
OpenShift Enterprise 3.2

Architecture

OpenShift Enterprise 3.2 Architecture Information

Last Updated: 2019-02-27

OpenShift Enterprise 3.2 Architecture

OpenShift Enterprise 3.2 Architecture Information

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the architecture of OpenShift Enterprise 3.2 including the infrastructure and core components.
These topics also cover authentication, networking and source code management.

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. WHAT ARE THE LAYERS?
1.2. WHAT IS THE OPENSHIFT ENTERPRISE ARCHITECTURE?
1.3. HOW IS OPENSHIFT ENTERPRISE SECURED?

CHAPTER 2. INFRASTRUCTURE COMPONENTS
2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview
2.1.2. Masters

2.1.2.1. High Availability Masters
2.1.3. Nodes

2.1.3.1. Kubelet
2.1.3.2. Service Proxy
2.1.3.3. Node Object Definition

2.2. IMAGE REGISTRY
2.2.1. Overview
2.2.2. Integrated OpenShift Enterprise Registry
2.2.3. Third Party Registries

2.2.3.1. Authentication
2.3. WEB CONSOLE

2.3.1. Overview
2.3.2. Browser Requirements
2.3.3. CLI Downloads
2.3.4. Project Overviews
2.3.5. JVM Console

CHAPTER 3. CORE CONCEPTS
3.1. OVERVIEW
3.2. CONTAINERS AND IMAGES

3.2.1. Containers
3.2.2. Images
3.2.3. Container Registries

3.3. PODS AND SERVICES
3.3.1. Pods
3.3.2. Services

3.3.2.1. Service externalIPs
3.3.2.2. Service ingressIPs
3.3.2.3. Service NodePort
3.3.2.4. Service Proxy Mode

3.3.3. Labels
3.4. PROJECTS AND USERS

3.4.1. Users
3.4.2. Namespaces
3.4.3. Projects

3.5. BUILDS AND IMAGE STREAMS
3.5.1. Builds

3.5.1.1. Docker Build
3.5.1.2. Source-to-Image (S2I) Build
3.5.1.3. Custom Build

3.5.2. Image Streams
3.5.2.1. Image Stream Mappings

3.6. DEPLOYMENTS

6
6
6
7

8
8
8
8
8
9

10
10
10
11
11
11
11
11
11
11
12
12
13
14

17
17
17
17
17
18
18
18
21
21
22
23
23
23
24
24
25
25
26
26
26
26
27
27
28
31

Table of Contents

1

. .

3.6.1. Replication Controllers
3.6.2. Jobs
3.6.3. Deployments and Deployment Configurations

3.7. ROUTES
3.7.1. Overview
3.7.2. Routers

3.7.2.1. Template Routers
3.7.3. Available Router Plug-ins

3.7.3.1. HAProxy Template Router
3.7.3.2. F5 Router

3.7.4. Route Host Names
3.7.5. Route Types
3.7.6. Path Based Routes
3.7.7. Secured Routes
3.7.8. Router Sharding

3.8. TEMPLATES
3.8.1. Overview
3.8.2. Parameters

CHAPTER 4. ADDITIONAL CONCEPTS
4.1. NETWORKING

4.1.1. OpenShift Enterprise DNS
4.1.2. Network Plugins
4.1.3. OpenShift Enterprise SDN

4.2. OPENSHIFT SDN
4.2.1. Overview
4.2.2. Design on Masters
4.2.3. Design on Nodes
4.2.4. Packet Flow
4.2.5. Network Isolation

4.3. AUTHENTICATION
4.3.1. Overview
4.3.2. Users and Groups
4.3.3. API Authentication
4.3.4. OAuth

4.4. AUTHORIZATION
4.4.1. Overview
4.4.2. Evaluating Authorization
4.4.3. Cluster Policy and Local Policy
4.4.4. Roles

4.4.4.1. Updating Cluster Roles
4.4.5. Security Context Constraints

4.4.5.1. SCC Strategies
4.4.5.1.1. RunAsUser
4.4.5.1.2. SELinuxContext
4.4.5.1.3. SupplementalGroups
4.4.5.1.4. FSGroup

4.4.5.2. Controlling Volumes
4.4.5.3. Admission

4.4.5.3.1. SCC Prioritization
4.4.5.3.2. Understanding Pre-allocated Values and Security Context Constraints

4.5. PERSISTENT STORAGE
4.5.1. Overview

31
32
33
34
34
34
35
35
35
37
38
39
39
40
44
45
45
46

48
48
48
49
49
49
49
50
50
51
51
52
52
52
52
53
55
55
57
58
58
60
60
63
63
63
63
63
64
65
65
66
67
67

OpenShift Enterprise 3.2 Architecture

2

. .

4.5.2. Lifecycle of a Volume and Claim
4.5.2.1. Provisioning
4.5.2.2. Binding
4.5.2.3. Using
4.5.2.4. Releasing
4.5.2.5. Reclaiming

4.5.3. Persistent Volumes
4.5.3.1. Types of Persistent Volumes
4.5.3.2. Capacity
4.5.3.3. Access Modes
4.5.3.4. Recycling Policy
4.5.3.5. Phase

4.5.4. Persistent Volume Claims
4.5.4.1. Access Modes
4.5.4.2. Resources
4.5.4.3. Claims As Volumes

4.6. REMOTE COMMANDS
4.6.1. Overview
4.6.2. Server Operation

4.7. PORT FORWARDING
4.7.1. Overview
4.7.2. Server Operation

4.8. SOURCE CONTROL MANAGEMENT
4.9. ADMISSION CONTROLLERS
4.10. OTHER API OBJECTS

4.10.1. LimitRange
4.10.2. ResourceQuota
4.10.3. Resource
4.10.4. Secret
4.10.5. PersistentVolume
4.10.6. PersistentVolumeClaim
4.10.7. OAuth Objects

4.10.7.1. OAuthClient
4.10.7.2. OAuthClientAuthorization
4.10.7.3. OAuthAuthorizeToken
4.10.7.4. OAuthAccessToken

4.10.8. User Objects
4.10.8.1. Identity
4.10.8.2. User
4.10.8.3. UserIdentityMapping
4.10.8.4. Group

CHAPTER 5. REVISION HISTORY: ARCHITECTURE
5.1. TUE MAY 02 2017
5.2. MON JAN 09 2017
5.3. MON NOV 21 2016
5.4. TUE OCT 04 2016
5.5. TUE SEP 06 2016
5.6. MON AUG 08 2016
5.7. WED JUL 27 2016
5.8. THU JUL 14 2016
5.9. WED JUN 15 2016
5.10. FRI JUN 10 2016

67
68
68
68
68
68
68
69
69
69
70
70
71
71
71
71
72
72
72
72
72
72
73
73
74
74
74
74
74
74
74
74
75
75
76
77
78
78
78
79
79

81
81
81
81
81
81
82
82
82
82
82

Table of Contents

3

5.11. MON MAY 30 2016
5.12. THU MAY 12 2016

83
83

OpenShift Enterprise 3.2 Architecture

4

Table of Contents

5

CHAPTER 1. OVERVIEW
OpenShift v3 is a layered system designed to expose underlying Docker-formatted container image and
Kubernetes concepts as accurately as possible, with a focus on easy composition of applications by a
developer. For example, install Ruby, push code, and add MySQL.

Unlike OpenShift v2, more flexibility of configuration is exposed after creation in all aspects of the model.
The concept of an application as a separate object is removed in favor of more flexible composition of
"services", allowing two web containers to reuse a database or expose a database directly to the edge of
the network.

1.1. WHAT ARE THE LAYERS?

The Docker service provides the abstraction for packaging and creating Linux-based, lightweight
container images. Kubernetes provides the cluster management and orchestrates containers on multiple
hosts.

OpenShift Enterprise adds:

Source code management, builds, and deployments for developers

Managing and promoting images at scale as they flow through your system

Application management at scale

Team and user tracking for organizing a large developer organization

Figure 1.1. OpenShift Enterprise Architecture Overview

1.2. WHAT IS THE OPENSHIFT ENTERPRISE ARCHITECTURE?

OpenShift Enterprise has a microservices-based architecture of smaller, decoupled units that work
together. It runs on top of a Kubernetes cluster, with data about the objects stored in etcd, a reliable
clustered key-value store. Those services are broken down by function:

OpenShift Enterprise 3.2 Architecture

6

REST APIs, which expose each of the core objects.

Controllers, which read those APIs, apply changes to other objects, and report status or write
back to the object.

Users make calls to the REST API to change the state of the system. Controllers use the REST API to
read the user’s desired state, and then try to bring the other parts of the system into sync. For example,
when a user requests a build they create a "build" object. The build controller sees that a new build has
been created, and runs a process on the cluster to perform that build. When the build completes, the
controller updates the build object via the REST API and the user sees that their build is complete.

The controller pattern means that much of the functionality in OpenShift Enterprise is extensible. The
way that builds are run and launched can be customized independently of how images are managed, or
how deployments happen. The controllers are performing the "business logic" of the system, taking user
actions and transforming them into reality. By customizing those controllers or replacing them with your
own logic, different behaviors can be implemented. From a system administration perspective, this also
means the API can be used to script common administrative actions on a repeating schedule. Those
scripts are also controllers that watch for changes and take action. OpenShift Enterprise makes the
ability to customize the cluster in this way a first-class behavior.

To make this possible, controllers leverage a reliable stream of changes to the system to sync their view
of the system with what users are doing. This event stream pushes changes from etcd to the REST API
and then to the controllers as soon as changes occur, so changes can ripple out through the system
very quickly and efficiently. However, since failures can occur at any time, the controllers must also be
able to get the latest state of the system at startup, and confirm that everything is in the right state. This
resynchronization is important, because it means that even if something goes wrong, then the operator
can restart the affected components, and the system double checks everything before continuing. The
system should eventually converge to the user’s intent, since the controllers can always bring the system
into sync.

1.3. HOW IS OPENSHIFT ENTERPRISE SECURED?

The OpenShift Enterprise and Kubernetes APIs authenticate users who present credentials, and then
authorize them based on their role. Both developers and administrators can be authenticated via a
number of means, primarily OAuth tokens and SSL certificate authorization.

Developers (clients of the system) typically make REST API calls from a client program like oc or to the
web console via their browser, and use OAuth bearer tokens for most communications. Infrastructure
components (like nodes) use client certificates generated by the system that contain their identities.
Infrastructure components that run in containers use a token associated with their service account to
connect to the API.

Authorization is handled in the OpenShift Enterprise policy engine, which defines actions like "create
pod" or "list services" and groups them into roles in a policy document. Roles are bound to users or
groups by the user or group identifier. When a user or service account attempts an action, the policy
engine checks for one or more of the roles assigned to the user (e.g., cluster administrator or
administrator of the current project) before allowing it to continue.

Since every container that runs on the cluster is associated with a service account, it is also possible to
associate secrets to those service accounts and have them automatically delivered into the container.
This enables the infrastructure to manage secrets for pulling and pushing images, builds, and the
deployment components, and also allows application code to easily leverage those secrets.

CHAPTER 1. OVERVIEW

7

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/rest_api_reference/#rest-api-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-secrets

CHAPTER 2. INFRASTRUCTURE COMPONENTS

2.1. KUBERNETES INFRASTRUCTURE

2.1.1. Overview

Within OpenShift Enterprise, Kubernetes manages containerized applications across a set of containers
or hosts and provides mechanisms for deployment, maintenance, and application-scaling. The Docker
service packages, instantiates, and runs containerized applications.

A Kubernetes cluster consists of one or more masters and a set of nodes. You can optionally configure
your masters for high availability (HA) to ensure that the cluster has no single point of failure.

NOTE

OpenShift Enterprise uses Kubernetes 1.2 and Docker 1.9.

2.1.2. Masters

The master is the host or hosts that contain the master components, including the API server, controller
manager server, and etcd. The master manages nodes in its Kubernetes cluster and schedules pods to
run on nodes.

Table 2.1. Master Components

Component Description

API Server The Kubernetes API server validates and configures the data for pods, services, and
replication controllers. It also assigns pods to nodes and synchronizes pod information
with service configuration. Can be run as a standalone process.

etcd etcd stores the persistent master state while other components watch etcd for changes
to bring themselves into the desired state. etcd can be optionally configured for high
availability, typically deployed with 2n+1 peer services.

Controller Manager
Server

The controller manager server watches etcd for changes to replication controller objects
and then uses the API to enforce the desired state. Can be run as a standalone
process. Several such processes create a cluster with one active leader at a time.

HAProxy Optional, used when configuring highly-available masters with the native method to
balance load between API master endpoints.

The advanced installation method can configure HAProxy for you with the native
method. Alternatively, you can use the native method but pre-configure your own
load balancer of choice.

2.1.2.1. High Availability Masters

You can optionally configure your masters for high availability (HA) to ensure that the cluster has no
single point of failure.

OpenShift Enterprise 3.2 Architecture

8

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-advanced-install

To mitigate concerns about availability of the master, two activities are recommended:

1. A runbook entry should be created for reconstructing the master. A runbook entry is a necessary
backstop for any highly-available service. Additional solutions merely control the frequency that
the runbook must be consulted. For example, a cold standby of the master host can adequately
fulfill SLAs that require no more than minutes of downtime for creation of new applications or
recovery of failed application components.

2. Use a high availability solution to configure your masters and ensure that the cluster has no
single point of failure. The advanced installation method

provides specific examples using the native HA method and configuring HAProxy. You can also take
the concepts and apply them towards your existing HA solutions using the native method instead of
HAProxy.

NOTE

Moving from a single master cluster to multiple masters after installation is not supported.

When using the native HA method with HAProxy, master components have the following availability:

Table 2.2. Availability Matrix with HAProxy

Role Style Notes

etcd Active-active Fully redundant deployment with load balancing

API Server Active-active Managed by HAProxy

Controller Manager
Server

Active-passive One instance is elected as a cluster leader at a time

HAProxy Active-passive Balances load between API master endpoints

2.1.3. Nodes

A node provides the runtime environments for containers. Each node in a Kubernetes cluster has the
required services to be managed by the master. Nodes also have the required services to run pods,
including the Docker service, a kubelet, and a service proxy.

OpenShift Enterprise creates nodes from a cloud provider, physical systems, or virtual systems.
Kubernetes interacts with node objects that are a representation of those nodes. The master uses the
information from node objects to validate nodes with health checks. A node is ignored until it passes the
health checks, and the master continues checking nodes until they are valid. The Kubernetes
documentation has more information on node management.

Administrators can manage nodes in an OpenShift Enterprise instance using the CLI. To define full
configuration and security options when launching node servers, use dedicated node configuration files.

IMPORTANT

The recommended maximum number of nodes is 300.

CHAPTER 2. INFRASTRUCTURE COMPONENTS

9

https://en.wikipedia.org/wiki/Runbook
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-advanced-install
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/admin/node.md#node-management
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-manage-nodes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-master-node-configuration

1

2

3

4

2.1.3.1. Kubelet

Each node has a kubelet that updates the node as specified by a container manifest, which is a YAML
file that describes a pod. The kubelet uses a set of manifests to ensure that its containers are started and
that they continue to run. A sample manifest can be found in the Kubernetes documentation.

A container manifest can be provided to a kubelet by:

A file path on the command line that is checked every 20 seconds.

An HTTP endpoint passed on the command line that is checked every 20 seconds.

The kubelet watching an etcd server, such as /registry/hosts/$(hostname -f), and acting on
any changes.

The kubelet listening for HTTP and responding to a simple API to submit a new manifest.

2.1.3.2. Service Proxy

Each node also runs a simple network proxy that reflects the services defined in the API on that node.
This allows the node to do simple TCP and UDP stream forwarding across a set of back ends.

2.1.3.3. Node Object Definition

The following is an example node object definition in Kubernetes:

apiVersion defines the API version to use.

kind set to Node identifies this as a definition for a node object.

metadata.labels lists any labels that have been added to the node.

metadata.name is a required value that defines the name of the node object. This value is shown
in the NAME column when running the oc get nodes command.

apiVersion: v1 1

kind: Node 2
metadata:
 creationTimestamp: null

 labels: 3
 kubernetes.io/hostname: node1.example.com

 name: node1.example.com 4
spec:

 externalID: node1.example.com 5
status:
 nodeInfo:
 bootID: ""
 containerRuntimeVersion: ""
 kernelVersion: ""
 kubeProxyVersion: ""
 kubeletVersion: ""
 machineID: ""
 osImage: ""
 systemUUID: ""

OpenShift Enterprise 3.2 Architecture

10

https://cloud.google.com/compute/docs/containers/container_vms#container_manifest

5 spec.externalID defines the fully-qualified domain name where the node can be reached.
Defaults to the metadata.name value when empty.

The REST API Reference has more details on these definitions.

2.2. IMAGE REGISTRY

2.2.1. Overview

OpenShift Enterprise can utilize any server implementing the Docker registry API as a source of images,
including the Docker Hub, private registries run by third parties, and the integrated OpenShift Enterprise
registry.

2.2.2. Integrated OpenShift Enterprise Registry

OpenShift Enterprise provides an integrated container registry that adds the ability to provision new
image repositories on the fly. This allows users to automatically have a place for their builds to push the
resulting images.

Whenever a new image is pushed to the integrated registry, the registry notifies OpenShift Enterprise
about the new image, passing along all the information about it, such as the namespace, name, and
image metadata. Different pieces of OpenShift react to new images, creating new builds and
deployments.

2.2.3. Third Party Registries

OpenShift Enterprise can create containers using images from third party registries, but it is unlikely that
these registries offer the same image notification support as the integrated OpenShift Enterprise registry.
In this situation OpenShift Enterprise will fetch tags from the remote registry upon imagestream creation.
Refreshing the fetched tags is as simple as running oc import-image <stream>. When new images
are detected, the previously-described build and deployment reactions occur.

2.2.3.1. Authentication

OpenShift Enterprise can communicate with registries to access private image repositories using
credentials supplied by the user. This allows OpenShift to push and pull images to and from private
repositories. The Authentication topic has more information.

2.3. WEB CONSOLE

2.3.1. Overview

The OpenShift Enterprise web console is a user interface accessible from a web browser. Developers
can use the web console to visualize, browse, and manage the contents of projects.

NOTE

JavaScript must be enabled to use the web console. For the best experience, use a web
browser that supports WebSockets.

The web console is started as part of the master. All static assets required to run the web console are

CHAPTER 2. INFRASTRUCTURE COMPONENTS

11

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/rest_api_reference/#v1-node
http://caniuse.com/#feat=websockets

served from the openshift binary. Administrators can also customize the web console using
extensions, which let you run scripts and load custom stylesheets when the web console loads. You can
change the look and feel of nearly any aspect of the user interface in this way.

When you access the web console from a browser, it first loads all required static assets. It then makes
requests to the OpenShift Enterprise APIs using the values defined from the openshift start option
--public-master, or from the related master configuration file parameter masterPublicURL. The
web console uses WebSockets to maintain a persistent connection with the API server and receive
updated information as soon as it is available.

Figure 2.1. Web Console Request Architecture

The configured host names and IP addresses for the web console are whitelisted to access the API
server safely even when the browser would consider the requests to be cross-origin. To access the API
server from a web application using a different host name, you must whitelist that host name by
specifying the --cors-allowed-origins option on openshift start or from the related master
configuration file parameter corsAllowedOrigins.

2.3.2. Browser Requirements

Review the tested integrations for OpenShift Enterprise. The following browser versions and operating
systems can be used to access the web console.

Table 2.3. Browser Requirements

Browser (Latest Stable) Operating System

Firefox Fedora 23, Windows 8

Internet Explorer Windows 8

Chrome Fedora 23, Windows 8, and MacOSX

Safari MacOSX, iPad 2, iPhone 4

2.3.3. CLI Downloads

You can download and unpack the CLI from the About page on the web console for use on Linux,
MacOSX, and Windows clients if your cluster administrator has enabled it :

OpenShift Enterprise 3.2 Architecture

12

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-web-console-customization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#master-configuration-files
http://www.w3.org/TR/cors/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#master-configuration-files
https://access.redhat.com/articles/2176281
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#adding-or-changing-links-to-download-the-cli

2.3.4. Project Overviews

After logging in, the web console provides developers with an overview for the currently selected project:

Figure 2.2. Web Console Project Overview

CHAPTER 2. INFRASTRUCTURE COMPONENTS

13

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-projects

The project selector allows you to switch between projects you have access to.

Filter the contents of a project page by using the labels of a resource.

Create new applications using a source repository or using a template.

The Overview tab (currently selected) visualizes the contents of your project with a high-level view
of each component.

The Browse tab explores the different objects types within your project: Builds, Deployments,
Image Streams, Pods, and Services.

The Settings tab provides general information about your project, as well as the quota and limits
that are set on your project.

When you click on one of your objects in the Overview page, the Details pane displays detailed
information about that object. In this example, the cakephp-mysql-example deployment is
selected, and the Details pane is displaying details on the related replication controller.

NOTE

Cockpit is automatically installed and enabled in OpenShift Enterprise 3.1 and later to help
you monitor your development environment. Red Hat Enterprise Linux Atomic Host:
Getting Started with Cockpit provides more information on using Cockpit.

2.3.5. JVM Console

NOTE

This feature is currently in Technology Preview and not intended for production use.

For pods based on Java images, the web console also exposes access to a hawt.io-based JVM console
for viewing and managing any relevant integration components. A Connect link is displayed in the pod’s
details on the Browse → Pods page, provided the container has a port named jolokia.

OpenShift Enterprise 3.2 Architecture

14

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#view-projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#filtering-by-labels
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#using-the-web-console-na
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#creating-from-templates-using-the-web-console
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-compute-resources
http://cockpit-project.org
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-cockpit/
http://hawt.io/

Figure 2.3. Pod with a Link to the JVM Console

After connecting to the JVM console, different pages are displayed depending on which components are
relevant to the connected pod.

Figure 2.4. JVM Console

The following pages are available:

CHAPTER 2. INFRASTRUCTURE COMPONENTS

15

Page Description

JMX View and manage JMX domains and mbeans.

Threads View and monitor the state of threads.

ActiveMQ View and manage Apache ActiveMQ brokers.

Camel View and and manage Apache Camel routes and dependencies.

OpenShift Enterprise 3.2 Architecture

16

CHAPTER 3. CORE CONCEPTS

3.1. OVERVIEW

The following topics provide high-level, architectural information on core concepts and objects you will
encounter when using OpenShift Enterprise. Many of these objects come from Kubernetes, which is
extended by OpenShift Enterprise to provide a more feature-rich development lifecycle platform.

Containers and images are the building blocks for deploying your applications.

Pods and services allow for containers to communicate with each other and proxy connections.

Projects and users provide the space and means for communities to organize and manage their
content together.

Builds and image streams allow you to build working images and react to new images.

Deployments add expanded support for the software development and deployment lifecycle.

Routes announce your service to the world.

Templates allow for many objects to be created at once based on customized parameters.

3.2. CONTAINERS AND IMAGES

3.2.1. Containers

The basic units of OpenShift Enterprise applications are called containers. Linux container technologies
are lightweight mechanisms for isolating running processes so that they are limited to interacting with
only their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for
arbitrary workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. More recently
the Docker project has developed a convenient management interface for Linux containers on a host.
OpenShift Enterprise and Kubernetes add the ability to orchestrate Docker-formatted containers across
multi-host installations.

Though you do not directly interact with the Docker CLI or service when using OpenShift Enterprise,
understanding their capabilities and terminology is important for understanding their role in OpenShift
Enterprise and how your applications function inside of containers. The docker RPM is available as part
of RHEL 7, as well as CentOS and Fedora, so you can experiment with it separately from OpenShift
Enterprise. Refer to the article Get Started with Docker Formatted Container Images on Red Hat
Systems for a guided introduction.

3.2.2. Images

Containers in OpenShift Enterprise are based on Docker-formatted container images. An image is a
binary that includes all of the requirements for running a single container, as well as metadata describing
its needs and capabilities.

CHAPTER 3. CORE CONCEPTS

17

https://access.redhat.com/articles/1353593
https://access.redhat.com/articles/881893

You can think of it as a packaging technology. Containers only have access to resources defined in the
image unless you give the container additional access when creating it. By deploying the same image in
multiple containers across multiple hosts and load balancing between them, OpenShift Enterprise can
provide redundancy and horizontal scaling for a service packaged into an image.

You can use the Docker CLI directly to build images, but OpenShift Enterprise also supplies builder
images that assist with creating new images by adding your code or configuration to existing images.

Because applications develop over time, a single image name can actually refer to many different
versions of the "same" image. Each different image is referred to uniquely by its hash (a long
hexadecimal number e.g. fd44297e2ddb050ec4f… ​) which is usually shortened to 12 characters (e.g.
fd44297e2ddb).

Rather than version numbers, the Docker service allows applying tags (such as v1, v2.1, GA, or the
default latest) in addition to the image name to further specify the image desired, so you may see the
same image referred to as centos (implying the latest tag), centos:centos7, or fd44297e2ddb.

3.2.3. Container Registries

A container registry is a service for storing and retrieving Docker-formatted container images. A registry
contains a collection of one or more image repositories. Each image repository contains one or more
tagged images. Docker provides its own registry, the Docker Hub, and you can also use private or third-
party registries. Red Hat provides a registry at registry.access.redhat.com for subscribers.
OpenShift Enterprise can also supply its own internal registry for managing custom container images.

The relationship between containers, images, and registries is depicted in the following diagram:

3.3. PODS AND SERVICES

3.3.1. Pods

OpenShift Enterprise 3.2 Architecture

18

https://registry.hub.docker.com/

OpenShift Enterprise leverages the Kubernetes concept of a pod, which is one or more containers
deployed together on one host, and the smallest compute unit that can be defined, deployed, and
managed.

Pods are the rough equivalent of OpenShift Enterprise v2 gears, with containers the rough equivalent of
v2 cartridge instances. Each pod is allocated its own internal IP address, therefore owning its entire port
space, and containers within pods can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
may be removed after exiting, or may be retained to enable access to the logs of their containers.

OpenShift Enterprise treats pods as largely immutable; changes cannot be made to a pod definition
while it is running. OpenShift Enterprise implements changes by terminating an existing pod and
recreating it with modified configuration, base image(s), or both. Pods are also treated as expendable,
and do not maintain state when recreated. Therefore manage pods with higher-level controllers, rather
than directly by users.

The following example definition of a pod provides a long-running service, which is actually a part of the
OpenShift Enterprise infrastructure: the private Docker registry. It demonstrates many features of pods,
most of which are discussed in other topics and thus only briefly mentioned here.

Pod object definition example

apiVersion: v1
kind: Pod
metadata:
 annotations: { ... }

 labels: 1
 deployment: docker-registry-1
 deploymentconfig: docker-registry
 docker-registry: default

 generateName: docker-registry-1- 2
spec:

 containers: 3

 - env: 4
 - name: OPENSHIFT_CA_DATA
 value: ...
 - name: OPENSHIFT_CERT_DATA
 value: ...
 - name: OPENSHIFT_INSECURE
 value: "false"
 - name: OPENSHIFT_KEY_DATA
 value: ...
 - name: OPENSHIFT_MASTER
 value: https://master.example.com:8443

 image: openshift/origin-docker-registry:v0.6.2 5
 imagePullPolicy: IfNotPresent
 name: registry

 ports: 6
 - containerPort: 5000
 protocol: TCP
 resources: {}

 securityContext: { ... } 7

 volumeMounts: 8

CHAPTER 3. CORE CONCEPTS

19

1

2

3

4

5

6

7

8

9

10

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key-value format in the metadata
hash. One label in this example is docker-registry=default.

Pods must have a unique name within their namespace. A pod definition may specify the basis of a
name with the generateName attribute and random characters will be added automatically to
generate a unique name.

containers specifies an array of container definitions; in this case (as with most), just one.

Environment variables can be specified to pass necessary values to each container.

Each container in the pod is instantiated from its own Docker-formatted container image.

The container can bind to ports which will be made available on the pod’s IP.

OpenShift Enterprise defines a security context for containers which specifies whether they are
allowed to run as privileged containers, run as a user of their choice, and more. The default context
is very restrictive but administrators can modify this as needed.

The container specifies where external storage volumes should be mounted within the container. In
this case, there is a volume for storing the registry’s data, and one for access to credentials the
registry needs for making requests against the OpenShift Enterprise API.

Pods making requests against the OpenShift Enterprise API is a common enough pattern that there
is a serviceAccount field for specifying which service account user the pod should authenticate
as when making the requests. This enables fine-grained access control for custom infrastructure
components.

The pod defines storage volumes that are available to its container(s) to use. In this case, it
provides an ephemeral volume for the registry storage and a secret volume containing the service
account credentials.

 - mountPath: /registry
 name: registry-storage
 - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-br6yz
 readOnly: true
 dnsPolicy: ClusterFirst
 imagePullSecrets:
 - name: default-dockercfg-at06w
 restartPolicy: Always

 serviceAccount: default 9

 volumes: 10
 - emptyDir: {}
 name: registry-storage
 - name: default-token-br6yz
 secret:
 secretName: default-token-br6yz

OpenShift Enterprise 3.2 Architecture

20

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-service-accounts

1

2

3

4

5

NOTE

This pod definition does not include attributes that are filled by OpenShift Enterprise
automatically after the pod is created and its lifecycle begins. The Kubernetes API
documentation has complete details of the pod REST API object attributes, and the
Kubernetes pod documentation has details about the functionality and purpose of pods.

3.3.2. Services

A Kubernetes service serves as an internal load balancer. It identifies a set of replicated pods in order
to proxy the connections it receives to them. Backing pods can be added to or removed from a service
arbitrarily while the service remains consistently available, enabling anything that depends on the service
to refer to it at a consistent internal address.

Services are assigned an IP address and port pair that, when accessed, proxy to an appropriate backing
pod. A service uses a label selector to find all the containers running that provide a certain network
service on a certain port.

Like pods, services are REST objects. The following example shows the definition of a service for the
pod defined above:

Service object definition example

The service name docker-registry is also used to construct an environment variable with the
service IP that is inserted into other pods in the same namespace. The maximum name length is 63
characters.

The label selector identifies all pods with the docker-registry=default label attached as its backing
pods.

Virtual IP of the service, allocated automatically at creation from a pool of internal IPs.

Port the service listens on.

Port on the backing pods to which the service forwards connections.

The Kubernetes documentation has more information on services.

3.3.2.1. Service externalIPs

apiVersion: v1
kind: Service
metadata:

 name: docker-registry 1
spec:

 selector: 2
 docker-registry: default

 portalIP: 172.30.136.123 3
 ports:
 - nodePort: 0

 port: 5000 4
 protocol: TCP

 targetPort: 5000 5

CHAPTER 3. CORE CONCEPTS

21

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/rest_api_reference/#rest-api-kubernetes-v1
https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/pods.md
http://kubernetes.io/docs/user-guide/services/

1

In addition to the cluster’s internal IP addresses, the user can configure IP addresses that are external to
the cluster. The administrator is responsible for ensuring that traffic arrives at a node with this IP.

The externalIPs must be selected by the admin from the ExternalIPNetworkCIDRs range configured in
master-config.yaml file. When master-config.yaml is changed, the master service must be restarted.

Example 3.1. Sample ExternalIPNetworkCIDR /etc/origin/master/master-config.yaml

networkConfig:
 ExternalIPNetworkCIDR: 172.47.0.0/24

Example 3.2. Service externalIPs Definition (JSON)

List of External IP addresses on which the port is exposed. In addition to the internal IP
addresses)

3.3.2.2. Service ingressIPs

In non-cloud clusters, externalIP addresses can be automatically assigned from a pool of addresses.
This eliminates the need for the administrator manually assigning them.

The pool is configured in /etc/origin/master/master-config.yaml file. After changing this file, restart the
master service.

The ingressIPNetworkCIDR is set to 172.29.0.0/16 by default. If the cluster environment is not
already using this private range, use the default range or set a custom range.

{
 "kind": "Service",
 "apiVersion": "v1",
 "metadata": {
 "name": "my-service"
 },
 "spec": {
 "selector": {
 "app": "MyApp"
 },
 "ports": [
 {
 "name": "http",
 "protocol": "TCP",
 "port": 80,
 "targetPort": 9376
 }
],
 "externalIPs" : [

 "80.11.12.10" 1
]
 }
}

OpenShift Enterprise 3.2 Architecture

22

NOTE

If you are using high availibility, then this range must be less than 256 addresses.

Example 3.3. Sample ingressIPNetworkCIDR /etc/origin/master/master-config.yaml

networkConfig:
 ingressIPNetworkCIDR: 172.29.0.0/16

3.3.2.3. Service NodePort

Setting the service type=NodePort will allocate a port from a flag-configured range (default: 30000-
32767), and each node will proxy that port (the same port number on every node) into your service.

The selected port will be reported in the service configuration, under spec.ports[*].nodePort.

To specify a custom port just place the port number in the nodePort field. The custom port number must
be in the configured range for nodePorts. When 'master-config.yaml' is changed the master service
must be restarted.

Example 3.4. Sample servicesNodePortRange /etc/origin/master/master-config.yaml

kubernetesMasterConfig:
 servicesNodePortRange: ""

The service will be visible as both the <NodeIP>:spec.ports[].nodePort and
spec.clusterIp:spec.ports[].port

NOTE

Setting a nodePort is a privileged operation.

3.3.2.4. Service Proxy Mode

OpenShift Enterprise has two different implementations of the service-routing infrastructure. The default
implementation is entirely iptables-based, and uses probabilistic iptables rewriting rules to distribute
incoming service connections between the endpoint pods. The older implementation uses a user space
process to accept incoming connections and then proxy traffic between the client and one of the endpoint
pods.

The iptables-based implementation is much more efficient, but it requires that all endpoints are always
able to accept connections; the user space implementation is slower, but can try multiple endpoints in
turn until it finds one that works. If you have good readiness checks (or generally reliable nodes and
pods), then the iptables-based service proxy is the best choice. Otherwise, you can enable the user
space-based proxy when installing, or after deploying the cluster by editing the node configuration file.

3.3.3. Labels

Labels are used to organize, group, or select API objects. For example, pods are "tagged" with labels,
and then services use label selectors to identify the pods they proxy to. This makes it possible for

CHAPTER 3. CORE CONCEPTS

23

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-high-availability
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-application-health

services to reference groups of pods, even treating pods with potentially different containers as related
entities.

Most objects can include labels in their metadata. Labels can be used to group arbitrarily-related objects;
for example, all of the pods, services, replication controllers, and deployment configurations of a
particular application can be grouped.

Labels are simple key-value pairs, as in the following example:

Key-value pairs example

Consider:

A pod consisting of an nginx container, with the label role=webserver.

A pod consisting of an Apache httpd container, with the same label role=webserver.

A service or replication controller that is defined to use pods with the role=webserver label treats both of
these pods as part of the same group.

The Kubernetes labels documentation has more information about labels.

3.4. PROJECTS AND USERS

3.4.1. Users

Interaction with OpenShift Enterprise is associated with a user. An OpenShift Enterprise user object
represents an actor which may be granted permissions in the system by adding roles to them or to their
groups.

Several types of users can exist:

Regular users This is the way most interactive OpenShift Enterprise users will be represented. Regular
users are created automatically in the system upon first login, or can be created via the
API. Regular users are represented with the User object. Examples: joe alice

System users Many of these are created automatically when the infrastructure is defined, mainly for
the purpose of enabling the infrastructure to interact with the API securely. They include
a cluster administrator (with access to everything), a per-node user, users for use by
routers and registries, and various others. Finally, there is an anonymous system user
that is used by default for unauthenticated requests. Examples: system:admin
system:openshift-registry system:node:node1.example.com

Service accounts These are special system users associated with projects; some are created
automatically when the project is first created, while project administrators can create
more for the purpose of defining access to the contents of each project. Service
accounts are represented with the ServiceAccount object. Examples:
system:serviceaccount:default:deployer
system:serviceaccount:foo:builder

labels:
 key1: value1
 key2: value2

OpenShift Enterprise 3.2 Architecture

24

https://github.com/kubernetes/kubernetes/blob/release-1.0/docs/user-guide/labels.md
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#managing-role-bindings

Every user must authenticate in some way in order to access OpenShift Enterprise. API requests with no
authentication or invalid authentication are authenticated as requests by the anonymous system user.
Once authenticated, policy determines what the user is authorized to do.

3.4.2. Namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. In OpenShift
Enterprise, a project is a Kubernetes namespace with additional annotations.

Namespaces provide a unique scope for:

Named resources to avoid basic naming collisions.

Delegated management authority to trusted users.

The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace,
including nodes and users.

The Kubernetes documentation has more information on namespaces.

3.4.3. Projects

A project is a Kubernetes namespace with additional annotations, and is the central vehicle by which
access to resources for regular users is managed. A project allows a community of users to organize and
manage their content in isolation from other communities. Users must be given access to projects by
administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

The mandatory name is a unique identifier for the project and is most visible when using the CLI
tools or API. The maximum name length is 63 characters.

The optional displayName is how the project is displayed in the web console (defaults to
name).

The optional description can be a more detailed description of the project and is also visible
in the web console.

Each project scopes its own set of:

Objects Pods, services, replication controllers, etc.

Policies Rules for which users can or cannot perform actions on objects.

Constraints Quotas for each kind of object that can be limited.

Service accounts Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any
member of the user community. Cluster administrators can also allow developers to create their own
projects.

CHAPTER 3. CORE CONCEPTS

25

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/admin/namespaces.md
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#managing-role-bindings
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#selfprovisioning-projects

Developers and administrators can interact with projects using the CLI or the web console.

3.5. BUILDS AND IMAGE STREAMS

3.5.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the process is
used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Enterprise leverages Kubernetes by creating Docker-formatted containers from build images
and pushing them to a container registry.

Build objects share common characteristics: inputs for a build, the need to complete a build process,
logging the build process, publishing resources from successful builds, and publishing the final status of
the build. Builds take advantage of resource restrictions, specifying limitations on resources such as CPU
usage, memory usage, and build or pod execution time.

The OpenShift Enterprise build system provides extensible support for build strategies that are based on
selectable types specified in the build API. There are three build strategies available:

Docker build

Source-to-Image (S2I) build

Custom build

By default, Docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For Docker and S2I builds, the
resulting objects are runnable images. For Custom builds, the resulting objects are whatever the builder
image author has specified.

For a list of build commands, see the Developer’s Guide.

For more information on how OpenShift Enterprise leverages Docker for builds, see the upstream
documentation.

3.5.1.1. Docker Build

The Docker build strategy invokes the docker build command, and it therefore expects a repository with a
Dockerfile and all required artifacts in it to produce a runnable image.

3.5.1.2. Source-to-Image (S2I) Build

Source-to-Image (S2I) is a tool for building reproducible, Docker-formatted container images. It produces
ready-to-run images by injecting application source into a container image and assembling a new image.
The new image incorporates the base image (the builder) and built source and is ready to use with the
docker run command. S2I supports incremental builds, which re-use previously downloaded
dependencies, previously built artifacts, etc.

The advantages of S2I include the following:

OpenShift Enterprise 3.2 Architecture

26

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-builds
https://github.com/openshift/origin/blob/master/docs/builds.md#how-it-works
https://docs.docker.com/engine/reference/commandline/build/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/creating_images/#creating-images-s2i

Image
flexibility

S2I scripts can be written to inject application code into almost any existing Docker-formatted
container image, taking advantage of the existing ecosystem. Note that, currently, S2I relies
on tar to inject application source, so the image needs to be able to process tarred content.

Speed With S2I, the assemble process can perform a large number of complex operations without
creating a new layer at each step, resulting in a fast process. In addition, S2I scripts can be
written to re-use artifacts stored in a previous version of the application image, rather than
having to download or build them each time the build is run.

Patchability S2I allows you to rebuild the application consistently if an underlying image needs a patch
due to a security issue.

Operational
efficiency

By restricting build operations instead of allowing arbitrary actions, as a Dockerfile would
allow, the PaaS operator can avoid accidental or intentional abuses of the build system.

Operational
security

Building an arbitrary Dockerfile exposes the host system to root privilege escalation. This
can be exploited by a malicious user because the entire Docker build process is run as a user
with Docker privileges. S2I restricts the operations performed as a root user and can run the
scripts as a non-root user.

User
efficiency

S2I prevents developers from performing arbitrary yum install type operations, which
could slow down development iteration, during their application build.

Ecosystem S2I encourages a shared ecosystem of images where you can leverage best practices for
your applications.

Reproducibilit
y

Produced images can include all inputs including specific versions of build tools and
dependencies. This ensures that the image can be reproduced precisely.

3.5.1.3. Custom Build

The Custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A Custom builder image is a plain Docker-formatted container image embedded with build process logic,
for example for building RPMs or base images. The openshift/origin-custom-docker-builder
image is available on the Docker Hub registry as an example implementation of a Custom builder image.

3.5.2. Image Streams

An image stream comprises any number of Docker-formatted container images identified by tags. It
presents a single virtual view of related images, similar to an image repository, and may contain images
from any of the following:

1. Its own image repository in OpenShift Enterprise’s integrated registry

2. Other image streams

3. Image repositories from external registries

CHAPTER 3. CORE CONCEPTS

27

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/creating_images/#creating-images-custom
https://registry.hub.docker.com/u/openshift/origin-custom-docker-builder

Image streams can be used to automatically perform an action when new images are created. Builds and
deployments can watch an image stream to receive notifications when new images are added and react
by performing a build or deployment, respectively.

For example, if a deployment is using a certain image and a new version of that image is created, a
deployment could be automatically performed.

NOTE

See the Developer Guide for details on managing images and image streams.

Example 3.5. Image Stream Object Definition

3.5.2.1. Image Stream Mappings

When the integrated registry receives a new image, it creates and sends an ImageStreamMapping to
OpenShift Enterprise, providing the image’s namespace (i.e., its project), name, tag, and image
metadata.

This information is used to create a new image (if it does not already exist) and to tag the image into the
image stream. OpenShift Enterprise stores complete metadata about each image, such as commands,
entrypoint, and environment variables. Images in OpenShift Enterprise are immutable and the maximum
name length is 63 characters.

apiVersion: v1
kind: ImageStream
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: 2016-01-29T13:33:49Z
 generation: 1
 labels:
 app: ruby-sample-build
 template: application-template-stibuild
 name: origin-ruby-sample
 namespace: test
 resourceVersion: "633"
 selflink: /oapi/v1/namespaces/test/imagestreams/origin-ruby-sample
 uid: ee2b9405-c68c-11e5-8a99-525400f25e34
spec: {}
status:
 dockerImageRepository: 172.30.56.218:5000/test/origin-ruby-sample
 tags:
 - items:
 - created: 2016-01-29T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf
7dd13d
 generation: 1
 image:
sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest

OpenShift Enterprise 3.2 Architecture

28

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-managing-images

NOTE

See the Developer Guide for details on manually tagging images.

The following ImageStreamMapping example results in an image being tagged as test/origin-ruby-
sample:latest:

Example 3.6. Image Stream Mapping Object Definition

apiVersion: v1
kind: ImageStreamMapping
metadata:
 creationTimestamp: null
 name: origin-ruby-sample
 namespace: test
tag: latest
image:
 dockerImageLayers:
 - name:
sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name:
sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name:
sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name:
sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name:
sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name:
sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 - name:
sha256:92114219a04977b5563d7dff71ec4caa3a37a15b266ce42ee8f43dba9798c966
 size: 11939149
 dockerImageMetadata:
 Architecture: amd64
 Config:
 Cmd:
 - /usr/libexec/s2i/run
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-
world.git
 - EXAMPLE=sample-app
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

CHAPTER 3. CORE CONCEPTS

29

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-managing-images

 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2
applications
 io.k8s.display-name: 172.30.56.218:5000/test/origin-ruby-
sample:latest
 io.openshift.build.commit.author: Ben Parees
<bparees@users.noreply.github.com>
 io.openshift.build.commit.date: Wed Jan 20 10:14:27 2016 -0500
 io.openshift.build.commit.id:
00cadc392d39d5ef9117cbc8a31db0889eedd442
 io.openshift.build.commit.message: 'Merge pull request #51 from
php-coder/fix_url_and_sti'
 io.openshift.build.commit.ref: master
 io.openshift.build.image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8
986b28e
 io.openshift.build.source-location:
https://github.com/openshift/ruby-hello-world.git
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version:
8847438ba06307f86ac877465eadc835201241df
 io.openshift.expose-services: 8080:http
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 Container:
86e9a4a3c760271671ab913616c51c9f3cea846ca524bf07c04a6f6c9e103a76
 ContainerConfig:
 AttachStdout: true
 Cmd:
 - /bin/sh
 - -c
 - tar -C /tmp -xf - && /usr/libexec/s2i/assemble
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-
world.git

OpenShift Enterprise 3.2 Architecture

30

3.6. DEPLOYMENTS

3.6.1. Replication Controllers

A replication controller ensures that a specified number of replicas of a pod are running at all times. If
pods exit or are deleted, the replication controller acts to instantiate more up to the defined number.
Likewise, if there are more running than desired, it deletes as many as necessary to match the defined
amount.

A replication controller configuration consists of:

1. The number of replicas desired (which can be adjusted at runtime).

2. A pod definition to use when creating a replicated pod.

3. A selector for identifying managed pods.

A selector is a set of labels assigned to the pods that are managed by the replication controller. These
labels are included in the pod definition that the replication controller instantiates. The replication
controller uses the selector to determine how many instances of the pod are already running in order to
adjust as needed.

 - EXAMPLE=sample-app
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Hostname: ruby-sample-build-1-build
 Image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8
986b28e
 OpenStdin: true
 StdinOnce: true
 User: "1001"
 WorkingDir: /opt/app-root/src
 Created: 2016-01-29T13:40:00Z
 DockerVersion: 1.8.2.fc21
 Id: 9d7fd5e2d15495802028c569d544329f4286dcd1c9c085ff5699218dbaa69b43
 Parent:
57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Size: 441976279
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf
7dd13d

CHAPTER 3. CORE CONCEPTS

31

https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/

The replication controller does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this would require its replica count to be adjusted by an external auto-scaler.

A replication controller is a core Kubernetes object called ReplicationController.

The following is an example ReplicationController definition:

1. The number of copies of the pod to run.

2. The label selector of the pod to run.

3. A template for the pod the controller creates.

4. Labels on the pod should include those from the label selector.

5. The maximum name length after expanding any parameters is 63 characters.

3.6.2. Jobs

A job is similar to a replication controller, in that its purpose is to create pods for specified reasons. The
difference is that replication controllers are designed for pods that will be continuously running, whereas
jobs are for one-time pods. A job tracks any successful completions and when the specified amount of
completions have been reached, the job itself is completed.

The following example computes π to 2000 places, prints it out, then completes:

apiVersion: extensions/v1
kind: Job
metadata:
 name: pi
spec:
 selector:
 matchLabels:
 app: pi

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:

 replicas: 1 1

 selector: 2
 name: frontend

 template: 3
 metadata:

 labels: 4

 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

OpenShift Enterprise 3.2 Architecture

32

 template:
 metadata:
 name: pi
 labels:
 app: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: Never

See the Jobs topic for more information on how to use jobs.

3.6.3. Deployments and Deployment Configurations

Building on replication controllers, OpenShift Enterprise adds expanded support for the software
development and deployment lifecycle with the concept of deployments. In the simplest case, a
deployment just creates a new replication controller and lets it start up pods. However, OpenShift
Enterprise deployments also provide the ability to transition from an existing deployment of an image to a
new one and also define hooks to be run before or after creating the replication controller.

The OpenShift Enterprise DeploymentConfiguration object defines the following details of a
deployment:

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Life cycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages the
deployment (including scaling down the old replication controller, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the deployment
in order to retain its logs of the deployment. When a deployment is superseded by another, the previous
replication controller is retained to enable easy rollback if needed.

For detailed instructions on how to create and interact with deployments, refer to Deployments.

Here is an example DeploymentConfiguration definition with some omissions and callouts:

apiVersion: v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:

 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true

CHAPTER 3. CORE CONCEPTS

33

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-jobs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-deployments

1. A ConfigChange trigger causes a new deployment to be created any time the replication
controller template changes.

2. An ImageChange trigger causes a new deployment to be created each time a new version of
the backing image is available in the named image stream.

3. The default Rolling strategy makes a downtime-free transition between deployments.

3.7. ROUTES

3.7.1. Overview

An OpenShift Enterprise route exposes a service at a host name, like www.example.com, so that
external clients can reach it by name.

DNS resolution for a host name is handled separately from routing. Your administrator may have
configured a DNS wildcard entry that will resolve to the OpenShift Enterprise node that is running the
OpenShift Enterprise router. If you are using a different host name you may need to modify its DNS
records independently to resolve to the node that is running the router.

Each route consists of a name (limited to 63 characters), a service selector, and an optional security
configuration.

3.7.2. Routers

An OpenShift Enterprise administrator can deploy routers to nodes in an OpenShift Enterprise cluster,
which enable routes created by developers to be used by external clients. The routing layer in OpenShift
Enterprise is pluggable, and two available router plug-ins are provided and supported by default.

NOTE

See the Installation and Configuration guide for information on deploying a router.

A router uses the service selector to find the service and the endpoints backing the service. When both
router and service provide load balancing, OpenShift Enterprise uses the router load balancing. A routers
detects relevant changes in the IP addresses of its services, and adapts its configuration accordingly.
This is useful for custom routers to communicate modifications of API objects to an external routing
solution.

The path of a request starts with the DNS resolution of a host name to one or more routers. The
suggested method is to define a cloud domain with a wildcard DNS entry pointing to one or more virtual
IP (VIP) addresses backed by multiple router instances. Routes using names and addresses outside the
cloud domain require configuration of individual DNS entries.

When there are fewer VIP addresses than routers, the routers corresponding to the number of addresses

 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag
 name: hello-openshift:latest

 type: ImageChange 2
 strategy:

 type: Rolling 3

OpenShift Enterprise 3.2 Architecture

34

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#creating-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-deploy-router

are active and the rest are passive. A passive router is also known as a hot-standby router. For example,
with two VIP addresses and three routers, you have an "active-active-passive" configuration. See High
Availability for more information on router VIP configuration.

Routes can be sharded among the set of routers. Administrators can set up sharding on a cluster-wide
basis and users can set up sharding for the namespace in their project. Sharding allows the operator to
define multiple router groups. Each router in the group serves only a subset of traffic.

OpenShift Enterprise routers provide external host name mapping and load balancing of service end
points over protocols that pass distinguishing information directly to the router; the host name must be
present in the protocol in order for the router to determine where to send it.

Router plug-ins assume they can bind to host ports 80 (HTTP) and 443 (HTTPS), by default. This means
that routers must be placed on nodes where those ports are not otherwise in use. Alternatively, a router
can be configured to listen on other ports by setting the ROUTER_SERVICE_HTTP_PORT and
ROUTER_SERVICE_HTTPS_PORT environment variables.

Because a router binds to ports on the host node, only one router listening on those ports can be on each
node if the router uses host networking (the default). Cluster networking is configured such that all
routers can access all pods in the cluster.

Routers support the following protocols:

HTTP

HTTPS (with SNI)

WebSockets

TLS with SNI

NOTE

WebSocket traffic uses the same route conventions and supports the same TLS
termination types as other traffic.

3.7.2.1. Template Routers

A template router is a type of router that provides certain infrastructure information to the underlying
router implementation, such as:

A wrapper that watches endpoints and routes.

Endpoint and route data, which is saved into a consumable form.

Passing the internal state to a configurable template and executing the template.

Calling a reload script.

3.7.3. Available Router Plug-ins

The following router plug-ins are provided and supported in OpenShift Enterprise. Instructions on
deploying these routers are available in Deploying a Router.

3.7.3.1. HAProxy Template Router

CHAPTER 3. CORE CONCEPTS

35

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#configuring-a-highly-available-routing-service
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-deploy-router

The HAProxy template router implementation is the reference implementation for a template router plug-
in. It uses the openshift3/ose-haproxy-router repository to run an HAProxy instance alongside the
template router plug-in.

The following diagram illustrates how data flows from the master through the plug-in and finally into an
HAProxy configuration:

Figure 3.1. HAProxy Router Data Flow

Sticky Sessions

Implementing sticky sessions is up to the underlying router configuration. The default HAProxy template
implements sticky sessions using the balance source directive which balances based on the source
IP. In addition, the template router plug-in provides the service name and namespace to the underlying
implementation. This can be used for more advanced configuration such as implementing stick-tables
that synchronize between a set of peers.

Specific configuration for this router implementation is stored in the haproxy-config.template file
located in the /var/lib/haproxy/conf directory of the router container.

NOTE

The balance source directive does not distinguish between external client IP
addresses; because of the NAT configuration, the originating IP address (HAProxy
remote) is the same. Unless the HAProxy router is running with hostNetwork: true,
all external clients will be routed to a single pod.

OpenShift Enterprise 3.2 Architecture

36

3.7.3.2. F5 Router

NOTE

The F5 router plug-in is available starting in OpenShift Enterprise 3.0.2.

The F5 router plug-in integrates with an existing F5 BIG-IP® system in your environment. F5 BIG-IP®
version 11.4 or newer is required in order to have the F5 iControl REST API. The F5 router supports
unsecured, edge terminated, re-encryption terminated, and passthrough terminated routes matching on
HTTP vhost and request path.

The F5 router has feature parity with the HAProxy template router, and has additional features over the
F5 BIG-IP® support in OpenShift Enterprise 2. Compared with the routing-daemon used in earlier
versions, the F5 router additionally supports:

path-based routing (using policy rules),

re-encryption (implemented using client and server SSL profiles), and

passthrough of encrypted connections (implemented using an iRule that parses the SNI protocol
and uses a data group that is maintained by the F5 router for the servername lookup).

NOTE

Passthrough routes are a special case: path-based routing is technically impossible with
passthrough routes because F5 BIG-IP® itself does not see the HTTP request, so it
cannot examine the path. The same restriction applies to the template router; it is a
technical limitation of passthrough encryption, not a technical limitation of OpenShift
Enterprise.

Routing Traffic to Pods Through the SDN

Because F5 BIG-IP® is external to the OpenShift Enterprise SDN, a cluster administrator must create a
peer-to-peer tunnel between F5 BIG-IP® and a host that is on the SDN, typically an OpenShift Enterprise
node host. This ramp node can be configured as unschedulable for pods so that it will not be doing
anything except act as a gateway for the F5 BIG-IP® host. It is also possible to configure multiple such
hosts and use the OpenShift Enterprise ipfailover feature for redundancy; the F5 BIG-IP® host would
then need to be configured to use the ipfailover VIP for its tunnel’s remote endpoint.

F5 Integration Details

The operation of the F5 router is similar to that of the OpenShift Enterprise routing-daemon used in
earlier versions. Both use REST API calls to:

create and delete pools,

add endpoints to and delete them from those pools, and

configure policy rules to route to pools based on vhost.

Both also use scp and ssh commands to upload custom TLS/SSL certificates to F5 BIG-IP®.

The F5 router configures pools and policy rules on virtual servers as follows:

When a user creates or deletes a route on OpenShift Enterprise, the router creates a pool to F5

CHAPTER 3. CORE CONCEPTS

37

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#establishing-a-tunnel-using-a-ramp-node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#marking-nodes-as-unschedulable-or-schedulable

1 1 1

BIG-IP® for the route (if no pool already exists) and adds a rule to, or deletes a rule from, the
policy of the appropriate vserver: the HTTP vserver for non-TLS routes, or the HTTPS vserver
for edge or re-encrypt routes. In the case of edge and re-encrypt routes, the router also uploads
and configures the TLS certificate and key. The router supports host- and path-based routes.

NOTE

Passthrough routes are a special case: to support those, it is necessary to write
an iRule that parses the SNI ClientHello handshake record and looks up the
servername in an F5 data-group. The router creates this iRule, associates the
iRule with the vserver, and updates the F5 data-group as passthrough routes are
created and deleted. Other than this implementation detail, passthrough routes
work the same way as other routes.

When a user creates a service on OpenShift Enterprise, the router adds a pool to F5 BIG-IP® (if
no pool already exists). As endpoints on that service are created and deleted, the router adds
and removes corresponding pool members.

When a user deletes the route and all endpoints associated with a particular pool, the router
deletes that pool.

3.7.4. Route Host Names

In order for services to be exposed externally, an OpenShift Enterprise route allows you to associate a
service with an externally-reachable host name. This edge host name is then used to route traffic to the
service.

When two routes claim the same host, the oldest route wins. If additional routes with different path fields
are defined in the same namespace, those paths will be added. If multiple routes with the same path are
used, the oldest takes priority.

Example 3.7. A Route with a Specified Host:

Specifies the externally-reachable host name used to expose a service.

Example 3.8. A Route Without a Host:

apiVersion: v1
kind: Route
metadata:
 name: host-route
spec:

 host: www.example.com 1
 to:
 kind: Service
 name: service-name

apiVersion: v1
kind: Route
metadata:
 name: no-route-hostname
spec:

OpenShift Enterprise 3.2 Architecture

38

1

If a host name is not provided as part of the route definition, then OpenShift Enterprise automatically
generates one for you. The generated host name is of the form:

<route-name>[-<namespace>].<suffix>

The following example shows the OpenShift Enterprise-generated host name for the above configuration
of a route without a host added to a namespace mynamespace:

Example 3.9. Generated Host Name

no-route-hostname-mynamespace.router.default.svc.cluster.local 1

The generated host name suffix is the default routing subdomain
router.default.svc.cluster.local.

A cluster administrator can also customize the suffix used as the default routing subdomain for their
environment.

3.7.5. Route Types

Routes can be either secured or unsecured. Secure routes provide the ability to use several types of TLS
termination to serve certificates to the client. Routers support edge, passthrough, and re-encryption
termination.

Example 3.10. Unsecured Route Object YAML Definition

Unsecured routes are simplest to configure, as they require no key or certificates, but secured routes
offer security for connections to remain private.

A secured route is one that specifies the TLS termination of the route. The available types of termination
are described below.

3.7.6. Path Based Routes

Path based routes specify a path component that can be compared against a URL (which requires that

 to:
 kind: Service
 name: service-name

apiVersion: v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 to:
 kind: Service
 name: service-name

CHAPTER 3. CORE CONCEPTS

39

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#customizing-the-default-routing-subdomain

1

the traffic for the route be HTTP based) such that multiple routes can be served using the same
hostname, each with a different path. Routers should match routes based on the most specific path to
the least; however, this depends on the router implementation. The following table shows example
routes and their accessibility:

Table 3.1. Route Availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/test Yes (Matched by the host, not the
route)

www.example.com Yes

Example 3.11. An Unsecured Route with a Path:

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

3.7.7. Secured Routes

Secured routes specify the TLS termination of the route and, optionally, provide a key and certificate(s).

apiVersion: v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com

 path: "/test" 1
 to:
 kind: Service
 name: service-name

OpenShift Enterprise 3.2 Architecture

40

1 2

3

4

5

6

NOTE

TLS termination in OpenShift Enterprise relies on SNI for serving custom certificates. Any
non-SNI traffic received on port 443 is handled with TLS termination and a default
certificate (which may not match the requested hostname, resulting in validation errors).

Secured routes can use any of the following three types of secure TLS termination.

Edge Termination

With edge termination, TLS termination occurs at the router, prior to proxying traffic to its destination. TLS
certificates are served by the front end of the router, so they must be configured into the route, otherwise
the router’s default certificate will be used for TLS termination.

Example 3.12. A Secured Route Using Edge Termination

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The key field is the contents of the PEM format key file.

The certificate field is the contents of the PEM format certificate file.

An optional CA certificate may be required to establish a certificate chain for validation.

Because TLS is terminated at the router, connections from the router to the endpoints over the internal
network are not encrypted.

apiVersion: v1
kind: Route
metadata:

 name: route-edge-secured 1
spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name 2
 tls:

 termination: edge 3

 key: |- 4
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----

 certificate: |- 5
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

 caCertificate: |- 6
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

CHAPTER 3. CORE CONCEPTS

41

https://en.wikipedia.org/wiki/Server_Name_Indication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#using-wildcard-certificates

1 2

3

4

1 2

3

4

Edge-terminated routes can specify an insecureEdgeTerminationPolicy that enables traffic on
insecure schemes (HTTP) to be disabled, allowed or redirected. The allowed values for
insecureEdgeTerminationPolicy are: None or empty (for disabled), Allow or Redirect. The
default insecureEdgeTerminationPolicy is to disable traffic on the insecure scheme. A common
use case is to allow content to be served via a secure scheme but serve the assets (example images,
stylesheets and javascript) via the insecure scheme.

Example 3.13. A Secured Route Using Edge Termination Allowing HTTP Traffic

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The insecure policy to allow requests sent on an insecure scheme HTTP.

Example 3.14. A Secured Route Using Edge Termination Redirecting HTTP Traffic to HTTPS

The name of the object, which is limited to 63 characters.

The termination field is edge for edge termination.

The insecure policy to redirect requests sent on an insecure scheme HTTP to a secure scheme
HTTPS.

apiVersion: v1
kind: Route
metadata:

 name: route-edge-secured-allow-insecure 1
spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name 2
 tls:

 termination: edge 3

 insecureEdgeTerminationPolicy: Allow 4
 [...]

apiVersion: v1
kind: Route
metadata:

 name: route-edge-secured-redirect-insecure 1
spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name 2
 tls:

 termination: edge 3

 insecureEdgeTerminationPolicy: Redirect 4
 [...]

OpenShift Enterprise 3.2 Architecture

42

1 2

3

Passthrough Termination

With passthrough termination, encrypted traffic is sent straight to the destination without the router
providing TLS termination. Therefore no key or certificate is required.

Example 3.15. A Secured Route Using Passthrough Termination

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. No other encryption fields are needed.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is currently
the only method that can support requiring client certificates (also known as two-way authentication).

Re-encryption Termination

Re-encryption is a variation on edge termination where the router terminates TLS with a certificate, then
re-encrypts its connection to the endpoint which may have a different certificate. Therefore the full path of
the connection is encrypted, even over the internal network. The router uses health checks to determine
the authenticity of the host.

Example 3.16. A Secured Route Using Re-Encrypt Termination

apiVersion: v1
kind: Route
metadata:

 name: route-passthrough-secured 1
spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name 2
 tls:

 termination: passthrough 3

apiVersion: v1
kind: Route
metadata:

 name: route-pt-secured 1
spec:
 host: www.example.com
 to:
 kind: Service

 name: service-name 2
 tls:

 termination: reencrypt 3
 key: [as in edge termination]
 certificate: [as in edge termination]
 caCertificate: [as in edge termination]

 destinationCACertificate: |- 4

CHAPTER 3. CORE CONCEPTS

43

1 2

3

4

The name of the object, which is limited to 63 characters.

The termination field is set to reencrypt. Other fields are as in edge termination.

The destinationCACertificate field specifies a CA certificate to validate the endpoint
certificate, securing the connection from the router to the destination. This field is required, but
only for re-encryption.

3.7.8. Router Sharding

In OpenShift Enterprise, each route can have any number of labels in its metadata field. A router uses
selectors (also known as a selection expression) to select a subset of routes from the entire pool of
routes to serve. A selection expression can also involve labels on the route’s namespace. The selected
routes form a router shard. You can create and modify router shards independently from the routes,
themselves.

This design supports traditional sharding as well as overlapped sharding. In traditional sharding, the
selection results in no overlapping sets and a route belongs to exactly one shard. In overlapped sharding,
the selection results in overlapping sets and a route can belong to many different shards. For example, a
single route may belong to a SLA=high shard (but not SLA=medium or SLA=low shards), as well as a
geo=west shard (but not a geo=east shard).

Another example of overlapped sharding is a set of routers that select based on namespace of the route:

Router Selection Namespaces

router-1 A* — J* A*, B*, C*, D*, E*, F*, G*, H*, I*, J*

router-2 K* — T* K*, L*, M*, N*, O*, P*, Q*, R*, S*, T*

router-3 Q* — Z* Q*, R*, S*, T*, U*, V*, W*, X*, Y*, Z*

Both router-2 and router-3 serve routes that are in the namespaces Q*, R*, S*, T*. To change this
example from overlapped to traditional sharding, we could change the selection of router-2 to K* 
— P*, which would eliminate the overlap.

When routers are sharded, a given route is bound to zero or more routers in the group. The route binding
ensures uniqueness of the route across the shard. Uniqueness allows secure and non-secure versions of
the same route to exist within a single shard. This implies that routes now have a visible life cycle that
moves from created to bound to active.

In the sharded environment the first route to hit the shard reserves the right to exist there indefinitely,
even across restarts.

During a green/blue deployment a route may be be selected in multiple routers. An OpenShift Enterprise
application administrator may wish to bleed traffic from one version of the application to another and then
turn off the old version.

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Enterprise 3.2 Architecture

44

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#creating-router-shards
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#modifying-router-shards

Sharding can be done by the administrator at a cluster level and by the user at a project/namespace
level. When namespace labels are used, the service account for the router must have cluster-
reader permission to permit the router to access the labels in the namespace.

NOTE

For two or more routes that claim the same host name, the resolution order is based on
the age of the route and the oldest route would win the claim to that host. In the case of
sharded routers, routes are selected based on their labels matching the router’s selection
criteria. There is no consistent way to determine when labels are added to a route. So if
an older route claiming an existing host name is "re-labelled" to match the router’s
selection criteria, it will replace the existing route based on the above mentioned
resolution order (oldest route wins).

3.8. TEMPLATES

3.8.1. Overview

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Enterprise. The objects to create can include anything that users have
permission to create within a project, for example services, build configurations, and deployment
configurations. A template may also define a set of labels to apply to every object defined in the template.

Example 3.17. A Simple Template Object Definition (YAML)

apiVersion: v1
kind: Template
metadata:

 name: redis-template 1
 annotations:

 description: "Description" 2

 iconClass: "icon-redis" 3

 tags: "database,nosql" 4

objects: 5
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD

 value: ${REDIS_PASSWORD} 6
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP

parameters: 7
- description: Password used for Redis authentication

 from: '[A-Z0-9]{8}' 8
 generate: expression

CHAPTER 3. CORE CONCEPTS

45

1

2

3

4

5

6

7

8

9

The name of the template

Optional description for the template

The icon that will be shown in the UI for this template; the name of a CSS class defined in the
web console source (search content for "openshift-logos-icon").

A list of arbitrary tags that this template will have in the UI

A list of objects the template will create (in this case, a single pod)

Parameter value that will be substituted during processing

A list of parameters for the template

An expression used to generate a random password if not specified

A list of labels to apply to all objects on create

A template describes a set of related object definitions to be created together, as well as a set of
parameters for those objects. For example, an application might consist of a frontend web application
backed by a database; each consists of a service object and deployment configuration object, and they
share a set of credentials (parameters) for the frontend to authenticate to the backend. The template can
be processed, either specifying parameters or allowing them to be automatically generated (for example,
a unique DB password), in order to instantiate the list of objects in the template as a cohesive
application.

Templates can be processed from a definition in a file or from an existing OpenShift Enterprise API
object. Cluster administrators can define standard templates in the API that are available for all users to
process, while users can define their own templates within their own projects.

Administrators and developers can interact with templates using the CLI and web console.

3.8.2. Parameters

Templates allow you to define parameters which take on a value. That value is then substituted wherever
the parameter is referenced. References can be defined in any text field in the objects list field.

Each parameter describes a variable and the variable value which can be referenced in any text field in
the objects list field. During processing, the value can be set explicitly or it can be generated by
OpenShift Enterprise.

An explicit value can be set as the parameter default using the value field:

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

 name: REDIS_PASSWORD

labels: 9
 redis: master

OpenShift Enterprise 3.2 Architecture

46

https://raw.githubusercontent.com/openshift/origin/master/pkg/assets/bindata.go
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#creating-instantapp-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#uploading-a-template
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-templates

The generate field can be set to 'expression' to specify generated values. The from field should
specify the pattern for generating the value using a pseudo regular expression syntax:

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

In the example above, processing will generate a random password 12 characters long consisting of all
upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, and \a
modifiers:

[\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

[\d]{10} produces 10 numbers. This is equal to [0-9]{10}.

[\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

CHAPTER 3. CORE CONCEPTS

47

CHAPTER 4. ADDITIONAL CONCEPTS

4.1. NETWORKING

Kubernetes ensures that pods are able to network with each other, and allocates each pod an IP address
from an internal network. This ensures all containers within the pod behave as if they were on the same
host. Giving each pod its own IP address means that pods can be treated like physical hosts or virtual
machines in terms of port allocation, networking, naming, service discovery, load balancing, application
configuration, and migration.

Creating links between pods is unnecessary. However, it is not recommended that you have a pod talk to
another directly by using the IP address. Instead, we recommend that you create a service, then interact
with the service.

4.1.1. OpenShift Enterprise DNS

If you are running multiple services, such as frontend and backend services for use with multiple pods, in
order for the frontend pods to communicate with the backend services, environment variables are
created for user names, service IP, and more. If the service is deleted and recreated, a new IP address
can be assigned to the service, and requires the frontend pods to be recreated in order to pick up the
updated values for the service IP environment variable. Additionally, the backend service has to be
created before any of the frontend pods to ensure that the service IP is generated properly and that it
can be provided to the frontend pods as an environment variable.

For this reason, OpenShift Enterprise has a built-in DNS so that the services can be reached by the
service DNS as well as the service IP/port. OpenShift Enterprise supports split DNS by running SkyDNS
on the master that answers DNS queries for services. The master listens to port 53 by default.

When the node starts, the following message indicates the Kubelet is correctly resolved to the master:

0308 19:51:03.118430 4484 node.go:197] Started Kubelet for node
openshiftdev.local, server at 0.0.0.0:10250
I0308 19:51:03.118459 4484 node.go:199] Kubelet is setting 10.0.2.15
as a
DNS nameserver for domain "local"

If the second message does not appear, the Kubernetes service may not be available.

On a node host, each container’s nameserver has the master name added to the front, and the default
search domain for the container will be .<pod_namespace>.cluster.local. The container will then
direct any nameserver queries to the master before any other nameservers on the node, which is the
default behavior for Docker-formatted containers. The master will answer queries on the
.cluster.local domain that have the following form:

Table 4.1. DNS Example Names

Object Type Example

Default <pod_namespace>.cluster.local

Services <service>.<pod_namespace>.svc.cluster.local

Endpoints <name>.<namespace>.endpoints.cluster.local

OpenShift Enterprise 3.2 Architecture

48

https://github.com/skynetservices/skydns

This prevents having to restart frontend pods in order to pick up new services, which creates a new IP for
the service. This also removes the need to use environment variables, as pods can use the service DNS.
Also, as the DNS does not change, you can reference database services as db.local in config files.
Wildcard lookups are also supported, as any lookups resolve to the service IP, and removes the need to
create the backend service before any of the frontend pods, since the service name (and hence DNS) is
established upfront.

This DNS structure also covers headless services, where a portal IP is not assigned to the service and
the kube-proxy does not load-balance or provide routing for its endpoints. Service DNS can still be used
and responds with multiple A records, one for each pod of the service, allowing the client to round-robin
between each pod.

4.1.2. Network Plugins

OpenShift Enterprise supports the same plugin model as Kubernetes for networking pods. The following
network plugins are currently supported by OpenShift Enterprise.

4.1.3. OpenShift Enterprise SDN

OpenShift Enterprise deploys a software-defined networking (SDN) approach for connecting pods in an
OpenShift Enterprise cluster. The OpenShift Enterprise SDN connects all pods across all node hosts,
providing a unified cluster network.

OpenShift Enterprise SDN is automatically installed and configured as part of the Ansible-based
installation procedure. Further administration should not be required; however, further details on the
design and operation of OpenShift Enterprise SDN are provided for those who are curious or need to
troubleshoot problems.

4.2. OPENSHIFT SDN

4.2.1. Overview

OpenShift Enterprise uses a software-defined networking (SDN) approach to provide a unified cluster
network that enables communication between pods across the OpenShift Enterprise cluster. This pod
network is established and maintained by the OpenShift Enterprise SDN, which configures an overlay
network using Open vSwitch (OVS).

OpenShift Enterprise SDN provides two SDN plug-ins for configuring the pod network:

The ovs-subnet plug-in is the original plug-in which provides a "flat" pod network where every
pod can communicate with every other pod and service.

The ovs-multitenant plug-in provides OpenShift Enterprise project level isolation for pods and
services. Each project receives a unique Virtual Network ID (VNID) that identifies traffic from
pods assigned to the project. Pods from different projects cannot send packets to or receive
packets from pods and services of a different project.
However, projects which receive VNID 0 are more privileged in that they are allowed to
communicate with all other pods, and all other pods can communicate with them. In OpenShift
Enterprise clusters, the default project has VNID 0. This facilitates certain services like the load
balancer, etc. to communicate with all other pods in the cluster and vice versa.

Following is a detailed discussion of the design and operation of OpenShift Enterprise SDN, which may
be useful for troubleshooting.

CHAPTER 4. ADDITIONAL CONCEPTS

49

NOTE

Information on configuring the SDN on masters and nodes is available in Configuring the
SDN.

4.2.2. Design on Masters

On an OpenShift Enterprise master, OpenShift Enterprise SDN maintains a registry of nodes, stored in
etcd. When the system administrator registers a node, OpenShift Enterprise SDN allocates an unused
subnet from the cluster network and stores this subnet in the registry. When a node is deleted, OpenShift
Enterprise SDN deletes the subnet from the registry and considers the subnet available to be allocated
again.

In the default configuration, the cluster network is the 10.128.0.0/14 network (i.e. 10.128.0.0 -
10.131.255.255), and nodes are allocated /23 subnets (i.e., 10.128.0.0/23, 10.128.2.0/23, 10.128.4.0/23,
and so on). This means that the cluster network has 512 subnets available to assign to nodes, and a
given node is allocated 510 addresses that it can assign to the containers running on it. The size and
address range of the cluster network are configurable, as is the host subnet size.

Note that OpenShift Enterprise SDN on a master does not configure the local (master) host to have
access to any cluster network. Consequently, a master host does not have access to pods via the cluster
network, unless it is also running as a node.

When using the ovs-multitenant plug-in, the OpenShift Enterprise SDN master also watches for the
creation and deletion of projects, and assigns VXLAN VNIDs to them, which will be used later by the
nodes to isolate traffic correctly.

4.2.3. Design on Nodes

On a node, OpenShift Enterprise SDN first registers the local host with the SDN master in the
aforementioned registry so that the master allocates a subnet to the node.

Next, OpenShift Enterprise SDN creates and configures six network devices:

br0, the OVS bridge device that pod containers will be attached to. OpenShift Enterprise SDN
also configures a set of non-subnet-specific flow rules on this bridge. The ovs-multitenant plug-
in does this immediately.

lbr0, a Linux bridge device, which is configured as the Docker service’s bridge and given the
cluster subnet gateway address (eg, 10.128.x.1/23).

tun0, an OVS internal port (port 2 on br0). This also gets assigned the cluster subnet gateway
address, and is used for external network access. OpenShift Enterprise SDN configures netfilter
and routing rules to enable access from the cluster subnet to the external network via NAT.

vlinuxbr and vovsbr, two Linux peer virtual Ethernet interfaces. vlinuxbr is added to lbr0 and
vovsbr is added to br0 (port 9 with the ovs-subnet plug-in and port 3 with the ovs-multitenant
plug-in) to provide connectivity for containers created directly with the Docker service outside of
OpenShift Enterprise.

vxlan0, the OVS VXLAN device (port 1 on br0), which provides access to containers on remote
nodes.

Each time a pod is started on the host, OpenShift Enterprise SDN:

OpenShift Enterprise 3.2 Architecture

50

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-configuring-sdn

1. moves the host side of the pod’s veth interface pair from the lbr0 bridge (where the Docker
service placed it when starting the container) to the OVS bridge br0.

2. adds OpenFlow rules to the OVS database to route traffic addressed to the new pod to the
correct OVS port.

3. in the case of the ovs-multitenant plug-in, adds OpenFlow rules to tag traffic coming from the
pod with the pod’s VNID, and to allow traffic into the pod if the traffic’s VNID matches the pod’s
VNID (or is the privileged VNID 0). Non-matching traffic is filtered out by a generic rule.

The pod is allocated an IP address in the cluster subnet by the Docker service itself because the Docker
service is told to use the lbr0 bridge, which OpenShift Enterprise SDN has assigned the cluster gateway
address (eg. 10.128.x.1/23). Note that the tun0 is also assigned the cluster gateway IP address because
it is the default gateway for all traffic destined for external networks, but these two interfaces do not
conflict because the lbr0 interface is only used for IPAM and no OpenShift Enterprise SDN pods are
connected to it.

OpenShift Enterprise SDN nodes also watch for subnet updates from the SDN master. When a new
subnet is added, the node adds OpenFlow rules on br0 so that packets with a destination IP address in
the remote subnet go to vxlan0 (port 1 on br0) and thus out onto the network. The ovs-subnet plug-in
sends all packets across the VXLAN with VNID 0, but the ovs-multitenant plug-in uses the appropriate
VNID for the source container.

4.2.4. Packet Flow

Suppose you have two containers, A and B, where the peer virtual Ethernet device for container A’s eth0
is named vethA and the peer for container B’s eth0 is named vethB.

NOTE

If the Docker service’s use of peer virtual Ethernet devices is not already familiar to you,
review Docker’s advanced networking documentation.

Now suppose first that container A is on the local host and container B is also on the local host. Then the
flow of packets from container A to container B is as follows:

eth0 (in A’s netns) → vethA → br0 → vethB → eth0 (in B’s netns)

Next, suppose instead that container A is on the local host and container B is on a remote host on the
cluster network. Then the flow of packets from container A to container B is as follows:

eth0 (in A’s netns) → vethA → br0 → vxlan0 → network [1] → vxlan0 → br0 → vethB → eth0 (in B’s
netns)

Finally, if container A connects to an external host, the traffic looks like:

eth0 (in A’s netns) → vethA → br0 → tun0 → (NAT) → eth0 (physical device) → Internet

Almost all packet delivery decisions are performed with OpenFlow rules in the OVS bridge br0, which
simplifies the plug-in network architecture and provides flexible routing. In the case of the ovs-
multitenant plug-in, this also provides enforceable network isolation.

4.2.5. Network Isolation

You can use the ovs-multitenant plug-in to achieve network isolation. When a packet exits a pod

CHAPTER 4. ADDITIONAL CONCEPTS

51

https://docs.docker.com/engine/userguide/networking/dockernetworks/

assigned to a non-default project, the OVS bridge br0 tags that packet with the project’s assigned VNID.
If the packet is directed to another IP address in the node’s cluster subnet, the OVS bridge only allows
the packet to be delivered to the destination pod if the VNIDs match.

If a packet is received from another node via the VXLAN tunnel, the Tunnel ID is used as the VNID, and
the OVS bridge only allows the packet to be delivered to a local pod if the tunnel ID matches the
destination pod’s VNID.

Packets destined for other cluster subnets are tagged with their VNID and delivered to the VXLAN tunnel
with a tunnel destination address of the node owning the cluster subnet.

As described before, VNID 0 is privileged in that traffic with any VNID is allowed to enter any pod
assigned VNID 0, and traffic with VNID 0 is allowed to enter any pod. Only the default OpenShift
Enterprise project is assigned VNID 0; all other projects are assigned unique, isolation-enabled VNIDs.
Cluster administrators can optionally control the pod network for the project using the administrator CLI.

4.3. AUTHENTICATION

4.3.1. Overview

The authentication layer identifies the user associated with requests to the OpenShift Enterprise API.
The authorization layer then uses information about the requesting user to determine if the request
should be allowed.

As an administrator, you can configure authentication using a master configuration file.

4.3.2. Users and Groups

A user in OpenShift Enterprise is an entity that can make requests to the OpenShift Enterprise API.
Typically, this represents the account of a developer or administrator that is interacting with OpenShift
Enterprise.

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups
are useful when managing authorization policies to grant permissions to multiple users at once, for
example allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are
automatically provisioned by OpenShift. These can be seen when viewing cluster bindings.

In the default set of virtual groups, note the following in particular:

Virtual Group Description

system:authenticated Automatically associated with all authenticated users.

system:authenticated:oaut
h

Automatically associated with all users authenticated with an OAuth access
token.

system:unauthenticated Automatically associated with all unauthenticated users.

4.3.3. API Authentication

OpenShift Enterprise 3.2 Architecture

52

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-pod-network
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-configuring-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-master-node-configuration
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-manage-authorization-policy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#viewing-cluster-bindings

Requests to the OpenShift Enterprise API are authenticated using the following methods:

OAuth Access Tokens

Obtained from the OpenShift Enterprise OAuth server using the
<master>/oauth/authorize and <master>/oauth/token endpoints.

Sent as an Authorization: Bearer… ​ header or an access_token=… ​ query parameter

X.509 Client Certificates

Requires a HTTPS connection to the API server.

Verified by the API server against a trusted certificate authority bundle.

The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer
with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous
virtual user and the system:unauthenticated virtual group to the request. This allows the
authorization layer to determine which requests, if any, an anonymous user is allowed to make.

See the REST API Overview for more information and examples.

4.3.4. OAuth

The OpenShift Enterprise master includes a built-in OAuth server. Users obtain OAuth access tokens to
authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to
determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns the
token for use.

OAuth Clients

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The
following OAuth clients are automatically created when starting the OpenShift Enterprise API:

OAuth Client Usage

openshift-web-console Requests tokens for the web console.

openshift-browser-client Requests tokens at
<master>/oauth/token/request with a
user-agent that can handle interactive logins.

openshift-challenging-client Requests tokens with a user-agent that can handle
WWW-Authenticate challenges.

CHAPTER 4. ADDITIONAL CONCEPTS

53

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/rest_api_reference/#rest-api-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-configuring-authentication

1

2

3

To register additional clients:

$ oc create -f <(echo '
{
 "kind": "OAuthClient",
 "apiVersion": "v1",
 "metadata": {

 "name": "demo" 1
 },

 "secret": "...", 2
 "redirectURIs": [

 "http://www.example.com/" 3
]
}')

The name of the OAuth client is used as the client_id parameter when making requests to
<master>/oauth/authorize and <master>/oauth/token.

The secret is used as the client_secret parameter when making requests to
<master>/oauth/token.

The redirect_uri parameter specified in requests to <master>/oauth/authorize and
<master>/oauth/token must be equal to (or prefixed by) one of the URIs in redirectURIs.

Integrations

All requests for OAuth tokens involve a request to <master>/oauth/authorize. Most authentication
integrations place an authenticating proxy in front of this endpoint, or configure OpenShift Enterprise to
validate credentials against a backing identity provider. Requests to <master>/oauth/authorize
can come from user-agents that cannot display interactive login pages, such as the CLI. Therefore,
OpenShift Enterprise supports authenticating using a WWW-Authenticate challenge in addition to
interactive login flows.

If an authenticating proxy is placed in front of the <master>/oauth/authorize endpoint, it should
send unauthenticated, non-browser user-agents WWW-Authenticate challenges, rather than displaying
an interactive login page or redirecting to an interactive login flow.

NOTE

To prevent cross-site request forgery (CSRF) attacks against browser clients, Basic
authentication challenges should only be sent if a X-CSRF-Token header is present on
the request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if
OpenShift Enterprise is configured to use an identity provider that does not support
WWW-Authenticate challenges, users can visit <master>/oauth/token/request
using a browser to obtain an access token manually.

Obtaining OAuth Tokens

The OAuth server supports standard authorization code grant and the implicit grant OAuth authorization
flows.

OpenShift Enterprise 3.2 Architecture

54

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-configuring-authentication
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.2

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id
configured to request WWW-Authenticate challenges (like openshift-challenging-client), these
are the possible server responses from /oauth/authorize, and how they should be handled:

Status Content Client response

302 Location header containing an
access_token parameter in the URL
fragment (RFC 4.2.2)

Use the access_token value as the OAuth
token

302 Location header containing an error
query parameter (RFC 4.1.2.1)

Fail, optionally surfacing the error (and
optional error_description) query
values to the user

302 Other Location header Follow the redirect, and process the result
using these rules

401 WWW-Authenticate header present Respond to challenge if type is recognized
(e.g. Basic, Negotiate, etc), resubmit
request, and process the result using these
rules

401 WWW-Authenticate header missing No challenge authentication is possible. Fail
and show response body (which might contain
links or details on alternate methods to obtain
an OAuth token)

Other Other Fail, optionally surfacing response body to the
user

4.4. AUTHORIZATION

4.4.1. Overview

Authorization policies determine whether a user is allowed to perform a given action within a project. This
allows platform administrators to use the cluster policy to control who has various access levels to the
OpenShift Enterprise platform itself and all projects. It also allows developers to use local policy to
control who has access to their projects. Note that authorization is a separate step from authentication,
which is more about determining the identity of who is taking the action.

Authorization is managed using:

Rules Sets of permitted verbs on a set of objects. For example, whether something can create
pods.

Roles Collections of rules. Users and groups can be associated with, or bound to, multiple roles at the
same time.

Bindings Associations between users and/or groups with a role.

CHAPTER 4. ADDITIONAL CONCEPTS

55

https://tools.ietf.org/html/rfc6749#section-4.2.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

Cluster administrators can visualize rules, roles, and bindings using the CLI. For example, consider the
following excerpt from viewing a policy, showing rule sets for the admin and basic-user default roles:

admin Verbs Resources Resource Names Extension
 [create delete get list update watch] [projects
resourcegroup:exposedkube resourcegroup:exposedopenshift
resourcegroup:granter secrets] []
 [get list watch] [resourcegroup:allkube resourcegroup:allkube-status
resourcegroup:allopenshift-status resourcegroup:policy] []
basic-user Verbs Resources Resource Names Extension
 [get] [users] [~]
 [list] [projectrequests] []
 [list] [projects] []
 [create] [subjectaccessreviews] []
IsPersonalSubjectAccessReview

The following excerpt from viewing policy bindings shows the above roles bound to various users and
groups:

RoleBinding[admins]:
 Role: admin
 Users: [alice system:admin]
 Groups: []
RoleBinding[basic-user]:
 Role: basic-user
 Users: [joe]
 Groups: [devel]

The relationships between the the policy roles, policy bindings, users, and developers are illustrated
below.

OpenShift Enterprise 3.2 Architecture

56

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#viewing-roles-and-bindings

4.4.2. Evaluating Authorization

Several factors are combined to make the decision when OpenShift Enterprise evaluates authorization:

Identity In the context of authorization, both the user name and list of groups the user belongs to.

CHAPTER 4. ADDITIONAL CONCEPTS

57

Action The action being performed. In most cases, this consists of:

Project The project being accessed.

Verb Can be get, list, create, update, delete, deletecollection
or watch.

Resource
Name

The API endpoint being accessed.

Bindings The full list of bindings.

OpenShift Enterprise evaluates authorizations using the following steps:

1. The identity and the project-scoped action is used to find all bindings that apply to the user or
their groups.

2. Bindings are used to locate all the roles that apply.

3. Roles are used to find all the rules that apply.

4. The action is checked against each rule to find a match.

5. If no matching rule is found, the action is then denied by default.

4.4.3. Cluster Policy and Local Policy

There are two levels of authorization policy:

Cluster policy Roles and bindings that are applicable across all projects. Roles that exist in the cluster
policy are considered cluster roles. Cluster bindings can only reference cluster roles.

Local policy Roles and bindings that are scoped to a given project. Roles that exist only in a local
policy are considered local roles . Local bindings can reference both cluster and local
roles.

This two-level hierarchy allows re-usability over multiple projects through the cluster policy while allowing
customization inside of individual projects through local policies.

During evaluation, both the cluster bindings and the local bindings are used. For example:

1. Cluster-wide "allow" rules are checked.

2. Locally-bound "allow" rules are checked.

3. Deny by default.

4.4.4. Roles

OpenShift Enterprise 3.2 Architecture

58

Roles are collections of policy rules, which are sets of permitted verbs that can be performed on a set of
resources. OpenShift Enterprise includes a set of default roles that can be added to users and groups in
the cluster policy or in a local policy.

Default Role Description

admin A project manager. If used in a local binding, an admin user will have rights to view any
resource in the project and modify any resource in the project except for role creation
and quota. If the cluster-admin wants to allow an admin to modify roles, the cluster-
admin must create a project-scoped Policy object using JSON.

basic-user A user that can get basic information about projects and users.

cluster-admin A super-user that can perform any action in any project. When granted to a user within a
local policy, they have full control over quota and roles and every action on every
resource in the project.

cluster-status A user that can get basic cluster status information.

edit A user that can modify most objects in a project, but does not have the power to view or
modify roles or bindings.

self-provisioner A user that can create their own projects.

view A user who cannot make any modifications, but can see most objects in a project. They
cannot view or modify roles or bindings.

TIP

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Cluster administrators can visualize these roles, including a matrix of the verbs and resources each are
associated using the CLI to view the cluster roles. Additional system: roles are listed as well, which are
used for various OpenShift Enterprise system and component operations.

By default in a local policy, only the binding for the admin role is immediately listed when using the CLI to
view local bindings. However, if other default roles are added to users and groups within a local policy,
they become listed in the CLI output, as well.

If you find that these roles do not suit you, a cluster-admin user can create a policyBinding object
named <projectname>:default with the CLI using a JSON file. This allows the project admin to
bind users to roles that are defined only in the <projectname> local policy.

IMPORTANT

The cluster- role assigned by the project administrator is limited in a project. It is not
the same cluster- role granted by the cluster-admin or system:admin.

Cluster roles are roles defined at the cluster level, but can be bound either at the cluster
level or at the project level.

CHAPTER 4. ADDITIONAL CONCEPTS

59

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#viewing-cluster-roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#viewing-local-bindings

Learn how to create a local role for a project.

4.4.4.1. Updating Cluster Roles

After any OpenShift Enterprise cluster upgrade, the recommended default roles may have been updated.
See Updating Policy Definitions for instructions on getting to the new recommendations using:

$ oadm policy reconcile-cluster-roles

4.4.5. Security Context Constraints

In addition to authorization policies that control what a user can do, OpenShift Enterprise provides
security context constraints (SCC) that control the actions that a pod can perform and what it has the
ability to access. Administrators can manage SCCs using the CLI.

SCCs are also very useful for managing access to persistent storage.

SCCs are objects that define a set of conditions that a pod must run with in order to be accepted into the
system. They allow an administrator to control the following:

1. Running of privileged containers.

2. Capabilities a container can request to be added.

3. Use of host directories as volumes.

4. The SELinux context of the container.

5. The user ID.

6. The use of host namespaces and networking.

7. Allocating an FSGroup that owns the pod’s volumes

8. Configuring allowable supplemental groups

9. Requiring the use of a read only root file system

10. Controlling the usage of volume types

Seven SCCs are added to the cluster by default, and are viewable by cluster administrators using the
CLI:

$ oc get scc
NAME PRIV CAPS SELINUX RUNASUSER
FSGROUP SUPGROUP PRIORITY READONLYROOTFS VOLUMES
anyuid false [] MustRunAs RunAsAny
RunAsAny RunAsAny 10 false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
hostaccess false [] MustRunAs MustRunAsRange
MustRunAs RunAsAny <none> false [configMap
downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostmount-anyuid false [] MustRunAs RunAsAny
RunAsAny RunAsAny <none> false [configMap
downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostnetwork false [] MustRunAs MustRunAsRange

OpenShift Enterprise 3.2 Architecture

60

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#manage-authorization-policy-creating-local-role
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-upgrading-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#updating-policy-definitions
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-manage-scc
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-pod-security-context
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#security-warning

MustRunAs MustRunAs <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
nonroot false [] MustRunAs MustRunAsNonRoot
RunAsAny RunAsAny <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
privileged true [] RunAsAny RunAsAny
RunAsAny RunAsAny <none> false [*]
restricted false [] MustRunAs MustRunAsRange
MustRunAs RunAsAny <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]

The definition for each SCC is also viewable by cluster administrators using the CLI. For example, for the
privileged SCC:

oc export scc/privileged

allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegedContainer: true
allowedCapabilities: null
apiVersion: v1
defaultAddCapabilities: null

fsGroup: 1
 type: RunAsAny

groups: 2
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: 'privileged allows access to all privileged
and host
 features and the ability to run as any user, any group, any fsGroup,
and with
 any SELinux context. WARNING: this is the most relaxed SCC and
should be used
 only for cluster administration. Grant with caution.'
 creationTimestamp: null
 name: privileged
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: null

runAsUser: 3
 type: RunAsAny

seLinuxContext: 4
 type: RunAsAny

supplementalGroups: 5
 type: RunAsAny

users: 6
- system:serviceaccount:default:registry
- system:serviceaccount:default:router

CHAPTER 4. ADDITIONAL CONCEPTS

61

1

2

3

4

5

6

- system:serviceaccount:openshift-infra:build-controller
volumes:
- '*'

The FSGroup strategy which dictates the allowable values for the Security Context

The groups that have access to this SCC

The run as user strategy type which dictates the allowable values for the Security Context

The SELinux context strategy type which dictates the allowable values for the Security Context

The supplemental groups strategy which dictates the allowable supplemental groups for the
Security Context

The users who have access to this SCC

The users and groups fields on the SCC control which SCCs can be used. By default, cluster
administrators, nodes, and the build controller are granted access to the privileged SCC. All
authenticated users are granted access to the restricted SCC.

The privileged SCC:

allows privileged pods.

allows host directories to be mounted as volumes.

allows a pod to run as any user.

allows a pod to run with any MCS label.

allows a pod to use the host’s IPC namespace.

allows a pod to use the host’s PID namespace.

allows a pod to use any FSGroup.

allows a pod to use any supplemental group.

The restricted SCC:

ensures pods cannot run as privileged.

ensures pods cannot use host directory volumes.

requires that a pod run as a user in a pre-allocated range of UIDs.

requires that a pod run with a pre-allocated MCS label.

allows a pod to use any FSGroup.

allows a pod to use any supplemental group.

OpenShift Enterprise 3.2 Architecture

62

NOTE

For more information about each SCC, see the kubernetes.io/description annotation
available on the SCC.

SCCs are comprised of settings and strategies that control the security features a pod has access to.
These settings fall into three categories:

Controlled by a
boolean

Fields of this type default to the most restrictive value. For example,
AllowPrivilegedContainer is always set to false if unspecified.

Controlled by an
allowable set

Fields of this type are checked against the set to ensure their value is allowed.

Controlled by a
strategy

Items that have a strategy to generate a value provide:

A mechanism to generate the value, and

A mechanism to ensure that a specified value falls into the set of allowable
values.

4.4.5.1. SCC Strategies

4.4.5.1.1. RunAsUser

1. MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the
default. Validates against the configured runAsUser.

2. MustRunAsRange - Requires minimum and maximum values to be defined if not using pre-
allocated values. Uses the minimum as the default. Validates against the entire allowable range.

3. MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have
the USER directive defined in the image. No default provided.

4. RunAsAny - No default provided. Allows any runAsUser to be specified.

4.4.5.1.2. SELinuxContext

1. MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values.
Uses seLinuxOptions as the default. Validates against seLinuxOptions.

2. RunAsAny - No default provided. Allows any seLinuxOptions to be specified.

4.4.5.1.3. SupplementalGroups

1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against all ranges.

2. RunAsAny - No default provided. Allows any supplementalGroups to be specified.

4.4.5.1.4. FSGroup

CHAPTER 4. ADDITIONAL CONCEPTS

63

1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses
the minimum value of the first range as the default. Validates against the first ID in the first
range.

2. RunAsAny - No default provided. Allows any fsGroup ID to be specified.

4.4.5.2. Controlling Volumes

The usage of specific volume types can be controlled by setting the volumes field of the SCC. The
allowable values of this field correspond to the volume sources that are defined when creating a volume:

azureFile

flocker

flexVolume

hostPath

emptyDir

gcePersistentDisk

awsElasticBlockStore

gitRepo

secret

nfs

iscsi

glusterfs

persistentVolumeClaim

rbd

cinder

cephFS

downwardAPI

fc

configMap

*

The recommended minimum set of allowed volumes for new SCCs are configMap, downwardAPI,
emptyDir, persistentVolumeClaim, and secret.

NOTE

* is a special value to allow the use of all volume types.

OpenShift Enterprise 3.2 Architecture

64

NOTE

For backwards compatibility, the usage of allowHostDirVolumePlugin overrides
settings in the volumes field. For example, if allowHostDirVolumePlugin is set to
false but allowed in the volumes field, then the hostPath value will be removed from
volumes.

4.4.5.3. Admission

Admission control with SCCs allows for control over the creation of resources based on the capabilities
granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made
available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized to
make requests about its operating environment or to generate a set of constraints to apply to the pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups
that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs
includes any constraints accessible to the service account.

Admission uses the following approach to create the final security context for the pod:

1. Retrieve all SCCs available for use.

2. Generate field values for security context settings that were not specified on the request.

3. Validate the final settings against the available constraints.

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to an
SCC, the pod is rejected.

A pod must validate every field against the SCC. The following are examples for just two of the fields that
must be validated:

NOTE

These examples are in the context of a strategy using the preallocated values.

A FSGroup SCC Strategy of MustRunAs

If the pod defines a fsGroup ID, then that ID must equal the default FSGroup ID. Otherwise, the pod is
not validated by that SCC and the next SCC is evaluated. If the FSGroup strategy is RunAsAny and the
pod omits a fsGroup ID, then the pod matches the SCC based on FSGroup (though other strategies
may not validate and thus cause the pod to fail).

A SupplementalGroups SCC Strategy of MustRunAs

If the pod specification defines one or more SupplementalGroups IDs, then the pod’s IDs must equal
one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups annotation. Otherwise,
the pod is not validated by that SCC and the next SCC is evaluated. If the SupplementalGroups
setting is RunAsAny and the pod specification omits a SupplementalGroups ID, then the pod
matches the SCC based on SupplementalGroups (though other strategies may not validate and thus
cause the pod to fail).

4.4.5.3.1. SCC Prioritization

CHAPTER 4. ADDITIONAL CONCEPTS

65

SCCs have a priority field that affects the ordering when attempting to validate a request by the
admission controller. A higher priority SCC is moved to the front of the set when sorting. When the
complete set of available SCCs are determined they are ordered by:

1. Highest priority first, nil is considered a 0 priority

2. If priorities are equal, the SCCs will be sorted from most restrictive to least restrictive

3. If both priorities and restrictions are equal the SCCs will be sorted by name

By default, the anyuid SCC granted to cluster administrators is given priority in their SCC set. This allows
cluster administrators to run pods as any user by without specifying a RunAsUser on the pod’s
SecurityContext. The administrator may still specify a RunAsUser if they wish.

4.4.5.3.2. Understanding Pre-allocated Values and Security Context Constraints

The admission controller is aware of certain conditions in the security context constraints that trigger it to
look up pre-allocated values from a namespace and populate the security context constraint before
processing the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-
allocated values (where allowed) for each policy aggregated with pod specification values to make the
final values for the various IDs defined in the running pod.

The following SCCs cause the admission controller to look for pre-allocated values when no ranges are
defined in the pod specification:

1. A RunAsUser strategy of MustRunAsRange with no minimum or maximum set. Admission
looks for the openshift.io/sa.scc.uid-range annotation to populate range fields.

2. An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the
openshift.io/sa.scc.mcs annotation to populate the level.

3. A FSGroup strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

4. A SupplementalGroups strategy of MustRunAs. Admission looks for the
openshift.io/sa.scc.supplemental-groups annotation.

During the generation phase, the security context provider will default any values that are not specifically
set in the pod. Defaulting is based on the strategy being used:

1. RunAsAny and MustRunAsNonRoot strategies do not provide default values. Thus, if the pod
needs a field defined (for example, a group ID), this field must be defined inside the pod
specification.

2. MustRunAs (single value) strategies provide a default value which is always used. As an
example, for group IDs: even if the pod specification defines its own ID value, the namespace’s
default field will also appear in the pod’s groups.

3. MustRunAsRange and MustRunAs (range-based) strategies provide the minimum value of the
range. As with a single value MustRunAs strategy, the namespace’s default value will appear in
the running pod. If a range-based strategy is configurable with multiple ranges, it will provide the
minimum value of the first configured range.

OpenShift Enterprise 3.2 Architecture

66

NOTE

FSGroup and SupplementalGroups strategies fall back to the
openshift.io/sa.scc.uid-range annotation if the openshift.io/sa.scc.supplemental-
groups annotation does not exist on the namespace. If neither exist, the SCC will fail to
create.

NOTE

By default, the annotation-based FSGroup strategy configures itself with a single range
based on the minimum value for the annotation. For example, if your annotation reads
1/3, the FSGroup strategy will configure itself with a minimum and maximum of 1. If you
want to allow more groups to be accepted for the FSGroup field, you can configure a
custom SCC that does not use the annotation.

NOTE

The openshift.io/sa.scc.supplemental-groups annotation accepts a comma delimited
list of blocks in the format of <start>/<length or <start>-<end>. The
openshift.io/sa.scc.uid-range annotation accepts only a single block.

4.5. PERSISTENT STORAGE

4.5.1. Overview

Managing storage is a distinct problem from managing compute resources. OpenShift Enterprise
leverages the Kubernetes persistent volume (PV) framework to allow administrators to provision
persistent storage for a cluster. Using persistent volume claims (PVCs), developers can request PV
resources without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Enterprise cluster and claimed from any project. After a PV has been bound to a PVC,
however, that PV cannot then be bound to additional PVCs. This has the effect of scoping a bound PV to
a single namespace (that of the binding project).

PVs are defined by a PersistentVolume API object, which represents a piece of existing networked
storage in the cluster that has been provisioned by an administrator. It is a resource in the cluster just
like a node is a cluster resource. PVs are volume plug-ins like Volumes, but have a lifecycle independent
of any individual pod that uses the PV. PV objects capture the details of the implementation of the
storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage
by a developer. It is similar to a pod in that pods consume node resources and PVCs consume PV
resources. For example, pods can request specific levels of resources (e.g., CPU and memory), while
PVCs can request specific storage capacity and access modes (e.g, they can be mounted once
read/write or many times read-only).

4.5.2. Lifecycle of a Volume and Claim

CHAPTER 4. ADDITIONAL CONCEPTS

67

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

4.5.2.1. Provisioning

A cluster administrator creates some number of PVs. They carry the details of the real storage that is
available for use by cluster users. They exist in the API and are available for consumption.

4.5.2.2. Binding

A user creates a PersistentVolumeClaim with a specific amount of storage requested and with
certain access modes. A control loop in the master watches for new PVCs, finds a matching PV (if
possible), and binds them together. The user will always get at least what they asked for, but the volume
may be in excess of what was requested.

Claims remain unbound indefinitely if a matching volume does not exist. Claims are bound as matching
volumes become available. For example, a cluster provisioned with many 50Gi volumes would not match
a PVC requesting 100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

4.5.2.3. Using

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, the user specifies which mode
is desired when using their claim as a volume in a pod.

Once a user has a claim and that claim is bound, the bound PV belongs to the user for as long as they
need it. Users schedule pods and access their claimed PVs by including a persistentVolumeClaim
in their pod’s volumes block. See below for syntax details.

4.5.2.4. Releasing

When a user is done with a volume, they can delete the PVC object from the API which allows
reclamation of the resource. The volume is considered "released" when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume which must be
handled according to policy.

4.5.2.5. Reclaiming

The reclaim policy of a PersistentVolume tells the cluster what to do with the volume after it is
released. Currently, volumes can either be retained or recycled.

Retention allows for manual reclamation of the resource. For those volume plug-ins that support it,
recycling performs a basic scrub on the volume (e.g., rm -rf /<volume>/*) and makes it available
again for a new claim.

4.5.3. Persistent Volumes

Each PV contains a spec and status, which is the specification and status of the volume.

Example 4.1. Persistent Volume Object Definition

 apiVersion: v1
 kind: PersistentVolume
 metadata:

OpenShift Enterprise 3.2 Architecture

68

4.5.3.1. Types of Persistent Volumes

OpenShift Enterprise supports the following PersistentVolume plug-ins:

NFS

HostPath

GlusterFS

Ceph RBD

OpenStack Cinder

AWS Elastic Block Store (EBS)

GCE Persistent Disk

iSCSI

Fibre Channel

4.5.3.2. Capacity

Generally, a PV will have a specific storage capacity. This is set using the PV’s capacity attribute. See
the Kubernetes Resource Model to understand the units expected by capacity.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, etc.

4.5.3.3. Access Modes

A PersistentVolume can be mounted on a host in any way supported by the resource provider.
Providers will have different capabilities and each PV’s access modes are set to the specific modes
supported by that particular volume. For example, NFS can support multiple read/write clients, but a
specific NFS PV might be exported on the server as read-only. Each PV gets its own set of access
modes describing that specific PV’s capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, the user may be granted more,
but never less. For example, if a claim requests RWO, but the only volume available was an NFS PV
(RWO+ROX+RWX), the claim would match NFS because it supports RWO.

 name: pv0003
 spec:
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Recycle
 nfs:
 path: /tmp
 server: 172.17.0.2

CHAPTER 4. ADDITIONAL CONCEPTS

69

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/rest_api_reference/#v1-hostpathvolumesource
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-cinder
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-aws
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-iscsi
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-fibre-channel
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/resources.md

Direct matches are always attempted first. The volume’s modes must match or contain more modes than
you requested. The size must be greater than or equal to what is expected. If two types of volumes (NFS
and iSCSI, for example) both have the same set of access modes, then either of them will match a claim
with those modes. There is no ordering between types of volumes and no way to choose one type over
another.

All volumes with the same modes are grouped, then sorted by size (smallest to largest). The binder gets
the group with matching modes and iterates over each (in size order) until one size matches.

The access modes are:

Access Mode CLI Abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted read-only by many nodes.

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

IMPORTANT

A volume’s AccessModes are descriptors of the volume’s capabilities. They are not
enforced constraints. The storage provider is responsible for runtime errors resulting from
invalid use of the resource.

For example, a GCE Persistent Disk has AccessModes ReadWriteOnce and
ReadOnlyMany. The user must mark their claims as read-only if they want to take
advantage of the volume’s ability for ROX. Errors in the provider show up at runtime as
mount errors.

4.5.3.4. Recycling Policy

The current recycling policies are:

Recycling Policy Description

Retain Manual reclamation

Recycle Basic scrub (e.g, rm -rf /<volume>/*)

NOTE

Currently, only NFS and HostPath support the 'Recycle' recycling policy.

4.5.3.5. Phase

A volumes can be found in one of the following phases:

OpenShift Enterprise 3.2 Architecture

70

Phase Description

Available A free resource that is not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim has been deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

The CLI shows the name of the PVC bound to the PV.

4.5.4. Persistent Volume Claims

Each PVC contains a spec and status, which is the specification and status of the claim.

Example 4.2. Persistent Volume Claim Object Definition

4.5.4.1. Access Modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

4.5.4.2. Resources

Claims, like pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to both volumes and claims.

4.5.4.3. Claims As Volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is then mounted to the host and into the pod:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:

CHAPTER 4. ADDITIONAL CONCEPTS

71

https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/resources.md

4.6. REMOTE COMMANDS

4.6.1. Overview

OpenShift Enterprise takes advantage of a feature built into Kubernetes to support executing commands
in containers. This is implemented using HTTP along with a multiplexed streaming protocol such as
SPDY or HTTP/2.

Developers can use the CLI to execute remote commands in containers.

4.6.2. Server Operation

The Kubelet handles remote execution requests from clients. Upon receiving a request, it upgrades the
response, evaluates the request headers to determine what streams (stdin, stdout, and/or stderr)
to expect to receive, and waits for the client to create the streams.

After the Kubelet has received all the streams, it executes the command in the container, copying
between the streams and the command’s stdin, stdout, and stderr, as appropriate. When the command
terminates, the Kubelet closes the upgraded connection, as well as the underlying one.

Architecturally, there are options for running a command in a container. The supported implementation
currently in OpenShift Enterprise invokes nsenter directly on the node host to enter the container’s
namespaces prior to executing the command. However, custom implementations could include using
docker exec, or running a "helper" container that then runs nsenter so that nsenter is not a
required binary that must be installed on the host.

4.7. PORT FORWARDING

4.7.1. Overview

OpenShift Enterprise takes advantage of a feature built into Kubernetes to support port forwarding to
pods. This is implemented using HTTP along with a multiplexed streaming protocol such as SPDY or
HTTP/2.

Developers can use the CLI to port forward to a pod. The CLI listens on each local port specified by the
user, forwarding via the described protocol.

4.7.2. Server Operation

The Kubelet handles port forward requests from clients. Upon receiving a request, it upgrades the
response and waits for the client to create port forwarding streams. When it receives a new stream, it
copies data between the stream and the pod’s port.

 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

OpenShift Enterprise 3.2 Architecture

72

http://www.chromium.org/spdy
https://http2.github.io/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-executing-remote-commands
http://www.chromium.org/spdy
https://http2.github.io/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-port-forwarding
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#protocol

Architecturally, there are options for forwarding to a pod’s port. The supported implementation currently
in OpenShift Enterprise invokes nsenter directly on the node host to enter the pod’s network
namespace, then invokes socat to copy data between the stream and the pod’s port. However, a
custom implementation could include running a "helper" pod that then runs nsenter and socat, so that
those binaries are not required to be installed on the host.

4.8. SOURCE CONTROL MANAGEMENT

OpenShift Enterprise takes advantage of preexisting source control management (SCM) systems hosted
either internally (such as an in-house Git server) or externally (for example, on GitHub, Bitbucket, etc.).
Currently, OpenShift Enterprise only supports Git solutions.

SCM integration is tightly coupled with builds, the two points being:

Creating a BuildConfig using a repository, which allows building your application inside of
OpenShift Enterprise. You can create a BuildConfigmanually or let OpenShift create it
automatically by inspecting your repository.

Triggering a build upon repository changes.

4.9. ADMISSION CONTROLLERS

Admission control plug-ins intercept requests to the master API prior to persistence of a resource, but
after the request is authenticated and authorized.

Each admission control plug-in is run in sequence before a request is accepted into the cluster. If any
plug-in in the sequence rejects the request, the entire request is rejected immediately, and an error is
returned to the end-user.

Admission control plug-ins may modify the incoming object in some cases to apply system configured
defaults. In addition, admission control plug-ins may modify related resources as part of request
processing to do things such as incrementing quota usage.

WARNING

The OpenShift Enterprise master has a default list of plug-ins that are enabled by
default for each type of resource (Kubernetes and OpenShift Enterprise). These are
required for the proper functioning of the master. Modifying these lists is not
recommended unless you strictly know what you are doing. Future versions of the
product may use a different set of plug-ins and may change their ordering. If you do
override the default list of plug-ins in the master configuration file, you are
responsible for updating it to reflect requirements of newer versions of the OpenShift
Enterprise master.

Cluster administrators can configure some admission control plug-ins to control certain behavior, such
as:

Limiting Number of Self-Provisioned Projects Per User

Configuring Global Build Defaults and Overrides



CHAPTER 4. ADDITIONAL CONCEPTS

73

https://github.com/
https://bitbucket.org/
https://git-scm.com/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-new-app
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#webhook-triggers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#limit-projects-per-user
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-build-defaults-overrides

Controlling Pod Placement

4.10. OTHER API OBJECTS

4.10.1. LimitRange

A limit range provides a mechanism to enforce min/max limits placed on resources in a Kubernetes
namespace.

By adding a limit range to your namespace, you can enforce the minimum and maximum amount of CPU
and Memory consumed by an individual pod or container.

See the Kubernetes documentation for more information.

4.10.2. ResourceQuota

Kubernetes can limit both the number of objects created in a namespace, and the total amount of
resources requested across objects in a namespace. This facilitates sharing of a single Kubernetes
cluster by several teams, each in a namespace, as a mechanism of preventing one team from starving
another team of cluster resources.

See Cluster Administration and Kubernetes documentation for more information on ResourceQuota.

4.10.3. Resource

A Kubernetes Resource is something that can be requested by, allocated to, or consumed by a pod or
container. Examples include memory (RAM), CPU, disk-time, and network bandwidth.

See the Developer Guide and Kubernetes documentation for more information.

4.10.4. Secret

Secrets are storage for sensitive information, such as keys, passwords, and certificates. They are
accessible by the intended pod(s), but held separately from their definitions.

4.10.5. PersistentVolume

A persistent volume is an object (PersistentVolume) in the infrastructure provisioned by the cluster
administrator. Persistent volumes provide durable storage for stateful applications.

See the Kubernetes documentation for more information.

4.10.6. PersistentVolumeClaim

A PersistentVolumeClaim object is a request for storage by a pod author. Kubernetes matches the
claim against the pool of available volumes and binds them together. The claim is then used as a volume
by a pod. Kubernetes makes sure the volume is available on the same node as the pod that requires it.

See the Kubernetes documentation for more information.

4.10.7. OAuth Objects

OpenShift Enterprise 3.2 Architecture

74

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#controlling-pod-placement
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/admission_control_limit_range.md
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#admin-guide-quota
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/admin/resource-quota.md
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-compute-resources
http://kubernetes.io/docs/user-guide/compute-resources/
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-persistent-volumes
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/persistent-storage.md
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-persistent-volumes
https://github.com/GoogleCloudPlatform/kubernetes/blob/master/docs/design/persistent-storage.md

1

2

3

4

4.10.7.1. OAuthClient

An OAuthClient represents an OAuth client, as described in RFC 6749, section 2.

The following OAuthClient objects are automatically created:

openshift
-web-
console

Client used to request tokens for the web console

openshift
-browser-
client

Client used to request tokens at /oauth/token/request with a user-agent that can handle
interactive logins

openshift
-
challengi
ng-client

Client used to request tokens with a user-agent that can handle WWW-Authenticate
challenges

Example 4.3. OAuthClient Object Definition

The name is used as the client_id parameter in OAuth requests.

When respondWithChallenges is set to true, unauthenticated requests to
/oauth/authorize will result in WWW-Authenticate challenges, if supported by the
configured authentication methods.

The value in the secret parameter is used as the client_secret parameter in an
authorization code flow.

One or more absolute URIs can be placed in the redirectURIs section. The redirect_uri
parameter sent with authorization requests must be prefixed by one of the specified
redirectURIs.

4.10.7.2. OAuthClientAuthorization

An OAuthClientAuthorization represents an approval by a User for a particular OAuthClient to
be given an OAuthAccessToken with particular scopes.

kind: "OAuthClient"
apiVersion: "v1"
metadata:

 name: "openshift-web-console" 1
 selflink: "/osapi/v1/oAuthClients/openshift-web-console"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01Z"

respondWithChallenges: false 2

secret: "45e27750-a8aa-11e4-b2ea-3c970e4b7ffe" 3
redirectURIs:

 - "https://localhost:8443" 4

CHAPTER 4. ADDITIONAL CONCEPTS

75

https://tools.ietf.org/html/rfc6749#section-2

1

2

3

4

Creation of OAuthClientAuthorization objects is done during an authorization request to the
OAuth server.

Example 4.4. OAuthClientAuthorization Object Definition

4.10.7.3. OAuthAuthorizeToken

An OAuthAuthorizeToken represents an OAuth authorization code, as described in RFC 6749,
section 1.3.1.

An OAuthAuthorizeToken is created by a request to the /oauth/authorize endpoint, as described in
RFC 6749, section 4.1.1.

An OAuthAuthorizeToken can then be used to obtain an OAuthAccessToken with a request to the
/oauth/token endpoint, as described in RFC 6749, section 4.1.3.

Example 4.5. OAuthAuthorizeToken Object Definition

name represents the token name, used as an authorization code to exchange for an
OAuthAccessToken.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

kind: "OAuthClientAuthorization"
apiVersion: "v1"
metadata:
 name: "bob:openshift-web-console"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"
clientName: "openshift-web-console"
userName: "bob"
userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
scopes: []

kind: "OAuthAuthorizeToken"
apiVersion: "v1"
metadata:

 name: "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj" 1
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"

clientName: "openshift-web-console" 2

expiresIn: 300 3
scopes: []

redirectURI: "https://localhost:8443/console/oauth" 4

userName: "bob" 5

userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 6

OpenShift Enterprise 3.2 Architecture

76

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.3

5

6

1

2

3

4

5

6

7

The redirectURI value is the location where the user was redirected to during the
authorization flow that resulted in this token.

userName represents the name of the User this token allows obtaining an OAuthAccessToken
for.

userUID represents the UID of the User this token allows obtaining an OAuthAccessToken for.

4.10.7.4. OAuthAccessToken

An OAuthAccessToken represents an OAuth access token, as described in RFC 6749, section 1.4.

An OAuthAccessToken is created by a request to the /oauth/token endpoint, as described in RFC
6749, section 4.1.3.

Access tokens are used as bearer tokens to authenticate to the API.

Example 4.6. OAuthAccessToken Object Definition

name is the token name, which is used as a bearer token to authenticate to the API.

The clientName value is the OAuthClient that requested this token.

The expiresIn value is the expiration in seconds from the creationTimestamp.

The redirectURI is where the user was redirected to during the authorization flow that
resulted in this token.

userName represents the User this token allows authentication as.

userUID represents the User this token allows authentication as.

authorizeToken is the name of the OAuthAuthorizationToken used to obtain this token, if
any.

kind: "OAuthAccessToken"
apiVersion: "v1"
metadata:

 name: "ODliOGE5ZmMtYzczYi00Nzk1LTg4MGEtNzQyZmUxZmUwY2Vh" 1
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:02-00:00"

clientName: "openshift-web-console" 2

expiresIn: 86400 3
scopes: []

redirectURI: "https://localhost:8443/console/oauth" 4

userName: "bob" 5

userUID: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 6

authorizeToken: "MDAwYjM5YjMtMzM1MC00NDY4LTkxODItOTA2OTE2YzE0M2Fj" 7

CHAPTER 4. ADDITIONAL CONCEPTS

77

https://tools.ietf.org/html/rfc6749#section-1.4
https://tools.ietf.org/html/rfc6749#section-4.1.3

1

2

3

4

5

4.10.8. User Objects

4.10.8.1. Identity

When a user logs into OpenShift Enterprise, they do so using a configured identity provider. This
determines the user’s identity, and provides that information to OpenShift Enterprise.

OpenShift Enterprise then looks for a UserIdentityMapping for that Identity:

If the Identity already exists, but is not mapped to a User, login fails.

If the Identity already exists, and is mapped to a User, the user is given an
OAuthAccessToken for the mapped User.

If the Identity does not exist, an Identity, User, and UserIdentityMapping are
created, and the user is given an OAuthAccessToken for the mapped User.

Example 4.7. Identity Object Definition

The identity name must be in the form providerName:providerUserName.

providerName is the name of the identity provider.

providerUserName is the name that uniquely represents this identity in the scope of the
identity provider.

The name in the user parameter is the name of the user this identity maps to.

The uid represents the UID of the user this identity maps to.

4.10.8.2. User

A User represents an actor in the system. Users are granted permissions by adding roles to users or to
their groups.

User objects are created automatically on first login, or can be created via the API.

Example 4.8. User Object Definition

kind: "Identity"
apiVersion: "v1"
metadata:

 name: "anypassword:bob" 1
 uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"

providerName: "anypassword" 2

providerUserName: "bob" 3
user:

 name: "bob" 4

 uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe" 5

OpenShift Enterprise 3.2 Architecture

78

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#identity-providers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#managing-role-bindings

4.10.8.3. UserIdentityMapping

A UserIdentityMapping maps an Identity to a User.

Creating, updating, or deleting a UserIdentityMapping modifies the corresponding fields in the
Identity and User objects.

An Identity can only map to a single User, so logging in as a particular identity unambiguously
determines the User.

A User can have multiple identities mapped to it. This allows multiple login methods to identify the same
User.

Example 4.9. UserIdentityMapping Object Definition

4.10.8.4. Group

A Group represents a list of users in the system. Groups are granted permissions by adding roles to
users or to their groups.

kind: "User"
apiVersion: "v1"
metadata:

 name: "bob" 1
 uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"
 resourceVersion: "1"
 creationTimestamp: "2015-01-01T01:01:01-00:00"
identities:

 - "anypassword:bob" 2

fullName: "Bob User" 3

<1> `name` is the user name used when adding roles to a user.
<2> The values in `identities` are Identity objects that map to this
user. May be `null` or empty for users that cannot log in.
<3> The `fullName` value is an optional display name of user.

kind: "UserIdentityMapping"
apiVersion: "v1"
metadata:

 name: "anypassword:bob" 1
 uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
 resourceVersion: "1"
identity:
 name: "anypassword:bob"
 uid: "9316ebad-0fde-11e5-97a1-3c970e4b7ffe"
user:
 name: "bob"
 uid: "9311ac33-0fde-11e5-97a1-3c970e4b7ffe"

<1> `*UserIdentityMapping*` name matches the mapped `*Identity*` name

CHAPTER 4. ADDITIONAL CONCEPTS

79

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cluster_administration/#managing-role-bindings

1 1 1

2 2

Example 4.10. Group Object Definition

name is the group name used when adding roles to a group.

The values in users are the names of User objects that are members of this group.

[1] After this point, device names refer to devices on container B’s host.

kind: "Group"
apiVersion: "v1"
metadata:

 name: "developers" 1
 creationTimestamp: "2015-01-01T01:01:01-00:00"
users:

 - "bob" 2

OpenShift Enterprise 3.2 Architecture

80

CHAPTER 5. REVISION HISTORY: ARCHITECTURE

5.1. TUE MAY 02 2017

Affected Topic Description of Change

Additional Concepts →
F5 BIG-IP® Router
Plug-in

Removed information about integration with HAProxy router.

5.2. MON JAN 09 2017

Affected Topic Description of Change

Additional Concepts →
Authorization

Added clarifying details about cluster roles.

5.3. MON NOV 21 2016

Affected Topic Description of Change

Additional Concepts →
Authorization

Updated to reflect that seven, not six, Security Context Constraints are added to
the cluster by default.

Additional Concepts →
Persistent Storage

Removed statement indicating that HostPath is for testing only.

5.4. TUE OCT 04 2016

Affected Topic Description of Change

Core Concepts →
Routes

Added Router Configuration Parameters.

5.5. TUE SEP 06 2016

Affected Topic Description of Change

Core Concepts →
Routes

Fixed table markup in Table 3.1 in HAProxy Template Router section.

Added a Note box on the implication of older routes with a sharded setup.

CHAPTER 5. REVISION HISTORY: ARCHITECTURE

81

5.6. MON AUG 08 2016

Affected Topic Description of Change

Core Concepts →
Routes

Improved explanation of traditional vs overlapped router sharding, including an
example of namespace-based sharding.

5.7. WED JUL 27 2016

Affected Topic Description of Change

Additional Concepts →
Admission Controllers

Added a Warning box indicating that OpenShift Enterprise master has a default list
of plug-ins that are enabled by default for each type of resource.

5.8. THU JUL 14 2016

Affected Topic Description of Change

Core Concepts → Pods
and Services

Minor update for clarity in the Pods section.

Fixed wording in the Pods section.

Added information about the service proxy mode and how to configure it.

5.9. WED JUN 15 2016

Affected Topic Description of Change

Additional Concepts →
Authentication

Removed the Impersonation section, which does not apply to OpenShift
Enterprise 3.2.

5.10. FRI JUN 10 2016

Affected Topic Description of Change

Infrastructure
Components → Web
Console

Added a Note introducing Cockpit to the Project Overviews section.

Core Concepts → Builds
and Image Streams

Added Reproducibility to the list of S2I advantages in the Source-to-Image (S2I)
Build section.

Additional Concepts →
Authorization

Added a Note box indicating that Roles need to be assigned to administer the
setup with an external user.

OpenShift Enterprise 3.2 Architecture

82

Affected Topic Description of Change

5.11. MON MAY 30 2016

Affected Topic Description of Change

Additional Concepts →
Authentication

Added the Impersonation section.

Core Concepts →
Routes

Added the Router Sharding section.

5.12. THU MAY 12 2016

OpenShift Enterprise 3.2 initial release.

Affected Topic Description of Change

Core Concepts → Builds
and Image Streams

Moved many task-based sections to the new Managing Images topic in the
Developer Guide.

Infrastructure
Components → Web
Console

Updated the Web Console Project Overview screenshot.

Added a CLI Downloads section, including a screenshot of the new About page.

Infrastructure
Components →
Kubernetes
Infrastructure

Added a note that OSE 3.2 uses Kubernetes 1.2 and Docker 1.9.

Removed support for the Pacemaker HA method.

Additional Concepts →
Authentication

Added the system:authenticated:oauth virtual group to the Users and Groups
section.

Additional Concepts →
Admission Controllers

New topic discussing admission controllers and the configurable plug-ins.

CHAPTER 5. REVISION HISTORY: ARCHITECTURE

83

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-managing-images

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. WHAT ARE THE LAYERS?
	1.2. WHAT IS THE OPENSHIFT ENTERPRISE ARCHITECTURE?
	1.3. HOW IS OPENSHIFT ENTERPRISE SECURED?

	CHAPTER 2. INFRASTRUCTURE COMPONENTS
	2.1. KUBERNETES INFRASTRUCTURE
	2.1.1. Overview
	2.1.2. Masters
	2.1.2.1. High Availability Masters

	2.1.3. Nodes
	2.1.3.1. Kubelet
	2.1.3.2. Service Proxy
	2.1.3.3. Node Object Definition

	2.2. IMAGE REGISTRY
	2.2.1. Overview
	2.2.2. Integrated OpenShift Enterprise Registry
	2.2.3. Third Party Registries
	2.2.3.1. Authentication

	2.3. WEB CONSOLE
	2.3.1. Overview
	2.3.2. Browser Requirements
	2.3.3. CLI Downloads
	2.3.4. Project Overviews
	2.3.5. JVM Console

	CHAPTER 3. CORE CONCEPTS
	3.1. OVERVIEW
	3.2. CONTAINERS AND IMAGES
	3.2.1. Containers
	3.2.2. Images
	3.2.3. Container Registries

	3.3. PODS AND SERVICES
	3.3.1. Pods
	3.3.2. Services
	3.3.2.1. Service externalIPs
	3.3.2.2. Service ingressIPs
	3.3.2.3. Service NodePort
	3.3.2.4. Service Proxy Mode

	3.3.3. Labels

	3.4. PROJECTS AND USERS
	3.4.1. Users
	3.4.2. Namespaces
	3.4.3. Projects

	3.5. BUILDS AND IMAGE STREAMS
	3.5.1. Builds
	3.5.1.1. Docker Build
	3.5.1.2. Source-to-Image (S2I) Build
	3.5.1.3. Custom Build

	3.5.2. Image Streams
	3.5.2.1. Image Stream Mappings

	3.6. DEPLOYMENTS
	3.6.1. Replication Controllers
	3.6.2. Jobs
	3.6.3. Deployments and Deployment Configurations

	3.7. ROUTES
	3.7.1. Overview
	3.7.2. Routers
	3.7.2.1. Template Routers

	3.7.3. Available Router Plug-ins
	3.7.3.1. HAProxy Template Router
	3.7.3.2. F5 Router

	3.7.4. Route Host Names
	3.7.5. Route Types
	3.7.6. Path Based Routes
	3.7.7. Secured Routes
	3.7.8. Router Sharding

	3.8. TEMPLATES
	3.8.1. Overview
	3.8.2. Parameters

	CHAPTER 4. ADDITIONAL CONCEPTS
	4.1. NETWORKING
	4.1.1. OpenShift Enterprise DNS
	4.1.2. Network Plugins
	4.1.3. OpenShift Enterprise SDN

	4.2. OPENSHIFT SDN
	4.2.1. Overview
	4.2.2. Design on Masters
	4.2.3. Design on Nodes
	4.2.4. Packet Flow
	4.2.5. Network Isolation

	4.3. AUTHENTICATION
	4.3.1. Overview
	4.3.2. Users and Groups
	4.3.3. API Authentication
	4.3.4. OAuth

	4.4. AUTHORIZATION
	4.4.1. Overview
	4.4.2. Evaluating Authorization
	4.4.3. Cluster Policy and Local Policy
	4.4.4. Roles
	4.4.4.1. Updating Cluster Roles

	4.4.5. Security Context Constraints
	4.4.5.1. SCC Strategies
	4.4.5.2. Controlling Volumes
	4.4.5.3. Admission

	4.5. PERSISTENT STORAGE
	4.5.1. Overview
	4.5.2. Lifecycle of a Volume and Claim
	4.5.2.1. Provisioning
	4.5.2.2. Binding
	4.5.2.3. Using
	4.5.2.4. Releasing
	4.5.2.5. Reclaiming

	4.5.3. Persistent Volumes
	4.5.3.1. Types of Persistent Volumes
	4.5.3.2. Capacity
	4.5.3.3. Access Modes
	4.5.3.4. Recycling Policy
	4.5.3.5. Phase

	4.5.4. Persistent Volume Claims
	4.5.4.1. Access Modes
	4.5.4.2. Resources
	4.5.4.3. Claims As Volumes

	4.6. REMOTE COMMANDS
	4.6.1. Overview
	4.6.2. Server Operation

	4.7. PORT FORWARDING
	4.7.1. Overview
	4.7.2. Server Operation

	4.8. SOURCE CONTROL MANAGEMENT
	4.9. ADMISSION CONTROLLERS
	4.10. OTHER API OBJECTS
	4.10.1. LimitRange
	4.10.2. ResourceQuota
	4.10.3. Resource
	4.10.4. Secret
	4.10.5. PersistentVolume
	4.10.6. PersistentVolumeClaim
	4.10.7. OAuth Objects
	4.10.7.1. OAuthClient
	4.10.7.2. OAuthClientAuthorization
	4.10.7.3. OAuthAuthorizeToken
	4.10.7.4. OAuthAccessToken

	4.10.8. User Objects
	4.10.8.1. Identity
	4.10.8.2. User
	4.10.8.3. UserIdentityMapping
	4.10.8.4. Group

	CHAPTER 5. REVISION HISTORY: ARCHITECTURE
	5.1. TUE MAY 02 2017
	5.2. MON JAN 09 2017
	5.3. MON NOV 21 2016
	5.4. TUE OCT 04 2016
	5.5. TUE SEP 06 2016
	5.6. MON AUG 08 2016
	5.7. WED JUL 27 2016
	5.8. THU JUL 14 2016
	5.9. WED JUN 15 2016
	5.10. FRI JUN 10 2016
	5.11. MON MAY 30 2016
	5.12. THU MAY 12 2016

