the command:

oc new-app -f openshift.yml --param AMP_RELEASE=2.9

6. In case the builds do not start automatically, run the following two commands. In case you
changed it, replace apicast-example-policy with your own BuildConfig name (e.g. apicast-
<name>-policy). Wait for the first command to complete before you execute the second one.

oc start-build apicast-example-policy
oc start-build apicast-custom-policies

If the built-in APIcast images have a trigger on them tracking the changes in the amp-apicast:latest
image stream, the new deployment for APIcast will start. After apicast-staging has restarted, navigate
to Integration > Policies , and click the Add Policy button to see your custom policy listed. After
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selecting and configuring it, click Update Policy Chain to make your custom policy work in the staging
APIcast.

4.4.3. Adding custom policies to APIcast on another OpenShift Container Platform

You can add custom policies to APIcast on OpenShift Container Platform (OCP) by fetching APIcast
images containing your custom policies from the Integrated OpenShift Container Platform registry .

Add custom policies to APIcast on another OpenShift Container Platform

1. Add policies to APIcast built-in

2. If you are not deploying your APIcast gateway on your primary OpenShift cluster, establish
access to the internal registry on your primary OpenShift cluster.

3. Download the 3scale 2.9 APIcast OpenShift template.

4. To modify the template, replace the default image directory with the full image name in your
internal registry.

image: <registry>/<project>/amp-apicast:latest

5. Deploying APIcast using the OpenShift template , specifying your customized image:

oc new-app -f customizedApicast.yml

NOTE

When custom policies are added to APIcast and a new image is built, those policies are
automatically displayed as available in the Admin Portal when APIcast is deployed with the
image. Existing services can see this new policy in the list of available policies, so it can be
used in any policy chain.

When a custom policy is removed from an image and APIcast is restarted, the policy will
no longer be available in the list, so you can no longer add it to a policy chain.

4.5. CREATING A POLICY CHAIN IN 3SCALE

Create a policy chain in 3scale as part of your APIcast gateway configuration. Follow these steps to
modify the policy chain in the Admin Portal:

1. Log in to 3scale.

2. Navigate to the API product you want to configure the policy chain for.

3. In [your_product_name] > Integration > Policies, click Add policy.

4. Under the Policy Chain section, use the arrow icons to reorder policies in the policy chain.
Always place the 3scale APIcast policy last in the policy chain.
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5. Click the Update Policy Chain button to save the policy chain.

4.6. CREATING A POLICY CHAIN JSON CONFIGURATION FILE

If you are using a native deployment of APIcast, you can create a JSON configuration file to control your
policy chain outside of the AMP.

A JSON configuration file policy chain contains a JSON array composed of the following information:

the services object with an id value that specifies which service the policy chain applies to by
number

the proxy object, which contains the policy_chain and subsequent objects

the policy_chain object, which contains the values that define the policy chain

individual policy objects which specify both name and configuration data necessary to
identify the policy and configure policy behavior

The following is an example policy chain for a custom policy sample_policy_1 and the API introspection
standard policy token_introspection:

{
  "services":[
    {
      "id":1,
      "proxy":{
        "policy_chain":[
          {
            "name":"sample_policy_1", "version": "1.0",
            "configuration":{
              "sample_config_param_1":["value_1"],
              "sample_config_param_2":["value_2"]
            }
          },
          {
            "name": "token_introspection", "version": "builtin",
            "configuration": {
              introspection_url:["https://tokenauthorityexample.com"],
              client_id:["exampleName"],
              client_secret:["secretexamplekey123"]
          },
          {
             "name": "apicast", "version": "builtin",
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          }
        ]
      }
    }
  ]
}

All policy chains must include the built-in policy apicast. Where you place APIcast in the policy chain will
affect policy behavior.
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CHAPTER 5. INTEGRATING A POLICY CHAIN WITH APICAST
NATIVE DEPLOYMENTS

For native APIcast deployments, you can integrate a custom policy chain by specifying a configuration
file using the THREESCALE_CONFIG_FILE environment variable. The following example specifies the
config file example.json:

THREESCALE_CONFIG_FILE=example.json bin/apicast

5.1. USING VARIABLES AND FILTERS IN POLICIES

Some Section 4.1, “APIcast standard policies” support Liquid templating that allows using not only plain
string values, but also variables that are present in the context of the request.

To use a context variable, wrap its name in {{ and }}, example: {{ uri }}. If the variable is an object, you
can also access its attributes, for example: {{ somevar.attr }}.

Following are the standard variables that are available in all the policies:

uri: The path of the request with query parameters excluded from this path. The value of the
embedded NGINX variable $uri.

host: The host of the request (the value of the embedded NGINX variable $host).

remote_addr: The IP address of the client (the value of the embedded NGINX variable 
$remote_addr).

headers: The object containing the request headers. Use {{headers['Some-Header']}} to get a
specific header value.

http_method: The request method: GET, POST, etc.

These standard variables are used in the context of the request, but policies can add more variables to
the context. A phase refers to all the execution steps that APIcast has. Variables can be used by all the
policies in the policy chain, provided these cases:

Within the same phase, if the variable is added in the policy and then used in the following policy
after the addition.

If a variable is added in a phase, this variable can be used in the next phases.

Following are some examples of variables that the standard 3scale APIcast policy adds to the context:

jwt: A parsed JSON payload of the JWT token (for OpenID Connect authentication).

credentials: An object that holds the application credentials. Example: "app_id": "972f7b4f", 
"user_key": "13b668c4d1e10eaebaa5144b4749713f".

service: An object that holds the configuration for the service that the current request is
handled by. Example: the service ID would be available as {{ service.id }}.

For a full list of objects and values available in the context, see the Section 4.1.15, “Liquid Context
Debug”).

The variables are used with the help of Liquid templates. Example: {{ remote_addr }}, {{ 

Red Hat 3scale API Management 2.9 Administering the API Gateway

80

http://nginx.org/en/docs/http/ngx_http_core_module.html#var_uri
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_host
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_remote_addr


headers['Some-Header'] }}, {{ jwt.aud }}. The policies that support variables for the values have a
special parameter, usually with the _type suffix (example: value_type, name_type, etc.) that accepts
two values: "plain" for plain text and "liquid" for liquid template.

APIcast also supports Liquid filters that can be applied to the variables' values. The filters apply NGINX
functions to the value of the Liquid variable.

The filters are placed within the variable output tag {{ }}, following the name of the variable or the literal
value by a pipe character | and the name of the filter. Examples:

{{ 'username:password' | encode_base64 }}, where username:password is a variable.

{{ uri | escape_uri }}.

Some filters do not require parameters, so you can use an empty string instead of the variable. Example: 
{{ '' | utctime }} will return the current time in UTC time zone.

Filters can be chained as follows: {{ variable | function1 | function2 }}. Example: {{ '' | utctime | 
escape_uri }}.

Following is the list of the available functions:

escape_uri

unescape_uri

encode_base64

decode_base64

crc32_short

crc32_long

hmac_sha1

md5

md5_bin

sha1_bin

quote_sql_str

today

time

now

localtime

utctime

cookie_time

http_time
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parse_http_time
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CHAPTER 6. TRANSFORMING 3SCALE MESSAGE CONTENT
USING POLICY EXTENSIONS IN FUSE

You can use Red Hat Fuse to create highly flexible policy extensions for Red Hat 3scale API
Management. You can do this by creating policy extensions in Fuse on OpenShift and then configuring
them as policies in the 3scale Admin Portal. Using an APIcast Camel proxy policy, you can perform
complex transformations on request and response message content, for example, XML to JSON, which
are implemented in the Apache Camel integration framework.

In addition, you can add or modify custom policy extensions dynamically in Camel, instead of rebuilding
and redeploying a static APIcast container image. You can use any Camel Enterprise Integration Pattern
(EIP) written in Camel Domain Specific Language (DSL) to implement an APIcast policy extension. This
enables you to write policy extensions using a familiar programming language such as Java or XML. The
example in this topic uses the Camel Netty4 HTTP component to implement the HTTP proxy in Java.

NOTE

This feature is not required if you are already using a Fuse Camel application in your
3scale API backend. In this case, you can use your existing Fuse Camel application to
perform transformations.

Required software components

You must have the following Red Hat Integration components deployed on the same OpenShift cluster:

Fuse on OpenShift 7.7

3scale On-premises 2.9

APIcast embedded (default Staging and Production), or APIcast self-managed

You can deploy the custom Fuse policy in a different OpenShift project than 3scale, but this is not
required. However, you must ensure that communication between both projects is possible. For details,
see Configuring network policy with OpenShift SDN .

Additional resources

Fuse on OpenShift Guide

6.1. INTEGRATING APICAST WITH APACHE CAMEL
TRANSFORMATIONS IN FUSE

You can integrate APIcast with a transformation written as an Apache Camel application in Fuse on
OpenShift. When the policy extension transformation is configured and deployed in 3scale, the 3scale
traffic goes through the Camel policy extension, which transforms the message content. In this case,
Camel works as a reverse HTTP proxy, where APIcast sends the 3scale traffic to Camel, and Camel then
sends the traffic on to the API backend.

The example in this topic creates the HTTP proxy using the Camel Netty4 HTTP component:

The request received over the HTTP proxy protocol is forwarded to the target service with the
HTTP body converted to uppercase.

The response from the target service is processed by converting it to uppercase and then
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The response from the target service is processed by converting it to uppercase and then
returned to the client.

This example shows the configuration required for HTTP and HTTPS use cases.

Prerequisites

You must have Fuse on OpenShift 7.7 and 3scale 2.9 deployed on the same OpenShift cluster.
For installation details, see:

Fuse on OpenShift Guide

Installing 3scale

You must have cluster administrator privileges to install Fuse on OpenShift and 3scale and to
create projects. However, you can create deployment configurations, deploy pods, or create
services with edit access privileges per project.

Procedure

1. Write an Apache Camel application in Java using the Camel netty4-http component to
implement the HTTP proxy. You can then use any Camel component to transform the message.
The following simple example performs an uppercase transformation of the request and
response from the service:

import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Locale;

import org.apache.camel.Exchange;
import org.apache.camel.Message;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.model.RouteDefinition;

public class ProxyRoute extends RouteBuilder {

    @Override
    public void configure() throws Exception {
        final RouteDefinition from;
        if (Files.exists(keystorePath())) {
            from = from("netty4-http:proxy://0.0.0.0:8443?
ssl=true&keyStoreFile=/tls/keystore.jks&passphrase=changeit&trustStoreFile=/tls/keystore.jks"
); 1
        } else {
            from = from("netty4-http:proxy://0.0.0.0:8080");
        }

        from
            .process(ProxyRoute::uppercase)
            .toD("netty4-http:"
                + "${headers." + Exchange.HTTP_SCHEME + "}://" 2
                + "${headers." + Exchange.HTTP_HOST + "}:"
                + "${headers." + Exchange.HTTP_PORT + "}"
                + "${headers." + Exchange.HTTP_PATH + "}")
            .process(ProxyRoute::uppercase);
    }
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1

2

3

In this simple example, if your Java keystore file is mounted at /tls/keystore.jks, the
listening port is set to 8443.

When the Camel proxy policy is invoked by 3scale, the values for the HTTP_SCHEME, 
HTTP_HOST, HTTP_PORT, and HTTP_PATH headers are automatically set based on the
values configured for the backend API in 3scale.

This simple example converts the message content to uppercase. You can perform more
complex transformations on request and response message content, for example, XML to
JSON, using Camel Enterprise Integration Patterns.

2. Deploy your Camel application on OpenShift and expose it as a service. For more details, see
Creating and Deploying Applications on Fuse on OpenShift .

Additional resources

Apache Camel Component Reference - Netty4 HTTP component

6.2. CONFIGURING AN APICAST POLICY EXTENSION CREATED USING
APACHE CAMEL IN FUSE ON OPENSHIFT

After you have implemented the Apache Camel transformation using Fuse on OpenShift, you can use
the 3scale Admin Portal to configure it as a policy extension in the APIcast policy chain.

The policy extension enables you to configure a 3scale product to use a Camel HTTP proxy. This service
is used to send the 3scale traffic over the HTTP proxy to perform request–response modifications in a
third-party proxy. In this case, the third-party proxy is Apache Camel implemented using Fuse on
OpenShift. You can also configure APIcast to connect to the Camel HTTP proxy service securely using
TLS.

NOTE

The policy extension code is implemented in an Apache Camel application in Fuse on
OpenShift and cannot be modified or deleted from 3scale.

Prerequisites

You must have Fuse on OpenShift 7.7 and 3scale 2.9 deployed on the same OpenShift cluster.
For installation details, see:

Fuse on OpenShift Guide

    Path keystorePath() {
        return Path.of("/tls", "keystore.jks");
    }

    public static void uppercase(final Exchange exchange) { 3
        final Message message = exchange.getIn();
        final String body = message.getBody(String.class);
        message.setBody(body.toUpperCase(Locale.US));
    }

}
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Installing 3scale

You must have implemented an APIcast policy extension using an Apache Camel application in
Fuse on OpenShift. See Section 6.1, “Integrating APIcast with Apache Camel transformations in
Fuse”

You must have deployed the Apache Camel application in an OpenShift pod and exposed it as a
service. For details, see Creating and Deploying Applications on Fuse on OpenShift .

Procedure

1. In the 3scale Admin Portal, select Integration > Policies.

2. Select POLICIES > Add policy > Camel Service.

3. Enter the OpenShift routes used to connect to the Camel HTTP proxy service in the
appropriate fields:

https_proxy: Connect to the Camel HTTP proxy using the http protocol and TLS port, for
example:

http://camel-proxy.my-3scale-management-project.svc:8443

http_proxy: Connect to the Camel HTTP proxy using the http protocol and port, for
example:

http://camel-proxy.my-3scale-management-project.svc:8080

all_proxy: Connect to the Camel HTTP proxy using the http protocol and port when the
protocol is not specified, for example:

http://camel-proxy.my-3scale-management-project.svc:8080

4. Promote the updated policy configuration to your staging or production environment. For
example, click Promote v. 3 to Staging APIcast.

5. Test the APIcast policy configuration using a 3scale curl command, for example:

APIcast establishes a new TLS session for the connection to the Camel HTTP proxy.

6. Confirm that the message content has been transformed, which in this example means
converted to uppercase.

7. If you wish to bypass APIcast and test the Camel HTTP proxy directly using TLS, you must use a
custom HTTP client. For example, you can use the netcat command:

This example creates an HTTP proxy request using the full URL after GET, and uses the ncat --
ssl parameter to specify a TLS connection to the my-camel-proxy host on port 8443.

NOTE

curl "https://testapi-3scale-apicast-staging.myuser.app.dev.3sca.net:443/?
user_key=MY_USER_KEY" -k

$ print "GET https://mybackend.example.com HTTP/1.1\nHost: 
mybackend.example.com\nAccept: */*\n\n" | ncat --no-shutdown --ssl my-camel-proxy 8443
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NOTE

You cannot use curl or other common HTTP clients to test the Camel HTTP
proxy directly because the proxy does not support HTTP tunneling using the 
CONNECT method. When using HTTP tunneling with CONNECT, the transport is
end-to-end encrypted, which does not allow the Camel HTTP proxy to mediate
the payload.

Additional resources

Section 4.1.5, “Camel Service”
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CHAPTER 7. APICAST ENVIRONMENT VARIABLES
APIcast environment variables allow you to modify behavior for APIcast. The following values are
supported environment variables:

NOTE

Unsupported or deprecated environment variables are not listed

Some environment variable functionality may have moved to APIcast policies

all_proxy, ALL_PROXY

APICAST_ACCESS_LOG_FILE

APICAST_BACKEND_CACHE_HANDLER

APICAST_CACHE_MAX_TIME

APICAST_CACHE_STATUS_CODES

APICAST_CONFIGURATION_CACHE

APICAST_CONFIGURATION_LOADER

APICAST_CUSTOM_CONFIG

APICAST_ENVIRONMENT

APICAST_EXTENDED_METRICS

APICAST_HTTPS_CERTIFICATE

APICAST_HTTPS_CERTIFICATE_KEY

APICAST_HTTPS_PORT

APICAST_HTTPS_VERIFY_DEPTH

APICAST_LOAD_SERVICES_WHEN_NEEDED

APICAST_LOG_FILE

APICAST_LOG_LEVEL

APICAST_MANAGEMENT_API

APICAST_MODULE

APICAST_OIDC_LOG_LEVEL

APICAST_PATH_ROUTING

APICAST_PATH_ROUTING_ONLY

APICAST_POLICY_LOAD_PATH
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APICAST_PROXY_HTTPS_CERTIFICATE

APICAST_PROXY_HTTPS_CERTIFICATE_KEY

APICAST_PROXY_HTTPS_PASSWORD_FILE

APICAST_PROXY_HTTPS_SESSION_REUSE

APICAST_REPORTING_THREADS

APICAST_RESPONSE_CODES

APICAST_SERVICE_CACHE_SIZE

APICAST_SERVICE_${ID}_CONFIGURATION_VERSION

APICAST_SERVICES_LIST

APICAST_SERVICES_FILTER_BY_URL

APICAST_UPSTREAM_RETRY_CASES

APICAST_WORKERS

BACKEND_ENDPOINT_OVERRIDE

HTTP_KEEPALIVE_TIMEOUT

http_proxy HTTP_PROXY

https_proxy HTTPS_PROXY

no_proxy NO_PROXY

OPENSSL_VERIFY

OPENTRACING_CONFIG

OPENTRACING_HEADER_FORWARD

OPENTRACING_TRACER

RESOLVER

THREESCALE_CONFIG_FILE

THREESCALE_DEPLOYMENT_ENV

THREESCALE_PORTAL_ENDPOINT

all_proxy, ALL_PROXY
Default: no value Value: string Example: http://forward-proxy:80

Defines a HTTP proxy to be used for connecting to services if a protocol-specific proxy is not specified.
Authentication is not supported.

APICAST_ACCESS_LOG_FILE
Default: stdout
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Defines the file that will store the access logs.

APICAST_BACKEND_CACHE_HANDLER
Values: strict | resilient

Default: strict

Deprecated: Use the Caching policy instead.

Defines how the authorization cache behaves when backend is unavailable. Strict will remove cached
application when backend is unavailable. Resilient will do so only on getting authorization denied from
backend.

APICAST_CACHE_MAX_TIME
Default: 1m

Value: string

When the response is selected to be cached in the system, the value of this variable indicates the
maximum time to be cached. If the cache-control header is not set, the time to be cached will be the
defined one.

The format for this value is defined by the proxy_cache_valid NGINX directive .

This parameter is only used by the APIs that are using a content caching policy and the request is eligible
to be cached.

APICAST_CACHE_STATUS_CODES
Default: 200, 302

Value: string

When the response code from upstream matches one of the status codes defined in this environment
variable, the response content is cached in NGINX. The caching time depends on one of these values:
headers cache time value, or the maximum time defined by the APICAST_CACHE_MAX_TIME
environment variable.

This parameter is only used by the APIs that are using a content caching policy and the request is eligible
to be cached.

APICAST_CONFIGURATION_CACHE
Values: a number

Default: 0

Specifies the interval (in seconds) that the configuration will be stored for. The value should be set to 0
(not compatible with boot value of APICAST_CONFIGURATION_LOADER) or more than 60. For
example, if APICAST_CONFIGURATION_CACHE is set to 120, the gateway will reload the
configuration from the API manager every 2 minutes (120 seconds). A value < 0 disables reloading.

APICAST_CONFIGURATION_LOADER
Values: boot | lazy

Default: lazy

Defines how to load the configuration. Boot will request the configuration to the API manager when the
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Defines how to load the configuration. Boot will request the configuration to the API manager when the
gateway starts. Lazy will load it on demand for each incoming request (to guarantee a complete refresh
on each request APICAST_CONFIGURATION_CACHE should be 0).

APICAST_CUSTOM_CONFIG
Deprecated: Use policies instead.

Defines the name of the Lua module that implements custom logic overriding the existing APIcast logic.

APICAST_ENVIRONMENT
Default:

Value: string[:]

Example: production:cloud-hosted

APIcast should load a list of environments (or paths), separated by colons (:). This list can be used
instead of -e or --environment parameter on the CLI and for example stored in the container image as
default environment. Any value passed on the CLI overrides this variable.

APICAST_EXTENDED_METRICS
Default: false

Value: boolean

Example: "true"

Enables additional information on Prometheus metrics. The following metrics have the service_id and 
service_system_name labels which provide more in-depth details about APIcast:

total_response_time_seconds

upstream_response_time_seconds

upstream_status

APICAST_HTTPS_CERTIFICATE
Default: no value

Path to a file with X.509 certificate in the PEM format for HTTPS.

APICAST_HTTPS_CERTIFICATE_KEY
Default: no value

Path to a file with the X.509 certificate secret key in the PEM format.

APICAST_HTTPS_PORT
Default: no value

Controls on which port APIcast should start listening for HTTPS connections. If this clashes with HTTP
port it will be used only for HTTPS.

APICAST_HTTPS_VERIFY_DEPTH
Default: 1

Values: positive integers.
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Defines the maximum length of the client certificate chain. If this parameter has 1 as its value, it is
possible to include an additional certificate in the client certificate chain. For example, root certificate
authority.

APICAST_LOAD_SERVICES_WHEN_NEEDED
Values:

true or 1 for true

false, 0 or empty for false

Default: false

This option can be used when there are many services configured. However, its performance depends on
additional factors, for example, the number of services, the latency between APIcast and the 3scale
Admin Portal, and the Time To Live (TTL) of the configuration.

By default, APIcast loads all the services each time it downloads its configuration from the Admin Portal.
When this option is enabled, the configurations uses lazy loading. APIcast will only load the ones
configured for the host specified in the host header of the request.

NOTE

The caching defined by APICAST_CONFIGURATION_CACHE applies.

This option will be disabled when APICAST_CONFIGURATION_LOADER is 
boot.

Not compatible with APICAST_PATH_ROUTING.

APICAST_LOG_FILE
Default: stderr

Defines the file that contains the OpenResty error log. The file is used by bin/apicast in the error_log
directive. The file path can be either absolute, or relative to the APIcast prefix directory. Note that the
default prefix directory is APIcast. Refer to NGINX documentation for more information.

APICAST_LOG_LEVEL
Values: debug | info | notice | warn | error | crit | alert | emerg

Default: warn

Specifies the log level for the OpenResty logs.

APICAST_MANAGEMENT_API
Values:

disabled: completely disabled, just listens on the port

status: only the /status/ endpoints enabled for health checks

debug: full API is open

The Management API is powerful and can control the APIcast configuration. You should enable the
debug level only for debugging.
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APICAST_MODULE
Default: apicast

Deprecated: Use policies instead.

Specifies the name of the main Lua module that implements the API gateway logic. Custom modules
can override the functionality of the default apicast.lua module. See an example of how to use
modules.

APICAST_OIDC_LOG_LEVEL
Values: debug | info | notice | warn | error | crit | alert | emerg

Default: err

Allows to set the log level for the logs related to OpenID Connect integration.

APICAST_PATH_ROUTING
Values:

true or 1 for true

false, 0 or empty for false

When this parameter is set to true, the gateway will use path-based routing in addition to the default
host-based routing. The API request will be routed to the first service that has a matching mapping rule,
from the list of services for which the value of the Host header of the request matches the Public Base
URL.

APICAST_PATH_ROUTING_ONLY
Values:

true or 1 for true

false, 0 or empty for false

When this parameter is set to true, the gateway uses path-based routing and will not fallback to the
default host-based routing. The API request is routed to the first service that has a matching mapping
rule, from the list of services for which the value of the Host header of the request matches the Public
Base URL.

This parameter has precedence over APICAST_PATH_ROUTING. If APICAST_PATH_ROUTING_ONLY
is enabled, APIcast will only do path-based routing regardless of the value of 
APICAST_PATH_ROUTING.

APICAST_POLICY_LOAD_PATH
Default: APICAST_DIR/policies

Value: string[:]

Example: ~/apicast/policies:$PWD/policies

A colon (:) separated list of paths where APIcast should look for policies. It can be used to first load
policies from a development directory or to load examples.

APICAST_PROXY_HTTPS_CERTIFICATE
Default:
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Value: string

Example: /home/apicast/my_certificate.crt

The path to the client SSL certificate that APIcast will use when connecting with the upstream. Notice
that this certificate will be used for all the services in the configuration.

APICAST_PROXY_HTTPS_CERTIFICATE_KEY
Default:

Value: string

Example: /home/apicast/my_certificate.key

The path to the key of the client SSL certificate.

APICAST_PROXY_HTTPS_PASSWORD_FILE
Default:

Value: string

Example: /home/apicast/passwords.txt

Path to a file with passphrases for the SSL cert keys specified with 
APICAST_PROXY_HTTPS_CERTIFICATE_KEY.

APICAST_PROXY_HTTPS_SESSION_REUSE
Default: on

Values:

on: reuses SSL sessions.

off: does not reuse SSL sessions.

APICAST_REPORTING_THREADS
Default: 0

Value: integer >= 0

Experimental: Under extreme load might have unpredictable performance and lose reports.

Value greater than 0 is going to enable out-of-band reporting to backend. This is a new experimental
feature for increasing performance. Client won’t see the backend latency and everything will be
processed asynchronously. This value determines how many asynchronous reports can be running
simultaneously before the client is throttled by adding latency.

APICAST_RESPONSE_CODES
Values:

true or 1 for true

false, 0 or empty for false

Default: <empty> (false)

When set to true, APIcast will log the response code of the response returned by the API backend in
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When set to true, APIcast will log the response code of the response returned by the API backend in
3scale. Find more information about the Response Codes feature on the 3scale customer portal.

APICAST_SERVICE_CACHE_SIZE
Values: integer >= 0

Default: 1000

Specifies the number of services that APIcast can store in the internal cache. A high value has a
performance impact because Lua’s lru cache will initialize all the entries.

APICAST_SERVICE_${ID}_CONFIGURATION_VERSION
Replace ${ID} with the actual Service ID. The value should be the configuration version you can see in
the configuration history on the Admin Portal. Setting it to a particular version will prevent it from auto-
updating and will always use that version.

APICAST_SERVICES_LIST
Value: a comma-separated list of service IDs

The APICAST_SERVICES_LIST environment variable is used to filter the services you configure in the
3scale API Manager. This only applies the configuration for specific services in the gateway, discarding
those service identifiers that are not specified in the list. You can find service identifiers for your product
in the Admin Portal under Products > [Your_product_name] > Overview, then see Configuration,
Methods and Settings and the ID for API calls .

APICAST_SERVICES_FILTER_BY_URL
Value: a PCRE (Perl Compatible Regular Expression) such as .*.example.com.

Filters the services configured in the 3scale API Manager.

This filter matches with the public base URL. Services that do not match the filter are discarded. If the
regular expression cannot be compiled, no services are loaded.

NOTE

If a service does not match but is included in the section called
“APICAST_SERVICES_LIST”, the service will not be discarded.

Example 7.1. example

The Regexp filter http://.*.foo.dev is applied to the following backend endpoints:

1. http://staging.foo.dev

2. http://staging.bar.dev

3. http://prod.foo.dev

4. http://prod.bar.dev

In this case, 1 and 3 are configured in the embedded APIcast and 2 and 4 are discarded.

APICAST_UPSTREAM_RETRY_CASES

Values: error | timeout | invalid_header | http_500 | http_502 | http_503 | http_504 | http_403 |
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Values: error | timeout | invalid_header | http_500 | http_502 | http_503 | http_504 | http_403 |
http_404 | http_429 | non_idempotent | off

NOTE

This is only used when the retry policy is configured and specifies when a request to the
upstream API should be retried. It accepts the same values as Nginx’s
PROXY_NEXT_UPSTREAM Module.

APICAST_WORKERS
Default: auto

Values: number | auto

This is the value that will be used in the nginx worker_processes directive. By default, APIcast uses 
auto, except for the development environment where 1 is used.

BACKEND_ENDPOINT_OVERRIDE
URI that overrides backend endpoint from the configuration. Useful when deploying outside OpenShift
deployed AMP. Example: https://backend.example.com.

HTTP_KEEPALIVE_TIMEOUT
Default: 75 Value: positive integers Example: 1

This parameter sets a timeout during which a keep-alive client connection will stay open on the server
side. The zero value disables keep-alive client connections.

By default, the gateway keeps HTTP_KEEPALIVE_TIMEOUT disabled. This configuration allows the use
of the keepalive timeout from NGINX whose default value is 75 seconds.

http_proxy, HTTP_PROXY
Default: no value Value: string Example: http://forward-proxy:80

Defines a HTTP proxy to be used for connecting to HTTP services. Authentication is not supported.

https_proxy, HTTPS_PROXY
Default: no value Value: string Example: https://forward-proxy:443

Defines a HTTP proxy to be used for connecting to HTTPS services. Authentication is not supported.

no_proxy, NO_PROXY
Default: no value Value: string\[,<string>\]; *Example: foo,bar.com,.extra.dot.com

Defines a comma-separated list of hostnames and domain names for which the requests should not be
proxied. Setting to a single * character, which matches all hosts, effectively disables the proxy.

OPENSSL_VERIFY
Values:

0, false: disable peer verification

1, true: enable peer verification

Controls the OpenSSL Peer Verification. It is off by default, because OpenSSL can’t use system
certificate store. It requires custom certificate bundle and adding it to trusted certificates.
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It is recommended to use https://github.com/openresty/lua-nginx-module#lua_ssl_trusted_certificate
and point to to certificate bundle generated by export-builtin-trusted-certs.

OPENTRACING_CONFIG
This environment variable is used to determine the config file for the opentracing tracer, if 
OPENTRACING_TRACER is not set, this variable will be ignored.

Each tracer has a default configuration file: * jaeger: conf.d/opentracing/jaeger.example.json

You can choose to mount a different configuration than the provided by default by setting the file path
using this variable.

Example: /tmp/jaeger/jaeger.json

OPENTRACING_HEADER_FORWARD
Default: uber-trace-id

This environment variable controls the HTTP header used for forwarding opentracing information, this
HTTP header will be forwarded to upstream servers.

OPENTRACING_TRACER
Example: jaeger

This environment variable controls which tracing library will be loaded, right now, there’s only one
opentracing tracer available, jaeger.

If empty, opentracing support will be disabled.

RESOLVER
Allows to specify a custom DNS resolver that will be used by OpenResty. If the RESOLVER parameter is
empty, the DNS resolver will be autodiscovered.

THREESCALE_CONFIG_FILE
Path to the JSON file with the configuration for the gateway. You must provide either
THREESCALE_PORTAL_ENDPOINT or THREESCALE_CONFIG_FILE for the gateway to run
successfully. From these two environment variables, THREESCALE_CONFIG_FILE takes precedence.

The Proxy Config Show  and Proxy Config Show Latest  endpoint are scoped by service, and Proxy
Configs List service also. You must know the ID of the service. Use the following options:

Use the Proxy Configs List  provider endpoint: <schema>://<admin-portal-
domain>/admin/api/account/proxy_configs/<env>.json

The endpoint returns all stored proxy configs of the provider, not only the latest of each
service. Iterate over the array of proxy_configs returned in the JSON and select the 
proxy_config.content whose proxy_config.version is the highest amongst all proxy
configs with the same proxy_config.content.id, that is the ID of the service.

Using the Service List  endpoint: /admin/api/services.json

The endpoint lists all services of the provider. Iterate over the array of services and, for each
service, consume the Proxy Config Show Latest  endpoint that is scoped by service.

When you deploy the gateway using a container image:

1. Configure the file to the image as a read-only volume.
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2. Specify the path that indicates where you have mounted the volume.

You can find sample configuration files in examples folder.

THREESCALE_DEPLOYMENT_ENV
Values: staging | production

Default: production

The value of this environment variable defines the environment from which the configuration will be
downloaded from; this is either 3scale staging or production, when using new APIcast.

The value will also be used in the header X-3scale-User-Agent in the authorize/report requests made to
3scale Service Management API. It is used by 3scale solely for statistics.

THREESCALE_PORTAL_ENDPOINT
URI that includes your password and portal endpoint in the following format:

<schema>://<password>@<admin-portal-domain>.

where:

<password> can be either the provider key or an access token for the 3scale Account
Management API.

<admin-portal-domain> is the URL address to log into the 3scale Admin Portal.

Example: https://access-token@account-admin.3scale.net.

When the THREESCALE_PORTAL_ENDPOINT environment variable is provided, the gateway
downloads the configuration from 3scale on initializing. The configuration includes all the settings
provided on the Integration page of the APIs.

You can also use this environment variable to create a single gateway with the Master Admin Portal .

It is required to provide either THREESCALE_PORTAL_ENDPOINT or THREESCALE_CONFIG_FILE
(takes precedence) for the gateway to run successfully.
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CHAPTER 8. CONFIGURING APICAST FOR BETTER
PERFORMANCE

This document provides general guidelines to debug performance issues in APIcast. It also introduces
the available caching modes and explains how they can help in increasing performance, as well as details
about profiling modes. The content is structured in the following sections:

Section 8.1, “General guidelines”

Section 8.2, “Default caching”

Section 8.3, “Asynchronous reporting threads”

Section 8.4, “3scale Batcher policy”

8.1. GENERAL GUIDELINES

In a typical APIcast deployment, there are three components to consider:

APIcast

The 3scale back-end server that authorizes requests and keeps track of the usage

The upstream API

When experiencing performance issues in APIcast:

Identify the component that is responsible for the issues.

Measure the latency of the upstream API, to determine the latency that APIcast plus the 3scale
back-end server introduce.

With the same tool you are using to run the benchmark, perform a new measurement but
pointing to APIcast instead of pointing to the upstream API directly.

Comparing these results will give you an idea of the latency introduced by APIcast and the 3scale back-
end server.

In a Hosted (SaaS) installation with self-managed APIcast, if the latency introduced by APIcast and the
3scale back-end server is high:

1. Make a request to the 3scale back-end server from the same machine where APIcast is
deployed

2. Measure the latency.

The 3scale back-end server exposes an endpoint that returns the version: https://su1.3scale.net/status.
In comparison, an authorization call requires more resources because it verifies keys, limits, and queue
background jobs. Although the 3scale back-end server performs these tasks in a few milliseconds, it
requires more work than checking the version like the /status endpoint does. As an example, if a request
to /status takes around 300 ms from your APIcast environment, an authorization is going to take more
time for every request that is not cached.

8.2. DEFAULT CACHING

CHAPTER 8. CONFIGURING APICAST FOR BETTER PERFORMANCE

99

https://su1.3scale.net/status


For requests that are not cached, these are the events:

1. APIcast extracts the usage metrics from matching mapping rules.

2. APIcast sends the metrics plus the application credentials to the 3scale back-end server.

3. The 3scale back-end server performs the following:

a. Checks the application keys, and that the reported usage of metrics is within the defined
limits.

b. Queues a background job to increase the usage of the metrics reported.

c. Responds to APIcast whether the request should be authorized or not.

4. If the request is authorized, it goes to the upstream.

In this case, the request does not arrive to the upstream until the 3scale back-end server responds.

On the other hand, with the caching mechanism that comes enabled by default:

APIcast stores in a cache the result of the authorization call to the 3scale back-end server if it
was authorized.

The next request with the same credentials and metrics will use that cached authorization
instead of going to the 3scale back-end server.

If the request was not authorized, or if it is the first time that APIcast receives the credentials,
APIcast will call the 3scale back-end server synchronously as explained above.

When the authentication is cached, APIcast first calls the upstream and then, in a phase called post
action, it calls the 3scale back-end server and stores the authorization in the cache to have it ready for
the next request. Notice that the call to the 3scale back-end server does not introduce any latency
because it does not happen in request time. However, requests sent in the same connection will need to
wait until the post action phase finishes.

Imagine a scenario where a client is using keep-alive and sends a request every second. If the upstream
response time is 100 ms and the latency to the 3scale back-end server is 500 ms, the client will get the
response every time in 100 ms. The total of upstream response and the reporting would take 600 ms.
That gives extra 400 ms before the next request comes.

The diagram below illustrates the default caching behavior explained.The behavior of the caching
mechanism can be changed using the caching policy.
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8.3. ASYNCHRONOUS REPORTING THREADS

APIcast has a feature to enable a pool of threads that authorize against the 3scale back-end server.
With this feature enabled, APIcast first synchronously calls the 3scale back-end server to verify the
application and metrics matched by mapping rules. This is similar to when it uses the caching mechanism
enabled by default. The difference is that subsequent calls to the 3scale back-end server are reported
fully asynchronously as long as there are free reporting threads in the pool.

Reporting threads are global for the whole gateway and shared between all the services. When a second
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TCP connection is made, it will also be fully asynchronous as long as the authorization is already cached.
When there are no free reporting threads, the synchronous mode falls back to the standard
asynchronous mode and does the reporting in the post action phase.

You can enable this feature using the APICAST_REPORTING_THREADS environment variable.

The diagram below illustrates how the asynchronous reporting thread pool works.

8.4. 3SCALE BATCHER POLICY

By default, APIcast performs one call to the 3scale back-end server for each request that it receives.
The goal of the 3scale Batcher policy is to reduce latency and increase throughput by significantly
reducing the number of requests made to the 3scale back-end server. In order to achieve that, this
policy caches authorization statuses and batches reports.

Section 4.1.2, “3scale Batcher”  provides details about the 3scale Batcher policy. The diagram below
illustrates how the policy works.
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CHAPTER 9. EXPOSING 3SCALE APICAST METRICS TO
PROMETHEUS

IMPORTANT

For this release of 3scale, Prometheus installation and configuration are not supported.
Optionally, you can use the community version of Prometheus to visualize metrics and
alerts for APIcast-managed API services.

9.1. ABOUT PROMETHEUS

Prometheus is an open-source systems monitoring toolkit that you can use to monitor 3scale APIcast
services deployed in the Red Hat OpenShift environment.

If you want to monitor your services with Prometheus, your services must expose a Prometheus
endpoint. This endpoint is an HTTP interface that exposes a list of metrics and the current value of the
metrics. Prometheus periodically scrapes these target-defined endpoints and writes the collected data
into its database.

9.1.1. Prometheus queries

In the Prometheus UI, you can write queries in Prometheus Query Language (PromQL) to extract
metric information. With PromQL, you can select and aggregate time series data in real time.

For example, you can use the following query to select all the values that Prometheus has recorded
within the last 5 minutes for all time series that have the metric name http_requests_total:

http_requests_total[5m]

You can further define or filter the results of a query by specifying a label (a key:value pair) for the
metric. For example, you can use the following query to select all the values that Prometheus has
recorded within the last 5 minutes for all time series that have the metric name http_requests_total
and a job label set to integration:

http_requests_total{job="integration"}[5m]

The result of a query can either be shown as a graph, viewed as tabular data in Prometheus’s expression
browser, or consumed by external systems by using the Prometheus HTTP API. Prometheus provides a
graphical view of the data. For a more robust graphical dashboard to view Prometheus metrics, Grafana
is a popular choice.

You can also use the the PromQL language to configure alerts in the Prometheus alertmanager tool.

NOTE

Grafana is a community-supported feature. Deploying Grafana to monitor Red Hat
3scale products is not supported with Red Hat production service level agreements
(SLAs).

9.2. APICAST INTEGRATION WITH PROMETHEUS

APIcast integration with Prometheus is available for the following deployment options:
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Self-managed APIcast (both with hosted or on-premises API manager)

Built-in APIcast on-premise

NOTE

APIcast integration with Prometheus is not available in hosted API manager and hosted
APIcast.

By default, Prometheus can monitor the APIcast metrics listed in Table 9.2, “Prometheus Default
Metrics for 3scale APIcast”.

9.2.1. Additional options

Optionally, if you have cluster admin access to the OpenShift cluster, you can extend the 
total_response_time_seconds, upstream_response_time_seconds, and upstream_status metrics
to include service_id and service_system_name labels. To extend these metrics, set the 
APICAST_EXTENDED_METRICS OpenShift environment variable to true with this command:

oc set env dc/apicast APICAST_EXTENDED_METRICS=true

If you use the APIcast Batch policy (described in Section 4.1.2, “3scale Batcher” ), Prometheus can also
monitor the metrics listed in Table 9.3, “Prometheus Metrics for 3scale APIcast Batch Policy” .

NOTE

If a metric has no value, Prometheus hides the metric. For example, if nginx_error_log
has no errors to report, Prometheus does not display the nginx_error_log metric. The 
nginx_error_log metric is only visible if it has a value.

Additional resources

For information about Prometheus, refer to Prometheus: Getting Started.

9.3. OPENSHIFT ENVIRONMENT VARIABLES FOR 3SCALE APICAST

To configure your Prometheus instance, you can set the OpenShift environment variable described in
Table 9.1, “Prometheus Environment Variables for 3scale APIcast” .

Table 9.1. Prometheus Environment Variables for 3scale APIcast

Environment Variable Description Default
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APICAST_EXTENDED_METRI
CS

A boolean value that enables
additional information on
Prometheus metrics. The
following metrics have the 
service_id and 
service_system_name labels
which provide more in-depth
details about APIcast:

total_response_time
_seconds

upstream_response_
time_seconds

upstream_status

false

Environment Variable Description Default

Additional resources

For information on setting environment variables, see the relevant OpenShift guides:

OpenShift 4: Applications

OpenShift 3.11: Developer Guide

For information about supported configurations, refer to the Red Hat 3scale API Management
Supported Configurations page.

9.4. 3SCALE APICAST METRICS EXPOSED TO PROMETHEUS

After you set up Prometheus to monitor 3scale APIcast, by default it can monitor the metrics listed in in
Table 9.2, “Prometheus Default Metrics for 3scale APIcast” .

The metrics listed in Table 9.3, “Prometheus Metrics for 3scale APIcast Batch Policy”  are only available
when you use the Section 4.1.2, “3scale Batcher” .

Table 9.2. Prometheus Default Metrics for 3scale APIcast

Metric Description Type Labels

nginx_http_connecti
ons

Number of HTTP
connections

gauge state(accepted,active,h
andled,reading,total,wait
ing,writing)

nginx_error_log APIcast errors counter level(debug,info,noti
ce,warn,error,crit,ale
rt,emerg)

openresty_shdict_ca
pacity

Capacity of the
dictionaries shared
between workers

gauge dict(one for every
dictionary)
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openresty_shdict_fr
ee_space

Free space of the
dictionaries shared
between workers

gauge dict(one for every
dictionary)

nginx_metric_errors
_total

Number of errors of the
Lua library that
manages the metrics

counter none

total_response_time
_seconds

Time needed to send a
response to the client
(in seconds)

Note: To access the 
service_id and 
service_system_nam
e labels, you must set
the 
APICAST_EXTENDE
D_METRICS
environment variable to
true as described in
Section 9.2, “APIcast
integration with
Prometheus”.

histogram service_id, 
service_system_nam
e

upstream_response
_time_seconds

Response times from
upstream servers (in
seconds)

Note: To access the 
service_id and 
service_system_nam
e labels, you must set
the 
APICAST_EXTENDE
D_METRICS
environment variable to
true as described in
Section 9.2, “APIcast
integration with
Prometheus”.

histogram service_id, 
service_system_nam
e

Metric Description Type Labels
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upstream_status HTTP status from
upstream servers

Note: To access the 
service_id and 
service_system_nam
e labels, you must set
the 
APICAST_EXTENDE
D_METRICS
environment variable to
true as described in
Section 9.2, “APIcast
integration with
Prometheus”.

counter status, service_id, 
service_system_nam
e

threescale_backend
_calls

Authorize and report
requests to the 3scale
backend (Apisonator)

counter endpoint(authrep, 
auth, report), 
status(2xx, 4xx, 5xx)

Metric Description Type Labels

Table 9.3. Prometheus Metrics for 3scale APIcast Batch Policy

Metric Description Type Labels

batching_policy_aut
hs_cache_hits

Hits in the auths cache
of the 3scale batching
policy

counter none

batching_policy_aut
hs_cache_misses

Misses in the auths
cache of the 3scale
batching policy

counter none
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PART II. API VERSIONING
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CHAPTER 10. API VERSIONING
Red Hat 3scale API Management allows API versioning. You have three ways to version your API
correctly when you manage your API with 3scale. The following methods are examples of how you could
version your API within the 3scale Gateway, which provides extra features due to 3scale architecture.

10.1. GOAL

This guide is designed to give you enough information to implement an API versioning system within
3scale.

Suppose you have an API for finding songs. Users can search for their favorite songs by different
keywords: artist, songwriter, song title, album title, and so on. Assume you had an initial version (v1) of the
API and now you have developed a new, improved version (v2).

The following sections describe the three most typical ways of implementing an API versioning system
using 3scale:

URL versioning

Endpoint versioning

Custom header versioning

10.2. PREREQUISITES

Complete the basics of connecting your API to 3scale  before using this quick start guide.

10.3. URL VERSIONING

If you have different endpoints for searching songs (by artist, by song title, and so on), with URL
versioning you would include the API version as part of the URI, for example:

1. api.songs.com/v1/songwriter

2. api.songs.com/v2/songwriter

3. api.songs.com/v1/song

4. api.songs.com/v2/song

5. and so on

NOTE

When you use this method, you should have planned since v1 that you were going to
version your API.

The 3scale Gateway would then extract the endpoint and the version from the URI. This approach
allows you to set up application plans for any version/endpoint combination. You can then associate
metrics with those plans and endpoints, and you can chart the usage for each endpoint on each version.

The following screen capture shows 3scale’s flexibility.

Figure 10.1. Versioning Plan Feature
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Figure 10.1. Versioning Plan Feature

The only thing left to do is go to [your_API_name] > Integration > Configuration in your 3scale Admin
Portal and map your URIs to your metrics, as shown in the following diagram.

Figure 10.2. Mapping URIs to metrics

You now have two different versions of your API, each with different features enabled. You also have full
control and visibility on their usage.
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If you want to communicate to all of your users that they should move to the API v2, you can send an
internal note asking them to do so. You can monitor who makes the move and see how the activity on v1
decreases while the activity on v2 increases. By adding the metric in your authorization calls to 3scale,
you can see how much overall traffic is hitting v1 vs. v2 endpoints and get an idea of when it is safe to
deprecate v1.

Figure 10.3. Versioning

If some users continue to use v1, you can filter out only those users to send another internal note about
switching to v2.

3scale provides a three-step method for sending deprecation notices.

1. Navigate to Audience > Applications > Listing and filter the list by the application plan that you
want to send the deprecation note and click Search.

2. Click the multiselector to select all of the applications for that particular version. New options
display and allow you to perform bulk operations, such as Send email, Change Application Plan,
and Change State.

3. Click Send email and follow the steps to send a deprecation notice to the owners of the
selected applications.

The following image provides a visual reference.

Figure 10.4. Sending deprecation note
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For each authrep call that is made to an endpoint, you authenticate only once but report twice: once for
the endpoint and once for the API version. There is no double-billing because the call can be
authenticated only one time. For each call you make to any endpoint of a specific API version, you
aggregate the hits on a convenient metric named after the version number (v1, v2, and so on), which you
can use to compare full version traffic with each other.

10.4. ENDPOINT VERSIONING

With endpoint versioning, you can have a different endpoint for each API version such as 
api.cons.com/author_v1. The gateway extracts the endpoint and the version from the endpoint itself.
This method , as well as the previous method, allows the API provider to map external URLs to internal
ones.

The endpoint versioning method can only be performed with the on-premise deployment method as it
requires a URL rewrite using the LUA scripts that are provided as part of the on-premise configuration.

EXTERNAL  INTERNAL

api.songs.com/songwriter_v1 could be rewritten to internal.songs.com/search_by_so
ngwriter

api.songs.com/songwriter_v2 could be rewritten to internal.songs.com/songwriter

Almost everything (mapping, application plans features, and so on.) works exactly the same as in the
previous method.

10.5. CUSTOM HEADER VERSIONING

With custom header versioning, you use a header (that is, "x-api-version") instead of the URI to specify
the version.

The gateway then extracts the endpoint from the path and the version from the header. Just as before,
you can analyze and visualize any combination of path/version that you want. This approach has several
inconveniences, regardless of the API management system you use. See API versioning methods, a brief
reference for more information. Here are a few pointers on how 3scale works.

Just like the previous method, custom header versioning can only be applied to on-premise
hosted APIs because it requires some parsing/processing of the request headers to correctly
route the authrep calls. This type of custom processing can only be done using Lua scripting.

With this method, the fine-grained feature separation of the previous methods is much harder
to achieve.

The most important advantage of this method is that the URL and endpoints specified by the
developers never change. When a developer wants to switch from one API version to another,
they only have to change the header. Everything else works the same.
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CHAPTER 11. AUTHENTICATION PATTERNS
By the end of this tutorial you will know how to set the authentication pattern on your API and the effect
that this has on applications communicating with your API.

Depending on your API, you may need to use different authentication patterns to issue credentials for
access to your API. These can range from API keys to openAuth tokens and custom configurations. This
tutorial covers how to select from the available standard Authentication Patterns.

11.1. SUPPORTED AUTHENTICATION PATTERNS

3scale supports the following authentication patterns out of the box:

Standard API Keys: Single randomized strings or hashes acting as an identifier and a secret
token.

Application Identifier and Key pairs: Immutable identifier and mutable secret key strings.

OpenID Connect

11.2. SETTING UP AUTHENTICATION PATTERNS

11.2.1. Select the authentication mode for your service

Navigate to the API service you want to work on (there may be only one service named API in which case
select this). Go to the Integration section.

Each service that you operate can use a different authentication pattern, but only one pattern can be
used per service.

IMPORTANT
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IMPORTANT

You must not change the authentication pattern after the credentials have been
registered because the behavior of the service may then become unpredictable. To
change authentication patterns we recommend creating a new service and migrating
customers.

11.2.2. Select the Authentication mode you want to use

To select an authentication mode, scroll to the AUTHENTICATION section. Here, you can choose one of
the following options:

API Key (user_key)

App_ID and App_Key Pair

OpenID Connect

11.2.3. Ensure your API accepts the correct types of credentials

Depending on the credential type chosen, you may need to accept different parameters in your API calls
(key fields, IDs etc.). The names of these parameters may not be the same as those used internally at
3scale. The 3scale authentication will function correctly if the correct parameter names are used in calls
to the 3scale backend.

11.2.4. Create an application to test credentials

To ensure that the credential sets are working, you can create a new application to issue credentials to
use the API. Navigate to the Accounts area of your Admin Portal Dashboard, click the account you want
to use and click new application.

Filling out the form and clicking save will create a new application with credentials to use the API. You
can now use these credentials to make calls to your API and records will be checked against the list of
applications registered in 3scale.

11.3. STANDARD AUTHENTICATION PATTERNS

3scale supports the authentication patterns detailed in the following sections.

11.3.1. API key

The simplest form of credential supported is the single API model. Here, each application with
permissions on the API has a single (unique) long character string; example:

By default, the name of the key parameter is user_key. You can use this label or choose another, such
as API-key. If choosing another label, you need to map the value before you make the authorization calls
to 3scale. The string acts as both, an identifier and a secret token, for use of the API. It is recommended
that you use such patterns only in environments with low security requirements or with SSL security on
API calls. Following are the operations that can be carried out on the token and application:

Application Suspend: This suspends the applications access to the API and, in effect, all calls to
the API with the relevant key will be suspended.

API-key = 853a76f7c8d5f4a1ee8bf10a4e0d1f13
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Application Resume: Undoes the effect of an application suspend action.

Key Regenerate: This action generates a new random string key for the application and
associates it with the application. Immediately after this action is taken, calls with the previous
token will cease to be accepted.

The latter action can be triggered from the API Administration in the Admin Portal and (if permitted)
from the API Developers User console.

11.3.2. App_ID and App_Key pair

The API Key Pattern combines the identity of the application and the secret usage token in one token;
however, this pattern separates the two:

Each application using the API, issues an immutable initial identifier known as the Application ID
(App ID). The App ID is constant and may or may not be secret.

In addition, each application can have between one and five Application Keys (App_Keys). Each
Key is associated directly with the App_ID and should be treated as secret.

In the default setting, developers can create up to five keys per application. This allows a developer to
create a new key, add it to their code, redeploy their application, and then disable old keys. This does not
cause any application downtime the way an API Key Regeneration would.

Statistics and rate limits are always kept at the application ID level of granularity and not per API Key. If a
developer wants to track two sets of statistics, they should create two applications rather than two keys.

It is also possible to change the mode in the system and allow applications to be created in the absence
of application keys. In this case the 3scale system will authenticate access based on the App ID only (and
no key checks are made). This mode is useful for widget type scenarios or where rate limits are applied
to users rather than applications. In most cases you will want your API to enforce the presence of at
least one application key per application present. This setting is available in [your_API_name] >
Integration > Settings.

11.3.3. OpenID Connect

For information on OpenID Connect authentication, see the OpenID Connect integration chapter.

11.4. REFERRER FILTERING

3scale supports the Referrer Filtering feature that can be used to whitelist IP addresses or domain
names from where an application can access the API. The API clients specify the referrer value in the 
Referrer header. The purpose and the usage of the Referrer header are described in the RFC 7231,
section 5.5.2: Referer.

For the Referrer Filtering feature to work, you must enable the APIcast Referrer policy in the service
policy chain.

To enable the Referrer Filtering feature, go to [your_API_name] > Applications > Settings > Usage
Rules. Select Require referrer filtering and click Update Product.

app_id = 80a4e03 app_key = a1ee8bf10a4e0d1f13853a76f7c8d5f4
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The developers with access to your API must configure allowed domain/IP referrers from the developer
portal.

In the Admin Portal on the application details page for all applications that belong to this service a new
Referrer Filters section displays. Here, the admin can also configure a whitelist of the allowed Referrer
header values for this application.
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You can set a maximum of five referrer values per application.

The value can only consist of Latin letters, numbers, and special characters *, ., and -. * can be used for
wildcard values. If the value is set to *, any referrer value will be allowed, so the referrer check will be
bypassed.

When the Require referrer filtering feature and the 3scale Referrer policy are enabled, the
authorization works as follows:

1. The applications that do not have Referrer Filters specified are authorized normally only using
the provided credentials.

2. For the applications that have Referrer Filters values set, APIcast extracts the referrer value
from the Referer header of the request and sends it as referrer param in the AuthRep
(authorize and report) request to the Service Management API. The following table shows the
AuthRep responses for different combination of the referrer filtering parameters.

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

Yes Yes matches referrer
filter

200 OK <status>
<authorized>tru
e</authorized>
</status>

Yes No matches referrer
filter

200 OK <status>
<authorized>tru
e</authorized>
</status>

CHAPTER 11. AUTHENTICATION PATTERNS

119



Yes Yes does not match
referrer filter

409 Conflict <status>
<authorized>fal
se</authorized>
<reason>referre
r 
"test.example.c
om" is not 
allowed</reaso
n>
(test.example.c
om is an example)

Yes No does not match
referrer filter

200 OK <status>
<authorized>tru
e</authorized>
</status>

Yes Yes * 200 OK <status>
<authorized>tru
e</authorized>
</status>

Yes No * 200 OK <status>
<authorized>tru
e</authorized>
</status>

No Yes  —  409 Conflict <status>
<authorized>fal
se</authorized>
<reason>referre
r is 
missing</reaso
n>

No No  —  200 OK <status>
<authorized>tru
e</authorized>
</status>

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

The calls that are not authorized by AuthRep are rejected by APIcast with an "Authorization Failed" error.
You can configure the exact status code and the error message on the service Integration page.

Red Hat 3scale API Management 2.9 Administering the API Gateway

120



CHAPTER 12. OPENID CONNECT INTEGRATION
3scale integrates with third-party Identity Providers (IdP) for authenticating the API requests using the
OpenID Connect specification, with these features:

OpenID Connect is built on top of OAuth 2.0 that complements the OAuth 2.0 Authorization
framework with an authentication mechanism.

With the OpenID Connect authentication  option, the API requests are authenticated using the
access tokens in the JSON Web Token (JWT) format (RFC 7519).

The integration consists of the following two parts:

JWT verification and parsing by APIcast

Client credentials synchronization by zync-que

Red Hat 3scale API Management fully supports both integration points with Red Hat Single Sign-On
(RH-SSO) acting as the OpenID provider. See the supported version of RH-SSO on the Supported
Configurations page. APIcast integration is also tested with ForgeRock.

In both cases, you can configure the integration by specifying the OpenID Connect Issuer  field in the
APIcast Configuration on the Integration page of the service using OpenID Connect authentication
option. For instructions, see Configure Red Hat Single Sign-On integration .

12.1. JWT VERIFICATION AND PARSING BY APICAST

The API requests to the service using the OpenID Connect authentication mode should provide the
access token in the JWT format, issued by the OpenID Provider, in the Authorization header using 
Bearer schema. The header should look like the following example:

Authorization: Bearer <JWK>

Example:

Authorization: Bearer 
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2lkcC5leGFtcGxlLmNvbSIsInN1YiI
6ImFiYzEyMyIsIm5iZiI6MTUzNzg5MjQ5NCwiZXhwIjoxNTM3ODk2MDk0LCJpYXQiOjE1Mzc4OTI0OT
QsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiQmVhcmVyIn0.LM2PSmQ0k8mR7eDS_Z8iRdGta-Ea-
pJRrf4C6bAiKz-Nzhxpm7fF7oV3BOipFmimwkQ_-mw3kN--
oOc3vU1RE4FTCQGbzO1SAWHOZqG5ZUx5ugaASY-
hUHIohy6PC7dQl0e2NlAeqqg4MuZtEwrpESJW-
VnGdljrAS0HsXzd6nENM0Z_ofo4ZdTKvIKsk2KrdyVBOcjgVjYongtppR0cw30FwnpqfeCkuATeINN5OK
HXOibRA24pQyIF1s81nnmxLnjnVbu24SFE34aMGRXYzs4icMI8sK65eKxbvwV3PIG3mM0C4ilZPO26d
oP0YrLfVwFcqEirmENUAcHXz7NuvA

The JWT token contains a signature that the token’s receiver can verify and ensure that the token was
signed by a known issuer and that its content has not been changed. 3scale supports RSA signature
based on the public/private key pair. Here, the issuer signs the JWT token using a private key. APIcast
verifies this token using a public key.

APIcast uses OpenID Connect Discovery for getting the JSON Web Keys (JWK) that can be used for
verifying the JWT signature.

On each request, APIcast does the following:
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1. Verifies the JWT token using the public key.

2. Validates the claims nbf and exp.

3. Verifies that the issuer specified in the claim iss (Issuer) is the same as the one configured in
the OpenID Connect Issuer  field.

4. Extracts the value of the azp or aud claim and uses it as the Client ID that identifies the
application in 3scale to authorize the call through the Service Management API.

If any of the JWT validation or the authorization checks fail, APIcast returns an "Authenication failed"
error. Otherwise, APIcast proxies the request to the API backend. The Authorization header remains in
the request, so the API backend can use the JWT token to check the user and client identity.

12.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC-QUE

3scale synchronizes the client (application) credentials between 3scale and the RH-SSO server when
you are using the zync-que component. Configure this through the OpenID Connect Issuer  setting.

When you create, update, or delete a service configured to use OpenID Connect, zync-que receives the
corresponding event and communicate the change to the RH-SSO instance using RH-SSO API.

The Configure Red Hat Single Sign-On integration  section provides the steps required to ensure that 
zync-que has the correct credentials to use the RH-SSO API.

12.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION

The following procedure guides you through configuring zync-que to use custom CA certificates.

12.3.1. Configuring zync-que to use custom CA certificates

Prerequisites

You must be able to serve RH-SSO over https and make sure it is reachable by zync-que. To
test this type the following:

curl https://rhsso-fqdn

3scale 2.2 and above support custom CA certificates for RH-SSO with the SSL_CERT_FILE
environment variable. This variable points to the local path of the certificates bundle.

NOTE

Some versions of OpenSSL accept -showcerts instead of --showcerts. Modify
the following command accordingly to the version you are using.

The command in step 1 of the below procedure mentions <rhsso_fqdn>. The
Fully Qualified Domain Name (FQDN) is the human-readable domain name, for
example, host.example.com.

Procedure

1. Run the following command to get a proper certificate chain:
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echo -n | openssl s_client -connect <rhsso_fqdn>:<rhsso_port> -servername <rhsso_fqdn> --
showcerts | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > customCA.pem

2. Validate the new certificate with the following cURL command. The expected response is a
JSON configuration of the realm. If validation fails it is an indicator that your certificate may not
be correct.

curl -v https://<secure-sso-host>/auth/realms/master --cacert customCA.pem

3. Add the certificate bundle to the Zync pod:

a. Gather the existing content of the /etc/pki/tls/cert.pem file on the Zync pod. Run:

oc exec <zync-que-pod-id> cat /etc/pki/tls/cert.pem > zync.pem

b. Append the contents of the custom CA certificate file to zync.pem:

cat customCA.pem >> zync.pem

c. Attach the new file to the Zync pod as ConfigMap:

oc create configmap zync-ca-bundle --from-file=./zync.pem

oc set volume dc/zync-que --add --name=zync-ca-bundle --mount-path 
/etc/pki/tls/zync/zync.pem --sub-path zync.pem --source='{"configMap":{"name":"zync-ca-
bundle","items":[{"key":"zync.pem","path":"zync.pem"}]}}'

4. After deployment, verify that the certificate is attached and the content is correct:

oc exec <zync-pod-id> cat /etc/pki/tls/zync/zync.pem

5. Configure the SSL_CERT_FILE environment variable on Zync to point to the new CA
certificate bundle:

oc set env dc/zync-que SSL_CERT_FILE=/etc/pki/tls/zync/zync.pem

12.3.2. Configure Red Hat Single Sign-On

To configure RH-SSO, take the following steps:

1. Create a realm (<REALM_NAME>).

2. Create a client:

a. Specify a client ID.

b. In the Client Protocol  field, select openid-connect.

3. To configure the client permissions, set the following values:

a. Access Type to confidential.

b. Standard Flow Enabled to OFF.
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c. Direct Access Grants Enabled  to OFF.

d. Service Accounts Enabled  to ON.

4. Set the service account roles for the client:

a. Navigate to the Service Account Roles tab of the client.

b. In the Client Roles dropdown list, click realm-management.

c. In the Available Roles pane, select the manage-clients list item and assign the role by
clicking Add selected >>.

5. Note the client credentials:

a. Make a note of the client ID (<CLIENT_ID>).

b. Navigate to the Credentials tab of the client and make a note of the Secret field
(<CLIENT_SECRET>).

6. Add a user to the realm:

a. Click the Users menu on the left side of the window.

b. Click Add user.

c. Type the username, set the Email Verified switch to ON, and click Save.

d. On the Credentials tab, set the password. Enter the password in both the fields, set the
Temporary switch to OFF to avoid the password reset at the next login, and click Reset
Password.

e. When the pop-up window displays, click Change password.

12.3.3. Configure 3scale

After you have created and configured the client in RH-SSO, you must configure 3scale to work with
RH-SSO.

To configure 3scale, take the following steps:

1. Enable OpenID Connect.

a. Select the service on which you want to enable the OpenID Connect authentication,
navigate to [your_product_name] > Integration > Settings.

b. Under the Authentication options, select OpenID Connect Use OpenID Connect for any 
OAuth 2.0 flow.

2. Edit the APIcast Configuration. Once you select the option for OpenID Connect, you will see a
new section OpenID Connect (OIDC) Basics:

a. Choose the OpenID Connect Issuer Type .

b. Specify the OpenID Connect Issuer  field, enter the previously noted client credentials with
the URL of your Red Hat Single Sign-On server (located at host <RHSSO_HOST> and port
<RHSSO_PORT>, as indicated in the following URL template:
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https://<CLIENT_ID>:<CLIENT_SECRET>@<RHSSO_HOST>:
<RHSSO_PORT>/auth/realms/<REALM_NAME>

c. To save the configuration, click Update Product.

12.4. CONFIGURE HTTP INTEGRATION WITH THIRD-PARTY IDENTITY
PROVIDERS

You can configure HTTP integration of OpenID Connect (OIDC) to facilitate syncing credentials with
third-party identity providers (IdPs). This means that it is possible to integrate different IdPs other than
RH-SSO, by implementing the OpenAPI specifications we provide.

12.4.1. Pre-requisites

Enable OIDC as authentication mode, as indicated in Configure 3scale

Zync

Integration with Zync for client synchronization between chosen IdP and 3scale

12.4.2. Procedure

To configure HTTP integration of OIDC with third-party identity providers, follow these steps in the
Admin Portal:

1. Navigate to [Your_product_name] > Integration > Settings.

2. Under AUTHENTICATION, select OpenID Connect Use OpenID Connect for any OAuth 2.0
flow.

3. Under AUTHENTICATION SETTINGS indicate the OpenID Connect (OIDC) Basics

a. In OpenID Connect Issuer Type, specify the type of your OpenID Provider.

b. In OpenID Connect Issuer, indicate the location of your OpenID Provider.

4. To save your changes, click Update Product.

12.4.3. Zync REST API example

This example project implements Zync REST API protocol to synchronize OAuth2.0 clients. When a
3scale application is created, updated or deleted Zync tries to replicate that change to 
http://example.com/api.

12.4.3.1. Prerequisites

3scale must be configured to use:

OIDC as the authentication mode

REST API as a OpenID Connect Issuer Type

http://id:secret@example.com/api as OpenID Connect Issuer
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12.4.3.2. Creating, updating and deleting clients

Zync makes the following requests to create, update or delete clients:

Create and update → PUT /clients/:client_id

Delete → DELETE /clients/:client_id

All endpoints must reply with a 2xx status code. Otherwise, 3scale retries the request.

12.4.3.3. Payload

The request payload in case of create and update is application/json:

{
  "client_id": "ee305610",
  "client_secret": "ac0e42db426b4377096c6590e2b06aed",
  "client_name": "oidc-app",
  "redirect_uris": ["http://example.com"],
  "grant_types": ["client_credentials", "password"]
}

The request to delete a client has no payload.

12.4.3.4. Using OAuth2 authentication

Zync sends GET requests to the /.well-known/openid-configuration endpoint and expects an 
application/json response. The response payload should contain the following:

{
  "token_endpoint": "http://idp.example.com/auth/realm/token"
}

With the OAuth2 protocol, Zync uses token_endpoint to exchange the client_id and client_secret
provided in the OpenID Connect Issuer address, in order to request an access token. If the API responds
with an unsuccessful response, Zync falls back to HTTP Basic/Digest authentication using the provided
credentials.

12.5. OAUTH 2.0 SUPPORTED FLOWS

The API clients must get access tokens from the OpenID Connect (OIDC) issuer configured in 3scale,
using any OAuth 2.0 flow that is supported by this OpenID provider. In case of RH-SSO, the following
flows are supported (the terms used in RH-SSO clients are specified in parenthesis):

Authorization Code (Standard Flow)

Resource Owner Password Credentials (Direct Access Grants Flow )

Implicit (Implicit Flow)

Client Credentials (Service Accounts Flow )

In 3scale, if you create a client for which OIDC authentication is enabled, the corresponding clients
created by Zync in RH-SSO have only the Authorization Code flow enabled. This flow is recommended
as the most secure and suitable for most cases. However, it is possible to enable other flows.
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12.5.1. How OAuth 2.0 supported flows work

The client gets the access token using the authorization request, or the token request, or both. The
URLs that receive these requests can be discovered using the .well-known/openid-configuration
endpoint of the OpenID provider, in the "authorization_endpoint" and "token_endpoint", accordingly.
Example: https://<RHSSO_HOST>:<RHSSO_PORT>/auth/realms/<REALM_NAME>/.well-
known/openid-configuration.

12.5.2. Configuring OAuth 2.0 supported flows

You can configure allowed OAuth 2.0 flows for the 3scale API in the Admin Portal. When you create a
new application, the basic integration is finished, including the OpenId Connect (OIDC) configuration.

To configure OAuth 2.0 supported flows, perform these steps:

1. Navigate to the Authentication Settings section: [Your_product_name] > Integration >
Settings

2. Under AUTHENTICATION, choose OpenID Connect Use OpenID Connect for any OAuth 2.0
flow. The corresponding flows are enabled:

standardFlowEnabled (Authorization Code flow) [selected by default]

implicitFlowEnabled (Implicit flow)

serviceAccountsEnabled (Service Accounts Flow)

directAccessGrantsEnabled (Direct Access Grant Flow)

3. Choose one or multiple flows.

4. To save your changes, click Update Product.

12.6. TEST THE INTEGRATION

To test the integration, you must perform the steps listed in the following sections.

12.6.1. Test the client synchronization

To test the client synchronization, take the following steps:

1. Create an application for the service where you configured the OpenID Connect integration.

2. Note the client ID and the client Secret of the generated application.

3. Verify that the client with the same client ID and client secret is now present in the configured
RH-SSO realm.

4. Update the Redirect URL of the application in the 3scale Admin Portal. Redirect URLs should be
as specific as possible.

5. Verify that the Valid Redirect URIs  field of the client in RH-SSO has been updated accordingly.

12.6.2. Test the API authorization flow

To test the API authorization flow, take the following steps:
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1. Get the access token from the RH-SSO server using an OAuth 2.0 flow that is enabled on the
corresponding RH-SSO client.

2. Use the value of the access_token retrieved from RH-SSO in the Authorization header as
follows: Authorization: Bearer <access_token>

If the token is correct and the corresponding application in 3scale is authorized, APIcast gateway returns
a response from the 3scale backend.

12.7. EXAMPLE OF THE INTEGRATION

The service "API" in 3scale is configured to use the OpenID Connect authentication. The Public Base
URL on the service "API" is configured to be https://api.example.com and the Private Base URL is
configured to be https://internal-api.example.com.

The OpenID Connect Issuer  field is set to https://zync:41dbb98b-e4e9-4a89-84a3-
91d1d19c4207@idp.example.com/auth/realms/myrealm in the API integration and the client zync in
the realm myrealm has the correct Service Account roles.

In 3scale, there is an application having the myclientid client ID, myclientsecret client secret, and a 
https://myapp.example.com Redirect URL.

In RH-SSO, in the myrealm realm, there also exists a client with these values:

Client ID: myclientid

Secret: myclientsecret

Valid Redirect URIs : https://myapp.example.com

For this client, Standard Flow is enabled.

There is a user configured in the myrealm realm having the myuser username and mypassword
password.

The flow is as follows:

1. Using the endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-
connect/auth, the application sends an Authorization request to RH-SSO. Within the request,
the application provides these parameters: myclientid client ID, and 
https://myapp.example.com Redirect URL.

2. RH-SSO shows the login window, where the user must provide the user’s credentials: Username
myuser and password mypassword.

3. Depending on the configuration, and if it is the first time that the user is authenticating in this
specific application, the consent window displays.

4. After the user is authenticated, the applciation sends a Token request to RH-SSO using the
endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token
and providing the client ID myclientid, client secret myclientsecret and Redirect URL 
https://myapp.example.com.

5. RH-SSO returns a JSON with an "access_token" field 
eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… xBArNhqF-A.

6. The application sends an API request to https://api.example.com with the header 
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6. The application sends an API request to https://api.example.com with the header 
Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… xBArNhqF-A.

7. The application should receive a successful response from https://internal-api.example.com.
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