& RedHat

OpenShift Container Platform 4.12

Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in
production environments

Last Updated: 2024-06-06

OpenShift Container Platform 4.12 Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in production
environments

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for scaling your cluster and optimizing the performance of
your OpenShift Container Platform environment.

Table of Contents

Table of Contents

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITYPRACTICESiviiiiiiennnns, 1
11. RECOMMENDED CONTROL PLANE PRACTICES 1
1.1.1. Recommended practices for scaling the cluster 1
1.1.2. Control plane node sizing 1
1.1.2.1. Selecting a larger Amazon Web Services instance type for control plane machines 14
1.1.2.1.1. Changing the Amazon Web Services instance type by using a control plane machine set 14
1.1.2.1.2. Changing the Amazon Web Services instance type by using the AWS console 15
1.2. RECOMMENDED INFRASTRUCTURE PRACTICES 16
1.2.1. Infrastructure node sizing 16
1.2.2. Scaling the Cluster Monitoring Operator 17
1.2.3. Prometheus database storage requirements 17
1.2.4. Configuring cluster monitoring 18
1.2.5. Additional resources 19
1.3. RECOMMENDED ETCD PRACTICES 19
1.3.1. Recommended etcd practices 19
1.3.2. Moving etcd to a different disk 21
1.3.3. Defragmenting etcd data 25
1.3.3.1. Automatic defragmentation 25
1.3.3.2. Manual defragmentation 26
CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS 29
2.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES 29
2.1.1. Example scenario 31
2.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER
MAXIMUMS ARE TESTED 32
2.2.1. AWS cloud platform 32
2.2.2.1BM Power platform 33
2.2.3.IBM Z platform 33
2.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS 34
2.4.HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS 35
CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM(R) LINUXONE ENVIRONMENTS 38
3.1. MANAGING CPU OVERCOMMITMENT 38
3.2. DISABLE TRANSPARENT HUGE PAGES 38
3.3.BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING 39
3.3.1. Use the Machine Config Operator (MCO) to activate RFS 39
3.4. CHOOSE YOUR NETWORKING SETUP 40
3.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM 40
3.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack
minidisks 41
3.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS 42
3.6.1. Use I/O threads for your virtual block devices 42
3.6.2. Avoid virtual SCSI devices 43
3.6.3. Configure guest caching for disk 43
3.6.4. Exclude the memory balloon device 43
3.6.5. Tune the CPU migration algorithm of the host scheduler 43
3.6.6. Disable the cpuset cgroup controller 44
3.6.7. Tune the polling period for idle virtual CPUs 44
CHAPTER 4. USING THE NODE TUNING OPERATOR ...ttt ittt eiie et eaneennnens 46
4.1. ABOUT THE NODE TUNING OPERATOR 46
4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION 46

OpenShift Container Platform 4.12 Scalability and performance

4.3. DEFAULT PROFILES SET ON A CLUSTER

4.4 VERIFYING THAT THE TUNED PROFILES ARE APPLIED
4.5. CUSTOM TUNING SPECIFICATION

4.6. CUSTOM TUNING EXAMPLES

4.7. SUPPORTED TUNED DAEMON PLUGINS

4.8. CONFIGURING NODE TUNING IN AHOSTED CLUSTER

4.9. ADVANCED NODE TUNING FOR HOSTED CLUSTERS BY SETTING KERNEL BOOT PARAMETERS

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER
5.1. SETTING UP CPU MANAGER
52. TOPOLOGY MANAGER POLICIES
53.SETTING UP TOPOLOGY MANAGER

5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

6.1. ABOUT NUMA-AWARE SCHEDULING
Introduction to NUMA
Performance considerations
NUMA-aware scheduling
Integration with Node Tuning Operator
Default scheduling logic
NUMA-aware pod scheduling diagram
6.2. INSTALLING THE NUMA RESOURCES OPERATOR
6.2.1. Installing the NUMA Resources Operator using the CLI

6.2.2. Installing the NUMA Resources Operator using the web console

6.3. SCHEDULING NUMA-AWARE WORKLOADS
6.3.1. Creating the NUMAResourcesOperator custom resource
6.3.2. Deploying the NUMA-aware secondary pod scheduler
6.3.3. Configuring a single NUMA node policy
6.3.4. Sample performance profile
6.3.5. Creating a KubeletConfig CRD
6.3.6. Scheduling workloads with the NUMA-aware scheduler

6.4. OPTIONAL: CONFIGURING POLLING OPERATIONS FOR NUMA RESOURCES UPDATES

6.5. TROUBLESHOOTING NUMA-AWARE SCHEDULING
6.5.1. Reporting more exact resource availability
6.5.2. Checking the NUMA-aware scheduler logs
6.5.3. Troubleshooting the resource topology exporter

6.5.4. Correcting a missing resource topology exporter config map

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION
7.1. OPTIMIZING STORAGE
7.1.1. Available persistent storage options
7.1.2. Recommended configurable storage technology
7.1.2.1. Specific application storage recommendations
7.1.2.1.1. Registry
7.1.2.1.2. Scaled registry
7.1.2.1.3. Metrics
7.1.2.1.4. Logging
7.1.2.1.5. Applications
7.1.2.2. Other specific application storage recommendations
7.1.3. Data storage management
7.1.4. Optimizing storage performance for Microsoft Azure
7.1.5. Additional resources
7.2. OPTIMIZING ROUTING

47
48
48
53
54
55
58

62
62
66
67
67

69
69
69
69
69
69
70

71

71
72
73
73
75
76
76
77
78

81
83
86
88

91
92

95
95
95
96
97
97
97
97
98
98
98
99
100
100
100

7.2.1. Baseline Ingress Controller (router) performance
7.2.2. Configuring Ingress Controller liveness, readiness, and startup probes
7.2.3. Configuring HAProxy reload interval
7.3. OPTIMIZING NETWORKING
7.3.1. Optimizing the MTU for your network
7.3.2. Recommended practices for installing large scale clusters
7.3.3. Impact of IPsec
7.3.4. Additional resources
7.4. OPTIMIZING CPU USAGE WITH MOUNT NAMESPACE ENCAPSULATION
7.4.1. Encapsulating mount namespaces
7.4.2. Configuring mount namespace encapsulation
7.4.3. Inspecting encapsulated namespaces
7.4.4. Running additional services in the encapsulated namespace
7.4.5. Additional resources

CHAPTER 8. MANAGING BARE METAL HOSTS ...

8.1. ABOUT BARE METAL HOSTS AND NODES

8.2. MAINTAINING BARE METAL HOSTS
8.2.1. Adding a bare metal host to the cluster using the web console
8.2.2. Adding a bare metal host to the cluster using YAML in the web console
8.2.3. Automatically scaling machines to the number of available bare metal hosts
8.2.4. Removing bare metal hosts from the provisioner node

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

9.1. ABOUT BARE-METAL EVENTS
9.2. HOW BARE-METAL EVENTS WORK
9.2.1. Bare Metal Event Relay data flow
9.2.1.1. Operator-managed pod
9.2.1.2. Bare Metal Event Relay
9.2.1.3. Cloud native event
9.2.1.4. CNCF CloudEvents
9.2.15. HTTP transport or AMQP dispatch router
9.2.1.6. Cloud event proxy sidecar
9.2.2. Redfish message parsing service
9.2.3. Installing the Bare Metal Event Relay using the CLI
9.2.4. Installing the Bare Metal Event Relay using the web console
9.3.INSTALLING THE AMQ MESSAGING BUS
9.4. SUBSCRIBING TO REDFISH BMC BARE-METAL EVENTS FOR A CLUSTER NODE
9.4.1. Subscribing to bare-metal events
9.4.2. Querying Redfish bare-metal event subscriptions with curl
9.4.3. Creating the bare-metal event and Secret CRs
9.5. SUBSCRIBING APPLICATIONS TO BARE-METAL EVENTS REST API REFERENCE
api/ocloudNotifications/vl/subscriptions
HTTP method
Description
HTTP method
Description
api/ocloudNotifications/vl1/subscriptions/<subscription_id>
HTTP method
Description
api/ocloudNotifications/v1/health/
HTTP method
Description

Table of Contents

100
102
103
103
104
104
105
105
105
105
108
110
m
m

13
13
13
14
15
116

18
18
19
19
19
19
19
19
120
120
120
121
122
123
123
126
127
129
129
129
129
130
130
130
130
130
131
131
131

OpenShift Container Platform 4.12 Scalability and performance

9.6. MIGRATING CONSUMER APPLICATIONS TO USE HTTP TRANSPORT FOR PTP OR BARE-METAL

EVENTS

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

CHAPTER 11. LOW LATENCY TUNING

10.1. WHAT HUGE PAGES DO

10.2. HOW HUGE PAGES ARE CONSUMED BY APPS

10.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
10.4. CONFIGURING HUGE PAGES AT BOOT TIME

10.5. DISABLING TRANSPARENT HUGE PAGES

11.1. UNDERSTANDING LOW LATENCY
11.1.1. About hyperthreading for low latency and real-time applications
11.2. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
11.2.1. Known limitations for real-time
11.2.2. Provisioning a worker with real-time capabilities
11.2.3. Verifying the real-time kernel installation
11.2.4. Creating a workload that works in real-time
11.2.5. Creating a pod with a QoS class of Guaranteed
11.2.6. Optional: Disabling CPU load balancing for DPDK
11.2.7. Assigning a proper node selector
11.2.8. Scheduling a workload onto a worker with real-time capabilities
11.2.9. Reducing power consumption by taking CPUs offline
11.2.10. Optional: Power saving configurations
11.2.11. Managing device interrupt processing for guaranteed pod isolated CPUs
11.2.11.1. Disabling CPU CFS quota
11.2.11.2. Disabling global device interrupts handling in Node Tuning Operator
11.2.11.3. Disabling interrupt processing for individual pods
11.2.12. Upgrading the performance profile to use device interrupt processing
11.2.12.1. Supported API Versions
11.2.12.1.1. Upgrading Node Tuning Operator API from vlalphal to v1
11.2.12.1.2. Upgrading Node Tuning Operator API from vlalphal or v1 to v2
11.3. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
11.3.1. Configuring huge pages
11.3.2. Allocating multiple huge page sizes
11.3.3. Configuring a node for IRQ dynamic load balancing
11.3.4. About support of IRQ affinity setting
11.3.5. Configuring hyperthreading for a cluster
11.3.5.1. Disabling hyperthreading for low latency applications
11.3.6. Understanding workload hints
11.3.7. Configuring workload hints manually
11.3.8. Restricting CPUs for infra and application containers
11.4. REDUCING NIC QUEUES USING THE NODE TUNING OPERATOR
11.4.1. Adjusting the NIC queues with the performance profile
11.4.2. Verifying the queue status
11.4.3. Logging associated with adjusting NIC queues
11.5. DEBUGGING LOW LATENCY CNF TUNING STATUS
11.5.1. Machine config pools

11.6. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT

11.6.1. About the must-gather tool
11.6.2. About collecting low latency tuning data
11.6.3. Gathering data about specific features

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

4

131

133
133
134
136
138

139
139
140
140

141

141
143
143
143
145
145
146
146
147
149
149
150
150
150
150

151

151

151
152
153
153
156
157
159
160

161
162
164
164
167
170

171
172
173
173
174
174

Table of Contents

12.1. PREREQUISITES FOR RUNNING LATENCY TESTS 176
12.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS 176
Limiting the nodes used during tests 176
12.3. MEASURING LATENCY 177
12.4. RUNNING THE LATENCY TESTS 178
12.4.1. Running hwlatdetect 179
Example hwlatdetect test results 181
12.4.2. Running cyclictest 183
Example cyclictest results 184
12.4.3. Running oslat 186
12.5. GENERATING A LATENCY TEST FAILURE REPORT 187
12.6. GENERATING A JUNIT LATENCY TEST REPORT 188
12.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT CLUSTER 188
12.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER 189
Mirroring the images to a custom registry accessible from the cluster 189
Configuring the tests to consume images from a custom registry 190
Mirroring images to the cluster OpenShift image registry 190
Mirroring a different set of test images 191
12.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS CONTAINER 192

CHAPTER 13. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER

LATENCY PROFILES ottt ittt ettt e ettt ettt et eeeeenneeannesaneennneenneenanas 193
13.1. UNDERSTANDING WORKER LATENCY PROFILES 193
13.2. IMPLEMENTING WORKER LATENCY PROFILES AT CLUSTER CREATION 196
13.3. USING AND CHANGING WORKER LATENCY PROFILES 197
13.4. EXAMPLE STEPS FOR DISPLAYING RESULTING VALUES OF WORKERLATENCYPROFILE 199

CHAPTER 14. CREATING APERFORMANCE PROFILE ... ittt eii e eieeeaeeennnans 201
14.1. ABOUT THE PERFORMANCE PROFILE CREATOR 201

14.1.1. Gathering data about your cluster using the must-gather command 201
14.1.2. Running the Performance Profile Creator using podman 202
14.1.2.1. How to run podman to create a performance profile 205

14.1.3. Running the Performance Profile Creator wrapper script 206
14.1.4. Performance Profile Creator arguments 210
14.2. REFERENCE PERFORMANCE PROFILES 213
14.2.1. A performance profile template for clusters that use OVS-DPDK on OpenStack 213
14.3. ADDITIONAL RESOURCES 214
CHAPTER 15. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFTiiiiiiiiiiiiieennnn, 215

CHAPTER 16. REQUESTING CRI-O AND KUBELET PROFILING DATA BY USING THE NODE OBSERVABILITY

(] = = 7 1] PP 216
16.1. WORKFLOW OF THE NODE OBSERVABILITY OPERATOR 216
16.2. INSTALLING THE NODE OBSERVABILITY OPERATOR 216

16.2.1. Installing the Node Observability Operator using the CLI 216
16.2.2. Installing the Node Observability Operator using the web console 218
16.3. CREATING THE NODE OBSERVABILITY CUSTOM RESOURCE 218
16.4. RUNNING THE PROFILING QUERY 220

CHAPTER 17. CLUSTERS AT THE NETWORK FAREDGEttt ieii e eieiieanees 222

17.1. CHALLENGES OF THE NETWORK FAR EDGE 222
17.1.1. Overcoming the challenges of the network far edge 222
17.1.2. Using ZTP to provision clusters at the network far edge 223
17.1.3. Installing managed clusters with SiteConfig resources and RHACM 224

OpenShift Container Platform 4.12 Scalability and performance

17.1.4. Configuring managed clusters with policies and PolicyGenTemplate resources 225
17.2. PREPARING THE HUB CLUSTER FOR ZTP 227
17.2.1. Telco RAN 4.12 validated solution software versions 227
17.2.2. Installing GitOps ZTP in a disconnected environment 227
17.2.3. Adding RHCOS ISO and RootFS images to the disconnected mirror host 228
17.2.4. Enabling the assisted service 229
17.2.5. Configuring the hub cluster to use a disconnected mirror registry 230
17.2.6. Configuring the hub cluster to use unauthenticated registries 232
17.2.7. Configuring the hub cluster with ArgoCD 233
17.2.8. Preparing the GitOps ZTP site configuration repository 235
17.3. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES 236
17.3.1. GitOps ZTP and Topology Aware Lifecycle Manager 237
17.3.2. Overview of deploying managed clusters with ZTP 238
Overview of the managed site installation process 239
17.3.3. Creating the managed bare-metal host secrets 239
17.3.4. Configuring Discovery ISO kernel arguments for installations using GitOps ZTP 240
17.3.5. Deploying a managed cluster with SiteConfig and ZTP 242
17.3.5.1. Single-node OpenShift SiteConfig CR installation reference 246
17.3.6. Monitoring managed cluster installation progress 248
17.3.7. Troubleshooting GitOps ZTP by validating the installation CRs 248
17.3.8. Troubleshooting {ztp} virtual media booting on Supermicro servers 249
17.3.9. Removing a managed cluster site from the ZTP pipeline 250
17.3.10. Removing obsolete content from the ZTP pipeline 250
17.3.11. Tearing down the ZTP pipeline 251
17.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES 25I1
17.4.1. About the PolicyGenTemplate CRD 251
17.4.2. Recommendations when customizing PolicyGenTemplate CRs 255
17.4.3. PolicyGenTemplate CRs for RAN deployments 255
17.4.4. Customizing a managed cluster with PolicyGenTemplate CRs 257
17.4.5. Monitoring managed cluster policy deployment progress 258
17.4.6. Validating the generation of configuration policy CRs 260
17.4.7. Restarting policy reconciliation 261
17.4.8. Changing applied managed cluster CRs using policies 262
17.4.9. Indication of done for ZTP installations 264
17.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP 265
17.5.1. Generating ZTP installation and configuration CRs manually 265
17.5.2. Creating the managed bare-metal host secrets 270
17.5.3. Configuring Discovery ISO kernel arguments for manual installations using GitOps ZTP 271
17.5.4. Installing a single managed cluster 272
17.5.5. Monitoring the managed cluster installation status 273
17.5.6. Troubleshooting the managed cluster 274
17.5.7. RHACM generated cluster installation CRs reference 275
17.6. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION
WORKLOADS 277
17.6.1. Running low latency applications on OpenShift Container Platform 277
17.6.2. Recommended cluster host requirements for vDU application workloads 278
17.6.3. Configuring host firmware for low latency and high performance 278
17.6.4. Connectivity prerequisites for managed cluster networks 279
17.6.5. Workload partitioning in single-node OpenShift with GitOps ZTP 280
17.6.6. Recommended installation-time cluster configurations 280
17.6.6.1. Workload partitioning 280
17.6.6.2. Reduced platform management footprint 282
17.6.6.3.SCTP 284

17.6.6.4. Accelerated container startup

17.6.6.5. Automatic kernel crash dumps with kdump
17.6.7. Recommended postinstallation cluster configurations

17.6.7.1. Operator namespaces and Operator groups

17.6.7.2. Operator subscriptions

17.6.7.3. Cluster logging and log forwarding

17.6.7.4. Performance profile

17.6.7.5. Configuring cluster time synchronization

17.6.7.6. PTP

17.6.7.7. Extended Tuned profile

17.6.7.8. SR-I0OV

17.6.7.9. Console Operator

17.6.7.10. Alertmanager

17.6.7.11. Operator Lifecycle Manager

17.6.7.12. Network diagnostics

Table of Contents

285
289

291

291
293
294
295
296
298
300
301
302
303
303
303

17.7. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

17.7.1. Recommended firmware configuration for vDU cluster hosts
17.7.2. Recommended cluster configurations to run vDU applications
17.7.2.1. Recommended cluster MachineConfig CRs
17.7.2.2. Recommended cluster Operators
17.7.2.3. Recommended cluster kernel configuration
17.7.2.4. Checking the realtime kernel version
17.7.3. Checking that the recommended cluster configurations are applied
17.8. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES
17.8.1. Customizing extra installation manifests in the ZTP GitOps pipeline
17.8.2. Filtering custom resources using SiteConfig filters

304
304
306
306
306
307
307
309

318

318

319

17.9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES 320

17.9.1. Deploying additional changes to clusters 320
17.9.2. Using PolicyGenTemplate CRs to override source CRs content 321
17.9.3. Adding custom content to the GitOps ZTP pipeline 324
17.9.4. Configuring policy compliance evaluation timeouts for PolicyGenTemplate CRs 326
17.9.5. Signalling ZTP cluster deployment completion with validator inform policies 328
17.9.6. Configuring PTP events with PolicyGenTemplate CRs 329
17.9.6.1. Configuring PTP events that use HTTP transport 329
17.9.6.2. Configuring PTP events that use AMQP transport 331
17.9.7. Configuring bare-metal events with PolicyGenTemplate CRs 333
17.9.7.1. Configuring bare-metal events that use HTTP transport 333
17.9.7.2. Configuring bare-metal events that use AMQP transport 334
17.9.8. Configuring the Image Registry Operator for local caching of images 336
17.9.8.1. Configuring disk partitioning with SiteConfig 336
17.9.8.2. Configuring the image registry using PolicyGenTemplate CRs 337
17.9.9. Using hub templates in PolicyGenTemplate CRs 340
17.9.9.1. Example hub templates 341
17.9.9.2. Specifying host NICs in site PolicyGenTemplate CRs with hub cluster templates 342
17.9.9.3. Specifying VLAN IDs in group PolicyGenTemplate CRs with hub cluster templates 344
17.9.9.4. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs 345
17.10. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER 346
17.10.1. About the Topology Aware Lifecycle Manager configuration 347
17.10.2. About managed policies used with Topology Aware Lifecycle Manager 347
17.10.3. Installing the Topology Aware Lifecycle Manager by using the web console 348
17.10.4. Installing the Topology Aware Lifecycle Manager by using the CLI 348
17.10.5. About the ClusterGroupUpgrade CR 349

OpenShift Container Platform 4.12 Scalability and performance

17.10.5.1. Selecting clusters
17.10.5.2. Validating
17.10.5.3. Pre-caching
17.10.5.4. Creating a backup
17.10.5.5. Updating clusters
17.10.5.6. Update status
17.10.5.7. Blocking ClusterGroupUpgrade CRs
17.10.6. Update policies on managed clusters
17.10.6.1. Configuring Operator subscriptions for managed clusters that you install with TALM
17.10.6.2. Applying update policies to managed clusters
17.10.7. Creating a backup of cluster resources before upgrade
17.10.7.1. Creating a ClusterGroupUpgrade CR with backup
17.10.7.2. Recovering a cluster after a failed upgrade
17.10.8. Using the container image pre-cache feature
17.10.8.1. Creating a ClusterGroupUpgrade CR with pre-caching
17.10.9. Troubleshooting the Topology Aware Lifecycle Manager
17.10.9.1. General troubleshooting
17.10.9.2. Cannot modify the ClusterUpgradeGroup CR
17.10.9.3. Managed policies
Checking managed policies on the system
Checking remediationAction mode
Checking policy compliance state
17.10.9.4. Clusters
Checking if managed clusters are present
Checking if managed clusters are available
Checking clusterLabelSelector
Checking if canary clusters are present
Checking the pre-caching status on spoke clusters
17.10.9.5. Remediation Strategy
Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR
17.10.9.6. Topology Aware Lifecycle Manager
Checking condition message and status in the ClusterGroupUpgrade CR
Checking corresponding copied policies
Checking if status.remediationPlan was computed
Errors in the TALM manager container
Clusters are not compliant to some policies after a ClusterGroupUpgrade CR has completed

350
353
353
353
354
356
359
365
367
367
374
375
377
380

381
383
384
384
385
385
385
385
386
386
387
387
388
388
389
389
389
389
389
389
390
390

391

17.11. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE

LIFECYCLE MANAGER
17.11.1. Updating clusters in a disconnected environment
17.11.1.1. Setting up the environment
17.11.1.2. Performing a platform update
17.11.1.3. Performing an Operator update
17.11.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance states
17.11.1.4. Performing a platform and an Operator update together
17.11.1.5. Removing Performance Addon Operator subscriptions from deployed clusters
17.11.2. About the auto-created ClusterGroupUpgrade CR for ZTP
17.12. UPDATING GITOPS ZTP
17.12.1. Overview of the GitOps ZTP update process
17.12.2. Preparing for the upgrade
17.12.3. Labeling the existing clusters
17.12.4. Stopping the existing GitOps ZTP applications
17.12.5. Required changes to the Git repository

391
391
391
393
396
401
402
405
406
407
408
408
409
409
410

Table of Contents

17.12.6. Installing the new GitOps ZTP applications 4n
17.12.7. Rolling out the GitOps ZTP configuration changes 412
17.13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP 412
17.13.1. Applying profiles to the worker node 413
17.13.2. (Optional) Ensuring PTP and SR-IOV daemon selector compatibility 413
17.13.3. PTP and SR-IOV node selector compatibility 414
17.13.4. Using PolicyGenTemplate CRs to apply worker node policies to worker nodes 415
17.13.5. Adding worker nodes to single-node OpenShift clusters with GitOps ZTP 417
17.14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS 420
17.14.1. Getting the factory-precaching-cli tool 421
17.14.2. Booting from a live operating system image 421
17.14.3. Partitioning the disk 423
17.14.3.1. Creating the partition 424
17.14.3.2. Mounting the partition 425
17.14.4. Downloading the images 426
17.14.4.1. Downloading with parallel workers 426
17.14.4.2. Preparing to download the OpenShift Container Platform images 427
17.14.4.3. Downloading the OpenShift Container Platform images 428
17.14.4.4. Downloading the Operator images 430
17.14.4.5. Pre-caching custom images in disconnected environments 431
17.14.5. Pre-caching images in ZTP 435
17.14.5.1. Understanding the clusters.ignitionConfigOverride field 438
17.14.5.2. Understanding the nodes.installerArgs field 438
17.14.5.3. Understanding the nodes.ignitionConfigOverride field 439
17.14.6. Troubleshooting 440
17.14.6.1. Rendered catalog is invalid 440

OpenShift Container Platform 4.12 Scalability and performance

10

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

CHAPTER 1. RECOMMENDED PERFORMANCE AND
SCALABILITY PRACTICES

1.1. RECOMMENDED CONTROL PLANE PRACTICES

This topic provides recommended performance and scalability practices for control planes in OpenShift
Container Platform.

1.1.1. Recommended practices for scaling the cluster

The guidance in this section is only relevant for installations with cloud provider integration.

Apply the following best practices to scale the number of worker machines in your OpenShift Container
Platform cluster. You scale the worker machines by increasing or decreasing the number of replicas that
are defined in the worker machine set.

When scaling up the cluster to higher node counts:
® Spread nodes across all of the available zones for higher availability.
® Scale up by no more than 25 to 50 machines at once.

® Consider creating new compute machine sets in each available zone with alternative instance
types of similar size to help mitigate any periodic provider capacity constraints. For example, on
AWS, use m5.large and m5d.large.

NOTE

Cloud providers might implement a quota for APl services. Therefore, gradually scale the
cluster.

The controller might not be able to create the machines if the replicas in the compute machine sets are
set to higher numbers all at one time. The number of requests the cloud platform, which OpenShift
Container Platform is deployed on top of, is able to handle impacts the process. The controller will start
to query more while trying to create, check, and update the machines with the status. The cloud
platform on which OpenShift Container Platform is deployed has API request limits; excessive queries
might lead to machine creation failures due to cloud platform limitations.

Enable machine health checks when scaling to large node counts. In case of failures, the health checks
monitor the condition and automatically repair unhealthy machines.

NOTE

When scaling large and dense clusters to lower node counts, it might take large amounts
of time because the process involves draining or evicting the objects running on the
nodes being terminated in parallel. Also, the client might start to throttle the requests if
there are too many objects to evict. The default client queries per second (QPS) and
burst rates are currently set to 5 and 10 respectively. These values cannot be modified in
OpenShift Container Platform.

1.1.2. Control plane node sizing

The control plane node resource requirements depend on the number and type of nodes and objects in

1

OpenShift Container Platform 4.12 Scalability and performance

the cluster. The following control plane node size recommendations are based on the results of a control
plane density focused testing, or Cluster-density. This test creates the following objects across a given
number of namespaces:

® Jimage stream
® 1build

e 5 deployments, with 2 pod replicas in a sleep state, mounting 4 secrets, 4 config maps, and 1
downward APl volume each

® 5 services, each one pointing to the TCP/8080 and TCP/8443 ports of one of the previous
deployments

® Jroute pointing to the first of the previous services

® 10 secrets containing 2048 random string characters

Number of worker Cluster-density CPU cores Memory (GB)

10 config maps containing 2048 random string characters

nodes (namespaces)

24 500 4 16

120 1000 8 32

252 4000 16, but 24 if using the 64, but 128 if using the
OVN-Kubernetes OVN-Kubernetes
network plug-in network plug-in

501, but untested with 4000 16 96

the OVN-Kubernetes
network plug-in

The data from the table above is based on an OpenShift Container Platform running on top of AWS,
using r5.4xlarge instances as control-plane nodes and m5.2xlarge instances as worker nodes.

On a large and dense cluster with three control plane nodes, the CPU and memory usage will spike up
when one of the nodes is stopped, rebooted, or fails. The failures can be due to unexpected issues with
power, network, underlying infrastructure, or intentional cases where the cluster is restarted after
shutting it down to save costs. The remaining two control plane nodes must handle the load in order to
be highly available, which leads to increase in the resource usage. This is also expected during upgrades
because the control plane nodes are cordoned, drained, and rebooted serially to apply the operating
system updates, as well as the control plane Operators update. To avoid cascading failures, keep the
overall CPU and memory resource usage on the control plane nodes to at most 60% of all available
capacity to handle the resource usage spikes. Increase the CPU and memory on the control plane nodes
accordingly to avoid potential downtime due to lack of resources.

12

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the running phase.

Operator Lifecycle Manager (OLM) runs on the control plane nodes and its memory footprint depends
on the number of namespaces and user installed operators that OLM needs to manage on the cluster.
Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on
the results from cluster maximums testing.

Number of namespaces OLM memory at idle state (GB) OLM memory with 5 user

operators installed (GB)

500 0.823 17
1000 12 25
1500 17 32
2000 2 4.4
3000 27 5.6
4000 3.8 7.6
5000 42 9.02
6000 5.8 .3
7000 6.6 12.9
8000 6.9 14.8
9000 8 17.7
10,000 9.9 216

13

OpenShift Container Platform 4.12 Scalability and performance

IMPORTANT

You can modify the control plane node size in a running OpenShift Container Platform
4.2 cluster for the following configurations only:

® C(Clusters installed with a user-provisioned installation method.

® AWS clusters installed with an installer-provisioned infrastructure installation
method.

® Clusters that use a control plane machine set to manage control plane machines.

For all other configurations, you must estimate your total node count and use the
suggested control plane node size during installation.

IMPORTANT

The recommendations are based on the data points captured on OpenShift Container
Platform clusters with OpenShift SDN as the network plugin.

NOTE

In OpenShift Container Platform 4.12, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

1.1.2.1. Selecting a larger Amazon Web Services instance type for control plane machines

If the control plane machines in an Amazon Web Services (AWS) cluster require more resources, you can
select a larger AWS instance type for the control plane machines to use.

NOTE

The procedure for clusters that use a control plane machine set is different from the
procedure for clusters that do not use a control plane machine set.

If you are uncertain about the state of the ControlPlaneMachineSet CR in your cluster,
you can verify the CR status.

1.1.2.1.1. Changing the Amazon Web Services instance type by using a control plane machine set

You can change the Amazon Web Services (AWS) instance type that your control plane machines use by
updating the specification in the control plane machine set custom resource (CR).

Prerequisites

Procedure

14

® Your AWS cluster uses a control plane machine set.

1. Edit your control plane machine set CR by running the following command:

$ oc --namespace openshift-machine-api edit controlplanemachineset.machine.openshift.io
cluster

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/machine_management/#cpmso-checking-status_cpmso-getting-started

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

2. Edit the following line under the providerSpec field:

providerSpec:
value:

instanceType: <compatible_aws_instance_type> ﬂ

ﬂ Specify a larger AWS instance type with the same base as the previous selection. For
example, you can change mé6i.xlarge to m6i.2xlarge or mé6i.4xlarge.

3. Save your changes.

® For clusters that use the default RollingUpdate update strategy, the Operator
automatically propagates the changes to your control plane configuration.

® For clusters that are configured to use the OnDelete update strategy, you must replace
your control plane machines manually.

Additional resources

® Managing control plane machines with control plane machine sets

1.1.2.1.2. Changing the Amazon Web Services instance type by using the AWS console

You can change the Amazon Web Services (AWS) instance type that your control plane machines use by
updating the instance type in the AWS console.

Prerequisites

® You have access to the AWS console with the permissions required to modify the EC2 Instance
for your cluster.

® You have access to the OpenShift Container Platform cluster as a user with the cluster-admin
role.

Procedure
1. Open the AWS console and fetch the instances for the control plane machines.
2. Choose one control plane machine instance.

a. For the selected control plane machine, back up the etcd data by creating an etcd snapshot.
For more information, see "Backing up etcd".

b. Inthe AWS console, stop the control plane machine instance.

c. Select the stopped instance, and click Actions — Instance Settings — Change instance
type.

d. Change the instance to a larger type, ensuring that the type is the same base as the
previous selection, and apply changes. For example, you can change mé6i.xlarge to
m6i.2xlarge or m6i.4xlarge.

e. Start the instance.

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/machine_management/#cpmso-using

OpenShift Container Platform 4.12 Scalability and performance

f. If your OpenShift Container Platform cluster has a corresponding Machine object for the
instance, update the instance type of the object to match the instance type set in the AWS
console.

3. Repeat this process for each control plane machine.

Additional resources

® Backing up etcd

® AWS documentation about changing the instance type

1.2. RECOMMENDED INFRASTRUCTURE PRACTICES

This topic provides recommended performance and scalability practices for infrastructure in OpenShift
Container Platform.

1.2.1. Infrastructure node sizing

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. The infrastructure node resource requirements depend on the cluster age, nodes, and
objects in the cluster, as these factors can lead to an increase in the number of metrics or time series in
Prometheus. The following infrastructure node size recommendations are based on the results observed
in cluster-density testing detailed in the Control plane node sizingsection, where the monitoring stack
and the default ingress-controller were moved to these nodes.

Number of worker Cluster density, or CPU cores Memory (GB)

nodes number of namespaces

27 500 4 24
120 1000 8 48
252 4000 16 128
501 4000 32 128

In general, three infrastructure nodes are recommended per cluster.

IMPORTANT

These sizing recommendations should be used as a guideline. Prometheus is a highly
memory intensive application; the resource usage depends on various factors including
the number of nodes, objects, the Prometheus metrics scraping interval, metrics or time
series, and the age of the cluster. In addition, the router resource usage can also be
affected by the number of routes and the amount/type of inbound requests.

These recommendations apply only to infrastructure nodes hosting Monitoring, Ingress
and Registry infrastructure components installed during cluster creation.

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/backup_and_restore/#backing-up-etcd
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-resize.html

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

NOTE

In OpenShift Container Platform 4.12, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. This influences the stated sizing recommendations.

1.2.2. Scaling the Cluster Monitoring Operator

OpenShift Container Platform exposes metrics that the Cluster Monitoring Operator collects and stores
in the Prometheus-based monitoring stack. As an administrator, you can view dashboards for system
resources, containers, and components metrics in the OpenShift Container Platform web console by
navigating to Observe — Dashboards.

1.2.3. Prometheus database storage requirements

Red Hat performed various tests for different scale sizes.

NOTE

e The following Prometheus storage requirements are not prescriptive and should
be used as a reference. Higher resource consumption might be observed in your
cluster depending on workload activity and resource density, including the
number of pods, containers, routes, or other resources exposing metrics
collected by Prometheus.

® You can configure the size-based data retention policy to suit your storage
requirements.

Table 1.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of nodes Number of pods Prometheus Prometheus Network (per tsdb
(2 containers per storage growth storage growth chunk)
pod) per day per 15 days

50 1800 6.3GB 94 GB 16 MB

100 3600 13GB 195 GB 26 MB

150 5400 19 GB 283 GB 36 MB

200 7200 25GB 375GB 46 MB

Approximately 20 percent of the expected size was added as overhead to ensure that the storage
requirements do not exceed the calculated value.

The above calculation is for the default OpenShift Container Platform Cluster Monitoring Operator.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

17

OpenShift Container Platform 4.12 Scalability and performance

Recommendations for OpenShift Container Platform

e Use at least two infrastructure (infra) nodes.

® Use at least three openshift-container-storage nodes with non-volatile memory express (SSD
or NVMe) drives.

1.2.4. Configuring cluster monitoring
You can increase the storage capacity for the Prometheus component in the cluster monitoring stack.

Procedure

To increase the storage capacity for Prometheus:
1. Create a YAML configuration file, cluster-monitoring-config.yaml. For example:

apiVersion: vi
kind: ConfigMap
data:
config.yaml: |
prometheusK8s:
retention: {{PROMETHEUS_RETENTION_PERIOD}} ﬂ
nodeSelector:
node-role.kubernetes.io/infra: ™"
volumeClaimTemplate:
spec:
storageClassName: {{STORAGE_CLASS}} g
resources:
requests:
storage: {{PROMETHEUS_STORAGE_SIZE}} 6
alertmanagerMain:
nodeSelector:
node-role.kubernetes.io/infra: ™"
volumeClaimTemplate:
spec:
storageClassName: {{STORAGE_CLASS}} ﬂ
resources:
requests:
storage: {{ALERTMANAGER_STORAGE_SIZE}} 9
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring

ﬂ The default value of Prometheus retention is
PROMETHEUS_RETENTION_PERIOD=15d. Units are measured in time using one of
these suffixes: s, m, h, d.

wThe storage class for your cluster.
9 A typical value is PROMETHEUS_STORAGE_SIZE=2000Gi. Storage values can be a plain
integer or a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also

use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

9 A typical value is ALERTMANAGER_STORAGE_SIZE=20Gi. Storage values can be a plain
integer or a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also

18

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

2. Add values for the retention period, storage class, and storage sizes.
3. Save the file.

4. Apply the changes by running:

I $ oc create -f cluster-monitoring-config.yaml

1.2.5. Additional resources

® Infrastructure Nodes in OpenShift 4
® OpenShift Container Platform cluster maximums

® Creating infrastructure machine sets

1.3. RECOMMENDED ETCD PRACTICES

This topic provides recommended performance and scalability practices for etcd in OpenShift Container
Platform.

1.3.1. Recommended etcd practices

Because etcd writes data to disk and persists proposals on disk, its performance depends on disk
performance. Although etcd is not particularly I/O intensive, it requires a low latency block device for
optimal performance and stability. Because etcd’s consensus protocol depends on persistently storing
metadata to a log (WAL), etcd is sensitive to disk-write latency. Slow disks and disk activity from other
processes can cause long fsync latencies.

Those latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and
ultimately experience request timeouts and temporary leader loss. High write latencies also lead to an
OpenShift API slowness, which affects cluster performance. Because of these reasons, avoid colocating
other workloads on the control-plane nodes that are I/O sensitive or intensive and share the same
underlying I/O infrastructure.

In terms of latency, run etcd on top of a block device that can write at least 50 IOPS of 8000 bytes long
sequentially. That is, with a latency of 10ms, keep in mind that uses fdatasync to synchronize each write
in the WAL. For heavy loaded clusters, sequential 500 IOPS of 8000 bytes (2 ms) are recommended.
To measure those numbers, you can use a benchmarking tool, such as fio.

To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low
latency and high throughput. Consider single-level cell (SLC) solid-state drives (SSDs), which provide 1
bit per memory cell, are durable and reliable, and are ideal for write-intensive workloads.

NOTE

The load on etcd arises from static factors, such as the number of nodes and pods, and
dynamic factors, including changes in endpoints due to pod autoscaling, pod restarts, job
executions, and other workload-related events. To accurately size your etcd setup, you
must analyze the specific requirements of your workload. Consider the number of nodes,
pods, and other relevant factors that impact the load on etcd.

19

https://access.redhat.com/solutions/5034771
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/machine_management/#creating-infrastructure-machinesets

OpenShift Container Platform 4.12 Scalability and performance

The following hard disk features provide optimal etcd performance:

Low latency to support fast read operation.

High-bandwidth writes for faster compactions and defragmentation.
High-bandwidth reads for faster recovery from failures.

Solid state drives as a minimum selection, however NVMe drives are preferred.
Server-grade hardware from various manufacturers for increased reliability.
RAID O technology for increased performance.

Dedicated etcd drives. Do not place log files or other heavy workloads on etcd drives.

NOTE

Avoid NAS or SAN setups and spinning drives. Ceph Rados Block Device (RBD) and other
types of network-attached storage can result in unpredictable network latency. To
provide fast storage to etcd nodes at scale, use PCl passthrough to pass NVM devices
directly to the nodes.

Always benchmark by using utilities such as fio. You can use such utilities to continuously monitor the
cluster performance as it increases.

NOTE

28

Avoid using the Network File System (NFS) protocol or other network based file systems.

Some key metrics to monitor on a deployed OpenShift Container Platform cluster are p99 of etcd disk
write ahead log duration and the number of etcd leader changes. Use Prometheus to track these
metrics.

NOTE

The etcd member database sizes can vary in a cluster during normal operations. This
difference does not affect cluster upgrades, even if the leader size is different from the
other members.

e

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,
you can use fio.

Prerequisites
e Container runtimes such as Podman or Docker are installed on the machine that you're testing.

® Datais written to the /var/lib/etcd path.

Procedure
® Run fio and analyze the results:

o |f you use Podman, run this command:

20

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

I $ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/cloud-bulldozer/etcd-perf
o [f you use Docker, run this command:
I $ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/cloud-bulldozer/etcd-perf

The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the
fsync metric captured from the run to see if it is less than 10 ms. A few of the most important etcd
metrics that might affected by I/O performance are as follow:

e etcd disk_wal_fsync_duration_seconds_bucket metric reports the etcd’'s WAL fsync
duration

e etcd_disk_backend_commit_duration_seconds_bucket metric reports the etcd backend
commit latency duration

e etcd_server_leader_changes_seen_total metric reports the leader changes

Because etcd replicates the requests among all the members, its performance strongly depends on
network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than
the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to
monitor on a deployed OpenShift Container Platform cluster is the 99th percentile of etcd network peer
latency on each etcd cluster member. Use Prometheus to track the metric.

The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members.
Ensure that it is less than 50 ms.

Additional resources

® How to use fio to check etcd disk performance in OpenShift Container Platform

® etcd performance troubleshooting guide for OpenShift Container Platform

1.3.2. Moving etcd to a different disk

You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.

The Machine Config Operator (MCO) is responsible for mounting a secondary disk for OpenShift
Container Platform 4.12 container storage.

NOTE
This encoded script only supports device names for the following device types:

SCSlor SATA
/dev/sd*

Virtual device
/dev/vd*

NVMe
/dev/nvme*[0-9]*n*

Limitations

21

https://access.redhat.com/solutions/4885641
https://access.redhat.com/articles/6271341

OpenShift Container Platform 4.12 Scalability and performance

® When the new disk is attached to the cluster, the etcd database is part of the root mount. It is
not part of the secondary disk or the intended disk when the primary node is recreated. As a
result, the primary node will not create a separate /var/lib/etcd mount.

Prerequisites
® You have a backup of your cluster’s etcd data.
® You have installed the OpenShift CLI (oc).
® You have access to the cluster with cluster-admin privileges.
® Add additional disks before uploading the machine configuration.

® The MachineConfigPool must match
metadata.labels[machineconfiguration.openshift.io/role]. This applies to a controller, worker,
or a custom pool.

NOTE

This procedure does not move parts of the root file system, such as /var/, to another disk
or partition on an installed node.

IMPORTANT

This procedure is not supported when using control plane machine sets.

Procedure

1. Attach the new disk to the cluster and verify that the disk is detected in the node by running the
Isblk command in a debug shell:

I $ oc debug node/<node_name>

I # Isblk

Note the device name of the new disk reported by the Isblk command.

2. Decode and replace the device name in the script according to your environment.

#!/bin/bash
set -uo pipefall

for device in <device_type_glob>; do ﬂ
/usr/sbin/blkid $device &> /dev/null
if[$? == 2]; then
echo "secondary device found $device"
echo "creating filesystem for etcd mount"
mkfs.xfs -L var-lib-etcd -f $device &> /dev/null
udevadm settle
touch /etc/var-lib-etcd-mount
exit

22

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

done
echo "Couldn't find secondary block device!" >&2
exit 77

Replace <device_type_glob> with a shell glob for your block device type. For SCSI or
SATA drives, use /dev/sd*; for virtual drives, use /dev/vd*; for NVMe drives, use
/dev/nvme*[0-9]*n*.

3. Create a MachineConfig YAML file named etcd-mc.yml with contents such as the following:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 98-var-lib-etcd

spec:
config:
ignition:
version: 3.1.0
storage:
files:
- path: /etc/find-secondary-device
mode: 0755
contents:

source: data:text/plain;charset=utf-8;base64,
<encoded_etc_find_secondary_device_script> ﬂ
systemd:
units:
- name: find-secondary-device.service

enabled: true

contents: |
[Unit]
Description=Find secondary device
DefaultDependencies=false
After=systemd-udev-settle.service
Before=local-fs-pre.target
ConditionPathExists=!/etc/var-lib-etcd-mount

[Service]
RemainAfterExit=yes
ExecStart=/etc/find-secondary-device

RestartForceExitStatus=77

[Install]
WantedBy=multi-user.target
- name: var-lib-etcd.mount
enabled: true
contents: |
[Unit]
Before=local-fs.target

[Mount]
What=/dev/disk/by-label/var-lib-etcd

23

OpenShift Container Platform 4.12 Scalability and performance

Where=/var/lib/etcd
Type=xfs
TimeoutSec=120s

[Install]
RequiredBy=local-fs.target
- name: sync-var-lib-etcd-to-etcd.service

enabled: true

contents: |
[Unit]
Description=Sync etcd data if new mount is empty
DefaultDependencies=no
After=var-lib-etcd.mount var.mount
Before=crio.service

[Service]

Type=oneshot

RemainAfterExit=yes

ExecCondition=/usr/bin/test | -d /var/lib/etcd/member
ExecStart=/usr/sbin/setsebool -P rsync_full_access 1

ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
ExecStart=/usr/sbin/semanage fcontext -a -t container_var_lib_t '/var/lib/etcd(/.*)?
ExecStart=/usr/sbin/setsebool -P rsync_full_access 0

TimeoutSec=0

[Install]
WantedBy=multi-user.target graphical.target
- name: restorecon-var-lib-etcd.service

enabled: true

contents: |
[Unit]
Description=Restore recursive SELinux security contexts
DefaultDependencies=no
After=var-lib-etcd.mount
Before=crio.service

[Service]

Type=oneshot

RemainAfterExit=yes
ExecStart=/sbin/restorecon -R /var/lib/etcd/
TimeoutSec=0

[Install]
WantedBy=multi-user.target graphical.target

Use the encoded string that you previously created and replace it with the encoded script
that you noted.

Verification steps

e Run the grep /var/lib/etcd /proc/mounts command in a debug shell for the node to ensure that
the disk is mounted:

I $ oc debug node/<node_name>

24

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

I # grep -w "/var/lib/etcd" /proc/mounts
Example output

/dev/sdb /var/lib/etcd xfs rw,seclabel,relatime,attr2,inode64,logbufs=8,logbsize=32k,noquota
00

Additional resources

® Red Hat Enterprise Linux CoreOS (RHCOS)

1.3.3. Defragmenting etcd data

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

e etcd_server_quota_backend_bytes, which is the current quota limit

e etcd mvcc_db_total_size in_use_in_bytes, which indicates the actual database usage after a
history compaction

e etcd _mvcc_db_total_size in_bytes, which shows the database size, including free space
waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd
history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.

You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

NOTE

Automatic defragmentation is good for most cases, because the etcd operator uses
cluster information to determine the most efficient operation for the user.

1.3.3.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.
Verify that the defragmentation process is successful by viewing one of these logs:

® etcdlogs

® cluster-etcd-operator pod

® operator status error log

25

https://docs.openshift.com/container-platform/4.11/architecture/architecture-rhcos.html

OpenShift Container Platform 4.12 Scalability and performance

' WARNING
A Automatic defragmentation can cause leader election failure in various OpenShift

core components, such as the Kubernetes controller manager, which triggers a
restart of the failing component. The restart is harmless and either triggers failover
to the next running instance or the component resumes work again after the
restart.

Example log output for successful defragmentation
I etcd member has been defragmented: <member_name>, memberID: <member_id>
Example log output for unsuccessful defragmentation

I failed defrag on member: <member_name>, memberID: <member_id>: <error_message>

1.3.3.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in
two cases:

® When etcd uses more than 50% of its available space for more than 10 minutes
® When etcd is actively using less than 50% of its total database size for more than 10 minutes
You can also determine whether defragmentation is needed by checking the etcd database size in MB

that will be freed by defragmentation with the PromQL expression:
(etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size _in_use_in_bytes)/1024/1024

WARNING
A Defragmenting etcd is a blocking action. The etcd member will not respond until

defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

26

CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES

a. Getthe list of etcd pods:
I $ oc -n openshift-etcd get pods -l k8s-app=etcd -0 wide

Example output

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

b. Choose a pod and run the following command to determine which etcd member is the
leader:

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Example output

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.

+- + -t +---- + i
+- -+ + +

| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |

+- + -t +---- + i

+- -+ + +

| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9| 104 MB| false| false |
7] 91624 | 91624 | |

| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9| 104 MB| false| false |
7] 91624 | 91624 | |

| https://10.0.199.170:2379 | 9ac311f93915¢cc79 | 3.4.9| 104 MB| true| false |

7] 91624 | 91624 | |

+- + -t +---- + i

+- -+ + +

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:
I $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com
b. Unset the ETCDCTL_ENDPOINTS environment variable:

I sh-4.4# unset ETCDCTL_ENDPOINTS

27

OpenShift Container Platform 4.12 Scalability and performance

28

c. Defragment the etcd member:

I sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag
Example output
I Finished defragmenting etcd member[https://localhost:2379]

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

I sh-4.4# etcdctl endpoint status -w table --cluster

Example output

+ + + + + + +

+ + + +

| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |

+ + + + + + +

+ + + +

| https://10.0.191.37:2379 | 251cd44483d811c3| 3.49| 104 MB| false| false |
7| 91624 | 91624 | |

| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9| 41 MB| false| false|
7| 91624 | 91624| | @)

| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9| 104 MB| true| false |
7| 91624 | 91624 | |

+ + + + + + +

+ + + +

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.

Wait at least one minute between defragmentation actions to allow the etcd pod to recover.

Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

I sh-4.4# etcdctl alarm list
Example output
I memberlD:12345678912345678912 alarm:NOSPACE

b. Clear the alarms:

I sh-4.44# etcdctl alarm disarm

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUM¢

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING
TO OBJECT MAXIMUMS

Consider the following tested object maximums when you plan your OpenShift Container Platform
cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are lower.
There are many factors that influence the stated thresholds, including the etcd version or storage data
format.

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

' WARNING
A Clusters that experience rapid change, such as those with many starting and

stopping pods, can have a lower practical maximum size than documented.

2.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

NOTE

Red Hat does not provide direct guidance on sizing your OpenShift Container Platform
cluster. This is because determining whether your cluster is within the supported bounds
of OpenShift Container Platform requires careful consideration of all the
multidimensional factors that limit the cluster scale.

OpenShift Container Platform supports tested cluster maximums rather than absolute cluster
maximums. Not every combination of OpenShift Container Platform version, control plane workload,

and network plugin are tested, so the following table does not represent an absolute expectation of scale
for all deployments. It might not be possible to scale to a maximum on all dimensions simultaneously.

The table contains tested maximums for specific workload and deployment configurations, and serves as
a scale guide as to what can be expected with similar deployments.

Maximum type 4.x tested maximum

Number of nodes 2,000

Number of pods [?] 150,000

Number of pods per node 500 [3]

Number of pods per core There is no default value.

29

OpenShift Container Platform 4.12 Scalability and performance

Maximum type 4.x tested maximum

30

Number of namespaces [4]

Number of builds

Number of pods per namespace [°]

Number of routes and back ends per Ingress
Controller

Number of secrets

Number of config maps

Number of services [°]
Number of services per namespace

Number of back-ends per service
Number of deployments per namespace [°]
Number of build configs

Number of custom resource definitions (CRD)

10,000

10,000 (Default pod RAM 512 Mi) - Source-to-
Image (S2I) build strategy

25,000

2,000 per router

80,000

90,000

10,000

5,000

5,000

2,000

12,000

512 [7]

1. Pause pods were deployed to stress the control plane components of OpenShift Container
Platform at 2000 node scale. The ability to scale to similar numbers will vary depending upon
specific deployment and workload parameters.

2. The pod count displayed here is the number of test pods. The actual number of pods depends
on the application’s memory, CPU, and storage requirements.

3. This was tested on a cluster with 100 worker nodes with 500 pods per worker node. The default
maxPods is still 250. To get to 500 maxPods, the cluster must be created with a maxPods set
to 500 using a custom kubelet config. If you need 500 user pods, you need a hostPrefix of 22
because there are 10-15 system pods already running on the node. The maximum number of
pods with attached persistent volume claims (PVC) depends on storage backend from where
PVC are allocated. In our tests, only OpenShift Data Foundation v4 (OCS v4) was able to satisfy
the number of pods per node discussed in this document.

4. When there are a large number of active projects, etcd might suffer from poor performance if
the keyspace grows excessively large and exceeds the space quota. Periodic maintenance of
etcd, including defragmentation, is highly recommended to free etcd storage.

5. There are a number of control loops in the system that must iterate over all objects in a given

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUM¢

namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given
state changes. The limit assumes that the system has enough CPU, memory, and disk to satisfy
the application requirements.

Each service port and each service back-end has a corresponding entry in iptables. The number
of back-ends of a given service impact the size of the endpoints objects, which impacts the size
of data that is being sent all over the system.

OpenShift Container Platform has a limit of 512 total custom resource definitions (CRD),
including those installed by OpenShift Container Platform, products integrating with OpenShift
Container Platform and user created CRDs. If there are more than 512 CRDs created, then there
is a possibility that oc commands requests may be throttled.

2.1.1. Example scenario

As an example, 500 worker nodes (m5.2xl) were tested, and are supported, using OpenShift Container
Platform 4.12, the OVN-Kubernetes network plugin, and the following workload objects:

200 namespaces, in addition to the defaults

60 pods per node; 30 server and 30 client pods (30k total)

57 image streams/ns (11.4k total)

15 services/ns backed by the server pods (3k total)

15 routes/ns backed by the previous services (3k total)

20 secrets/ns (4k total)

10 config maps/ns (2k total)

6 network policies/ns, including deny-all, allow-from ingress and intra-namespace rules

57 builds/ns

The following factors are known to affect cluster workload scaling, positively or negatively, and should
be factored into the scale numbers when planning a deployment. For additional information and
guidance, contact your sales representative or Red Hat support.

Number of pods per node

Number of containers per pod

Type of probes used (for example, liveness/readiness, exec/http)
Number of network policies

Number of projects, or namespaces

Number of image streams per project

Number of builds per project

Number of services/endpoints and type

31

https://access.redhat.com/support/

OpenShift Container Platform 4.12 Scalability and performance

® Number of routes

® Number of shards

® Number of secrets

® Number of config maps

® Rate of API calls, or the cluster “churn”, which is an estimation of how quickly things change in
the cluster configuration.

o Prometheus query for pod creation requests per second over 5 minute windows:
sum(irate(apiserver_request_count{resource="pods",verb="POST"}[5m]))

o Prometheus query for all API requests per second over 5 minute windows:
sum(irate(apiserver_request_count{}[5m]))

® Cluster node resource consumption of CPU

® Cluster node resource consumption of memory

2.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND
CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED

2.2.1. AWS cloud platform

Flavor RAM(GiB) Disk type Disk
size(GiB)
/10S
Control r5.4xlarge 16 128 gp3 220 3 us-west-2
plane/etc
dmM
Infra [4] mb5.12xlarg 48 192 gp3 100 3 us-west-2
e
Workload mb5.4xlarg 16 64 agp3 500 [4] 1 us-west-2
[3] e
Compute mb5.2xlarg 8 32 gp3 100 3/25/250 us-west-2
e /500 B!

1. gp3 disks with a baseline performance of 3000 IOPS and 125 MiB per second are used for
control plane/etcd nodes because etcd is latency sensitive. gp3 volumes do not use burst
performance.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

32

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUM¢

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations and performance and scalability tests are executed at the
specified node counts.

2.2.2.1BM Power platform

RAM(GiB) Disk type Disk

size(GiB)/10S

Control 16 32 iol 120 /10 IOPS 3
plane/etcd '] per GiB

Infra [2] 16 64 gp2 120 2
Workload [3] 16 256 gp2 12041 1

Compute 16 64 gp2 120 2 t0 100 [5]

1. iol disks with 120 / 10 IOPS per GiB are used for control plane/etcd nodes as etcd is I/O
intensive and latency sensitive.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations.

2.2.3.IBM Z platform

vCPU [4] RAM(GiB)[5] Disk type Disk

size(GiB)/I0S

Control 8 32 ds8k 300/ LCU1 3
plane/etcd [+2]

Compute [3] 8 32 ds8k 150/ LCU?2 4 nodes
(scaled to
100/250/500
pods per
node)

33

OpenShift Container Platform 4.12 Scalability and performance

1. Nodes are distributed between two logical control units (LCUs) to optimize disk I/O load of the
control plane/etcd nodes as etcd is I/O intensive and latency sensitive. Etcd I/O demand should
not interfere with other workloads.

2. Four compute nodes are used for the tests running several iterations with 100/250/500 pods
at the same time. First, idling pods were used to evaluate if pods can be instanced. Next, a
network and CPU demanding client/server workload were used to evaluate the stability of the
system under stress. Client and server pods were pairwise deployed and each pair was spread
over two compute nodes.

3. No separate workload node was used. The workload simulates a microservice workload between
two compute nodes.

4. Physical number of processors used is six Integrated Facilities for Linux (IFLs).

5. Total physical memory used is 512 GiB.

2.3.HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED
CLUSTER MAXIMUMS

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension. They will vary
when many objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat's test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment, determine how many pods are expected to fit per node:

I required pods per cluster / pods per node = total number of nodes needed

The default maximum number of pods per node is 250. However, the number of pods that fit on a node
is dependent on the application itself. Consider the application’s memory, CPU, and storage
requirements, as described in "How to plan your environment according to application requirements".

Example scenario

If you want to scope your cluster for 2200 pods per cluster, you would need at least five nodes,
assuming that there are 500 maximum pods per node:

I 2200/500 = 4.4

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

I 2200/20 =110

Where:

34

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUM¢

I required pods per cluster / total number of nodes = expected pods per node

OpenShift Container Platform comes with several system pods, such as SDN, DNS, Operators, and
others, which run across every worker node by default. Therefore, the result of the above formula can
vary.

2.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO
APPLICATION REQUIREMENTS

Consider an example application environment:

Pod quantity Max memory CPU cores Persistent

storage

apache 100 500 MB 0.5 1GB
node.js 200 1GB 1 1GB
postgresql 100 1GB 2 10 GB
JBoss EAP 100 1GB 1 1GB

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node type Quantity RAM (GB)
Nodes (option 1) 100 4 16
Nodes (option 2) 50 8 32
Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

The application pods can access a service either by using environment variables or DNS. If using
environment variables, for each active service the variables are injected by the kubelet when a pod is run
on a node. A cluster-aware DNS server watches the Kubernetes API for new services and creates a set
of DNS records for each one. If DNS is enabled throughout your cluster, then all pods should
automatically be able to resolve services by their DNS name. Service discovery using DNS can be used in
case you must go beyond 5000 services. When using environment variables for service discovery, the

35

OpenShift Container Platform 4.12 Scalability and performance

argument list exceeds the allowed length after 5000 services in a namespace, then the pods and
deployments will start failing. Disable the service links in the deployment’s service specification file to
overcome this:

apiVersion: template.openshift.io/v1
kind: Template
metadata:
name: deployment-config-template
creationTimestamp:
annotations:
description: This template will create a deploymentConfig with 1 replica, 4 env vars and a service.
tags: "
objects:
- apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
name: deploymentconfig${IDENTIFIER}
spec:
template:
metadata:
labels:
name: replicationcontroller${IDENTIFIER}
spec:
enableServiceLinks: false
containers:
- name: pause${IDENTIFIER}
image: "${IMAGE}"
ports:
- containerPort: 8080
protocol: TCP
env:
- name: ENVVAR1_${IDENTIFIER}
value: "${ENV_VALUE}"
- name: ENVVAR2_${IDENTIFIER}
value: "${ENV_VALUE}"
- name: ENVVAR3_${IDENTIFIER}
value: "${ENV_VALUE}"
- name: ENVVAR4_${IDENTIFIER}
value: "${ENV_VALUE}"
resources: {}
imagePullPolicy: IfNotPresent
capabilities: {}
securityContext:
capabilities: {}
privileged: false
restartPolicy: Always
serviceAccount: "
replicas: 1
selector:
name: replicationcontroller${IDENTIFIER}
triggers:
- type: ConfigChange
strategy:
type: Rolling
- apiVersion: v1

36

CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUM¢

kind: Service
metadata:
name: service${IDENTIFIER}
spec:
selector:
name: replicationcontroller${IDENTIFIER}
ports:
- name: serviceport${IDENTIFIER}
protocol: TCP
port: 80
targetPort: 8080
clusterlP: "
type: ClusterlP
sessionAffinity: None
status:
loadBalancer: {}
parameters:
- name: IDENTIFIER
description: Number to append to the name of resources
value: "1’
required: true
- name: IMAGE
description: Image to use for deploymentConfig
value: gcr.io/google-containers/pause-amd64:3.0
required: false
- name: ENV_VALUE
description: Value to use for environment variables
generate: expression
from: "[A-Za-z0-9]{255}"
required: false
labels:
template: deployment-config-template

The number of application pods that can run in a namespace is dependent on the number of services
and the length of the service name when the environment variables are used for service discovery.
ARG_MAX on the system defines the maximum argument length for a new process and it is set to
2097152 bytes (2 MiB) by default. The Kubelet injects environment variables in to each pod scheduled
to runin the namespace including:

e <SERVICE_NAME>_SERVICE_HOST=<IP>

e <SERVICE_NAME>_SERVICE_PORT=<PORT>

e <SERVICE_NAME>_PORT=tcp://<IP>:<PORT>

e <SERVICE_NAME>_PORT_<PORT>_TCP=tcp://<IP>:<PORT>

e <SERVICE_NAME>_PORT_<PORT>_TCP_PROTO=tcp

e <SERVICE_NAME>_PORT_<PORT>_TCP_PORT=<PORT>

e <SERVICE_NAME>_PORT_<PORT>_TCP_ADDR=<ADDR>
The pods in the namespace will start to fail if the argument length exceeds the allowed value and the

number of characters in a service name impacts it. For example, in a namespace with 5000 services, the
limit on the service name is 33 characters, which enables you to run 5000 pods in the namespace.

37

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER 3. RECOMMENDED HOST PRACTICES FORIBM Z &
IBM(R) LINUXONE ENVIRONMENTS

This topic provides recommended host practices for OpenShift Container Platform on IBM Z and IBM®
LinuxONE.

NOTE

The s390x architecture is unique in many aspects. Therefore, some recommendations
made here might not apply to other platforms.

NOTE

Unless stated otherwise, these practices apply to both z/VM and Red Hat Enterprise
Linux (RHEL) KVM installations on IBM Z and IBM® LinuxONE.

3.1. MANAGING CPU OVERCOMMITMENT
In a highly virtualized IBM Z environment, you must carefully plan the infrastructure setup and sizing. One
of the most important features of virtualization is the capability to do resource overcommitment,
allocating more resources to the virtual machines than actually available at the hypervisor level. This is
very workload dependent and there is no golden rule that can be applied to all setups.
Depending on your setup, consider these best practices regarding CPU overcommitment:
® At PAR level (PR/SM hypervisor), avoid assigning all available physical cores (IFLs) to each
LPAR. For example, with four physical IFLs available, you should not define three LPARs with
four logical IFLs each.

® Check and understand LPAR shares and weights.

® An excessive number of virtual CPUs can adversely affect performance. Do not define more
virtual processors to a guest than logical processors are defined to the LPAR.

e Configure the number of virtual processors per guest for peak workload, not more.

® Start small and monitor the workload. Increase the vCPU number incrementally if necessary.

® Not all workloads are suitable for high overcommitment ratios. If the workload is CPU intensive,
you will probably not be able to achieve high ratios without performance problems. Workloads

that are more I/O intensive can keep consistent performance even with high overcommitment
ratios.

Additional resources

® 7z/VM Common Performance Problems and Solutions
® 7/VM overcommitment considerations

® | PAR CPU management

3.2. DISABLE TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using

38

https://www.vm.ibm.com/perf/tips/prgcom.html
https://www.ibm.com/docs/en/linux-on-systems?topic=overcommitment-considerations
https://www.ibm.com/docs/en/zos/2.2.0?topic=director-lpar-cpu-management

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM(R) LINUXONE ENVIRONMENTS

huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP.

3.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW
STEERING

Receive Flow Steering (RFS) extends Receive Packet Steering (RPS) by further reducing network
latency. RFS is technically based on RPS, and improves the efficiency of packet processing by increasing
the CPU cache hit rate. RFS achieves this, and in addition considers queue length, by determining the
most convenient CPU for computation so that cache hits are more likely to occur within the CPU. Thus,
the CPU cache is invalidated less and requires fewer cycles to rebuild the cache. This can help reduce
packet processing run time.

3.3.1. Use the Machine Config Operator (MCO) to activate RFS

Procedure

1. Copy the following MCO sample profile into a YAML file. For example, enable-rfs.yaml:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 50-enable-rfs
spec:
config:
ignition:
version: 2.2.0
storage:
files:
- contents:
source: data:text/plain;charset=US-
ASCII,%23%20turn%200n%20Receive%20Flow%20Steering%20%28RF S%29%20for%20all
%20network%20interfaces%0ASUBSY STEM%3D%3D%22net%22%2C%20ACTION%3D%
3D%22add%22%2C%20RUN%7Bprogram%7D%2B%3D%22/bin/bash%20-
C%20%27for%20x%20in%20/sys/%24DEVPATH/queues/rx-
%2A%3B%20d0%20ech0%208192%20%3E%20%24x/rps_flow_cnt%3B%20%20done%27
%22%0A
filesystem: root
mode: 0644
path: /etc/udev/rules.d/70-persistent-net.rules
- contents:
source: data:text/plain;charset=US-
ASCII,%23%20define%20s0ck%20flow%20enbtried%20for%20%20Receive%20Flow%20Ste
ering%20%28RFS%29%0Anet.core.rps_sock_flow_entries%3D8192%0A
filesystem: root
mode: 0644
path: /etc/sysctl.d/95-enable-rps.conf

2. Create the MCO profile:

I $ oc create -f enable-rfs.yaml

39

OpenShift Container Platform 4.12 Scalability and performance

3. Verify that an entry named 50-enable-rfs is listed:
I $ oc get mc
4. To deactivate, enter:

I $ oc delete mc 50-enable-rfs

Additional resources

® OpenShift Container Platform on IBM Z: Tune your network performance with RFS
® Configuring Receive Flow Steering (RFS)

® Scalingin the Linux Networking Stack

3.4. CHOOSE YOUR NETWORKING SETUP

The networking stack is one of the most important components for a Kubernetes-based product like
OpenShift Container Platform. For IBM Z setups, the networking setup depends on the hypervisor of
your choice. Depending on the workload and the application, the best fit usually changes with the use
case and the traffic pattern.

Depending on your setup, consider these best practices:

e Consider all options regarding networking devices to optimize your traffic pattern. Explore the
advantages of OSA-Express, RoCE Express, HiperSockets, z/VM VSwitch, Linux Bridge (KVM),
and others to decide which option leads to the greatest benefit for your setup.

® Always use the latest available NIC version. For example, OSA Express 7S 10 GbE shows great
improvement compared to OSA Express 6S 10 GbE with transactional workload types, although
both are 10 GbE adapters.

® Each virtual switch adds an additional layer of latency.

® The load balancer plays an important role for network communication outside the cluster.
Consider using a production-grade hardware load balancer if this is critical for your application.

® OpenShift Container Platform SDN introduces flows and rules, which impact the networking
performance. Make sure to consider pod affinities and placements, to benefit from the locality

of services where communication is critical.

® Balance the trade-off between performance and functionality.

Additional resources

® OpenShift Container Platform on IBM Z - Performance Experiences, Hints and Tips
® OpenShift Container Platform on IBM Z Networking Performance

® Controlling pod placement on nodes using node affinity rules

3.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM

40

https://developer.ibm.com/tutorials/red-hat-openshift-on-ibm-z-tune-your-network-performance-with-rfs/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-networking-configuration_tools#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Configuration_tools-Configuring_Receive_Flow_Steering_RFS
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_eval
https://www.ibm.com/docs/en/linux-on-systems?topic=openshift-performance#openshift_perf__ocp_net
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#controlling-pod-placement-on-nodes-using-node-affinity-rules

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM(R) LINUXONE ENVIRONMENTS

DASD and ECKD devices are commonly used disk types in IBM Z environments. In a typical OpenShift
Container Platform setup in z/VM environments, DASD disks are commonly used to support the local
storage for the nodes. You can set up HyperPAV alias devices to provide more throughput and overall
better I/O performance for the DASD disks that support the z/VM guests.

Using HyperPAV for the local storage devices leads to a significant performance benefit. However, you
must be aware that there is a trade-off between throughput and CPU costs.

3.5.1. Use the Machine Config Operator (MCO) to activate HyperPAYV aliases in
nodes using z/VM full-pack minidisks

For z/VM-based OpenShift Container Platform setups that use full-pack minidisks, you can leverage the
advantage of MCO profiles by activating HyperPAV aliases in all of the nodes. You must add YAML
configurations for both control plane and compute nodes.

Procedure

1. Copy the following MCO sample profile into a YAML file for the control plane node. For
example, 05-master-kernelarg-hpav.yaml:

$ cat 05-master-kernelarg-hpav.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 05-master-kernelarg-hpav
spec:
config:
ignition:
version: 3.1.0
kernelArguments:
- rd.dasd=800-805

2. Copy the following MCO sample profile into a YAML file for the compute node. For example,
05-worker-kernelarg-hpav.yaml:

$ cat 05-worker-kernelarg-hpav.yami
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 05-worker-kernelarg-hpav
spec:
config:
ignition:
version: 3.1.0
kernelArguments:
- rd.dasd=800-805

NOTE

You must modify the rd.dasd arguments to fit the device IDs.

41

OpenShift Container Platform 4.12 Scalability and performance

3. Create the MCO profiles:

I $ oc create -f 05-master-kernelarg-hpav.yami

I $ oc create -f 05-worker-kernelarg-hpav.yaml
4. To deactivate, enter:

I $ oc delete -f 05-master-kernelarg-hpav.yaml

I $ oc delete -f 05-worker-kernelarg-hpav.yami

Additional resources

® Using HyperPAV for ECKD DASD

® Scaling HyperPAYV alias devices on Linux guests on z/VM

3.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS

Optimizing a KVM virtual server environment strongly depends on the workloads of the virtual servers
and on the available resources. The same action that enhances performance in one environment can
have adverse effects in another. Finding the best balance for a particular setting can be a challenge and
often involves experimentation.

The following section introduces some best practices when using OpenShift Container Platform with
RHEL KVM on IBM Z and IBM® LinuxONE environments.

3.6.1. Use I/0O threads for your virtual block devices

To make virtual block devices use |/O threads, you must configure one or more |/O threads for the
virtual server and each virtual block device to use one of these I/O threads.

The following example specifies <iothreads>3</iothreads> to configure three I/O threads, with
consecutive decimal thread IDs 1, 2, and 3. The iothread="2" parameter specifies the driver element of
the disk device to use the I/O thread with ID 2.
Sample I/0 thread specification
<domain>
<iothreads>3</iothreads>ﬂ
<devices>
<disk type="block" device="disk">E)
<driver ... iothread="2"/>
</disk>

</devices>

</domain>

42

https://www.ibm.com/docs/en/linux-on-systems?topic=io-using-hyperpav-eckd-dasd
https://public.dhe.ibm.com/software/dw/linux390/perf/zvm_hpav00.pdf

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM(R) LINUXONE ENVIRONMENTS

mThe number of I/O threads.

9 The driver element of the disk device.

Threads can increase the performance of |/O operations for disk devices, but they also use memory and
CPU resources. You can configure multiple devices to use the same thread. The best mapping of
threads to devices depends on the available resources and the workload.

Start with a small number of I/O threads. Often, a single I/O thread for all disk devices is sufficient. Do
not configure more threads than the number of virtual CPUs, and do not configure idle threads.

You can use the virsh iothreadadd command to add I/O threads with specific thread IDs to a running
virtual server.

3.6.2. Avoid virtual SCSI devices

Configure virtual SCSI devices only if you need to address the device through SCSI-specific interfaces.
Configure disk space as virtual block devices rather than virtual SCSI devices, regardless of the backing
on the host.

However, you might need SCSI-specific interfaces for:

® A LUN for a SCSI-attached tape drive on the host.

® ADVD ISO file on the host file system that is mounted on a virtual DVD drive.

3.6.3. Configure guest caching for disk

Configure your disk devices to do caching by the guest and not by the host.

Ensure that the driver element of the disk device includes the cache="none" and io="native"
parameters.

<disk type="block" device="disk">
<driver name="gemu" type="raw" cache="none" io="native" iothread="1"/>

</disk>

3.6.4. Exclude the memory balloon device

Unless you need a dynamic memory size, do not define a memory balloon device and ensure that libvirt
does not create one for you. Include the memballoon parameter as a child of the devices element in
your domain configuration XML file.

® Check the list of active profiles:

I <memballoon model="none"/>

3.6.5. Tune the CPU migration algorithm of the host scheduler

43

OpenShift Container Platform 4.12 Scalability and performance

IMPORTANT

Do not change the scheduler settings unless you are an expert who understands the
implications. Do not apply changes to production systems without testing them and
confirming that they have the intended effect.

The kernel.sched_migration_cost_ns parameter specifies a time interval in nanoseconds. After the
last execution of a task, the CPU cache is considered to have useful content until this interval expires.
Increasing this interval results in fewer task migrations. The default value is 500000 ns.

If the CPU idle time is higher than expected when there are runnable processes, try reducing this
interval. If tasks bounce between CPUs or nodes too often, try increasing it.

To dynamically set the interval to 60000 ns, enter the following command:

I # sysctl kernel.sched_migration_cost_ns=60000

To persistently change the value to 60000 ns, add the following entry to /etc/sysctl.conf:

I kernel.sched_migration_cost_ns=60000

3.6.6. Disable the cpuset cgroup controller

NOTE

This setting applies only to KVM hosts with cgroups version 1. To enable CPU hotplug on
the host, disable the cgroup controller.

Procedure

1. Open /etc/libvirt/gemu.conf with an editor of your choice.
2. Go to the cgroup_controllers line.
3. Duplicate the entire line and remove the leading number sign (#) from the copy.

4. Remove the cpuset entry, as follows:
I cgroup_controllers = ["cpu", "devices", "memory", "blkio", "cpuacct”]

5. For the new setting to take effect, you must restart the libvirtd daemon:

a. Stop all virtual machines.

b. Run the following command:

I # systemctl restart libvirtd

c. Restart the virtual machines.

This setting persists across host reboots.

3.6.7. Tune the polling period for idle virtual CPUs

44

CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM(R) LINUXONE ENVIRONMENTS

When a virtual CPU becomes idle, KVM polls for wakeup conditions for the virtual CPU before allocating
the host resource. You can specify the time interval, during which polling takes place in sysfs at
/sys/module/kvm/parameters/halt_poll_ns. During the specified time, polling reduces the wakeup
latency for the virtual CPU at the expense of resource usage. Depending on the workload, a longer or
shorter time for polling can be beneficial. The time interval is specified in nanoseconds. The default is
50000 ns.

® To optimize for low CPU consumption, enter a small value or write O to disable polling:
I # echo 0 > /sys/module/kvm/parameters/halt_poll_ns
® To optimize for low latency, for example for transactional workloads, enter a large value:

I # echo 80000 > /sys/module/kvm/parameters/halt_poll_ns

Additional resources

® Linux on IBM Z Performance Tuning for KVM

® Getting started with virtualization on IBM Z

45

https://www.ibm.com/docs/en/linux-on-systems?topic=v-kvm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8-on-ibm-z_configuring-and-managing-virtualization

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER 4. USING THE NODE TUNING OPERATOR

Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

4.1. ABOUT THE NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon
and achieves low latency performance by using the Performance Profile controller. The majority of high-
performance applications require some level of kernel tuning. The Node Tuning Operator provides a
unified management interface to users of node-level sysctls and more flexibility to add custom tuning
specified by user needs.

The Operator manages the containerized TuneD daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized TuneD daemon are rolled back on an event that
triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving
and handling a termination signal.
The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications. The cluster
administrator configures a performance profile to define node-level settings such as the following:

® Updating the kernel to kernel-rt.

® Choosing CPUs for housekeeping.

® Choosing CPUs for running workloads.

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR
SPECIFICATION

Use this process to access an example Node Tuning Operator specification.

Praradiira

46

CHAPTER 4. USING THE NODE TUNING OPERATOR

® Run the following command to access an example Node Tuning Operator specification:

I oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

' WARNING
A While in certain situations the support for pod labels can be a convenient way of

automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality will be
deprecated in future versions of the Node Tuning Operator.

4.3. DEFAULT PROFILES SET ON A CLUSTER

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: default
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=0Optimize systems running OpenShift (provider specific parent profile)
include=-provider-${f:exec:cat:/var/lib/tuned/provider},openshift
name: openshift
recommend:
- profile: openshift-control-plane
priority: 30
match:
- label: node-role.kubernetes.io/master
- label: node-role.kubernetes.io/infra
- profile: openshift-node
priority: 40

Starting with OpenShift Container Platform 4.9, all OpenShift TuneD profiles are shipped with the
TuneD package. You can use the oc exec command to view the contents of these profiles:

47

OpenShift Container Platform 4.12 Scalability and performance

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-
control-plane,-node} -name tuned.conf -exec grep -H * {} \;

4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED

Verify the TuneD profiles that are applied to your cluster node.
I $ oc get profile.tuned.openshift.io -n openshift-cluster-node-tuning-operator

Example output

NAME TUNED APPLIED DEGRADED AGE
master-0 openshift-control-plane True False 6h33m
master-1 openshift-control-plane True False 6h33m
master-2 openshift-control-plane True False 6h33m
worker-a openshift-node True False 6h28m
worker-b openshift-node True False 6h28m

e NAME: Name of the Profile object. There is one Profile object per node and their names match.
® TUNED: Name of the desired TuneD profile to apply.
e APPLIED: True if the TuneD daemon applied the desired profile. (True/False/Unknown).

e DEGRADED: True if any errors were reported during application of the TuneD profile
(True/False/Unknown).

e AGE: Time elapsed since the creation of Profile object.

4.5. CUSTOM TUNING SPECIFICATION

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
TuneD profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized TuneD daemons are updated.
Management state
The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator s in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

® Managed: the Operator will update its operands as configuration resources are updated

e Unmanaged: the Operator will ignore changes to the configuration resources

® Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists TuneD profiles and their names.

48

CHAPTER 4. USING THE NODE TUNING OPERATOR

profile:
- name: tuned_profile_1
data: |
TuneD profile specification
[main]
summary=Description of tuned_profile_1 profile

[sysctl]
net.ipv4.ip_forward=1
... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

#...

- name: tuned_profile_n
data: |
TuneD profile specification
[main]
summary=Description of tuned_profile_n profile

tuned_profile_n profile settings

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

recommend:
<recommend-item-1>
#..
<recommend-item-n>

The individual items of the list:

- machineConfigLabels: ﬂ
<mclLabels>

<match> ﬂ
priority: <priority> 6
profile: <tuned_profile_name> G
operand:

debug: <bool> 6

tunedConfig:

reapply_sysctl: <bool> Q
Optional.
A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

®0 009

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

49

OpenShift Container Platform 4.12 Scalability and performance

6 A TuneD profile to apply on a match. For example tuned_profile_1.
Q Optional operand configuration.

@ Turn debugging on or off for the TuneD daemon. Options are true for on or false for off. The
default is false.

@ Turn reapply_sysctl functionality on or off for the TuneD daemon. Options are true for on and
false for off.

<matchs is an optional list recursively defined as follows:

- label: <label name> 3
value: <label_value>
type: <label_type> 6

<match>

Node or pod label name.
Optional node or pod label value. If omitted, the presence of <label_names is enough to match.
Optional object type (node or pod). If omitted, node is assumed.

An optional <matchs list.

0009

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <matchs sections) works as logical AND operator. Conversely, if any item
of the <matchs list matches, the entire <matchs list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_names. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_names on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in TuneD operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: node or pod label based matching

I - match:

50

CHAPTER 4. USING THE NODE TUNING OPERATOR

- label: tuned.openshift.io/elasticsearch
match:
- label: node-role.kubernetes.io/master
- label: node-role.kubernetes.io/infra
type: pod
priority: 10
profile: openshift-control-plane-es
- match:
- label: node-role.kubernetes.io/master
- label: node-role.kubernetes.io/infra
priority: 20
profile: openshift-control-plane
- priority: 30
profile: openshift-node

The CR above is translated for the containerized TuneD daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <matchs section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized
TuneD pod runs on a node with labels node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,

therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

51

OpenShift Container Platform 4.12 Scalability and performance

PRIORITY 10 PRIORITY 20 PRIORITY 30
S 3
1 1
POD 1 I
s FALSE ! NODE ! FALSE
tuned.openshift.io/ : . :
e e e ! node-role.kubernetes.io/ k
1 master [
]]
1 1
1 1
RUNNING ON ! OR !
. A : :
; : oo |
: NODE | ! ?ode-role.kubernetes.io/ !
1 . 1 1 infra I
: node-role.kubernetes.io/ ! 1 [
master | | |
: : __________________________
1 1
1 OR i
1 1
1 1
1 1
I 1
: NODE !
} node-role.kubernetes.io/ !
1 infra 1
l i
1 1
TRUE TRUE ALWAYS TRUE
USE PROFILE USE PROFILE USE PROFILE
openshift-control-plane-es openshift-control-plane openshift-node

Example: machine config pool based matching

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: openshift-node-custom
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Custom OpenShift node profile with an additional kernel parameter
include=openshift-node
[bootloader]
cmdline_openshift_node_custom=+skew_tick=1
name: openshift-node-custom

recommend:
- machineConfigLabels:
machineconfiguration.openshift.io/role: "worker-custom”
priority: 20
profile: openshift-node-custom

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

Cloud provider-specific TuneD profiles

52

CHAPTER 4. USING THE NODE TUNING OPERATOR

With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile
specifically tailored to a given Cloud provider on a OpenShift Container Platform cluster. This can be
accomplished without adding additional node labels or grouping nodes into machine config pools.

This functionality takes advantage of spec.providerlD node object values in the form of <cloud-
providers://<cloud-provider-specific-id> and writes the file /var/lib/tuned/provider with the value
<cloud-providers in NTO operand containers. The content of this file is then used by TuneD to load
provider-<cloud-providers profile if such profile exists.

The openshift profile that both openshift-control-plane and openshift-node profiles inherit settings
from is now updated to use this functionality through the use of conditional profile loading. Neither NTO
nor TuneD currently ship any Cloud provider-specific profiles. However, it is possible to create a custom
profile provider-<cloud-providers that will be applied to all Cloud provider-specific cluster nodes.

Example GCE Cloud provider profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: provider-gce
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=GCE Cloud provider-specific profile
Your tuning for GCE Cloud provider goes here.
name: provider-gce

NOTE

Due to profile inheritance, any setting specified in the provider-<cloud-providers profile
- will be overwritten by the openshift profile and its child profiles.

4.6. CUSTOM TUNING EXAMPLES
Using TuneD profiles from the default CR

The following CR applies custom node-level tuning for OpenShift Container Platform nodes with label
tuned.openshift.io/ingress-node-label set to any value.

Example: custom tuning using the openshift-control-plane TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: ingress
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=A custom OpenShift ingress profile
include=openshift-control-plane
[sysctl]

53

OpenShift Container Platform 4.12 Scalability and performance

net.ipv4.ip_local_port_range="1024 65535"
net.ipv4.tcp_tw_reuse=1
name: openshift-ingress
recommend:
- match:
- label: tuned.openshift.io/ingress-node-label
priority: 10
profile: openshift-ingress

IMPORTANT

Custom profile writers are strongly encouraged to include the default TuneD daemon
profiles shipped within the default Tuned CR. The example above uses the default
openshift-control-plane profile to accomplish this.

Using built-in TuneD profiles

Given the successful rollout of the NTO-managed daemon set, the TuneD operands all manage the
same version of the TuneD daemon. To list the built-in TuneD profiles supported by the daemon, query
any TuneD pod in the following way:

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/ -name
tuned.conf -printf '%h\n" | sed 's|*.*/||'

You can use the profile names retrieved by this in your custom tuning specification.

Example: using built-in hpc-compute TuneD profile

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: openshift-node-hpc-compute
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Custom OpenShift node profile for HPC compute workloads
include=openshift-node,hpc-compute
name: openshift-node-hpc-compute

recommend:

- match:
- label: tuned.openshift.io/openshift-node-hpc-compute
priority: 20
profile: openshift-node-hpc-compute

In addition to the built-in hpc-compute profile, the example above includes the openshift-node TuneD
daemon profile shipped within the default Tuned CR to use OpenShift-specific tuning for compute
nodes.

4.7. SUPPORTED TUNED DAEMON PLUGINS

54

CHAPTER 4. USING THE NODE TUNING OPERATOR

Excluding the [main] section, the following TuneD plugins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

® audio

® cpu

e disk

® ceepc_she
® modules
® mounts

® net

® scheduler
® scsi_host
® selinux

® sysctl

® sysfs

® usb

® video

® vm

® bootloader

There is some dynamic tuning functionality provided by some of these plugins that is not supported. The
following TuneD plugins are currently not supported:

® script

® systemd

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

Additional resources

® Available TuneD Plugins

® Getting Started with TuneD

4.8. CONFIGURING NODE TUNING IN A HOSTED CLUSTER

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

OpenShift Container Platform 4.12 Scalability and performance

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

To set node-level tuning on the nodes in your hosted cluster, you can use the Node Tuning Operator. In
hosted control planes, you can configure node tuning by creating config maps that contain Tuned
objects and referencing those config maps in your node pools.

Procedure

1. Create a config map that contains a valid tuned manifest, and reference the manifest in a node
pool. In the following example, a Tuned manifest defines a profile that sets vm.dirty_ratio to 55
on nodes that contain the tuned-1-node-label node label with any value. Save the following
ConfigMap manifest in a file named tuned-1.yaml:

apiVersion: v1
kind: ConfigMap
metadata:
name: tuned-1
namespace: clusters
data:
tuning: |
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: tuned-1
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Custom OpenShift profile
include=openshift-node
[sysctl]
vm.dirty_ratio="55"
name: tuned-1-profile
recommend:
- priority: 20
profile: tuned-1-profile

56

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 4. USING THE NODE TUNING OPERATOR

NOTE

If you do not add any labels to an entry in the spec.recommend section of the
Tuned spec, node-pool-based matching is assumed, so the highest priority
profile in the spec.recommend section is applied to nodes in the pool. Although
you can achieve more fine-grained node-label-based matching by setting a label
value in the Tuned .spec.recommend.match section, node labels will not persist
during an upgrade unless you set the .spec.management.upgradeType value of
the node pool to InPlace.

2. Create the ConfigMap object in the management cluster:

I $ oc --kubeconfig="$MGMT_KUBECONFIG" create -f tuned-1.yaml

3. Reference the ConfigMap object in the spec.tuningConfig field of the node pool, either by
editing a node pool or creating one. In this example, assume that you have only one NodePool,
named hodepool-1, which contains 2 nodes.

apiVersion: hypershift.openshift.io/vialphai
kind: NodePool
metadata:

name: nodepool-1
namespace: clusters

spec:
tuningConfig:

- name: tuned-1
status:

NOTE

You can reference the same config map in multiple node pools. In hosted control
planes, the Node Tuning Operator appends a hash of the node pool name and
namespace to the name of the Tuned CRs to distinguish them. Outside of this
case, do not create multiple TuneD profiles of the same name in different Tuned
CRs for the same hosted cluster.

Verification

Now that you have created the ConfigMap object that contains a Tuned manifest and referenced itin a
NodePool, the Node Tuning Operator syncs the Tuned objects into the hosted cluster. You can verify
which Tuned objects are defined and which TuneD profiles are applied to each node.

1. List the Tuned objects in the hosted cluster:

$ oc --kubeconfig="$HC_KUBECONFIG" get tuned.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

Example output

I NAME AGE

57

OpenShift Container Platform 4.12 Scalability and performance

default 7m36s
rendered 7m36s
tuned-1 65s

2. List the Profile objects in the hosted cluster:

$ oc --kubeconfig="$HC_KUBECONFIG" get profile.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

Example output

NAME TUNED APPLIED DEGRADED AGE
nodepool-1-worker-1 tuned-1-profile True False 7m43s
nodepool-1-worker-2 tuned-1-profile True False 7mi4s

NOTE

If no custom profiles are created, the openshift-node profile is applied by
default.

3. To confirm that the tuning was applied correctly, start a debug shell on a node and check the
sysctl values:

$ oc --kubeconfig="$HC_KUBECONFIG" debug node/nodepool-1-worker-1 -- chroot /host
sysctl vm.dirty_ratio

Example output

I vm.dirty_ratio = 55

4.9. ADVANCED NODE TUNING FOR HOSTED CLUSTERS BY SETTING
KERNEL BOOT PARAMETERS

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

For more advanced tuning in hosted control planes, which requires setting kernel boot parameters, you
can also use the Node Tuning Operator. The following example shows how you can create a node pool
with huge pages reserved.

Procedure

58

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 4. USING THE NODE TUNING OPERATOR

1. Create a ConfigMap object that contains a Tuned object manifest for creating 10 huge pages
that are 2 MB in size. Save this ConfigMap manifest in a file named tuned-hugepages.yami:

apiVersion: v1
kind: ConfigMap
metadata:
name: tuned-hugepages
namespace: clusters
data:
tuning: |
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: hugepages
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Boot time configuration for hugepages
include=openshift-node
[bootloader]
cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50
name: openshift-node-hugepages
recommend:
- priority: 20
profile: openshift-node-hugepages

NOTE

The .spec.recommend.match field is intentionally left blank. In this case, this
Tuned object is applied to all nodes in the node pool where this ConfigMap
object is referenced. Group nodes with the same hardware configuration into the
same node pool. Otherwise, TuneD operands can calculate conflicting kernel
parameters for two or more nodes that share the same node pool.

2. Create the ConfigMap object in the management cluster:

I $ oc --kubeconfig="$MGMT_KUBECONFIG" create -f tuned-hugepages.yaml

3. Create a NodePool manifest YAML file, customize the upgrade type of the NodePool, and
reference the ConfigMap object that you created in the spec.tuningConfig section. Create
the NodePool manifest and save it in a file named hugepages-nodepool.yaml by using the
hypershift CLI:

NODEPOOL_NAME=hugepages-example
INSTANCE_TYPE=m5.2xlarge
NODEPOOL_REPLICAS=2

hypershift create nodepool aws \

--cluster-name $CLUSTER_NAME \
--name $SNODEPOOL_NAME \

59

OpenShift Container Platform 4.12 Scalability and performance

--node-count $NODEPOOL_REPLICAS \
--instance-type $INSTANCE_TYPE \
--render > hugepages-nodepool.yaml

4. In the hugepages-nodepool.yaml file, set .spec.management.upgradeType to InPlace, and
set .spec.tuningConfig to reference the tuned-hugepages ConfigMap object that you
created.

apiVersion: hypershift.openshift.io/vialphai
kind: NodePool
metadata:

name: hugepages-nodepool

namespace: clusters

spec:
management:

upgradeType: InPlace
tuningConfig:
- name: tuned-hugepages
NOTE

To avoid the unnecessary re-creation of nodes when you apply the new
MachineConfig objects, set .spec.management.upgradeType to InPlace. If you
use the Replace upgrade type, nodes are fully deleted and new nodes can
replace them when you apply the new kernel boot parameters that the TuneD
operand calculated.

5. Create the NodePool in the management cluster:

I $ oc --kubeconfig="$MGMT_KUBECONFIG" create -f hugepages-nodepool.yaml

Verification

After the nodes are available, the containerized TuneD daemon calculates the required kernel boot
parameters based on the applied TuneD profile. After the nodes are ready and reboot once to apply the
generated MachineConfig object, you can verify that the TuneD profile is applied and that the kernel
boot parameters are set.

1. List the Tuned objects in the hosted cluster:

$ oc --kubeconfig="$HC_KUBECONFIG" get tuned.tuned.openshift.io -n openshift-cluster-
node-tuning-operator

Example output

NAME AGE

default 123m
hugepages-8dfbifed 1m23s
rendered 123m

2. List the Profile objects in the hosted cluster:

60

CHAPTER 4. USING THE NODE TUNING OPERATOR

$ oc --kubeconfig="$HC_KUBECONFIG" get profile.tuned.openshift.io -n openshift-cluster-

I node-tuning-operator

Example output

NAME TUNED
openshift-node
openshift-node

nodepool-1-worker-1
nodepool-1-worker-2
hugepages-nodepool-worker-1

APPLIED DEGRADED AGE
True False 132m
True False 131m

openshift-node-hugepages True False 4m8s

hugepages-nodepool-worker-2 openshift-node-hugepages True False 3m57s

Both of the worker nodes in the new NodePool have the openshift-node-hugepages profile

applied.

3. To confirm that the tuning was applied correctly, start a debug shell on a node and check

/proc/cmdline.

$ oc --kubeconfig="$HC_KUBECONFIG" debug node/nodepool-1-worker-1 -- chroot /host

I cat /proc/cmdline

Example output

I BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-... hugepagesz=2M hugepages=50

Additional resources

For more information about hosted control planes, see Hosted control planes for Red Hat OpenShift

Container Platform (Technology Preview).

61

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/clusters/cluster_mce_overview#hosted-control-planes-intro

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY
MANAGER

CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.
CPU Manager is useful for workloads that have some of these attributes:

® Require as much CPU time as possible.

® Are sensitive to processor cache misses.

® Are low-latency network applications.

e Coordinate with other processes and benefit from sharing a single processor cache.
Topology Manager collects hints from the CPU Manager, Device Manager, and other Hint Providers to
align pod resources, such as CPU, SR-IOV VFs, and other device resources, for all Quality of Service
(Q0S) classes on the same non-uniform memory access (NUMA) node.
Topology Manager uses topology information from the collected hints to decide if a pod can be
accepted or rejected on a node, based on the configured Topology Manager policy and pod resources

requested.

Topology Manager is useful for workloads that use hardware accelerators to support latency-critical
execution and high throughput parallel computation.

To use Topology Manager you must configure CPU Manager with the static policy.

S5.1.SETTING UP CPU MANAGER

Procedure

1. Optional: Label a node:

I # oc label node perf-node.example.com cpumanager=true

2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this
example, all workers have CPU Manager enabled:

I # oc edit machineconfigpool worker

3. Add a label to the worker machine config pool:

metadata:
creationTimestamp: 2020-xx-Xxx
generation: 3
labels:
custom-kubelet: cpumanager-enabled

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

62

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
name: cpumanager-enabled
spec:
machineConfigPoolSelector:
matchLabels:
custom-kubelet: cpumanager-enabled
kubeletConfig:
cpuManagerPolicy: static ﬂ
cpuManagerReconcilePeriod: 5s 9

ﬂ Specify a policy:

® none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically. This is the default policy.

e static. This policy allows containers in guaranteed pods with integer CPU requests. It
also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.

9 Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config:
I # oc create -f cpumanager-kubeletconfig.yaml

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config:

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -0 json | grep
ownerReference -A7

Example output

"ownerReferences": |

{

"apiVersion": "machineconfiguration.openshift.io/v1",
"kind": "KubeletConfig",

"name": "cpumanager-enabled”,

"uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"

7. Check the worker for the updated kubelet.conf:

oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

Example output

63

OpenShift Container Platform 4.12 Scalability and performance

cpuManagerPolicy: static ﬂ
cpuManagerReconcilePeriod: 5s 9

Q cpuManagerPolicy is defined when you create the KubeletConfig CR.

Q cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.

8. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

I # cat cpumanager-pod.yaml
Example output

apiVersion: vi
kind: Pod
metadata:
generateName: cpumanager-
spec:
containers:
- name: cpumanager
image: gcr.io/google_containers/pause-amdé4:3.0
resources:
requests:
cpu: 1
memory: "1G"
limits:
cpu: 1
memory: "1G"
nodeSelector:
cpumanager: "true"

9. Create the pod:
I # oc create -f cpumanager-pod.yaml|
10. Verify that the pod is scheduled to the node that you labeled:

I # oc describe pod cpumanager

Example output

Name: cpumanager-6¢cqz7
Namespace: default
Priority: 0

PriorityClassName: <none>
Node: perf-node.example.com/xxX.XX.XX.XXX

Limits:
cpu: 1

memory: 1G
Requests:

64

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

cpu: 1
memory: 1G

QoS Class: Guaranteed
Node-Selectors: cpumanager=true

1. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

|—init.scope
| L1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
L—kubepods.slice
|—ku bepods-pod69c01f8e_6b74 11e9_acOf 0a2b62178a22.slice
| |—0ri0-b5437308f1 a574c542bdf08563b865c0345¢8f8c0b0a655612c.scope
| L—32706 /pause

Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of
other QoS tiers end up in child cgroups of kubepods:

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345¢c86e9585f8c0b0a655612¢.scope
foriinls cpuset.cpus tasks’ ; do echo -n "$i "; cat $i ; done

Example output

I cpuset.cpus 1

tasks 32706

12. Check the allowed CPU list for the task:
I # grep "Cpus_allowed_list /proc/32706/status
Example output

I Cpus_allowed_list: 1

13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot
run on the core allocated for the Guaranteed pod:

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
€56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

0
oc describe node perf-node.example.com

Example output

Capacity:

attachable-volumes-aws-ebs: 39
cpu: 2
ephemeral-storage: 124768236Ki

65

OpenShift Container Platform 4.12 Scalability and performance

hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 8162900Ki
pods: 250

Allocatable:
attachable-volumes-aws-ebs: 39

cpu: 1500m
ephemeral-storage: 124768236Ki
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 7548500Ki
pods: 250

default cpumanager-6¢cqz7 1 (66%) 1(66%) 1G (12%)

1G (12%) 29m

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits

cpu 1440m (96%) 1 (66%)

This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

NAME READY STATUS RESTARTS AGE
cpumanager-6¢qz?7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

5.2. TOPOLOGY MANAGER POLICIES

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the KubeletConfig custom
resource (CR) named cpumanager-enabled:

none policy
This is the default policy and does not perform any topology alignment.
best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager stores this and admits the pod to the node.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores

66

CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER

the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod
admission failure.

single-numa-node policy
For each container in a pod with the single-numa-node topology management policy, kubelet calls
each Hint Provider to discover their resource availability. Using this information, the Topology
Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the

node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the
node. This results in a pod in a Terminated state with a pod admission failure.

5.3.SETTING UP TOPOLOGY MANAGER

To use Topology Manager, you must configure an allocation policy in the KubeletConfig custom
resource (CR) named cpumanager-enabled. This file might exist if you have set up CPU Manager. If the
file does not exist, you can create the file.

Prerequisites

e Configure the CPU Manager policy to be static.

Procedure

To activate Topology Manager:

1. Configure the Topology Manager allocation policy in the custom resource.

I $ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
name: cpumanager-enabled
spec:
machineConfigPoolSelector:
matchLabels:
custom-kubelet: cpumanager-enabled
kubeletConfig:
cpuManagerPolicy: static ﬂ
cpuManagerReconcilePeriod: 5s
topologyManagerPolicy: single-numa-node g

ﬂ This parameter must be static with a lowercase s.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES
The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

67

OpenShift Container Platform 4.12 Scalability and performance

spec:
containers:
- name: nginx
image: nginx

The next pod runs in the Burstable QoS class because requests are less than limits.

spec:

containers:

- name: nginx
image: nginx
resources:

limits:

memory: "200Mi"
requests:

memory: "100Mi"

If the selected policy is anything other than none, Topology Manager would not consider either of these
Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

spec:
containers:
- name: nginx
image: nginx
resources:
limits:
memory: "200Mi"
cpu: "2"
example.com/device: "1"
requests:
memory: "200Mi"
cpu: "2"
example.com/device: "1"

Topology Manager would consider this pod. The Topology Manager would consult the hint providers,
which are CPU Manager and Device Manager, to get topology hints for the pod.

Topology Manager will use this information to store the best topology for this container. In the case of

this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

68

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

Learn about NUMA-aware scheduling and how you can use it to deploy high performance workloads in
an OpenShift Container Platform cluster.

IMPORTANT

NUMA-aware scheduling is a Technology Preview feature in OpenShift Container
Platform versions 4.12.0 to 4.12.23 only. It is generally available in OpenShift Container
Platform version 4.12.24 and later. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

The NUMA Resources Operator allows you to schedule high-performance workloads in the same NUMA
zone. It deploys a node resources exporting agent that reports on available cluster node NUMA
resources, and a secondary scheduler that manages the workloads.

6.1. ABOUT NUMA-AWARE SCHEDULING

Introduction to NUMA

Non-Uniform Memory Access (NUMA) is a compute platform architecture that allows different CPUs to
access different regions of memory at different speeds. NUMA resource topology refers to the
locations of CPUs, memory, and PCI devices relative to each other in the compute node. Colocated
resources are said to be in the same NUMA zone. For high-performance applications, the cluster needs
to process pod workloads in a single NUMA zone.

Performance considerations

NUMA architecture allows a CPU with multiple memory controllers to use any available memory across
CPU complexes, regardless of where the memory is located. This allows for increased flexibility at the
expense of performance. A CPU processing a workload using memory that is outside its NUMA zone is
slower than a workload processed in a single NUMA zone. Also, for |/O-constrained workloads, the
network interface on a distant NUMA zone slows down how quickly information can reach the
application. High-performance workloads, such as telecommunications workloads, cannot operate to
specification under these conditions.

NUMA-aware scheduling

NUMA-aware scheduling aligns the requested cluster compute resources (CPUs, memory, devices) in
the same NUMA zone to process latency-sensitive or high-performance workloads efficiently. NUMA-
aware scheduling also improves pod density per compute node for greater resource efficiency.

Integration with Node Tuning Operator
By integrating the Node Tuning Operator’s performance profile with NUMA-aware scheduling, you can
further configure CPU affinity to optimize performance for latency-sensitive workloads.

Default scheduling logic

The default OpenShift Container Platform pod scheduler scheduling logic considers the available
resources of the entire compute node, not individual NUMA zones. If the most restrictive resource
alignment is requested in the kubelet topology manager, error conditions can occur when admitting the
pod to a node. Conversely, if the most restrictive resource alignment is not requested, the pod can be

69

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.12 Scalability and performance

admitted to the node without proper resource alignment, leading to worse or unpredictable
performance. For example, runaway pod creation with Topology Affinity Error statuses can occur when
the pod scheduler makes suboptimal scheduling decisions for guaranteed pod workloads without
knowing if the pod’s requested resources are available. Scheduling mismatch decisions can cause
indefinite pod startup delays. Also, depending on the cluster state and resource allocation, poor pod
scheduling decisions can cause extra load on the cluster because of failed startup attempts.

NUMA-aware pod scheduling diagram

The NUMA Resources Operator deploys a custom NUMA resources secondary scheduler and other
resources to mitigate against the shortcomings of the default OpenShift Container Platform pod
scheduler. The following diagram provides a high-level overview of NUMA-aware pod scheduling.

Figure 6.1. NUMA-aware scheduling overview

Control-plane node Worker node O Worker node 1

A

Kube API server

NodeResourceTopolegy API 4+ Node topology exporter Node topology exporter
I I I Kubelet Kubelet
Kubelet Kube NUMA-aware PodResoures API PodResoures API
scheduler scheduler

| { }
i Available NUMA zones Available NUMA zones
i
' 1 2 3 4 1 2 3 4
i
! 5 6 7 8 5 6 7 8
1
1
i A A 2
| | i i
1 1 1 1
b e e oo o-Lo—- Optimal NUMA zones selected === -t == === mmmm e e e

High-performance workloads

NodeResourceTopology API

The NodeResourceTopology API describes the available NUMA zone resources in each compute
node.

NUMA-aware scheduler

The NUMA-aware secondary scheduler receives information about the available NUMA zones from
the NodeResourceTopology APl and schedules high-performance workloads on a node where it
can be optimally processed.

Node topology exporter

The node topology exporter exposes the available NUMA zone resources for each compute node to
the NodeResourceTopology API. The node topology exporter daemon tracks the resource
allocation from the kubelet by using the PodResources API.

PodResources API

The PodResources APl is local to each node and exposes the resource topology and available
resources to the kubelet.

Additional resources

70

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

® For more information about running secondary pod schedulers in your cluster and how to deploy
pods with a secondary pod scheduler, see Scheduling pods using a secondary scheduler .

6.2. INSTALLING THE NUMA RESOURCES OPERATOR

NUMA Resources Operator deploys resources that allow you to schedule NUMA-aware workloads and
deployments. You can install the NUMA Resources Operator using the OpenShift Container Platform
CLI or the web console.

6.2.1. Installing the NUMA Resources Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure
1. Create a namespace for the NUMA Resources Operator:

a. Save the following YAML in the nro-namespace.yaml file:

apiVersion: vi
kind: Namespace
metadata:
name: openshift-numaresources

b. Create the Namespace CR by running the following command:

I $ oc create -f nro-namespace.yaml

2. Create the Operator group for the NUMA Resources Operator:

a. Save the following YAML in the nro-operatorgroup.yaml file:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: numaresources-operator
namespace: openshift-numaresources
spec:
targetNamespaces:
- openshift-numaresources

b. Create the OperatorGroup CR by running the following command:

I $ oc create -f nro-operatorgroup.yaml|

3. Create the subscription for the NUMA Resources Operator:

a. Save the following YAML in the nro-sub.yaml file:

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#secondary-scheduler-configuring

OpenShift Container Platform 4.12 Scalability and performance

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: numaresources-operator
namespace: openshift-numaresources
spec:
channel: "4.12"
name: numaresources-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription CR by running the following command:

I $ oc create -f nro-sub.yaml

Verification

1. Verify that the installation succeeded by inspecting the CSV resource in the openshift-
numaresources namespace. Run the following command:

I $ oc get csv -n openshift-numaresources

Example output

NAME DISPLAY VERSION REPLACES PHASE
numaresources-operator.v4.12.2 numaresources-operator 4.12.2 Succeeded

6.2.2. Installing the NUMA Resources Operator using the web console

As a cluster administrator, you can install the NUMA Resources Operator using the web console.

Procedure
1. Create a namespace for the NUMA Resources Operator:

a. Inthe OpenShift Container Platform web console, click Administration - Namespaces.

b. Click Create Namespace, enter openshift-numaresources in the Name field, and then
click Create.

2. Install the NUMA Resources Operator:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

b. Choose numaresources-operator from the list of available Operators, and then click
Install.

c. Inthe Installed Namespaces field, select the openshift-numaresources namespace, and
then click Install.

3. Optional: Verify that the NUMA Resources Operator installed successfully:

a. Switch to the Operators — Installed Operators page.

72

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

b. Ensure that NUMA Resources Operator is listed in the openshift-numaresources
namespace with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

® Go to the Operators — Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

® Go to the Workloads = Pods page and check the logs for pods in the default project.

6.3. SCHEDULING NUMA-AWARE WORKLOADS

Clusters running latency-sensitive workloads typically feature performance profiles that help to
minimize workload latency and optimize performance. The NUMA-aware scheduler deploys workloads
based on available node NUMA resources and with respect to any performance profile settings applied
to the node. The combination of NUMA-aware deployments, and the performance profile of the
workload, ensures that workloads are scheduled in a way that maximizes performance.

For the NUMA Resources Operator to be fully operational, you must deploy the
NUMAResourcesOperator custom resource and the NUMA-aware secondary pod scheduler.

6.3.1. Creating the NUMAResourcesOperator custom resource

When you have installed the NUMA Resources Operator, then create the NUMAResourcesOperator
custom resource (CR) that instructs the NUMA Resources Operator to install all the cluster
infrastructure needed to support the NUMA-aware scheduler, including daemon sets and APls.

Prerequisites

® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the NUMA Resources Operator.

Procedure

1. Create the MachineConfigPool custom resource that enables custom kubelet configurations
for worker nodes:

a. Save the following YAML in the nro-machineconfig.yaml file:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
labels:
cnf-worker-tuning: enabled
machineconfiguration.openshift.io/mco-built-in: "
pools.operator.machineconfiguration.openshift.io/worker:

73

OpenShift Container Platform 4.12 Scalability and performance

name: worker
spec:
machineConfigSelector:
matchLabels:

machineconfiguration.openshift.io/role: worker
nodeSelector:

matchLabels:
node-role.kubernetes.io/worker: "

b. Create the MachineConfigPool CR by running the following command:

I $ oc create -f nro-machineconfig.yaml

2. Create the NUMAResourcesOperator custom resource:

a. Save the following minimal required YAML file example as nrop.yaml:

apiVersion: nodetopology.openshift.io/vialphat
kind: NUMAResourcesOperator
metadata:

name: numaresourcesoperator
spec:
nodeGroups:
- machineConfigPoolSelector:
matchLabels:

pools.operator.machineconfiguration.openshift.io/worker: " ﬂ

ﬂ This should match the MachineConfigPool that you want to configure the NUMA
Resources Operator on. For example, you might have created a MachineConfigPool

named worker-cnf that designates a set of nodes expected to run
telecommunications workloads.

b. Create the NUMAResourcesOperator CR by running the following command:

I $ oc create -f nrop.yaml

NOTE

Creating the NUMAResourcesOperator triggers a reboot on the
. corresponding machine config pool and therefore the affected node.

Verification

1. Verify that the NUMA Resources Operator deployed successfully by running the following

command:

I $ oc get numaresourcesoperators.nodetopology.openshift.io

Example output

NAME AGE
numaresourcesoperator 27s

74

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

2. After a few minutes, run the following command to verify that the required resources deployed
successfully:

I $ oc get all -n openshift-numaresources
Example output

NAME READY STATUS RESTARTS AGE
pod/numaresources-controller-manager-7d9d84c58d-gk2mr 1/1 Running 0 12m
pod/numaresourcesoperator-worker-7d96r 2/2 Running 0 97s
pod/numaresourcesoperator-worker-crsht 2/2 Running 0 97s
pod/numaresourcesoperator-worker-jp9mw 2/2 Running 0 97s

6.3.2. Deploying the NUMA-aware secondary pod scheduler

After you install the NUMA Resources Operator, do the following to deploy the NUMA-aware secondary
pod scheduler:

Procedure

1. Create the KubeletConfig custom resource that configures the pod admittance policy for the
machine profile:

2. Create the NUMAResourcesScheduler custom resource that deploys the NUMA-aware
custom pod scheduler:

a. Save the following minimal required YAML in the nro-scheduler.yaml file:

apiVersion: nodetopology.openshift.io/vialphai
kind: NUMAResourcesScheduler
metadata:
name: numaresourcesscheduler
spec:
imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-rhel9:v4.12"

b. Create the NUMAResourcesScheduler CR by running the following command:

I $ oc create -f nro-scheduler.yaml|

3. After a few seconds, run the following command to confirm the successful deployment of the
required resources:

I $ oc get all -n openshift-numaresources

Example output

NAME READY STATUS RESTARTS AGE
pod/numaresources-controller-manager-7d9d84c58d-gk2mr 1/1 Running 0 12m
pod/numaresourcesoperator-worker-7d96r 2/2 Running 0 97s
pod/numaresourcesoperator-worker-crsht 2/2 Running 0 97s
pod/numaresourcesoperator-worker-jp9mw 2/2 Running 0 97s
pod/secondary-scheduler-847cb74f84-9whim 1/1 Running 0 10m

75

OpenShift Container Platform 4.12 Scalability and performance

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/numaresourcesoperator-worker 3 3 3 3 3 node-

role.kubernetes.io/worker= 98s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/numaresources-controller-manager 1/1 1 1 12m
deployment.apps/secondary-scheduler 11 1 1 10m

NAME DESIRED CURRENT READY AGE
replicaset.apps/numaresources-controller-manager-7d9d84c58d 1 1 1 12m
replicaset.apps/secondary-scheduler-847cb74f84 1 1 1 10m

6.3.3. Configuring a single NUMA node policy

The NUMA Resources Operator requires a single NUMA node policy to be configured on the cluster.
This can be achieved in two ways: by creating and applying a performance profile, or by configuring a
KubeletConfig.

NOTE

The preferred way to configure a single NUMA node policy is to apply a performance
profile. You can use the Performance Profile Creator (PPC) tool to create the
performance profile. If a performance profile is created on the cluster, it automatically
creates other tuning components like KubeletConfig and the tuned profile.

For more information about creating a performance profile, see "About the Performance Profile
Creator" in the "Additional Resources" section.

Additional resources

® About the Performance Profile Creator.

6.3.4. Sample performance profile

This example YAML shows a performance profile created by using the performance profile creator
(PPC) tool:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:
cpu:
isolated: "3"
reserved: 0-2
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/worker: " ﬂ
nodeSelector:
node-role.kubernetes.io/worker: "
numa:
topologyPolicy: single-numa-node g
realTimeKernel:
enabled: true

76

workloadHints:
highPowerConsumption: true
perPodPowerManagement: false
realTime: true

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

ﬂ This should match the MachineConfigPool that you want to configure the NUMA Resources
Operator on. For example, you might have created a MachineConfigPool named worker-cnf that
designates a set of nodes that run telecommunications workloads.

9 The topologyPolicy must be set to single-numa-node. Ensure that this is the case by setting the
topology-manager-policy argument to single-numa-node when running the PPC tool.

6.3.5. Creating a KubeletConfig CRD

The recommended way to configure a single NUMA node policy is to apply a performance profile.
Another way is by creating and applying a KubeletConfig custom resource (CR), as shown in the

following procedure.

Procedure

1. Create the KubeletConfig custom resource (CR) that configures the pod admittance policy for

the machine profile:

a. Save the following YAML in the nro-kubeletconfig.yaml file:

apiVersion: machineconfiguration.openshift.io/v1

kind: KubeletConfig
metadata:

name: worker-tuning
spec:

® o

machineConfigPoolSelector:
matchLabels:
pools.operator.machineconfiguration.openshift.io/worker: ™ ﬂ
kubeletConfig:
cpuManagerPolicy: "static"
cpuManagerReconcilePeriod: "5s"
reservedSystemCPUs: "0,1" 6
memoryManagerPolicy: "Static"
evictionHard:
memory.available: "100Mi"
kubeReserved:
memory: "512Mi"
reservedMemory:
- numaNode: 0
limits:
memory: "1124Mi"
systemReserved:
memory: "512Mi"
topologyManagerPolicy: "single-numa-node" 6

Adjust this label to match the the machineConfigPoolSelector in the
NUMAResourcesOperator CR.

For cpuManagerPolicy, static must use a lowercase s.

77

OpenShift Container Platform 4.12 Scalability and performance

9 Adjust this based on the CPU on your nodes.
Q For memoryManagerPolicy, Static must use an uppercase S.

9 topologyManagerPolicy must be set to single-numa-node.

b. Create the KubeletConfig CR by running the following command:

I $ oc create -f nro-kubeletconfig.yaml

NOTE

Applying performance profile or KubeletConfig automatically triggers
rebooting of the nodes. If no reboot is triggered, you can troubleshoot the
issue by looking at the labels in KubeletConfig that address the node group.

6.3.6. Scheduling workloads with the NUMA-aware scheduler

Now that topo-aware-scheduler is installed, the NUMAResourcesOperator and
NUMAResourcesScheduler CRs are applied and your cluster has a matching performance profile or
kubeletconfig, you can schedule workloads with the NUMA-aware scheduler using deployment CRs that
specify the minimum required resources to process the workload.

The following example deployment uses NUMA-aware scheduling for a sample workload.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Get the name of the NUMA-aware scheduler that is deployed in the cluster by running the
following command:

$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o
json | jq ".status.schedulerName'

Example output
I "topo-aware-scheduler”

2. Create a Deployment CR that uses scheduler named topo-aware-scheduler, for example:

a. Save the following YAML in the nro-deployment.yaml file:

apiVersion: apps/v1
kind: Deployment
metadata:
name: numa-deployment-1
namespace: openshift-numaresources
spec:

78

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

replicas: 1
selector:
matchLabels:
app: test
template:
metadata:
labels:
app: test
spec:
schedulerName: topo-aware-scheduler ﬂ
containers:
- name: ctnr
image: quay.io/openshifttest/hello-openshift:openshift
imagePullPolicy: IfNotPresent
resources:
limits:
memory: "100Mi"
cpu: "10"
requests:
memory: "100Mi"
cpu: "10"
- name: ctnr2
image: registry.access.redhat.com/rhel:latest
imagePullPolicy: IfNotPresent
command: ["/bin/sh", "-c"]
args: ["while true; do sleep 1h; done;"]
resources:
limits:
memory: "100Mi"
cpu: "8"
requests:
memory: "100Mi"
cpu: "8"

ﬂ schedulerName must match the name of the NUMA-aware scheduler that is deployed
in your cluster, for example topo-aware-scheduler.

b. Create the Deployment CR by running the following command:
I $ oc create -f nro-deployment.yaml

Verification

1. Verify that the deployment was successful:

I $ oc get pods -n openshift-numaresources

Example output

NAME READY STATUS RESTARTS AGE
numa-deployment-1-6¢c4f5bdb84-wgn6g 2/2 Running 0 5m2s
numaresources-controller-manager-7d9d84c58d-4v65j 1/1 Running 0 18m
numaresourcesoperator-worker-7d96r 2/2 Running 4 43m

79

OpenShift Container Platform 4.12 Scalability and performance

numaresourcesoperator-worker-crsht 2/2 Running 2 43m
numaresourcesoperator-worker-jp9mw 2/2 Running 2 43m
secondary-scheduler-847cb74184-fpncj 1/1 Running 0 18m

2. Verify that the topo-aware-scheduler is scheduling the deployed pod by running the following
command:

I $ oc describe pod numa-deployment-1-6¢c4f5bdb84-wgn6g -n openshift-numaresources
Example output

Events:
Type Reason Age From Message

Normal Scheduled 4m45s topo-aware-scheduler Successfully assigned openshift-
numaresources/numa-deployment-1-6¢c4f5bdb84-wgn6g to worker-1

NOTE

Deployments that request more resources than is available for scheduling will fail
with a MinimumReplicasUnavailable error. The deployment succeeds when the
required resources become available. Pods remain in the Pending state until the
required resources are available.

3. Verify that the expected allocated resources are listed for the node.

a. ldentify the node that is running the deployment pod by running the following command:

I $ oc get pods -n openshift-numaresources -o wide
Example output

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

numa-deployment-1-6¢4f5bdb84-wgn6g 0/2 Running 0 82m 10.128.2.50
worker-1 <none> <none>

b. Run the following command with the name of that node that is running the deployment pod.

I $ oc describe noderesourcetopologies.topology.node.k8s.io worker-1

Example output

Zones:

Costs:
Name: node-0
Value: 10
Name: node-1
Value: 21

Name: node-0

80

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

Resources:
Allocatable: 39
Available: 21
Capacity: 40
Name: cpu

Allocatable: 6442450944
Available: 6442450944
Capacity: 6442450944
Name: hugepages-1Gi
Allocatable: 134217728
Available: 134217728
Capacity: 134217728
Name: hugepages-2Mi
Allocatable: 262415904768
Available: 262206189568
Capacity: 270146007040
Name: memory

Type: Node

The Available capacity is reduced because of the resources that have been allocated
to the guaranteed pod.

Resources consumed by guaranteed pods are subtracted from the available node resources
listed under noderesourcetopologies.topology.node.k8s.io.

4. Resource allocations for pods with a Best-effort or Burstable quality of service (gosClass) are
not reflected in the NUMA node resources under
noderesourcetopologies.topology.node.k8s.io. If a pod’'s consumed resources are not
reflected in the node resource calculation, verify that the pod has qosClass of Guaranteed by
running the following command:

$ oc get pod numa-deployment-1-6¢4f5bdb84-wgn6g -n openshift-numaresources -0
jsonpath="{ .status.qosClass }"

Example output

I Guaranteed

6.4. OPTIONAL: CONFIGURING POLLING OPERATIONS FOR NUMA
RESOURCES UPDATES

The daemons controlled by the NUMA Resources Operator in their nodeGroup poll resources to
retrieve updates about available NUMA resources. You can fine-tune polling operations for these
daemons by configuring the spec.nodeGroups specification in the NUMAResourcesOperator custom
resource (CR). This provides advanced control of polling operations. Configure these specifications to
improve scheduling behaviour and troubleshoot suboptimal scheduling decisions.

The configuration options are the following:

e infoRefreshMode: Determines the trigger condition for polling the kubelet. The NUMA
Resources Operator reports the resulting information to the APl server.

e infoRefreshPeriod: Determines the duration between polling updates.

81

OpenShift Container Platform 4.12 Scalability and performance

e podsFingerprinting: Determines if point-in-time information for the current set of pods
running on a node is exposed in polling updates.

NOTE

podsFingerprinting is enabled by default. podsFingerprinting is a requirement
for the cacheResyncPeriod specification in the NUMAResourcesScheduler
CR. The cacheResyncPeriod specification helps to report more exact resource
availability by monitoring pending resources on nodes.

Prerequisites

® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the NUMA Resources Operator.

Procedure

e Configure the spec.nodeGroups specification in your NUMAResourcesOperator CR:

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesOperator
metadata:
name: numaresourcesoperator
spec:
nodeGroups:
- config:
infoRefreshMode: Periodic 0
infoRefreshPeriod: 10s @)
podsFingerprinting: Enabled e
name: worker

Q Valid values are Periodic, Events, PeriodicAndEvents. Use Periodic to poll the kubelet at
intervals that you define in infoRefreshPeriod. Use Events to poll the kubelet at every
pod lifecycle event. Use PeriodicAndEvents to enable both methods.

9 Define the polling interval for Periodic or PeriodicAndEvents refresh modes. The field is
ignored if the refresh mode is Events.

9 Valid values are Enabled, Disabled, and EnabledExclusiveResources. Setting to

Enabled is a requirement for the cacheResyncPeriod specification in the
NUMAResourcesScheduler.

Verification

1. After you deploy the NUMA Resources Operator, verify that the node group configurations
were applied by running the following command:

I $ oc get numaresop numaresourcesoperator -0 json | jq '.status'

Example output

82

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

"config": {

"infoRefreshMode": "Periodic”,
"infoRefreshPeriod": "10s",
"podsFingerprinting": "Enabled"

b

"name": "worker"

6.5. TROUBLESHOOTING NUMA-AWARE SCHEDULING

To troubleshoot common problems with NUMA-aware pod scheduling, perform the following steps.

Prerequisites

® |nstall the OpenShift Container Platform CLI (oc¢).
® | oginasa user with cluster-admin privileges.

® |nstall the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Verify that the noderesourcetopologies CRD is deployed in the cluster by running the
following command:

I $ oc get crd | grep noderesourcetopologies
Example output

NAME CREATED AT
noderesourcetopologies.topology.node.k8s.io 2022-01-18T08:28:06Z

2. Check that the NUMA-aware scheduler name matches the name specified in your NUMA-aware
workloads by running the following command:

$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o
json | jq ".status.schedulerName'

Example output
I topo-aware-scheduler

3. Verify that NUMA-aware scheduable nodes have the noderesourcetopologies CR applied to
them. Run the following command:

I $ oc get noderesourcetopologies.topology.node.k8s.io

Example output

83

OpenShift Container Platform 4.12 Scalability and performance

NAME AGE
compute-0.example.com 17h
compute-1.example.com 17h

NOTE

The number of nodes should equal the number of worker nodes that are
configured by the machine config pool (mep) worker definition.

4. Verify the NUMA zone granularity for all scheduable nodes by running the following command:

I $ oc get noderesourcetopologies.topology.node.k8s.io -o yaml
Example output

apiVersion: vi
items:
- apiVersion: topology.node.k8s.io/vialphai
kind: NodeResourceTopology
metadata:
annotations:
k8stopoawareschedwg/rte-update: periodic
creationTimestamp: "2022-06-16T08:55:38Z2"
generation: 63760
name: worker-0
resourceVersion: "8450223"
uid: 8b77be46-08c0-4074-927b-d49361471590
topologyPolicies:
- SingleNUMANodeContainerLevel
zones:
- costs:
- name: node-0
value: 10
- name: node-1
value: 21
name: node-0
resources:
- allocatable: "38"
available: "38"
capacity: "40"
name: cpu
- allocatable: "134217728"
available: "134217728"
capacity: "134217728"
name: hugepages-2Mi
- allocatable: "262352048128"
available: "262352048128"
capacity: "270107316224"
name: memory
- allocatable: "6442450944"
available: "6442450944"
capacity: "6442450944"
name: hugepages-1Gi
type: Node

84

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

- costs:

- name: node-0
value: 21

- name: node-1
value: 10

name: node-1

resources:

- allocatable: "268435456"
available: "268435456"
capacity: "268435456"
name: hugepages-2Mi

- allocatable: "269231067136"
available: "269231067136"
capacity: "270573244416"
name: memory

- allocatable: "40"
available: "40"
capacity: "40"
name: cpu

- allocatable: "1073741824"
available: "1073741824"
capacity: "1073741824"
name: hugepages-1Gi

type: Node

- apiVersion: topology.node.k8s.io/vialphai
kind: NodeResourceTopology
metadata:

annotations:
k8stopoawareschedwg/rte-update: periodic

creationTimestamp: "2022-06-16T08:55:37Z2"

generation: 62061

name: worker-1

resourceVersion: "8450129"

uid: e8659390-6f8d-4e67-9a51-1ea34bbaicc3

topologyPolicies:

- SingleNUMANodeContainerLevel
zones: ﬂ

- costs:

- name: node-0
value: 10

- name: node-1
value: 21

name: node-0

resources: g

- allocatable: "38"
available: "38"
capacity: "40"
name: cpu

- allocatable: "6442450944"
available: "6442450944"
capacity: "6442450944"
name: hugepages-1Gi

- allocatable: "134217728"
available: "134217728"
capacity: "134217728"
name: hugepages-2Mi

85

OpenShift Container Platform 4.12 Scalability and performance

- allocatable: "262391033856"
available: "262391033856"
capacity: "270146301952"
name: memory

type: Node

- costs:

- name: node-0
value: 21

- name: node-1
value: 10

name: node-1

resources:

- allocatable: "40"
available: "40"
capacity: "40"
name: cpu

- allocatable: "1073741824"
available: "1073741824"
capacity: "1073741824"
name: hugepages-1Gi

- allocatable: "268435456"
available: "268435456"
capacity: "268435456"
name: hugepages-2Mi

- allocatable: "269192085504"
available: "269192085504"
capacity: "270534262784"
name: memory

type: Node

kind: List

metadata:
resourceVersion: ™"
selfLink: ™"

1]
2]

Each stanza under zones describes the resources for a single NUMA zone.

resources describes the current state of the NUMA zone resources. Check that resources

listed under items.zones.resources.available correspond to the exclusive NUMA zone

resources allocated to each guaranteed pod.

6.5.1. Reporting more exact resource availability

Enable the cacheResyncPeriod specification to help the NUMA Resources Operator report more exact
resource availability by monitoring pending resources on nodes and synchronizing this information in the
scheduler cache at a defined interval. This also helps to minimize Topology Affinity Error errors because
of sub-optimal scheduling decisions. The lower the interval, the greater the network load. The

cacheResyncPeriod specification is disabled by default.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

86

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

Procedure
1. Delete the currently running NUMAResourcesScheduler resource:

a. Get the active NUMAResourcesScheduler by running the following command:

I $ oc get NUMAResourcesScheduler

Example output

NAME AGE
numaresourcesscheduler 92m

b. Delete the secondary scheduler resource by running the following command:

I $ oc delete NUMAResourcesScheduler numaresourcesscheduler
Example output
I numaresourcesscheduler.nodetopology.openshift.io "numaresourcesscheduler" deleted

2. Save the following YAML in the file nro-scheduler-cacheresync.yaml. This example changes
the log level to Debug:

apiVersion: nodetopology.openshift.io/v1
kind: NUMAResourcesScheduler
metadata:
name: numaresourcesscheduler
spec:
imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-container-
rhel8:v4.12"

cacheResyncPeriod: "5s"

Enter an interval value in seconds for synchronization of the scheduler cache. A value of 5s
is typical for most implementations.

3. Create the updated NUMAResourcesScheduler resource by running the following command:

I $ oc create -f nro-scheduler-cacheresync.yaml
Example output

I numaresourcesscheduler.nodetopology.openshift.io/numaresourcesscheduler created

Verification steps
1. Check that the NUMA-aware scheduler was successfully deployed:

a. Run the following command to check that the CRD is created succesfully:

I $ oc get crd | grep numaresourcesschedulers

87

OpenShift Container Platform 4.12 Scalability and performance

Example output

NAME CREATED AT
numaresourcesschedulers.nodetopology.openshift.io 2022-02-25T11:57:03Z

b. Check that the new custom scheduler is available by running the following command:

I $ oc get numaresourcesschedulers.nodetopology.openshift.io

Example output

NAME AGE
numaresourcesscheduler 3h26m

2. Check that the logs for the scheduler show the increased log level:

a. Getthelist of pods running in the openshift-numaresources namespace by running the
following command:

I $ oc get pods -n openshift-numaresources
Example output

NAME READY STATUS RESTARTS AGE
numaresources-controller-manager-d87d79587-76mrm 1/1 Running 0 46h
numaresourcesoperator-worker-5wm2k 2/2 Running 0 45h
numaresourcesoperator-worker-pb75c 2/2 Running 0 45h
secondary-scheduler-7976¢c4d466-qm4sc 1/1 Running 0 21m

b. Get the logs for the secondary scheduler pod by running the following command:

I $ oc logs secondary-scheduler-7976c4d466-gm4sc -n openshift-numaresources

Example output

10223 11:04:55.614788 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.Namespace total 11 items received

10223 11:04:56.609114 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.ReplicationController total 10 items received

10223 11:05:22.626818 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.StorageClass total 7 items received

10223 11:05:31.610356 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.PodDisruptionBudget total 7 items received

10223 11:05:31.713032 1 eventhandlers.go:186] "Add event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

10223 11:05:53.461016 1 eventhandlers.go:244] "Delete event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

6.5.2. Checking the NUMA-aware scheduler logs

Troubleshoot problems with the NUMA-aware scheduler by reviewing the logs. If required, you can

88

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

increase the scheduler log level by modifying the spec.logLevel field of the
NUMAResourcesScheduler resource. Acceptable values are Normal, Debug, and Trace, with Trace
being the most verbose option.

NOTE
To change the log level of the secondary scheduler, delete the running scheduler

resource and re-deploy it with the changed log level. The scheduler is unavailable for
scheduling new workloads during this downtime.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure
1. Delete the currently running NUMAResourcesScheduler resource:

a. Get the active NUMAResourcesScheduler by running the following command:

I $ oc get NUMAResourcesScheduler
Example output

NAME AGE
numaresourcesscheduler 90m

b. Delete the secondary scheduler resource by running the following command:

I $ oc delete NUMAResourcesScheduler numaresourcesscheduler
Example output
I numaresourcesscheduler.nodetopology.openshift.io "numaresourcesscheduler" deleted

2. Save the following YAML in the file nro-scheduler-debug.yaml. This example changes the log
level to Debug:

apiVersion: nodetopology.openshift.io/vialphai
kind: NUMAResourcesScheduler
metadata:
name: numaresourcesscheduler
spec:
imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-container-
rhel8:v4.12"
logLevel: Debug

3. Create the updated Debug logging NUMAResourcesScheduler resource by running the
following command:

I $ oc create -f nro-scheduler-debug.yaml

89

OpenShift Container Platform 4.12 Scalability and performance

Example output

I numaresourcesscheduler.nodetopology.openshift.io/numaresourcesscheduler created

Verification steps
1. Check that the NUMA-aware scheduler was successfully deployed:

a. Run the following command to check that the CRD is created succesfully:

I $ oc get crd | grep numaresourcesschedulers

Example output

NAME CREATED AT
numaresourcesschedulers.nodetopology.openshift.io 2022-02-25T11:57:03Z

b. Check that the new custom scheduler is available by running the following command:

I $ oc get numaresourcesschedulers.nodetopology.openshift.io

Example output

NAME AGE
numaresourcesscheduler 3h26m

2. Check that the logs for the scheduler shows the increased log level:

a. Get the list of pods running in the openshift-numaresources namespace by running the
following command:

I $ oc get pods -n openshift-numaresources
Example output

NAME READY STATUS RESTARTS AGE
numaresources-controller-manager-d87d79587-76mrm 1/1 Running 0 46h
numaresourcesoperator-worker-5wm2k 2/2 Running 0 45h
numaresourcesoperator-worker-pb75c 2/2 Running 0 45h
secondary-scheduler-7976¢c4d466-qm4sc 1/1 Running 0 21m

b. Get the logs for the secondary scheduler pod by running the following command:

I $ oc logs secondary-scheduler-7976c4d466-gm4sc -n openshift-numaresources

Example output

10223 11:04:55.614788 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.Namespace total 11 items received

10223 11:04:56.609114 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.ReplicationController total 10 items received

90

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

10223 11:05:22.626818 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.StorageClass total 7 items received

10223 11:05:31.610356 1 reflector.go:535] k8s.io/client-go/informers/factory.go:134:
Watch close - *v1.PodDisruptionBudget total 7 items received

10223 11:05:31.713032 1 eventhandlers.go:186] "Add event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

10223 11:05:53.461016 1 eventhandlers.go:244] "Delete event for scheduled pod"
pod="openshift-marketplace/certified-operators-thtvq"

6.5.3. Troubleshooting the resource topology exporter

Troubleshoot noderesourcetopologies objects where unexpected results are occurring by inspecting
the corresponding resource-topology-exporter logs.

NOTE

It is recommended that NUMA resource topology exporter instances in the cluster are
named for nodes they refer to. For example, a worker node with the name worker should
have a corresponding noderesourcetopologies object called worker.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Get the daemonsets managed by the NUMA Resources Operator. Each daemonset has a
corresponding nodeGroup in the NUMAResourcesOperator CR. Run the following command:

$ oc get numaresourcesoperators.nodetopology.openshift.io numaresourcesoperator -o
jsonpath="{.status.daemonsets[0]}"
Example output

I {"name":"numaresourcesoperator-worker","namespace":"openshift-numaresources"}

2. Get the label for the daemonset of interest using the value for name from the previous step:

$ oc get ds -n openshift-numaresources numaresourcesoperator-worker -o jsonpath="
{.spec.selector.matchLabels}"

Example output
I {"name":"resource-topology"}

3. Get the pods using the resource-topology label by running the following command:

I $ oc get pods -n openshift-numaresources -I name=resource-topology -o wide

Example output

o1

OpenShift Container Platform 4.12 Scalability and performance

NAME READY STATUS RESTARTS AGE [P

numaresourcesoperator-worker-5wm2k 2/2 Running 0 2d1h 10.135.0.64

compute-0.example.com

numaresourcesoperator-worker-pb75¢c 2/2 Running 0 2d1h 10.132.2.33

compute-1.example.com

4. Examine the logs of the resource-topology-exporter container running on the worker pod that

corresponds to the node you are troubleshooting. Run the following command:

$ oc logs -n openshift-numaresources -c resource-topology-exporter numaresourcesoperator-

I worker-pb75c
Example output

10221 13:38:18.334140 1 main.go:206] using sysinfo:
reservedCpus: 0,1
reservedMemory:

"0": 1178599424
10221 13:38:18.334370 1 main.go:67] === System information ===
10221 13:38:18.334381 1 sysinfo.g0:231] cpus: reserved "0-1"
10221 13:38:18.334493 1 sysinfo.go0:237] cpus: online "0-103"
10221 13:38:18.546750 1 main.go:72]
cpus: allocatable "2-103"
hugepages-1Gi:

numa cell 0 -> 6

numacell 1 -> 1
hugepages-2Mi:

numa cell 0 -> 64

numa cell 1 -> 128
memory:

numa cell 0 -> 45758Mi

numa cell 1 -> 48372Mi

6.5.4. Correcting a missing resource topology exporter config map

If you install the NUMA Resources Operator in a cluster with misconfigured cluster settings, in some
circumstances, the Operator is shown as active but the logs of the resource topology exporter (RTE)

daemon set pods show that the configuration for the RTE is missing, for example:

I Info: couldn't find configuration in "/etc/resource-topology-exporter/config.yaml”

This log message indicates that the kubeletconfig with the required configuration was not properly
applied in the cluster, resulting in a missing RTE configmap. For example, the following cluster is missing

a humaresourcesoperator-worker configmap custom resource (CR):
I $ oc get configmap

Example output

NAME DATA AGE
O0e2a6bd3.openshift-kni.io 0 6d21h
kube-root-ca.crt 1 6d21h

92

CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS

openshift-service-ca.crt 1 6d21h
topo-aware-scheduler-config 1 6d18h

In a correctly configured cluster, oc get configmap also returns a humaresourcesoperator-worker
configmap CR.

Prerequisites
® |nstall the OpenShift Container Platform CLI (oc¢).
® | oginasa user with cluster-admin privileges.

® |nstall the NUMA Resources Operator and deploy the NUMA-aware secondary scheduler.

Procedure

1. Compare the values for spec.machineConfigPoolSelector.matchLabels in kubeletconfig and
metadata.labels in the MachineConfigPool (mcp) worker CR using the following commands:

a. Check the kubeletconfig labels by running the following command:

I $ oc get kubeletconfig -o yaml
Example output

machineConfigPoolSelector:
matchLabels:
cnf-worker-tuning: enabled

b. Check the mep labels by running the following command:
I $ oc get mcp worker -0 yaml
Example output

labels:
machineconfiguration.openshift.io/mco-built-in: ™
pools.operator.machineconfiguration.openshift.io/worker: "

The cnf-worker-tuning: enabled label is not present in the MachineConfigPool object.

2. Edit the MachineConfigPool CR to include the missing label, for example:

I $ oc edit mcp worker -0 yaml
Example output

labels:
machineconfiguration.openshift.io/mco-built-in: ™
pools.operator.machineconfiguration.openshift.io/worker: "
cnf-worker-tuning: enabled

93

OpenShift Container Platform 4.12 Scalability and performance

3. Apply the label changes and wait for the cluster to apply the updated configuration. Run the
following command:

Verification

® Check that the missing numaresourcesoperator-worker configmap CR is applied:
I $ oc get configmap

Example output

NAME DATA AGE
O0e2a6bd3.openshift-kni.io 0 6d21h
kube-root-ca.crt 1 6d21h

numaresourcesoperator-worker 1 5m
openshift-service-ca.crt 1 6d21h
topo-aware-scheduler-config 1 6d18h

94

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

CHAPTER 7. SCALABILITY AND PERFORMANCE
OPTIMIZATION

7.1. OPTIMIZING STORAGE

Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

7.1.1. Available persistent storage options

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 7.1. Available storage options

Storage Description Examples

type

Block . AWS EBS and VMware vSphere
® Presented to the operating system (OS) as . .
support dynamic persistent volume

a block device L . . .
(PV) provisioning natively in OpenShift

e Suitable for applications that need full Container Platform.
control of storage and operate at a low
level on files bypassing the file system

® Also referred to as a Storage Area Network
(SAN)

o Non-shareable, which means that only one
client at a time can mount an endpoint of

this type
File [1]
® Presented to the OS as a file system export RHEL NFS, NetApp NFS ', and
to be mounted Vendor NFS

o Also referred to as Network Attached
Storage (NAS)

e Concurrency, latency, file locking
mechanisms, and other capabilities vary

widely between protocols,
implementations, vendors, and scales.

Object) . AWS S3
® Accessible through a REST API endpoint

e Configurable for use in the OpenShift
image registry

® Applications must build their drivers into
the application and/or container.

1. NetApp NFS supports dynamic PV provisioning when using the Trident plugin.

95

OpenShift Container Platform 4.12 Scalability and performance

7.1.2. Recommended configurable storage technology

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 7.2. Recommended and configurable storage technology

Storage type Block File

ROX! Yes? Yes? Yes

RWX? No Yes Yes

Registry Configurable Configurable Recommended
Scaled registry Not configurable Configurable Recommended
Metrics3 Recommended Configurable® Not configurable
Elasticsearch Logging Recommended Configurable® Not supported®
Loki Logging Not configurable Not configurable Recommended
Apps Recommended Recommended Not configurable’
'ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure
Disk.

> For metrics, using file storage with theReadWriteMany (RWX) access mode is unreliable. If you use file
storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

6 For logging, review the recommended storage solution in Configuring persistent storage for the log
store section. Using NFS storage as a persistent volume or through NAS, such as Gluster, can corrupt the
data. Hence, NFS is not supported for Elasticsearch storage and LokiStack log store in OpenShift
Container Platform Logging. You must use one persistent volume type per log store.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must
integrate with the object storage REST API.

96

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

NOTE

A scaled registry is an OpenShift image registry where two or more pod replicas are
running.

7.1.2.1. Specific application storage recommendations

IMPORTANT

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as
storage backend for core services. This includes the OpenShift Container Registry and
Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage.
Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

7.1.2.1.1. Registry
In a non-scaled/high-availability (HA) OpenShift image registry cluster deployment:
® The storage technology does not have to support RWX access mode.
® The storage technology must ensure read-after-write consistency.
® The preferred storage technology is object storage followed by block storage.

® File storage is not recommended for OpenShift image registry cluster deployment with
production workloads.

7.1.2.1.2. Scaled registry
In a scaled/HA OpenShift image registry cluster deployment:
® The storage technology must support RWX access mode.
® The storage technology must ensure read-after-write consistency.
® The preferred storage technology is object storage.
® Red Hat OpenShift Data Foundation (ODF), Amazon Simple Storage Service (Amazon S3),
Google Cloud Storage (GCS), Microsoft Azure Blob Storage, and OpenStack Swift are
supported.

® Object storage should be S3 or Swift compliant.

® For non-cloud platforms, such as vSphere and bare metal installations, the only configurable
technology is file storage.

® Block storage is not configurable.

7.1.2.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

97

OpenShift Container Platform 4.12 Scalability and performance

® The preferred storage technology is block storage.

e Object storage is not configurable.

IMPORTANT

It is not recommended to use file storage for a hosted metrics cluster deployment with
production workloads.

7.1.2.1.4. Logging
In an OpenShift Container Platform hosted logging cluster deployment:
® | oki Operator:

o The preferred storage technology is S3 compatible Object storage.
o Block storage is not configurable.

® OpenShift Elasticsearch Operator:

o The preferred storage technology is block storage.

o Object storage is not supported.

NOTE

As of logging version 5.4.3 the OpenShift Elasticsearch Operator is deprecated and is
planned to be removed in a future release. Red Hat will provide bug fixes and support for
this feature during the current release lifecycle, but this feature will no longer receive
enhancements and will be removed. As an alternative to using the OpenShift
Elasticsearch Operator to manage the default log storage, you can use the Loki
Operator.

7.1.2.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

® Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

® Application developers are responsible for knowing and understanding the storage

requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

7.1.2.2. Other specific application storage recommendations

IMPORTANT

It is not recommended to use RAID configurations on Write intensive workloads, such as
etcd. If you are running eted with a RAID configuration, you might be at risk of
encountering performance issues with your workloads.

® Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

98

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

® Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block

storage.

® The etcd database must have enough storage and adequate performance capacity to enable a
large cluster. Information about monitoring and benchmarking tools to establish ample storage
and a high-performance environment is described in Recommended etcd practices.

7.1.3. Data storage management

The following table summarizes the main directories that OpenShift Container Platform components

write data to.

Table 7.3. Main directories for storing OpenShift Container Platform data

Directory

Expected growth

/var/lib/etcd Used for etcd storage
when storing the

database.

/var/lib/containers This is the mount point

for the CRI-O runtime.

Storage used for active
container runtimes,

including pods, and

storage of local images.

Not used for registry
storage.

/var/lib/kubelet Ephemeral volume
storage for pods. This

includes anything

external that is mounted

into a container at
runtime. Includes
environment variables,
kube secrets, and data
volumes not backed by
persistent volumes.

Log files for all
components.

/var/log

Less than 20 GB.

Database can grow up
to 8 GB.

50 GB for a node with 16
GB memory. Note that
this sizing should not be
used to determine
minimum cluster
requirements.

Additional 20-25 GB for
every additional 8 GB of
memory.

Varies

10 to 30 GB.

Will grow slowly with the
environment. Only
storing metadata.

Additional 20-25 GB for
every additional 8 GB of
memory.

Growth is limited by
capacity for running
containers.

Minimal if pods requiring
storage are using
persistent volumes. If
using ephemeral
storage, this can grow
quickly.

Log files can grow
quickly; size can be
managed by growing
disks or by using log
rotate.

99

OpenShift Container Platform 4.12 Scalability and performance

7.1.4. Optimizing storage performance for Microsoft Azure

OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is
recommended, particularly for etcd on the control plane nodes.

For production Azure clusters and clusters with intensive workloads, the virtual machine operating
system disk for control plane machines should be able to sustain a tested and recommended minimum
throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB
Premium SSD (P30). In Azure and Azure Stack Hub, disk performance is directly dependent on SSD disk
sizes. To achieve the throughput supported by a Standard_D8s_v3 virtual machine, or other similar
machine types, and the target of 5000 IOPS, at least a P30 disk is required.

Host caching must be set to ReadOnly for low latency and high IOPS and throughput when reading

data. Reading data from the cache, which is present either in the VM memory or in the local SSD disk, is
much faster than reading from the disk, which is in the blob storage.

7.1.5. Additional resources

® Configuring the Elasticsearch log store

7.2. OPTIMIZING ROUTING

The OpenShift Container Platform HAProxy router can be scaled or configured to optimize
performance.

7.2.1. Baseline Ingress Controller (router) performance

The OpenShift Container Platform Ingress Controller, or router, is the ingress point for ingress traffic for
applications and services that are configured using routes and ingresses.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

® HTTP keep-alive/close mode

® Route type

® TLS session resumption client support

® Number of concurrent connections per target route

® Number of target routes

® Back end server page size

® Underlying infrastructure (network/SDN solution, CPU, and so on)
While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving

1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

100

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/logging/#logging-config-es-store

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

Encryption LoadBalancerService HostNetwork
none 21515 29622
edge 16743 22913
passthrough 36786 53295
re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273
edge 2729 4069
passthrough 4121 5344
re-encrypt 2320 2941

The default Ingress Controller configuration was used with the spec.tuningOptions.threadCount field
set to 4. Two different endpoint publishing strategies were tested: Load Balancer Service and Host
Network. TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single
HAProxy router is capable of saturating a 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
to how many applications to use behind the router:

Number of applications Application type
5-10 static file/web server or caching proxy
100-1000 applications generating dynamic content

In general, HAProxy can support routes for up to 1000 applications, depending on the technology in use.
Ingress Controller performance might be limited by the capabilities and performance of the applications
behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help
horizontally scale the routing tier.

For more information on Ingress sharding, see Configuring Ingress Controller sharding by using route
labels and Configuring Ingress Controller sharding by using namespace labels .

101

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-ingress-sharding-route-labels_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-ingress-sharding-namespace-labels_configuring-ingress

OpenShift Container Platform 4.12 Scalability and performance

You can modify the Ingress Controller deployment using the information provided in Setting Ingress
Controller thread count for threads and Ingress Controller configuration parameters for timeouts, and
other tuning configurations in the Ingress Controller specification.

7.2.2. Configuring Ingress Controller liveness, readiness, and startup probes

Cluster administrators can configure the timeout values for the kubelet's liveness, readiness, and
startup probes for router deployments that are managed by the OpenShift Container Platform Ingress
Controller (router). The liveness and readiness probes of the router use the default timeout value of 1
second, which is too brief when networking or runtime performance is severely degraded. Probe
timeouts can cause unwanted router restarts that interrupt application connections. The ability to set
larger timeout values can reduce the risk of unnecessary and unwanted restarts.

You can update the timeoutSeconds value on the livenessProbe, readinessProbe, and startupProbe
parameters of the router container.

Parameter Description

livenessProbe The livenessProbe reports to the kubelet whether a pod is dead and needs
to be restarted.

readinessProbe The readinessProbe reports whether a pod is healthy or unhealthy. When the
readiness probe reports an unhealthy pod, then the kubelet marks the pod as
not ready to accept traffic. Subsequently, the endpoints for that pod are
marked as not ready, and this status propagates to the kube-proxy. On cloud
platforms with a configured load balancer, the kube-proxy communicates to
the cloud load-balancer not to send traffic to the node with that pod.

startupProbe The startupProbe gives the router pod up to 2 minutes to initialize before the
kubelet begins sending the router liveness and readiness probes. This
initialization time can prevent routers with many routes or endpoints from
prematurely restarting.

IMPORTANT

The timeout configuration option is an advanced tuning technique that can be used to
work around issues. However, these issues should eventually be diagnosed and possibly a
support case or Jira issue opened for any issues that causes probes to time out.

The following example demonstrates how you can directly patch the default router deployment to set a
5-second timeout for the liveness and readiness probes:

$ oc -n openshift-ingress patch deploy/router-default --type=strategic --patch="{"spec":{"template":
{"spec":{"containers":[{"name":"router","livenessProbe":{"timeoutSeconds":5},"readinessProbe":
{"timeoutSeconds":5}}1}}1}}'

Verification

$ oc -n openshift-ingress describe deploy/router-default | grep -e Liveness: -e Readiness:
Liveness: http-get http://:1936/healthz delay=0s timeout=5s period=10s #success=1 #failure=3
Readiness: http-get http://:1936/healthz/ready delay=0s timeout=5s period=10s #success=1
#failure=3

102

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-ingress-setting-thread-count
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Summary&issuetype=1&priority=10200&versions=12385624

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

7.2.3. Configuring HAProxy reload interval

When you update a route or an endpoint associated with a route, OpenShift Container Platform router
updates the configuration for HAProxy. Then, HAProxy reloads the updated configuration for those
changes to take effect. When HAProxy reloads, it generates a new process that handles new
connections using the updated configuration.

HAProxy keeps the old process running to handle existing connections until those connections are all
closed. When old processes have long-lived connections, these processes can accumulate and consume
resources.

The default minimum HAProxy reload interval is five seconds. You can configure an Ingress Controller
using its spec.tuningOptions.reloadinterval field to set a longer minimum reload interval.

' WARNING
A Setting a large value for the minimum HAProxy reload interval can cause latency in

observing updates to routes and their endpoints. To lessen the risk, avoid setting a
value larger than the tolerable latency for updates.

Procedure

® Change the minimum HAProxy reload interval of the default Ingress Controller to 15 seconds by
running the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"tuningOptions":{"reloadInterval™:"15s"}}}'

7.3. OPTIMIZING NETWORKING

The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, multi-queue, and ethtool settings.

OVN-Kubernetes uses Generic Network Virtualization Encapsulation (Geneve) instead of VXLAN as the
tunnel protocol. This network can be tuned by using network interface controller (NIC) offloads.

VXLAN provides benefits over VLANS, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads
to increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data is not corrupted during transit. Depending on CPU performance, this additional
processing overhead can cause a reduction in throughput and increased latency when compared to
traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps

network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance
can occur. This is a known issue in VXLAN-based environments and is not specific to containers or

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#about-openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#about-ovn-kubernetes

OpenShift Container Platform 4.12 Scalability and performance

OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

® FEvaluate network plugins that implement different routing techniques, such as border gateway
protocol (BGP).

® Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

7.3.1. Optimizing the MTU for your network

There are two important maximum transmission units (MTUs): the network interface controller (NIC)
MTU and the cluster network MTU.

The NIC MTU is only configured at the time of OpenShift Container Platform installation. The MTU
must be less than or equal to the maximum supported value of the NIC of your network. If you are
optimizing for throughput, choose the largest possible value. If you are optimizing for lowest latency,
choose a lower value.

The OpenShift SDN network plugin overlay MTU must be less than the NIC MTU by 50 bytes at a
minimum. This accounts for the SDN overlay header. So, on a normal ethernet network, this should be
set to 1450. On a jumbo frame ethernet network, this should be set to 8950. These values should be set
automatically by the Cluster Network Operator based on the NIC’s configured MTU. Therefore, cluster
administrators do not typically update these values. Amazon Web Services (AWS) and bare-metal
environments support jumbo frame ethernet networks. This setting will help throughput, especially with
transmission control protocol (TCP).

For OVN and Geneve, the MTU must be less than the NIC MTU by 100 bytes at a minimum.

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN network plugin. Other SDN
solutions might require the value to be more or less.

7.3.2. Recommended practices for installing large scale clusters

When installing large clusters or scaling the cluster to larger node counts, set the cluster network cidr
accordingly in your install-config.yaml file before you install the cluster:

networking:
clusterNetwork:
- cidr: 10.128.0.0/14

hostPrefix: 23

machineNetwork:
- cidr: 10.0.0.0/16
networkType: OVNKubernetes
serviceNetwork:
-172.30.0.0/16

104

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

The default cluster network cidr 10.128.0.0/14 cannot be used if the cluster size is more than 500
nodes. It must be set to 10.128.0.0/12 or 10.128.0.0/10 to get to larger node counts beyond 500 nodes.

7.3.3. Impact of IPsec

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would

otherwise be used for NIC offloading. This means that some NIC acceleration features might not be
usable when IPSec is enabled and will lead to decreased throughput and increased CPU usage.

7.3.4. Additional resources

Modifying advanced network configuration parameters

Configuration parameters for the OVN-Kubernetes network plugin

Configuration parameters for the OpenShift SDN network plugin

Improving cluster stability in high latency environments using worker latency profiles

7.4. OPTIMIZING CPU USAGE WITH MOUNT NAMESPACE
ENCAPSULATION

You can optimize CPU usage in OpenShift Container Platform clusters by using mount namespace
encapsulation to provide a private namespace for kubelet and CRI-O processes. This reduces the
cluster CPU resources used by systemd with no difference in functionality.

IMPORTANT

Mount namespace encapsulation is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

7.4.1. Encapsulating mount namespaces

Mount namespaces are used to isolate mount points so that processes in different namespaces cannot
view each others' files. Encapsulation is the process of moving Kubernetes mount namespaces to an
alternative location where they will not be constantly scanned by the host operating system.

The host operating system uses systemd to constantly scan all mount namespaces: both the standard
Linux mounts and the numerous mounts that Kubernetes uses to operate. The current implementation
of kubelet and CRI-O both use the top-level namespace for all container runtime and kubelet mount
points. However, encapsulating these container-specific mount points in a private namespace reduces

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#modifying-nwoperator-config-startup_installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-operator-configuration-parameters-for-openshift-sdn_cluster-network-operator
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.12 Scalability and performance

systemd overhead with no difference in functionality. Using a separate mount namespace for both CRI-
O and kubelet can encapsulate container-specific mounts from any systemd or other host operating
system interaction.

This ability to potentially achieve major CPU optimization is now available to all OpenShift Container
Platform administrators. Encapsulation can also improve security by storing Kubernetes-specific mount
points in a location safe from inspection by unprivileged users.

The following diagrams illustrate a Kubernetes installation before and after encapsulation. Both
scenarios show example containers which have mount propagation settings of bidirectional, host-to-
container, and none.

systemd
Default
/run/systemd / namespace
/run/systemd
/run/host
Host OS processes /run/kubelet
Jrun/cri
/run/host /Tun/a
Kubelet -
/run/kubelet
Container-runtime
/run/cri
Container 1 Container 2 Container 3
(mountPropagation:Bidirectional) (mountPropagation:HostToContainer) (mountPropagation:None)
/run/a /run/b /run/c
/run/systemd /run/systemd
/run/host /run/host
/run/kubelet /run/kubelet
/run/cri /run/cri
/run/a

Here we see systemd, host operating system processes, kubelet, and the container runtime sharing a
single mount namespace.

106

® systemd, host operating system processes, kubelet, and the container runtime each have
access to and visibility of all mount points.

e Container 1, configured with bidirectional mount propagation, can access systemd and host
mounts, kubelet and CRI-O mounts. A mount originating in Container 1, such as /run/a is visible
to systemd, host operating system processes, kubelet, container runtime, and other containers
with host-to-container or bidirectional mount propagation configured (as in Container 2).

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

e Container 2, configured with host-to-container mount propagation, can access systemd and
host mounts, kubelet and CRI-O mounts. A mount originating in Container 2, such as /run/b, is
not visible to any other context.

e Container 3, configured with no mount propagation, has no visibility of external mount points. A
mount originating in Container 3, such as /run/c, is not visible to any other context.

The following diagram illustrates the system state after encapsulation.

systemd
Default
/run/systemd namespace
/run/systemd /]
/run/host
Host OS processes
/run/host
Kubelet
v Kubernetes
/run/kubelet namespace
/run/systemd /]
/run/host
/run/kubelet
Container-runtime /run/cri
/run/a
/run/cri l
Container1 Container 2 Container 3
(mountPropagation:Bidirectional) (mountPropagation:HostToContainer) (mountPropagation:None)
/run/a /run/b /run/c
/run/systemd /run/systemd
/run/host /run/host
/run/kubelet /run/kubelet
/run/cri /run/cri
/run/a

® The main systemd process is no longer devoted to unnecessary scanning of Kubernetes-
specific mount points. It only monitors systemd-specific and host mount points.

® The host operating system processes can access only the systemd and host mount points.

® Using a separate mount namespace for both CRI-O and kubelet completely separates all
container-specific mounts away from any systemd or other host operating system interaction

whatsoever.

® The behavior of Container 1is unchanged, except a mount it creates such as /run/a is no longer
visible to systemd or host operating system processes. It is still visible to kubelet, CRI-O, and

107

OpenShift Container Platform 4.12 Scalability and performance

other containers with host-to-container or bidirectional mount propagation configured (like
Container 2).

® The behavior of Container 2 and Container 3 is unchanged.

7.4.2. Configuring mount namespace encapsulation
You can configure mount namespace encapsulation so that a cluster runs with less resource overhead.

NOTE

Mount namespace encapsulation is a Technology Preview feature and it is disabled by
default. To use it, you must enable the feature manually.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

1. Create a file called mount_namespace_config.yaml with the following YAML:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 99-kubens-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kubens.service
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-kubens-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kubens.service

2. Apply the mount namespace MachineConfig CR by running the following command:

108

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

I $ oc apply -f mount_namespace_config.yaml
Example output

machineconfig.machineconfiguration.openshift.io/99-kubens-master created
machineconfig.machineconfiguration.openshift.io/99-kubens-worker created

3. The MachineConfig CR can take up to 30 minutes to finish being applied in the cluster. You
can check the status of the MachineConfig CR by running the following command:

I $ oc get mep
Example output

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE

master rendered-master-03d4bc4befb0f4ed3566a2c8f7636751 False True False
3 0 0 0 45m

worker rendered-worker-10577f6ab0117ed1825f8af2ac687ddf False True False
3 1 1

4. Wait for the MachineConfig CR to be applied successfully across all control plane and worker
nodes after running the following command:

I $ oc wait --for=condition=Updated mcp --all --timeout=30m
Example output

machineconfigpool.machineconfiguration.openshift.io/master condition met
machineconfigpool.machineconfiguration.openshift.io/worker condition met

Verification

To verify encapsulation for a cluster host, run the following commands:

1. Open a debug shell to the cluster host:

I $ oc debug node/<node_name>

2. Open a chroot session:

I sh-4.44# chroot /host

3. Check the systemd mount namespace:

I sh-4.4# readlink /proc/1/ns/mnt
Example output

I mnt:[4026531953]

109

OpenShift Container Platform 4.12 Scalability and performance

4. Check kubelet mount namespace:

I sh-4.44# readlink /proc/$(pgrep kubelet)/ns/mnt
Example output
I mnt:[4026531840]

5. Check the CRI-O mount namespace:

I sh-4.44# readlink /proc/$(pgrep crio)/ns/mnt
Example output
I mnt:[4026531840]

These commands return the mount namespaces associated with systemd, kubelet, and the container
runtime. In OpenShift Container Platform, the container runtime is CRI-O.

Encapsulation is in effect if systemd is in a different mount namespace to kubelet and CRI-O as in the
above example. Encapsulation is not in effect if all three processes are in the same mount namespace.

7.4.3. Inspecting encapsulated namespaces

You can inspect Kubernetes-specific mount points in the cluster host operating system for debugging
or auditing purposes by using the kubensenter script that is available in Red Hat Enterprise Linux
CoreOS (RHCOS).

SSH shell sessions to the cluster host are in the default namespace. To inspect Kubernetes-specific
mount points in an SSH shell prompt, you need to run the kubensenter script as root. The kubensenter
script is aware of the state of the mount encapsulation, and is safe to run even if encapsulation is not
enabled.

NOTE

oc debug remote shell sessions start inside the Kubernetes namespace by default. You
do not need to run kubensenter to inspect mount points when you use oc debug.

If the encapsulation feature is not enabled, the kubensenter findmnt and findmnt commands return
the same output, regardless of whether they are run in an oc debug session or in an SSH shell prompt.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have configured SSH access to the cluster host.

Procedure

1. Open aremote SSH shell to the cluster host. For example:

110

CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION

I $ ssh core@<node_name>

2. Run commands using the provided kubensenter script as the root user. To run a single
command inside the Kubernetes namespace, provide the command and any arguments to the
kubensenter script. For example, to run the findmnt command inside the Kubernetes
namespace, run the following command:

I [core@control-plane-1 ~]$ sudo kubensenter findmnt
Example output

kubensenter: Autodetect: kubens.service namespace found at /run/kubens/mnt

TARGET SOURCE FSTYPE OPTIONS

/
/dev/sda4[/ostree/deploy/rhcos/deploy/32074f0e8e5ec453e56f5a8a7bc9347eaad172349ceab9
€22b709d9d71a3f4b0.0]

| xfs
rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,prijquota
shm tmpfs

3. To start a new interactive shell inside the Kubernetes namespace, run the kubensenter script
without any arguments:

I [core@control-plane-1 ~]$ sudo kubensenter
Example output

I kubensenter: Autodetect: kubens.service namespace found at /run/kubens/mnt

7.4.4. Running additional services in the encapsulated namespace

Any monitoring tool that relies on the ability to run in the host operating system and have visibility of
mount points created by kubelet, CRI-O, or containers themselves, must enter the container mount
namespace to see these mount points. The kubensenter script that is provided with OpenShift
Container Platform executes another command inside the Kubernetes mount point and can be used to
adapt any existing tools.

The kubensenter script is aware of the state of the mount encapsulation feature status, and is safe to
run even if encapsulation is not enabled. In that case the script executes the provided command in the
default mount namespace.

For example, if a systemd service needs to run inside the new Kubernetes mount namespace, edit the
service file and use the ExecStart= command line with kubensenter.

[Unit]
Description=Example service

[Service]
ExecStart=/usr/bin/kubensenter /path/to/original/command arg1 arg2

7.4.5. Additional resources

m

OpenShift Container Platform 4.12 Scalability and performance

® What are namespaces
® Manage containers in namespaces by using nsenter

® MachineConfig

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/monitoring_and_managing_system_status_and_performance/setting-limits-for-applications_monitoring-and-managing-system-status-and-performance#what-namespaces-are_setting-limits-for-applications
https://www.redhat.com/sysadmin/container-namespaces-nsenter
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#machineconfig-machineconfiguration.openshift.io/v1

CHAPTER 8. MANAGING BARE METAL HOSTS

CHAPTER 8. MANAGING BARE METAL HOSTS

When you install OpenShift Container Platform on a bare metal cluster, you can provision and manage
bare metal nodes using machine and machineset custom resources (CRs) for bare metal hosts that
exist in the cluster.

8.1. ABOUT BARE METAL HOSTS AND NODES

To provision a Red Hat Enterprise Linux CoreOS (RHCOS) bare metal host as a node in your cluster, first
create a MachineSet custom resource (CR) object that corresponds to the bare metal host hardware.
Bare metal host compute machine sets describe infrastructure components specific to your
configuration. You apply specific Kubernetes labels to these compute machine sets and then update the
infrastructure components to run on only those machines.

Machine CR's are created automatically when you scale up the relevant MachineSet containing a
metal3.io/autoscale-to-hosts annotation. OpenShift Container Platform uses Machine CR’s to
provision the bare metal node that corresponds to the host as specified in the MachineSet CR.

8.2. MAINTAINING BARE METAL HOSTS

You can maintain the details of the bare metal hosts in your cluster from the OpenShift Container
Platform web console. Navigate to Compute — Bare Metal Hosts and select a task from the Actions
drop down menu. Here you can manage items such as BMC details, boot MAC address for the host,
enable power management, and so on. You can also review the details of the network interfaces and
drives for the host.

You can move a bare metal host into maintenance mode. When you move a host into maintenance
mode, the scheduler moves all managed workloads off the corresponding bare metal node. No new

workloads are scheduled while in maintenance mode.

You can deprovision a bare metal host in the web console. Deprovisioning a host does the following
actions:

1. Annotates the bare metal host CR with cluster.k8s.io/delete-machine: true

2. Scales down the related compute machine set

NOTE

Powering off the host without first moving the daemon set and unmanaged static pods
to another node can cause service disruption and loss of data.

._,f"

Additional resources

® Adding compute machines to bare metal

8.2.1. Adding a bare metal host to the cluster using the web console

You can add bare metal hosts to the cluster in the web console.

Prerequisites

® |nstall an RHCOS cluster on bare metal.

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/machine_management/#adding-bare-metal-compute-user-infra

OpenShift Container Platform 4.12 Scalability and performance

® | ogin as a user with cluster-admin privileges.

Procedure
1. In the web console, navigate to Compute — Bare Metal Hosts
2. Select Add Host - New with Dialog.
3. Specify a unique name for the new bare metal host.
4. Set the Boot MAC address.
5. Set the Baseboard Management Console (BMC) Address
6. Enter the user credentials for the host's baseboard management controller (BMC).
7. Select to power on the host after creation, and select Create.
8. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to

Compute = MachineSets, and increase the number of machine replicas in the cluster by
selecting Edit Machine countfrom the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale command and
the appropriate bare metal compute machine set.

8.2.2. Adding a bare metal host to the cluster using YAML in the web console

You can add bare metal hosts to the cluster in the web console using a YAML file that describes the
bare metal host.

Prerequisites
® |nstall a RHCOS compute machine on bare metal infrastructure for use in the cluster.
® | ogin as a user with cluster-admin privileges.

® Create a Secret CR for the bare metal host.

Procedure
1. In the web console, navigate to Compute — Bare Metal Hosts

2. Select Add Host » New from YAML.

3. Copy and paste the below YAML, modifying the relevant fields with the details of your host:

apiVersion: metal3.io/vialphat
kind: BareMetalHost
metadata:

name: <bare_metal _host_name>
spec:

online: true

bmc:

14

CHAPTER 8. MANAGING BARE METAL HOSTS

address: <bmc_address>

credentialsName: <secret_credentials_name> ﬂ

disableCertificateVerification: True @)
bootMACAddress: <host_boot_mac_address>

Q credentialsName must reference a valid Secret CR. The baremetal-operator cannot
manage the bare metal host without a valid Secret referenced in the credentialsName.
For more information about secrets and how to create them, see Understanding secrets.

9 Setting disableCertificateVerification to true disables TLS host validation between the
cluster and the baseboard management controller (BMC).
4. Select Create to save the YAML and create the new bare metal host.
5. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to

Compute = MachineSets, and increase the number of machines in the cluster by selecting Edit
Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale
command and the appropriate bare metal compute machine set.

8.2.3. Automatically scaling machines to the number of available bare metal hosts

To automatically create the number of Machine objects that matches the number of available
BareMetalHost objects, add a metal3.io/autoscale-to-hosts annotation to the MachineSet object.

Prerequisites

® |nstall RHCOS bare metal compute machines for use in the cluster, and create corresponding
BareMetalHost objects.

® |nstall the OpenShift Container Platform CLI (oc¢).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Annotate the compute machine set that you want to configure for automatic scaling by adding
the metal3.io/autoscale-to-hosts annotation. Replace <machineset> with the name of the
compute machine set.

$ oc annotate machineset <machineset> -n openshift-machine-api 'metal3.io/autoscale-to-
hosts=<any_value>'

Wait for the new scaled machines to start.

115

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

OpenShift Container Platform 4.12 Scalability and performance

NOTE

When you use a BareMetalHost object to create a machine in the cluster and labels or
selectors are subsequently changed on the BareMetalHost, the BareMetalHost object
continues be counted against the MachineSet that the Machine object was created
from.

8.2.4. Removing bare metal hosts from the provisioner node

In certain circumstances, you might want to temporarily remove bare metal hosts from the provisioner
node. For example, during provisioning when a bare metal host reboot is triggered by using the
OpenShift Container Platform administration console or as a result of a Machine Config Pool update,
OpenShift Container Platform logs into the integrated Dell Remote Access Controller (iDrac) and issues
a delete of the job queue.

To prevent the management of the number of Machine objects that matches the number of available
BareMetalHost objects, add a baremetalhost.metal3.io/detached annotation to the MachineSet

object.

NOTE

This annotation has an effect for only BareMetalHost objects that are in either
€ n Provisioned, ExternallyProvisioned or Ready/Available state.

Prerequisites

® |nstall RHCOS bare metal compute machines for use in the cluster and create corresponding
BareMetalHost objects.

® |nstall the OpenShift Container Platform CLI (oc¢).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Annotate the compute machine set that you want to remove from the provisioner node by
adding the baremetalhost.metal3.io/detached annotation.

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached’

Wait for the new machines to start.

NOTE

When you use a BareMetalHost object to create a machine in the cluster and
labels or selectors are subsequently changed on the BareMetalHost, the
BareMetalHost object continues be counted against the MachineSet that the
Machine object was created from.

2. In the provisioning use case, remove the annotation after the reboot is complete by using the
following command:

16

CHAPTER 8. MANAGING BARE METAL HOSTS

$ oc annotate machineset <machineset> -n openshift-machine-api
'baremetalhost.metal3.io/detached-'

Additional resources

® Expanding the cluster

® MachineHealthChecks on bare metal

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#ipi-install-expanding-the-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/machine_management/#machine-health-checks-bare-metal_deploying-machine-health-checks

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE
BARE METAL EVENT RELAY

IMPORTANT

Bare Metal Event Relay is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

9.1. ABOUT BARE-METAL EVENTS

Use the Bare Metal Event Relay to subscribe applications that run in your OpenShift Container Platform
cluster to events that are generated on the underlying bare-metal host. The Redfish service publishes
events on a node and transmits them on an advanced message queue to subscribed applications.

Bare-metal events are based on the open Redfish standard that is developed under the guidance of the
Distributed Management Task Force (DMTF). Redfish provides a secure industry-standard protocol with
a REST API. The protocol is used for the management of distributed, converged or software-defined
resources and infrastructure.
Hardware-related events published through Redfish includes:

® Breaches of temperature limits

® Server status

® [anstatus
Begin using bare-metal events by deploying the Bare Metal Event Relay Operator and subscribing your

application to the service. The Bare Metal Event Relay Operator installs and manages the lifecycle of
the Redfish bare-metal event service.

NOTE

The Bare Metal Event Relay works only with Redfish-capable devices on single-node
clusters provisioned on bare-metal infrastructure.

9.2. HOW BARE-METAL EVENTS WORK

The Bare Metal Event Relay enables applications running on bare-metal clusters to respond quickly to
Redfish hardware changes and failures such as breaches of temperature thresholds, fan failure, disk loss,
power outages, and memory failure. These hardware events are delivered using an HTTP transport or
AMQP mechanism. The latency of the messaging service is between 10 to 20 milliseconds.

The Bare Metal Event Relay provides a publish-subscribe service for the hardware events. Applications

can use a REST API to subscribe to the events. The Bare Metal Event Relay supports hardware that
complies with Redfish OpenAPI v1.8 or later.

18

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

9.2.1. Bare Metal Event Relay data flow

The following figure illustrates an example bare-metal events data flow:

Figure 9.1. Bare Metal Event Relay data flow

Redfish Node
hardware
Operator-managed pod Message Application pod
transporter
Hardware Sidecar: cloud (HTTP or Sidecar: cloud Bare-metal
event proxy event proxy AMQP 1.0 QPID) event proxy node

http http
(REST API) (REST API) <
— Lad Ll

Redfish Cloud native CNCF CNCF CNCF Cloud native
event event CloudEvent CloudEvents CloudEvent event

9.2.1.1. Operator-managed pod

The Operator uses custom resources to manage the pod containing the Bare Metal Event Relay and its
components using the HardwareEvent CR.

9.2.1.2. Bare Metal Event Relay

At startup, the Bare Metal Event Relay queries the Redfish APl and downloads all the message registries,
including custom registries. The Bare Metal Event Relay then begins to receive subscribed events from
the Redfish hardware.

The Bare Metal Event Relay enables applications running on bare-metal clusters to respond quickly to

Redfish hardware changes and failures such as breaches of temperature thresholds, fan failure, disk loss,
power outages, and memory failure. The events are reported using the HardwareEvent CR.

9.2.1.3. Cloud native event

Cloud native events (CNE) is a REST API specification for defining the format of event data.

9.2.1.4. CNCF CloudEvents

CloudEvents is a vendor-neutral specification developed by the Cloud Native Computing Foundation
(CNCF) for defining the format of event data.

9.2.1.5. HTTP transport or AMQP dispatch router

The HTTP transport or AMQP dispatch router is responsible for the message delivery service between
publisher and subscriber.

19

https://cloudevents.io/

OpenShift Container Platform 4.12 Scalability and performance

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

9.2.1.6. Cloud event proxy sidecar

The cloud event proxy sidecar container image is based on the O-RAN API specification and provides a

publish-subscribe event framework for hardware events.

9.2.2. Redfish message parsing service

In addition to handling Redfish events, the Bare Metal Event Relay provides message parsing for events
without a Message property. The proxy downloads all the Redfish message registries including vendor
specific registries from the hardware when it starts. If an event does not contain a Message property,
the proxy uses the Redfish message registries to construct the Message and Resolution properties and
add them to the event before passing the event to the cloud events framework. This service allows
Redfish events to have smaller message size and lower transmission latency.

9.2.3. Installing the Bare Metal Event Relay using the CLI

As a cluster administrator, you can install the Bare Metal Event Relay Operator by using the CLI.

Prerequisites

® A cluster that is installed on bare-metal hardware with nodes that have a RedFish-enabled
Baseboard Management Controller (BMC).

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure
1. Create a namespace for the Bare Metal Event Relay.

a. Save the following YAML in the bare-metal-events-namespace.yaml file:

apiVersion: vi
kind: Namespace
metadata:
name: openshift-bare-metal-events
labels:
name: openshift-bare-metal-events
openshift.io/cluster-monitoring: "true"

b. Create the Namespace CR:

I $ oc create -f bare-metal-events-namespace.yaml

2. Create an Operator group for the Bare Metal Event Relay Operator.

120

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

a. Save the following YAML in the bare-metal-events-operatorgroup.yamil file:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: bare-metal-event-relay-group
namespace: openshift-bare-metal-events
spec:
targetNamespaces:
- openshift-bare-metal-events

b. Create the OperatorGroup CR:
I $ oc create -f bare-metal-events-operatorgroup.yaml

3. Subscribe to the Bare Metal Event Relay.

a. Save the following YAML in the bare-metal-events-sub.yaml file:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: bare-metal-event-relay-subscription
namespace: openshift-bare-metal-events
spec:
channel: "stable"
name: bare-metal-event-relay
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription CR:
I $ oc create -f bare-metal-events-sub.yaml

Verification

To verify that the Bare Metal Event Relay Operator is installed, run the following command:

$ oc get csv -n openshift-bare-metal-events -o custom-
columns=Name:.metadata.name,Phase:.status.phase

9.2.4. Installing the Bare Metal Event Relay using the web console
As a cluster administrator, you can install the Bare Metal Event Relay Operator using the web console.

Prerequisites

® A cluster that is installed on bare-metal hardware with nodes that have a RedFish-enabled
Baseboard Management Controller (BMC).

® | ogin as a user with cluster-admin privileges.

Procedure

121

OpenShift Container Platform 4.12 Scalability and performance

1. Install the Bare Metal Event Relay using the OpenShift Container Platform web console:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.
b. Choose Bare Metal Event Relayfrom the list of available Operators, and then click Install.

c. On the Install Operator page, select or create a Namespace, select openshift-bare-
metal-events, and then click Install.

Verification

Optional: You can verify that the Operator installed successfully by performing the following check:
1. Switch to the Operators — Installed Operators page.

2. Ensure that Bare Metal Event Relayis listed in the project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

If the Operator does not appear as installed, to troubleshoot further:

® Go to the Operators — Installed Operators page and inspect the Operator Subscriptions and
Install Plans tabs for any failure or errors under Status.

® Go to the Workloads = Pods page and check the logs for pods in the project namespace.

9.3.INSTALLING THE AMQ MESSAGING BUS

To pass Redfish bare-metal event notifications between publisher and subscriber on a node, you can
install and configure an AMQ messaging bus to run locally on the node. You do this by installing the AMQ
Interconnect Operator for use in the cluster.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

® |nstall the OpenShift Container Platform CLI (oc¢).

® | ogin as a user with cluster-admin privileges.

Procedure

® |[nstall the AMQ Interconnect Operator to its own amg-interconnect namespace. See Installing
the AMQ Interconnect Operator.

122

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

Verification

1. Verify that the AMQ Interconnect Operator is available and the required pods are running:

I $ oc get pods -n amg-interconnect

Example output

NAME READY STATUS RESTARTS AGE
amg-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
interconnect-operator-5¢cb5fc7cc-4v7gm 1/1 Running 0 23h

2. Verify that the required bare-metal-event-relay bare-metal event producer pod is running in
the openshift-bare-metal-events namespace:

I $ oc get pods -n openshift-bare-metal-events

Example output

NAME READY STATUS RESTARTS AGE
hw-event-proxy-operator-controller-manager-74d5649b7c-dzgtl 2/2 Running 0
25s

9.4. SUBSCRIBING TO REDFISH BMC BARE-METAL EVENTS FOR A
CLUSTER NODE

You can subscribe to Redfish BMC events generated on a node in your cluster by creating a
BMCEventSubscription custom resource (CR) for the node, creating a HardwareEvent CR for the
event, and creating a Secret CR for the BMC.

9.4.1. Subscribing to bare-metal events

You can configure the baseboard management controller (BMC) to send bare-metal events to
subscribed applications running in an OpenShift Container Platform cluster. Example Redfish bare-
metal events include an increase in device temperature, or removal of a device. You subscribe
applications to bare-metal events using a REST API.

IMPORTANT

You can only create a BMCEventSubscription custom resource (CR) for physical
hardware that supports Redfish and has a vendor interface set to redfish or idrac-
redfish.

NOTE

Use the BMCEventSubscription CR to subscribe to predefined Redfish events. The
Redfish standard does not provide an option to create specific alerts and thresholds. For
example, to receive an alert event when an enclosure’s temperature exceeds 40° Celsius,
you must manually configure the event according to the vendor’s recommendations.

Perform the following procedure to subscribe to bare-metal events for the node using a
BMCEventSubscription CR.

123

OpenShift Container Platform 4.12 Scalability and performance

Prerequisites

® |nstall the OpenShift CLI (o¢).
® | ogin as a user with cluster-admin privileges.
® Get the user name and password for the BMC.

® Deploy a bare-metal node with a Redfish-enabled Baseboard Management Controller (BMC) in
your cluster, and enable Redfish events on the BMC.

NOTE

Enabling Redfish events on specific hardware is outside the scope of this
information. For more information about enabling Redfish events for your
specific hardware, consult the BMC manufacturer documentation.

Procedure

1. Confirm that the node hardware has the Redfish EventService enabled by running the
following curl command:

$ curl https://<bmc_ip_address>/redfish/v1/EventService --insecure -H 'Content-Type:
application/json' -u "<bmc_username>:<password>"

where:

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

Example output

"@odata.context": "/redfish/v1/$metadata#EventService.EventService",
"@odata.id": "/redfish/v1/EventService",
"@odata.type": "#EventService.vi_0_2.EventService",
"Actions": {
"#EventService.SubmitTestEvent”: {
"EventType@Redfish.AllowableValues": ["StatusChange", "ResourceUpdated",
"ResourceAdded", "ResourceRemoved", "Alert"],
"target": "/redfish/v1/EventService/Actions/EventService.SubmitTestEvent”

}
}

DeliveryRetryAttempts": 3,
"DeliveryRetryIntervalSeconds": 30,
"Description": "Event Service represents the properties for the service",
"EventTypesForSubscription™: ["StatusChange", "ResourceUpdated”, "ResourceAdded",
"ResourceRemoved", "Alert"],
"EventTypesForSubscription@odata.count™: 5,
"Id": "EventService",
"Name": "Event Service",
"ServiceEnabled": true,
"Status": {
"Health": "OK",
"HealthRollup™": "OK",

124

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

"State": "Enabled"
1,

"Subscriptions”: {
"@odata.id": "/redfish/v1/EventService/Subscriptions"

}
}

2. Get the Bare Metal Event Relay service route for the cluster by running the following command:

I $ oc get route -n openshift-bare-metal-events

Example output

NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD

hw-event-proxy hw-event-proxy-openshift-bare-metal-events.apps.compute-
1.example.com hw-event-proxy-service 9087 edge None

3. Create a BMCEventSubscription resource to subscribe to the Redfish events:

a. Save the following YAML in the bmc_sub.yaml file:

apiVersion: metal3.io/vialphat
kind: BMCEventSubscription
metadata:
name: sub-01
namespace: openshift-machine-api
spec:
hostName: <hostname> ﬂ
destination: <proxy_service_url> 9
context: "

ﬂ Specifies the name or UUID of the worker node where the Redfish events are
generated.

9 Specifies the bare-metal event proxy service, for example, https://hw-event-proxy-
openshift-bare-metal-events.apps.compute-1.example.com/webhook.

b. Create the BMCEventSubscription CR:
I $ oc create -f bmc_sub.yaml
4. Optional: To delete the BMC event subscription, run the following command:
I $ oc delete -f bmc_sub.yaml

5. Optional: To manually create a Redfish event subscription without creating a
BMCEventSubscription CR, run the following curl command, specifying the BMC username
and password.

$ curl -i -k -X POST -H "Content-Type: application/json" -d {"Destination":

"https://<proxy_service_url>", "Protocol" : "Redfish", "EventTypes": ["Alert"], "Context™:
"root"}' -u <bmc_username>:<password>

125

https://hw-event-proxy-openshift-bare-metal-events.apps.compute-1.example.com/webhook

OpenShift Container Platform 4.12 Scalability and performance

I 'hitps://<bmc_ip_address>/redfish/v1/EventService/Subscriptions' —v

where:

proxy_service_url

is the bare-metal event proxy service, for example, https://hw-event-proxy-openshift-bare-
metal-events.apps.compute-1.example.com/webhook.

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

Example output

HTTP/1.1 201 Created

Server: AMI MegaRAC Redfish Service

Location: /redfish/v1/EventService/Subscriptions/1

Allow: GET, POST

Access-Control-Allow-Origin: *

Access-Control-Expose-Headers: X-Auth-Token
Access-Control-Allow-Headers: X-Auth-Token
Access-Control-Allow-Credentials: true

Cache-Control: no-cache, must-revalidate

Link: <http://redfish.dmtf.org/schemas/vi/EventDestination.v1_6_0.json>; rel=describedby
Link: <http://redfish.dmtf.org/schemas/vi/EventDestination.v1_6_0.json>
Link: </redfish/v1/EventService/Subscriptions>; path=

ETag: "1651135676"

Content-Type: application/json; charset=UTF-8

OData-Version: 4.0

Content-Length: 614

Date: Thu, 28 Apr 2022 08:47:57 GMT

9.4.2. Querying Redfish bare-metal event subscriptions with curl

Some hardware vendors limit the amount of Redfish hardware event subscriptions. You can query the
number of Redfish event subscriptions by using curl.

Prerequisites

Get the user name and password for the BMC.

Deploy a bare-metal node with a Redfish-enabled Baseboard Management Controller (BMC) in
your cluster, and enable Redfish hardware events on the BMC.

Procedure

1.

126

Check the current subscriptions for the BMC by running the following curl command:

$ curl --globoff -H "Content-Type: application/json" -k -X GET --user <bmc_username>:
<password> https://<bmc_ip_address>/redfish/v1/EventService/Subscriptions

where:

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

https://hw-event-proxy-openshift-bare-metal-events.apps.compute-1.example.com/webhook

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

Example output

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 435 100 435 0 0 399 0 0:00:01 0:00:01 --:--:-- 399
{
"@odata.context™:
"/redfish/v1/$metadata#EventDestinationCollection.EventDestinationCollection",
"@odata.etag": ™"
1651137375 ™",
"@odata.id": "/redfish/v1/EventService/Subscriptions”,
"@odata.type": "#EventDestinationCollection.EventDestinationCollection”,
"Description": "Collection for Event Subscriptions”,
"Members": [

{
"@odata.id": "/redfish/v1/EventService/Subscriptions/1"

ik

"Members@odata.count": 1,
"Name": "Event Subscriptions Collection”

In this example, a single subscription is configured: /redfish/v1/EventService/Subscriptions/1.

2. Optional: To remove the /redfish/vi/EventService/Subscriptions/1 subscription with curl, run
the following command, specifying the BMC username and password:

$ curl --globoff -L -w "%{http_code} %{url_effective}\n" -k -u <bmc_username>:<password >-
H "Content-Type: application/json" -d '{}' -X DELETE
https://<bmc_ip_address>/redfish/v1/EventService/Subscriptions/1

where:

bmc_ip_address

is the IP address of the BMC where the Redfish events are generated.

9.4.3. Creating the bare-metal event and Secret CRs

To start using bare-metal events, create the HardwareEvent custom resource (CR) for the host where
the Redfish hardware is present. Hardware events and faults are reported in the hw-event-proxy logs.

Prerequisites

® You have installed the OpenShift Container Platform CLI (o¢).

® You have logged in as a user with cluster-admin privileges.

® You have installed the Bare Metal Event Relay.

® You have created a BMCEventSubscription CR for the BMC Redfish hardware.

Procedure

1. Create the HardwareEvent custom resource (CR):

127

OpenShift Container Platform 4.12 Scalability and performance

128

NOTE

Multiple HardwareEvent resources are not permitted.

a. Save the following YAML in the hw-event.yaml file:

2]
o

apiVersion: "event.redhat-cne.org/vialphat"
kind: "HardwareEvent"
metadata:
name: "hardware-event"
spec:
nodeSelector:
node-role.kubernetes.io/hw-event: ™" ﬂ
logLevel: "debug" 9
msgParserTimeout: "10" G

Required. Use the nodeSelector field to target nodes with the specified label, for
example, node-role.kubernetes.io/hw-event: "".

NOTE

In OpenShift Container Platform 4.12 or later, you do not need to set the
spec.transportHost field in the HardwareEvent resource when you use
HTTP transport for bare-metal events. Set transportHost only when
you use AMQP transport for bare-metal events.

Optional. The default value is debug. Sets the log level in hw-event-proxy logs. The
following log levels are available: fatal, error, warning, info, debug, trace.

Optional. Sets the timeout value in milliseconds for the Message Parser. If a message
parsing request is not responded to within the timeout duration, the original hardware
event message is passed to the cloud native event framework. The default value is 10.

b. Apply the HardwareEvent CR in the cluster:

$ oc create -f hardware-event.yaml

2. Create a BMC username and password Secret CR that enables the hardware events proxy to
access the Redfish message registry for the bare-metal host.

a. Save the following YAML in the hw-event-bmc-secret.yaml file:

apiVersion: vi

kind: Secret

metadata:
name: redfish-basic-auth

type: Opaque

stringData:
username: <bmc_username>
password: <bmc_password>
BMC host DNS or IP address
hostaddr: <bmc_host_ip_address>

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

ﬂ Enter plain text values for the various items under stringData.

b. Create the Secret CR:

I $ oc create -f hw-event-bmc-secret.yaml

Additional resources

® Persistent storage using local volumes

9.5. SUBSCRIBING APPLICATIONS TO BARE-METAL EVENTS REST
API REFERENCE

Use the bare-metal events REST API to subscribe an application to the bare-metal events that are
generated on the parent node.

Subscribe applications to Redfish events by using the resource address
/cluster/node/<node_name>/redfish/event, where <node_names is the cluster node running the
application.

Deploy your cloud-event-consumer application container and cloud-event-proxy sidecar container in
a separate application pod. The cloud-event-consumer application subscribes to the cloud-event-

proxy container in the application pod.

Use the following APl endpoints to subscribe the cloud-event-consumer application to Redfish events
posted by the cloud-event-proxy container at http:/localhost:8089/api/ocloudNotifications/v1/ in
the application pod:

e /api/ocloudNotifications/v1/subscriptions
o POST: Creates a new subscription
o GET: Retrieves a list of subscriptions
e /api/ocloudNotifications/v1/subscriptions/<subscription_id>
o PUT: Creates a new status ping request for the specified subscription ID

e /api/ocloudNotifications/v1i/health

o GET: Returns the health status of ocloudNotifications API

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your application as required.

api/ocloudNotifications/v1/subscriptions
HTTP method
GET api/ocloudNotifications/v1/subscriptions

Description

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/storage/#persistent-storage-using-local-volume

OpenShift Container Platform 4.12 Scalability and performance

Example API response

[

{
"id": "cal1ab76-86f9-428c-8d3a-666c24e34d32",

"endpointUri": "http://localhost:9089/api/ocloudNotifications/v1/dummy”,

"uriLocation": "http://localhost:8089/api/ocloudNotifications/vi/subscriptions/caliab76-86f9-428c-
8d3a-666c24e34d32",

"resource": "/cluster/node/openshift-worker-0.openshift.example.com/redfish/event”

}
]

HTTP method
POST api/ocloudNotifications/vi/subscriptions

Description
Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created

status code is returned.

Table 9.1. Query parameters

Parameter Type

subscription data

Example payload

{

"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions”,
"resource": "/cluster/node/openshift-worker-0.openshift.example.com/redfish/event”

}

api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method
GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

Description
Returns details for the subscription with ID <subscription_id>

Table 9.2. Query parameters

Parameter Type

<subscription_id> string

Example API response

{
"id":"ca11ab76-86f9-428c-8d3a-666c24e34d32",

"endpointUri":"http://localhost:9089/api/ocloudNotifications/v1/dummy",
"uriLocation":"http://localhost:8089/api/ocloudNotifications/v1/subscriptions/cal1ab76-86f9-428c-

130

CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY

8d3a-666c24e34d32",
"resource":"/cluster/node/openshift-worker-0.openshift.example.com/redfish/event”

}

api/ocloudNotifications/v1/health/
HTTP method
GET api/ocloudNotifications/v1/health/

Description
Returns the health status for the ocloudNotifications REST API.

Example API response

| ox

9.6. MIGRATING CONSUMER APPLICATIONS TOUSE HTTP
TRANSPORT FOR PTP OR BARE-METAL EVENTS

If you have previously deployed PTP or bare-metal events consumer applications, you need to update
the applications to use HTTP message transport.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have updated the PTP Operator or Bare Metal Event Relay to version 4.12 or later which
uses HTTP transport by default.

Procedure

1. Update your events consumer application to use HTTP transport. Set the http-event-
publishers variable for the cloud event sidecar deployment.
For example, in a cluster with PTP events configured, the following YAML snippet illustrates a
cloud event sidecar deployment:

containers:
- name: cloud-event-sidecar
image: cloud-event-sidecar
args:
- "--metrics-addr=127.0.0.1:9091"
- "--store-path=/store"
- "--transport-host=consumer-events-subscription-service.cloud-
events.svc.cluster.local:9043"
- "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043"
- "--api-port=8089"

ﬂ The PTP Operator automatically resolves NODE_NAME to the host that is generating the
PTP events. For example, compute-1.example.com.

131

OpenShift Container Platform 4.12 Scalability and performance

In a cluster with bare-metal events configured, set the http-event-publishers field to hw-
event-publisher-service.openshift-bare-metal-events.svc.cluster.local:9043 in the cloud
event sidecar deployment CR.

2. Deploy the consumer-events-subscription-service service alongside the events consumer
application. For example:

apiVersion: vi
kind: Service
metadata:
annotations:
prometheus.io/scrape: "true"
service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
name: consumer-events-subscription-service
namespace: cloud-events
labels:
app: consumer-service
spec:
ports:
- name: sub-port
port: 9043
selector:
app: consumer
clusterlP: None
sessionAffinity: None
type: ClusterlP

132

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE
CONSUMED BY APPLICATIONS

10.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. IMi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages.

10.2. HOW HUGE PAGES ARE CONSUMED BY APPS

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name

hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource

hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: vi
kind: Pod
metadata:
generateName: hugepages-volume-
spec:
containers:
- securityContext:
privileged: true
image: rhel7:latest
command:
- sleep
- inf
name: example
volumeMounts:
- mountPath: /dev/hugepages
name: hugepage
resources:
limits:

133

OpenShift Container Platform 4.12 Scalability and performance

hugepages-2Mi: 100Mi ﬂ
memory: "1Gi"
cpu: "1"
volumes:
- name: hugepage
emptyDir:
medium: HugePages

ﬂ Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix[kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

® Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

® Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

o EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

® Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

10.3. CONSUMING HUGE PAGES RESOURCES USING THE
DOWNWARD API

You can use the Downward API to inject information about the huge pages resources that are consumed
by a container.

You can inject the resource allocation as environment variables, a volume plugin, or both. Applications
that you develop and run in the container can determine the resources that are available by reading the
environment variables or files in the specified volumes.

Procedure

1. Create a hugepages-volume-pod.yaml file that is similar to the following example:

apiVersion: vi
kind: Pod
metadata:
generateName: hugepages-volume-
labels:
app: hugepages-example

134

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

spec:
containers:
- securityContext:
capabilities:
add: ["IPC_LOCK"]
image: rhel7:latest
command:
- sleep
- inf
name: example
volumeMounts:
- mountPath: /dev/hugepages
name: hugepage
- mountPath: /etc/podinfo
name: podinfo
resources:
limits:
hugepages-1Gi: 2Gi
memory: "1Gi"
cpu: "1"
requests:
hugepages-1Gi: 2Gi
env:
- name: REQUESTS_HUGEPAGES_1Gl <.>
valueFrom:
resourceFieldRef:
containerName: example
resource: requests.hugepages-1Gi
volumes:
- name: hugepage
emptyDir:
medium: HugePages
- name: podinfo
downwardAPI:
items:
- path: "hugepages_1G_request" <.>
resourceFieldRef:
containerName: example
resource: requests.hugepages-1Gi
divisor: 1Gi

<.> Specifies to read the resource use from requests.hugepages-1Gi and expose the value as
the REQUESTS_HUGEPAGES_1GI environment variable. <.> Specifies to read the resource

use from requests.hugepages-1Gi and expose the value as the file
/etc/podinfo/hugepages_1G_request.

2. Create the pod from the hugepages-volume-pod.yaml file:

I $ oc create -f hugepages-volume-pod.yaml

Verification

1. Check the value of the REQUESTS_ HUGEPAGES_1GI environment variable:

135

OpenShift Container Platform 4.12 Scalability and performance

$ oc exec -it $(oc get pods -I app=hugepages-example -0
jsonpath='{.items[0].metadata.name}") \
- env | grep REQUESTS_HUGEPAGES_1GlI

Example output
I REQUESTS_HUGEPAGES_1GI=2147483648

2. Check the value of the /etc/podinfo/hugepages_1G_request file:

$ oc exec -it $(oc get pods -I app=hugepages-example -0
jsonpath='{.items[0].metadata.name}") \
-- cat /etc/podinfo/hugepages_1G_request

Example output
| -

Additional resources

® Allowing containers to consume Downward APl objects

10.4. CONFIGURING HUGE PAGES AT BOOT TIME

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two
ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the
possibility of success because the memory has not yet been significantly fragmented. The Node Tuning
Operator currently supports boot time allocation of huge pages on specific nodes.

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

1. Label all nodes that need the same huge pages setting by a label.

I $ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: hugepages ﬂ
namespace: openshift-cluster-node-tuning-operator
spec:
profile: g
- data: |
[main]
summary=Boot time configuration for hugepages
include=openshift-node
[bootloader]
cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 6

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-containers-downward-api

CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

name: openshift-node-hugepages

recommend:
- machineConfigLabels: ﬂ
machineconfiguration.openshift.io/role: "worker-hp"
priority: 30
profile: openshift-node-hugepages

Set the name of the Tuned resource to hugepages.

Set the profile section to allocate huge pages.

Note the order of parameters is important as some platforms support huge pages of
various sizes.

09

Q Enable machine config pool based matching.

3. Create the Tuned hugepages object
I $ oc create -f hugepages-tuned-boottime.yaml

4. Create a file with the following content and name it hugepages-mcp.yaml:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
name: worker-hp
labels:
worker-hp: "
spec:
machineConfigSelector:
matchExpressions:
- {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker-hp: "

5. Create the machine config pool:
I $ oc create -f hugepages-mcp.yaml

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now
have 50 2Mi huge pages allocated.

I $ oc get node <node_using_hugepages> -0 jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

NOTE

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS)
worker nodes.

137

OpenShift Container Platform 4.12 Scalability and performance

10.5. DISABLING TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) attempt to automate most aspects of creating, managing, and using
huge pages. Since THP automatically manages the huge pages, this is not always handled optimally for
all types of workloads. THP can lead to performance regressions, since many applications handle huge
pages on their own. Therefore, consider disabling THP. The following steps describe how to disable THP
using the Node Tuning Operator (NTO).

Procedure

1. Create a file with the following content and name it thp-disable-tuned.yami:

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: thp-workers-profile
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Custom tuned profile for OpenShift to turn off THP on worker nodes
include=openshift-node

[vm]
transparent_hugepages=never
name: openshift-thp-never-worker
recommend:
- match:
- label: node-role.kubernetes.io/worker
priority: 25
profile: openshift-thp-never-worker

2. Create the Tuned object:
I $ oc create -f thp-disable-tuned.yaml
3. Check the list of active profiles:

I $ oc get profile -n openshift-cluster-node-tuning-operator

Verification

® | oginto one of the nodes and do a regular THP check to verify if the nodes applied the profile
successfully:

I $ cat /sys/kernel/mm/transparent_hugepage/enabled
Example output

I always madvise [never]

138

CHAPTER 11. LOW LATENCY TUNING

CHAPTER 1. LOW LATENCY TUNING

11.1. UNDERSTANDING LOW LATENCY

The emergence of Edge computing in the area of Telco / 5G plays a key role in reducing latency and
congestion problems and improving application performance.

Simply put, latency determines how fast data (packets) moves from the sender to receiver and returns
to the sender after processing by the receiver. Maintaining a network architecture with the lowest
possible delay of latency speeds is key for meeting the network performance requirements of 5G.
Compared to 4G technology, with an average latency of 50 ms, 5G is targeted to reach latency numbers
of Tms or less. This reduction in latency boosts wireless throughput by a factor of 10.

Many of the deployed applications in the Telco space require low latency that can only tolerate zero
packet loss. Tuning for zero packet loss helps mitigate the inherent issues that degrade network
performance. For more information, see Tuning for Zero Packet Loss in Red Hat OpenStack Platform
(RHOSP).

The Edge computing initiative also comes in to play for reducing latency rates. Think of it as being on the
edge of the cloud and closer to the user. This greatly reduces the distance between the user and distant
data centers, resulting in reduced application response times and performance latency.

Administrators must be able to manage their many Edge sites and local services in a centralized way so
that all of the deployments can run at the lowest possible management cost. They also need an easy way
to deploy and configure certain nodes of their cluster for real-time low latency and high-performance
purposes. Low latency nodes are useful for applications such as Cloud-native Network Functions (CNF)
and Data Plane Development Kit (DPDK).

OpenShift Container Platform currently provides mechanisms to tune software on an OpenShift
Container Platform cluster for real-time running and low latency (around <20 microseconds reaction
time). This includes tuning the kernel and OpenShift Container Platform set values, installing a kernel,
and reconfiguring the machine. But this method requires setting up four different Operators and
performing many configurations that, when done manually, is complex and could be prone to mistakes.

OpenShift Container Platform uses the Node Tuning Operator to implement automatic tuning to
achieve low latency performance for OpenShift Container Platform applications. The cluster
administrator uses this performance profile configuration that makes it easier to make these changes in
a more reliable way. The administrator can specify whether to update the kernel to kernel-rt, reserve
CPUs for cluster and operating system housekeeping duties, including pod infra containers, and isolate
CPUs for application containers to run the workloads.

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

OpenShift Container Platform also supports workload hints for the Node Tuning Operator that can tune
the PerformanceProfile to meet the demands of different industry environments. Workload hints are
available for highPowerConsumption (very low latency at the cost of increased power consumption)
and realTime (priority given to optimum latency). A combination of true/false settings for these hints
can be used to deal with application-specific workload profiles and requirements.

Workload hints simplify the fine-tuning of performance to industry sector settings. Instead of a “one size
fits all” approach, workload hints can cater to usage patterns such as placing priority on:

139

https://www.redhat.com/en/blog/tuning-zero-packet-loss-red-hat-openstack-platform-part-1

OpenShift Container Platform 4.12 Scalability and performance

® | ow latency
® Real-time capability
e Efficient use of power

In an ideal world, all of those would be prioritized: in real life, some come at the expense of others. The
Node Tuning Operator is now aware of the workload expectations and better able to meet the demands
of the workload. The cluster admin can now specify into which use case that workload falls. The Node
Tuning Operator uses the PerformanceProfile to fine tune the performance settings for the workload.

The environment in which an application is operating influences its behavior. For a typical data center
with no strict latency requirements, only minimal default tuning is needed that enables CPU partitioning
for some high performance workload pods. For data centers and workloads where latency is a higher
priority, measures are still taken to optimize power consumption. The most complicated cases are
clusters close to latency-sensitive equipment such as manufacturing machinery and software-defined
radios. This last class of deployment is often referred to as Far edge. For Far edge deployments, ultra-
low latency is the ultimate priority, and is achieved at the expense of power management.

In OpenShift Container Platform version 4.10 and previous versions, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance. Now this functionality is
part of the Node Tuning Operator.

11.1.1. About hyperthreading for low latency and real-time applications

Hyperthreading is an Intel processor technology that allows a physical CPU processor core to function
as two logical cores, executing two independent threads simultaneously. Hyperthreading allows for
better system throughput for certain workload types where parallel processing is beneficial. The default
OpenShift Container Platform configuration expects hyperthreading to be enabled by default.

For telecommunications applications, it is important to design your application infrastructure to
minimize latency as much as possible. Hyperthreading can slow performance times and negatively affect
throughput for compute intensive workloads that require low latency. Disabling hyperthreading ensures
predictable performance and can decrease processing times for these workloads.

NOTE

Hyperthreading implementation and configuration differs depending on the hardware you
are running OpenShift Container Platform on. Consult the relevant host hardware tuning
information for more details of the hyperthreading implementation specific to that
hardware. Disabling hyperthreading can increase the cost per core of the cluster.

Additional resources

® Configuring hyperthreading for a cluster

11.2. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

Many industries and organizations need extremely high performance computing and might require low
and predictable latency, especially in the financial and telecommunications industries. For these
industries, with their unique requirements, OpenShift Container Platform provides the Node Tuning
Operator to implement automatic tuning to achieve low latency performance and consistent response
time for OpenShift Container Platform applications.

The cluster administrator can use this performance profile configuration to make these changesin a

140

CHAPTER 11. LOW LATENCY TUNING

more reliable way. The administrator can specify whether to update the kernel to kernel-rt (real-time),
reserve CPUs for cluster and operating system housekeeping duties, including pod infra containers,
isolate CPUs for application containers to run the workloads, and disable unused CPUs to reduce power
consumption.

' WARNING
A The usage of execution probes in conjunction with applications that require

guaranteed CPUs can cause latency spikes. It is recommended to use other probes,
such as a properly configured set of network probes, as an alternative.

NOTE
In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
' OpenShift applications. In OpenShift Container Platform 4.11 and later, these functions

are part of the Node Tuning Operator.

11.2.1. Known limitations for real-time

NOTE
: In most deployments, kernel-rt is supported only on worker nodes when you use a
standard cluster with three control plane nodes and three worker nodes. There are
exceptions for compact and single nodes on OpenShift Container Platform deployments.
' For installations on a single node, kernel-rt is supported on the single control plane node.
To fully utilize the real-time mode, the containers must run with elevated privileges. See Set capabilities
for a Container for information on granting privileges.

OpenShift Container Platform restricts the allowed capabilities, so you might need to create a
SecurityContext as well.

NOTE
This procedure is fully supported with bare metal installations using Red Hat Enterprise
' Linux CoreOS (RHCOS) systems.

Establishing the right performance expectations refers to the fact that the real-time kernel is not a
panacea. Its objective is consistent, low-latency determinism offering predictable response times. There
is some additional kernel overhead associated with the real-time kernel. This is due primarily to handling
hardware interruptions in separately scheduled threads. The increased overhead in some workloads
results in some degradation in overall throughput. The exact amount of degradation is very workload
dependent, ranging from 0% to 30%. However, it is the cost of determinism.

11.2.2. Provisioning a worker with real-time capabilities

141

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

OpenShift Container Platform 4.12 Scalability and performance

1. Optional: Add a node to the OpenShift Container Platform cluster. See Setting BIOS
parameters for system tuning.

2. Add the label worker-rt to the worker nodes that require the real-time capability by using the
oc command.

3. Create a new machine config pool for real-time nodes:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
name: worker-rt
labels:
machineconfiguration.openshift.io/role: worker-rt
spec:
machineConfigSelector:
matchExpressions:
-{
key: machineconfiguration.openshift.io/role,
operator: In,
values: [worker, worker-rt],
}
paused: false
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker-rt: "

Note that a machine config pool worker-rt is created for group of nodes that have the label
worker-rt.

4. Add the node to the proper machine config pool by using node role labels.

NOTE

You must decide which nodes are configured with real-time workloads. You could
configure all of the nodes in the cluster, or a subset of the nodes. The Node
Tuning Operator that expects all of the nodes are part of a dedicated machine
config pool. If you use all of the nodes, you must point the Node Tuning Operator
to the worker node role label. If you use a subset, you must group the nodes into
a new machine config pool.

5. Create the PerformanceProfile with the proper set of housekeeping cores and
realTimeKernel: enabled: true.

6. You must set machineConfigPoolSelector in PerformanceProfile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile

metadata:

name: example-performanceprofile
spec:

realTimeKernel:

enabled: true
nodeSelector:

142

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/optimizing_rhel_8_for_real_time_for_low_latency_operation/setting-bios-parameters-for-system-tuning_optimizing-rhel8-for-real-time-for-low-latency-operation

CHAPTER 11. LOW LATENCY TUNING

node-role.kubernetes.io/worker-rt: "
machineConfigPoolSelector:
machineconfiguration.openshift.io/role: worker-rt

7. Verify that a matching machine config pool exists with a label:

I $ oc describe mcp/worker-rt
Example output

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

8. OpenShift Container Platform will start configuring the nodes, which might involve multiple
reboots. Wait for the nodes to settle. This can take a long time depending on the specific
hardware you use, but 20 minutes per node is expected.

9. Verify everything is working as expected.

1.2.3. Verifying the real-time kernel installation

Use this command to verify that the real-time kernel is installed:

I $ oc get node -o wide

Note the worker with the role worker-rt that contains the string 4.18.0-305.30.1.rt7.102.el8_4.x86_64
cri-0://1.25.0-99.rhaos4.10.gitc3131de.el8:

NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION

CONTAINER-RUNTIME

rt-worker-0.example.com Ready worker,worker-rt 5d17h v1.25.0

128.66.135.107 <none> Red Hat Enterprise Linux CoreOS 46.82.202008252340-0 (Ootpa)

4.18.0-305.30.1.1t7.102.618_4.x86_64 cri-0:/1.25.0-99.rhaos4.10.gitc3131de.el8
[..]

11.2.4. Creating a workload that works in real-time

Use the following procedures for preparing a workload that will use real-time capabilities.

Procedure

1. Create a pod with a QoS class of Guaranteed.
2. Optional: Disable CPU load balancing for DPDK.
3. Assign a proper node selector.

When writing your applications, follow the general recommendations described in Application tuning and
deployment.

11.2.5. Creating a pod with a QoS class of Guaranteed

143

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#chap-Application_Tuning_and_Deployment

OpenShift Container Platform 4.12 Scalability and performance

Keep the following in mind when you create a pod that is given a QoS class of Guaranteed:

® FEvery containerin the pod must have a memory limit and a memory request, and they must be
the same.

® FEvery containerin the pod must have a CPU limit and a CPU request, and they must be the
same.

The following example shows the configuration file for a pod that has one container. The container has a
memory limit and a memory request, both equal to 200 MiB. The container has a CPU limit and a CPU

request, both equal to 1 CPU.

apiVersion: vi
kind: Pod
metadata:

name: qos-demo

namespace: qos-example

spec:

containers:

- name: qos-demo-ctr
image: <image-pull-spec>
resources:

limits:
memory: "200Mi"
cpu: "1"
requests:
memory: "200Mi"
cpu: "1"

1. Create the pod:
I $ oc apply -f gos-pod.yaml --namespace=qos-example
2. View detailed information about the pod:

I $ oc get pod qos-demo --namespace=qos-example --output=yaml
Example output

spec:
containers:

status:
gosClass: Guaranteed

NOTE

If a container specifies its own memory limit, but does not specify a memory
request, OpenShift Container Platform automatically assigns a memory request
that matches the limit. Similarly, if a container specifies its own CPU limit, but
does not specify a CPU request, OpenShift Container Platform automatically
assigns a CPU request that matches the limit.

144

CHAPTER 11. LOW LATENCY TUNING

11.2.6. Optional: Disabling CPU load balancing for DPDK

Functionality to disable or enable CPU load balancing is implemented on the CRI-O level. The code
under the CRI-O disables or enables CPU load balancing only when the following requirements are met.

® The pod must use the performance-<profile-name> runtime class. You can get the proper
name by looking at the status of the performance profile, as shown here:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile

status:

runtimeClass: performance-manual

NOTE

Currently, disabling CPU load balancing is not supported with cgroup v2.

The Node Tuning Operator is responsible for the creation of the high-performance runtime handler
config snippet under relevant nodes and for creation of the high-performance runtime class under the
cluster. It will have the same content as default runtime handler except it enables the CPU load
balancing configuration functionality.

To disable the CPU load balancing for the pod, the Pod specification must include the following fields:

apiVersion: vi
kind: Pod
metadata:

annotations:

cpu-load-balancing.crio.io: "disable"

spec:

runtimeClassName: performance-<profile_name>

NOTE
Only disable CPU load balancing when the CPU manager static policy is enabled and for

pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU load
balancing can affect the performance of other containers in the cluster.

11.2.7. Assigning a proper node selector

The preferred way to assign a pod to nodes is to use the same node selector the performance profile
used, as shown here:

apiVersion: vi
kind: Pod

145

OpenShift Container Platform 4.12 Scalability and performance

metadata:
name: example
spec:
#...
nodeSelector:
node-role.kubernetes.io/worker-rt: ™"

For more information, see Placing pods on specific nodes using node selectors .

11.2.8. Scheduling a workload onto a worker with real-time capabilities

Use label selectors that match the nodes attached to the machine config pool that was configured for
low latency by the Node Tuning Operator. For more information, see Assigning pods to nodes.

11.2.9. Reducing power consumption by taking CPUs offline

You can generally anticipate telecommunication workloads. When not all of the CPU resources are
required, the Node Tuning Operator allows you take unused CPUs offline to reduce power consumption
by manually updating the performance profile.

To take unused CPUs offline, you must perform the following tasks:
1. Set the offline CPUs in the performance profile and save the contents of the YAML file:

Example performance profile with offlined CPUs

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:
additionalKernelArgs:
- nmi_watchdog=0
- audit=0
- mce=off
- processor.max_cstate=1
- intel_idle.max_cstate=0
- idle=poll
cpu:
isolated: "2-23,26-47"
reserved: "0,1,24,25"
offlined: "48-59" ﬂ
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"
numa:
topologyPolicy: single-numa-node
realTimeKernel:
enabled: true

ﬂ Optional. You can list CPUs in the offlined field to take the specified CPUs offline.

2. Apply the updated profile by running the following command:

I $ oc apply -f my-performance-profile.yaml

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/index#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

CHAPTER 11. LOW LATENCY TUNING

11.2.10. Optional: Power saving configurations

You can enable power savings for a node that has low priority workloads that are colocated with high
priority workloads without impacting the latency or throughput of the high priority workloads. Power
saving is possible without modifications to the workloads themselves.

IMPORTANT

The feature is supported on Intel Ice Lake and later generations of Intel CPUs. The
capabilities of the processor might impact the latency and throughput of the high priority
workloads.

When you configure a node with a power saving configuration, you must configure high priority
workloads with performance configuration at the pod level, which means that the configuration applies
to all the cores used by the pod.

By disabling P-states and C-states at the pod level, you can configure high priority workloads for best
performance and lowest latency.

Table 11.1. Configuration for high priority workloads

Annotation Description

Provides the best performance for a pod by disabling C-states and

annotations: specifying the governor type for CPU scaling. The performance
cpu-c-states.crio.io: governor is recommended for high priority workloads.

"disable"
cpu-freg-governor.crio.io:

"<governor>"

Prerequisites

® You enabled C-states and OS-controlled P-states in the BIOS

Procedure

1. Generate a PerformanceProfile with per-pod-power-management set to true:

$ podman run --entrypoint performance-profile-creator -v \

/must-gather:/must-gather:z registry.redhat.io/openshift4/ose-cluster-node-tuning-
operator:v4.12\

--mcp-name=worker-cnf --reserved-cpu-count=20 --rt-kernel=true \
--split-reserved-cpus-across-numa=false --topology-manager-policy=single-numa-node \
--must-gather-dir-path /must-gather -power-consumption-mode=Ilow-latency \ ﬂ
--per-pod-power-management=true > my-performance-profile.yaml

The power-consumption-mode must be default or low-latency when the per-pod-
power-management is set to true.

Example PerformanceProfile with perPodPowerManagement

147

OpenShift Container Platform 4.12 Scalability and performance

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:

workloadHints:
realTime: true
highPowerConsumption: false
perPodPowerManagement: true

2. Set the default cpufreq governor as an additional kernel argument in the PerformanceProfile
custom resource (CR):

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:

additionalKernelArgs:
- cpufreq.default_governor=schedutil ﬂ

ﬂ Using the schedutil governor is recommended, however, you can use other governors
such as the ondemand or powersave governors.

3. Set the maximum CPU frequency in the TunedPerformancePatch CR:

spec:
profile:
- data: |
[sysfs]
/sys/devices/system/cpu/intel_pstate/max_perf_pct = <x> ﬂ

ﬂ The max_perf_pct controls the maximum frequency the cpufreq driver is allowed to set as
a percentage of the maximum supported cpu frequency. This value applies to all CPUs.
You can check the maximum supported frequency in
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq. As a starting point, you can
use a percentage that caps all CPUs at the All Cores Turbo frequency. The All Cores
Turbo frequency is the frequency that all cores will run at when the cores are all fully
occupied.

4. Add the desired annotations to your high priority workload pods. The annotations override the
default settings.

Example high priority workload annotation
apiVersion: vi

kind: Pod
metadata:

annotations:

148

CHAPTER 11. LOW LATENCY TUNING

cpu-c-states.crio.io: "disable”
cpu-freg-governor.crio.io: "<governors"

spec:

runtimeClassName: performance-<profile_name>

5. Restart the pods.

Additional resources

® For more information about recommended firmware configuration, see Recommended
firmware configuration for vDU cluster hosts.

11.2.11. Managing device interrupt processing for guaranteed pod isolated CPUs

The Node Tuning Operator can manage host CPUs by dividing them into reserved CPUs for cluster and
operating system housekeeping duties, including pod infra containers, and isolated CPUs for application
containers to run the workloads. This allows you to set CPUs for low latency workloads as isolated.

Device interrupts are load balanced between all isolated and reserved CPUs to avoid CPUs being
overloaded, with the exception of CPUs where there is a guaranteed pod running. Guaranteed pod
CPUs are prevented from processing device interrupts when the relevant annotations are set for the
pod.

In the performance profile, globallyDisablelrqLoadBalancing is used to manage whether device
interrupts are processed or not. For certain workloads, the reserved CPUs are not always sufficient for
dealing with device interrupts, and for this reason, device interrupts are not globally disabled on the
isolated CPUs. By default, Node Tuning Operator does not disable device interrupts on isolated CPUs.

To achieve low latency for workloads, some (but not all) pods require the CPUs they are running on to

not process device interrupts. A pod annotation, irq-load-balancing.crio.io, is used to define whether
device interrupts are processed or not. When configured, CRI-O disables device interrupts only as long
as the pod is running.

11.2.11.1. Disabling CPU CFS quota

To reduce CPU throttling for individual guaranteed pods, create a pod specification with the annotation
cpu-quota.crio.io: "disable”. This annotation disables the CPU completely fair scheduler (CFS) quota
at the pod run time. The following pod specification contains this annotation:

apiVersion: vi
kind: Pod
metadata:
annotations:
cpu-quota.crio.io: "disable"
spec:
runtimeClassName: performance-<profile_name>

149

OpenShift Container Platform 4.12 Scalability and performance

NOTE

Only disable CPU CFS quota when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU CFS quota
can affect the performance of other containers in the cluster.

11.2.11.2. Disabling global device interrupts handling in Node Tuning Operator

To configure Node Tuning Operator to disable global device interrupts for the isolated CPU set, set the
globallyDisablelrqLoadBalancing field in the performance profile to true. When true, conflicting pod
annotations are ignored. When false, IRQ loads are balanced across all CPUs.

A performance profile snippet illustrates this setting:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: manual
spec:
globallyDisablelrgLoadBalancing: true

11.2.11.3. Disabling interrupt processing for individual pods

To disable interrupt processing for individual pods, ensure that globallyDisablelrgLoadBalancing is
set to false in the performance profile. Then, in the pod specification, set the irq-load-balancing.crio.io
pod annotation to disable. The following pod specification contains this annotation:

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
annotations:
irg-load-balancing.crio.io: "disable"
spec:
runtimeClassName: performance-<profile_name>

11.2.12. Upgrading the performance profile to use device interrupt processing

When you upgrade the Node Tuning Operator performance profile custom resource definition (CRD)
from vl or vialphal to v2, globallyDisablelrgLoadBalancing is set to true on existing profiles.

NOTE
globallyDisablelrgLoadBalancing toggles whether IRQ load balancing will be disabled
for the Isolated CPU set. When the option is set to true it disables IRQ load balancing for

the Isolated CPU set. Setting the option to false allows the IRQs to be balanced across all
CPUs.

11.2.12.1. Supported API Versions

150

CHAPTER 11. LOW LATENCY TUNING

The Node Tuning Operator supports v2, v1, and vialpha1 for the performance profile apiVersion field.
The vl and vialphal APIs are identical. The v2 APl includes an optional boolean field
globallyDisablelrqLoadBalancing with a default value of false.

11.2.12.1.1. Upgrading Node Tuning Operator API from vlalphal to v1

When upgrading Node Tuning Operator APl version from vlalphal to v1, the vialphal performance
profiles are converted on-the-fly using a "None" Conversion strategy and served to the Node Tuning
Operator with API version vl.

1.2.12.1.2. Upgrading Node Tuning Operator API from vlalphal or v1to v2

When upgrading from an older Node Tuning Operator API version, the existing vl and vlalphal
performance profiles are converted using a conversion webhook that injects the
globallyDisablelrqLoadBalancing field with a value of true.

11.3. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE
PROFILE

The performance profile lets you control latency tuning aspects of nodes that belong to a certain
machine config pool. After you specify your settings, the PerformanceProfile object is compiled into
multiple objects that perform the actual node level tuning:

e A MachineConfig file that manipulates the nodes.

e A KubeletConfig file that configures the Topology Manager, the CPU Manager, and the
OpenShift Container Platform nodes.

® The Tuned profile that configures the Node Tuning Operator.

You can use a performance profile to specify whether to update the kernel to kernel-rt, to allocate huge
pages, and to partition the CPUs for performing housekeeping duties or running workloads.

NOTE

You can manually create the PerformanceProfile object or use the Performance Profile
Creator (PPC) to generate a performance profile. See the additional resources below for
more information on the PPC.

Sample performance profile

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:
cpu:
isolated: "4-15"
reserved: "0-3"
hugepages:
defaultHugepagesSize: "1G"
pages:

- size:"1G"
count: 16

151

OpenShift Container Platform 4.12 Scalability and performance

node: 0
realTimeKernel:
enabled: true 6
numa: ﬂ
topologyPolicy: "best-effort"
nodeSelector:
node-role.kubernetes.io/worker-cnf: " @)

Use this field to isolate specific CPUs to use with application containers for workloads. Set an even
number of isolated CPUs to enable the pods to run without errors when hyperthreading is enabled.

Use this field to reserve specific CPUs to use with infra containers for housekeeping.

Use this field to install the real-time kernel on the node. Valid values are true or false. Setting the
true value installs the real-time kernel.

Use this field to configure the topology manager policy. Valid values are none (default), best-
effort, restricted, and single-numa-node. For more information, see Topology Manager Policies.

® 6 0 o

Use this field to specify a node selector to apply the performance profile to specific nodes.

Additional resources
e Forinformation on using the Performance Profile Creator (PPC) to generate a performance
profile, see Creating a performance profile .
11.3.1. Configuring huge pages

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. Use the Node
Tuning Operator to allocate huge pages on a specific node.

OpenShift Container Platform provides a method for creating and allocating huge pages. Node Tuning
Operator provides an easier method for doing this using the performance profile.

For example, in the hugepages pages section of the performance profile, you can specify multiple
blocks of size, count, and, optionally, node:

hugepages:
defaultHugepagesSize: "1G"
pages:
- size: "1G"
count: 4
node: 0 ﬂ

node is the NUMA node in which the huge pages are allocated. If you omit node, the pages are
evenly spread across all NUMA nodes.

NOTE

Wait for the relevant machine config pool status that indicates the update is finished.

These are the only configuration steps you need to do to allocate huge pages.

152

https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#topology-manager-policies

CHAPTER 11. LOW LATENCY TUNING

Verification

® To verify the configuration, see the /proc/meminfo file on the node:

I $ oc debug node/ip-10-0-141-105.ec2.internal
I # grep -i huge /proc/meminfo
Example output

AnonHugePages: ###### ##
ShmemHugePages: 0 kB
HugePages_Total: 2
HugePages_Free: 2
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: i
Hugetlb: HitHE #H#

® Use oc describe to report the new size:

I $ oc describe node worker-0.ocp4poc.example.com | grep -i huge
Example output

hugepages-1g=true
hugepages-#i##: ###
hugepages-#i#t#: ###

11.3.2. Allocating multiple huge page sizes

You can request huge pages with different sizes under the same container. This allows you to define
more complicated pods consisting of containers with different huge page size needs.

For example, you can define sizes 1G and 2M and the Node Tuning Operator will configure both sizes on
the node, as shown here:

spec:
hugepages:
defaultHugepagesSize: 1G
pages:
- count: 1024
node: 0
size: 2M
- count: 4
node: 1
size: 1G

11.3.3. Configuring a node for IRQ dynamic load balancing

Configure a cluster node for IRQ dynamic load balancing to control which cores can receive device
interrupt requests (IRQ).

153

OpenShift Container Platform 4.12 Scalability and performance

Prerequisites

® For coreisolation, all server hardware components must support IRQ affinity. To check if the
hardware components of your server support IRQ affinity, view the server’s hardware
specifications or contact your hardware provider.

Procedure

1. Login to the OpenShift Container Platform cluster as a user with cluster-admin privileges.
2. Set the performance profile apiVersion to use performance.openshift.io/v2.
3. Remove the globallyDisablelrqLoadBalancing field or set it to false.

4. Set the appropriate isolated and reserved CPUs. The following snippet illustrates a profile that
reserves 2 CPUs. IRQ load-balancing is enabled for pods running on the isolated CPU set:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: dynamic-irg-profile
spec:
cpu:
isolated: 2-5
reserved: 0-1

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

5. Create the pod that uses exclusive CPUs, and set irg-load-balancing.crio.io and cpu-
quota.crio.io annotations to disable. For example:

apiVersion: vi
kind: Pod
metadata:
name: dynamic-irg-pod
annotations:
irg-load-balancing.crio.io: "disable"
cpu-quota.crio.io: "disable"
spec:
containers:
- name: dynamic-irg-pod
image: "registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12"
command: ["sleep”, "10h"]
resources:
requests:
cpu: 2
memory: "200M"
limits:
cpu: 2
memory: "200M"
nodeSelector:

154

1.

CHAPTER 11. LOW LATENCY TUNING

node-role.kubernetes.io/worker-cnf: "
runtimeClassName: performance-dynamic-irg-profile

Enter the pod runtimeClassName in the form performance-<profile_name>, where
<profile_name> is the name from the PerformanceProfile YAML, in this example, performance-
dynamic-irg-profile.

Set the node selector to target a cnf-worker.

Ensure the pod is running correctly. Status should be running, and the correct cnf-worker node
should be set:

I $ oc get pod -0 wide

Expected output
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
dynamic-irg-pod 1/1 Running 0 5h33m <ip-address> <node-name> <none>
<none>

Get the CPUs that the pod configured for IRQ dynamic load balancing runs on:

I $ oc exec -it dynamic-irg-pod -- /bin/bash -c "grep Cpus_allowed_list /proc/self/status | awk
{print $2}"

Expected output

I Cpus_allowed_list: 2-3

. Ensure the node configuration is applied correctly. Log in to the node to verify the

configuration.
I $ oc debug node/<node-name>
Expected output

Starting pod/<node-name>-debug ...
To use host binaries, run “chroot /host

Pod IP: <ip-address>
If you don't see a command prompt, try pressing enter.

sh-4.4#

Verify that you can use the node file system:

I sh-4.44# chroot /host

Expected output

155

OpenShift Container Platform 4.12 Scalability and performance

I sh-4.4#

12. Ensure the default system CPU affinity mask does not include the dynamic-irg-pod CPUs, for
example, CPUs 2 and 3.

I $ cat /proc/irg/default_smp_affinity

Example output

|33

13. Ensure the system IRQs are not configured to run on the dynamic-irg-pod CPUs:

find /proc/irg/ -name smp_affinity_list -exec sh -c 'i="$1"; mask=$(cat $i); file=$(echo $i); echo
$file: $mask' _ {} \;

Example output

/proc/irg/0/smp_affinity_list: 0-5
/proc/irg/1/smp_affinity_list: 5

/proc/irg/2/smp_affinity_list: 0-5
/proc/irg/3/smp_affinity_list: 0-5
/proc/irg/4/smp_affinity_list: 0

/proc/irg/5/smp_affinity_list: 0-5
/proc/irg/6/smp_affinity_list: 0-5
/proc/irg/7/smp_affinity_list: 0-5
/proc/irg/8/smp_affinity_list: 4
/proc/irg/9/smp_affinity_list: 4
/proc/irg/10/smp_affinity_list: 0
/proc/irg/11/smp_affinity_list: O
/proc/irg/12/smp_affinity_list: 1
/proc/irg/13/smp_affinity_list: 0
/proc/irg/14/smp_affinity_list: 1
/proc/irg/15/smp_affinity_list: 0
/proc/irg/24/smp_affinity_list: 1
/proc/irg/25/smp_affinity_list: 1
/proc/irg/26/smp_affinity_list: 1
/proc/irg/27/smp_affinity_list: 5
/proc/irg/28/smp_affinity_list: 1
/proc/irg/29/smp_affinity_list: O
/proc/irg/30/smp_affinity_list: O

11.3.4. About support of IRQ affinity setting

Some IRQ controllers lack support for IRQ affinity setting and will always expose all online CPUs as the
IRQ mask. These IRQ controllers effectively run on CPU O.

The following are examples of drivers and hardware that Red Hat are aware lack support for IRQ affinity
setting. The list is, by no means, exhaustive:

® Some RAID controller drivers, such as megaraid_sas

® Many non-volatile memory express (NVMe) drivers

156

CHAPTER 11. LOW LATENCY TUNING

® Some LAN on motherboard (LOM) network controllers

® The driver uses managed_irqs

NOTE

The reason they do not support IRQ affinity setting might be associated with factors such
as the type of processor, the IRQ controller, or the circuitry connections in the
motherboard.

If the effective affinity of any IRQ is set to an isolated CPU, it might be a sign of some hardware or driver
not supporting IRQ affinity setting. To find the effective affinity, log in to the host and run the following
command:

I $ find /proc/irq -name effective_affinity -printf "%p: " -exec cat {} \;
Example output

/proc/irg/0/effective_affinity:
/proc/irg/1/effective_affinity:
/proc/irg/2/effective_affinity:
/proc/irq/3/effective_affinity:
/proc/irq/4/effective_affinity:
/proc/irq/5/effective_affinity:
/proc/irq/6/effective_affinity:
/proc/irq/7/effective_affinity:
/proc/irq/8/effective_affinity:
/proc/irq/9/effective_affinity:
/proc/irg/10/effective_affinity:
/proc/irg/11/effective_affinity:
/proc/irg/12/effective_affinity:
/proc/irg/13/effective_affinity:
/proc/irg/14/effective_affinity:
/proc/irg/15/effective_affinity:
/proc/irq/24/effective_affinity:
/proc/irq/25/effective_affinity:
/proc/irq/26/effective_affinity:
/procl/irq/27/effective_affinity:
/proc/irq/28/effective_affinity:
/proc/irqg/29/effective_affinity:
/proc/irq/30/effective_affinity:
/proc/irq/31/effective_affinity:
/proc/irq/32/effective_affinity:
/proc/irq/33/effective_affinity:
/proc/irq/34/effective_affinity:

N = = =4 a N = O 00 =

N = 000~ BMO2NAN=2 2 24N

Some drivers use managed_irgs, whose affinity is managed internally by the kernel and userspace
cannot change the affinity. In some cases, these IRQs might be assigned to isolated CPUs. For more
information about managed_irgs, see Affinity of managed interrupts cannot be changed even if they
target isolated CPU.

11.3.5. Configuring hyperthreading for a cluster

157

https://access.redhat.com/solutions/4819541

OpenShift Container Platform 4.12 Scalability and performance

To configure hyperthreading for an OpenShift Container Platform cluster, set the CPU threads in the
performance profile to the same cores that are configured for the reserved or isolated CPU pools.

NOTE

If you configure a performance profile, and subsequently change the hyperthreading
configuration for the host, ensure that you update the CPU isolated and reserved fields
in the PerformanceProfile YAML to match the new configuration.

' WARNING
A Disabling a previously enabled host hyperthreading configuration can cause the

CPU core IDs listed in the PerformanceProfile YAML to be incorrect. This incorrect
configuration can cause the node to become unavailable because the listed CPUs
can no longer be found.

Prerequisites
® Access to the cluster as a user with the cluster-admin role.

® |nstall the OpenShift CLI (oc).

Procedure

1. Ascertain which threads are running on what CPUs for the host you want to configure.
You can view which threads are running on the host CPUs by logging in to the cluster and
running the following command:

I $ Iscpu --all --extended

Example output

CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ
0 0 0O 0 0:0:0:0 yes 4800.0000 400.0000
10 0 1 1:1:1:0 yes 4800.0000 400.0000
2 0 0 2 2220 yes 4800.0000 400.0000
3 0 0 3 3330 yes 4800.0000 400.0000
4 0 0 0 0:0:0:0 yes 4800.0000 400.0000
50 0 1 1:1:1:0 yes 4800.0000 400.0000
6 0 0 2 2220 yes 4800.0000 400.0000
7 0 0 3 3330 yes 4800.0000 400.0000

In this example, there are eight logical CPU cores running on four physical CPU cores. CPUO
and CPU4 are running on physical CoreO, CPU1 and CPUS5 are running on physical Core 1, and so
on.

Alternatively, to view the threads that are set for a particular physical CPU core (cpu0 in the
example below), open a command prompt and run the following:

158

CHAPTER 11. LOW LATENCY TUNING

I $ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list

Example output

| o4

2. Apply the isolated and reserved CPUs in the PerformanceProfile YAML. For example, you can
set logical cores CPUO and CPU4 as isolated, and logical cores CPU1 to CPU3 and CPU5 to
CPU7 as reserved. When you configure reserved and isolated CPUs, the infra containers in
pods use the reserved CPUs and the application containers use the isolated CPUs.

cpu:
isolated: 0,4
reserved: 1-3,5-7

NOTE

The reserved and isolated CPU pools must not overlap and together must span
all available cores in the worker node.

IMPORTANT

Hyperthreading is enabled by default on most Intel processors. If you enable
hyperthreading, all threads processed by a particular core must be isolated or processed
on the same core.

11.3.5.1. Disabling hyperthreading for low latency applications

When configuring clusters for low latency processing, consider whether you want to disable
hyperthreading before you deploy the cluster. To disable hyperthreading, do the following:

1. Create a performance profile that is appropriate for your hardware and topology.

2. Set nosmt as an additional kernel argument. The following example performance profile
illustrates this setting:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: example-performanceprofile
spec:
additionalKernelArgs:
- nmi_watchdog=0
- audit=0
- mce=off
- processor.max_cstate=1
- idle=poll
- intel_idle.max_cstate=0
- nosmt
cpu:
isolated: 2-3

159

OpenShift Container Platform 4.12 Scalability and performance

reserved: 0-1
hugepages:
defaultHugepagesSize: 1G
pages:
- count: 2
node: 0
size: 1G
nodeSelector:
node-role.kubernetes.io/performance: "
realTimeKernel:
enabled: true

NOTE

When you configure reserved and isolated CPUs, the infra containers in pods use
the reserved CPUs and the application containers use the isolated CPUs.

11.3.6. Understanding workload hints

The following table describes how combinations of power consumption and real-time settings impact on
latency.

NOTE

The following workload hints can be configured manually. You can also work with
workload hints using the Performance Profile Creator. For more information about the
performance profile, see the "Creating a performance profile" section. If the workload
hint is configured manually and the realTime workload hint is not explicitly set then it
defaults to true.

Performance Profile Environment Description

creator setting

Default High throughput cluster Performance achieved
workloadHints: without latency through CPU
highPowerConsum requirements partitioning only.
ption: false
realTime: false

Low-latency Regional datacenters Both energy savings and

Ultra-low-latency

160

workloadHints:
highPowerConsum
ption: false
realTime: true

workloadHints:
highPowerConsum
ption: true
realTime: true

Far edge clusters,
latency critical
workloads

low-latency are
desirable: compromise
between power
management, latency
and throughput.

Optimized for absolute
minimal latency and
maximum determinism
at the cost of increased
power consumption.

CHAPTER 11. LOW LATENCY TUNING

Performance Profile Environment Description

creator setting

Per-pod power Critical and non-critical Allows for power
management workloadHints: workloads management per pod.

realTime: true
highPowerConsum
ption: false
perPodPowerMana
gement: true

Additional resources

e Forinformation about using the Performance Profile Creator (PPC) to generate a performance
profile, see Creating a performance profile .

11.3.7. Configuring workload hints manually

Procedure

1. Create a PerformanceProfile appropriate for the environment’s hardware and topology as
described in the table in "Understanding workload hints". Adjust the profile to match the
expected workload. In this example, we tune for the lowest possible latency.

2. Add the highPowerConsumption and realTime workload hints. Both are set to true here.

1]
2]

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: workload-hints
spec:

workloadHints:
highPowerConsumption: true 0
realTime: true

If highPowerConsumption is true, the node is tuned for very low latency at the cost of
increased power consumption.

Disables some debugging and monitoring features that can affect system latency.

NOTE

When the realTime workload hint flag is set to true in a performance profile, add the cpu-
quota.crio.io: disable annotation to every guaranteed pod with pinned CPUs. This
annotation is necessary to prevent the degradation of the process performance within

the pod. If the realTime workload hint is not explicitly set then it defaults to true.

Additional resources

161

OpenShift Container Platform 4.12 Scalability and performance

® Forinformation about reducing CPU throttling for individual guaranteed pods, see Disabling
CPU CFS quota.

11.3.8. Restricting CPUs for infra and application containers

Generic housekeeping and workload tasks use CPUs in a way that may impact latency-sensitive
processes. By default, the container runtime uses all online CPUs to run all containers together, which
can result in context switches and spikes in latency. Partitioning the CPUs prevents noisy processes
from interfering with latency-sensitive processes by separating them from each other. The following
table describes how processes run on a CPU after you have tuned the node using the Node Tuning
Operator:

Table 11.2. Process' CPU assignments

Process type Details

Burstable and BestEffort pods Runs on any CPU except where low latency workload
is running

Infrastructure pods Runs on any CPU except where low latency workload
is running

Interrupts Redirects to reserved CPUs (optional in OpenShift

Container Platform 4.7 and later)

Kernel processes Pins to reserved CPUs

Latency-sensitive workload pods Pins to a specific set of exclusive CPUs from the
isolated pool

OS processes/systemd services Pins to reserved CPUs

The allocatable capacity of cores on a node for pods of all QoS process types, Burstable, BestEffort, or
Guaranteed, is equal to the capacity of the isolated pool. The capacity of the reserved pool is removed
from the node’s total core capacity for use by the cluster and operating system housekeeping duties.

Example 1

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 25
cores to QoS Guaranteed pods and 25 cores for BestEffort or Burstable pods. This matches the
capacity of the isolated pool.

Example 2

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 50
cores to QoS Guaranteed pods and one core for BestEffort or Burstable pods. This exceeds the
capacity of the isolated pool by one core. Pod scheduling fails because of insufficient CPU capacity.

The exact partitioning pattern to use depends on many factors like hardware, workload characteristics
and the expected system load. Some sample use cases are as follows:

e |f the latency-sensitive workload uses specific hardware, such as a network interface controller

162

CHAPTER 11. LOW LATENCY TUNING

(NIC), ensure that the CPUs in the isolated pool are as close as possible to this hardware. At a
minimum, you should place the workload in the same Non-Uniform Memory Access (NUMA)
node.

® The reserved poolis used for handling all interrupts. When depending on system networking,
allocate a sufficiently-sized reserve pool to handle all the incoming packet interrupts. In 4.12 and
later versions, workloads can optionally be labeled as sensitive.

The decision regarding which specific CPUs should be used for reserved and isolated partitions requires

detailed analysis and measurements. Factors like NUMA affinity of devices and memory play a role. The
selection also depends on the workload architecture and the specific use case.

IMPORTANT

The reserved and isolated CPU pools must not overlap and together must span all
available cores in the worker node.

To ensure that housekeeping tasks and workloads do not interfere with each other, specify two groups
of CPUs in the spec section of the performance profile.

e jsolated - Specifies the CPUs for the application container workloads. These CPUs have the
lowest latency. Processes in this group have no interruptions and can, for example, reach much
higher DPDK zero packet loss bandwidth.

e reserved - Specifies the CPUs for the cluster and operating system housekeeping duties.
Threads in the reserved group are often busy. Do not run latency-sensitive applications in the
reserved group. Latency-sensitive applications run in the isolated group.

Procedure

1. Create a performance profile appropriate for the environment'’s hardware and topology.

2. Add the reserved and isolated parameters with the CPUs you want reserved and isolated for
the infra and application containers:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile

metadata:
name: infra-cpus
spec:
cpu:
reserved: "0-4,9" ﬂ
isolated: "5-8" 9

nodeSelector: 6
node-role.kubernetes.io/worker: "

ﬂ Specify which CPUs are for infra containers to perform cluster and operating system
housekeeping duties.

9 Specify which CPUs are for application containers to run workloads.

g Optional: Specify a node selector to apply the performance profile to specific nodes.

Additional resources

163

OpenShift Container Platform 4.12 Scalability and performance

® Managing device interrupt processing for guaranteed pod isolated CPUs

® Create a pod that gets assigned a QoS class of Guaranteed

11.4. REDUCING NIC QUEUES USING THE NODE TUNING OPERATOR
The Node Tuning Operator allows you to adjust the network interface controller (NIC) queue count for

each network device. By using a PerformanceProfile, the amount of queues can be reduced to the
number of reserved CPUs.

11.4.1. Adjusting the NIC queues with the performance profile

The performance profile lets you adjust the queue count for each network device.
Supported network devices:

® Non-virtual network devices

® Network devices that support multiple queues (channels)
Unsupported network devices:

® Pure software network interfaces

® Block devices

® |ntel DPDK virtual functions

Prerequisites
® Access to the cluster as a user with the cluster-admin role.

e Install the OpenShift CLI (oc).

Procedure

1. Login to the OpenShift Container Platform cluster running the Node Tuning Operator as a user
with cluster-admin privileges.

2. Create and apply a performance profile appropriate for your hardware and topology. For
guidance on creating a profile, see the "Creating a performance profile" section.

3. Edit this created performance profile:

I $ oc edit -f <your_profile_name>.yaml|

4. Populate the spec field with the net object. The object list can contain two fields:

e userLevelNetworking is a required field specified as a boolean flag. If
userLevelNetworking is true, the queue count is set to the reserved CPU count for all
supported devices. The default is false.

e devices is an optional field specifying a list of devices that will have the queues set to the

reserved CPU count. If the device list is empty, the configuration applies to all network
devices. The configuration is as follows:

164

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#create-a-pod-that-gets-assigned-a-qos-class-of-guaranteed

CHAPTER 11. LOW LATENCY TUNING

o interfaceName: This field specifies the interface name, and it supports shell-style
wildcards, which can be positive or negative.

® Example wildcard syntax is as follows: <string> .*

® Negative rules are prefixed with an exclamation mark. To apply the net queue
changes to all devices other than the excluded list, use !<devices, for example,
leno1.

o vendorID: The network device vendor ID represented as a 16-bit hexadecimal number
with a Ox prefix.

o devicelD: The network device ID (model) represented as a 16-bit hexadecimal number
with a 0x prefix.

NOTE

When a devicelD is specified, the vendorlD must also be defined. A
device that matches all of the device identifiers specified in a device
entry interfaceName, vendorID, or a pair of vendorID plus devicelD
qualifies as a network device. This network device then has its net queues
count set to the reserved CPU count.

When two or more devices are specified, the net queues count is set to
any net device that matches one of them.

5. Set the queue count to the reserved CPU count for all devices by using this example
performance profile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: manual
spec:
cpu:
isolated: 3-51,55-103
reserved: 0-2,52-54
net:
userLevelNetworking: true
nodeSelector:
node-role.kubernetes.io/worker-cnf: ""

6. Set the queue count to the reserved CPU count for all devices matching any of the defined
device identifiers by using this example performance profile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: manual
spec:
cpu:
isolated: 3-51,55-103
reserved: 0-2,52-54
net:
userLevelNetworking: true

165

OpenShift Container Platform 4.12 Scalability and performance

devices:
- interfaceName: "eth0"
- interfaceName: "eth1"
- vendorID: "Ox1af4"
devicelD: "0x1000"
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"

7. Set the queue count to the reserved CPU count for all devices starting with the interface name
eth by using this example performance profile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: manual
spec:
cpu:
isolated: 3-51,55-103
reserved: 0-2,52-54
net:
userLevelNetworking: true
devices:
- interfaceName: "eth™"
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"

8. Set the queue count to the reserved CPU count for all devices with an interface named
anything other than eno1 by using this example performance profile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: manual
spec:
cpu:
isolated: 3-51,55-103
reserved: 0-2,52-54
net:
userLevelNetworking: true
devices:
- interfaceName: "leno1"
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"

9. Set the queue count to the reserved CPU count for all devices that have an interface name
eth0, vendorID of O0x1af4, and devicelD of 0x1000 by using this example performance profile:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: manual
spec:
cpu:
isolated: 3-51,55-103
reserved: 0-2,52-54

166

CHAPTER 11. LOW LATENCY TUNING

net:
userLevelNetworking: true
devices:
- interfaceName: "eth0"
- vendorID: "Ox1af4"
devicelD: "0x1000"
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"

10. Apply the updated performance profile:

I $ oc apply -f <your_profile_name>.yaml

Additional resources

® (Creating a performance profile.

11.4.2. Verifying the queue status

In this section, a number of examples illustrate different performance profiles and how to verify the
changes are applied.

Example 1

In this example, the net queue count is set to the reserved CPU count (2) for all supported devices.

The relevant section from the performance profile is:

apiVersion: performance.openshift.io/v2
metadata:
name: performance
spec:
kind: PerformanceProfile
spec:
cpu:
reserved: 0-1 #total = 2
isolated: 2-8
net:
userLevelNetworking: true
#...

e Display the status of the queues associated with a device using the following command:

NOTE
Run this command on the node where the performance profile was applied.
I $ ethtool -I <device>

e Verify the queue status before the profile is applied:

I $ ethtool -| ens4

Cxvanmanla A+

167

OpenShift Container Platform 4.12 Scalability and performance

CAdIIIpIT UULpUL

Channel parameters for ens4:
Pre-set maximums:

RX: 0

TX: 0

Other: 0

Combined: 4

Current hardware settings:
RX: 0

TX: 0

Other: 0

Combined: 4

e Verify the queue status after the profile is applied:
I $ ethtool -| ens4
Example output

Channel parameters for ens4:
Pre-set maximums:

RX: 0

TX: 0

Other: 0

Combined: 4

Current hardware settings:
RX: 0

TX: 0

Other: 0

Combined: 2 @)

The combined channel shows that the total count of reserved CPUs for all supported devices is 2.
This matches what is configured in the performance profile.

Example 2

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices with a specific vendorID.

The relevant section from the performance profile is:

apiVersion: performance.openshift.io/v2
metadata:
name: performance
spec:
kind: PerformanceProfile
spec:
cpu:
reserved: 0-1 #total = 2
isolated: 2-8
net:
userLevelNetworking: true

168

CHAPTER 11. LOW LATENCY TUNING

devices:
- vendorID = 0x1af4
#...

e Display the status of the queues associated with a device using the following command:

NOTE
Run this command on the node where the performance profile was applied.
I $ ethtool -I <device>
e Verify the queue status after the profile is applied:
I $ ethtool -1 ens4
Example output

Channel parameters for ens4:
Pre-set maximums:

RX: 0

TX: 0

Other: 0

Combined: 4

Current hardware settings:
RX: 0

TX: 0

Other: 0

Combined: 2 @)

The total count of reserved CPUs for all supported devices with vendorlD=0x1af4 is 2. For
example, if there is another network device ens2 with vendorlD=0x1af4 it will also have total net
queues of 2. This matches what is configured in the performance profile.

Example 3

In this example, the net queue count is set to the reserved CPU count (2) for all supported network
devices that match any of the defined device identifiers.

The command udevadm info provides a detailed report on a device. In this example the devices are:

udevadm info -p /sys/class/net/ens4
E: ID_MODEL_ID=0x1000

E: ID_VENDOR_ID=0x1af4
E: INTERFACE=ens4

udevadm info -p /sys/class/net/ethO

E: ID_MODEL_ID=0x1002

169

OpenShift Container Platform 4.12 Scalability and performance

E: ID_VENDOR_ID=0x1001
E: INTERFACE=ethO

® Setthe net queues to 2 for a device with interfaceName equal to eth0 and any devices that
have a vendorlD=0x1af4 with the following performance profile:

apiVersion: performance.openshift.io/v2
metadata:
name: performance
spec:
kind: PerformanceProfile
spec:
cpu:
reserved: 0-1 #iotal =2
isolated: 2-8
net:
userLevelNetworking: true
devices:
- interfaceName = eth0
- vendorID = Ox1af4

e Verify the queue status after the profile is applied:
I $ ethtool -| ens4
Example output

Channel parameters for ens4:
Pre-set maximums:

RX: 0

TX: 0

Other: 0

Combined: 4

Current hardware settings:
RX: 0

TX: 0

Other: 0

Combined: 2 @)

ﬂ The total count of reserved CPUs for all supported devices with vendorID=0x1af4 is set to
2. For example, if there is another network device ens2 with vendorlD=0x1af4, it will also
have the total net queues set to 2. Similarly, a device with interfaceName equal to eth0 will
have total net queues set to 2.

11.4.3. Logging associated with adjusting NIC queues

Log messages detailing the assigned devices are recorded in the respective Tuned daemon logs. The
following messages might be recorded to the /var/log/tuned/tuned.log file:

® An INFO message is recorded detailing the successfully assigned devices:

170

CHAPTER 11. LOW LATENCY TUNING

I INFO tuned.plugins.base: instance net_test (net): assigning devices ens1, ens2, ens3

o A WARNING message is recorded if none of the devices can be assigned:

I WARNING tuned.plugins.base: instance net_test: no matching devices available

Status:

Conditions:
Last Heartbeat Time: 2020-06-02T10:01:24Z
Last Transition Time: 2020-06-02T10:01:24Z
Status: True
Type: Available
Last Heartbeat Time: 2020-06-02T10:01:24Z
Last Transition Time: 2020-06-02T10:01:24Z
Status: True
Type: Upgradeable
Last Heartbeat Time: 2020-06-02T10:01:24Z
Last Transition Time: 2020-06-02T10:01:24Z
Status: False
Type: Progressing
Last Heartbeat Time: 2020-06-02T10:01:24Z
Last Transition Time: 2020-06-02T10:01:24Z
Status: False
Type: Degraded

Available

11.5. DEBUGGING LOW LATENCY CNF TUNING STATUS

The PerformanceProfile custom resource (CR) contains status fields for reporting tuning status and
debugging latency degradation issues. These fields report on conditions that describe the state of the
operator’s reconciliation functionality.

A typical issue can arise when the status of machine config pools that are attached to the performance
profile are in a degraded state, causing the PerformanceProfile status to degrade. In this case, the

machine config pool issues a failure message.

The Node Tuning Operator contains the performanceProfile.spec.status.Conditions status field:

The Status field contains Conditions that specify Type values that indicate the status of the
performance profile:

All machine configs and Tuned profiles have been created successfully and are available for cluster
components are responsible to process them (NTO, MCO, Kubelet).

Upgradeable

Indicates whether the resources maintained by the Operator are in a state that is safe to upgrade.

Progressing

Indicates that the deployment process from the performance profile has started.

Degraded

Indicates an error if:

® Validation of the performance profile has failed.

171

OpenShift Container Platform 4.12 Scalability and performance

® Creation of all relevant components did not complete successfully.

Each of these types contain the following fields:

Status
The state for the specific type (true or false).
Timestamp
The transaction timestamp.
Reason string
The machine readable reason.
Message string

The human readable reason describing the state and error details, if any.

11.5.1. Machine config pools

A performance profile and its created products are applied to a node according to an associated
machine config pool (MCP). The MCP holds valuable information about the progress of applying the
machine configurations created by performance profiles that encompass kernel args, kube config, huge
pages allocation, and deployment of rt-kernel. The Performance Profile controller monitors changes in
the MCP and updates the performance profile status accordingly.

The only conditions returned by the MCP to the performance profile status is when the MCP is
Degraded, which leads to performanceProfile.status.condition.Degraded = true.

Example

The following example is for a performance profile with an associated machine config pool (worker-cnf)
that was created for it:

1. The associated machine config pool is in a degraded state:

I # oc get mep
Example output

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE

master rendered-master-2ee57a93fa6¢c9181b546ca46e1571d2d True False

False 3 3 3 0 2d21h
worker rendered-worker-déb2bdc07d9f5a59a6b68950acf25e5f True False
False 2 2 2 0 2d21h
worker-cnf rendered-worker-cnf-6¢838641b8a08fff08dbd8b02fb63f7¢c False True
True 2 1 1 1 2d20h

2. The describe section of the MCP shows the reason:

I # oc describe mcp worker-cnf

Example output

172

CHAPTER 11. LOW LATENCY TUNING

Message: Node node-worker-cnf is reporting: "prepping update:
machineconfig.machineconfiguration.openshift.io \"rendered-worker-cnf-
40b9996919c08e335f3ff230ce1d170\" not
found"
Reason: 1 nodes are reporting degraded status on sync

3. The degraded state should also appear under the performance profile status field marked as
degraded = true:

I # oc describe performanceprofiles performance
Example output

Message: Machine config pool worker-cnf Degraded Reason: 1 nodes are reporting
degraded status on sync.
Machine config pool worker-cnf Degraded Message: Node yquinn-q8s5v-w-b-
z5Ign.c.openshift-gce-devel.internal is
reporting: "prepping update: machineconfig.machineconfiguration.openshift.io
\"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not found". Reason:
MCPDegraded

Status: True

Type: Degraded

11.6. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR
RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including node tuning, NUMA topology, and other information needed to debug issues
with low latency setup.

For prompt support, supply diagnostic information for both OpenShift Container Platform and low
latency tuning.

11.6.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

® Resource definitions

® Audit logs

® Service logs
You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product. When you run oc
adm must-gather, a new pod is created on the cluster. The data is collected on that pod and savedin a

new directory that starts with must-gather.local. This directory is created in your current working
directory.

173

OpenShift Container Platform 4.12 Scalability and performance

11.6.2. About collecting low latency tuning data

Use the oc adm must-gather CLI command to collect information about your cluster, including features
and objects associated with low latency tuning, including:

® The Node Tuning Operator namespaces and child objects.

® MachineConfigPool and associated MachineConfig objects.

The Node Tuning Operator and associated Tuned objects.

Linux Kernel command line options.
® CPU and NUMA topology
® Basic PCl device information and NUMA locality.

To collect debugging information with must-gather, you must specify the Performance Addon Operator
must-gather image:

--image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.12.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
provided automatic, low latency performance tuning for applications. In OpenShift
Container Platform 4.11 and later, this functionality is part of the Node Tuning Operator.
However, you must still use the performance-addon-operator-must-gather image when
running the must-gather command.

11.6.3. Gathering data about specific features

You can gather debugging information about specific features by using the oc adm must-gather CLI
command with the --image or --image-stream argument. The must-gather tool supports multiple
images, so you can gather data about more than one feature by running a single command.

NOTE

To collect the default must-gather data in addition to specific feature data, add the --
image-stream=openshift/must-gather argument.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
provided automatic, low latency performance tuning for applications. In OpenShift
Container Platform 4.11, these functions are part of the Node Tuning Operator. However,
you must still use the performance-addon-operator-must-gather image when running
the must-gather command.

Prerequisites

® Access to the cluster as a user with the cluster-admin role.

® The OpenShift Container Platform CLI (oc) installed.

174

CHAPTER 11. LOW LATENCY TUNING

Procedure

1. Navigate to the directory where you want to store the must-gather data.
2. Run the oc adm must-gather command with one or more --image or --image-stream

arguments. For example, the following command gathers both the default cluster data and
information specific to the Node Tuning Operator:

$ oc adm must-gather \
--image-stream=openshift/must-gather \ ﬂ

--image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.12

ﬂ The default OpenShift Container Platform must-gather image.

9 The must-gather image for low latency tuning diagnostics.

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

I $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ €))

ﬂ Replace must-gather-local.5421342344627712289/ with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal.

Additional resources

® For more information about MachineConfig and KubeletConfig, see Managing nodes.
® For more information about the Node Tuning Operator, see Using the Node Tuning Operator.
® For more information about the PerformanceProfile, see Configuring huge pages.

® For more information about consuming huge pages from your containers, see How huge pages
are consumed by apps.

175

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-nodes-managing

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM
VERIFICATION

You can use the Cloud-native Network Functions (CNF) tests image to run latency tests on a CNF-
enabled OpenShift Container Platform cluster, where all the components required for running CNF
workloads are installed. Run the latency tests to validate node tuning for your workload.

The cnf-tests container image is available at registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12.

IMPORTANT

The cnf-tests image also includes several tests that are not supported by Red Hat at this
time. Only the latency tests are supported by Red Hat.

12.1. PREREQUISITES FOR RUNNING LATENCY TESTS

Your cluster must meet the following requirements before you can run the latency tests:
1. You have configured a performance profile with the Node Tuning Operator.
2. You have applied all the required CNF configurations in the cluster.

3. You have a pre-existing MachineConfigPool CR applied in the cluster. The default worker pool
is worker-cnf.

Additional resources

® For more information about creating the cluster performance profile, see Provisioning a worker
with real-time capabilities.

12.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS

Use discovery mode to validate the functionality of a cluster without altering its configuration. Existing
environment configurations are used for the tests. The tests can find the configuration items needed
and use those items to execute the tests. If resources needed to run a specific test are not found, the
test is skipped, providing an appropriate message to the user. After the tests are finished, no cleanup of
the preconfigured configuration items is done, and the test environment can be immediately used for
another test run.

IMPORTANT

When running the latency tests, always run the tests with -e DISCOVERY_MODE-=true
and -ginkgo.focus set to the appropriate latency test. If you do not run the latency tests
in discovery mode, your existing live cluster performance profile configuration will be
modified by the test run.

Limiting the nodes used during tests

The nodes on which the tests are executed can be limited by specifying a NODES_SELECTOR
environment variable, for example, -e NODES_SELECTOR=node-role.kubernetes.io/worker-cnf. Any
resources created by the test are limited to nodes with matching labels.

176

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

NOTE

If you want to override the default worker pool, pass the -e ROLE_WORKER_CNF=
<custom_worker_pools variable to the command specifying an appropriate label.

ol

12.3. MEASURING LATENCY
The cnf-tests image uses three tools to measure the latency of the system:
e hwlatdetect
e cyclictest
e oslat
Each tool has a specific use. Use the tools in sequence to achieve reliable test results.

hwlatdetect

Measures the baseline that the bare-metal hardware can achieve. Before proceeding with the next
latency test, ensure that the latency reported by hwlatdetect meets the required threshold because
you cannot fix hardware latency spikes by operating system tuning.

cyclictest

Verifies the real-time kernel scheduler latency after hwlatdetect passes validation. The cyclictest
tool schedules a repeated timer and measures the difference between the desired and the actual
trigger times. The difference can uncover basic issues with the tuning caused by interrupts or
process priorities. The tool must run on a real-time kernel.

oslat

Behaves similarly to a CPU-intensive DPDK application and measures all the interruptions and
disruptions to the busy loop that simulates CPU heavy data processing.

The tests introduce the following environment variables:

Table 12.1. Latency test environment variables

Environment variables Description

LATENCY_TEST DE Specifies the amount of time in seconds after which the test starts running. You
LAY can use the variable to allow the CPU manager reconcile loop to update the
default CPU pool. The default value is O.

LATENCY_TEST_CP Specifies the number of CPUs that the pod running the latency tests uses. If you
us do not set the variable, the default configuration includes all isolated CPUs.

LATENCY_TEST RU Specifies the amount of time in seconds that the latency test must run. The
NTIME default value is 300 seconds.

HWLATDETECT_MA Specifies the maximum acceptable hardware latency in microseconds for the

XIMUM_LATENCY workload and operating system. If you do not set the value of
HWLATDETECT_MAXIMUM_LATENCY or MAXIMUM_LATENCY, the
tool compares the default expected threshold (20us) and the actual maximum
latency in the tool itself. Then, the test fails or succeeds accordingly.

177

OpenShift Container Platform 4.12 Scalability and performance

Environment variables Description

CYCLICTEST_MAXI Specifies the maximum latency in microseconds that all threads expect before
MUM_LATENCY waking up during the cyclictest run. If you do not set the value of

CYCLICTEST_MAXIMUM_LATENCY orMAXIMUM_LATENCY, the tool
skips the comparison of the expected and the actual maximum latency.

OSLAT_MAXIMUM_L Specifies the maximum acceptable latency in microseconds for the oslat test

ATENCY results. If you do not set the value of OSLAT_MAXIMUM_LATENCY or
MAXIMUM_LATENCY, the tool skips the comparison of the expected and the
actual maximum latency.

MAXIMUM_LATENC Unified variable that specifies the maximum acceptable latency in microseconds.
Y Applicable for all available latency tools.

LATENCY_TEST RU Boolean parameter that indicates whether the tests should run.
N LATENCY_TEST_RUN is set to false by default. To run the latency tests, set
this value to true.

NOTE

Variables that are specific to a latency tool take precedence over unified variables. For
example, if OSLAT_MAXIMUM_LATENCY is set to 30 microseconds and
MAXIMUM_LATENCY is set to 10 microseconds, the oslat test will run with maximum
acceptable latency of 30 microseconds.

12.4. RUNNING THE LATENCY TESTS

Run the cluster latency tests to validate node tuning for your Cloud-native Network Functions (CNF)
workload.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE-=true set. If you don't, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a hon-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Procedure

1. Open a shell prompt in the directory containing the kubeconfig file.
You provide the test image with a kubeconfig file in current directory and its related
$KUBECONFIG environment variable, mounted through a volume. This allows the running
container to use the kubeconfig file from inside the container.

2. Run the latency tests by entering the following command:

178

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

-e LATENCY_TEST_RUN-=true -e DISCOVERY_MODE-=true -e FEATURES=performance
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

3. Optional: Append -ginkgo.dryRun to run the latency tests in dry-run mode. This is useful for
checking what the tests run.

4. Optional: Append -ginkgo.v to run the tests with increased verbosity.

5. Optional: To run the latency tests against a specific performance profile, run the following
command, substituting appropriate values:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

-e LATENCY_TEST_RUN-=true -e FEATURES=performance -e
LATENCY_TEST_RUNTIME=600 -e MAXIMUM_LATENCY=20\

-e PERF_TEST_PROFILE=<performance_profile> registry.redhat.io/openshift4/cnf-tests-
rhel8:v4.12 \

/usr/bin/test-run.sh -ginkgo.focus="[performance]\ Latency\ Test"

where:

<performance_profile>

Is the name of the performance profile you want to run the latency tests against.

IMPORTANT

For valid latency test results, run the tests for at least 12 hours.

12.4.1. Running hwlatdetect

The hwlatdetect tool is available in the rt-kernel package with a regular subscription of Red Hat
Enterprise Linux (RHEL) 8.x.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE-=true set. If you don't, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

® You have installed the real-time kernel in the cluster.

® You have logged in to registry.redhat.io with your Customer Portal credentials.

Procedure

179

OpenShift Container Platform 4.12 Scalability and performance

180

e To run the hwlatdetect tests, run the following command, substituting variable values as
appropriate:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

-e LATENCY_TEST_RUN-=true -e DISCOVERY_MODE=true -e FEATURES=performance -
e ROLE_ WORKER_CNF=worker-cnf \

-e LATENCY_TEST_RUNTIME=600 -e MAXIMUM_LATENCY=20\
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="hwlatdetect"

The hwlatdetect test runs for 10 minutes (600 seconds). The test runs successfully when the
maximum observed latency is lower than MAXIMUM_LATENCY (20 ps).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=hwlatdetect

10908 15:25:20.023712 27 request.go:601] Waited for 1.046586367s due to client-side
throttling, not priority and fairness, request:
GET:https://api.hixcl6.lab.eng.tlv2.redhat.com:6443/apis/imageregistry.operator.openshift.io/v1?
timeout=32s

Running Suite: CNF Features e2e integration tests

Random Seed: 1662650718
Will run 1 of 194 specs

[..]

* Failure [283.574 seconds]
[performance] Latency Test
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:62
with the hwlatdetect image
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:228
should succeed [Ii]
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:236

Log file created at: 2022/09/08 15:25:27

Running on machine: hwlatdetect-b6n4n

Binary: Built with gc go1.17.12 for linux/amdé4

Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg

10908 15:25:27.160620 1 node.go:39] Environment information: /proc/cmdline:
BOOT_IMAGE=(hd1,gpt3)/ostree/rhcos-
c6491e1eedféc1f12ef7b95e14ee720bf48359750ac900b7863c625769ef5fb9/vmlinuz-4.18.0-
372.19.1.el8_6.x86_64 random.trust_cpu=0on console=tty0 console=ttyS0,115200n8
ignition.platform.id=metal
ostree=/ostree/boot.1/rhcos/c6491e1eedf6c1f12ef7b95e14ee720bf48359750ac900b7863c625
769ef5fb9/0 ip=dhcp root=UUID=5f80c283-f6e6-4a27-9b47-a287157483b2 rw

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

rootflags=prjquota boot=UUID=773bf59a-bafd-48fc-9a87-f62252d739d3 skew_tick=1
nohz=on rcu_nocbs=0-3 tuned.non_isolcpus=0000ffff,ffffffff fffffO
systemd.cpu_affinity=4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 intel_iommu=on iommu=pt
isolcpus=managed_irq,0-3 nohz_full=0-3 tsc=nowatchdog nosoftlockup nmi_watchdog=0
mce=off skew_tick=1 rcutree.kthread_prio=11 + +
10908 15:25:27.160830 1 node.go:46] Environment information: kernel version 4.18.0-
372.19.1.el8_6.x86_64
10908 15:25:27.160857 1 main.go:50] running the hwlatdetect command with
arguments [/usr/bin/hwlatdetect --threshold 1 --hardlimit 1 --duration 100 --window
10000000us --width 950000us]
F0908 15:27:10.603523 1 main.go:53] failed to run hwlatdetect command; out:
hwlatdetect: test duration 100 seconds
detector: tracer
parameters:
Latency threshold: 1us ﬂ
Sample window: 10000000us
Sample width: ~ 950000us
Non-sampling period: 9050000us
QOutput File: None

Starting test

test finished

Max Latency: 326us g

Samples recorded: 5

Samples exceeding threshold: 5

ts: 1662650739.017274507, inner:6, outer:6

ts: 1662650749.257272414, inner:14, outer:326
ts: 1662650779.977272835, inner:314, outer:12
ts: 1662650800.457272384, inner:3, outer:9

ts: 1662650810.697273520, inner:3, outer:2

JUnit report was created: /junit.xml/cnftests-junit.xml

Summarizing 1 Failure:

[Fail] [performance] Latency Test with the hwlatdetect image [It] should succeed
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:476

Ran 1 of 194 Specs in 365.797 seconds

FAIL! -- 0 Passed | 1 Failed | 0 Pending | 193 Skipped

--- FAIL: TestTest (366.08s)
FAIL

You can configure the latency threshold by using the MAXIMUM_LATENCY or the
HWLATDETECT_MAXIMUM_LATENCY environment variables.

9 The maximum latency value measured during the test.

Example hwlatdetect test results

181

OpenShift Container Platform 4.12 Scalability and performance

You can capture the following types of results:

® Rough results that are gathered after each run to create a history of impact on any changes
made throughout the test.

® The combined set of the rough tests with the best results and configuration settings.

Example of good results

hwlatdetect: test duration 3600 seconds
detector: tracer

parameters:

Latency threshold: 10us

Sample window: 1000000us

Sample width: 950000us

Non-sampling period: 50000us

Output File: None

Starting test

test finished

Max Latency: Below threshold
Samples recorded: 0

The hwlatdetect tool only provides output if the sample exceeds the specified threshold.

Example of bad results

hwlatdetect: test duration 3600 seconds

detector: tracer

parameters:Latency threshold: 10usSample window: 1000000us

Sample width: 950000usNon-sampling period: 50000usQutput File: None

Starting tests:1610542421.275784439, inner:78, outer:81
ts: 1610542444.330561619, inner:27, outer:28
ts: 1610542445.332549975, inner:39, outer:38
ts: 1610542541.568546097, inner:47, outer:32
ts: 1610542590.681548531, inner:13, outer:17
ts: 1610543033.818801482, inner:29, outer:30
ts: 1610543080.938801990, inner:90, outer:76
ts: 1610543129.065549639, inner:28, outer:39
ts: 1610543474.859552115, inner:28, outer:35
ts: 1610543523.973856571, inner:52, outer:49
ts: 1610543572.089799738, inner:27, outer:30
ts: 1610543573.091550771, inner:34, outer:28
ts: 1610543574.093555202, inner:116, outer:63

The output of hwlatdetect shows that multiple samples exceed the threshold. However, the same
output can indicate different results based on the following factors:

182

® The duration of the test
® The number of CPU cores

® The host firmware settings

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

' WARNING
A Before proceeding with the next latency test, ensure that the latency reported by

hwlatdetect meets the required threshold. Fixing latencies introduced by hardware
might require you to contact the system vendor support.

Not all latency spikes are hardware related. Ensure that you tune the host firmware

to meet your workload requirements. For more information, see Setting firmware
parameters for system tuning.

12.4.2. Running cyclictest

The cyclictest tool measures the real-time kernel scheduler latency on the specified CPUs.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE-=true set. If you don't, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

® You have logged in to registry.redhat.io with your Customer Portal credentials.
® You have installed the real-time kernel in the cluster.

® You have applied a cluster performance profile by using Node Tuning Operator.

Procedure

® To perform the cyclictest, run the following command, substituting variable values as
appropriate:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

-e LATENCY_TEST_RUN-=true -e DISCOVERY_MODE=true -e FEATURES=performance -
e ROLE_ WORKER_CNF=worker-cnf \

-e LATENCY_TEST_CPUS=10 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20\

registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="cyclictest"

The command runs the cyclictest tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (in this example, 20
Ks). Latency spikes of 20 s and above are generally not acceptable for telco RAN workloads.

183

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html-single/optimizing_rhel_9_for_real_time_for_low_latency_operation/index#setting-bios-parameters-for-system-tuning_optimizing-RHEL9-for-real-time-for-low-latency-operation

OpenShift Container Platform 4.12 Scalability and performance

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

Example failure output

running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=cyclictest

10908 13:01:59.193776 27 request.go:601] Waited for 1.046228824s due to client-side
throttling, not priority and fairness, request: GET:https://api.compute-
1.example.com:6443/apis/packages.operators.coreos.com/v1?timeout=32s

Running Suite: CNF Features e2e integration tests

Random Seed: 1662642118
Will run 1 of 194 specs

[...]
Summarizing 1 Failure:

[Fail] [performance] Latency Test with the cyclictest image [lt] should succeed
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:220

Ran 1 of 194 Specs in 161.151 seconds

FAIL! -- 0 Passed | 1 Failed | 0 Pending | 193 Skipped
--- FAIL: TestTest (161.48s)

FAIL

Example cyclictest results
The same output can indicate different results for different workloads. For example, spikes up to 18s
are acceptable for 4G DU workloads, but not for 5G DU workloads.

Example of good results

running cmd: cyclictest -q-D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m

Histogram

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000

000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000

000002 579506 535967 418614 573648 532870 529897 489306 558076 582350 585188
583793 223781 532480 569130 472250 576043

More histogram entries ...

Total: 000600000 000600000 000600000 000599999 000599999 000599999 000599998
000599998 000599998 000599997 000599997 000599996 000599996 000599995 000599995
000599995

Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002

Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002

Max Latencies: 00005 00005 00004 00005 00004 00004 00005 00005 00006 00005 00004 00005

184

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

00004 00004 00005 00004

Histogram Overflows: 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000

Histogram Overflow at cycle number:
Thread 0:

Thread 1:

Thread 2:

Thread 3:

Thread 4:

Thread 5:

Thread 6:

Thread 7:

Thread 8:

Thread 9:

Thread 10:

Thread 11:

Thread 12:

Thread 13:

Thread 14:

Thread 15:

Example of bad results

running cmd: cyclictest -q-D 10m -p 1 -t 16 -a 2,4,6,8,10,12,14,16,54,56,58,60,62,64,66,68 -h 30 -i
1000 -m

Histogram

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000

000001 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000

000002 564632 579686 354911 563036 492543 521983 515884 378266 592621 463547
482764 591976 590409 588145 589556 353518

More histogram entries ...

Total: 000599999 000599999 000599999 000599997 000599997 000599998 000599998
000599997 000599997 000599996 000599995 000599996 000599995 000599995 000599995
000599993

Min Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002

Avg Latencies: 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002
00002 00002 00002 00002

Max Latencies: 00493 00387 00271 00619 00541 00513 00009 00389 00252 00215 00539 00498
00363 00204 00068 00520

Histogram Overflows: 00001 00001 00001 00002 00002 00001 00000 00001 00001 00001 00002
00001 00001 00001 00001 00002

Histogram Overflow at cycle number:

Thread 0: 155922

Thread 1: 110064

Thread 2: 110064

Thread 3: 110063 155921

Thread 4: 110063 155921

Thread 5: 155920

Thread 6:

Thread 7: 110062

Thread 8: 110062

Thread 9: 155919

Thread 10: 110061 155919

185

OpenShift Container Platform 4.12 Scalability and performance

Thread 11: 155918
Thread 12: 155918
Thread 13: 110060
Thread 14: 110060
Thread 15: 110059 155917

12.4.3. Running oslat

The oslat test simulates a CPU-intensive DPDK application and measures all the interruptions and
disruptions to test how the cluster handles CPU heavy data processing.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE-=true set. If you don't, the test
suite will make changes to the running cluster configuration.

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites
® You have logged in to registry.redhat.io with your Customer Portal credentials.

® You have applied a cluster performance profile by using the Node Tuning Operator.

Procedure

e To perform the oslat test, run the following command, substituting variable values as
appropriate:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

-e LATENCY_TEST_RUN-=true -e DISCOVERY_MODE=true -e FEATURES=performance -
e ROLE_ WORKER_CNF=worker-cnf \

-e LATENCY_TEST_CPUS=10 -e LATENCY_TEST_RUNTIME=600 -e
MAXIMUM_LATENCY=20\

registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="oslat"

LATENCY_TEST_CPUS specifies the list of CPUs to test with the oslat command.

The command runs the oslat tool for 10 minutes (600 seconds). The test runs successfully
when the maximum observed latency is lower than MAXIMUM_LATENCY (20 ps).

If the results exceed the latency threshold, the test fails.

IMPORTANT

For valid results, the test should run for at least 12 hours.

186

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

Example failure output

running /usr/bin/cnftests -ginkgo.v -ginkgo.focus=oslat

10908 12:51:55.999393 27 request.go:601] Waited for 1.044848101s due to client-side
throttling, not priority and fairness, request: GET:https://compute-
1.example.com:6443/apis/machineconfiguration.openshift.io/v1 ?timeout=32s

Running Suite: CNF Features e2e integration tests

Random Seed: 1662641514
Will run 1 of 194 specs

[..]

* Failure [77.833 seconds]
[performance] Latency Test
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:62
with the oslat image
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:128
should succeed [Ii]
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:153

The current latency 304 is bigger than the expected one 1 : ﬂ
[--]
Summarizing 1 Failure:
[Fail] [performance] Latency Test with the oslat image [It] should succeed
/remote-source/app/vendor/github.com/openshift/cluster-node-tuning-
operator/test/e2e/performanceprofile/functests/4_latency/latency.go:177
Ran 1 of 194 Specs in 161.091 seconds
FAIL! -- 0 Passed | 1 Failed | 0 Pending | 193 Skipped

--- FAIL: TestTest (161.42s)
FAIL

ﬂ In this example, the measured latency is outside the maximum allowed value.

12.5. GENERATING A LATENCY TEST FAILURE REPORT

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

187

OpenShift Container Platform 4.12 Scalability and performance

® Create a test failure report with information about the cluster state and resources for
troubleshooting by passing the --report parameter with the path to where the report is dumped:

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/reportdest:<report_folder_path>\
-e KUBECONFIG=/kubeconfig/kubeconfig -e DISCOVERY_MODE=true -e
FEATURES=performance \

registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/usr/bin/test-run.sh --report <report_folder_path>\

-ginkgo.focus="\[performance\|\ Latency\ Test"

where:

<report_folder_path>

Is the path to the folder where the report is generated.

12.6. GENERATING A JUNIT LATENCY TEST REPORT

Use the following procedures to generate a JUnit latency test output and test failure report.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

® Create a JUnit-compliant XML report by passing the --junit parameter together with the path
to where the report is dumped:

$ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/junitdest:<junit_folder_path>\
-e KUBECONFIG=/kubeconfig/kubeconfig -e DISCOVERY_MODE=true -e
FEATURES=performance \

registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/ust/bin/test-run.sh --junit <junit_folder_path>\

-ginkgo.focus="\[performance\|\ Latency\ Test"

where:

<junit_folder_path>

Is the path to the folder where the junit report is generated

12.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT
CLUSTER

You can run latency tests on single-node OpenShift clusters.

IMPORTANT

Always run the latency tests with DISCOVERY_MODE-=true set. If you don't, the test
suite will make changes to the running cluster configuration.

188

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

NOTE

When executing podman commands as a non-root or non-privileged user, mounting
paths can fail with permission denied errors. To make the podman command work,
append :Z to the volumes creation; for example, -v $(pwd)/:/kubeconfig:Z. This allows
podman to do the proper SELinux relabeling.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

® To run the latency tests on a single-node OpenShift cluster, run the following command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE-=true -e FEATURES=performance -e
ROLE_WORKER_CNF=master \

registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \

/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

NOTE
ROLE_WORKER_CNF=master is required because master is the only machine
pool to which the node belongs. For more information about setting the required

MachineConfigPool for the latency tests, see "Prerequisites for running latency
tests".

After running the test suite, all the dangling resources are cleaned up.

12.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER

The CNF tests image can run tests in a disconnected cluster that is not able to reach external registries.
This requires two steps:

1. Mirroring the cnf-tests image to the custom disconnected registry.
2. Instructing the tests to consume the images from the custom disconnected registry.
Mirroring the images to a custom registry accessible from the cluster
A mirror executable is shipped in the image to provide the input required by oc to mirror the test image

to a local registry.

1. Run this command from an intermediate machine that has access to the cluster and
registry.redhat.io:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \
/usr/bin/mirror -registry <disconnected_registry> | oc image mirror -f -

where:

189

https://catalog.redhat.com/software/containers/explore

OpenShift Container Platform 4.12 Scalability and performance

<disconnected_registry>

Is the disconnected mirror registry you have configured, for example,
my.local.registry:5000/.

2. When you have mirrored the cnf-tests image into the disconnected registry, you must override
the original registry used to fetch the images when running the tests, for example:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e DISCOVERY_MODE=true -e FEATURES=performance -e IMAGE_REGISTRY="
<disconnected_registry>"\

-e CNF_TESTS_IMAGE="cnf-tests-rhel8:v4.12" \

/usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

Configuring the tests to consume images from a custom registry
You can run the latency tests using a custom test image and image registry using CNF_TESTS_IMAGE
and IMAGE_REGISTRY variables.

® To configure the latency tests to use a custom test image and image registry, run the following
command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
-e IMAGE_REGISTRY="<custom_image_registry>"\

-e CNF_TESTS_IMAGE="<custom_cnf-tests_image>"\

-e FEATURES=performance \

registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 /usr/bin/test-run.sh

where:

<custom_image_registry>
is the custom image registry, for example, custom.registry:5000/.
<custom_cnf-tests_image>

is the custom cnf-tests image, for example, custom-cnf-tests-image:latest.

Mirroring images to the cluster OpenShift image registry
OpenShift Container Platform provides a built-in container image registry, which runs as a standard
workload on the cluster.

Procedure

1. Gain external access to the registry by exposing it with a route:

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

2. Fetch the registry endpoint by running the following command:

$ REGISTRY=$(oc get route default-route -n openshift-image-registry --template="{{
.spec.host }}")

3. Create a namespace for exposing the images:

I $ oc create ns cnftests

190

CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION

4. Make the image stream available to all the namespaces used for tests. This is required to allow
the tests namespaces to fetch the images from the cnf-tests image stream. Run the following
commands:

$ oc policy add-role-to-user system:image-puller system:serviceaccount:cnf-features-
testing:default --namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:performance-addon-
operators-testing:default --namespace=cnftests

5. Retrieve the docker secret name and auth token by running the following commands:

I $ SECRET=$(oc -n cnftests get secret | grep builder-docker | awk {'print $1'}

$ TOKEN=$(oc -n cnftests get secret $SECRET -o jsonpath="{.data[\.dockercfg']}" | base64
--decode | jq ".["image-registry.openshift-image-registry.svc:5000"].auth’)

6. Create a dockerauth.json file, for example:

I $ echo "{\"auths\": { \"$REGISTRY\": { \"auth\": $TOKEN } }}" > dockerauth.json

7. Do the image mirroring:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:4.12 \

/usr/bin/mirror -registry SREGISTRY/cnftests | oc image mirror --insecure=true \
-a=$(pwd)/dockerauth.json -f -

8. Run the tests:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \

-e DISCOVERY_MODE=true -e FEATURES=performance -e IMAGE_REGISTRY=image-
registry.openshift-image-registry.svc:5000/cnftests \

cnf-tests-local:latest /usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"

Mirroring a different set of test images
You can optionally change the default upstream images that are mirrored for the latency tests.

Procedure

1. The mirror command tries to mirror the upstream images by default. This can be overridden by
passing a file with the following format to the image:

[
{
"registry": "public.registry.io:5000",
"image": "imageforcnftests:4.12"
}
]

191

OpenShift Container Platform 4.12 Scalability and performance

2. Pass the file to the mirror command, for example saving it locally as images.json. With the
following command, the local path is mounted in /kubeconfig inside the container and that can
be passed to the mirror command.

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 /usr/bin/mirror \

--registry "my.local.registry:5000/" --images "/kubeconfig/images.json" \

| ocimage mirror -f -

12.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS
CONTAINER

To run latency tests, the cluster must be accessible from within the cnf-tests container.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

® \Verify that the cluster is accessible from inside the cnf-tests container by running the following
command:

$ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.12 \
oc get nodes

If this command does not work, an error related to spanning across DNS, MTU size, or firewall
access might be occurring.

192

13. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

CHAPTER 13. IMPROVING CLUSTER STABILITY IN HIGH
LATENCY ENVIRONMENTS USING WORKER LATENCY
PROFILES

If the cluster administrator has performed latency tests for platform verification, they can discover the
need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster
administrator need change only one parameter, recorded in a file, which controls four parameters
affecting how supervisory processes read status and interpret the health of the cluster. Changing only
the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status
values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager
(kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot
read a node status value, it loses contact with that node after a configured period. The default behavior
is:

1. The node controller on the control plane updates the node health to Unhealthy and marks the
node Ready condition”Unknown".

2. Inresponse, the scheduler stops scheduling pods to that node.

3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a
NoExecute effect to the node and schedules any pods on the node for eviction after five
minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes
at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update
from a healthy node due to network latency. The Kubelet evicts pods from the node even though the
node is healthy.

To avoid this problem, you can use worker latency profiles to adjust the frequency that the Kubelet and
the Kubernetes Controller Manager wait for status updates before taking action. These adjustments
help to ensure that your cluster runs properly if network latency between the control plane and the
worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are pre-defined with carefully tuned
values to control the reaction of the cluster to increased latency. No need to experimentally find the
best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased
latency in your cluster network.

13.1. UNDERSTANDING WORKER LATENCY PROFILES

Worker latency profiles are four different categories of carefully-tuned parameters. The four parameters
which implement these values are hode-status-update-frequency, node-monitor-grace-period,
default-not-ready-toleration-seconds and default-unreachable-toleration-seconds. These
parameters can use values which allow you control the reaction of the cluster to latency issues without
needing to determine the best values using manual methods.

IMPORTANT

Setting these parameters manually is not supported. Incorrect parameter settings
adversely affect cluster stability.

193

OpenShift Container Platform 4.12 Scalability and performance

All worker latency profiles configure the following parameters:

node-status-update-frequency
Specifies how often the kubelet posts node status to the APl server.

node-monitor-grace-period

Specifies the amount of time in seconds that the Kubernetes Controller Manager waits for an update
from a kubelet before marking the node unhealthy and adding the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint to the node.

default-not-ready-toleration-seconds

Specifies the amount of time in seconds after marking a node unhealthy that the Kube API Server
Operator waits before evicting pods from that node.

default-unreachable-toleration-seconds

Specifies the amount of time in seconds after marking a node unreachable that the Kube API Server
Operator waits before evicting pods from that node.

The following Operators monitor the changes to the worker latency profiles and respond accordingly:

® The Machine Config Operator (MCO) updates the node-status-update-frequency parameter
on the worker nodes.

® The Kubernetes Controller Manager updates the node-monitor-grace-period parameter on
the control plane nodes.

® The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds parameters on the control plane nodes.

While the default configuration works in most cases, OpenShift Container Platform offers two other
worker latency profiles for situations where the network is experiencing higher latency than usual. The
three worker latency profiles are described in the following sections:

Default worker latency profile

With the Default profile, each Kubelet updates it's status every 10 seconds (node-status-update-
frequency). The Kube Controller Manager checks the statuses of Kubelet every 5 seconds (nhode-
monitor-grace-period).

The Kubernetes Controller Manager waits 40 seconds for a status update from Kubelet before
considering the Kubelet unhealthy. If no status is made available to the Kubernetes Controller
Manager, it then marks the node with the node.kubernetes.io/not-ready or
node.kubernetes.io/unreachable taint and evicts the pods on that node.

If a pod on that node has the NoExecute taint, the pod is run according to tolerationSeconds. If the
pod has no taint, it will be evicted in 300 seconds (default-not-ready-toleration-seconds and
default-unreachable-toleration-seconds settings of the Kube API Server).

Profile Component Parameter Value
Default kubelet node-status-update- 10s
frequency
Kubelet node-monitor-grace-period 40s
Controller
Manager

194

13. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

Kubernetes default-not-ready- 300s
API Server toleration-seconds

Operator

Kubernetes default-unreachable- 300s
API Server toleration-seconds

Operator

Medium worker latency profile

Use the MediumUpdateAverageReaction profile if the network latency is slightly higher than usual.
The MediumUpdateAverageReaction profile reduces the frequency of kubelet updates to 20
seconds and changes the period that the Kubernetes Controller Manager waits for those updates to
2 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has
the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 2 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

Profile Component Parameter Value
MediumUpdateAverageReaction kubelet node-status-update- 20s
frequency
Kubelet node-monitor-grace-period 2m
Controller
Manager
Kubernetes default-not-ready- 60s
API Server toleration-seconds
Operator
Kubernetes default-unreachable- 60s
API Server toleration-seconds
Operator

Low worker latency profile

Use the LowUpdateSlowReaction profile if the network latency is extremely high.

The LowUpdateSlowReaction profile reduces the frequency of kubelet updates to 1 minute and
changes the period that the Kubernetes Controller Manager waits for those updates to 5 minutes.
The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the
tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 5 minutes to consider a node unhealthy. In another
minute, the eviction process starts.

195

OpenShift Container Platform 4.12 Scalability and performance

Profile Component

LowUpdateSlowReaction kubelet

Kubelet
Controller
Manager

Kubernetes
API Server
Operator

Kubernetes
API Server
Operator

Parameter Value
node-status-update- Tm
frequency

node-monitor-grace-period 5m

default-not-ready- 60s
toleration-seconds

default-unreachable- 60s
toleration-seconds

13.2. IMPLEMENTING WORKER LATENCY PROFILES AT CLUSTER

CREATION

IMPORTANT

platform.

To edit the configuration of the installer, you will first need to use the command
openshift-install create manifests to create the default node manifest as well as other
manifest YAML files. This file structure must exist before we can add

workerLatencyProfile. The platform on which you are installing may have varying
requirements. Refer to the Installing section of the documentation for your specific

The workerLatencyProfile must be added to the manifest in the following sequence:

1. Create the manifest needed to build the cluster, using a folder name appropriate for your

installation.

2. Create a YAML file to define config.node. The file must be in the manifests directory.

3. When defining workerLatencyProfile in the manifest for the first time, specify any of the
profiles at cluster creation time: Default, MediumUpdateAverageReaction or

LowUpdateSlowReaction.

Verification

® Hereis an example manifest creation showing the spec.workerLatencyProfile Default value in

the manifest file:

I $ openshift-install create manifests --dir=<cluster-install-dir>

e Edit the manifest and add the value. In this example we use vi to show an example manifest file

with the "Default” workerLatencyProfile value added:

196

13. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

I $ vi <cluster-install-dir>/manifests/config-node-default-profile.yaml
Example output

apiVersion: config.openshift.io/v1
kind: Node

metadata:

name: cluster

spec:

workerLatencyProfile: "Default"

13.3. USING AND CHANGING WORKER LATENCY PROFILES

To change a worker latency profile to deal with network latency, edit the node.config object to add the
name of the profile. You can change the profile at any time as latency increases or decreases.

You must move one worker latency profile at a time. For example, you cannot move directly from the
Default profile to the LowUpdateSlowReaction worker latency profile. You must move from the
Default worker latency profile to the MediumUpdateAverageReaction profile first, then to
LowUpdateSlowReaction. Similarly, when returning to the Default profile, you must move from the low
profile to the medium profile first, then to Default.

NOTE

You can also configure worker latency profiles upon installing an OpenShift Container
Platform cluster.

Procedure

To move from the default worker latency profile:

1. Move to the medium worker latency profile:

a. Edit the node.config object:

I $ oc edit nodes.config/cluster

b. Add spec.workerLatencyProfile: MediumUpdateAverageReaction:

Example node.config object

apiVersion: config.openshift.io/v1
kind: Node
metadata:
annotations:
include.release.openshift.io/iom-cloud-managed: "true"
include.release.openshift.io/self-managed-high-availability: "true"
include.release.openshift.io/single-node-developer: "true"
release.openshift.io/create-only: "true"
creationTimestamp: "2022-07-08T16:02:51Z2"
generation: 1
name: cluster
ownerReferences:

197

OpenShift Container Platform 4.12 Scalability and performance

- apiVersion: config.openshift.io/v1
kind: ClusterVersion
name: version
uid: 36282574-bf9f-409e-ab6cd-3032939293eb
resourceVersion: "1865"
uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
workerLatencyProfile: MediumUpdateAverageReaction 0

#...

ﬂ Specifies the medium worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.
2. Optional: Move to the low worker latency profile:

a. Edit the node.config object:

I $ oc edit nodes.config/cluster

b. Change the spec.workerLatencyProfile value to LowUpdateSlowReaction:

Example node.config object

apiVersion: config.openshift.io/v1
kind: Node
metadata:
annotations:
include.release.openshift.io/iom-cloud-managed: "true"
include.release.openshift.io/self-managed-high-availability: "true"
include.release.openshift.io/single-node-developer: "true"
release.openshift.io/create-only: "true"
creationTimestamp: "2022-07-08T16:02:51Z2"
generation: 1
name: cluster
ownerReferences:
- apiVersion: config.openshift.io/v1
kind: ClusterVersion
name: version
uid: 36282574-bf9f-409e-a6cd-3032939293eb
resourceVersion: "1865"
uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
spec:
workerLatencyProfile: LowUpdateSlowReaction 0

#...

ﬂ Specifies use of the low worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

Verification

198

13. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES

® When all nodes return to the Ready condition, you can use the following command to look in the
Kubernetes Controller Manager to ensure it was applied:

I $ oc get KubeControllerManager -o yaml | grep -i workerlatency -A 5 -B 5

Example output

#

- lastTransitionTime: "2022-07-11T19:47:10Z"
reason: ProfileUpdated
status: "False"
type: WorkerLatencyProfileProgressing

- lastTransitionTime: "2022-07-11T19:47:10Z" ﬂ
message: all static pod revision(s) have updated latency profile
reason: ProfileUpdated
status: "True"
type: WorkerLatencyProfileComplete

- lastTransitionTime: "2022-07-11T19:20:11Z"
reason: AsExpected
status: "False"
type: WorkerLatencyProfileDegraded

- lastTransitionTime: "2022-07-11T19:20:36Z"
status: "False"

#...

Specifies that the profile is applied and active.

To change the medium profile to default or change the default to medium, edit the node.config object
and set the spec.workerLatencyProfile parameter to the appropriate value.

13.4. EXAMPLE STEPS FOR DISPLAYING RESULTING VALUES OF
WORKERLATENCYPROFILE

You can display the values in the workerLatencyProfile with the following commands.

Verification

1. Check the default-not-ready-toleration-seconds and default-unreachable-toleration-
seconds fields output by the Kube API Server:

| s

oc get KubeAPIServer -o yaml | grep -A 1 default-

Example output

default-not-ready-toleration-seconds:

- |1300|l
default-unreachable-toleration-seconds:
- |1300|l

2. Check the values of the node-monitor-grace-period field from the Kube Controller Manager:

I $ oc get KubeControllerManager -o yaml | grep -A 1 node-monitor

199

OpenShift Container Platform 4.12 Scalability and performance

Example output

node-monitor-grace-period:
- 40s

3. Check the nodeStatusUpdateFrequency value from the Kubelet. Set the directory /host as the
root directory within the debug shell. By changing the root directory to /host, you can run
binaries contained in the host's executable paths:

$ oc debug node/<worker-node-name>
$ chroot /host
cat /etc/kubernetes/kubelet.conf|grep nodeStatusUpdateFrequency

Example output
I “nodeStatusUpdateFrequency”: “10s”

These outputs validate the set of timing variables for the Worker Latency Profile.

200

CHAPTER 14. CREATING A PERFORMANCE PROFILE

CHAPTER 14. CREATING A PERFORMANCE PROFILE

Learn about the Performance Profile Creator (PPC) and how you can use it to create a performance
profile.

NOTE

Currently, disabling CPU load balancing is not supported by cgroup v2. As a result, you
might not get the desired behavior from performance profiles if you have cgroup v2
enabled. Enabling cgroup v2 is not recommended if you are using performance profiles.

14.1. ABOUT THE PERFORMANCE PROFILE CREATOR

The Performance Profile Creator (PPC) is a command-line tool, delivered with the Node Tuning
Operator, used to create the performance profile. The tool consumes must-gather data from the
cluster and several user-supplied profile arguments. The PPC generates a performance profile that is
appropriate for your hardware and topology.

The tool is run by one of the following methods:
® |nvoking podman

® Calling a wrapper script

14.1.1. Gathering data about your cluster using the must-gather command

The Performance Profile Creator (PPC) tool requires must-gather data. As a cluster administrator, run
the must-gather command to capture information about your cluster.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
provided automatic, low latency performance tuning for applications. In OpenShift
Container Platform 4.11 and later, this functionality is part of the Node Tuning Operator.
However, you must still use the performance-addon-operator-must-gather image when
running the must-gather command.

Prerequisites

® Access to the cluster as a user with the cluster-admin role.
® Access to the Performance Addon Operator must gather image.

® The OpenShift CLI (o¢) installed.

Procedure

1. Optional: Verify that a matching machine config pool exists with a label:

I $ oc describe mcp/worker-rt

Example output

201

OpenShift Container Platform 4.12 Scalability and performance

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

2. If amatching label does not exist add a label for a machine config pool (MCP) that matches with
the MCP name:

I $ oc label mcp <mcp_name> machineconfiguration.openshift.io/role=<mcp_name>
3. Navigate to the directory where you want to store the must-gather data.
4. Run must-gather on your cluster:

I $ oc adm must-gather --image=<PAO_must_gather_image> --dest-dir=<dir>

NOTE

The must-gather command must be run with the performance-addon-
operator-must-gather image. The output can optionally be compressed.
Compressed output is required if you are running the Performance Profile
Creator wrapper script.

Example

$ oc adm must-gather --image=registry.redhat.io/openshift4/performance-addon-operator-
must-gather-rhel8:v4.12 --dest-dir=<path_to_must-gather>/must-gather

5. Create a compressed file from the must-gather directory:

I $ tar cvaf must-gather.tar.gz must-gather/

14.1.2. Running the Performance Profile Creator using podman

As a cluster administrator, you can run podman and the Performance Profile Creator to create a
performance profile.

Prerequisites

® Access to the cluster as a user with the cluster-admin role.
® A cluster installed on bare-metal hardware.
® A node with podman and OpenShift CLI (o¢) installed.

® Access to the Node Tuning Operator image.

Procedure

1. Check the machine config pool:

I $ oc get mep

202

CHAPTER 14. CREATING A PERFORMANCE PROFILE

Example output

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE

master rendered-master-acd1358917e9f98cbdb599aea622d78b True False

False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

2. Use Podman to authenticate to registry.redhat.io:

I $ podman login registry.redhat.io

Username: <username>
Password: <password>

3. Optional: Display help for the PPC tool:

$ podman run --rm --entrypoint performance-profile-creator registry.redhat.io/openshift4/ose-
cluster-node-tuning-operator:v4.12 -h

Example output

A tool that automates creation of Performance Profiles

Usage:
performance-profile-creator [flags]
Flags:
--disable-ht Disable Hyperthreading
-h, --help help for performance-profile-creator
--info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
--mcp-name string MCP name corresponding to the target machines
(required)
--must-gather-dir-path string Must gather directory path (default "must-gather")
--offlined-cpu-count int Number of offlined CPUs
--per-pod-power-management Enable Per Pod Power Management

--power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")

--profile-name string Name of the performance profile to be created (default
"performance")

--reserved-cpu-count int Number of reserved CPUs (required)

--rt-kernel Enable Real Time Kernel (required)

--split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes

--topology-manager-policy string Kubelet Topology Manager Policy of the performance
profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default
"restricted")

--user-level-networking Run with User level Networking(DPDK) enabled

4. Run the Performance Profile Creator tool in discovery mode:

203

OpenShift Container Platform 4.12 Scalability and performance

204

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

® The NUMA cell partitioning with the allocated CPU ids
® Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

$ podman run --entrypoint performance-profile-creator -v <path_to_must-gather>/must-
gather:/must-gather:z registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.12 --
info log --must-gather-dir-path /must-gather

. Run podman:

NOTE
This command uses the performance profile creator as a new entry point to
podman. It maps the must-gather data for the host into the container image
and invokes the required user-supplied profile arguments to produce the my-
performance-profile.yaml file.
The -v option can be the path to either:

® The must-gather output directory

® An existing directory containing the must-gather decompressed tarball

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.12 --mcp-name=worker-cnf
--reserved-cpu-count=4 --rt-kernel=true --split-reserved-cpus-across-numa=false --must-
gather-dir-path /must-gather --power-consumption-mode=ultra-low-latency --offlined-cpu-
count=6 > my-performance-profile.yaml

NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

® reserved-cpu-count
® mcp-name
e rt-kernel
The mcp-name argument in this example is set to worker-cnf based on the

output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

CHAPTER 14. CREATING A PERFORMANCE PROFILE

6. Review the created YAML file:

I $ cat my-performance-profile.yaml
Example output

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:
cpu:
isolated: 2-39,48-79
offlined: 42-47
reserved: 0-1,40-41
machineConfigPoolSelector:
machineconfiguration.openshift.io/role: worker-cnf
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"
numa:
topologyPolicy: restricted
realTimeKernel:
enabled: true
workloadHints:
highPowerConsumption: true
realTime: true

7. Apply the generated profile:

I $ oc apply -f my-performance-profile.yaml

14.1.2.1. How to run podman to create a performance profile

The following example illustrates how to run podman to create a performance profile with 20 reserved
CPUs that are to be split across the NUMA nodes.

Node hardware configuration:
e 80 CPUs
® Hyperthreading enabled
® Two NUMA nodes
® Even numbered CPUs run on NUMA node O and odd numbered CPUs run on NUMA node 1

Run podman to create the performance profile:

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z
registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.12 --mcp-name=worker-cnf --
reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=true --must-gather-dir-
path /must-gather > my-performance-profile.yaml

The created profile is described in the following YAML:

205

OpenShift Container Platform 4.12 Scalability and performance

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:
cpu:
isolated: 10-39,50-79
reserved: 0-9,40-49
nodeSelector:
node-role.kubernetes.io/worker-cnf: ™"
numa:
topologyPolicy: restricted
realTimeKernel:
enabled: true

NOTE

In this case, 10 CPUs are reserved on NUMA node O and 10 are reserved on NUMA node 1.

14.1.3. Running the Performance Profile Creator wrapper script

The performance profile wrapper script simplifies the running of the Performance Profile Creator (PPC)
tool. It hides the complexities associated with running podman and specifying the mapping directories
and it enables the creation of the performance profile.

Prerequisites

® Access to the Node Tuning Operator image.

® Access to the must-gather tarball.

Procedure

1. Create a file on your local machine named, for example, run-perf-profile-creator.sh:

I $ vi run-perf-profile-creator.sh

2. Paste the following code into the file:

#!/bin/bash

readonly CONTAINER_RUNTIME=${CONTAINER_RUNTIME:-podman}

readonly CURRENT_SCRIPT=$(basename "$0")

readonly CMD="${CONTAINER_RUNTIME} run --entrypoint performance-profile-creator"
readonly IMG_EXISTS_CMD="${CONTAINER_RUNTIME} image exists"

readonly IMG_PULL_CMD="${CONTAINER_RUNTIME} image pull"

readonly MUST_GATHER_VOL="/must-gather"

NTO_IMG="registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.12"
MG_TARBALL=""
DATA_DIR=""

usage() {
print "Wrapper usage:"

206

CHAPTER 14. CREATING A PERFORMANCE PROFILE

print" ${CURRENT_SCRIPT} [-h] [-p image][-t path] -- [performance-profile-creator flags]"
print AL
print "Options:"

print" -h help for ${CURRENT_SCRIPT}"
print" -p Node Tuning Operator image"
print" -t path to a must-gather tarball"

${IMG_EXISTS_CMD} "${NTO_IMG}" && ${CMD} "${NTO_IMG}" -h
}

function cleanup {
[-d "${DATA_DIR}"] && rm -rf "${DATA_DIR}"

}
trap cleanup EXIT

exit_error() {
print "error: $*"
usage
exit 1

}

print() {
echo "$*" >&2

}

check_requirements() {
${IMG_EXISTS_CMD} "${NTO_IMG}" || ${IMG_PULL_CMD} "${NTO_IMG}" || \
exit_error "Node Tuning Operator image not found"

[-n "${MG_TARBALL}"] || exit_error "Must-gather tarball file path is mandatory"
[-f "${MG_TARBALL}"] || exit_error "Must-gather tarball file not found"

DATA_DIR=$(mktemp -d -t "${CURRENT_SCRIPT}XXXX") || exit_error "Cannot create the
data directory"

tar -zxf "${MG_TARBALL}" --directory "${DATA_DIR}" || exit_error "Cannot decompress the
must-gather tarball"

chmod a+rx "${DATA_DIR}"

return 0

}

main() {
while getopts "hp:t:' OPT; do
case "${OPT}" in

h)
usage
exit 0

P)
NTO_IMG="${OPTARG}"

t)
MG_TARBALL="${OPTARG}"

I3

?)
exit_error "invalid argument: ${OPTARG}"

207

OpenShift Container Platform 4.12 Scalability and performance

esac
done
shift $((OPTIND - 1))

check_requirements || exit 1

${CMD} -v "${DATA_DIR}:${MUST_GATHER_VOL}:z" "${NTO_IMG}" "$@" --must-gather-
dir-path "${MUST_GATHER_VOL}"
echo " 1>&2

!
main "$@"

3. Add execute permissions for everyone on this script:

I $ chmod a+x run-perf-profile-creator.sh

4. Optional: Display the run-perf-profile-creator.sh command usage:

I $./run-perf-profile-creator.sh -h
Expected output

Wrapper usage:
run-perf-profile-creator.sh [-h] [-p image][-t path] -- [performance-profile-creator flags]

Options:
-h help for run-perf-profile-creator.sh
-p Node Tuning Operator image ﬂ
-t path to a must-gather tarball 9
A tool that automates creation of Performance Profiles

Usage:
performance-profile-creator [flags]

Flags:
--disable-ht Disable Hyperthreading
-h, --help help for performance-profile-creator
--info string Show cluster information; requires --must-gather-dir-path,
ignore the other arguments. [Valid values: log, json] (default "log")
--mcp-name string MCP name corresponding to the target machines
(required)
--must-gather-dir-path string Must gather directory path (default "must-gather")
--offlined-cpu-count int Number of offlined CPUs
--per-pod-power-management Enable Per Pod Power Management
--power-consumption-mode string The power consumption mode. [Valid values:
default, low-latency, ultra-low-latency] (default "default")

--profile-name string Name of the performance profile to be created (default
"performance”)

--reserved-cpu-count int Number of reserved CPUs (required)

--rt-kernel Enable Real Time Kernel (required)

--split-reserved-cpus-across-numa Split the Reserved CPUs across NUMA nodes
--topology-manager-policy string Kubelet Topology Manager Policy of the performance

208

CHAPTER 14. CREATING A PERFORMANCE PROFILE

profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default
"restricted")
--user-level-networking Run with User level Networking(DPDK) enabled
NOTE
There two types of arguments:

® Wrapper arguments namely -h, -p and -t

® PPC arguments

Optional: Specify the Node Tuning Operator image. If not set, the default upstream image
is used: registry.redhat.io/openshift4/ose-cluster-node-tuning-operator:v4.12.

9 -tis a required wrapper script argument and specifies the path to a must-gather tarball.

5. Run the performance profile creator tool in discovery mode:

NOTE

Discovery mode inspects your cluster using the output from must-gather. The
output produced includes information on:

® The NUMA cell partitioning with the allocated CPU IDs
® Whether hyperthreading is enabled

Using this information you can set appropriate values for some of the arguments
supplied to the Performance Profile Creator tool.

I $./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --info=log

NOTE

The info option requires a value which specifies the output format. Possible
values are log and JSON. The JSON format is reserved for debugging.

6. Check the machine config pool:
I $ oc get mep
Example output

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE

master rendered-master-acd1358917e9f98cbdb599aea622d78b True False

False 3 3 3 0 22h
worker-cnf rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826 False True
False 2 1 1 0 22h

209

OpenShift Container Platform 4.12 Scalability and performance

7. Create a performance profile:

$./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --mcp-name=worker-cnf --
reserved-cpu-count=2 --rt-kernel=true > my-performance-profile.yaml
NOTE

The Performance Profile Creator arguments are shown in the Performance
Profile Creator arguments table. The following arguments are required:

® reserved-cpu-count
® mcp-name
e rt-kernel
The mcp-name argument in this example is set to worker-cnf based on the

output of the command oc get mcp. For single-node OpenShift use --mcp-
name=master.

8. Review the created YAML file:

I $ cat my-performance-profile.yaml
Example output

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: performance
spec:
cpu:
isolated: 1-39,41-79
reserved: 0,40
nodeSelector:
node-role.kubernetes.io/worker-cnf: "™
numa:
topologyPolicy: restricted
realTimeKernel:
enabled: false

9. Apply the generated profile:

NOTE

Install the Node Tuning Operator before applying the profile.

I $ oc apply -f my-performance-profile.yaml|

14.1.4. Performance Profile Creator arguments

Table 14.1. Performance Profile Creator arguments

210

CHAPTER 14. CREATING A PERFORMANCE PROFILE

Argument Description

disable-ht Disable hyperthreading.
Possible values: true orfalse.

Default: false.

' WARNING
A If this argument is set to true you should not disable

hyperthreading in the BIOS. Disabling hyperthreading
is accomplished with a kernel command line
argument.

info This captures cluster information and is used in discovery mode only.
Discovery mode also requires the must-gather-dir-path argument. If any
other arguments are set they are ignored.

Possible values:

e log
e JSON
‘ NOTE
These options define the output format with the
g JSON format being reserved for debugging.
Default: log.
mcp-name MCP name for example worker-cnf corresponding to the target machines.

This parameter is required.

must-gather-dir-path Must gather directory path. This parameter is required.

When the user runs the tool with the wrapper script must-gather is
supplied by the script itself and the user must not specify it.

21

OpenShift Container Platform 4.12 Scalability and performance

Argument Description

offlined-cpu-count

power-consumption-
mode

per-pod-power-
management

profile-name

212

Number of offlined CPUs.

NOTE

This must be a natural number greater than O. If not enough
logical processors are offlined then error messages are
logged. The messages are:

Error: failed to compute the reserved and isolated
CPUs: please ensure that reserved-cpu-count plus
offlined-cpu-count should be in the range [0,1]

Error: failed to compute the reserved and isolated
CPUs: please specify the offlined CPU count in the
range [0,1]

The power consumption mode.
Possible values:

e default: CPU partitioning with enabled power management and
basic low-latency.

e low-latency: Enhanced measures to improve latency figures.

e ultra-low-latency: Priority given to optimal latency, at the
expense of power management.

Default: default.

Enable per pod power management. You cannot use this argument if you
configured ultra-low-latency as the power consumption mode.

Possible values: true orfalse.

Default: false.

Name of the performance profile to create. Default: performance.

CHAPTER 14. CREATING A PERFORMANCE PROFILE

Argument Description

reserved-cpu-count Number of reserved CPUs. This parameter is required.

NOTE

This must be a natural number. A value of O is not allowed.

rt-kernel Enable real-time kernel. This parameter is required.

Possible values: true orfalse.

split-reserved-cpus- Split the reserved CPUs across NUMA nodes.
across-numa
Possible values: true orfalse.

Default: false.

topology-manager-policy Kubelet Topology Manager policy of the performance profile to be created.
Possible values:
e single-numa-node
e best-effort
e restricted

Default: restricted.

user-level-networking Run with user level networking (DPDK) enabled.
Possible values: true orfalse.

Default: false.

14.2. REFERENCE PERFORMANCE PROFILES

14.2.1. A performance profile template for clusters that use OVS-DPDK on
OpenStack

To maximize machine performance in a cluster that uses Open vSwitch with the Data Plane
Development Kit (OVS-DPDK) on Red Hat OpenStack Platform (RHOSP), you can use a performance
profile.

You can use the following performance profile template to create a profile for your deployment.

A performance profile template for clusters that use OVS-DPDK

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile

213

OpenShift Container Platform 4.12 Scalability and performance

metadata:
name: cnf-performanceprofile
spec:
additionalKernelArgs:
- nmi_watchdog=0
- audit=0
- mce=off
- processor.max_cstate=1
- idle=poll
- intel_idle.max_cstate=0
- default_hugepagesz=1GB
- hugepagesz=1G
- intel_iommu=on
cpu:
isolated: <CPU_ISOLATED>
reserved: <CPU_RESERVED>
hugepages:
defaultHugepagesSize: 1G
pages:
- count: <HUGEPAGES_COUNT>
node: 0
size: 1G
nodeSelector:
node-role.kubernetes.io/worker: "
realTimeKernel:
enabled: false
globallyDisablelrgLoadBalancing: true

Insert values that are appropriate for your configuration for the CPU_ISOLATED, CPU_RESERVED,
and HUGEPAGES_COUNT keys.

To learn how to create and use performance profiles, see the "Creating a performance profile" page in
the "Scalability and performance" section of the OpenShift Container Platform documentation.

14.3. ADDITIONAL RESOURCES

® For more information about the must-gather tool, see Gathering data about your cluster .

214

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/support/#nodes-nodes-managing

CHAPTER 15. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT

CHAPTER 15. WORKLOAD PARTITIONING IN SINGLE-NODE
OPENSHIFT

In resource-constrained environments, such as single-node OpenShift deployments, use workload
partitioning to isolate OpenShift Container Platform services, cluster management workloads, and
infrastructure pods to run on a reserved set of CPUs.

The minimum number of reserved CPUs required for the cluster management in single-node OpenShift
is four CPU Hyper-Threads (HTs). With workload partitioning, you annotate the set of cluster
management pods and a set of typical add-on Operators for inclusion in the cluster management
workload partition. These pods operate normally within the minimum size CPU configuration. Additional
Operators or workloads outside of the set of minimum cluster management pods require additional
CPUs to be added to the workload partition.

Workload partitioning isolates user workloads from platform workloads using standard Kubernetes
scheduling capabilities.

The following is an overview of the configurations required for workload partitioning:

® Workload partitioning that uses /etc/crio/crio.conf.d/01-workload-partitioning pins the
OpenShift Container Platform infrastructure pods to a defined cpuset configuration.

® The performance profile pins cluster services such as systemd and kubelet to the CPUs that are
defined in the spec.cpu.reserved field.

NOTE

Using the Node Tuning Operator, you can configure the performance profile to
also pin system-level apps for a complete workload partitioning configuration on
the node.

® The CPUs that you specify in the performance profile spec.cpu.reserved field and the
workload partitioning cpuset field must match.

Workload partitioning introduces an extended <workload-type>.workload.openshift.io/cores resource
for each defined CPU pool, or workload type. Kubelet advertises the resources and CPU requests by
pods allocated to the pool within the corresponding resource. When workload partitioning is enabled,
the <workload-type>.workload.openshift.io/cores resource allows access to the CPU capacity of the
host, not just the default CPU pool.

Additional resources

® For the recommended workload partitioning configuration for single-node OpenShift clusters,
see Workload partitioning.

215

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER 16. REQUESTING CRI-O AND KUBELET PROFILING
DATA BY USING THE NODE OBSERVABILITY OPERATOR

The Node Observability Operator collects and stores the CRI-O and Kubelet profiling data of worker
nodes. You can query the profiling data to analyze the CRI-O and Kubelet performance trends and
debug the performance-related issues.

IMPORTANT

The Node Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

16.1. WORKFLOW OF THE NODE OBSERVABILITY OPERATOR

The following workflow outlines on how to query the profiling data using the Node Observability
Operator:

1. Install the Node Observability Operator in the OpenShift Container Platform cluster.

2. Create a NodeObservability custom resource to enable the CRI-O profiling on the worker nodes
of your choice.

3. Run the profiling query to generate the profiling data.

16.2. INSTALLING THE NODE OBSERVABILITY OPERATOR

The Node Observability Operator is not installed in OpenShift Container Platform by default. You can
install the Node Observability Operator by using the OpenShift Container Platform CLI or the web
console.

16.2.1. Installing the Node Observability Operator using the CLI

You can install the Node Observability Operator by using the OpenShift CLI (oc).

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have access to the cluster with cluster-admin privileges.

Procedure

1. Confirm that the Node Observability Operator is available by running the following command:

I $ oc get packagemanifests -n openshift-marketplace node-observability-operator

216

https://access.redhat.com/support/offerings/techpreview/

‘ER16. REQUESTING CRI-O AND KUBELET PROFILING DATA BY USING THE NODE OBSERVABILITY OPERATOF

Example output

NAME CATALOG AGE
node-observability-operator Red Hat Operators 9h

2. Create the node-observability-operator namespace by running the following command:

I $ oc new-project node-observability-operator

3. Create an OperatorGroup object YAML file:

cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: node-observability-operator
namespace: node-observability-operator
spec:
targetNamespaces: []
EOF

4. Create a Subscription object YAML file to subscribe a namespace to an Operator:

cat <<EOF | oc apply -f -
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: node-observability-operator
namespace: node-observability-operator
spec:
channel: alpha
name: node-observability-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

Verification

1. View the install plan name by running the following command:

$ oc -n node-observability-operator get sub node-observability-operator -o yaml | yq
'.status.installplan.name’

Example output
I install-dt54w
2. Verify the install plan status by running the following command:

I $ oc -n node-observability-operator get ip <install_plan_name> -o yaml | yq '.status.phase’

<install_plan_name> is the install plan name that you obtained from the output of the previous
command.

217

OpenShift Container Platform 4.12 Scalability and performance

Example output
I COMPLETE

3. Verify that the Node Observability Operator is up and running:

I $ oc get deploy -n node-observability-operator
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
node-observability-operator-controller-manager 1/1 1 1 40h

16.2.2. Installing the Node Observability Operator using the web console

You can install the Node Observability Operator from the OpenShift Container Platform web console.

Prerequisites

® You have access to the cluster with cluster-admin privileges.

® You have access to the OpenShift Container Platform web console.

Procedure

1. Login to the OpenShift Container Platform web console.
2. In the Administrator's navigation panel, expand Operators - OperatorHub.

3. Inthe All items field, enter Node Observability Operator and select the Node Observability
Operator tile.

4. Click Install.

5. On the Install Operator page, configure the following settings:

a. Inthe Update channelarea, click alpha.
b. In the Installation mode area, click A specific namespace on the cluster

c. From the Installed Namespace list, select node-observability-operator from the list.

d. Inthe Update approvalarea, select Automatic.
e. Click Install.
Verification

1. In the Administrator’s navigation panel, expand Operators - Installed Operators.

2. Verify that the Node Observability Operator is listed in the Operators list.

16.3. CREATING THE NODE OBSERVABILITY CUSTOM RESOURCE

218

‘ER16. REQUESTING CRI-O AND KUBELET PROFILING DATA BY USING THE NODE OBSERVABILITY OPERATOF

You must create and run the NodeObservability custom resource (CR) before you run the profiling
query. When you run the NodeObservability CR, it creates the necessary machine config and machine
config pool CRs to enable the CRI-O profiling on the worker nodes matching the nodeSelector.

IMPORTANT

If CRI-O profiling is not enabled on the worker nodes, the
NodeObservabilityMachineConfig resource gets created. Worker nodes matching the
nodeSelector specified in NodeObservability CR restarts. This might take 10 or more
minutes to complete.

NOTE

Kubelet profiling is enabled by default.

The CRI-O unix socket of the node is mounted on the agent pod, which allows the agent to
communicate with CRI-O to run the pprof request. Similarly, the kubelet-serving-ca certificate chain is
mounted on the agent pod, which allows secure communication between the agent and node's kubelet
endpoint.

Prerequisites

® You have installed the Node Observability Operator.
® You have installed the OpenShift CLI (oc).

® You have access to the cluster with cluster-admin privileges.

Procedure

1. Login to the OpenShift Container Platform CLI by running the following command:

I $ oc login -u kubeadmin https://<HOSTNAME>:6443

2. Switch back to the node-observability-operator namespace by running the following
command:

I $ oc project node-observability-operator

3. Create a CR file named nodeobservability.yaml that contains the following text:

apiVersion: nodeobservability.olm.openshift.io/vialpha2
kind: NodeObservability
metadata:
name: clusterﬂ
spec:
nodeSelector:
kubernetes.io/hostname: <node_hostname> 9
type: crio-kubelet

You must specify the name as cluster because there should be only one
NodeObservability CR per cluster.

219

OpenShift Container Platform 4.12 Scalability and performance

9 Specify the nodes on which the Node Observability agent must be deployed.

4. Run the NodeObservability CR:

I oc apply -f nodeobservability.yaml
Example output
I nodeobservability.olm.openshift.io/cluster created

5. Review the status of the NodeObservability CR by running the following command:

I $ oc get nob/cluster -o yaml | yq '.status.conditions'
Example output

conditions:

conditions:

- lastTransitionTime: "2022-07-05T07:33:54Z"
message: 'DaemonSet node-observability-ds ready: true NodeObservabilityMachineConfig

ready: true'

reason: Ready
status: "True"
type: Ready

NodeObservability CR run is completed when the reason is Ready and the status is True.

16.4. RUNNING THE PROFILING QUERY

To run the profiling query, you must create a NodeObservabilityRun resource. The profiling query is a
blocking operation that fetches CRI-O and Kubelet profiling data for a duration of 30 seconds. After the
profiling query is complete, you must retrieve the profiling data inside the container file system
/run/node-observability directory. The lifetime of data is bound to the agent pod through the
emptyDir volume, so you can access the profiling data while the agent pod isin the running status.

IMPORTANT

You can request only one profiling query at any point of time.

Prerequisites

® You have installed the Node Observability Operator.
® You have created the NodeObservability custom resource (CR).

® You have access to the cluster with cluster-admin privileges.

Procedure

1. Create a NodeObservabilityRun resource file named nodeobservabilityrun.yaml that
contains the following text:

220

‘ER16. REQUESTING CRI-O AND KUBELET PROFILING DATA BY USING THE NODE OBSERVABILITY OPERATOF

apiVersion: nodeobservability.olm.openshift.io/vialpha2
kind: NodeObservabilityRun
metadata:
name: nodeobservabilityrun
spec:
nodeObservabilityRef:
name: cluster

2. Trigger the profiling query by running the NodeObservabilityRun resource:
I $ oc apply -f nodeobservabilityrun.yami

3. Review the status of the NodeObservabilityRun by running the following command:

I $ oc get nodeobservabilityrun nodeobservabilityrun -o yaml | yq '.status.conditions'

Example output

conditions:
- lastTransitionTime: "2022-07-07T14:57:34Z"
message: Ready to start profiling
reason: Ready
status: "True"
type: Ready
- lastTransitionTime: "2022-07-07T14:58:10Z"
message: Profiling query done
reason: Finished
status: "True"
type: Finished

The profiling query is complete once the status is True and type is Finished.

4. Retrieve the profiling data from the container’s /run/node-observability path by running the
following bash script:

for ain $(oc get nodeobservabilityrun nodeobservabilityrun -o yaml | yq
.status.agents[].name); do
echo "agent ${a}"
mkdir -p "/tmp/${a}"
for p in $(oc exec "${a}" -c node-observability-agent -- bash -c¢ "Is /run/node-
observability/*.pprof"); do
f="$(basename ${p})"
echo "copying ${f} to /tmp/${a}/${f}"
oc exec "${a}" -c node-observability-agent -- cat "${p}" > "/tmp/${a}/${f}"
done
done

221

OpenShift Container Platform 4.12 Scalability and performance

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

17.1. CHALLENGES OF THE NETWORK FAR EDGE

Edge computing presents complex challenges when managing many sites in geographically displaced
locations. Use zero touch provisioning (ZTP) and GitOps to provision and manage sites at the far edge
of the network.

17.1.1. Overcoming the challenges of the network far edge

Today, service providers want to deploy their infrastructure at the edge of the network. This presents
significant challenges:

® How do you handle deployments of many edge sites in parallel?

® What happens when you need to deploy sites in disconnected environments?

e How do you manage the lifecycle of large fleets of clusters?
Zero touch provisioning (ZTP) and GitOps meets these challenges by allowing you to provision remote
edge sites at scale with declarative site definitions and configurations for bare-metal equipment.
Template or overlay configurations install OpenShift Container Platform features that are required for
CNF workloads. The full lifecycle of installation and upgrades is handled through the ZTP pipeline.
ZTP uses GitOps for infrastructure deployments. With GitOps, you use declarative YAML files and other
defined patterns stored in Git repositories. Red Hat Advanced Cluster Management (RHACM) uses your
Git repositories to drive the deployment of your infrastructure.
GitOps provides traceability, role-based access control (RBAC), and a single source of truth for the
desired state of each site. Scalability issues are addressed by Git methodologies and event driven

operations through webhooks.

You start the ZTP workflow by creating declarative site definition and configuration custom resources
(CRs) that the ZTP pipeline delivers to the edge nodes.

The following diagram shows how ZTP works within the far edge framework.

222

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

GitOps
Hub cluster
Network | ‘ | |
far edge \ l l l i
Site 1 Site 2 Site 3 Site N
Three-node cluster Standard cluster
Single-node Node1 Control plane Single-node
OpenShift node x3 OpenShift
Compute
Node 2 node xN Standard cluster
Node 3
Three-node cluster

17.1.2. Using ZTP to provision clusters at the network far edge

Red Hat Advanced Cluster Management (RHACM) manages clusters in a hub-and-spoke architecture,
where a single hub cluster manages many spoke clusters. Hub clusters running RHACM provision and
deploy the managed clusters by using zero touch provisioning (ZTP) and the assisted service that is
deployed when you install RHACM.

The assisted service handles provisioning of OpenShift Container Platform on single node clusters,
three-node clusters, or standard clusters running on bare metal.

A high-level overview of using ZTP to provision and maintain bare-metal hosts with OpenShift
Container Platform is as follows:

® A hub cluster running RHACM manages an OpenShift image registry that mirrors the OpenShift
Container Platform release images. RHACM uses the OpenShift image registry to provision the
managed clusters.

® You manage the bare-metal hosts in a YAML format inventory file, versioned in a Git repository.

® You make the hosts ready for provisioning as managed clusters, and use RHACM and the
assisted service to install the bare-metal hosts on site.

Installing and deploying the clusters is a two-stage process, involving an initial installation phase, and a
subsequent configuration phase. The following diagram illustrates this workflow:

223

OpenShift Container Platform 4.12 Scalability and performance

— Flow1 —p Flow 2

GitOps
SiteConfig CRs PolicyGenTemplate CRs
(Site installation data) (cluster profile)
Hub cluster
Red Hat GitOps Operator

Cluster installation CRs Managed cluster policy CRs ClusterGroupUpgrade CRs
Advanced
Cluster + +
Management

\ Topology Aware

Lifecycle Manager
v v

Assisted service

Install

Policy-based governance

Deploy

Network l
far edge \

Spoke cluster 1

: —]

Spoke cluster 2

Spoke cluster N

Operators and
cluster profile configuration

Operators and
cluster profile configuration

Operators and
cluster profile configuration

17.1.3. Installing managed clusters with SiteConfig resources and RHACM

GitOps ZTP uses SiteConfig custom resources (CRs) in a Git repository to manage the processes that
install OpenShift Container Platform clusters. The SiteConfig CR contains cluster-specific parameters
required for installation. It has options for applying select configuration CRs during installation including
user defined extra manifests.

The ZTP GitOps plugin processes SiteConfig CRs to generate a collection of CRs on the hub cluster.
This triggers the assisted service in Red Hat Advanced Cluster Management (RHACM) to install

OpenShift Container Platform on the bare-metal host. You can find installation status and error
messages in these CRs on the hub cluster.

You can provision single clusters manually or in batches with ZTP:

Provisioning a single cluster

224

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Create a single SiteConfig CR and related installation and configuration CRs for the cluster, and
apply them in the hub cluster to begin cluster provisioning. This is a good way to test your CRs before
deploying on a larger scale.

Provisioning many clusters

Install managed clusters in batches of up to 400 by defining SiteConfig and related CRs in a Git
repository. ArgoCD uses the SiteConfig CRs to deploy the sites. The RHACM policy generator
creates the manifests and applies them to the hub cluster. This starts the cluster provisioning
process.

17.1.4. Configuring managed clusters with policies and PolicyGenTemplate
resources

Zero touch provisioning (ZTP) uses Red Hat Advanced Cluster Management (RHACM) to configure
clusters by using a policy-based governance approach to applying the configuration.

The policy generator or PolicyGen is a plugin for the GitOps Operator that enables the creation of
RHACM policies from a concise template. The tool can combine multiple CRs into a single policy, and
you can generate multiple policies that apply to various subsets of clusters in your fleet.

NOTE

For scalability and to reduce the complexity of managing configurations across the fleet
of clusters, use configuration CRs with as much commonality as possible.

® Where possible, apply configuration CRs using a fleet-wide common policy.

® The next preference is to create logical groupings of clusters to manage as much
of the remaining configurations as possible under a group policy.

e When a configuration is unique to an individual site, use RHACM templating on
the hub cluster to inject the site-specific data into a common or group policy.
Alternatively, apply an individual site policy for the site.

The following diagram shows how the policy generator interacts with GitOps and RHACM in the
configuration phase of cluster deployment.

225

OpenShift Container Platform 4.12 Scalability and performance

A

Site planner
GitOps .
Common policy Group policy Group policy Site policy
template template 1 template 2 templates

v v

Hub cluster
Policy generator

i ‘ i i i
] I 1]
1 I 1 1
1 I 1 1

Site Common Group Site Group Site

policy 1 policy policy 1 policy 2 policy 2 policy N
i i i i
Network ! | ! ' '
far edge ' ! i '
N e e
v v v v
Spoke cluster 1 Spoke cluster 2 Spoke cluster N

For large fleets of clusters, it is typical for there to be a high-level of consistency in the configuration of
those clusters.

The following recommended structuring of policies combines configuration CRs to meet several goals:
® Describe common configurations once and apply to the fleet.
® Minimize the number of maintained and managed policies.
® Support flexibility in common configurations for cluster variants.

Table 17.1. Recommended PolicyGenTemplate policy categories

Policy Description

category

Common A policy that exists in the common category is applied to all clusters in the fleet. Use
common PolicyGenTemplate CRs to apply common installation settings across all
cluster types.

Groups A policy that exists in the groups category is applied to a group of clusters in the fleet. Use
group PolicyGenTemplate CRs to manage specific aspects of single-node, three-node,
and standard cluster installations. Cluster groups can also follow geographic region,
hardware variant, etc.

Sites A policy that exists in the sites category is applied to a specific cluster site. Any cluster can
have its own specific policies maintained.

Additional resources

226

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

® For more information about extracting the reference SiteConfig and PolicyGenTemplate CRs
from the ztp-site-generate container image, see Preparing the ZTP Git repository.

17.2. PREPARING THE HUB CLUSTER FOR ZTP

To use RHACM in a disconnected environment, create a mirror registry that mirrors the OpenShift
Container Platform release images and Operator Lifecycle Manager (OLM) catalog that contains the
required Operator images. OLM manages, installs, and upgrades Operators and their dependencies in
the cluster. You can also use a disconnected mirror host to serve the RHCOS ISO and RootFS disk
images that are used to provision the bare-metal hosts.

17.2.1. Telco RAN 4.12 validated solution software versions

The Red Hat Telco Radio Access Network (RAN) version 4.12 solution has been validated using the
following Red Hat software products.

Table 17.2. Telco RAN 4.12 validated solution software

Product Software version

Hub cluster OpenShift Container Platform version 412

GitOps ZTP plugin 410,41, 0r 412
Red Hat Advanced Cluster Management (RHACM) 26,27

Red Hat OpenShift GitOps 19,110
Topology Aware Lifecycle Manager (TALM) 410,41, 0r4.12

17.2.2. Installing GitOps ZTP in a disconnected environment

Use Red Hat Advanced Cluster Management (RHACM), Red Hat OpenShift GitOps, and Topology
Aware Lifecycle Manager (TALM) on the hub cluster in the disconnected environment to manage the
deployment of multiple managed clusters.

Prerequisites

® You have installed the OpenShift Container Platform CLI (o¢).
® You have logged in as a user with cluster-admin privileges.

® You have configured a disconnected mirror registry for use in the cluster.

NOTE

The disconnected mirror registry that you create must contain a version of TALM
backup and pre-cache images that matches the version of TALM running in the
hub cluster. The spoke cluster must be able to resolve these images in the
disconnected mirror registry.

227

OpenShift Container Platform 4.12 Scalability and performance

Procedure

® [nstall RHACM in the hub cluster. See Installing RHACM in a disconnected environment .

® |[nstall GitOps and TALM in the hub cluster.

Additional resources

® |[nstalling OpenShift GitOps
® |nstalling TALM

® Mirroring an Operator catalog

17.2.3. Adding RHCOS ISO and RootFS images to the disconnected mirror host

Before you begin installing clusters in the disconnected environment with Red Hat Advanced Cluster
Management (RHACM), you must first host Red Hat Enterprise Linux CoreOS (RHCOS) images for it to
use. Use a disconnected mirror to host the RHCOS images.

Prerequisites

® Deploy and configure an HTTP server to host the RHCOS image resources on the network. You
must be able to access the HTTP server from your computer, and from the machines that you
create.

IMPORTANT

The RHCOS images might not change with every release of OpenShift Container
Platform. You must download images with the highest version that is less than or equal to
the version that you install. Use the image versions that match your OpenShift Container
Platform version if they are available. You require ISO and RootFS images to install
RHCOS on the hosts. RHCOS QCOW?2 images are not supported for this installation

type.

Procedure

1. Login to the mirror host.

2. Obtain the RHCOS ISO and RootFS images from mirror.openshift.com, for example:

a. Export the required image names and OpenShift Container Platform version as
environment variables:

I $ export ISO_IMAGE_NAME=<iso_image_name> @)
I $ export ROOTFS_IMAGE_NAME=<rootfs_image_name>)

I $ export OCP_VERSION=<ocp_version> ﬂ

ﬂ ISO image name, for example, rhcos-4.12.1-x86_64-live.x86_64.iso

ﬂ RootFS image name, for example, rhcos-4.12.1-x86_64-live-rootfs.x86_64.img

228

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/install/installing#install-on-disconnected-networks
https://docs.openshift.com/gitops/latest/installing_gitops/installing-openshift-gitops.html#installing-openshift-gitops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-mirror-catalog_olm-restricted-networks
https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

ﬂ OpenShift Container Platform version, for example, 4.12.1

b. Download the required images:

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.12/${OCP_VERSION}/${ISO_IMAGE_NAME} -O
Nvar/www/html/${ISO_IMAGE_NAME}

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.12/${OCP_VERSION}/${ROOTFS_IMAGE_NAME} -O
Ivar/www/html/${ROOTFS_IMAGE_NAME}

Verification steps

e Verify that the images downloaded successfully and are being served on the disconnected
mirror host, for example:

I $ wget http://$(hostname)/${ISO_IMAGE_NAME}

Example output

Saving to: rhcos-4.12.1-x86_64-live.x86_64.iso
rhcos-4.12.1-x86_64-live.x86_64.iso- 11%[====>] 10.01M 4.71MB/s

Additional resources

® Creating a mirror registry

® Mirroring images for a disconnected installation

17.2.4. Enabling the assisted service

Red Hat Advanced Cluster Management (RHACM) uses the assisted service to deploy OpenShift
Container Platform clusters. The assisted service is deployed automatically when you enable the
MultiClusterHub Operator on Red Hat Advanced Cluster Management (RHACM). After that, you need
to configure the Provisioning resource to watch all namespaces and to update the
AgentServiceConfig custom resource (CR) with references to the ISO and RootFS images that are
hosted on the mirror registry HTTP server.

Prerequisites
® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have RHACM with MultiClusterHub enabled.

Procedure

1. Enable the Provisioning resource to watch all namespaces and configure mirrors for
disconnected environments. For more information, see Enabling the Central Infrastructure
Management service.

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-mirroring-creating-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.8/html/clusters/cluster_mce_overview#enable-cim

OpenShift Container Platform 4.12 Scalability and performance

2. Update the AgentServiceConfig CR by running the following command:

I $ oc edit AgentServiceConfig

3. Add the following entry to the items.spec.oslmages field in the CR:

- cpuArchitecture: x86_64
openshiftVersion: "4.12"
rootFSUrl: https://<host>/<path>/rhcos-live-rootfs.x86_64.img
url: https://<mirror-registry>/<path>/rhcos-live.x86_64.iso

where:

<host>

Is the fully qualified domain name (FQDN) for the target mirror registry HTTP server.
<path>

Is the path to the image on the target mirror registry.

Save and quit the editor to apply the changes.

17.2.5. Configuring the hub cluster to use a disconnected mirror registry

You can configure the hub cluster to use a disconnected mirror registry for a disconnected environment.

Prerequisites

® You have a disconnected hub cluster installation with Red Hat Advanced Cluster Management
(RHACM) 2.7 installed.

® You have hosted the rootfs and iso images on an HTTP server. See the Additional resources
section for guidance about Mirroring the OpenShift Container Platform image repository .

' WARNING
A If you enable TLS for the HTTP server, you must confirm the root certificate is

signed by an authority trusted by the client and verify the trusted certificate chain
between your OpenShift Container Platform hub and managed clusters and the
HTTP server. Using a server configured with an untrusted certificate prevents the
images from being downloaded to the image creation service. Using untrusted
HTTPS servers is not supported.

Procedure

1. Create a ConfigMap containing the mirror registry config:

apiVersion: vi
kind: ConfigMap
metadata:
name: assisted-installer-mirror-config

230

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

namespace: multicluster-engine 0
labels:
app: assisted-service
data:
ca-bundle.crt: <certificate> g
registries.conf: |6
unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

[[registry]]
location = <mirror_registry_url> 6
insecure = false
mirror-by-digest-only = true

The ConfigMap namespace must be set to multicluster-engine.

The mirror registry’s certificate used when creating the mirror registry.

-

The configuration file for the mirror registry. The mirror registry configuration adds mirror
information to /etc/containers/registries.conf in the Discovery image. The mirror
information is stored in the imageContentSources section of the install-config.yaml file
when passed to the installation program. The Assisted Service pod running on the HUB
cluster fetches the container images from the configured mirror registry.

Q The URL of the mirror registry. You must use the URL from the imageContentSources
section by running the oc adm release mirror command when you configure the mirror
registry. For more information, see the Mirroring the OpenShift Container Platform image
repository section.

This updates mirrorRegistryRef in the AgentServiceConfig custom resource, as shown below:

Example output

apiVersion: agent-install.openshift.io/vibetai
kind: AgentServiceConfig
metadata:
name: agent
namespace: multicluster-engine 0
spec:
databaseStorage:
volumeName: <db_pv_name>
accessModes:
- ReadWriteOnce
resources:
requests:
storage: <db_storage_size>
filesystemStorage:
volumeName: <fs_pv_name>
accessModes:
- ReadWriteOnce
resources:
requests:
storage: <fs_storage_size>
mirrorRegistryRef:
name: assisted-installer-mirror-config g

231

OpenShift Container Platform 4.12 Scalability and performance

oslmages:
- openshiftVersion: <ocp_version>
url: <iso_url>

Set the AgentServiceConfig namespace to multicluster-engine to match the
ConfigMap namespace

Set mirrorRegistryRef.name to match the definition specified in the related ConfigMap
CR

O ® o

Set the URL for the ISO hosted on the httpd server

IMPORTANT

A valid NTP server is required during cluster installation. Ensure that a suitable NTP
server is available and can be reached from the installed clusters through the
disconnected network.

Additional resources

® Mirroring the OpenShift Container Platform image repository

17.2.6. Configuring the hub cluster to use unauthenticated registries

You can configure the hub cluster to use unauthenticated registries. Unauthenticated registries does
not require authentication to access and download images.

Prerequisites

® You have installed and configured a hub cluster and installed Red Hat Advanced Cluster
Management (RHACM) on the hub cluster.

® You have installed the OpenShift Container Platform CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have configured an unauthenticated registry for use with the hub cluster.

Procedure

1. Update the AgentServiceConfig custom resource (CR) by running the following command:

I $ oc edit AgentServiceConfig agent

2. Add the unauthenticatedRegistries field in the CR:

apiVersion: agent-install.openshift.io/vibetai
kind: AgentServiceConfig
metadata:
name: agent
spec:
unauthenticatedRegistries:

232

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

- example.registry.com
- example.registry2.com

Unauthenticated registries are listed under spec.unauthenticatedRegistries in the
AgentServiceConfig resource. Any registry on this list is not required to have an entry in the
pull secret used for the spoke cluster installation. assisted-service validates the pull secret by
making sure it contains the authentication information for every image registry used for
installation.

NOTE

Mirror registries are automatically added to the ignore list and do not need to be added
under spec.unauthenticatedRegistries. Specifying the
PUBLIC_CONTAINER_REGISTRIES environment variable in the ConfigMap overrides

the default values with the specified value. The PUBLIC_CONTAINER_REGISTRIES
defaults are quay.io and registry.svc.ci.openshift.org.

Verification

Verify that you can access the newly added registry from the hub cluster by running the following
commands:

1. Open a debug shell prompt to the hub cluster:

I $ oc debug node/<node_name>

2. Test access to the unauthenticated registry by running the following command:
I sh-4.4# podman login -u kubeadmin -p $(oc whoami -t) <unauthenticated_registry>

where:

<unauthenticated_registry>

Is the new registry, for example, unauthenticated-image-registry.openshift-image-
registry.svc:5000.

Example output

I Login Succeeded!

17.2.7. Configuring the hub cluster with ArgoCD

You can configure the hub cluster with a set of ArgoCD applications that generate the required
installation and policy custom resources (CRs) for each site with GitOps zero touch provisioning (ZTP).

NOTE

Red Hat Advanced Cluster Management (RHACM) uses SiteConfig CRs to generate the
Day 1 managed cluster installation CRs for ArgoCD. Each ArgoCD application can manage
a maximum of 300 SiteConfig CRs.

Prerequisites

233

https://quay.io
https://registry.svc.ci.openshift.org

OpenShift Container Platform 4.12 Scalability and performance

® You have a OpenShift Container Platform hub cluster with Red Hat Advanced Cluster
Management (RHACM) and Red Hat OpenShift GitOps installed.

® You have extracted the reference deployment from the ZTP GitOps plugin container as
described in the "Preparing the GitOps ZTP site configuration repository” section. Extracting
the reference deployment creates the out/argocd/deployment directory referenced in the
following procedure.
Procedure

1. Prepare the ArgoCD pipeline configuration:

a. Create a Git repository with the directory structure similar to the example directory. For
more information, see "Preparing the GitOps ZTP site configuration repository".

b. Configure access to the repository using the ArgoCD Ul. Under Settings configure the
following:

® Repositories - Add the connection information. The URL must end in .git, for example,
https://repo.example.com/repo.git and credentials.

e Certificates - Add the public certificate for the repository, if needed.

c. Modify the two ArgoCD applications, out/argocd/deployment/clusters-app.yaml and
out/argocd/deployment/policies-app.yaml, based on your Git repository:

e Update the URL to point to the Git repository. The URL ends with .git, for example,
https://repo.example.com/repo.git.

® The targetRevision indicates which Git repository branch to monitor.
e path specifies the path to the SiteConfig and PolicyGenTemplate CRs, respectively.
2. Toinstall the ZTP GitOps plugin you must patch the ArgoCD instance in the hub cluster by using

the patch file previously extracted into the out/argocd/deployment/ directory. Run the
following command:

$ oc patch argocd openshift-gitops \

-n openshift-gitops --type=merge \
--patch-file out/argocd/deployment/argocd-openshift-gitops-patch.json

234

https://repo.example.com/repo.git
https://repo.example.com/repo.git

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

NOTE

For a disconnected environment, amend the out/argocd/deployment/argocd-
openshift-gitops-patch.json file with the ztp-site-generate image mirrored in
your local registry. Run the following command:

$ oc patch argocd openshift-gitops -n openshift-gitops --type='json' \
-p="[{"op": "replace", "path": "/spec/repo/initContainers/0/image", \
"value": "<local_reqistry>/<ztp_site_generate_image_ref>"}]'

where:
<local_registry>

<ztp-site-generate-image-ref>

Is the path to the mirrored ztp-site-generate image in the local registry, for
example openshift4-ztp-site-generate:custom.

3. InRHACM 2.7 and later, the multicluster engine enables the cluster-proxy-addon feature by
default. To disable this feature, apply the following patch to disable and remove the relevant
hub cluster and managed cluster pods that are responsible for this add-on.

$ oc patch multiclusterengines.multicluster.openshift.io multiclusterengine --type=merge --
patch-file out/argocd/deployment/disable-cluster-proxy-addon.json

4. Apply the pipeline configuration to your hub cluster by using the following command:

I $ oc apply -k out/argocd/deployment

17.2.8. Preparing the GitOps ZTP site configuration repository

Before you can use the ZTP GitOps pipeline, you need to prepare the Git repository to host the site
configuration data.

Prerequisites

® You have configured the hub cluster GitOps applications for generating the required installati
and policy custom resources (CRs).

® You have deployed the managed clusters using zero touch provisioning (ZTP).

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
CRs.

2. Export the argocd directory from the ztp-site-generate container image using the following
commands:

I $ podman pull registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.12

I $ mkdir -p ./out

Is the URL of the disconnected registry, for example, my.local.registry:5000

on

235

OpenShift Container Platform 4.12 Scalability and performance

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.12 extract /home/ztp --tar | tar x -C ./out

3. Check that the out directory contains the following subdirectories:

e out/extra-manifest contains the source CR files that SiteConfig uses to generate extra
manifest configMap.

® out/source-crs contains the source CR files that PolicyGenTemplate uses to generate the
Red Hat Advanced Cluster Management (RHACM) policies.

e out/argocd/deployment contains patches and YAML files to apply on the hub cluster for
use in the next step of this procedure.

e out/argocd/example contains the examples for SiteConfig and PolicyGenTemplate files
that represent the recommended configuration.

The directory structure under out/argocd/example serves as a reference for the structure and content
of your Git repository. The example includes SiteConfig and PolicyGenTemplate reference CRs for
single-node, three-node, and standard clusters. Remove references to cluster types that you are not
using. The following example describes a set of CRs for a network of single-node clusters:

example

— policygentemplates

—— common-ranGen.yaml|

—— example-sno-site.yaml

—— group-du-sno-ranGen.yaml

—— group-du-sno-validator-ranGen.yaml
— kustomization.yaml

—— ns.yam|

L siteconfig

—— example-sno.yaml|

—— KlusterletAddonConfigOverride.yaml
—— kustomization.yaml

Keep SiteConfig and PolicyGenTemplate CRs in separate directories. Both the SiteConfig and
PolicyGenTemplate directories must contain a kustomization.yaml file that explicitly includes the files
in that directory.

This directory structure and the kustomization.yaml files must be committed and pushed to your Git
repository. The initial push to Git should include the kustomization.yaml files. The SiteConfig
(example-sno.yaml) and PolicyGenTemplate (common-ranGen.yaml, group-du-sno*.yaml, and
example-sno-site.yaml) files can be omitted and pushed at a later time as required when deploying a
site.

The KlusterletAddonConfigOverride.yaml file is only required if one or more SiteConfig CRs which
make reference to it are committed and pushed to Git. See example-sno.yaml for an example of how
this is used.

17.3. INSTALLING MANAGED CLUSTERS WITH RHACM AND
SITECONFIG RESOURCES

You can provision OpenShift Container Platform clusters at scale with Red Hat Advanced Cluster
Management (RHACM) using the assisted service and the GitOps plugin policy generator with core-
reduction technology enabled. The zero touch priovisioning (ZTP) pipeline performs the cluster

236

CHAPTER 17. CLUSTERS AT THE NETWORK FAR EDGE
installations. ZTP can be used in a disconnected environment.

17.3.1. GitOps ZTP and Topology Aware Lifecycle Manager

GitOps zero touch provisioning (ZTP) generates installation and configuration CRs from manifests
stored in Git. These artifacts are applied to a centralized hub cluster where Red Hat Advanced Cluster
Management (RHACM), the assisted service, and the Topology Aware Lifecycle Manager (TALM) use
the CRs to install and configure the managed cluster. The configuration phase of the ZTP pipeline uses
the TALM to orchestrate the application of the configuration CRs to the cluster. There are several key
integration points between GitOps ZTP and the TALM.

Inform policies

By default, GitOps ZTP creates all policies with a remediation action of inform. These policies cause
RHACM to report on compliance status of clusters relevant to the policies but does not apply the
desired configuration. During the ZTP process, after OpenShift installation, the TALM steps through
the created inform policies and enforces them on the target managed cluster(s). This applies the
configuration to the managed cluster. Outside of the ZTP phase of the cluster lifecycle, this allows
you to change policies without the risk of immediately rolling those changes out to affected
managed clusters. You can control the timing and the set of remediated clusters by using TALM.

Automatic creation of ClusterGroupUpgrade CRs

To automate the initial configuration of newly deployed clusters, TALM monitors the state of all
ManagedCluster CRs on the hub cluster. Any ManagedCluster CR that does not have a ztp-done
label applied, including newly created ManagedCluster CRs, causes the TALM to automatically
create a ClusterGroupUpgrade CR with the following characteristics:

® The ClusterGroupUpgrade CR is created and enabled in the ztp-install namespace.
e ClusterGroupUpgrade CR has the same name as the ManagedCluster CR.
® The cluster selector includes only the cluster associated with that ManagedCluster CR.

® The set of managed policies includes all policies that RHACM has bound to the cluster at the
time the ClusterGroupUpgrade is created.

® Pre-cachingis disabled.
® Timeout set to 4 hours (240 minutes).

The automatic creation of an enabled ClusterGroupUpgrade ensures that initial zero-touch
deployment of clusters proceeds without the need for user intervention. Additionally, the automatic
creation of a ClusterGroupUpgrade CR for any ManagedCluster without the ztp-done label allows
a failed ZTP installation to be restarted by simply deleting the ClusterGroupUpgrade CR for the
cluster.

Waves

Each policy generated from a PolicyGenTemplate CR includes a ztp-deploy-wave annotation. This
annotation is based on the same annotation from each CR which is included in that policy. The wave
annotation is used to order the policies in the auto-generated ClusterGroupUpgrade CR. The wave
annotation is not used other than for the auto-generated ClusterGroupUpgrade CR.

237

OpenShift Container Platform 4.12 Scalability and performance

To

NOTE

All CRs in the same policy must have the same setting for the ztp-deploy-wave
annotation. The default value of this annotation for each CR can be overridden in the
PolicyGenTemplate. The wave annotation in the source CR is used for determining
and setting the policy wave annotation. This annotation is removed from each built CR
which is included in the generated policy at runtime.

The TALM applies the configuration policies in the order specified by the wave annotations. The
TALM waits for each policy to be compliant before moving to the next policy. It is important to
ensure that the wave annotation for each CR takes into account any prerequisites for those CRs to
be applied to the cluster. For example, an Operator must be installed before or concurrently with the
configuration for the Operator. Similarly, the CatalogSource for an Operator must be installed in a
wave before or concurrently with the Operator Subscription. The default wave value for each CR
takes these prerequisites into account.

Multiple CRs and policies can share the same wave number. Having fewer policies can result in faster
deployments and lower CPU usage. It is a best practice to group many CRs into relatively few waves.

check the default wave value in each source CR, run the following command against the out/source-

crs directory that is extracted from the ztp-site-generate container image:

$ grep -r "ztp-deploy-wave" out/source-crs

Phase labels

The ClusterGroupUpgrade CR is automatically created and includes directives to annotate the
ManagedCluster CR with labels at the start and end of the ZTP process.

When ZTP configuration postinstallation commences, the ManagedCluster has the ztp-running
label applied. When all policies are remediated to the cluster and are fully compliant, these directives
cause the TALM to remove the ztp-running label and apply the ztp-done label.

For deployments that make use of the informDuValidator policy, the ztp-done label is applied when
the cluster is fully ready for deployment of applications. This includes all reconciliation and resulting
effects of the ZTP applied configuration CRs. The ztp-done label affects automatic
ClusterGroupUpgrade CR creation by TALM. Do not manipulate this label after the initial ZTP
installation of the cluster.

Linked CRs

The automatically created ClusterGroupUpgrade CR has the owner reference set as the
ManagedCluster from which it was derived. This reference ensures that deleting the
ManagedCluster CR causes the instance of the ClusterGroupUpgrade to be deleted along with any
supporting resources.

17.3.2. Overview of deploying managed clusters with ZTP

Red Hat Advanced Cluster Management (RHACM) uses zero touch provisioning (ZTP) to deploy single-
node OpenShift Container Platform clusters, three-node clusters, and standard clusters. You manage
site configuration data as OpenShift Container Platform custom resources (CRs) in a Git repository.
ZTP uses a declarative GitOps approach for a develop once, deploy anywhere model to deploy the
managed clusters.

The deployment of the clusters includes:

238

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

® |[nstalling the host operating system (RHCOS) on a blank server

® Deploying OpenShift Container Platform

® Creating cluster policies and site subscriptions

® Making the necessary network configurations to the server operating system

® Deploying profile Operators and performing any needed software-related configuration, such
as performance profile, PTP, and SR-IOV

Overview of the managed site installation process
After you apply the managed site custom resources (CRs) on the hub cluster, the following actions
happen automatically:

1. A Discovery image ISO file is generated and booted on the target host.

2. When the ISO file successfully boots on the target host it reports the host hardware information
to RHACM.

3. After all hosts are discovered, OpenShift Container Platform is installed.

4. When OpenShift Container Platform finishes installing, the hub installs the klusterlet service on
the target cluster.

5. The requested add-on services are installed on the target cluster.

The Discovery image ISO process is complete when the Agent CR for the managed cluster is created on
the hub cluster.

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended single-node OpenShift cluster configuration for
vDU application workloads.

17.3.3. Creating the managed bare-metal host secrets

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the ZTP pipeline to access the Baseboard Management Controller (BMC) and a
secret for the assisted installer service to pull cluster installation images from the registry.

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yami:

I apiVersion: v1

239

OpenShift Container Platform 4.12 Scalability and performance

kind: Secret
metadata:
name: example-sno-bmc-secret
namespace: example-sno ﬂ
data:
password: <base64 password>
username: <base64 username>
type: Opaque
apiVersion: vi
kind: Secret
metadata:
name: pull-secret
namespace: example-sno G
data:
.dockerconfigjson: <pull_secret> ﬂ
type: kubernetes.io/dockerconfigjson

Must match the namespace configured in the related SiteConfig CR
Base64-encoded values for password and username

Must match the namespace configured in the related SiteConfig CR

- - i

Base64-encoded pull secret

2. Add the relative path to example-sho-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

17.3.4. Configuring Discovery ISO kernel arguments for installations using GitOps
ZTP

The GitOps ZTP workflow uses the Discovery ISO as part of the OpenShift Container Platform
installation process on managed bare-metal hosts. You can edit the InfraEnv resource to specify kernel
arguments for the Discovery ISO. This is useful for cluster installations with specific environmental
requirements. For example, configure the rd.net.timeout.carrier kernel argument for the Discovery ISO
to facilitate static networking for the cluster or to receive a DHCP address before downloading the root
file system during installation.

NOTE

In OpenShift Container Platform 4.12, you can only add kernel arguments. You can not
replace or delete kernel arguments.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Create the InfraEnv CR and edit the spec.kernelArguments specification to configure kernel
arguments.

240

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

a. Save the following YAML in an InfraEnv-example.yaml file:

NOTE

The InfraEnv CR in this example uses template syntax such as {{
.Cluster.ClusterName }} that is populated based on values in the
SiteConfig CR. The SiteConfig CR automatically populates values for these
templates during deployment. Do not edit the templates manually.

apiVersion: agent-install.openshift.io/vibetai
kind: InfraEnv
metadata:
annotations:
argocd.argoproj.io/sync-wave: "1"
name: "{{ .Cluster.ClusterName }}"
namespace: "{{ .Cluster.ClusterName }}"
spec:
clusterRef:
name: "{{ .Cluster.ClusterName }}"
namespace: "{{ .Cluster.ClusterName }}"
kernelArguments:
- operation: append
value: audit=0 9
- operation: append
value: trace=1
sshAuthorizedKey: "{{ .Site.SshPublicKey }}"
proxy: "{{ .Cluster.ProxySettings }}"
pullSecretRef:
name: "{{ .Site.PullSecretRef.Name }}"
ignitionConfigOverride: "{{ .Cluster.IgnitionConfigOverride }}"
nmStateConfigLabelSelector:
matchLabels:
nmstate-label: "{{ .Cluster.ClusterName }}"
additionalNTPSources: "{{ .Cluster.AdditionaNTPSources }}"

ﬂ Specify the append operation to add a kernel argument.

Specify the kernel argument you want to configure. This example configures the audit
kernel argument and the trace kernel argument.

2. Commit the InfraEnv-example.yaml CR to the same location in your Git repository that has
the SiteConfig CR and push your changes. The following example shows a sample Git
repository structure:

~/example-ztp/install

L— site-install
— siteconfig-example.yaml|
— InfraEnv-example.yaml

3. Edit the spec.clusters.crTemplates specification in the SiteConfig CR to reference the
InfraEnv-example.yaml CR in your Git repository:

241

OpenShift Container Platform 4.12 Scalability and performance

clusters:
crTemplates:
InfraEnv: "InfraEnv-example.yaml|"

When you are ready to deploy your cluster by committing and pushing the SiteConfig CR, the
build pipeline uses the custom InfraEnv-example CR in your Git repository to configure the
infrastructure environment, including the custom kernel arguments.

Verification

To verify that the kernel arguments are applied, after the Discovery image verifies that OpenShift
Container Platform is ready for installation, you can SSH to the target host before the installation
process begins. At that point, you can view the kernel arguments for the Discovery ISO in the
/proc/cmdline file.

1. Begin an SSH session with the target host:

I $ ssh -i /path/to/privatekey core@<host_name>

2. View the system'’s kernel arguments by using the following command:

I $ cat /proc/cmdline

17.3.5. Deploying a managed cluster with SiteConfig and ZTP

Use the following procedure to create a SiteConfig custom resource (CR) and related files and initiate
the zero touch provisioning (ZTP) cluster deployment.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.
® You configured the hub cluster for generating the required installation and policy CRs.

® You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and you must configure it as a source
repository for the ArgoCD application. See "Preparing the GitOps ZTP site configuration
repository” for more information.

NOTE

When you create the source repository, ensure that you patch the ArgoCD
application with the argocd/deployment/argocd-openshift-gitops-patch.json
patch-file that you extract from the ztp-site-generate container. See
"Configuring the hub cluster with ArgoCD".

® To be ready for provisioning managed clusters, you require the following for each bare-metal
host:

Network connectivity

242

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Your network requires DNS. Managed cluster hosts should be reachable from the hub
cluster. Ensure that Layer 3 connectivity exists between the hub cluster and the managed
cluster host.

Baseboard Management Controller (BMC) details

ZTP uses BMC username and password details to connect to the BMC during cluster
installation. The GitOps ZTP plugin manages the ManagedCluster CRs on the hub cluster
based on the SiteConfig CR in your site Git repo. You create individual BMCSecret CRs for
each host manually.

Procedure

1. Create the required managed cluster secrets on the hub cluster. These resources must be in a
namespace with a name matching the cluster name. For example, in
out/argocd/example/siteconfig/example-sno.yaml, the cluster name and namespace is
example-sno.

a. Export the cluster namespace by running the following command:

I $ export CLUSTERNS=example-sno

b. Create the namespace:

I $ oc create namespace $CLUSTERNS

2. Create pull secret and BMC Secret CRs for the managed cluster. The pull secret must contain
all the credentials necessary for installing OpenShift Container Platform and all required
Operators. See "Creating the managed bare-metal host secrets" for more information.

NOTE

The secrets are referenced from the SiteConfig custom resource (CR) by name.

- The namespace must match the SiteConfig namespace.

3. Create a SiteConfig CR for your cluster in your local clone of the Git repository:

a. Choose the appropriate example for your CR from the out/argocd/example/siteconfig/
folder. The folder includes example files for single node, three-node, and standard clusters:

e example-sno.yaml
o example-3node.yaml
o example-standard.yaml

b. Change the cluster and host details in the example file to match the type of cluster you
want. For example:

Example single-node OpenShift cluster SiteConfig CR

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "<site_name>"
namespace: "<site_name>"

243

OpenShift Container Platform 4.12 Scalability and performance

spec:
baseDomain: "example.com"
pullSecretRef:
name: "assisted-deployment-pull-secret” ﬂ
clusterimageSetNameRef: "openshift-4.12" g
sshPublicKey: "ssh-rsa AAAA..."
clusters:
- clusterName: "<site_name>"
networkType: "OVNKubernetes"
clusterLabels: ﬂ
common: true
group-du-sno:
sites : "<site_name>"
clusterNetwork:
- cidr: 1001:1::/48
hostPrefix: 64
machineNetwork:
- cidr: 1111:2222:3333:4444::/64
serviceNetwork:
-1001:2::/112
additionaINTPSources:
- 1111:2222:3333:4444::2
#crTemplates:
KilusterletAddonConfig: "KlusterletAddonConfigOverride. yaml"e
nodes:
- hostName: "example-node.example.com” G
role: "master"
bmcAddress: idrac-virtualmedia://<out_of_band_ip>/<system_id>/ ﬂ
bmcCredentialsName:
name: "bmh-secret"
bootMACAddress: "AA:BB:CC:DD:EE:11"
bootMode: "UEFI" Q
rootDeviceHints:
wwn: "0x11111000000asd123"
cpuset: "0-1,52-53" (I
nodeNetwork: m
interfaces:
- name: eno1
macAddress: "AA:BB:CC:DD:EE:11"
config:
interfaces:
- name: enof
type: ethernet
state: up
ipvé4:
enabled: false
ipv6: @
enabled: true
address:
- ip: 1111:2222:3333:4444::aaaa:1
prefix-length: 64
dns-resolver:
config:
search:

244

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

- example.com
server:
-1111:2222:3333:4444::2
routes:

config:

- destination: ::/0
next-hop-interface: enot
next-hop-address: 1111:2222:3333:4444::1
table-id: 254

Create the assisted-deployment-pull-secret CR with the same namespace as the
SiteConfig CR.

clusterimageSetNameRef defines an image set available on the hub cluster. To see
the list of supported versions on your hub cluster, run oc get clusterimagesets.

Configure the SSH public key used to access the cluster.

oo & o

Cluster labels must correspond to the bindingRules field in the PolicyGenTemplate
CRs that you define. For example, policygentemplates/common-ranGen.yaml
applies to all clusters with common: true set, policygentemplates/group-du-sno-
ranGen.yaml applies to all clusters with group-du-sno: "" set.

Optional. The CR specifed under KlusterletAddonConfig is used to override the
default KlusterletAddonConfig that is created for the cluster.

For single-node deployments, define a single host. For three-node deployments,
define three hosts. For standard deployments, define three hosts with role: master
and two or more hosts defined with role: worker.

BMC address that you use to access the host. Applies to all cluster types.

Name of the bmh-secret CR that you separately create with the host BMC credentials.
When creating the bmh-secret CR, use the same namespace as the SiteConfig CR
that provisions the host.

Configures the boot mode for the host. The default value is UEFI. Use
UEFISecureBoot to enable secure boot on the host.

cpuset must match the value set in the cluster PerformanceProfile CR
spec.cpu.reserved field for workload partitioning.

Specifies the network settings for the node.

90 9 9 090 o 9o

Configures the IPv6 address for the host. For single-node OpenShift clusters with
static IP addresses, the node-specific APl and Ingress IPs should be the same.

NOTE

For more information about BMC addressing, see the "Additional resources"
section.

c. You caninspect the default set of extra-manifest MachineConfig CRs in
out/argocd/extra-manifest. It is automatically applied to the cluster when it is installed.

245

OpenShift Container Platform 4.12 Scalability and performance

d. Optional: To provision additional install-time manifests on the provisioned cluster, create a
directory in your Git repository, for example, sno-extra-manifest/, and add your custom
manifest CRs to this directory. If your SiteConfig.yaml refers to this directory in the
extraManifestPath field, any CRs in this referenced directory are appended to the default
set of extra manifests.

4. Add the SiteConfig CR to the kustomization.yaml file in the generators section, similar to the
example shown in out/argocd/example/siteconfig/kustomization.yami.

5. Commit the SiteConfig CR and associated kustomization.yaml changes in your Git repository
and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment.

Additional resources

® Preparing the GitOps ZTP site configuration repository

® Configuring the hub cluster with ArgoCD

® Signalling ZTP cluster deployment completion with validator inform policies
® Creating the managed bare-metal host secrets

® BMC addressing

17.3.5.1. Single-node OpenShift SiteConfig CR installation reference

Table 17.3. SiteConfig CR installation options for single-node OpenShift clusters

SiteConfig CR field Description

metadata.name Set hame to assisted-deployment-pull-secret and create the assisted-
deployment-pull-secret CR in the same namespace as the SiteConfig CR.

spec.clusterimageSe Configure the image set available on the hub cluster for all the clusters in the site.
tNameRef To see the list of supported versions on your hub cluster, run oc get
clusterimagesets.

installConfigOverrid Set the installConfigOverrides field to enable or disable optional components
es prior to cluster installation.

IMPORTANT

Use the reference configuration as specified in the example
SiteConfig CR. Adding additional components back into the
system might require additional reserved CPU capacity.

spec.clusters.cluster Configure cluster labels to correspond to the bindingRules field in the

Labels PolicyGenTemplate CRs that you define. For example,
policygentemplates/common-ranGen.yaml applies to all clusters with
common: true set, policygentemplates/group-du-sno-ranGen.yaml
applies to all clusters with group-du-sno: "" set.

246

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#bmc-addressing_ipi-install-installation-workflow

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

SiteConfig CR field Description

spec.clusters.crTem Optional. Set KlusterletAddonConfig to
plates.KlusterletAdd KlusterletAddonConfigOverride.yaml to override the default
onConfig "KlusterletAddonConfig that is created for the cluster.

spec.clusters.nodes. For single-node deployments, define a single host. For three-node deployments,
hostName define three hosts. For standard deployments, define three hosts with role:
master and two or more hosts defined withrole: worker.

spec.clusters.nodes. BMC address that you use to access the host. Applies to all cluster types. {ztp}

bmcAddress supports iPXE and virtual media booting by using Redfish or IPMI protocols. To
use iPXE booting, you must use RHACM 2.8 or later. For more information about
BMC addressing, see the "Additional resources" section.

spec.clusters.nodes. BMC address that you use to access the host. Applies to all cluster types. {ztp}

bmcAddress supports iPXE and virtual media booting by using Redfish or IPMI protocols. To
use iPXE booting, you must use RHACM 2.8 or later. For more information about
BMC addressing, see the "Additional resources" section.

NOTE

L

In far edge Telco use cases, only virtual media is supported for
use with {ztp}.

spec.clusters.nodes. Configure the bmh-secret CR that you separately create with the host BMC
bmcCredentialsNam credentials. When creating the bmh-secret CR, use the same namespace as the
e SiteConfig CR that provisions the host.

spec.clusters.nodes. Set the boot mode for the host to UEFI. The default value isUEFI. Use
bootMode UEFISecureBoot to enable secure boot on the host.

spec.clusters.nodes. Specifies the device for deployment. Identifiers that are stable across reboots are

rootDeviceHints recommended, for example, wwn: <disk_wwn> ordeviceName:
/dev/disk/by-path/<device_path>. For a detailed list of stable identifiers, see
the "About root device hints section”.

spec.clusters.nodes. Optional. The provided example diskPartition is used to configure additional
diskPartition disk partitions.

spec.clusters.nodes. Configure cpuset to match value that you set in the cluster
cpuset PerformanceProfile CR spec.cpu.reserved field for workload partitioning.

spec.clusters.nodes. Configure the network settings for the node.
nodeNetwork

spec.clusters.nodes. Configure the IPv6 address for the host. For single-node OpenShift clusters with
nodeNetwork.config. static IP addresses, the node-specific APl and Ingress IPs should be the same.
interfaces.ipv6

247

OpenShift Container Platform 4.12 Scalability and performance

17.3.6. Monitoring managed cluster installation progress

The ArgoCD pipeline uses the SiteConfig CR to generate the cluster configuration CRs and syncs it
with the hub cluster. You can monitor the progress of the synchronization in the ArgoCD dashboard.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

When the synchronization is complete, the installation generally proceeds as follows:

1. The Assisted Service Operator installs OpenShift Container Platform on the cluster. You can

monitor the progress of cluster installation from the RHACM dashboard or from the command
line by running the following commands:

a. Export the cluster name:

I $ export CLUSTER=<clusterName>

b. Query the AgentClusterinstall CR for the managed cluster:

$ oc get agentclusterinstall -n $CLUSTER $CLUSTER -o jsonpath="{.status.conditions[?
(@.type=="Completed")]}' | jq

c. Get the installation events for the cluster:

$ curl -sk $(oc get agentclusterinstall -n $CLUSTER $CLUSTER -o
jsonpath="{.status.debuginfo.eventsURL}") |jq "[-2,-1]

17.3.7. Troubleshooting GitOps ZTP by validating the installation CRs

The ArgoCD pipeline uses the SiteConfig and PolicyGenTemplate custom resources (CRs) to
generate the cluster configuration CRs and Red Hat Advanced Cluster Management (RHACM) policies.
Use the following steps to troubleshoot issues that might occur during this process.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

248

1. Check that the installation CRs were created by using the following command:

I $ oc get AgentClusterlnstall -n <cluster_name>

If no object is returned, use the following steps to troubleshoot the ArgoCD pipeline flow from
SiteConfig files to the installation CRs.

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

2. Verify that the ManagedCluster CR was generated using the SiteConfig CR on the hub cluster:

I $ oc get managedcluster

3. If the ManagedCluster is missing, check if the clusters application failed to synchronize the
files from the Git repository to the hub cluster:

I $ oc describe -n openshift-gitops application clusters

a. Check for the Status.Conditions field to view the error logs for the managed cluster. For
example, setting an invalid value for extraManifestPath: in the SiteConfig CR raises the
following error:

Status:
Conditions:
Last Transition Time: 2021-11-26T17:21:39Z
Message: rpc error: code = Unknown desc = "kustomize build

/tmp/https___git.com/ran-sites/siteconfigs/ --enable-alpha-plugins’ failed exit status 1:
2021/11/26 17:21:40 Error could not create extra-manifest ranSite1.extra-manifest3 stat
extra-manifest3: no such file or directory 2021/11/26 17:21:40 Error: could not build the
entire SiteConfig defined by /tmp/kust-plugin-config-913473579: stat extra-manifest3: no
such file or directory Error: failure in plugin configured via /tmp/kust-plugin-config-
913473579; exit status 1: exit status 1

Type: ComparisonError

b. Check the Status.Sync field. If there are log errors, the Status.Sync field could indicate an
Unknown error:

Status:
Sync:
Compared To:
Destination:
Namespace: clusters-sub
Server: https://kubernetes.default.svc

Source:
Path: sites-config
Repo URL: https://git.com/ran-sites/siteconfigs/.git
Target Revision: master
Status: Unknown

17.3.8. Troubleshooting {ztp} virtual media booting on Supermicro servers

SuperMicro X1l servers do not support virtual media installations when the image is served using the
https protocol. As a result, single-node OpenShift deployments for this environment fail to boot on the
target node. To avoid this issue, log in to the hub cluster and disable Transport Layer Security (TLS) in
the Provisioning resource. This ensures the image is not served with TLS even though the image
address uses the https scheme.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

249

OpenShift Container Platform 4.12 Scalability and performance

Procedure

1. Disable TLS in the Provisioning resource by running the following command:

$ oc patch provisioning provisioning-configuration --type merge -p '{"spec":
{"disableVirtualMediaTLS": true}}’

2. Continue the steps to deploy your single-node OpenShift cluster.

17.3.9. Removing a managed cluster site from the ZTP pipeline

You can remove a managed site and the associated installation and configuration policy CRs from the
ZTP pipeline.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove asite and the associated CRs by removing the associated SiteConfig and
PolicyGenTemplate files from the kustomization.yaml file.

When you run the ZTP pipeline again, the generated CRs are removed.

2. Optional: If you want to permanently remove a site, you should also remove the SiteConfig and
site-specific PolicyGenTemplate files from the Git repository.

3. Optional: If you want to remove a site temporarily, for example when redeploying a site, you can
leave the SiteConfig and site-specific PolicyGenTemplate CRs in the Git repository.

Additional resources

® Forinformation about removing a cluster, see Removing a cluster from management.

17.3.10. Removing obsolete content from the ZTP pipeline

If a change to the PolicyGenTemplate configuration results in obsolete policies, for example, if you
rename policies, use the following procedure to remove the obsolete policies.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove the affected PolicyGenTemplate files from the Git repository, commit and push to
the remote repository.

2. Wait for the changes to synchronize through the application and the affected policies to be
removed from the hub cluster.

250

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/clusters/cluster_mce_overview#remove-managed-cluster

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

3. Add the updated PolicyGenTemplate files back to the Git repository, and then commit and
push to the remote repository.

NOTE

Removing zero touch provisioning (ZTP) policies from the Git repository, and as a
result also removing them from the hub cluster, does not affect the configuration
of the managed cluster. The policy and CRs managed by that policy remains in
place on the managed cluster.

4. Optional: As an alternative, after making changes to PolicyGenTemplate CRs that result in
obsolete policies, you can remove these policies from the hub cluster manually. You can delete
policies from the RHACM console using the Governance tab or by running the following
command:

I $ oc delete policy -n <namespace> <policy_name>

17.3.11. Tearing down the ZTP pipeline

You can remove the ArgoCD pipeline and all generated ZTP artifacts.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Detach all clusters from Red Hat Advanced Cluster Management (RHACM) on the hub cluster.

2. Delete the kustomization.yaml file in the deployment directory using the following command:

I $ oc delete -k out/argocd/deployment

3. Commit and push your changes to the site repository.

17.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND
POLICYGENTEMPLATE RESOURCES

Applied policy custom resources (CRs) configure the managed clusters that you provision. You can
customize how Red Hat Advanced Cluster Management (RHACM) uses PolicyGenTemplate CRs to
generate the applied policy CRs.

17.4.1. About the PolicyGenTemplate CRD

The PolicyGenTemplate custom resource definition (CRD) tells the PolicyGen policy generator what
custom resources (CRs) to include in the cluster configuration, how to combine the CRs into the
generated policies, and what items in those CRs need to be updated with overlay content.

The following example shows a PolicyGenTemplate CR (common-du-ranGen.yaml) extracted from

the ztp-site-generate reference container. The common-du-ranGen.yaml file defines two Red Hat
Advanced Cluster Management (RHACM) policies. The polices manage a collection of configuration

251

OpenShift Container Platform 4.12 Scalability and performance

CRs, one for each unique value of policyName in the CR. common-du-ranGen.yaml creates a single
placement binding and a placement rule to bind the policies to clusters based on the labels listed in the
bindingRules section.

Example PolicyGenTemplate CR - common-du-ranGen.yaml|

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:

name: "common"

namespace: "ztp-common"
spec:

bindingRules:

common: "true"

sourceFiles: g

- fileName: SriovSubscription.yam|
policyName: "subscriptions-policy"

- fileName: SriovSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: SriovSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: SriovOperatorStatus.yaml
policyName: "subscriptions-policy"

- fileName: PtpSubscription.yaml
policyName: "subscriptions-policy"

- fileName: PtpSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: PtpSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: PtpOperatorStatus.yam|
policyName: "subscriptions-policy"

- fileName: ClusterLogNS.yaml
policyName: "subscriptions-policy"

- fileName: ClusterLogOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: ClusterLogSubscription.yaml
policyName: "subscriptions-policy"

- fileName: ClusterLogOperatorStatus.yaml
policyName: "subscriptions-policy"

- fileName: StorageNS.yaml
policyName: "subscriptions-policy"

- fileName: StorageOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: StorageSubscription.yaml
policyName: "subscriptions-policy"

- fileName: StorageOperatorStatus.yaml|
policyName: "subscriptions-policy"

- fileName: ReduceMonitoringFootprint.yaml
policyName: "config-policy”

- fileName: OperatorHub.yaml
policyName: "config-policy”

- fileName: DefaultCatsrc.yaml
policyName: "config-policy”
metadata:

252

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

name: redhat-operators
spec:
displayName: disconnected-redhat-operators
image: registry.example.com:5000/disconnected-redhat-operators/disconnected-redhat-
operator-index:v4.9
- fileName: DisconnectedICSP.yaml
policyName: "config-policy"
spec:
repositoryDigestMirrors:
- mirrors:
- registry.example.com:5000
source: registry.redhat.io

common: "true” applies the policies to all clusters with this label.
Files listed under sourceFiles create the Operator policies for installed clusters.
OperatorHub.yaml configures the OperatorHub for the disconnected registry.

DefaultCatsrc.yaml configures the catalog source for the disconnected registry.

0009

policyName: "config-policy" configures Operator subscriptions. The OperatorHub CR disables
the default and this CR replaces redhat-operators with a CatalogSource CR that points to the
disconnected registry.

A PolicyGenTemplate CR can be constructed with any number of included CRs. Apply the following
example CRin the hub cluster to generate a policy containing a single CR:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "group-du-sno"
namespace: "ztp-group"”
spec:
bindingRules:
group-du-sno:
mcp: "master”
sourceFiles:
- fileName: PtpConfigSlave.yaml
policyName: "config-policy”
metadata:
name: "du-ptp-slave”
spec:
profile:
- name: "slave"
interface: "ens5f0"
ptp4lOpts: "-2 -s --summary_interval -4"
phc2sysOpts: "-a -r -n 24"

Using the source file PtpConfigSlave.yaml as an example, the file defines a PtpConfig CR. The
generated policy for the PtpConfigSlave example is named group-du-sno-config-policy. The
PtpConfig CR defined in the generated group-du-sno-config-policy is named du-ptp-slave. The spec
defined in PtpConfigSlave.yaml is placed under du-ptp-slave along with the other spec items defined
under the source file.

253

OpenShift Container Platform 4.12 Scalability and performance

The following example shows the group-du-sno-config-policy CR:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
name: group-du-ptp-config-policy
namespace: groups-sub
annotations:
policy.open-cluster-management.io/categories: CM Configuration Management
policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
remediationAction: inform
disabled: false
policy-templates:
- objectDefinition:
apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
name: group-du-ptp-config-policy-config
spec:
remediationAction: inform
severity: low
namespaceselector:
exclude:
- kube-*
include:
object-templates:
- complianceType: musthave
objectDefinition:
apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: du-ptp-slave
namespace: openshift-ptp
spec:
recommend:
- match:
- nodelLabel: node-role.kubernetes.io/worker-du
priority: 4
profile: slave
profile:
- interface: ens5f0
name: slave
phc2sysOpts: -a -r -n 24
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 0
priority1 128

254

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

priority2 128
domainNumber 24

17.4.2. Recommendations when customizing PolicyGenTemplate CRs

Consider the following best practices when customizing site configuration PolicyGenTemplate custom
resources (CRs):

e Use as few policies as are necessary. Using fewer policies requires less resources. Each additional
policy creates overhead for the hub cluster and the deployed managed cluster. CRs are
combined into policies based on the policyName field in the PolicyGenTemplate CR. CRs in
the same PolicyGenTemplate which have the same value for policyName are managed under a
single policy.

® |n disconnected environments, use a single catalog source for all Operators by configuring the
registry as a single index containing all Operators. Each additional CatalogSource CR on the
managed clusters increases CPU usage.

® MachineConfig CRs should be included as extraManifests in the SiteConfig CR so that they
are applied during installation. This can reduce the overall time taken until the cluster is ready to
deploy applications.

e PolicyGenTemplates should override the channel field to explicitly identify the desired version.
This ensures that changes in the source CR during upgrades does not update the generated
subscription.

Additional resources

® Forrecommendations about scaling clusters with RHACM, see Performance and scalability.

NOTE

When managing large numbers of spoke clusters on the hub cluster, minimize the number
of policies to reduce resource consumption.

Grouping multiple configuration CRs into a single or limited number of policies is one way
to reduce the overall number of policies on the hub cluster. When using the common,
group, and site hierarchy of policies for managing site configuration, it is especially
important to combine site-specific configuration into a single policy.

17.4.3. PolicyGenTemplate CRs for RAN deployments

Use PolicyGenTemplate (PGT) custom resources (CRs) to customize the configuration applied to the
cluster by using the GitOps zero touch provisioning (ZTP) pipeline. The PGT CR allows you to generate
one or more policies to manage the set of configuration CRs on your fleet of clusters. The PGT
identifies the set of managed CRs, bundles them into policies, builds the policy wrapping around those
CRs, and associates the policies with clusters by using label binding rules.

The reference configuration, obtained from the GitOps ZTP container, is designed to provide a set of
critical features and node tuning settings that ensure the cluster can support the stringent performance
and resource utilization constraints typical of RAN (Radio Access Network) Distributed Unit (DU)
applications. Changes or omissions from the baseline configuration can affect feature availability,
performance, and resource utilization. Use the reference PolicyGenTemplate CRs as the basis to
create a hierarchy of configuration files tailored to your specific site requirements.

255

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/install/installing#performance-and-scalability

OpenShift Container Platform 4.12 Scalability and performance

The baseline PolicyGenTemplate CRs that are defined for RAN DU cluster configuration can be
extracted from the GitOps ZTP ztp-site-generate container. See "Preparing the GitOps ZTP site
configuration repository” for further details.

The PolicyGenTemplate CRs can be found in the ./out/argocd/example/policygentemplates folder.
The reference architecture has common, group, and site-specific configuration CRs. Each
PolicyGenTemplate CR refers to other CRs that can be found in the ./out/source-crs folder.

The PolicyGenTemplate CRs relevant to RAN cluster configuration are described below. Variants are
provided for the group PolicyGenTemplate CRs to account for differences in single-node, three-node
compact, and standard cluster configurations. Similarly, site-specific configuration variants are provided
for single-node clusters and multi-node (compact or standard) clusters. Use the group and site-specific
configuration variants that are relevant for your deployment.

Table 17.4. PolicyGenTemplate CRs for RAN deployments

PolicyGenTemplate CR Description

example-multinode-site.yaml Contains a set of CRs that get applied to multi-node
clusters. These CRs configure SR-IOV features
typical for RAN installations.

example-sno-site.yaml Contains a set of CRs that get applied to single-
node OpenShift clusters. These CRs configure SR-
IOV features typical for RAN installations.

common-ranGen.yaml Contains a set of common RAN CRs that get applied
to all clusters. These CRs subscribe to a set of
operators providing cluster features typical for RAN
as well as baseline cluster tuning.

group-du-3node-ranGen.yaml Contains the RAN policies for three-node clusters
only.

group-du-sno-ranGen.yaml Contains the RAN policies for single-node clusters
only.

group-du-standard-ranGen.yaml Contains the RAN policies for standard three

control-plane clusters.

group-du-3node-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for three-node clusters.

group-du-standard-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for standard clusters.

group-du-sno-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for single-node OpenShift
clusters.

Additional resources

256

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE
® Preparing the GitOps ZTP site configuration repository

17.4.4. Customizing a managed cluster with PolicyGenTemplate CRs

Use the following procedure to customize the policies that get applied to the managed cluster that you
provision using the zero touch provisioning (ZTP) pipeline.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.
® You configured the hub cluster for generating the required installation and policy CRs.

® You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure
1. Create a PolicyGenTemplate CR for site-specific configuration CRs.

a. Choose the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, example-sno-site.yaml or
example-multinode-site.yaml.

b. Change the bindingRules field in the example file to match the site-specific label included
in the SiteConfig CR. In the example SiteConfig file, the site-specific label is sites:
example-sno.

NOTE

Ensure that the labels defined in your PolicyGenTemplate bindingRules
field correspond to the labels that are defined in the related managed
clusters SiteConfig CR.

-

c. Change the content in the example file to match the desired configuration.

2. Optional: Create a PolicyGenTemplate CR for any common configuration CRs that apply to
the entire fleet of clusters.

a. Select the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, common-ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

3. Optional: Create a PolicyGenTemplate CR for any group configuration CRs that apply to the
certain groups of clusters in the fleet.
Ensure that the content of the overlaid spec files matches your desired end state. As a
reference, the out/source-crs directory contains the full list of source-crs available to be
included and overlaid by your PolicyGenTemplate templates.

257

OpenShift Container Platform 4.12 Scalability and performance

NOTE

Depending on the specific requirements of your clusters, you might need more
than a single group policy per cluster type, especially considering that the
example group policies each have a single PerformancePolicy.yaml file that can
only be shared across a set of clusters if those clusters consist of identical
hardware configurations.

a. Select the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, group-du-sno-
ranGen.yaml.

b. Change the content in the example file to match the desired configuration.
4. Optional. Create a validator inform policy PolicyGenTemplate CR to signal when the ZTP
installation and configuration of the deployed cluster is complete. For more information, see

"Creating a validator inform policy".

5. Define all the policy namespaces in a YAML file similar to the example
out/argocd/example/policygentemplates/ns.yamil file.

IMPORTANT

Do not include the Namespace CR in the same file with the PolicyGenTemplate
CR.

6. Add the PolicyGenTemplate CRs and Namespace CR to the kustomization.yaml file in the
generators section, similar to the example shown in
out/argocd/example/policygentemplates/kustomization.yaml.

7. Commit the PolicyGenTemplate CRs, Namespace CR, and associated kustomization.yaml
file in your Git repository and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment. You
can push the changes to the SiteConfig CR and the PolicyGenTemplate CR simultaneously.

Additional resources

® Signalling ZTP cluster deployment completion with validator inform policies

17.4.5. Monitoring managed cluster policy deployment progress

The ArgoCD pipeline uses PolicyGenTemplate CRs in Git to generate the RHACM policies and then
sync them to the hub cluster. You can monitor the progress of the managed cluster policy
synchronization after the assisted service installs OpenShift Container Platform on the managed cluster.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

258

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

1. The Topology Aware Lifecycle Manager (TALM) applies the configuration policies that are
bound to the cluster.
After the cluster installation is complete and the cluster becomes Ready, a
ClusterGroupUpgrade CR corresponding to this cluster, with a list of ordered policies defined
by the ran.openshift.io/ztp-deploy-wave annotations, is automatically created by the TALM.
The cluster's policies are applied in the order listed in ClusterGroupUpgrade CR.

You can monitor the high-level progress of configuration policy reconciliation by using the
following commands:

I $ export CLUSTER=<clusterName>

I $ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[-1:]}'
| ja

Example output

"lastTransitionTime": "2022-11-09T07:28:09Z",
"message": "Remediating non-compliant policies",
"reason": "InProgress",

"status": "True",

"type": "Progressing”

2. You can monitor the detailed cluster policy compliance status by using the RHACM dashboard
or the command line.

a. To check policy compliance by using o¢, run the following command:

I $ oc get policies -n $CLUSTER

Example output

NAME REMEDIATION ACTION COMPLIANCE STATE
AGE

ztp-common.common-config-policy inform Compliant

3h42m

ztp-common.common-subscriptions-policy inform NonCompliant
3h42m

ztp-group.group-du-sno-config-policy inform NonCompliant

3h42m

ztp-group.group-du-sno-validator-du-policy inform NonCompliant
3h42m

ztp-install.example 1-common-config-policy-pjz9s enforce Compliant

167m

ztp-install.example1-common-subscriptions-policy-zzd9k enforce NonCompliant
164m

ztp-site.example1-config-policy inform NonCompliant 3h42m
ztp-site.example1-perf-policy inform NonCompliant 3h42m

b. To check policy status from the RHACM web console, perform the following actions:

i. Click Governance - Find policies.

259

OpenShift Container Platform 4.12 Scalability and performance

ii. Click on a cluster policy to check it's status.

When all of the cluster policies become compliant, ZTP installation and configuration for the cluster is
complete. The ztp-done label is added to the cluster.

In the reference configuration, the final policy that becomes compliant is the one defined in the *-du-

validator-policy policy. This policy, when compliant on a cluster, ensures that all cluster configuration,
Operator installation, and Operator configuration is complete.

17.4.6. Validating the generation of configuration policy CRs

Policy custom resources (CRs) are generated in the same namespace as the PolicyGenTemplate from
which they are created. The same troubleshooting flow applies to all policy CRs generated from a
PolicyGenTemplate regardless of whether they are ztp-common, ztp-group, or ztp-site based, as
shown using the following commands:

I $ export NS=<namespace>
I $ oc get policy -n $NS

The expected set of policy-wrapped CRs should be displayed.

If the policies failed synchronization, use the following troubleshooting steps.

Procedure
1. To display detailed information about the policies, run the following command:

I $ oc describe -n openshift-gitops application policies

2. Check for Status: Conditions: to show the error logs. For example, setting an invalid
sourceFile - fileName: generates the error shown below:

Status:
Conditions:
Last Transition Time: 2021-11-26T17:21:39Z
Message: rpc error: code = Unknown desc = "kustomize build

/tmp/https____git.com/ran-sites/policies/ --enable-alpha-plugins™ failed exit status 1:
2021/11/26 17:21:40 Error could not find test.yaml under source-crs/: no such file or directory
Error: failure in plugin configured via /tmp/kust-plugin-config-52463179; exit status 1: exit
status 1

Type: ComparisonError

3. Check for Status: Sync:. If there are log errors at Status: Conditions:, the Status: Sync:
shows Unknown or Error:

Status:
Sync:
Compared To:
Destination:
Namespace: policies-sub
Server: https://kubernetes.default.svc
Source:
Path: policies

260

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Repo URL: https://git.com/ran-sites/policies/.qgit
Target Revision: master
Status: Error

4. When Red Hat Advanced Cluster Management (RHACM) recognizes that policies apply to a
ManagedCluster object, the policy CR objects are applied to the cluster namespace. Check to
see if the policies were copied to the cluster namespace:

I $ oc get policy -n $CLUSTER

Example output:

NAME REMEDIATION ACTION COMPLIANCE STATE AGE
ztp-common.common-config-policy inform Compliant 13d
ztp-common.common-subscriptions-policy inform Compliant 13d
ztp-group.group-du-sno-config-policy inform Compliant 13d
Ztp-group.group-du-sno-validator-du-policy inform Compliant 13d
ztp-site.example-sno-config-policy inform Compliant 13d

RHACM copies all applicable policies into the cluster namespace. The copied policy names have
the format: <policyGenTemplate.Namespace>.<policyGenTemplate.Name>-<policyName>.

5. Check the placement rule for any policies not copied to the cluster namespace. The

matchSelector in the PlacementRule for those policies should match labels on the
ManagedCluster object:

I $ oc get placementrule -n $NS

6. Note the PlacementRule name appropriate for the missing policy, common, group, or site,
using the following command:

I $ oc get placementrule -n $NS <placementRuleName> -o yaml

® The status-decisions should include your cluster name.

® The key-value pair of the matchSelector in the spec must match the labels on your
managed cluster.

7. Check the labels on the ManagedCluster object using the following command:
I $ oc get ManagedCluster $CLUSTER -o jsonpath='{.metadata.labels}' | jq
8. Check to see which policies are compliant using the following command:
I $ oc get policy -n $CLUSTER

If the Namespace, OperatorGroup, and Subscription policies are compliant but the Operator
configuration policies are not, it is likely that the Operators did not install on the managed
cluster. This causes the Operator configuration policies to fail to apply because the CRD is not
yet applied to the spoke.

17.4.7. Restarting policy reconciliation

261

OpenShift Container Platform 4.12 Scalability and performance

You can restart policy reconciliation when unexpected compliance issues occur, for example, when the
ClusterGroupUpgrade custom resource (CR) has timed out.

Procedure

1. A ClusterGroupUpgrade CR is generated in the namespace ztp-install by the Topology Aware
Lifecycle Manager after the managed cluster becomes Ready:

I $ export CLUSTER=<clusterName>

I $ oc get clustergroupupgrades -n ztp-install $CLUSTER

2. If there are unexpected issues and the policies fail to become complaint within the configured
timeout (the default is 4 hours), the status of the ClusterGroupUpgrade CR shows
UpgradeTimedOut:

$ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Ready")]}'

3. A ClusterGroupUpgrade CR in the UpgradeTimedOut state automatically restarts its policy

reconciliation every hour. If you have changed your policies, you can start a retry immediately by

deleting the existing ClusterGroupUpgrade CR. This triggers the automatic creation of a new
ClusterGroupUpgrade CR that begins reconciling the policies immediately:

I $ oc delete clustergroupupgrades -n ztp-install SCLUSTER

Note that when the ClusterGroupUpgrade CR completes with status UpgradeCompleted and the
managed cluster has the label ztp-done applied, you can make additional configuration changes using
PolicyGenTemplate. Deleting the existing ClusterGroupUpgrade CR will not make the TALM generate
anew CR.

At this point, ZTP has completed its interaction with the cluster and any further interactions should be
treated as an update and a new ClusterGroupUpgrade CR created for remediation of the policies.

Additional resources

e Forinformation about using Topology Aware Lifecycle Manager (TALM) to construct your own
ClusterGroupUpgrade CR, see About the ClusterGroupUpgrade CR.

17.4.8. Changing applied managed cluster CRs using policies

You can remove content from a custom resource (CR) that is deployed in a managed cluster through a
policy.

By default, all Policy CRs created from a PolicyGenTemplate CR have the complianceType field set
to musthave. A musthave policy without the removed content is still compliant because the CR on the
managed cluster has all the specified content. With this configuration, when you remove content from a
CR, TALM removes the content from the policy but the content is not removed from the CR on the
managed cluster.

With the complianceType field to mustonlyhave, the policy ensures that the CR on the cluster is an
exact match of what is specified in the policy.

262

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.
® You have deployed a managed cluster from a hub cluster running RHACM.

® You have installed Topology Aware Lifecycle Manager on the hub cluster.

Procedure

1. Remove the content that you no longer need from the affected CRs. In this example, the
disableDrain: false line was removed from the SriovOperatorConfig CR.

Example CR

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
configDaemonNodeSelector:
"node-role.kubernetes.io/$mcp": "
disableDrain: true
enablelnjector: true
enableOperatorWebhook: true

2. Change the complianceType of the affected policies to mustonlyhave in the group-du-sno-
ranGen.yaml file.

Example YAML

#...

- fileName: SriovOperatorConfig.yaml
policyName: "config-policy"
complianceType: mustonlyhave

#...

3. Create a ClusterGroupUpdates CR and specify the clusters that must receive the CR changes::

Example ClusterGroupUpdates CR

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-remove

namespace: default
spec:

managedPolicies:

- ztp-group.group-du-sno-config-policy

enable: false

clusters:

- spoke1

263

OpenShift Container Platform 4.12 Scalability and performance

- spoke2

remediationStrategy:
maxConcurrency: 2
timeout: 240

batchTimeoutAction:

4. Create the ClusterGroupUpgrade CR by running the following command:

I $ oc create -f cgu-remove.yaml

5. When you are ready to apply the changes, for example, during an appropriate maintenance
window, change the value of the spec.enable field to true by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-remove \
--patch '{"spec":{"enable":true}}' --type=merge

Verification

1. Check the status of the policies by running the following command:

I $ oc get <kind> <changed_cr_name>

Example output

NAMESPACE NAME REMEDIATION ACTION
COMPLIANCE STATE AGE

default cgu-ztp-group.group-du-sno-config-policy enforce 17m
default ztp-group.group-du-sno-config-policy inform NonCompliant
15h

When the COMPLIANCE STATE of the policy is Compliant, it means that the CR is updated
and the unwanted content is removed.

2. Check that the policies are removed from the targeted clusters by running the following
command on the managed clusters:

I $ oc get <kind> <changed_cr_name>

If there are no results, the CR is removed from the managed cluster.

17.4.9. Indication of done for ZTP installations

Zero touch provisioning (ZTP) simplifies the process of checking the ZTP installation status for a cluster.
The ZTP status moves through three phases: cluster installation, cluster configuration, and ZTP done.

Cluster installation phase

The cluster installation phase is shown by the ManagedClusterJoined and
ManagedClusterAvailable conditions in the ManagedCluster CR . If the ManagedCluster CR does
not have these conditions, or the condition is set to False, the cluster is still in the installation phase.
Additional details about installation are available from the AgentClusterinstall and
ClusterDeployment CRs. For more information, see "Troubleshooting GitOps ZTP".

Cluster configuration phase

264

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

The cluster configuration phase is shown by a ztp-running label applied the ManagedCluster CR for
the cluster.

ZTP done

Cluster installation and configuration is complete in the ZTP done phase. This is shown by the
removal of the ztp-running label and addition of the ztp-done label to the ManagedCluster CR.
The ztp-done label shows that the configuration has been applied and the baseline DU configuration
has completed cluster tuning.

The transition to the ZTP done state is conditional on the compliant state of a Red Hat Advanced
Cluster Management (RHACM) validator inform policy. This policy captures the existing criteria for a
completed installation and validates that it moves to a compliant state only when ZTP provisioning of
the managed cluster is complete.

The validator inform policy ensures the configuration of the cluster is fully applied and Operators
have completed their initialization. The policy validates the following:

e The target MachineConfigPool contains the expected entries and has finished updating. All
nodes are available and not degraded.

® The SR-IOV Operator has completed initialization as indicated by at least one
SriovNetworkNodeState with syncStatus: Succeeded.

® The PTP Operator daemon set exists.

17.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER
WITH ZTP

You can deploy a managed single-node OpenShift cluster by using Red Hat Advanced Cluster
Management (RHACM) and the assisted service.

NOTE

If you are creating multiple managed clusters, use the SiteConfig method described in
Deploying far edge sites with ZTP .

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended cluster configuration for vDU application
workloads.

17.5.1. Generating ZTP installation and configuration CRs manually

Use the generator entrypoint for the ztp-site-generate container to generate the site installation and
configuration custom resource (CRs) for a cluster based on SiteConfig and PolicyGenTemplate CRs.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

265

OpenShift Container Platform 4.12 Scalability and performance

1. Create an output folder by running the following command:
I $ mkdir -p ./out

2. Export the argocd directory from the ztp-site-generate container image:

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.12 extract /home/ztp --tar | tar x -C ./out

The ./Jout directory has the reference PolicyGenTemplate and SiteConfig CRs in the

out/argocd/example/ folder.

Example output

out
L— argocd
L— example
— policygentemplates
—— common-ranGen.yaml
—— example-sno-site.yaml
—— group-du-sno-ranGen.yaml
—— group-du-sno-validator-ranGen.yaml
—— kustomization.yaml
—— ns.yaml|
L siteconfig
—— example-sno.yaml|
—— KlusterletAddonConfigOverride.yaml
—— kustomization.yaml

3. Create an output folder for the site installation CRs:
I $ mkdir -p /site-install

4. Modify the example SiteConfig CR for the cluster type that you want to install. Copy example-
sno.yaml to site-1-sno.yaml and modify the CR to match the details of the site and bare-
metal host that you want to install, for example:

Example single-node OpenShift cluster SiteConfig CR

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "<site_name>"
namespace: "<site_name>"
spec:
baseDomain: "example.com"
pullSecretRef:
name: "assisted-deployment-pull-secret” 0
clusterimageSetNameRef: "openshift-4.12" 9
sshPublicKey: "ssh-rsa AAAA..." e
clusters:
- clusterName: "<site_name>"
networkType: "OVNKubernetes"
clusterLabels: ﬂ

266

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

common: true
group-du-sno:
sites : "<site_name>"
clusterNetwork:
- cidr: 1001:1::/48
hostPrefix: 64
machineNetwork:
- cidr: 1111:2222:3333:4444::/64
serviceNetwork:
-1001:2::/112
additionalNTPSources:
- 1111:2222:3333:4444::2
#crTemplates:
KilusterletAddonConfig: "KlusterletAddonConfigOverride. yaml”e
nodes:
- hostName: "example-node.example.com” G
role: "master”
bmcAddress: idrac-virtualmedia://<out_of_band_ip>/<system_id>/ ﬂ
bmcCredentialsName:
name: "bmh-secret" 6
bootMACAddress: "AA:BB:CC:DD:EE:11"
bootMode: "UEFI" Q
rootDeviceHints:
wwn: "0x11111000000asd123"
cpuset: "0-1,52-53" (I
nodeNetwork:
interfaces:
- name: enof
macAddress: "AA:BB:CC:DD:EE:11"
config:
interfaces:
- name: eno1
type: ethernet
state: up
ipvé4:
enabled: false
ipv6: @
enabled: true
address:
- ip: 1111:2222:3333:4444::aaaa:1
prefix-length: 64
dns-resolver:
config:
search:
- example.com
server:
-1111:2222:3333:4444::2
routes:
config:
- destination: ::/0
next-hop-interface: enof
next-hop-address: 1111:2222:3333:4444::1
table-id: 254

267

OpenShift Container Platform 4.12 Scalability and performance

268

o0 o

0 9 O 090 o o

Create the assisted-deployment-pull-secret CR with the same namespace as the
SiteConfig CR.

clusterimageSetNameRef defines an image set available on the hub cluster. To see the
list of supported versions on your hub cluster, run oc get clusterimagesets.

Configure the SSH public key used to access the cluster.

Cluster labels must correspond to the bindingRules field in the PolicyGenTemplate CRs
that you define. For example, policygentemplates/common-ranGen.yaml applies to all
clusters with common: true set, policygentemplates/group-du-sno-ranGen.yaml applies
to all clusters with group-du-sno: "" set.

Optional. The CR specifed under KlusterletAddonConfig is used to override the default
KlusterletAddonConfig that is created for the cluster.

For single-node deployments, define a single host. For three-node deployments, define
three hosts. For standard deployments, define three hosts with role: master and two or
more hosts defined with role: worker.

BMC address that you use to access the host. Applies to all cluster types.
Name of the bmh-secret CR that you separately create with the host BMC credentials.
When creating the bmh-secret CR, use the same namespace as the SiteConfig CR that

provisions the host.

Configures the boot mode for the host. The default value is UEFI. Use UEFISecureBoot
to enable secure boot on the host.

cpuset must match the value set in the cluster PerformanceProfile CR
spec.cpu.reserved field for workload partitioning.

Specifies the network settings for the node.

Configures the IPv6 address for the host. For single-node OpenShift clusters with static IP
addresses, the node-specific APl and Ingress IPs should be the same.

5. Generate the day-0 installation CRs by processing the modified SiteConfig CR site-1-
sno.yaml by running the following command:

$ podman run -it --rm -v “pwd’/out/argocd/example/siteconfig:/resources:Z -v “pwd’/site-
install:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.12.1 generator
install site-1-sno.yaml /output

Example output

site-install
L site-1-sno

— site-1_agentclusterinstall_example-sno.yaml

— site-1-sno_baremetalhost_example-nodei.example.com.yaml
— site-1-sno_clusterdeployment_example-sno.yaml

— site-1-sno_configmap_example-sno.yaml

— site-1-sno_infraenv_example-sno.yam|

— site-1-sno_klusterletaddonconfig_example-sno.yaml

— site-1-sno_machineconfig_02-master-workload-partitioning.yami

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

—— site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
—— site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml
—— site-1-sno_managedcluster_example-sno.yaml

—— site-1-sno_namespace_example-sno.yaml

—— site-1-sno_nmstateconfig_example-node1.example.com.yaml

6. Optional: Generate just the day-O MachineConfig installation CRs for a particular cluster type
by processing the reference SiteConfig CR with the -E option. For example, run the following
commands:

a. Create an output folder for the MachineConfig CRs:

I $ mkdir -p ./site-machineconfig

b. Generate the MachineConfig installation CRs:

$ podman run -it --rm -v “pwd’/out/argocd/example/siteconfig:/resources:Z -v “pwd’/site-
machineconfig:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.12.1
generator install -E site-1-sno.yaml /output

Example output

site-machineconfig

L site-1-sno

—— site-1-sno_machineconfig_02-master-workload-partitioning.yami
—— site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
—— site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml

7. Generate and export the day-2 configuration CRs using the reference PolicyGenTemplate
CRs from the previous step. Run the following commands:

a. Create an output folder for the day-2 CRs:
I $ mkdir -p ./ref
b. Generate and export the day-2 configuration CRs:
$ podman run -it --rm -v “pwd’/out/argocd/example/policygentemplates:/resources:Z -v
“pwd/ref:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.12.1

generator config -N . /output

The command generates example group and site-specific PolicyGenTemplate CRs for
single-node OpenShift, three-node clusters, and standard clusters in the ./ref folder.

Example output

ref
L— customResource
—— common
—— example-multinode-site
—— example-sno

—— group-du-3node
—— group-du-3node-validator
| L— Multiple-validatorCRs

269

OpenShift Container Platform 4.12 Scalability and performance

—— group-du-sno

—— group-du-sno-validator

—— group-du-standard

—— group-du-standard-validator
L— Multiple-validatorCRs

8. Use the generated CRs as the basis for the CRs that you use to install the cluster. You apply the
installation CRs to the hub cluster as described in "Installing a single managed cluster”. The
configuration CRs can be applied to the cluster after cluster installation is complete.

Additional resources
® Workload partitioning

® BMC addressing

17.5.2. Creating the managed bare-metal host secrets

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the ZTP pipeline to access the Baseboard Management Controller (BMC) and a
secret for the assisted installer service to pull cluster installation images from the registry.

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yami:

apiVersion: vi
kind: Secret
metadata:
name: example-sno-bmc-secret
namespace: example-sno ﬂ
data:
password: <base64 password>
username: <base64 username>
type: Opaque
apiVersion: vi
kind: Secret
metadata:
name: pull-secret
namespace: example-sno 6
data:
.dockerconfigjson: <pull_secret> ﬂ
type: kubernetes.io/dockerconfigjson

270

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#bmc-addressing_ipi-install-installation-workflow

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Must match the namespace configured in the related SiteConfig CR
Base64-encoded values for password and username
Must match the namespace configured in the related SiteConfig CR

Base64-encoded pull secret

OO

2. Add the relative path to example-snho-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

17.5.3. Configuring Discovery ISO kernel arguments for manual installations using
GitOps ZTP

The GitOps ZTP workflow uses the Discovery ISO as part of the OpenShift Container Platform
installation process on managed bare-metal hosts. You can edit the InfraEnv resource to specify kernel
arguments for the Discovery ISO. This is useful for cluster installations with specific environmental
requirements. For example, configure the rd.net.timeout.carrier kernel argument for the Discovery ISO
to facilitate static networking for the cluster or to receive a DHCP address before downloading the root
file system during installation.

NOTE

In OpenShift Container Platform 4.12, you can only add kernel arguments. You can not
replace or delete kernel arguments.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have manually generated the installation and configuration custom resources (CRs).

Procedure

1. Edit the spec.kernelArguments specification in the InfraEnv CR to configure kernel
arguments:

apiVersion: agent-install.openshift.io/vibetai
kind: InfraEnv
metadata:
name: <cluster_name>
namespace: <cluster_name>
spec:
kernelArguments:
- operation: append
value: audit=0
- operation: append
value: trace=1
clusterRef:
name: <cluster_name>

271

OpenShift Container Platform 4.12 Scalability and performance

namespace: <cluster_name>
pullSecretRef:
name: pull-secret

ﬂ Specify the append operation to add a kernel argument.

9 Specify the kernel argument you want to configure. This example configures the audit kernel
argument and the trace kernel argument.

NOTE

The SiteConfig CR generates the InfraEnv resource as part of the day-0 installation
CRs.

Verification

To verify that the kernel arguments are applied, after the Discovery image verifies that OpenShift
Container Platform is ready for installation, you can SSH to the target host before the installation
process begins. At that point, you can view the kernel arguments for the Discovery ISO in the
/proc/cmdline file.

1. Begin an SSH session with the target host:

I $ ssh -i /path/to/privatekey core@<host_name>

2. View the system'’s kernel arguments by using the following command:

I $ cat /proc/cmdline

17.5.4. Installing a single managed cluster

You can manually deploy a single managed cluster using the assisted service and Red Hat Advanced
Cluster Management (RHACM).

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created the baseboard management controller (BMC) Secret and the image pull-
secret Secret custom resources (CRs). See "Creating the managed bare-metal host secrets”

for details.

® Your target bare-metal host meets the networking and hardware requirements for managed
clusters.

Procedure

1. Create a ClusterlmageSet for each specific cluster version to be deployed, for example
clusterimageSet-4.12.yaml. A ClusterimageSet has the following format:

I apiVersion: hive.openshift.io/v1

272

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

kind: ClusterlmageSet
metadata:
name: openshift-4.12.0 ﬂ
spec:
releaselmage: quay.io/openshift-release-dev/ocp-release:4.12.0-x86_64 9

Specifies the releaselmage to deploy and determines the operating system image
version. The discovery ISO is based on the image version as set by releaselmage, or the
latest version if the exact version is unavailable.

ﬂ The descriptive version that you want to deploy.

2. Apply the clusterimageSet CR:
I $ oc apply -f clusterimageSet-4.12.yaml
3. Create the Namespace CRin the cluster-namespace.yaml file:
apiVersion: vi
kind: Namespace
metadata:
name: <cluster_name> ﬂ
labels:

name: <cluster_name> 9

wThe name of the managed cluster to provision.

4. Apply the Namespace CR by running the following command:
I $ oc apply -f cluster-namespace.yaml

5. Apply the generated day-O CRs that you extracted from the ztp-site-generate container and
customized to meet your requirements:

I $ oc apply -R ./site-install/site-sno-1

Additional resources

® Connectivity prerequisites for managed cluster networks

17.5.5. Monitoring the managed cluster installation status

Ensure that cluster provisioning was successful by checking the cluster status.

Prerequisites

® All of the custom resources have been configured and provisioned, and the Agent custom
resource is created on the hub for the managed cluster.

Procedure

273

OpenShift Container Platform 4.12 Scalability and performance

1. Check the status of the managed cluster:
I $ oc get managedcluster

True indicates the managed cluster is ready.

2. Check the agent status:
I $ oc get agent -n <cluster_name>

3. Use the describe command to provide an in-depth description of the agent’s condition.
Statuses to be aware of include BackendError, InputError, ValidationsFailing,
InstallationFailed, and AgentlsConnected. These statuses are relevant to the Agent and
AgentClusterlnstall custom resources.

I $ oc describe agent -n <cluster_name>
4. Check the cluster provisioning status:
I $ oc get agentclusterinstall -n <cluster_name>

5. Use the describe command to provide an in-depth description of the cluster provisioning
status:

I $ oc describe agentclusterinstall -n <cluster_name>

6. Check the status of the managed cluster’s add-on services:

I $ oc get managedclusteraddon -n <cluster_name>

7. Retrieve the authentication information of the kubeconfig file for the managed cluster:

$ oc get secret -n <cluster_name> <cluster_name>-admin-kubeconfig -0 jsonpath=
{.data.kubeconfig} | base64 -d > <directory>/<cluster_namex>-kubeconfig

17.5.6. Troubleshooting the managed cluster

Use this procedure to diagnose any installation issues that might occur with the managed cluster.

Procedure

1. Check the status of the managed cluster:

I $ oc get managedcluster

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
SNO-cluster true True True 2d19h

274

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

If the status in the AVAILABLE column is True, the managed cluster is being managed by the
hub.

If the status in the AVAILABLE column is Unknown, the managed cluster is not being managed
by the hub. Use the following steps to continue checking to get more information.

2. Check the AgentClusterinstall install status:

I $ oc get clusterdeployment -n <cluster_name>

Example output

NAME PLATFORM REGION CLUSTERTYPE INSTALLED INFRAID
VERSION POWERSTATE AGE

Sno0026 agent-baremetal false Initialized
2d14h

If the status in the INSTALLED column is false, the installation was unsuccessful.

3. If the installation failed, enter the following command to review the status of the
AgentClusterinstall resource:

I $ oc describe agentclusterinstall -n <cluster_name> <cluster_name>

4. Resolve the errors and reset the cluster:

a. Remove the cluster’'s managed cluster resource:

I $ oc delete managedcluster <cluster_name>

b. Remove the cluster’'s namespace:
I $ oc delete namespace <cluster_name>

This deletes all of the namespace-scoped custom resources created for this cluster. You
must wait for the ManagedCluster CR deletion to complete before proceeding.

c. Recreate the custom resources for the managed cluster.

17.5.7. RHACM generated cluster installation CRs reference

Red Hat Advanced Cluster Management (RHACM) supports deploying OpenShift Container Platform
on single-node clusters, three-node clusters, and standard clusters with a specific set of installation
custom resources (CRs) that you generate using SiteConfig CRs for each site.

NOTE

Every managed cluster has its own namespace, and all of the installation CRs except for
ManagedCluster and ClusterimageSet are under that namespace. ManagedCluster
and ClusterlmageSet are cluster-scoped, not namespace-scoped. The namespace and
the CR names match the cluster name.

275

OpenShift Container Platform 4.12 Scalability and performance

The following table lists the installation CRs that are automatically applied by the RHACM assisted
service when it installs clusters using the SiteConfig CRs that you configure.

Table 17.5. Cluster installation CRs generated by RHACM

CR Description Usage

BareMetal Contains the connection information for the Provides access to the BMC to load and start

Host Baseboard Management Controller (BMC) the discovery image on the target server by
of the target bare-metal host. using the Redfish protocol.

InfraEnv Contains information for installing OpenShift ~ Used with ClusterDeployment to
Container Platform on the target bare-metal generate the discovery ISO for the managed
host. cluster.

AgentClus Specifies details of the managed cluster Specifies the managed cluster configuration

terinstall configuration such as networking and the information and provides status during the
number of control plane nodes. Displays the installation of the cluster.
cluster kubeconfig and credentials when
the installation is complete.

ClusterDe References the AgentClusterinstall CRto Used with InfraEnv to generate the

ployment use. discovery ISO for the managed cluster.

NMStateC Provides network configuration information Sets up a static IP address for the managed

onfig such as MAC address to IP mapping, DNS cluster’s Kube APl server.
server, default route, and other network
settings.

Agent Contains hardware information about the Created automatically on the hub when the
target bare-metal host. target machine’s discovery image boots.

Managed When a cluster is managed by the hub, it The hub uses this resource to manage and

Cluster must be imported and known. This show the status of managed clusters.
Kubernetes object provides that interface.

Klusterlet Contains the list of services provided by the Tells the hub which addon services to deploy

AddonCo hub to be deployed to the to the ManagedCluster resource.

nfig ManagedCluster resource.

Namespac Logical space for ManagedCluster Propagates resources to the

e resources existing on the hub. Unique per ManagedCluster.

276

site.

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

CR Description Usage

Secret Two CRs are created: BMC Secret and

Image Pull Secret. e BMC Secret authenticates into

the target bare-metal host using its
username and password.

e Image Pull Secret contains
authentication information for the
OpenShift Container Platform
image installed on the target bare-

metal host.
Clusterlm Contains OpenShift Container Platform Passed into resources to provide OpenShift
ageSet image information such as the repository and ~ Container Platform images.

image name.

17.6. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER
CONFIGURATION FOR VDU APPLICATION WORKLOADS

Use the following reference information to understand the single-node OpenShift configurations
required to deploy virtual distributed unit (vDU) applications in the cluster. Configurations include
cluster optimizations for high performance workloads, enabling workload partitioning, and minimizing
the number of reboots required postinstallation.

Additional resources

® To deploy a single cluster by hand, see Manually installing a single-node OpenShift cluster with
ZTP.

® To deploy a fleet of clusters using GitOps zero touch provisioning (ZTP), see Deploying far
edge sites with ZTP.

17.6.1. Running low latency applications on OpenShift Container Platform

OpenShift Container Platform enables low latency processing for applications running on commercial
off-the-shelf (COTS) hardware by using several technologies and specialized hardware devices:

Real-time kernel for RHCOS

Ensures workloads are handled with a high degree of process determinism.
CPU isolation

Avoids CPU scheduling delays and ensures CPU capacity is available consistently.
NUMA-aware topology management

Aligns memory and huge pages with CPU and PClI devices to pin guaranteed container memory and
huge pages to the non-uniform memory access (NUMA) node. Pod resources for all Quality of
Service (QoS) classes stay on the same NUMA node. This decreases latency and improves
performance of the node.

Huge pages memory management

Using huge page sizes improves system performance by reducing the amount of system resources
required to access page tables.

277

OpenShift Container Platform 4.12 Scalability and performance

Precision timing synchronization using PTP

Allows synchronization between nodes in the network with sub-microsecond accuracy.

17.6.2. Recommended cluster host requirements for vDU application workloads

Running vDU application workloads requires a bare-metal host with sufficient resources to run
OpenShift Container Platform services and production workloads.

Table 17.6. Minimum resource requirements

Profile vCPU Memory Storage

Minimum 4 to 8 vCPU cores 32GB of RAM 120GB

NOTE
One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate

the corresponding ratio:

® (threads per core x cores) x sockets = vCPUs

IMPORTANT

The server must have a Baseboard Management Controller (BMC) when booting with
virtual media.

17.6.3. Configuring host firmware for low latency and high performance

Bare-metal hosts require the firmware to be configured before the host can be provisioned. The
firmware configuration is dependent on the specific hardware and the particular requirements of your
installation.

Procedure

1. Set the UEFI/BIOS Boot Modeto UEFI.
2. Inthe host boot sequence order, set Hard drive first

3. Apply the specific firmware configuration for your hardware. The following table describes a
representative firmware configuration for an Intel Xeon Skylake or Intel Cascade Lake server,
based on the Intel FlexRAN 4G and 5G baseband PHY reference design.

IMPORTANT

The exact firmware configuration depends on your specific hardware and
network requirements. The following sample configuration is for illustrative
purposes only.

Table 17.7. Sample firmware configuration for an Intel Xeon Skylake or Cascade Lake server

278

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Firmware setting Configuration

CPU Power and Performance Policy Performance
Uncore Frequency Scaling Disabled
Performance P-limit Disabled
Enhanced Intel SpeedStep © Tech Enabled
Intel Configurable TDP Enabled
Configurable TDP Level Level 2
Intel® Turbo Boost Technology Enabled
Energy Efficient Turbo Disabled
Hardware P-States Disabled
Package C-State CO/Cl state
CIE Disabled
Processor C6 Disabled
NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.
17.6.4. Connectivity prerequisites for managed cluster networks

Before you can install and provision a managed cluster with the zero touch provisioning (ZTP) GitOps
pipeline, the managed cluster host must meet the following networking prerequisites:

® There must be bi-directional connectivity between the ZTP GitOps container in the hub cluster
and the Baseboard Management Controller (BMC) of the target bare-metal host.

® The managed cluster must be able to resolve and reach the APl hostname of the hub hostname
and *.apps hostname. Here is an example of the APl hostname of the hub and *.apps
hostname:

o api.hub-cluster.internal.domain.com
o console-openshift-console.apps.hub-cluster.internal.domain.com
® The hub cluster must be able to resolve and reach the APl and *.apps hostname of the

managed cluster. Here is an example of the APl hostname of the managed cluster and *.apps
hostname:

279

OpenShift Container Platform 4.12 Scalability and performance

o api.sno-managed-cluster-1.internal.domain.com

o console-openshift-console.apps.sno-managed-cluster-1.internal.domain.com

17.6.5. Workload partitioning in single-node OpenShift with GitOps ZTP

Workload partitioning configures OpenShift Container Platform services, cluster management
workloads, and infrastructure pods to run on a reserved number of host CPUs.

To configure workload partitioning with GitOps ZTP, you specify cluster management CPU resources
with the cpuset field of the SiteConfig custom resource (CR) and the reserved field of the group
PolicyGenTemplate CR. The GitOps ZTP pipeline uses these values to populate the required fields in
the workload partitioning MachineConfig CR (cpuset) and the PerformanceProfile CR (reserved)
that configure the single-node OpenShift cluster.

NOTE

For maximum performance, ensure that the reserved and isolated CPU sets do not
) share CPU cores across NUMA zones.

® The workload partitioning MachineConfig CR pins the OpenShift Container Platform
infrastructure pods to a defined cpuset configuration.

® The PerformanceProfile CR pins the systemd services to the reserved CPUs.

IMPORTANT

The value for the reserved field specified in the PerformanceProfile CR must match the
cpuset field in the workload partitioning MachineConfig CR.

Additional resources
® Forthe recommended single-node OpenShift workload partitioning configuration, see
Workload partitioning.
17.6.6. Recommended installation-time cluster configurations

The ZTP pipeline applies the following custom resources (CRs) during cluster installation. These
configuration CRs ensure that the cluster meets the feature and performance requirements necessary
for running a vDU application.

NOTE

When using the ZTP GitOps plugin and SiteConfig CRs for cluster deployment, the
following MachineConfig CRs are included by default.

Use the SiteConfig extraManifests filter to alter the CRs that are included by default. For more
information, see Advanced managed cluster configuration with SiteConfig CRs.

17.6.6.1. Workload partitioning

Single-node OpenShift clusters that run DU workloads require workload partitioning. This limits the
cores allowed to run platform services, maximizing the CPU core for application payloads.

280

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

NOTE

Workload partitioning can only be enabled during cluster installation. You cannot disable
workload partitioning postinstallation. However, you can reconfigure workload
partitioning by updating the cpu value that you define in the performance profile, and in
the related MachineConfig custom resource (CR).

® The base64-encoded CR that enables workload partitioning contains the CPU set that the
management workloads are constrained to. Encode host-specific values for crio.conf and
kubelet.conf in base64. Adjust the content to match the CPU set that is specified in the cluster
performance profile. It must match the number of cores in the cluster host.

Recommended workload partitioning configuration

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 02-master-workload-partitioning
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGItZS53b3JrbGOhZHMubWFuYWdIbWVudFOKYWNOaXZhdGivbl
9hbm5vdGF0aW9ulD0gInRhecmdldC53b3JrbGOhZC5veGVuc2hpZnQuaW8vbWFuYWdIbWVu
dCIKYW5ub3RhdGlvbI9wecmVmaXggPSAicmVzb3VyY2VzLndvemtsb2FkLmOwZW5zaGImdC5
pbylKecmVzb3VyY2VzID0geyAiY3B1c2hhcmVzIiA9IDAsICJjcHVzZXQilD0gljAtMSw1Mi01Mylgf
Qo=
mode: 420
overwrite: true
path: /etc/crio/crio.conf.d/01-workload-partitioning
user:
name: root
- contents:
source: data:text/plain;charset=utf-
8;base64,ewoglCJtYW5hZ2ViZW50ljogewoglCAgImMNwdXNIACIEICIWLTESNTIRNTMiCiAgfQp
9Cg==
mode: 420
overwrite: true
path: /etc/kubernetes/openshift-workload-pinning
user:
name: root

e When configured in the cluster host, the contents of /etc/crio/crio.conf.d/01-workload-
partitioning should look like this:

[crio.runtime.workloads.management]

activation_annotation = "target.workload.openshift.io/management”
annotation_prefix = "resources.workload.openshift.io"

resources = { "cpushares" = 0, "cpuset" = "0-1,52-53" } ﬂ

281

OpenShift Container Platform 4.12 Scalability and performance

The cpuset value varies based on the installation. If Hyper-Threading is enabled, specify
both threads for each core. The cpuset value must match the reserved CPUs that you
define in the spec.cpu.reserved field in the performance profile.

e When configured in the cluster, the contents of /etc/kubernetes/openshift-workload-pinning
should look like this:

{

"management": {
"cpuset": "0-1,52-53")
}
}

The cpuset must match the cpuset value in /etc/crio/crio.conf.d/01-workload-
partitioning.

Verification

Check that the applications and cluster system CPU pinning is correct. Run the following commands:

1. Open a remote shell connection to the managed cluster:

I $ oc debug node/example-sno-1
2. Check that the OpenShift infrastructure applications CPU pinning is correct:

I sh-4.4# pgrep ovn | while read i; do taskset -cp $i; done
Example output

pid 8481's current affinity list: 0-1,52-53
pid 8726's current affinity list: 0-1,52-53
pid 9088's current affinity list: 0-1,52-53
pid 9945's current affinity list: 0-1,52-53
pid 10387's current affinity list: 0-1,52-53
pid 12123's current affinity list: 0-1,52-53
pid 13313's current affinity list: 0-1,52-53

3. Check that the system applications CPU pinning is correct:
I sh-4.4# pgrep systemd | while read i; do taskset -cp $i; done
Example output

pid 1's current affinity list: 0-1,52-53

pid 938's current affinity list: 0-1,52-53
pid 962's current affinity list: 0-1,52-53
pid 1197's current affinity list: 0-1,52-53

17.6.6.2. Reduced platform management footprint

282

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

To reduce the overall management footprint of the platform, a MachineConfig custom resource (CR) is
required that places all Kubernetes-specific mount points in a new namespace separate from the host
operating system. The following base64-encoded example MachineConfig CR illustrates this
configuration.

Recommended container mount namespace configuration

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: container-mount-namespace-and-kubelet-conf-master
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;baseb4,lyEvYmluL2Jhc2gKCmRIYnVnKCkgewoglGVjaG8gJEAgPiYyCnOKCnVzYWdIKCkgewoglGVj
aG8gVXNhz2U6I1CQoYmFzZW5hbWUgJDApIFVOSVQgW2VudmZpbGUgW3Zhcm5hbWVdXQoglGV
jaG8KICBIY2hvIEV4dHJhY3QgdGhlIGNvbnRIbnRzIGIMIHR0ZSBmaXJzdCBFeGVjU3RhcnQgc3Rhbn
phlGZyb20gdGhllGdpdmVulHN5c3RIbWQgdW5pdCBhbmQgecmVO0dXJulGIOIHRVIHNOZG91dAogIGVj
aG8KICBIY2hvICJJZiAnZW52ZmlsZScgaXMgcHJvdmIkZWQsIHB1dCBpdCBpbiB0aGVyZSBpbnNOZW
FKLCBhcyBhbiBlbnZpcm9ubWVudCB2Y XJpYWJsZSBuYW1IZCAndmFybmFtZSciCiAgZWNobyAiRGV
mYXVsdCAndmFybmFtZScgaXMgRVhFQ1NUQVJUIGIMIG5vdCBzcGVjaWZpZWQiCiAgZXhpdCAxC
nOKCIVOSVQ9JDEKRUSWRKIMRTOkMgpWQVJOQU1FPSQzCmImIFtbIC16ICRVTKIUIHX8ICRVTkKIUI
DO9ICILWhIbHAIiIHx8ICRVTKIUID09ICItaClgXV07IHRoZW4KICB1c2FnZQpmaQpkZWJ1ZyAiRXhOcm
FidGluZyBFeGVjU3RhcnQgZnJvbSAKVU5JVCIKRKIMRTOKKHNSc3RIbWNObCBjYXQgJFVOSVQgfCB
0ZWFKIC1ulDEpCkZJTEU9JHtGSUxFI1wjlHOKaWYgW1sglISAtZiAKRKIMRSBdAXTsgdGhlbgoglGRIYnV
nICJGYWIsZWQgdG8gZmluZCByb2901GZpbGUgZm9yIHVuaXQgJFVOSVQgKCRGSUxXFKSIKICBIle
GIOCmMZpCmRIYNVnICJTZXJ2aWNIIGRIZmluaXRpb24gaXMgaW4gJEZJTEUICKVYRUNTVEFSVDOk
KHNIZCAtbiAtZSAnL15FeGVjU3RhcnQ9LipcXCQvLCIbXIxcXSQvIHsgecy9eRXhIY1NOYXJOPS8vOyBw
IHONIC111ICcvXkV4ZWNTdGFydDOuKlteXFxdJC8geyBzL15FeGVjU3RhcnQ9Ly87IHAgfScgJEZJTEUp
CgppZiBbWyAKRU5WRKIMRSBdXTsgdGhlbgoglFZBUk5BTUU9JHIWQVJOQU1FOi1FWEVDU1RBUI
R9CiAgZWNobyAiJHIWQVJOQU1FfTOkeOVYRUNTVEFSVHO0IID4gJEVOVKZJTEUKZWxzZQoglGVja
G8gJEVYRUNTVEFSVApmaQo=
mode: 493
path: /usr/local/bin/extractExecStart
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvYmluL2Jhc2gKbnNIbnRIciAtLW1vdW50PS9ydW4vY29udGFpbmVyLW1vdW50LW5hbW\
zcGFjZS9tbnQgliRAlgo=
mode: 493
path: /usr/local/bin/nsenterCmns
systemd:
units:
- contents: |
[Unit]
Description=Manages a mount namespace that both kubelet and crio can use to share their
container-specific mounts

[Service]
Type=oneshot

283

OpenShift Container Platform 4.12 Scalability and performance

RemainAfterExit=yes
RuntimeDirectory=container-mount-namespace
Environment=RUNTIME_DIRECTORY=%t/container-mount-namespace
Environment=BIND_POINT=%t/container-mount-namespace/mnt
ExecStartPre=bash -c "findmnt ${RUNTIME_DIRECTORY?} || mount --make-unbindable --bind
${RUNTIME_DIRECTORY} ${RUNTIME_DIRECTORY}"
ExecStartPre=touch ${BIND_POINT}
ExecStart=unshare --mount=${BIND_POINT} --propagation slave mount --make-rshared /
ExecStop=umount -R ${RUNTIME_DIRECTORY}
enabled: true
name: container-mount-namespace.service
- dropins:
- contents: |
[Unit]
Wants=container-mount-namespace.service
After=container-mount-namespace.service

[Service]
ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env ORIG_EXECSTART
EnvironmentFile=-/%t/%N-execstart.env
ExecStart=
ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
${ORIG_EXECSTART}"
name: 90-container-mount-namespace.conf
name: crio.service
- dropins:
- contents: |
[Unit]
Wants=container-mount-namespace.service
After=container-mount-namespace.service

[Service]
ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env ORIG_EXECSTART
EnvironmentFile=-/%t/%N-execstart.env
ExecStart=
ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
${ORIG_EXECSTART} --housekeeping-interval=30s"
name: 90-container-mount-namespace.conf
- contents: |
[Service]
Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"
Environment="OPENSHIFT_EVICTION_MONITORING_PERIOD_DURATION=30s"
name: 30-kubelet-interval-tuning.conf
name: kubelet.service

17.6.6.3.SCTP

Stream Control Transmission Protocol (SCTP) is a key protocol used in RAN applications. This
MachineConfig object adds the SCTP kernel module to the node to enable this protocol.

Recommended SCTP configuration

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:

284

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

labels:
machineconfiguration.openshift.io/role: master
name: load-sctp-module
spec:
config:
ignition:
version: 2.2.0
storage:
files:
- contents:
source: data:,
verification: {}
filesystem: root
mode: 420
path: /etc/modprobe.d/sctp-blacklist.conf
- contents:
source: data:text/plain;charset=utf-8,sctp
filesystem: root
mode: 420
path: /etc/modules-load.d/sctp-load.conf

17.6.6.4. Accelerated container startup

The following MachineConfig CR configures core OpenShift processes and containers to use all
available CPU cores during system startup and shutdown. This accelerates the system recovery during
initial boot and reboots.

Recommended accelerated container startup configuration

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 04-accelerated-container-startup-master
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvYmluL2Jhc2gKIlwojlFRIbXBvemFyaWx5IHJIc2VOIHRoZSBjb3JIIHN5c3RIbSBwem9jZXNz
ZXMncyBDUFUgYWZmaW5pdHkgdG8gYmUgdW5yZXNOcmljdGVkIHRVIGFjY2VsZXJhdGUgc3Rhcen
R1cCBhbmQgc2h1dGRvd24KIwojlIFRoZSBkZWZhdWx0cyBiZWxvdyBjYW4gYmUgb3ZicnJpZGRIbiB2z
WEgZW52aXJvbm1lbnQgdmFyaWFibGVzCiMKCiMgVGhIIGRIZmF1bHQgc2V0IGIMIGNyaXRpY2Fsl|
HByb2NIc3NIcyB3aG9zZSBhZmZpbml0eSBzaG91bGQgYmUgdGVicGyY XJpbHkgdW5ib3VuZDoKQ
1JJVEIDQUXfUFJPQOVTUOVTPSR7Q1JJVEIDQUxfUFJPQOVTUOVTOI0iY3JpbyBrdWJIbGVOIE5IdHd
vemtNYW5hZ2VylGNvbm1vbiBkYnVzInOKCiMgRGVmYXVsdCB3YWI0IHRpbWUgaXMgNjAwcyA9IDE
wbToKTUFYSU1VTVIXQUIUX1RJTUUIJHINQVhJTVVNX1dBSVRfVEINRTotNjAwWfQoKIyBEZWZhd
Wx0IHNOZWFkeS1zdGF0ZSB0aHJlc2hvbGQgPSAyJQojIEFsbG93ZWQgdmFsdWVzOgojICAOICALIG
Fic29sdXRIIHBvZCBjb3VudCAoKy8tKQojlCA0JSAtIHBIcmNIbnQgY2hhbmdIlCgrLy0pCiMglCOxIC0gZG
IzZYWJsZSB0aGUgc3RIYWR5LXNOYXRIIGNoZWNrCINURUFEWVIOTVEFURVOUSFJFUOhPTEQ9JHt
TVEVBRFIfU1RBVEVfVEhSRVNITOXEOiOyJXOKCiMgRGVmYXVsdCBzdGVhZHkic3RhdGUgd2luZG9

285

OpenShift Container Platform 4.12 Scalability and performance

286

31D0gNjBzCiMgSWYgdGhlIHJ1bm5pbmcgcGOkIGNvdWS5S0IHNOY XIzIHdpdGhpbiB0aGUgZ212ZW4gdG
hyZXNob2xklGZvciB0aGlzIHRpbWUKIlyBwZXJpb2QsIHJIdHVybiBDUFUgdXRpbGl6YXRpb249dG8gb
m9ybWFsIGJIZm9yZSB0aGUgbWF4aW11bSB3YWIOIHRpbWUgaGFzCiMgZXhwaXJlcwpTVEVBRFIf
U1RBVEV{VOIORE9XPSR7U1RFQURZX1NUQVRFX1dJTkRPVzotNjB9Cgoj|IERIZmF1bHQgc3RIYW
R5LXNOYXRIIGFsbG93cyBhbnkgcGOkIGNvdW50IHRVIGJIICJzdGVhZHkge3RhdGUICiIMgSW5jcmVhe
2luZyB0aGilzIHdpbGwgc2tpcCBhbnkgc3RIYWR5LXNOYXRIIGNoZWNrcyB1bnRpbCB0aGUgY291bnQ
gemizZXMgYWJvdmUKIyB0aGlzIG51bWJIciBObyBhdm9pZCBmYWxzZSBwb3NpdGI2ZXMgaWYgdGhl
cmUgYXJIIHNvbWUgcGVyaW9kecyB3aGVyZSB0aGUKIyBjb3VudCBkb2VzbidOIGIuY3JIYXNIGJ1dCB3
ZSBrbm93IHdIIGNhbid0IGJIIGFOIHNOZWFkeS1zdGF0ZSB5ZXQuCINURUFEWVOTVEFURVONSUSJ
TVVNPSR7U1RFQURZX1NUQVRFX01JTKINVUOEGLTBICgojlyMjlyMjlyMjlyMjlyMjlyMjlyMijlyMijlyMjlyMj
yMjlyMjlyMjlyMjlyMjlyMjlyMjlyMjCgpLVUJFTEVUXONQVVITVEFURTOvdmFyL2xpYi9rdWJIbGVOL2Nw
dVotYW5hZ2VyX3NOYXRICKZVTExfQ1BVX1NUQVRFPS9zeXMvZnMvY2dyb3VwL2NwdXNIdC9jcHVz
ZXQuY3B1cwpLVUJFTEVUXONPTKY9OL2VOYy9rdWJlcm5ldGVzL2t1YmVsZXQuY29uZgpibndlc3Rya
WNOZWRDcHVzZXQoKSB7CiAgbhG9jYWwgY3B1cwoglGImIFtbIC1IICRLVUJFTEVUXONQVVITVEF
URSBdXTsgdGhlbgoglCAgY3B1czOkKGpxIC1ylICcuZGVmYXVsdENwdVNIdCcgPCRLVUJFTEVUXON
QVVIOTVEFURSKKICAgIGImIFtbIC1ulClke2NwdXN9liAmJiAtZSAke0tVQkVMRVRfQ090ORN0gXV07IH
RoZW4KICAgICAgecmVzZXJ2ZWRfY3B1czOkKGpxIC1ylCcucmVzZXJ2ZWRTeXNOZW1DUFVzJyA8L2
VOYy9rdWdlecm5IldGVzL2t1YmVsZXQuY29uZikKICAgICAgaWYgW1sgLW4gliR7cmVzZXJ2ZWRfY3B1¢
30ilF1dOyB0aGVuCiAgICAgICAglyBVc2UgdGFza3NIdCBObyBtZXJnZSB0aGUgdHdvIGNwdAXNIdHMK
ICAgQICAQICBjcHVzPSQodGFza3NIdCAtYyAiJHtyZXNIcnZIZF9jcHVzfSwke2NwdXN9liBnecmVwIC1plE
NwdXNfYWxsb3dIZF9saXNOICO9wcm9jL3NIbGYvec3RhdHVzIHwgY XdrlCd7cHJpbnQgJDJ9JykKICAQGIC
AgZmkKICAgIGZpCiAgZmkKICBpZiBbWyAteiAkY3B1cyBdXTsgdGhlbgoglCAglyBmYWxsIGJhY2sgdG
8gdXNpbmcgYWxsIGNwdXMgaWyYgdGhlIGt1YmVsZXQgc3RhdGUgaXMgbm90IGNvbmZpZ3VyZWQ
geWVOCiAgICBbWyAtZSAKRIVMTFIDUFV{U1RBVEUgXV0gfHwgecmVOdXJulDEKICAgIGNwdXM9JC
g8JEZVTEXxfQ1BVX1NUQVRFKQogIGZpCiAgZWNobyAkY3B1cwp9CgpyZXNOcmljdGVkQ3B1c2VOK
CkgewoglGZvciBhcmcgaW4gJCg8L3Byb2MvY21kbGluZSk7IGRvCIAgICBpZiBoWyAKY XJnID1+IF5zeX
NOZW1kLmNwdV9hZmZpbml0eTOgXV07IHRoZW4KICAgICAgZWNobyAke2FyZyMqPX0KICAgICAgc
mVO0dXJulDAKICAQIGZpCiAgZG9uZQoglIHJIdHVyYbiAXxCnOKCnJlc2VOQWZmaW5pdHkoKSB7CiAghG
9j)YWwgY3B1c2VOPSIKMSIKICBsb2NhbCBmYWIsY291bnQ9MAogIGxvY2FsIHN1Y2NIc3Njb3VudDOw
CiAgbGInZ2VyICJSZWNvdmVyeTogU2V0dGluZyBDUFUgYWZmaW5pdHkgZm9ylGNyaXRpY2FsIH
Byb2NIc3NIcyBcliRDUKIUSUNBTFIQUKIDRVNTRVNCcIiBObyAkY3B1c2V0IgoglGZvciBwem9jlGlulCRD
UkIUSUNBTF9QUKIDRVNTRVM7IGRvCiAgICBsb2NhbCBwaWRzPSIkKKHBncmVwICRwem9jKSIKIC
AglGZvciBwaWQgaW4gJHBpZHM7IGRVCiAgICAgIGxvY2FsIHRhc2tzZXRPdAXRwdXQKICAgICAgdG
Fza3NIdE91dHB1dD0iJChOYXNrc2V0IC1hcGMgliRjcHVzZXQilCRwaWQgMj4mMSkiCiAgICAgIGImIFt
bICQ/IC1uZSAwIF1dOyB0aGVuCiAgICAgICAgZWNobyAiRVJST1161CROYXNrc2V0T3V0cHV0IgoglC
AgICAgICgoZmFpbGNvdW50KyspKQoglCAgICBIbHNICIAgICAgICAgKChzdWNjZXNzY291bnQrKykp
CiAgICAgIGZpCiAgICBkb25ICiAgZG9uZQoKICBsb2dnZXIglldlY292ZXJ50iBSZS1hZmZpbmVkICRzd
WNjZXNzY291bnQgcGlkcyBzdWNjZXNzZnVsbHkiCiAgaWYgW1sgJGZhaWxjb3VudCAtZ3QgMCBdIXT
sgdGhlbgoglCAgbG9nZ2VyICJSZWNvdmVyeTogRmFpbGVKIHRVIHJILWFMZmIuZSAKZmFpbGNvdW
50IHByb2NIc3NIcyIKICAgIHJIdHVybiAxCiAgZmkKiQoKc2VOVW5yZXNOcmljdGVKKCkgewoglGxvZ2dici
AiUmVjb3Zlcnk6IFNIdHRpbmcgY 3JpdGliY Wwgc3lzdGViIHByb2NIc3NIcyBObyBoYXZIIHVucmVzdHJpY
RIZCBDUFUgYWN;jZXNzlgogIHJIc2V0QWZmaW5pdHkgliQodW5yZXN0cmljdGVkQ3B1c2VOKSIKIQo
Kc2VoUmVzdHJpY3RIZCgplHsKICBsb2dnZXIgllJlY292ZXJ50iBSZXNIdHRpbmcgY 3JpdGljY Wwgc3lzc
GVtIHByb2NIc3NIcyBiYWNrIHRvIG5vem1hbGx51HJIc3RyaWNOZWQgYWNjZXNzlgogIHJIc2VOQWZm
aW5pdHkgliQoemVzdHJpY3RIZENwdXNIdCkiCnOKCmN1cndIbonRBZmZpbml0eSgplHsKICBsb2NhbC
BwaWQ9liQxIgoglHRhc2tzZXQgLXBjICRwaWQgfCBhd2sgLUYnOiAnICd7cHJpbnQgJDJ9Jwp9Cgp3a
XRoaW40KSB7CiAgbG9jYWwgbGFzdDOkMSBjdXJyZW50PSQyIHRocmVzaG9sZD0kMwoglGxvY2Fsl|
GRIbHRhPTAgcGNoYW5nZQoglGRIbHRhPSQoKCBjdXJyZW501C0gbGFzdCApKQoglGImIFtbICRjd
XJyZW50IC11cSAkbGFzdCBdXTsgdGhlbgoglCAgcGNoYW5nZTOwWCiAgZWxpZiBbWyAkbGFzdCAtZX
EgMCBdXTsgdGhlbgoglCAgcGNoYW5nZTOXMDAwWMDAwWCiIAgZWxzZQoglCAgcGNoYW5nZT0OkKCg
gKCAKZGVsdGEgKiAXMDApIC8gbGFzdCApKQoglGZpCiAgZWNobyAtbiAibGFzdDokbGFzdCBjdXJy
ZW500iRjdXJyZW50IGRIbHRhOIRKZWx0Y SBwY2hhbmdIOiR7cGNoYW5nZX0IOiAiCiAgbG9jYWwgY
WJzb2x1dGUgbGltaXQKICBjYXNIICR0aHJlc2hvbGQgaW4KICAgIColKQoglCAgICBhYnNvbHVOZTOK
e3BjaGFuZ2Ujly191CMgYWJzb2x1dGUgdmFsdWUKICAgICAgbGltaXQ9JHt0aHJIc2hvbGQIJSVICiAg|
CAgIDs7CiAgICAgKQogICAgICBhYnNvbHV0ZT0Oke2RIbHRhIyMtfSAjIGFic29sdXRIIHZhbHVICiAgICAg
IGxpbWIOPSR0aHJIc2hvbGQKICAgICAgOzsKICBIc2FjCiAgaWYgW1sgdGFic29sdXRIIC1sZSAkbGltax

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

QgXV07IHRoZW4KICAgIGVjaG8gIndpdGhpbiAoKy8tKSR0aHJIc2hvbGQICiAgICByZXR1cm4gMAogl!
GVsc2UKICAgQIGVjaG8gIlm91dHNpZGUgKCsvLSkkdGhyZXNob2xklgoglCAgecmVOdXJulDEKICBmMaQ
p9CopzdGVhZHIzdGF0ZSgplHsKICBsb2NhbCBsYXNOPSQxIGN1cndlbnQ9JDIKICBpZiBoWyAkbGFz
dCAtbHQgJFNURUFEWV9TVEFURVINSUSJTVVNIF1dOyB0aGVuCiAgICBIY2hvICJsYXNOOiRsYXN
0IGN1cnJlbnQ6JGN1cndibnQgV2FpdGluZyB0ObyByZWFjaCAkU1RFQURZX1NUQVRFX01JTKINVUOg
YmVmb3JIIGNoZWNraW5nIGZvciBzdGVhZHktc3RhdGUICiAgICByZXR1cm4gMQoglGZpCiAgd2l0aGl
ulCRsYXNOICRjdXJyZW50ICRTVEVBRFIfU1RBVEVfVEhSRVNITOXECnOKCndhaXRGb3JSZWFkeSg
pIHsKICBsb2dnzXIgllJlY292ZXJ50iBXYWI0aW5nICR7TUFYSU1VTVIXQUIUX1RJTUV9cyBmb3lgdG
hllGluaXRpYWxpemF0aW9ulHRVIGNvbXBsZXRIIgoglGxvY2FsIGxhc3RTeXNOZW1kQ3B1c2VOPSIKK
GN1cndlbnRBZmZpbml0eSAXKSIKICBsb2NhbCBsYXNORGVzaXJIZENwdXNIdD0iJCh1bnJic3RyaWN
0ZWRDcHVzZXQplgoglGxvY2FsIHQIMCBzPTEwCiAgbG9jYWwgbGFzdENjb3VudDOwIGNjb3VudD0O
WIHNOZWFkeVNOYXRIVGItZTOwWCiAgd2hpbGUgW1sgJHQgLWx0ICRNQVhJTVVNX1dBSVRVEINRS
BdXTsgZG8KICAgIHNsZWVwICRzCiAgICAocKHQgKz0gcykpCiAgICAjIFJILWNoZWNrIHRoZSBjdXJyZ
W50IGFMZmIuaXR5IGI9MIHN5c3RIbWQsIGIulGNhc2Ugc29tZSBvdGhliciBwem9jZXNzIGhhcyBjaGFuZ
2VKIGIOCiAgICBsb2NhbCBzeXN0ZW1kQ3B1c2VOPSIKKGN1cndlbnRBZmZpbmI0eSAXKSIKICAgICMg
UmUtY2hlY2sgdGhlIHVucmVzdHJpY3RIZCBDcHVzZXQsIGFzIHRoZSBhbGxvd2VKIHNIdCBvZiB1bndl
c2VydmVkIGNvemVzIG1heSBjaGFuZ2UgYXMgcG9kcyBhcmUgYXNzaWduZWQgdG8gY29yZXMKICA
glGxvY2FsIGRIc2lyZWRDcHVzZXQ91iQodW5yZXN0cmljdGVkQ3B1c2VOKSIKICAgIGImIFtbICRzeXNO
ZW1kQ3B1c2VOICE9ICRsYXNOU3IzdGVIZENwdXNIdCB8fCAKbGFzdERIc2lyZWRDcHVzZXQgIT0gJ
GRIc2lyZWRDcHVzZXQgXV07IHRoZW4KICAgICAgcmVzZXRBZmZpbml0eSAiJGRIc2lyZWRDcHVzZ
XQiCiAgICAgIGxhc3RTeXN0ZW1kQ3B1c2VOPSIKKGN1cnJlbnRBZmZpbml0eSAXKSIKICAgICAgbGF
zdERIc2lyZWRDcHVzZXQ9IiRKZXNpcmVkQ3B1c2V0IlgoglCAgZmkKCiAgICAJIERIAGVjdCBzdGVhZHk
tc3RhdGUgcG9kIGNvdW50CiAgICBjY291bnQ9JChjcmljdGwgcHMgfCB3YyAtbCkKICAgIGImMIHNOZW
FkeXNOYXRIICRsYXNOQ2NvdW50ICRjY291bnQ7IHRoZW4KICAgICAgKChzdGVhZHITdGFO0ZVRpb
WUgKz0gcykpCiAgICAgIGVjaG8glINOZWFkeS1zdGF0ZSBmb3lgJHtzdGVhZHITdGF0ZVRpbWV9cy8
ke1NURUFEWV9TVEFURV9XSUS5ET 1d9cylKICAgICAgaWYgW1sgJHNOZWFkeVNOYXRIVGItZSAtZ2
UgJFNURUFEWV9TVEFURV9XSUS5ET1cgXV07IHRoZW4KICAgICAgICBsb2dnZXIgllJIY292ZXJ50iB
TdGVhZHkic3RhdGUgKCsvLSAKU1RFQURZX1NUQVRFX1RIUKVTSEOMRCkgZm9yICR7U1RFQU
RZX1NUQVRFX1dJTkRPV31zOiBEb25lIgogICAgICAgIHJIdHVybiAwCiAgICAgIGZpCiAgICBIbHNICiAg
ICAgQIGImIFtbICRzdGVhZHITdGF0ZVRpbWUgLWdOIDAgXV07IHRoZW4KICAgICAgICBIY2hvICJSZX
NIdHRpbmcgc3RIYWRSLXNOYXRIIHRpbWVylgoglCAgICAgIHNOZWFkeVNOYXRIVGItZTOWCiAgICAgI
GZpCiAgICBmaQoglCAgbGFzdENjb3VudDOKY2NvdW50CiAgZG9uZQoglGxvZ2dIiciAiUmVjb3ZIcnkel
FJIY292ZXJ51ENvbXBsZXRIIFRpbWVvdXQiCnOKCm1haW40KSB7CiAgaWYgISB1bnJlc3RyaWNO0ZW
RDcHVzZXQgPiYvZGV2L251bGw7IHRoZWA4KICAgIGxvZ2dIciAiUmVjb3Zlcnk61E5vIHVucmVzdHJpY3
RIZCBDcHVzZXQgY291bGQgYmUgZGV0ZWNOZWQIiCiAgICByZXR1cm4gMQoglGZpCgoglGImICE
gemVzdHJpY3RIZENwAXNIACA+Ji9kZXYvbnVsbDsgdGhlbgoglCAgbGInZ2VyICJSZWNvdmVyeTogT
m8gcmVzdHJpY3RIZCBDcHVzZXQgaGFzIGJIZW4gY29uZmIndXJIZC4gIFdIIGFyZSBhbHJIYWR5IHJ1
bm5pbmcgdW5yZXNOcmljdGVkKLIIKICAgIHJIdHVYybiAwCiAgZmkKCiAglyBFbnN1cmUgd2UgemVzZXQ¢
dGhIIENQVSBhZmZpbml0eSB3aGVulHdIIGV4aXQgdGhpcyBzY3JpcHQ9Zm9yIGFueSByZWFzb24KI
CAjIFRoaXMgd2F51GVpdGhlciBhZnRIciBOaGUgdGltZXIgZXhwaXJlcyBvciBhZnRIciBOaGUgcHJvY2Vzc
yBpcyBpbnRIcnd1cHRIZAogICMgdmlhIF5DIG9yIFNJR1RFUkOsIHdAIIHJIdHVybiBOaGluZ3MgYmFjayB0O
byB0aGUgd2F5IHRoZXkgc2hvdWxklGJILgogIHRyYXAgc2VOUmVzdHJpY3RIZCBFWEIUCgoglGxvZ2
diciAiUmVjb3ZIcnk6IFJIY292ZXJ51E1vZGUgU3RhcnRpbmciCiAgc2VOVW5yZXNOcmljdGVKCiAgd2Fpd
EZvclJIYWR5CnOKCmImIFtbIClke0JBUOhfUO9VUKNFWzBdfSIgPSAiJHswSIgXV07IHRoZW4KICBtYW
lulClke0B9IgoglGV4aXQgJD8KZmkK
mode: 493
path: /usr/local/bin/accelerated-container-startup.sh
systemd:
units:
- contents: |
[Unit]
Description=Unlocks more CPUs for critical system processes during container startup

[Service]

Type=simple
ExecStart=/usr/local/bin/accelerated-container-startup.sh

287

OpenShift Container Platform 4.12 Scalability and performance

Maximum wait time is 600s = 10m:
Environment=MAXIMUM_WAIT_TIME=600

Steady-state threshold = 2%

Allowed values:

4 - absolute pod count (+/-)

4% - percent change (+/-)

-1 - disable the steady-state check

Note: '%' must be escaped as '%%' in systemd unit files
Environment=STEADY_STATE_THRESHOLD=2%%

Steady-state window = 120s

If the running pod count stays within the given threshold for this time

period, return CPU utilization to normal before the maximum wait time has
expires

Environment=STEADY_STATE_WINDOW=120

Steady-state minimum = 40

Increasing this will skip any steady-state checks until the count rises above
this number to avoid false positives if there are some periods where the

count doesn't increase but we know we can't be at steady-state yet.
Environment=STEADY_STATE_MINIMUM=40

[Install]
WantedBy=multi-user.target

enabled: true

name: accelerated-container-startup.service

- contents: |

[Unit]
Description=Unlocks more CPUs for critical system processes during container shutdown
DefaultDependencies=no

[Service]
Type=simple
ExecStart=/usr/local/bin/accelerated-container-startup.sh

Maximum wait time is 600s = 10m:
Environment=MAXIMUM_WAIT_TIME=600

Steady-state threshold

Allowed values:

4 - absolute pod count (+/-)

4% - percent change (+/-)

-1 - disable the steady-state check

Note: '%' must be escaped as '%%' in systemd unit files
Environment=STEADY_STATE_THRESHOLD=-1

Steady-state window = 60s

If the running pod count stays within the given threshold for this time

period, return CPU utilization to normal before the maximum wait time has
expires

Environment=STEADY_STATE_WINDOW=60

[Install]

288

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

WantedBy=shutdown.target reboot.target halt.target
enabled: true
name: accelerated-container-shutdown.service

17.6.6.5. Automatic kernel crash dumps with kdump

The kdump Linux kernel feature creates a kernel crash dump when the kernel crashes. The kdump
feature is enabled with the following MachineConfig CRs.

Recommended MachineConfig CR to remove ice driver from control plane kdump logs (05-
kdump-config-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 05-kdump-config-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump-remove-ice-module.service
contents: |
[Unit]
Description=Remove ice module when doing kdump
Before=kdump.service
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/usr/local/bin/kdump-remove-ice-module.sh
[Install]
WantedBy=multi-user.target
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvdXNyL2JpbidlbnYgYmFzaAoKlyBUaGlzIHNjcmlwdCByZW1vdmVzIHRoZSBpY2UgbW9k
dWxIIGZyb20ga2R1bXAgdG8gcHJIdmVudCBrZHVicCBmYWIsdXJlcyBvbiBjZXJ0YWIulHNIcnZlcnMuCi
MgVGhpcyBpcyBhIHRIbXBvemFyeSB3b3JrYXJvdW5kIGZvciBSSEVMUEXBTi0OxMzgyMzYgYW5kIGNh
iBiZSByZW1vdmVkIHdoZW4gdGhhdCBpc3N1ZSBpcwojlGZpeGVkLgoKc2V0IC14CgpTRUQ9I91c3Iv
YmIuL3NIZCIKR1JFUDOIL3Vzci9iaW4vZ3JIcCIKCiMgb3ZlcndpZGUgZm9yIHRIc3RpbmcgcHVycG9zZX
MKSORVTVBfQ090R]j0iJHsxOi0vZXRjL3N5c2NvbmZpZy9rZHVicHOICIJFTUIWRV9JQOVIUTRSPSJtb
2R1bGVfYmxhY2tsaXNOPWIjZSIKCiMgZXhpdCBpZiBmaWxIIGRvZXNuJ3QgZXhpc3QKWyAhIC1mIC
R7SORVTVBfQO90ORN0gXSAMJiBleGIOIDAKCiMgZXhpdCBpZiBmaWxIIGFscmVhZHkgdXBkYXRIZAok
e0dSRVB9IC1GcSAke1JFTUIWRVIJQOVIUTRSISAkeOtEVUTQXONPTKZIICYmIGV4aXQgMAoKIlyB
UYXJInZXQgbGluZSBsb29rcyBzb211dGhpbmcgbGIrZSB0aGlzOgojIEtEVU1QXONPTU1BTKkRMSUSFX
OFQUEVORDO0iaXJxcG9sbCBucl9jcHVzPTEgLi4ulGhlc3RfZGlIzYWJsZSIKlyBVc2Ugc2VKIHRvIG1hdG
NolGV2ZXJ5dGhpbmcgYmV0d2VIbiBOaGUgcXVvdGVzIGFuZCBhcHBIbmQgdGhIIFJFTU9WRV9JQO
VfU1RSIHRVIGIOCiR7UOVEfSAtaSAncy9eSORVTVBfQOINTUFORExJTkVIQVBQRUSEPSJbXiJdKi8m

289

OpenShift Container Platform 4.12 Scalability and performance

ICcke1JFTU9QWRVOJQOVIU1RSfScvdyAkeOtEVU1QXONPTKZ9IHX8IGV4aXQgMAo=
mode: 448
path: /usr/local/bin/kdump-remove-ice-module.sh

Recommended control plane node kdump configuration (06-kdump-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 06-kdump-enable-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump.service
kernelArguments:
- crashkernel=512M

Recommended MachineConfig CR to remove ice driver from worker node kdump logs (05-
kdump-config-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 05-kdump-config-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump-remove-ice-module.service
contents: |
[Unit]
Description=Remove ice module when doing kdump
Before=kdump.service
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/usr/local/bin/kdump-remove-ice-module.sh
[Install]
WantedBy=multi-user.target
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;baseb4,lyEvdXNyL2JpbidlbnYgYmFzaAoKlyBUaGlzIHNjcmiwdCByZW1vdmVzIHRoZSBpY2UgbW9k

290

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

dWxIIGZyb20ga2R 1bXAgdG8gcHJIdmVudCBrZHVicCBmYWIsdXJlcyBvbiBjZXJOYWIulHNIcnZlcnMuCi
MgVGhpcyBpcyBhIHRIbXBvemFyeSB3b3JrYXJvdW5kIGZvciBSSEVMUEXBTiIOxMzgyMzYgYWS5KIGNh
iBiZSByZW1vdmVklIHdoZW4gdGhhdCBpc3N1ZSBpcwojlGZpeGVkLgoKc2V0IC14CgpTRUQ9II91c3lv
YmIuL3NIZCIKR1JFUDOIL3Vzci9iaW4vZ3JIcCIKCiMgb3ZlcndpZGUgZm9yIHRIc3RpbmcgcHVycG9zZX
MKSORVTVBfQ090R]j0iJHsxOi0vZXRjL3N5c2NvbmZpZy9rZHVicHOICIJFTU9WRV9JQOVIU1RSPSJtb
2R1bGVfYmxhY2tsaXNOPWIjZSIKCiMgZXhpdCBpZiBmaWxIIGRvZXNuJ3QgZXhpc3QKWyAhIC1mIC
R7SORVTVBfQ090ORN0gXSAMJiBleGIOIDAKCiMgZXhpdCBpZiBmaWxIIGFscmVhZHkgdXBkY XRIZAok
e0dSRVB9IC1GcSAke1JFTUIWRVIJQOVIUTRSISAkeOtEVU1QXONPTKZ9ICYmIGV4aXQgMAoKIlyB
UYXJnZXQgbGluZSBsb29rcyBzb211dGhpbmcgbGlrZSB0aGlzOgojIEtEVU1QXONPTU1BTKRMSUSFX
O0FQUEVORDO0iaXJxcG9sbCBucl9jcHVzPTEgLi4ulGhlc3RfZGIzZYWJsZSIKlyBVc2Ugc2VKIHRVIGT1hdG
NolGV2ZXJ5dGhpbmcgYmV0d2VIbiB0aGUgcXVvdGVzIGFuZCBhcHBIbmQgdGhIIFJFTU9WRV9JQO
VfU1RSIHRVIGIOCiR7UOVEfSAtaSAncy9eSORVTVBfQOINTUFORExJTkVIQVBQRUSEPSJbXiJdKi8m
ICcke1JFTU9QWRVOJQOVIU1RSfScvdyAkeOtEVU1QXONPTKZ9IHX8IGV4aXQgMAo=

mode: 448

path: /usr/local/bin/kdump-remove-ice-module.sh

Recommended kdump worker node configuration (06-kdump-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 06-kdump-enable-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump.service
kernelArguments:
- crashkernel=512M

17.6.7. Recommended postinstallation cluster configurations

When the cluster installation is complete, the ZTP pipeline applies the following custom resources (CRs)
that are required to run DU workloads.

NOTE

In §ztp} v4.10 and earlier, you configure UEF| secure boot with a MachineConfig CR. This
is no longer required in {ztp} v4.11 and later. In v4.11, you configure UEF| secure boot for
single-node OpenShift clusters by updating the spec.clusters.nodes.bootMode field in
the SiteConfig CR that you use to install the cluster. For more information, see
Deploying a managed cluster with SiteConfig and {ztp} .

17.6.7.1. Operator namespaces and Operator groups

Single-node OpenShift clusters that run DU workloads require the following OperatorGroup and
Namespace custom resources (CRs):

® | ocal Storage Operator

291

OpenShift Container Platform 4.12 Scalability and performance

® | ogging Operator
® PTP Operator
® SR-|IOV Network Operator
The following YAML summarizes these CRs:

Recommended Operator Namespace and OperatorGroup configuration

apiVersion: v1i
kind: Namespace
metadata:
annotations:
workload.openshift.io/allowed: management
name: openshift-local-storage
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: openshift-local-storage
namespace: openshift-local-storage
spec:
targetNamespaces:
- openshift-local-storage
apiVersion: vi
kind: Namespace
metadata:
annotations:
workload.openshift.io/allowed: management
name: openshift-logging
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: cluster-logging
namespace: openshift-logging
spec:
targetNamespaces:
- openshift-logging
apiVersion: vi
kind: Namespace
metadata:
annotations:
workload.openshift.io/allowed: management
labels:
openshift.io/cluster-monitoring: "true"
name: openshift-ptp
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: ptp-operators
namespace: openshift-ptp

292

spec:
targetNamespaces:
- openshift-ptp
apiVersion: vi
kind: Namespace
metadata:
annotations:

workload.openshift.io/allowed: management

name: openshift-sriov-network-operator
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: sriov-network-operators

namespace: openshift-sriov-network-operator

spec:
targetNamespaces:
- openshift-sriov-network-operator

17.6.7.2. Operator subscriptions

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Single-node OpenShift clusters that run DU workloads require the following Subscription CRs. The
subscription provides the location to download the following Operators:

® | ocal Storage Operator

® | ogging Operator

® PTP Operator

® SR-|OV Network Operator

Recommended Operator subscriptions

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: cluster-logging
namespace: openshift-logging
spec:
channel: "stable"
name: cluster-logging
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Manual
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: local-storage-operator
namespace: openshift-local-storage
spec:
channel: "stable"
installPlanApproval: Automatic

293

OpenShift Container Platform 4.12 Scalability and performance

name: local-storage-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Manual
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: ptp-operator-subscription
namespace: openshift-ptp
spec:
channel: "stable"
name: ptp-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Manual
apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: sriov-network-operator-subscription
namespace: openshift-sriov-network-operator
spec:
channel: "stable"
name: sriov-network-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Manual

Specify the channel to get the Operator from. stable is the recommended channel.

9 Specify Manual or Automatic. In Automatic mode, the Operator automatically updates to the
latest versions in the channel as they become available in the registry. In Manual mode, new
Operator versions are installed only after they are explicitly approved.

17.6.7.3. Cluster logging and log forwarding

Single-node OpenShift clusters that run DU workloads require logging and log forwarding for
debugging. The following example YAML illustrates the required ClusterLogging and
ClusterLogForwarder CRs.

Recommended cluster logging and log forwarding configuration

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
name: instance
namespace: openshift-logging
spec:
collection:
logs:
fluentd: {}
type: fluentd
curation:

294

1]
2]
©

type: "curator"
curator:
schedule: "30 3 * * *"
managementState: Managed
apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
inputs:
- infrastructure: {}
name: infra-logs
outputs:
- name: kafka-open
type: kafka
url: tcp://10.46.55.190:9092/test
pipelines:
- inputRefs:
- audit
name: audit-logs
outputRefs:
- kafka-open
- inputRefs:
- infrastructure
name: infrastructure-logs
outputRefs:
- kafka-open

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Updates the existing ClusterLogging instance or creates the instance if it does not exist.

Updates the existing ClusterLogForwarder instance or creates the instance if it does not exist.

Specifies the URL of the Kafka server where the logs are forwarded to.

17.6.7.4. Performance profile

Single-node OpenShift clusters that run DU workloads require a Node Tuning Operator performance

profile to use real-time host capabilities and services.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality

is part of the Node Tuning Operator.

The following example PerformanceProfile CR illustrates the required cluster configuration.

Recommended performance profile configuration

I apiVersion: performance.openshift.io/v2

295

OpenShift Container Platform 4.12 Scalability and performance

kind: PerformanceProfile
metadata:
name: openshift-node-performance-profile ﬂ
spec:
additionalKernelArgs:
- "rcupdate.rcu_normal_after_boot=0"
- "efi=runtime"
cpu:
isolated: 2-51,54-103
reserved: 0-1,52-53
hugepages:
defaultHugepagesSize: 1G
pages:
- count: 32
size: 1G G
node: 0 ﬂ
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/master: "™
nodeSelector:
node-role.kubernetes.io/master: ""
numa:
topologyPolicy: "restricted"
realTimeKernel:
enabled: true G

ﬂ Ensure that the value for name matches that specified in the spec.profile.data field of
TunedPerformancePatch.yaml and the status.configuration.source.name field of
validatorCRs/informDuValidator.yaml.

Configures UEFI secure boot for the cluster host.

Set the isolated CPUs. Ensure all of the Hyper-Threading pairs match.

o

IMPORTANT

The reserved and isolated CPU pools must not overlap and together must span all
available cores. CPU cores that are not accounted for cause an undefined behaviour
in the system.

Set the reserved CPUs. When workload partitioning is enabled, system processes, kernel threads,
and system container threads are restricted to these CPUs. All CPUs that are not isolated should
be reserved.

Set the number of huge pages.

Set the huge page size.

Set node to the NUMA node where the hugepages are allocated.

Q90® o

Set enabled to true to install the real-time Linux kernel.

17.6.7.5. Configuring cluster time synchronization

296

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Run a one-time system time synchronization job for control plane or worker nodes.

Recommended one time time-sync for control plane nodes (99-sync-time-once-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 99-sync-time-once-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=Sync time once
After=network.service
[Service]
Type=oneshot
TimeoutStartSec=300
ExecCondition=/bin/bash -c 'systemctl is-enabled chronyd.service --quiet && exit 1 || exit 0'
ExecStart=/usr/sbin/chronyd -n -f /etc/chrony.conf -q
RemainAfterExit=yes
[Install]
WantedBy=multi-user.target
enabled: true
name: sync-time-once.service

Recommended one time time-sync for worker nodes (99-sync-time-once-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-sync-time-once-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=Sync time once
After=network.service
[Service]
Type=oneshot
TimeoutStartSec=300
ExecCondition=/bin/bash -c 'systemctl is-enabled chronyd.service --quiet && exit 1 || exit 0'
ExecStart=/usr/sbin/chronyd -n -f /etc/chrony.conf -q
RemainAfterExit=yes

297

OpenShift Container Platform 4.12 Scalability and performance

[Install]
WantedBy=multi-user.target
enabled: true
name: sync-time-once.service

17.6.7.6. PTP

Single-node OpenShift clusters use Precision Time Protocol (PTP) for network time synchronization.
The following example PtpConfig CR illustrates the required PTP slave configuration.

Recommended PTP configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: du-ptp-slave
namespace: openshift-ptp
spec:
profile:
- interface: ens5f0 ﬂ
name: slave
phc2sysOpts: -a -r -n 24
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 0
priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 248
clockAccuracy OXFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0
dscp_general 0
dataset_comparison ieee1588
G.8275.defaultDS.localPriority 128
#
Port Data Set
#
logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqInterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval 4
neighborPropDelayThresh 20000000
masterOnly 0

298

G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info O

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 1
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval 0
kernel_leap 1
check_fup_sync 0

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1

udp6_scope 0x0E
uds_address /var/run/ptp4l
#

Default interface options

#

clock_type OC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median

CHAPTER 17. CLUSTERS AT THE NETWORK FAR EDGE

299

OpenShift Container Platform 4.12 Scalability and performance

delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0xA0
ptp4lOpts: -2 -s --summary_interval -4
recommend:
- match:
- nodelLabel: node-role.kubernetes.io/master
priority: 4
profile: slave

ﬂ Sets the interface used to receive the PTP clock signal.

17.6.7.7. Extended Tuned profile

Single-node OpenShift clusters that run DU workloads require additional performance tuning
configurations necessary for high-performance workloads. The following example Tuned CR extends
the Tuned profile:

Recommended extended Tuned profile configuration

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: performance-patch
namespace: openshift-cluster-node-tuning-operator
spec:
profile:
- data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-node-performance-profile
[bootloader]
cmdline_crash=nohz_full=2-51,54-103
[sysctl]
kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable
name: performance-patch
recommend:
- machineConfigLabels:

300

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

machineconfiguration.openshift.io/role: master
priority: 19
profile: performance-patch

17.6.7.8. SR-I0OV

Single root I/O virtualization (SR-IOV) is commonly used to enable the fronthaul and the midhaul
networks. The following YAML example configures SR-IOV for a single-node OpenShift cluster.

Recommended SR-IOV configuration

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
configDaemonNodeSelector:
node-role.kubernetes.io/master: "
disableDrain: true
enablelnjector: true
enableOperatorWebhook: true
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
name: sriov-nw-du-mh
namespace: openshift-sriov-network-operator
spec:
networkNamespace: openshift-sriov-network-operator
resourceName: du_mh

vian: 150 €@

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:

name: sriov-nnp-du-mh

namespace: openshift-sriov-network-operator
spec:

deviceType: vfio-pci g

isRdma: false

nicSelector:

pfNames:
- ens7f0 6
nodeSelector:
node-role.kubernetes.io/master: "

numVfs: 8 ﬂ

priority: 10

resourceName: du_mh
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:

name: sriov-nw-du-fh

namespace: openshift-sriov-network-operator

301

OpenShift Container Platform 4.12 Scalability and performance

spec:
networkNamespace: openshift-sriov-network-operator
resourceName: du_fh

vian: 140 @

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: sriov-nnp-du-fh
namespace: openshift-sriov-network-operator
spec:
deviceType: netdevice G
isRdma: true
nicSelector:
pfNames:
- ens3f0 ﬂ
nodeSelector:
node-role.kubernetes.io/master: "
numVfs: 8 6
priority: 10
resourceName: du_fh

Specifies the VLAN for the midhaul network.

Select either vfio-pci or netdevice, as needed.

Specifies the interface connected to the midhaul network.
Specifies the number of VF's for the midhaul network.

The VLAN for the fronthaul network.

Select either vfio-pci or netdevice, as needed.

Specifies the interface connected to the fronthaul network.

Specifies the number of VF's for the fronthaul network.

Q99909000

17.6.7.9. Console Operator

The console-operator installs and maintains the web console on a cluster. When the node is centrally
managed the Operator is not needed and makes space for application workloads. The following
Console custom resource (CR) example disables the console.

Recommended console configuration

apiVersion: operator.openshift.io/v1

kind: Console

metadata:

annotations:

include.release.openshift.io/iom-cloud-managed: "false"
include.release.openshift.io/self-managed-high-availability: "false"
include.release.openshift.io/single-node-developer: "false”
release.openshift.io/create-only: "true"

302

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

name: cluster

spec:
logLevel: Normal
managementState: Removed
operatorLoglLevel: Normal

17.6.7.10. Alertmanager

Single-node OpenShift clusters that run DU workloads require reduced CPU resources consumed by
the OpenShift Container Platform monitoring components. The following ConfigMap custom resource
(CR) disables Alertmanager.

Recommended cluster monitoring configuration

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
data:
config.yaml: |
alertmanagerMain:
enabled: false
prometheusK8s:
retention: 24h

17.6.7.11. Operator Lifecycle Manager

Single-node OpenShift clusters that run distributed unit workloads require consistent access to CPU
resources. Operator Lifecycle Manager (OLM) collects performance data from Operators at regular
intervals, resulting in an increase in CPU utilisation. The following ConfigMap custom resource (CR)

disables the collection of Operator performance data by OLM.

Recommended cluster OLM configuration (ReduceOLMFootprint.yaml)

apiVersion: vi
kind: ConfigMap
metadata:

name: collect-profiles-config

namespace: openshift-operator-lifecycle-manager
data:

pprof-config.yaml: |

disabled: True

17.6.7.12. Network diagnostics

Single-node OpenShift clusters that run DU workloads require less inter-pod network connectivity
checks to reduce the additional load created by these pods. The following custom resource (CR)
disables these checks.

Recommended network diagnostics configuration

I apiVersion: operator.openshift.io/v1

303

OpenShift Container Platform 4.12 Scalability and performance

kind: Network

metadata:
name: cluster

spec:
disableNetworkDiagnostics: true

Additional resources

® Deploying far edge sites using ZTP

17.7. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR
VDU APPLICATION WORKLOADS

Before you can deploy virtual distributed unit (vDU) applications, you need to tune and configure the
cluster host firmware and various other cluster configuration settings. Use the following information to
validate the cluster configuration to support vDU workloads.

Additional resources
® For more information about single-node OpenShift clusters tuned for vDU application
deployments, see Reference configuration for deploying vDUs on single-node OpenShift.
17.7.1. Recommended firmware configuration for vDU cluster hosts

Use the following table as the basis to configure the cluster host firmware for vDU applications running
on OpenShift Container Platform 4.12.

NOTE

The following table is a general recommendation for vDU cluster host firmware
configuration. Exact firmware settings will depend on your requirements and specific
hardware platform. Automatic setting of firmware is not handled by the zero touch
provisioning pipeline.

Table 17.8. Recommended cluster host firmware settings

Firmware setting Configuration Description

HyperTransport Enabled HyperTransport (HT) bus is a bus technology developed by
(HT) AMD. HT provides a high-speed link between the components in
the host memory and other system peripherals.

UEFI Enabled Enable booting from UEFI for the vDU host.

CPU Power and Performance Set CPU Power and Performance Policy to optimize the system

Performance for performance over energy efficiency.

Policy

Uncore Frequency Disabled Disable Uncore Frequency Scaling to prevent the voltage and

Scaling frequency of non-core parts of the CPU from being set
independently.

304

Firmware setting

Uncore Frequency

Performance P-
limit

Enhanced Intel®
SpeedStep Tech

Intel® Turbo Boost
Technology

Intel Configurable
TDP

Configurable TDP
Level

Energy Efficient
Turbo

Hardware P-States

Package C-State

CIE

Processor C6

Sub-NUMA
Clustering

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Configuration Description

Maximum Sets the non-core parts of the CPU such as cache and memory
controller to their maximum possible frequency of operation.

Disabled Disable Performance P-limit to prevent the Uncore frequency
coordination of processors.

Enabled Enable Enhanced Intel SpeedStep to allow the system to
dynamically adjust processor voltage and core frequency that
decreases power consumption and heat production in the host.

Enabled Enable Turbo Boost Technology for Intel-based CPUs to
automatically allow processor cores to run faster than the rated
operating frequency if they are operating below power, current,
and temperature specification limits.

Enabled Enables Thermal Design Power (TDP) for the CPU.

Level 2 TDP level sets the CPU power consumption required for a
particular performance rating. TDP level 2 sets the CPU to the
most stable performance level at the cost of power
consumption.

Disabled Disable Energy Efficient Turbo to prevent the processor from
using an energy-efficiency based policy.

Enabled or Enable OS-controlled P-States to allow power saving

Disabled configurations. Disable P-states (performance states) to
optimize the operating system and CPU for performance over
power consumption.

CO/Cl state Use CO or Clstates to set the processor to a fully active state
(CO) or to stop CPU internal clocks running in software (C1).

Disabled CPU Enhanced Halt (CIE) is a power saving feature in Intel
chips. Disabling CIE prevents the operating system from sending
a halt command to the CPU when inactive.

Disabled C6 power-saving is a CPU feature that automatically disables
idle CPU cores and cache. Disabling C6 improves system
performance.

Disabled Sub-NUMA clustering divides the processor cores, cache, and

memory into multiple NUMA domains. Disabling this option can
increase performance for latency-sensitive workloads.

305

OpenShift Container Platform 4.12 Scalability and performance

NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

NOTE

Enable both C-states and OS-controlled P-States to allow per pod power management.

17.7.2. Recommended cluster configurations to run vDU applications

Clusters running virtualized distributed unit (vDU) applications require a highly tuned and optimized
configuration. The following information describes the various elements that you require to support vDU
workloads in OpenShift Container Platform 4.12 clusters.

17.7.2.1. Recommended cluster MachineConfig CRs

Check that the MachineConfig custom resources (CRs) that you extract from the ztp-site-generate
container are applied in the cluster. The CRs can be found in the extracted out/source-crs/extra-
manifest/ folder.

The following MachineConfig CRs from the ztp-site-generate container configure the cluster host:

Table 17.9. Recommended MachineConfig CRs

CR filename Description

02-workload-partitioning.yaml Configures workload partitioning for the cluster.
Apply this MachineConfig CR when you install the
cluster.

03-sctp-machine-config-master.yaml, 03-sctp- Loads the SCTP kernel module. These
machine-config-worker.yaml MachineConfig CRs are optional and can be
omitted if you do not require this kernel module.

01-container-mount-ns-and-kubelet-conf- Configures the container mount namespace and
master.yaml, 01-container-mount-ns-and- Kubelet configuration.
kubelet-conf-worker.yaml

04-accelerated-container-startup- Configures accelerated startup for the cluster.
master.yaml, 04-accelerated-container-
startup-worker.yaml

06-kdump-master.yaml, 06-kdump- Configures kdump for the cluster.
worker.yaml

Additional resources

® Extracting source CRs from the ztp-site-generate container

17.7.2.2. Recommended cluster Operators

306

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

The following Operators are required for clusters running virtualized distributed unit (vDU) applications
and are a part of the baseline reference configuration:

® Node Tuning Operator (NTO). NTO packages functionality that was previously delivered with
the Performance Addon Operator, which is now a part of NTO.

® PTP Operator
® SR-|IOV Network Operator
® Red Hat OpenShift Logging Operator

® | ocal Storage Operator

17.7.2.3. Recommended cluster kernel configuration

Always use the latest supported real-time kernel version in your cluster. Ensure that you apply the
following configurations in the cluster:

1. Ensure that the following additionalKernelArgs are set in the cluster performance profile:

spec:
additionalKernelArgs:
- "rcupdate.rcu_normal_after_boot=0"
- "efi=runtime"

2. Ensure that the performance-patch profile in the Tuned CR configures the correct CPU
isolation set that matches the isolated CPU set in the related PerformanceProfile CR, for
example:

spec:
profile:
- name: performance-patch
The 'include' line must match the associated PerformanceProfile name
And the cmdline_crash CPU set must match the 'isolated’ set in the associated
PerformanceProfile
data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-node-performance-profile
[bootloader]
cmdline_crash=nohz_full=2-51,54-103 €}
[sysctl]
kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable

Listed CPUs depend on the host hardware configuration, specifically the number of
available CPUs in the system and the CPU topology.

17.7.2.4. Checking the realtime kernel version

307

OpenShift Container Platform 4.12 Scalability and performance

Always use the latest version of the realtime kernel in your OpenShift Container Platform clusters. If you
are unsure about the kernel version that is in use in the cluster, you can compare the current realtime
kernel version to the release version with the following procedure.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You are logged in as a user with cluster-admin privileges.

® You have installed podman.

Procedure

1. Run the following command to get the cluster version:

I $ OCP_VERSION=$(oc get clusterversion version -o jsonpath='{.status.desired.version}
{ll\n"}l)

2. Get the release image SHA number:

$ DTK_IMAGE=$(oc adm release info --image-for=driver-toolkit quay.io/openshift-release-
dev/ocp-release:30OCP_VERSION-x86_64)

3. Run the release image container and extract the kernel version that is packaged with cluster’s
current release:

I $ podman run --rm $DTK_IMAGE rpm -ga | grep 'kernel-rt-core-' | sed 's#kernel-rt-core-##'
Example output
I 4.18.0-305.49.1.rt7.121.el8_4.x86_64

This is the default realtime kernel version that ships with the release.

NOTE

The realtime kernel is denoted by the string .rt in the kernel version.

Verification

Check that the kernel version listed for the cluster’s current release matches actual realtime kernel that
is running in the cluster. Run the following commands to check the running realtime kernel version:

1. Open a remote shell connection to the cluster node:

I $ oc debug node/<node_name>

2. Check the realtime kernel version:

I sh-4.4# uname -r

Example output

308

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE
I 4.18.0-305.49.1.rt7.121.el8_4.x86_64

17.7.3. Checking that the recommended cluster configurations are applied

You can check that clusters are running the correct configuration. The following procedure describes
how to check the various configurations that you require to deploy a DU application in OpenShift
Container Platform 4.12 clusters.

Prerequisites
® You have deployed a cluster and tuned it for vDU workloads.
® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

1. Check that the default OperatorHub sources are disabled. Run the following command:

I $ oc get operatorhub cluster -o yaml

Example output

spec:
disableAllDefaultSources: true

2. Check that all required CatalogSource resources are annotated for workload partitioning
(PreferredDuringScheduling) by running the following command:

$ oc get catalogsource -A -0 jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.target\.workload\.openshift\.io/management}{"\n"Hend}'

Example output

certified-operators -- {"effect": "PreferredDuringScheduling"}
community-operators -- {"effect": "PreferredDuringScheduling"}
ran-operators

redhat-marketplace -- {"effect": "PreferredDuringScheduling"}
redhat-operators -- {"effect": "PreferredDuringScheduling"}

CatalogSource resources that are not annotated are also returned. In this example, the
ran-operators CatalogSource resource is not annotated and does not have the
PreferredDuringScheduling annotation.

NOTE

In a properly configured vDU cluster, only a single annotated catalog source is
listed.

3. Check that all applicable OpenShift Container Platform Operator namespaces are annotated

309

OpenShift Container Platform 4.12 Scalability and performance

for workload partitioning. This includes all Operators installed with core OpenShift Container
Platform and the set of additional Operators included in the reference DU tuning configuration.
Run the following command:

$ oc get namespaces -A -0 jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.workload\.openshift\.io/allowed}{"\n"}{end}'

Example output

default --

openshift-apiserver -- management
openshift-apiserver-operator -- management
openshift-authentication -- management
openshift-authentication-operator -- management

IMPORTANT

Additional Operators must not be annotated for workload partitioning. In the
output from the previous command, additional Operators should be listed
without any value on the right side of the -- separator.

4. Check that the ClusterLogging configuration is correct. Run the following commands:

a. Validate that the appropriate input and output logs are configured:

I $ oc get -n openshift-logging ClusterLogForwarder instance -o yaml
Example output

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
creationTimestamp: "2022-07-19T21:51:41Z2"
generation: 1
name: instance
namespace: openshift-logging
resourceVersion: "1030342"
uid: 8c1a842d-80c5-447a-9150-40350bdf40f0
spec:
inputs:
- infrastructure: {}
name: infra-logs
outputs:
- name: kafka-open
type: kafka
url: tcp://10.46.55.190:9092/test
pipelines:
- inputRefs:
- audit
name: audit-logs
outputRefs:
- kafka-open
- inputRefs:
- infrastructure

310

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

name: infrastructure-logs
outputRefs:
- kafka-open

b. Check that the curation schedule is appropriate for your application:
I $ oc get -n openshift-logging clusterloggings.logging.openshift.io instance -o yaml
Example output

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
creationTimestamp: "2022-07-07T18:22:56Z2"
generation: 1
name: instance
namespace: openshift-logging
resourceVersion: "235796"
uid: ef67b9b8-0e65-4a10-88ff-ec06922ea796
spec:
collection:
logs:
fluentd: {}
type: fluentd
curation:
curator:
schedule: 303 * * *
type: curator
managementState: Managed

5. Check that the web console is disabled (managementState: Removed) by running the
following command:

I $ oc get consoles.operator.openshift.io cluster -o jsonpath="{ .spec.managementState }"
Example output
I Removed

6. Check that chronyd is disabled on the cluster node by running the following commands:
I $ oc debug node/<node_name>

Check the status of chronyd on the node:

I sh-4.44# chroot /host

I sh-4.4# systemctl status chronyd

Example output

31

OpenShift Container Platform 4.12 Scalability and performance

e chronyd.service - NTP client/server
Loaded: loaded (/usr/lib/systemd/system/chronyd.service; disabled; vendor preset:
enabled)
Active: inactive (dead)
Docs: man:chronyd(8)
man:chrony.conf(5)

7. Check that the PTP interface is successfully synchronized to the primary clock using a remote
shell connection to the linuxptp-daemon container and the PTP Management Client (pmc¢)
tool:

a. Set the $PTP_POD_NAME variable with the name of the linuxptp-daemon pod by running
the following command:

I $ PTP_POD_NAME=$(oc get pods -n openshift-ptp -l app=linuxptp-daemon -o name)

b. Run the following command to check the sync status of the PTP device:

$ oc -n openshift-ptp rsh -c¢ linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f
/var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

Example output

sending: GET PORT_DATA_SET
3cecef.fffe.7a7020-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET

portldentity 3cecef.fffe.7a7020-1
portState SLAVE
logMinDelayReqInterval -4
peerMeanPathDelay 0
logAnnouncelnterval 1
announceReceiptTimeout 3

logSynclinterval 0
delayMechanism 1
logMinPdelayReqglInterval 0
versionNumber 2
3cecef.fffe.7a7020-2 seqg 0 RESPONSE MANAGEMENT PORT_DATA_SET
portldentity 3cecef.fffe.7a7020-2
portState LISTENING

logMinDelayReqlnterval 0
peerMeanPathDelay 0
logAnnouncelnterval 1
announceReceiptTimeout 3

logSynclinterval 0
delayMechanism 1
logMinPdelayReqlInterval 0
versionNumber 2

c. Run the following pmec command to check the PTP clock status:

$ oc -n openshift-ptp rsh -c¢ linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f
/var/run/ptp4l.0.config -b 0 'GET TIME_STATUS_NP'

Example output

312

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

sending: GET TIME_STATUS_NP
3cecef.fffe.7a7020-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP

master_offset 10 ﬂ
ingress_time 1657275432697400530
cumulativeScaledRateOffset +0.000000000
scaledLastGmPhaseChange 0
gmTimeBaselndicator 0
lastGmPhaseChange 0x0000'0000000000000000.0000

gmPresent true 9
gmldentity 3¢2c30.ffff.670e00

ﬂ master_offset should be between -100 and 100 ns.

9 Indicates that the PTP clock is synchronized to a master, and the local clock is not the
grandmaster clock.

d. Check that the expected master offset value corresponding to the value in
/var/run/ptp4l.0.config is found in the linuxptp-daemon-container log:

I $ oc logs $PTP_POD_NAME -n openshift-ptp -c linuxptp-daemon-container
Example output

phc2sys[56020.341]: [ptp4l.1.config] CLOCK_REALTIME phc offset -1731092 s2 freq -
1546242 delay 497

ptp41[56020.390]: [ptp4l.1.config] master offset -2 82 freq -5863 path delay 541
ptp41[56020.390]: [ptp4l.0.config] master offset -8 s2 freq -10699 path delay 533

8. Check that the SR-IOV configuration is correct by running the following commands:

a. Check that the disableDrain value in the SriovOperatorConfig resource is set to true:

$ oc get sriovoperatorconfig -n openshift-sriov-network-operator default -o jsonpath="
{.spec.disableDrain}{\n'}"

Example output

I true

b. Check that the SriovNetworkNodeState sync status is Succeeded by running the
following command:

$ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -0 jsonpath="
{.items[*].status.syncStatus}{"\n'}"
Example output

I Succeeded

c. Verify that the expected number and configuration of virtual functions (Vfs) under each
interface configured for SR-IOV is present and correct in the .status.interfaces field. For
example:

313

OpenShift Container Platform 4.12 Scalability and performance

I $ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -o yami
Example output

apiVersion: vi

items:

- apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState

status:
interfaces:

- Vfs:

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.0
vendor: "8086"
vilD: 0
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.1
vendor: "8086"
vflD: 1
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.2
vendor: "8086"
vflD: 2
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.3
vendor: "8086"
vflD: 3
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.4
vendor: "8086"
vilD: 4
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.5
vendor: "8086"
vflD: 5
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.6
vendor: "8086"
vflD: 6
devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.7
vendor: "8086"
vilD: 7

314

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

9. Check that the cluster performance profile is correct. The cpu and hugepages sections will
vary depending on your hardware configuration. Run the following command:

I $ oc get PerformanceProfile openshift-node-performance-profile -o yaml
Example output

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:

creationTimestamp: "2022-07-19T21:51:31Z2"

finalizers:

- foreground-deletion

generation: 1

name: openshift-node-performance-profile

resourceVersion: "33558"

uid: 217958c0-9122-4c62-9d4d-fdc27¢31118¢c

spec:

additionalKernelArgs:

- idle=poll

- rcupdate.rcu_normal_after_boot=0

- efi=runtime

cpu:
isolated: 2-51,54-103
reserved: 0-1,52-53

hugepages:
defaultHugepagesSize: 1G
pages:

- count: 32
size: 1G

machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/master: "™

net:
userLevelNetworking: true

nodeSelector:
node-role.kubernetes.io/master: ™"

numa:
topologyPolicy: restricted

realTimeKernel:
enabled: true

status:

conditions:

- lastHeartbeatTime: "2022-07-19T721:51:31Z2"
lastTransitionTime: "2022-07-19T21:51:31Z2"
status: "True"
type: Available

- lastHeartbeatTime: "2022-07-19T721:51:31Z"
lastTransitionTime: "2022-07-19T21:51:31Z2"
status: "True"
type: Upgradeable

- lastHeartbeatTime: "2022-07-19T21:51:312"
lastTransitionTime: "2022-07-19T21:51:31Z2"
status: "False"
type: Progressing

- lastHeartbeatTime: "2022-07-19T721:51:31Z"

315

OpenShift Container Platform 4.12 Scalability and performance

lastTransitionTime: "2022-07-19T21:51:31Z"
status: "False"
type: Degraded
runtimeClass: performance-openshift-node-performance-profile
tuned: openshift-cluster-node-tuning-operator/openshift-node-performance-openshift-node-
performance-profile

NOTE

CPU settings are dependent on the number of cores available on the server and
should align with workload partitioning settings. hugepages configuration is
server and application dependent.

10. Check that the PerformanceProfile was successfully applied to the cluster by running the
following command:

$ oc get performanceprofile openshift-node-performance-profile -o jsonpath="{range
.status.conditions[*]}{ @.type H' -- 'H@.status}{"\n"{end}"

Example output

Available -- True
Upgradeable -- True
Progressing -- False
Degraded -- False

1. Check the Tuned performance patch settings by running the following command:

$ oc get tuneds.tuned.openshift.io -n openshift-cluster-node-tuning-operator performance-
patch -o yaml

Example output

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
creationTimestamp: "2022-07-18T10:33:52Z2"
generation: 1
name: performance-patch
namespace: openshift-cluster-node-tuning-operator
resourceVersion: "34024"
uid: f9799811-f744-4179-bf00-32d4436c08fd
spec:
profile:
- data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-node-performance-profile
[bootloader]
cmdline_crash=nohz_full=2-23,26-47 ﬂ
[sysctl]
kernel.timer_migration=1
[scheduler]

316

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

group.ice-ptp=0:f:10:*:ice-ptp.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable
name: performance-patch
recommend:
- machineConfigLabels:
machineconfiguration.openshift.io/role: master
priority: 19
profile: performance-patch

ﬂ The cpu list in emdline=nohz_full= will vary based on your hardware configuration.

12. Check that cluster networking diagnostics are disabled by running the following command:

$ oc get networks.operator.openshift.io cluster -o
jsonpath='{.spec.disableNetworkDiagnostics}'

Example output

I true

13. Check that the Kubelet housekeeping interval is tuned to slower rate. This is set in the
containerMountNS machine config. Run the following command:

$ oc describe machineconfig container-mount-namespace-and-kubelet-conf-master | grep
OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION

Example output
I Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"

14. Check that Grafana and alertManagerMain are disabled and that the Prometheus retention
period is set to 24h by running the following command:

$ oc get configmap cluster-monitoring-config -n openshift-monitoring -o jsonpath="{
.data.config\.yaml }"

Example output

grafana:
enabled: false
alertmanagerMain:
enabled: false
prometheusK8s:
retention: 24h

a. Use the following commands to verify that Grafana and alertManagerMain routes are not
found in the cluster:

I $ oc get route -n openshift-monitoring alertmanager-main

317

OpenShift Container Platform 4.12 Scalability and performance

I $ oc get route -n openshift-monitoring grafana

Both queries should return Error from server (NotFound) messages.

15. Check that there is a minimum of 4 CPUs allocated as reserved for each of the
PerformanceProfile, Tuned performance-patch, workload partitioning, and kernel command
line arguments by running the following command:

I $ oc get performanceprofile -o jsonpath="{ .items[0].spec.cpu.reserved }"

Example output

I 0-3

NOTE

Depending on your workload requirements, you might require additional reserved
CPUs to be allocated.

17.8. ADVANCED MANAGED CLUSTER CONFIGURATION WITH
SITECONFIG RESOURCES

You can use SiteConfig custom resources (CRs) to deploy custom functionality and configurations in
your managed clusters at installation time.

17.8.1. Customizing extra installation manifests in the ZTP GitOps pipeline

You can define a set of extra manifests for inclusion in the installation phase of the zero touch
provisioning (ZTP) GitOps pipeline. These manifests are linked to the SiteConfig custom resources
(CRs) and are applied to the cluster during installation. Including MachineConfig CRs at install time
makes the installation process more efficient.

Prerequisites

e Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for the Argo CD
application.

Procedure

1. Create a set of extra manifest CRs that the ZTP pipeline uses to customize the cluster installs.

2. Inyour custom /siteconfig directory, create an /extra-manifest folder for your extra manifests.
The following example illustrates a sample /siteconfig with /extra-manifest folder:

siteconfig
— site1-sno-du.yaml
— site2-standard-du.yaml
—— extra-manifest
L— 01-example-machine-config.yaml

3. Add your custom extra manifest CRs to the siteconfig/extra-manifest directory.

318

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

4. Inyour SiteConfig CR, enter the directory name in the extraManifestPath field, for example:

clusters:

- clusterName: "example-sno"
networkType: "OVNKubernetes"
extraManifestPath: extra-manifest

5. Save the SiteConfig CRs and /extra-manifest CRs and push them to the site configuration
repo.

The ZTP pipeline appends the CRs in the /extra-manifest directory to the default set of extra manifests
during cluster provisioning.

17.8.2. Filtering custom resources using SiteConfig filters

By using filters, you can easily customize SiteConfig custom resources (CRs) to include or exclude
other CRs for use in the installation phase of the zero touch provisioning (ZTP) GitOps pipeline.

You can specify an inclusionDefault value of include or exclude for the SiteConfig CR, along with a
list of the specific extraManifest RAN CRs that you want to include or exclude. Setting
inclusionDefault to include makes the ZTP pipeline apply all the filesin /source-crs/extra-manifest
during installation. Setting inclusionDefault to exclude does the opposite.

You can exclude individual CRs from the /source-crs/extra-manifest folder that are otherwise included
by default. The following example configures a custom single-node OpenShift SiteConfig CR to
exclude the /source-crs/extra-manifest/03-sctp-machine-config-worker.yaml CR at installation time.

Some additional optional filtering scenarios are also described.

Prerequisites

® You configured the hub cluster for generating the required installation and policy CRs.

® You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

1. To prevent the ZTP pipeline from applying the 03-sctp-machine-config-worker.yaml CR file,
apply the following YAML in the SiteConfig CR:

apiVersion: ran.openshift.io/v1

kind: SiteConfig

metadata:
name: "site1-sno-du"
namespace: "site1-sno-du”

spec:
baseDomain: "example.com"
pullSecretRef:

name: "assisted-deployment-pull-secret”

clusterimageSetNameRef: "openshift-4.12"
sshPublicKey: "<ssh_public_key>"
clusters:

- clusterName: "site1-sno-du"

319

OpenShift Container Platform 4.12 Scalability and performance

extraManifests:
filter:
exclude:
- 03-sctp-machine-config-worker.yaml

The ZTP pipeline skips the 03-sctp-machine-config-worker.yaml CR during installation. All
other CRs in /source-crs/extra-manifest are applied.

2. Save the SiteConfig CR and push the changes to the site configuration repository.
The ZTP pipeline monitors and adjusts what CRs it applies based on the SiteConfig filter
instructions.

3. Optional: To prevent the ZTP pipeline from applying all the /source-crs/extra-manifest CRs
during cluster installation, apply the following YAML in the SiteConfig CR:

- clusterName: "site1-sno-du"
extraManifests:
filter:
inclusionDefault: exclude

4. Optional: To exclude all the /source-crs/extra-manifest RAN CRs and instead include a custom
CR file during installation, edit the custom SiteConfig CR to set the custom manifests folder
and the include file, for example:

clusters:
- clusterName: "site1-sno-du"
extraManifestPath: "<custom_manifest folder>"
extraManifests:
filter:
inclusionDefault: exclude 9
include:
- custom-sctp-machine-config-worker.yaml

ﬂ Replace <custom_manifest_folders with the name of the folder that contains the custom
installation CRs, for example, user-custom-manifest/.

9 Set inclusionDefault to exclude to prevent the ZTP pipeline from applying the files in
/source-crs/extra-manifest during installation.

The following example illustrates the custom folder structure:

siteconfig
—— site1-sno-du.yaml
—— user-custom-manifest
L custom-sctp-machine-config-worker.yaml

17.9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH
POLICYGENTEMPLATE RESOURCES

You can use PolicyGenTemplate CRs to deploy custom functionality in your managed clusters.

17.9.1. Deploying additional changes to clusters

320

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

If you require cluster configuration changes outside of the base GitOps ZTP pipeline configuration,
there are three options:

Apply the additional configuration after the ZTP pipeline is complete

When the GitOps ZTP pipeline deployment is complete, the deployed cluster is ready for application
workloads. At this point, you can install additional Operators and apply configurations specific to your
requirements. Ensure that additional configurations do not negatively affect the performance of the
platform or allocated CPU budget.

Add content to the ZTP library

The base source custom resources (CRs) that you deploy with the GitOps ZTP pipeline can be
augmented with custom content as required.

Create extra manifests for the cluster installation

Extra manifests are applied during installation and make the installation process more efficient.

IMPORTANT

Providing additional source CRs or modifying existing source CRs can significantly impact
the performance or CPU profile of OpenShift Container Platform.

Additional resources

® Customizing extra installation manifests in the ZTP GitOps pipeline

17.9.2. Using PolicyGenTemplate CRs to override source CRs content

PolicyGenTemplate custom resources (CRs) allow you to overlay additional configuration details on
top of the base source CRs provided with the GitOps plugin in the ztp-site-generate container. You can
think of PolicyGenTemplate CRs as a logical merge or patch to the base CR. Use PolicyGenTemplate
CRs to update a single field of the base CR, or overlay the entire contents of the base CR. You can
update values and insert fields that are not in the base CR.

The following example procedure describes how to update fields in the generated PerformanceProfile
CR for the reference configuration based on the PolicyGenTemplate CR in the group-du-sno-
ranGen.yaml file. Use the procedure as a basis for modifying other parts of the PolicyGenTemplate
based on your requirements.

Prerequisites

e Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for Argo CD.

Procedure
1. Review the baseline source CR for existing content. You can review the source CRs listed in the

reference PolicyGenTemplate CRs by extracting them from the zero touch provisioning (ZTP)
container.

a. Create an/out folder:
I $ mkdir -p ./out

b. Extract the source CRs:

321

OpenShift Container Platform 4.12 Scalability and performance

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.12.1 extract /home/ztp --tar | tar x -C ./out

2. Review the baseline PerformanceProfile CR in ./out/source-crs/PerformanceProfile.yamil:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: $name
annotations:
ran.openshift.io/ztp-deploy-wave: "10"
spec:
additionalKernelArgs:
- "idle=poll"
- "rcupdate.rcu_normal_after_boot=0"
cpu:
isolated: $isolated
reserved: $reserved
hugepages:
defaultHugepagesSize: $defaultHugepagesSize
pages:
- size: $size
count: $count
node: $node
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/$mcp: ""
net:
userLevelNetworking: true
nodeSelector:
node-role.kubernetes.io/$mcp: "
numa:
topologyPolicy: "restricted"
realTimeKernel:
enabled: true

NOTE

Any fields in the source CR which contain $... are removed from the generated
CRif they are not provided in the PolicyGenTemplate CR.

3. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file. The following example PolicyGenTemplate CR stanza supplies
appropriate CPU specifications, sets the hugepages configuration, and adds a new field that
sets globallyDisablelrqLoadBalancing to false.

- fileName: PerformanceProfile.yaml
policyName: "config-policy"
metadata:
name: openshift-node-performance-profile
spec:
cpu:
These must be tailored for the specific hardware platform
isolated: "2-19,22-39"
reserved: "0-1,20-21"

322

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

hugepages:
defaultHugepagesSize: 1G
pages:
- size: 1G
count: 10
globallyDisablelrgLoadBalancing: false

4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP argo CD application.

Example output

The ZTP application generates an RHACM policy that contains the generated PerformanceProfile CR.
The contents of that CR are derived by merging the metadata and spec contents from the
PerformanceProfile entry in the PolicyGenTemplate onto the source CR. The resulting CR has the
following content:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: openshift-node-performance-profile
spec:
additionalKernelArgs:
- idle=poll
- rcupdate.rcu_normal_after_boot=0
cpu:
isolated: 2-19,22-39
reserved: 0-1,20-21
globallyDisablelrgLoadBalancing: false
hugepages:
defaultHugepagesSize: 1G
pages:
- count: 10
size: 1G
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/master:
net:
userLevelNetworking: true
nodeSelector:
node-role.kubernetes.io/master: ™"
numa:
topologyPolicy: restricted
realTimeKernel:
enabled: true

323

OpenShift Container Platform 4.12 Scalability and performance

NOTE

In the /source-crs folder that you extract from the ztp-site-generate container, the $
syntax is not used for template substitution as implied by the syntax. Rather, if the
policyGen tool sees the $ prefix for a string and you do not specify a value for that field
in the related PolicyGenTemplate CR, the field is omitted from the output CR entirely.

An exception to this is the $mep variable in /source-crs YAML files that is substituted
with the specified value for mep from the PolicyGenTemplate CR. For example, in
example/policygentemplates/group-du-standard-ranGen.yaml, the value for mep is
worker:

spec:
bindingRules:

group-du-standard: "
mcp: "worker"

The policyGen tool replace instances of $mcp with worker in the output CRs.

17.9.3. Adding custom content to the GitOps ZTP pipeline

Perform the following procedure to add new content to the ZTP pipeline.

Procedure

1. Create a subdirectory named source-crs in the directory that contains the kustomization.yaml
file for the PolicyGenTemplate custom resource (CR).

2. Add your custom CRs to the source-crs subdirectory, as shown in the following example:

example

L— policygentemplates

—— dev.yaml

—— kustomization.yaml

—— mec-edge-snoi.yaml

—— sno.yaml

L— source-crs

—— PaoCatalogSource.yaml
—— PaoSubscription.yaml
—— custom-crs

| —— apiserver-config.yaml
| —— disable-nic-lldp.yaml
L elasticsearch

—— ElasticsearchNS.yaml
—— ElasticsearchOperatorGroup.yaml

The source-crs subdirectory must be in the same directory as the kustomization.yaml
file.

IMPORTANT

To use your own resources, ensure that the custom CR names differ from the
default source CRs provided in the ZTP container.

324

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

3. Update the required PolicyGenTemplate CRs to include references to the content you added
in the source-crs/custom-crs and source-crs/elasticsearch directories. For example:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "group-dev"
namespace: "ztp-clusters"
spec:
bindingRules:
dev: "true"
mcp: "master”
sourceFiles:
These policies/CRs come from the internal container Image
#Cluster Logging
- fileName: ClusterLogNS.yaml
remediationAction: inform
policyName: "group-dev-cluster-log-ns"
- fileName: ClusterLogOperGroup.yaml
remediationAction: inform
policyName: "group-dev-cluster-log-operator-group”
- fileName: ClusterLogSubscription.yaml
remediationAction: inform
policyName: "group-dev-cluster-log-sub”
#Local Storage Operator
- fileName: StorageNS.yaml
remediationAction: inform
policyName: "group-dev-Iso-ns"
- fileName: StorageOperGroup.yaml
remediationAction: inform
policyName: "group-dev-Iso-operator-group”
- fileName: StorageSubscription.yaml
remediationAction: inform
policyName: "group-dev-lso-sub”
#These are custom local polices that come from the source-crs directory in the git repo
Performance Addon Operator
- fileName: PaoSubscriptionNS.yaml
remediationAction: inform
policyName: "group-dev-pao-ns"
- fileName: PaoSubscriptionCatalogSource.yaml
remediationAction: inform
policyName: "group-dev-pao-cat-source”
spec:
image: <image_URL_here>
- fileName: PaoSubscription.yaml
remediationAction: inform
policyName: "group-dev-pao-sub”
#Elasticsearch Operator
- fileName: elasticsearch/ElasticsearchNS.yaml ﬂ
remediationAction: inform
policyName: "group-dev-elasticsearch-ns"
- fileName: elasticsearch/ElasticsearchOperatorGroup.yaml
remediationAction: inform
policyName: "group-dev-elasticsearch-operator-group”
#Custom Resources
- fileName: custom-crs/apiserver-config.yaml 9

325

OpenShift Container Platform 4.12 Scalability and performance

remediationAction: inform

policyName: "group-dev-apiserver-config"
- fileName: custom-crs/disable-nic-lldp.yaml

remediationAction: inform

policyName: "group-dev-disable-nic-lldp"

et the fileName field to include the relative path to the file from the /source-crs parent
directory.

4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository that is
monitored by the GitOps ZTP Argo CD policies application.

5. Update the ClusterGroupUpgrade CR to include the changed PolicyGenTemplate and save it
as cgu-test.yaml. The following example shows a generated cgu-test.yaml file.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: custom-source-cr
namespace: ztp-clusters
spec:
managedPolicies:
- group-dev-config-policy
enable: true
clusters:
- cluster1
remediationStrategy:
maxConcurrency: 2
timeout: 240

6. Apply the updated ClusterGroupUpgrade CR by running the following command:
I $ oc apply -f cgu-test.yaml

Verification

® Check that the updates have succeeded by running the following command:
I $ oc getcgu -A

Example output

NAMESPACE NAME AGE STATE DETAILS

ztp-clusters custom-source-cr 6s InProgress Remediating non-compliant policies
ztp-install cluster1 19h Completed All clusters are compliant with all the managed
policies

17.9.4. Configuring policy compliance evaluation timeouts for PolicyGenTemplate
CRs

Use Red Hat Advanced Cluster Management (RHACM) installed on a hub cluster to monitor and report
on whether your managed clusters are compliant with applied policies. RHACM uses policy templates to

326

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

apply predefined policy controllers and policies. Policy controllers are Kubernetes custom resource
definition (CRD) instances.

You can override the default policy evaluation intervals with PolicyGenTemplate custom resources
(CRs). You configure duration settings that define how long a ConfigurationPolicy CR can be in a state
of policy compliance or non-compliance before RHACM re-evaluates the applied cluster policies.

The zero touch provisioning (ZTP) policy generator generates ConfigurationPolicy CR policies with
pre-defined policy evaluation intervals. The default value for the noncompliant state is 10 seconds. The
default value for the compliant state is 10 minutes. To disable the evaluation interval, set the value to
never.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. To configure the evaluation interval for all policies in a PolicyGenTemplate CR, add
evaluationinterval to the spec field, and then set the appropriate compliant and
noncompliant values. For example:

spec:
evaluationinterval:
compliant: 30m
noncompliant: 20s

2. To configure the evaluation interval for the spec.sourceFiles object in a PolicyGenTemplate
CR, add evaluationInterval to the sourceFiles field, for example:

spec:

sourceFiles:

- fileName: SriovSubscription.yam|
policyName: "sriov-sub-policy"
evaluationinterval:

compliant: never
noncompliant: 10s

3. Commit the PolicyGenTemplate CRs files in the Git repository and push your changes.

Verification

Check that the managed spoke cluster policies are monitored at the expected intervals.
1. Login as a user with cluster-admin privileges on the managed cluster.

2. Get the pods that are running in the open-cluster-management-agent-addon namespace. Run
the following command:

I $ oc get pods -n open-cluster-management-agent-addon

327

OpenShift Container Platform 4.12 Scalability and performance

Example output

NAME READY STATUS RESTARTS AGE
config-policy-controller-8580894c68-v4xdb 1/1 Running 22 (5d8h ago) 10d

3. Check the applied policies are being evaluated at the expected interval in the logs for the
config-policy-controller pod:

I $ oc logs -n open-cluster-management-agent-addon config-policy-controller-8580894c68-
vaxdb

Example output

2022-05-10T15:10:25.280Z info configuration-policy-controller
controllers/configurationpolicy _controller.go:166 Skipping the policy evaluation due to the
policy not reaching the evaluation interval {"policy": "compute-1-config-policy-config"}
2022-05-10T15:10:25.280Z info configuration-policy-controller
controllers/configurationpolicy _controller.go:166 Skipping the policy evaluation due to the
policy not reaching the evaluation interval {"policy": "compute-1-common-compute-1-catalog-
policy-config"}

17.9.5. Signalling ZTP cluster deployment completion with validator inform policies

Create a validator inform policy that signals when the zero touch provisioning (ZTP) installation and
configuration of the deployed cluster is complete. This policy can be used for deployments of single-
node OpenShift clusters, three-node clusters, and standard clusters.

Procedure

1. Create a standalone PolicyGenTemplate custom resource (CR) that contains the source file
validatorCRs/informDuValidator.yaml. You only need one standalone PolicyGenTemplate
CR for each cluster type. For example, this CR applies a validator inform policy for single-node
OpenShift clusters:

Example single-node cluster validator inform policy CR (group-du-sno-validator-
ranGen.yaml)

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "group-du-sno-validator" 0
namespace: "ztp-group"” 9
spec:
bindingRules:
group-du-sno:
bindingExcludedRules:
ztp-done: ™"
mcp: "master”
sourceFiles:
- fileName: validatorCRs/informDuValidator.yaml
remediationAction: inform G

policyName: "du-policy" ﬂ

328

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

The name of PolicyGenTemplates object. This name is also used as part of the names for
the placementBinding, placementRule, and policy that are created in the requested
hamespace.

This value should match the nhamespace used in the group PolicyGenTemplates.

The group-du-* label defined in bindingRules must exist in the SiteConfig files.

The label defined in bindingExcludedRules must be " ztp-done:*. The ztp-done label is
used in coordination with the Topology Aware Lifecycle Manager.

mcp defines the MachineConfigPool object that is used in the source file
validatorCRs/informDuValidator.yaml. It should be master for single node and three-

node cluster deployments and worker for standard cluster deployments.

Optional. The default value is inform.

O ® 90600 O

This value is used as part of the name for the generated RHACM policy. The generated
validator policy for the single node example is group-du-sno-validator-du-policy.

2. Commit the PolicyGenTemplate CR file in your Git repository and push the changes.

Additional resources
® Upgrading GitOps ZTP

® Preparing the GitOps ZTP site configuration repository

17.9.6. Configuring PTP events with PolicyGenTemplate CRs

You can use the GitOps ZTP pipeline to configure PTP events that use HTTP or AMQP transport.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ

Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

17.9.6.1. Configuring PTP events that use HTTP transport

You can configure PTP events that use HTTP transport on managed clusters that you deploy with the
GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

329

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

OpenShift Container Platform 4.12 Scalability and performance

1. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In.sourceFiles, add the PtpOperatorConfig CR file that configures the transport host:

- fileName: PtpOperatorConfigForEvent.yaml
policyName: "config-policy”
spec:
daemonNodeSelector: {}
ptpEventConfig:
enableEventPublisher: true
transportHost: http://ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043

NOTE

In OpenShift Container Platform 4.12 or later, you do not need to set the
transportHost field in the PtpOperatorConfig resource when you use HTTP
transport with PTP events.

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

- fileName: PtpConfigSlave.yaml 0
policyName: "config-policy"
metadata:
name: "du-ptp-slave"
spec:
profile:
- name: "slave"
interface: "ens5f1" 9
ptp4lOpts: "-2 -s --summary_interval -4" e
phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" ﬂ
ptpClockThreshold: @)
holdOverTimeout: 30 #secs
maxOffsetThreshold: 100 #nano secs
minOffsetThreshold: -100 #nano secs

Can be one of PtpConfigMaster.yaml, PtpConfigSlave.yaml, or
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use
PtpConfigSlave.yaml.

Device specific interface name.

You must append the --summary_interval -4 value to ptp4lOpts in
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

® 06 00O

330

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.

2. Merge any other required changes and files with your custom site repository.

3. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.

Additional resources

® Using PolicyGenTemplate CRs to override source CRs content

17.9.6.2. Configuring PTP events that use AMQP transport

You can configure PTP events that use AMQP transport on managed clusters that you deploy with the
GitOps Zero Touch Provisioning (ZTP) pipeline.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Add the following YAML into .spec.sourceFiles in the common-ranGen.yaml file to configure
the AMQP Operator:

#AMQ interconnect operator for fast events

- fileName: AmqSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscription.yaml
policyName: "subscriptions-policy"

2. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In.sourceFiles, add the PtpOperatorConfig CR file that configures the AMQ transport
host to the config-policy:

I - fileName: PtpOperatorConfigForEvent.yaml

331

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

OpenShift Container Platform 4.12 Scalability and performance

policyName: "config-policy”
spec:

daemonNodeSelector: {}
ptpEventConfig:
enableEventPublisher: true
transportHost: "amqp://amg-router.amq-router.svc.cluster.local”

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

® 06 00O

- fileName: PtpConfigSlave.yaml ﬂ
policyName: "config-policy”
metadata:

name: "du-ptp-slave"

spec:

profile:
- name: "slave"
interface: "ens5f1" 9
ptp4lOpts: "-2 -s --summary_interval -4" 9
phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" ﬂ
ptpClockThreshold: @)
holdOverTimeout: 30 #secs
maxOffsetThreshold: 100 #nano secs
minOffsetThreshold: -100 #nano secs

Can be one PtpConfigMaster.yaml, PtpConfigSlave.yaml, or
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use
PtpConfigSlave.yaml.

Device specific interface name.

You must append the -=-summary_interval -4 value to ptp4lOpts in
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.
The ptpClockThreshold values configure how long after the PTP master clock is
disconnected before PTP events are triggered. holdOverTimeout is the time value in
seconds before the PTP clock event state changes to FREERUN when the PTP
master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the values for
CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys
offset value is outside this range, the PTP clock state is set to FREERUN. When the
offset value is within this range, the PTP clock state is set to LOCKED.

3. Apply the following PolicyGenTemplate changes to your specific site YAML files, for example,
example-sno-site.yaml:

a. In.sourceFiles, add the Interconnect CR file that configures the AMQ router to the
config-policy:

332

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

- fleName: Amglnstance.yaml
policyName: "config-policy”

4. Merge any other required changes and files with your custom site repository.

5. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.
Additional resources

® |[nstalling the AMQ messaging bus

17.9.7. Configuring bare-metal events with PolicyGenTemplate CRs
You can use the GitOps ZTP pipeline to configure bare-metal events that use HTTP or AMQP

transport.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

17.9.7.1. Configuring bare-metal events that use HTTP transport

You can configure bare-metal events that use HTTP transport on managed clusters that you deploy
with the GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Configure the Bare Metal Event Relay Operator by adding the following YAML to
spec.sourceFiles in the common-ranGen.yaml file:

Bare Metal Event Relay operator

- fileName: BareMetalEventRelaySubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscription.yaml
policyName: "subscriptions-policy"

2. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

333

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#cnf-installing-amq-interconnect-messaging-bus_using-ptp
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

OpenShift Container Platform 4.12 Scalability and performance

- fleName: HardwareEvent.yaml ﬂ
policyName: "config-policy”
spec:
nodeSelector: {}
transportHost: "http://hw-event-publisher-service.openshift-bare-metal-
events.svc.cluster.local:9043"
logLevel: "info"

ﬂ Each baseboard management controller (BMC) requires a single HardwareEvent CR only.

NOTE
In OpenShift Container Platform 4.12 or later, you do not need to set the

transportHost field in the HardwareEvent custom resource (CR) when you use
HTTP transport with bare-metal events.

3. Merge any other required changes and files with your custom site repository.

4. Push the changes to your site configuration repository to deploy bare-metal events to new sites
with GitOps ZTP.

5. Create the Redfish Secret by running the following command:

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

Additional resources

® |nstalling the Bare Metal Event Relay using the CLI

® Creating the bare-metal event and Secret CRs

17.9.7.2. Configuring bare-metal events that use AMQP transport

You can configure bare-metal events that use AMQP transport on managed clusters that you deploy
with the GitOps Zero Touch Provisioning (ZTP) pipeline.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ

Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

334

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Procedure

1. To configure the AMQ Interconnect Operator and the Bare Metal Event Relay Operator, add
the following YAML to spec.sourceFiles in the common-ranGen.yaml file:

AMQ interconnect operator for fast events

- fileName: AmqSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscription.yaml
policyName: "subscriptions-policy"

Bare Metal Event Rely operator

- fileName: BareMetalEventRelaySubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscription.yaml
policyName: "subscriptions-policy"

2. Add the Interconnect CR to .spec.sourceFiles in the site configuration file, for example, the
example-sno-site.yaml file:
- fileName: Amglnstance.yaml
policyName: "config-policy”

3. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

- fileName: HardwareEvent.yaml
policyName: "config-policy"
spec:
nodeSelector: {}
transportHost: "amqp://<amq_interconnect_names>.
<amq_interconnect_namespace>.svc.cluster.local" 0
logLevel: "info"

ﬂ The transportHost URL is composed of the existing AMQ Interconnect CR name and
namespace. For example, in transportHost: "amqp://amq-router.amqg-
router.svc.cluster.local”, the AMQ Interconnect hame and nhamespace are both set to
amg-router.

NOTE

Each baseboard management controller (BMC) requires a single HardwareEvent
resource only.

4. Commit the PolicyGenTemplate change in Git, and then push the changes to your site
configuration repository to deploy bare-metal events monitoring to new sites using GitOps
ZTP.

5. Create the Redfish Secret by running the following command:

335

OpenShift Container Platform 4.12 Scalability and performance

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

17.9.8. Configuring the Image Registry Operator for local caching of images

OpenShift Container Platform manages image caching using a local registry. In edge computing use
cases, clusters are often subject to bandwidth restrictions when communicating with centralized image
registries, which might result in long image download times.

Long download times are unavoidable during initial deployment. Over time, there is a risk that CRI-O will
erase the /var/lib/containers/storage directory in the case of an unexpected shutdown. To address
long image download times, you can create a local image registry on remote managed clusters using
GitOps ZTP. This is useful in Edge computing scenarios where clusters are deployed at the far edge of
the network.

Before you can set up the local image registry with GitOps ZTP, you need to configure disk partitioning
in the SiteConfig CR that you use to install the remote managed cluster. After installation, you
configure the local image registry using a PolicyGenTemplate CR. Then, the ZTP pipeline creates

Persistent Volume (PV) and Persistent Volume Claim (PVC) CRs and patches the imageregistry
configuration.

NOTE

The local image registry can only be used for user application images and cannot be used
for the OpenShift Container Platform or Operator Lifecycle Manager operator images.

Additional resources

® OpenShift Container Platform registry overview

17.9.8.1. Configuring disk partitioning with SiteConfig

Configure disk partitioning for a managed cluster using a SiteConfig CR and GitOps ZTP. The disk
partition details in the SiteConfig CR must match the underlying disk.

NOTE
Use persistent naming for devices to avoid device names such as /dev/sda and /dev/sdb

being switched at every reboot. You can use rootDeviceHints to choose the bootable
device and then use same device for further partitioning.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data for
use with GitOps Zero Touch Provisioning (ZTP).

Procedure

336

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/registry/#registry-overview

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

1. Add the following YAML that describes the host disk partitioning to the SiteConfig CR that you
use to install the managed cluster:

nodes:
rootDeviceHints:
wwn: "0x62cea7f05c98c2002708a0a22f480ea"
diskPartition:
- device: /dev/disk/by-id/wwn-0x62cea7f05c98c2002708a0a22ff480ea 0
partitions:
- mount_point: /var/imageregistry
size: 102500 @)
start: 344844 @)

ﬂ This setting depends on the hardware. The setting can be a serial number or device name.
The value must match the value set for rootDeviceHints.

9 The minimum value for size is 102500 MiB.

9 The minimum value for start is 25000 MiB. The total value of size and start must not
exceed the disk size, or the installation will fail.

2. Save the SiteConfig CR and push it to the site configuration repo.

The ZTP pipeline provisions the cluster using the SiteConfig CR and configures the disk partition.

17.9.8.2. Configuring the image registry using PolicyGenTemplate CRs

Use PolicyGenTemplate (PGT) CRs to apply the CRs required to configure the image registry and
patch the imageregistry configuration.

Prerequisites
® You have configured a disk partition in the managed cluster.
® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data for
use with GitOps Zero Touch Provisioning (ZTP).

Procedure

1. Configure the storage class, persistent volume claim, persistent volume, and image registry
configuration in the appropriate PolicyGenTemplate CR. For example, to configure an
individual site, add the following YAML to the file example-sno-site.yamil:

sourceFiles:
storage class
- fileName: StorageClass.yaml
policyName: "sc-for-image-registry"
metadata:
name: image-registry-sc
annotations:

337

OpenShift Container Platform 4.12 Scalability and performance

ran.openshift.io/ztp-deploy-wave: "100" ﬂ
persistent volume claim
- fleName: StoragePVC.yaml|
policyName: "pvc-for-image-registry"
metadata:
name: image-registry-pvc
namespace: openshift-image-registry
annotations:
ran.openshift.io/ztp-deploy-wave: "100"
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: image-registry-sc
volumeMode: Filesystem
persistent volume
- fileName: ImageRegistryPV.yaml 9
policyName: "pv-for-image-registry"
metadata:
annotations:
ran.openshift.io/ztp-deploy-wave: "100"
- fleName: ImageRegistryConfig.yaml
policyName: "config-for-image-registry"
complianceType: musthave
metadata:
annotations:
ran.openshift.io/ztp-deploy-wave: "100"
spec:
storage:
pvc:
claim: "image-registry-pvc"

ﬂ Set the appropriate value for ztp-deploy-wave depending on whether you are configuring
image registries at the site, common, or group level. ztp-deploy-wave: "100" is suitable
for development or testing because it allows you to group the referenced source files

together.

Q In ImageRegistryPV.yaml, ensure that the spec.local.path field is set to
/var/imageregistry to match the value set for the mount_point field in the SiteConfig CR.

IMPORTANT

deployment to fail.

Do not set complianceType: mustonlyhave for the - fileName:
ImageRegistryConfig.yaml configuration. This can cause the registry pod

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being

monitored by the GitOps ZTP ArgoCD application.

Verification

Use the following steps to troubleshoot errors with the local image registry on the managed clusters:

338

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

e Verify successful login to the registry while logged in to the managed cluster. Run the following
commands:

a. Export the managed cluster name:
I $ cluster=<managed_cluster_name>
b. Get the managed cluster kubeconfig details:

$ oc get secret -n $cluster $cluster-admin-password -o jsonpath='{.data.password}' |
base64 -d > kubeadmin-password-$cluster

c. Download and export the cluster kubeconfig:

$ oc get secret -n $cluster $cluster-admin-kubeconfig -o jsonpath="{.data.kubeconfig}' |
base64 -d > kubeconfig-$cluster && export KUBECONFIG=./kubeconfig-$cluster

d. Verify access to the image registry from the managed cluster. See "Accessing the registry”.

® Check that the Config CRD in the imageregistry.operator.openshift.io group instance is not
reporting errors. Run the following command while logged in to the managed cluster:

I $ oc get image.config.openshift.io cluster -o yaml
Example output

apiVersion: config.openshift.io/v1
kind: Image
metadata:
annotations:
include.release.openshift.io/ibm-cloud-managed: "true"
include.release.openshift.io/self-managed-high-availability: "true"
include.release.openshift.io/single-node-developer: "true"
release.openshift.io/create-only: "true"
creationTimestamp: "2021-10-08T19:02:39Z2"
generation: 5
name: cluster
resourceVersion: "688678648"
uid: 0406521b-39c0-4cda-ba75-873697da75a4
spec:
additionalTrustedCA:
name: acm-ice

® Check that the PersistentVolumeClaim on the managed cluster is populated with data. Run
the following command while logged in to the managed cluster:

I $ oc get pv image-registry-sc

® Check that the registry* pod is running and is located under the openshift-image-registry
namespace.

I $ oc get pods -n openshift-image-registry | grep registry*

339

OpenShift Container Platform 4.12 Scalability and performance

Example output

cluster-image-registry-operator-68f5c9¢c589-42cfg 1/1 Running
image-registry-5f8987879-6nx6h 1/1 Running 0

® Check that the disk partition on the managed cluster is correct:

a. Open a debug shell to the managed cluster:

I $ oc debug node/sno-1.example.com

b. Run Isblk to check the host disk partitions:

sh-4.4# Isblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0446.6G 0 disk

|-sdal 81 0 1M 0 part

|-sda2 8:2 0 127M 0 part

|-sda3 8:3 0 384M 0 part /boot

|-sda4 8:4 0336.3G 0 part /sysroot

“-sda5 8:5 0100.1G 0 part /var/imageregistry ﬂ
sdb 8:16 0446.6G 0 disk

srO 11:.0 1 104M Orom

8d
8d

ﬂ /var/imageregistry indicates that the disk is correctly partitioned.

Additional resources

® Accessing the registry

17.9.9. Using hub templates in PolicyGenTemplate CRs

Topology Aware Lifecycle Manager supports partial Red Hat Advanced Cluster Management (RHACM)

hub cluster template functions in configuration policies used with GitOps ZTP.

Hub-side cluster templates allow you to define configuration policies that can be dynamically
customized to the target clusters. This reduces the need to create separate policies for many clusters

with similiar configurations but with different values.

IMPORTANT

template in the same namespace where the policy is created.

Policy templates are restricted to the same namespace as the namespace where the
policy is defined. This means that you must create the objects referenced in the hub

The following supported hub template functions are available for use in GitOps ZTP with TALM:

e fromConfigmap returns the value of the provided data key in the named ConfigMap resource.

340

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/registry/#accessing-the-registry
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#fromConfigmap-func

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

NOTE

There is a 1 MiB size limit for ConfigMap CRs. The effective size for ConfigMap
CRs is further limited by the last-applied-configuration annotation. To avoid the
last-applied-configuration limitation, add the following annotation to the
template ConfigMap:

I argocd.argoproj.io/sync-options: Replace=true

® base64enc returns the base64-encoded value of the input string
® base64dec returns the decoded value of the base64-encoded input string
® indent returns the input string with added indent spaces

® autoindent returns the input string with added indent spaces based on the spacing used in the
parent template

e tolnt casts and returns the integer value of the input value
® toBool converts the input string into a boolean value, and returns the boolean

Various Open source community functions are also available for use with GitOps ZTP.

Additional resources

® RHACM support for hub cluster templates in configuration policies

17.9.9.1. Example hub templates

The following code examples are valid hub templates. Each of these templates return values from the
ConfigMap CR with the name test-config in the default namespace.

® Returns the value with the key common-key:

I {{hub fromConfigMap "default" "test-config" "common-key" hub}}

® Returns a string by using the concatenated value of the .ManagedClusterName field and the
string -name:

I {{hub fromConfigMap "default" "test-config" (printf "%s-name" .ManagedClusterName) hub}}

® Casts and returns a boolean value from the concatenated value of the .ManagedClusterName
field and the string -name:

{{hub fromConfigMap "default" "test-config" (printf "%s-name" .ManagedClusterName) |
toBool hub}}

® Casts and returns an integer value from the concatenated value of the .ManagedClusterName
field and the string -name:

I {{hub (printf "%s-name" .ManagedClusterName) | fromConfigMap "default" "test-config" | tolnt
hub}}

341

https://kubernetes.io/docs/concepts/configuration/configmap/#motivation
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#base64enc-func
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#base64dec-func
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#indent-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#autoindent-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#toInt-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#toBool-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#open-source-community-functions
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html-single/governance/index#hub-templates

OpenShift Container Platform 4.12 Scalability and performance

17.9.9.2. Specifying host NICs in site PolicyGenTemplate CRs with hub cluster templates

You can manage host NICs in a single ConfigMap CR and use hub cluster templates to populate the
custom NIC values in the generated polices that get applied to the cluster hosts. Using hub cluster
templates in site PolicyGenTemplate (PGT) CRs means that you do not need to create multiple single
site PGT CRs for each site.

The following example shows you how to use a single ConfigMap CR to manage cluster host NICs and
apply them to the cluster as polices by using a single PolicyGenTemplate site CR.

NOTE

When you use the fromConfigmap function, the printf variable is only available for the
template resource data key fields. You cannot use it with name and namespace fields.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
GitOps ZTP ArgoCD application.

Procedure

1. Create a ConfigMap resource that describes the NICs for a group of hosts. For example:

apiVersion: vi

kind: ConfigMap

metadata:
name: sriovdata
namespace: ztp-site
annotations:

argocd.argoproj.io/sync-options: Replace=true ﬂ

data:
example-sno-du_fh-numVfs: "8"
example-sno-du_fh-pf: ens1f0
example-sno-du_fh-priority: "10"
example-sno-du_fh-vlan: "140"
example-sno-du_mh-numVfs: "8"
example-sno-du_mh-pf: ens3f0
example-sno-du_mh-priority: "10"
example-sno-du_mh-vlan: "150"

The argocd.argoproj.io/sync-options annotation is required only if the ConfigMap is

larger than 1 MiB in size.

NOTE

The ConfigMap must be in the same namespace with the policy that has the hub
template substitution.

342

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

2. Commit the ConfigMap CR in Git, and then push to the Git repository being monitored by the
Argo CD application.

3. Create asite PGT CR that uses templates to pull the required data from the ConfigMap object.
For example:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "site"
namespace: "ztp-site"
spec:
remediationAction: inform
bindingRules:
group-du-sno:
mcp: "master”
sourceFiles:
- fileName: SriovNetwork.yaml
policyName: "config-policy”
metadata:
name: "sriov-nw-du-fh"
spec:
resourceName: du_fh
vlan: '{{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_fh-vlan"
.ManagedClusterName) | tolnt hub}}'
- fleName: SriovNetworkNodePolicy.yam|
policyName: "config-policy”
metadata:
name: "sriov-nnp-du-fh"
spec:
deviceType: netdevice
isRdma: true
nicSelector:
pfNames:
- '{{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_fh-pf"
.ManagedClusterName) | autoindent hub}}'
numVfs: {{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_fh-numVfs"
.ManagedClusterName) | tolnt hub}}'
priority: '{{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_fh-priority"
.ManagedClusterName) | tolnt hub}}'
resourceName: du_fh
- fileName: SriovNetwork.yaml
policyName: "config-policy”
metadata:
name: "sriov-nw-du-mh"
spec:
resourceName: du_mh
vlan: '{{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_mh-vlan"
.ManagedClusterName) | tolnt hub}}'
- fileName: SriovNetworkNodePolicy.yaml
policyName: "config-policy”
metadata:
name: "sriov-nnp-du-mh"
spec:
deviceType: vfio-pci
isRdma: false

343

OpenShift Container Platform 4.12 Scalability and performance

nicSelector:
pfNames:
- '{{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_mh-pf"
.ManagedClusterName) hub}}'
numVfs: {{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_mh-numVfs"
.ManagedClusterName) | tolnt hub}}'
priority: '{{hub fromConfigMap "ztp-site" "sriovdata" (printf "%s-du_mh-priority"
.ManagedClusterName) | tolnt hub}}'
resourceName: du_mh

4. Commit the site PolicyGenTemplate CR in Git and push to the Git repository that is monitored
by the ArgoCD application.

NOTE

Subsequent changes to the referenced ConfigMap CR are not automatically
synced to the applied policies. You need to manually sync the new ConfigMap
changes to update existing PolicyGenTemplate CRs. See "Syncing new
ConfigMap changes to existing PolicyGenTemplate CRs".

17.9.9.3. Specifying VLAN IDs in group PolicyGenTemplate CRs with hub cluster templates

You can manage VLAN IDs for managed clusters in a single ConfigMap CR and use hub cluster
templates to populate the VLAN IDs in the generated polices that get applied to the clusters.

The following example shows how you how manage VLAN IDs in single ConfigMap CR and apply them
in individual cluster polices by using a single PolicyGenTemplate group CR.

NOTE

When using the fromConfigmap function, the printf variable is only available for the
template resource data key fields. You cannot use it with name and namespace fields.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

1. Create a ConfigMap CR that describes the VLAN IDs for a group of cluster hosts. For example:

apiVersion: vi
kind: ConfigMap
metadata:
name: site-data
namespace: ztp-group
annotations:
argocd.argoproj.io/sync-options: Replace=true ﬂ

344

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

data:
site-1-vlan: "101"
site-2-vlan: "234"

The argocd.argoproj.io/sync-options annotation is required only if the ConfigMap is
larger than 1 MiB in size.

NOTE

The ConfigMap must be in the same namespace with the policy that has the hub
template substitution.

2. Commit the ConfigMap CR in Git, and then push to the Git repository being monitored by the
Argo CD application.

3. Create a group PGT CR that uses a hub template to pull the required VLAN IDs from the
ConfigMap object. For example, add the following YAML snippet to the group PGT CR:

- fileName: SriovNetwork.yaml
policyName: "config-policy”
metadata:
name: "sriov-nw-du-mh"
annotations:
ran.openshift.io/ztp-deploy-wave: "10"
spec:
resourceName: du_mh
vlan: '{{hub fromConfigMap "" "site-data" (printf "%s-vlan" .ManagedClusterName) | tolnt
hub}}'

4. Commit the group PolicyGenTemplate CR in Git, and then push to the Git repository being
monitored by the Argo CD application.

NOTE
Subsequent changes to the referenced ConfigMap CR are not automatically
synced to the applied policies. You need to manually sync the new ConfigMap

changes to update existing PolicyGenTemplate CRs. See "Syncing new
ConfigMap changes to existing PolicyGenTemplate CRs".

17.9.9.4. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a PolicyGenTemplate CR that pulls information from a ConfigMap CR using
hub cluster templates.

Procedure

1. Update the contents of your ConfigMap CR, and apply the changes in the hub cluster.

345

OpenShift Container Platform 4.12 Scalability and performance

2. To sync the contents of the updated ConfigMap CR to the deployed policy, do either of the
following:

a. Option 1: Delete the existing policy. ArgoCD uses the PolicyGenTemplate CR to
immediately recreate the deleted policy. For example, run the following command:

I $ oc delete policy <policy_name> -n <policy _namespace>

b. Option 2: Apply a special annotation policy.open-cluster-management.io/trigger-update
to the policy with a different value every time when you update the ConfigMap. For
example:

$ oc annotate policy <policy_name> -n <policy _namespace> policy.open-cluster-
management.io/trigger-update="1"

NOTE

You must apply the updated policy for the changes to take effect. For more
information, see Special annotation for reprocessing.

3. Optional: If it exists, delete the ClusterGroupUpdate CR that contains the policy. For example:
I $ oc delete clustergroupupgrade <cgu_name> -n <cgu_namespace>

a. Create a new ClusterGroupUpdate CR that includes the policy to apply with the updated
ConfigMap changes. For example, add the following YAML to the file cgr-example.yaml:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: <cgr_name>
namespace: <policy_namespace>
spec:
managedPolicies:
- <managed_policy>
enable: true
clusters:
- <managed_cluster_1>
- <managed_cluster_2>
remediationStrategy:
maxConcurrency: 2
timeout: 240

b. Apply the updated policy:

I $ oc apply -f cgr-example.yaml

17.10. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY
AWARE LIFECYCLE MANAGER

346

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#special-annotation-processing

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
multiple clusters. TALM uses Red Hat Advanced Cluster Management (RHACM) policies to perform
changes on the target clusters.

17.10.1. About the Topology Aware Lifecycle Manager configuration

The Topology Aware Lifecycle Manager (TALM) manages the deployment of Red Hat Advanced Cluster
Management (RHACM) policies for one or more OpenShift Container Platform clusters. Using TALM in
a large network of clusters allows the phased rollout of policies to the clusters in limited batches. This
helps to minimize possible service disruptions when updating. With TALM, you can control the following
actions:

® The timing of the update

® The number of RHACM-managed clusters

® The subset of managed clusters to apply the policies to

® The update order of the clusters

® The set of policies remediated to the cluster

® The order of policies remediated to the cluster

® The assignment of a canary cluster

For single-node OpenShift, the Topology Aware Lifecycle Manager (TALM) offers the following
features:

® Create a backup of a deployment before an upgrade
® Pre-caching images for clusters with limited bandwidth

TALM supports the orchestration of the OpenShift Container Platform y-stream and z-stream updates,
and day-two operations on y-streams and z-streams.

17.10.2. About managed policies used with Topology Aware Lifecycle Manager

The Topology Aware Lifecycle Manager (TALM) uses RHACM policies for cluster updates.

TALM can be used to manage the rollout of any policy CR where the remediationAction field is set to
inform. Supported use cases include the following:

® Manual user creation of policy CRs

® Automatically generated policies from the PolicyGenTemplate custom resource definition
(CRD)

For policies that update an Operator subscription with manual approval, TALM provides additional
functionality that approves the installation of the updated Operator.

For more information about managed policies, see Policy Overview in the RHACM documentation.

For more information about the PolicyGenTemplate CRD, see the "About the PolicyGenTemplate
CRD" section in "Configuring managed clusters with policies and PolicyGenTemplate resources".

347

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html-single/governance/index#policy-overview

OpenShift Container Platform 4.12 Scalability and performance

17.10.3. Installing the Topology Aware Lifecycle Manager by using the web console

You can use the OpenShift Container Platform web console to install the Topology Aware Lifecycle
Manager.

Prerequisites

e |nstall the latest version of the RHACM Operator.
® Set up a hub cluster with disconnected regitry.

® | ogin as a user with cluster-admin privileges.

Procedure
1. In the OpenShift Container Platform web console, navigate to Operators - OperatorHub.

2. Search for the Topology Aware Lifecycle Manager from the list of available Operators, and
then click Install.

3. Keep the default selection of Installation mode ["All namespaces on the cluster (default)"] and
Installed Namespace ("openshift-operators") to ensure that the Operator is installed properly.

4. Click Install.

Verification

To confirm that the installation is successful:
1. Navigate to the Operators — Installed Operators page.

2. Check that the Operator is installed in the All Namespaces namespace and its status is
Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators = Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads = Pods page and check the logs in any containers in the cluster-
group-upgrades-controller-manager pod that are reporting issues.

17.10.4. Installing the Topology Aware Lifecycle Manager by using the CLI

You can use the OpenShift CLI (o¢) to install the Topology Aware Lifecycle Manager (TALM).

Prerequisites

® |nstall the OpenShift CLI (oc).
e |nstall the latest version of the RHACM Operator.
® Set up a hub cluster with disconnected registry.

® | ogin as a user with cluster-admin privileges.

348

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Procedure
1. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, talm-subscription.yaml:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-topology-aware-lifecycle-manager-subscription
namespace: openshift-operators
spec:
channel: "stable"
name: topology-aware-lifecycle-manager
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription CR by running the following command:
I $ oc create -f talm-subscription.yaml
Verification
1. Verify that the installation succeeded by inspecting the CSV resource:

I $ oc get csv -n openshift-operators

Example output

NAME DISPLAY VERSION
REPLACES PHASE

topology-aware-lifecycle-manager.4.12.x Topology Aware Lifecycle Manager 4.12.x
Succeeded

2. Verify that the TALM is up and running:

I $ oc get deploy -n openshift-operators

Example output

NAMESPACE NAME READY UP-TO-
DATE AVAILABLE AGE

openshift-operators cluster-group-upgrades-controller-manager 11
1 1 14s

17.10.5. About the ClusterGroupUpgrade CR

The Topology Aware Lifecycle Manager (TALM) builds the remediation plan from the
ClusterGroupUpgrade CR for a group of clusters. You can define the following specifications in a
ClusterGroupUpgrade CR:

® Clustersin the group

349

OpenShift Container Platform 4.12 Scalability and performance

® Blocking ClusterGroupUpgrade CRs

® Applicable list of managed policies

® Number of concurrent updates

® Applicable canary updates

® Actions to perform before and after the update

® Update timing
You can control the start time of an update using the enable field in the ClusterGroupUpgrade CR. For
example, if you have a scheduled maintenance window of four hours, you can prepare a

ClusterGroupUpgrade CR with the enable field set to false.

You can set the timeout by configuring the spec.remediationStrategy.timeout setting as follows:

spec
remediationStrategy:
maxConcurrency: 1
timeout: 240

You can use the batchTimeoutAction to determine what happens if an update fails for a cluster. You
can specify continue to skip the failing cluster and continue to upgrade other clusters, or abort to stop
policy remediation for all clusters. Once the timeout elapses, TALM removes all enforce policies to
ensure that no further updates are made to clusters.

To apply the changes, you set the enabled field to true.

For more information see the "Applying update policies to managed clusters” section.

As TALM works through remediation of the policies to the specified clusters, the
ClusterGroupUpgrade CR can report true or false statuses for a number of conditions.

NOTE

After TALM completes a cluster update, the cluster does not update again under the
control of the same ClusterGroupUpgrade CR. You must create a new
ClusterGroupUpgrade CR in the following cases:

® When you need to update the cluster again

® When the cluster changes to non-compliant with the inform policy after being
updated

17.10.5.1. Selecting clusters

TALM builds a remediation plan and selects clusters based on the following fields:

e The clusterLabelSelector field specifies the labels of the clusters that you want to update. This
consists of a list of the standard label selectors from k8s.io/apimachinery/pkg/apis/meta/v1.
Each selector in the list uses either label value pairs or label expressions. Matches from each
selector are added to the final list of clusters along with the matches from the clusterSelector
field and the cluster field.

350

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

® The clusters field specifies a list of clusters to update.
® The canaries field specifies the clusters for canary updates.
e The maxConcurrency field specifies the number of clusters to update in a batch.

You can use the clusters, clusterLabelSelector, and clusterSelector fields together to create a
combined list of clusters.

The remediation plan starts with the clusters listed in the canaries field. Each canary cluster forms a
single-cluster batch.

Sample ClusterGroupUpgrade CR with the enabled field set to false

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
creationTimestamp: '2022-11-18T16:27:15Z'
finalizers:
- ran.openshift.io/cleanup-finalizer
generation: 1
name: talm-cgu
namespace: talm-namespace
resourceVersion: '40451823'
uid: cca245a5-4bca-45fa-89c0-aabaf81a596¢
Spec:
actions:
afterCompletion:
deleteObjects: true
beforeEnable: {}
backup: false
clusters: ﬂ
- spoke1
enable: false g
managedPolicies: e
- talm-policy
preCaching: false
remediationStrategy:
canaries:
- spoke1
maxConcurrency: 2 G
timeout: 240
clusterLabelSelectors: ﬂ
- matchExpressions:
- key: label1
operator: In
values:
- valuela
- valuelb
batchTimeoutAction: G
status: €)
computedMaxConcurrency: 2
conditions:
- lastTransitionTime: '2022-11-18T16:27:15Z'
message: All selected clusters are valid

351

OpenShift Container Platform 4.12 Scalability and performance

reason: ClusterSelectionCompleted
status: 'True'
type: ClustersSelected @

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: Completed validation
reason: ValidationCompleted
status: 'True'
type: Validated m

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Not enabled
reason: NotEnabled
status: 'False'
type: Progressing

managedPoliciesForUpgrade:

- name: talm-policy
namespace: talm-namespace

managedPoliciesNs:

talm-policy: talm-namespace

remediationPlan:

- - spoke1

- - spoke2
- spoke3

status:

Defines the list of clusters to update.

The enable field is set to false.

Lists the user-defined set of policies to remediate.

Defines the specifics of the cluster updates.

Defines the clusters for canary updates.

Defines the maximum number of concurrent updates in a batch. The number of remediation
batches is the number of canary clusters, plus the number of clusters, except the canary clusters,

divided by the maxConcurrency value. The clusters that are already compliant with all the managed
policies are excluded from the remediation plan.

QD000

Displays the parameters for selecting clusters.

Controls what happens if a batch times out. Possible values are abort or continue. If unspecified,
the default is continue.

Displays information about the status of the updates.
The ClustersSelected condition shows that all selected clusters are valid.

The Validated condition shows that all selected clusters have been validated.

900 09

NOTE

Any failures during the update of a canary cluster stops the update process.

352

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

When the remediation plan is successfully created, you can you set the enable field to true and TALM
starts to update the non-compliant clusters with the specified managed policies.

NOTE

You can only make changes to the spec fields if the enable field of the
ClusterGroupUpgrade CRis set to false.

17.10.5.2. Validating

TALM checks that all specified managed policies are available and correct, and uses the Validated
condition to report the status and reasons as follows:

e t{rue
Validation is completed.

e false
Policies are missing or invalid, or an invalid platform image has been specified.

17.10.5.3. Pre-caching

Clusters might have limited bandwidth to access the container image registry, which can cause a
timeout before the updates are completed. On single-node OpenShift clusters, you can use pre-
caching to avoid this. The container image pre-caching starts when you create a ClusterGroupUpgrade
CR with the preCaching field set to true.

TALM uses the PrecacheSpecValid condition to report status information as follows:

e true
The pre-caching spec is valid and consistent.

e false
The pre-caching spec is incomplete.

TALM uses the PrecachingSucceeded condition to report status information as follows:

e true
TALM has concluded the pre-caching process. If pre-caching fails for any cluster, the update
fails for that cluster but proceeds for all other clusters. A message informs you if pre-caching
has failed for any clusters.

e false
Pre-caching is still in progress for one or more clusters or has failed for all clusters.

For more information see the "Using the container image pre-cache feature" section.

17.10.5.4. Creating a backup

For single-node OpenShift, TALM can create a backup of a deployment before an update. If the update
fails, you can recover the previous version and restore a cluster to a working state without requiring a
reprovision of applications. To use the backup feature you first create a ClusterGroupUpgrade CR with
the backup field set to true. To ensure that the contents of the backup are up to date, the backup is not
taken until you set the enable field in the ClusterGroupUpgrade CR to true.

TALM uses the BackupSucceeded condition to report the status and reasons as follows:

353

OpenShift Container Platform 4.12 Scalability and performance

e true
Backup is completed for all clusters or the backup run has completed but failed for one or more
clusters. If backup fails for any cluster, the update fails for that cluster but proceeds for all other
clusters.

o false
Backup is still in progress for one or more clusters or has failed for all clusters.

For more information, see the "Creating a backup of cluster resources before upgrade" section.

17.10.5.5. Updating clusters

TALM enforces the policies following the remediation plan. Enforcing the policies for subsequent
batches starts immediately after all the clusters of the current batch are compliant with all the managed
policies. If the batch times out, TALM moves on to the next batch. The timeout value of a batch is the
spec.timeout field divided by the number of batches in the remediation plan.

TALM uses the Progressing condition to report the status and reasons as follows:

® f{rue
TALM is remediating non-compliant policies.

e false
The update is not in progress. Possible reasons for this are:

o

All clusters are compliant with all the managed policies.

The update has timed out as policy remediation took too long.
Blocking CRs are missing from the system or have not yet completed.
The ClusterGroupUpgrade CR is not enabled.

Backup is still in progress.

NOTE

The managed policies apply in the order that they are listed in the managedPolicies field
in the ClusterGroupUpgrade CR. One managed policy is applied to the specified
clusters at a time. When a cluster complies with the current policy, the next managed
policy is applied to it.

Sample ClusterGroupUpgrade CR in the Progressing state

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
creationTimestamp: '2022-11-18T16:27:15Z'
finalizers:
- ran.openshift.io/cleanup-finalizer
generation: 1
name: talm-cgu
namespace: talm-namespace
resourceVersion: '40451823'
uid: cca245a5-4bca-45fa-89c0-aabaf81a596¢

354

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Spec:
actions:
afterCompletion:
deleteObjects: true
beforeEnable: {}
backup: false
clusters:

- spoke1
enable: true
managedPolicies:

- talm-policy
preCaching: true
remediationStrategy:

canaries:

- spoke1
maxConcurrency: 2
timeout: 240

clusterLabelSelectors:

- matchExpressions:

- key: label1

operator: In

values:

- valuela

- valuelb

batchTimeoutAction:
status:

clusters:

- hame: spoke1
state: complete

computedMaxConcurrency: 2

conditions:

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: 'True'
type: ClustersSelected

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: Completed validation
reason: ValidationCompleted
status: 'True'
type: Validated

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Remediating non-compliant policies
reason: InProgress
status: 'True'
type: Progressing ﬂ

managedPoliciesForUpgrade:

- name: talm-policy
namespace: talm-namespace

managedPoliciesNs:

talm-policy: talm-namespace

remediationPlan:

- - spoke1

- - spoke2
- spoke3

status:

355

OpenShift Container Platform 4.12 Scalability and performance

currentBatch: 2
currentBatchRemediationProgress:
spoke2:
state: Completed
spoke3:
policylndex: 0
state: InProgress
currentBatchStartedAt: '2022-11-18T16:27:16Z'
startedAt: '2022-11-18T16:27:15Z'

ﬂ The Progressing fields show that TALM is in the process of remediating policies.

17.10.5.6. Update status
TALM uses the Succeeded condition to report the status and reasons as follows:

e true
All clusters are compliant with the specified managed policies.

e false

Policy remediation failed as there were no clusters available for remediation, or because policy
remediation took too long for one of the following reasons:

o The current batch contains canary updates and the cluster in the batch does not comply
with all the managed policies within the batch timeout.

o Clusters did not comply with the managed policies within the timeout value specified in the
remediationStrategy field.

Sample ClusterGroupUpgrade CR in the Succeeded state

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-upgrade-complete
namespace: default
spec:
clusters:
- spoke1
- spoke4
enable: true
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status: @)
clusters:
- name: spoke1
state: complete
- name: spoke4
state: complete
conditions:

356

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

- message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: "True"
type: ClustersSelected
- message: Completed validation
reason: ValidationCompleted
status: "True"
type: Validated
- message: All clusters are compliant with all the managed policies
reason: Completed
status: "False"
type: Progressing g
- message: All clusters are compliant with all the managed policies
reason: Completed
status: "True"
type: Succeeded G
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- hame: policy2-common-pao-sub-policy
namespace: default
remediationPlan:
- - spoke1
- - spoke4
status:
completedAt: '2022-11-18T16:27:16Z'
startedAt: '2022-11-18T16:27:15Z'

9 In the Progressing fields, the status is false as the update has completed; clusters are compliant
with all the managed policies.

9 The Succeeded fields show that the validations completed successfully.

ﬂ The status field includes a list of clusters and their respective statuses. The status of a cluster can
be complete or timedout.

Sample ClusterGroupUpgrade CR in the timedout state

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
creationTimestamp: '2022-11-18T16:27:15Z'
finalizers:
- ran.openshift.io/cleanup-finalizer
generation: 1
name: talm-cgu
namespace: talm-namespace
resourceVersion: '40451823'
uid: cca245a5-4bca-45fa-89c0-aabaf81a596¢
spec:
actions:
afterCompletion:
deleteObjects: true
beforeEnable: {}

357

OpenShift Container Platform 4.12 Scalability and performance

backup: false
clusters:

- spoke1

- spoke2
enable: true
managedPolicies:

- talm-policy
preCaching: false
remediationStrategy:

maxConcurrency: 2

timeout: 240

status:
clusters:

- name: spoke1
state: complete

- currentPolicy: ﬂ

name: talm-policy
status: NonCompliant
name: spoke2
state: timedout
computedMaxConcurrency: 2
conditions:

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: 'True'
type: ClustersSelected

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: Completed validation
reason: ValidationCompleted
status: 'True'
type: Validated

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Policy remediation took too long
reason: TimedOut
status: 'False'
type: Progressing

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Policy remediation took too long
reason: TimedOut
status: 'False’
type: Succeeded g

managedPoliciesForUpgrade:

- name: talm-policy
namespace: talm-namespace

managedPoliciesNs:

talm-policy: talm-namespace

remediationPlan:

- - spoke1
- spoke2

status:
startedAt: '2022-11-18T16:27:15Z'
completedAt: '2022-11-18T20:27:15Z'

If a cluster’s state is timedout, the currentPolicy field shows the name of the policy and the policy
status.

358

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

e The status for succeeded is false and the message indicates that policy remediation took too
long.

17.10.5.7. Blocking ClusterGroupUpgrade CRs

You can create multiple ClusterGroupUpgrade CRs and control their order of application.

For example, if you create ClusterGroupUpgrade CR C that blocks the start of ClusterGroupUpgrade
CR A, then ClusterGroupUpgrade CR A cannot start until the status of ClusterGroupUpgrade CR C
becomes UpgradeComplete.

One ClusterGroupUpgrade CR can have multiple blocking CRs. In this case, all the blocking CRs must
complete before the upgrade for the current CR can start.

Prerequisites
e |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.
® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure

1. Save the content of the ClusterGroupUpgrade CRs in the cgu-a.yaml, cgu-b.yaml, and cgu-
c.yaml files.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-a
namespace: default
spec:
blockingCRs: ﬂ
- name: cgu-c
namespace: default
clusters:
- spoke1
- spoke2
- spoke3
enable: false
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
remediationStrategy:
canaries:
- spoke1
maxConcurrency: 2
timeout: 240
status:
conditions:
- message: The ClusterGroupUpgrade CR is not enabled

359

OpenShift Container Platform 4.12 Scalability and performance

reason: UpgradeNotStarted
status: "False"
type: Ready
copiedPolicies:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
placementBindings:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
placementRules:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
remediationPlan:
- - spoke1
- - spoke2

ﬂ Defines the blocking CRs. The cgu-a update cannot start until egu-cis complete.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-b

namespace: default

spec:

blockingCRs: ﬂ

- name: cgu-a
namespace: default

clusters:

- spoke4

- spoke5

enable: false

managedPolicies:

- policy1-common-cluster-version-policy

- policy2-common-pao-sub-policy

- policy3-common-ptp-sub-policy

- policy4-common-sriov-sub-policy

remediationStrategy:
maxConcurrency: 1
timeout: 240

status:

conditions:

- message: The ClusterGroupUpgrade CR is not enabled
reason: UpgradeNotStarted
status: "False"
type: Ready

360

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

copiedPolicies:

- cgu-b-policy1-common-cluster-version-policy

- cgu-b-policy2-common-pao-sub-policy

- cgu-b-policy3-common-ptp-sub-policy

- cgu-b-policy4-common-sriov-sub-policy

managedPoliciesForUpgrade:

- name: policy1-common-cluster-version-policy
namespace: default

- name: policy2-common-pao-sub-policy
namespace: default

- name: policy3-common-ptp-sub-policy
namespace: default

- name: policy4-common-sriov-sub-policy
namespace: default

placementBindings:

- cgu-b-policy1-common-cluster-version-policy

- cgu-b-policy2-common-pao-sub-policy

- cgu-b-policy3-common-ptp-sub-policy

- cgu-b-policy4-common-sriov-sub-policy

placementRules:

- cgu-b-policy1-common-cluster-version-policy

- cgu-b-policy2-common-pao-sub-policy

- cgu-b-policy3-common-ptp-sub-policy

- cgu-b-policy4-common-sriov-sub-policy

remediationPlan:

- - spoke4

- - spokeb

status: {}

ﬂ The cgu-b update cannot start until cgu-ais complete.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-c

namespace: default

spec: ﬂ

clusters:

- spoke6

enable: false

managedPolicies:

- policy1-common-cluster-version-policy

- policy2-common-pao-sub-policy

- policy3-common-ptp-sub-policy

- policy4-common-sriov-sub-policy

remediationStrategy:
maxConcurrency: 1
timeout: 240

status:

conditions:

- message: The ClusterGroupUpgrade CR is not enabled
reason: UpgradeNotStarted
status: "False"
type: Ready

copiedPolicies:

361

OpenShift Container Platform 4.12 Scalability and performance

- cgu-c-policy1-common-cluster-version-policy

- cgu-c-policy4-common-sriov-sub-policy

managedPoliciesCompliantBeforeUpgrade:

- policy2-common-pao-sub-policy

- policy3-common-ptp-sub-policy

managedPoliciesForUpgrade:

- name: policy1-common-cluster-version-policy
namespace: default

- name: policy4-common-sriov-sub-policy
namespace: default

placementBindings:

- cgu-c-policy1-common-cluster-version-policy

- cgu-c-policy4-common-sriov-sub-policy

placementRules:

- cgu-c-policy1-common-cluster-version-policy

- cgu-c-policy4-common-sriov-sub-policy

remediationPlan:

- - spoke6

status: {}

The cgu-c update does not have any blocking CRs. TALM starts the cgu-c update when
the enable field is set to true.

2. Create the ClusterGroupUpgrade CRs by running the following command for each relevant
CR:

I $ oc apply -f <name>.yaml

3. Start the update process by running the following command for each relevant CR:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/<name> \
--type merge -p '{"spec":{"enable":true}}'

The following examples show ClusterGroupUpgrade CRs where the enable field is set to true:

Example for cgu-a with blocking CRs

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-a

namespace: default
spec:

blockingCRs:

- name: cgu-c

namespace: default

clusters:

- spoke1

- spoke2

- spoke3

enable: true

managedPolicies:

- policy1-common-cluster-version-policy

- policy2-common-pao-sub-policy

362

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

- policy3-common-ptp-sub-policy
remediationStrategy:
canaries:
- spoke1
maxConcurrency: 2
timeout: 240
status:
conditions:
- message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
completed: [cgu-c]'
reason: UpgradeCannotStart
status: "False"
type: Ready
copiedPolicies:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
placementBindings:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
placementRules:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
remediationPlan:
- - spoke1
- - spoke2
status: {}

ﬂ Shows the list of blocking CRs.

Example for cgu-b with blocking CRs

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-b

namespace: default
spec:

blockingCRs:

- name: cgu-a

namespace: default

clusters:

- spoke4

- spoke5

enable: true

363

OpenShift Container Platform 4.12 Scalability and performance

managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status:
conditions:
- message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
completed: [cgu-a]'
reason: UpgradeCannotStart
status: "False"
type: Ready
copiedPolicies:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
- name: policy4-common-sriov-sub-policy
namespace: default
placementBindings:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
placementRules:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
remediationPlan:
- - spoke4
- - spokeb
status: {}

ﬂ Shows the list of blocking CRs.

Example for cgu-c with blocking CRs

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-c

namespace: default
spec:

364

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

clusters:
- spoke6
enable: true
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status:
conditions:
- message: The ClusterGroupUpgrade CR has upgrade policies that are still non compliant

reason: UpgradeNotCompleted
status: "False"
type: Ready
copiedPolicies:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
managedPoliciesCompliantBeforeUpgrade:
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy4-common-sriov-sub-policy
namespace: default
placementBindings:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
placementRules:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
remediationPlan:
- - spoke6
status:
currentBatch: 1
remediationPlanForBatch:
spoke6: 0

ﬂ The cgu-c update does not have any blocking CRs.

17.10.6. Update policies on managed clusters

The Topology Aware Lifecycle Manager (TALM) remediates a set of inform policies for the clusters
specified in the ClusterGroupUpgrade CR. TALM remediates inform policies by making enforce copies
of the managed RHACM policies. Each copied policy has its own corresponding RHACM placement rule
and RHACM placement binding.

One by one, TALM adds each cluster from the current batch to the placement rule that corresponds

with the applicable managed policy. If a cluster is already compliant with a policy, TALM skips applying
that policy on the compliant cluster. TALM then moves on to applying the next policy to the non-

365

OpenShift Container Platform 4.12 Scalability and performance

compliant cluster. After TALM completes the updates in a batch, all clusters are removed from the
placement rules associated with the copied policies. Then, the update of the next batch starts.

If a spoke cluster does not report any compliant state to RHACM, the managed policies on the hub
cluster can be missing status information that TALM needs. TALM handles these cases in the following
ways:

e |f a policy's status.compliant field is missing, TALM ignores the policy and adds a log entry.
Then, TALM continues looking at the policy’s status.status field.

e |f a policy's status.status is missing, TALM produces an error.

e |f a cluster's compliance status is missing in the policy’s status.status field, TALM considers
that cluster to be non-compliant with that policy.

The ClusterGroupUpgrade CR's batchTimeoutAction determines what happens if an upgrade fails for
a cluster. You can specify continue to skip the failing cluster and continue to upgrade other clusters, or
specify abort to stop the policy remediation for all clusters. Once the timeout elapses, TALM removes all
enforce policies to ensure that no further updates are made to clusters.

Example upgrade policy

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
name: ocp-4.4.12.4
namespace: platform-upgrade
spec:
disabled: false
policy-templates:
- objectDefinition:
apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
name: upgrade
spec:
namespaceselector:
exclude:
- kube-*
include:
object-templates:
- complianceType: musthave
objectDefinition:
apiVersion: config.openshift.io/v1
kind: ClusterVersion
metadata:
name: version
spec:
channel: stable-4.12
desiredUpdate:
version: 4.4.12.4
upstream: https://api.openshift.com/api/upgrades_info/vi/graph
status:
history:
- state: Completed

366

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

version: 4.4.12.4
remediationAction: inform
severity: low
remediationAction: inform

For more information about RHACM policies, see Policy overview.

Additional resources

For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate CRD.

17.10.6.1. Configuring Operator subscriptions for managed clusters that you install with
TALM

Topology Aware Lifecycle Manager (TALM) can only approve the install plan for an Operator if the
Subscription custom resource (CR) of the Operator contains the status.state.AtLatestKnown field.

Procedure

1. Add the status.state.AtLatestKnown field to the Subscription CR of the Operator:

Example Subscription CR

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: cluster-logging
namespace: openshift-logging
annotations:
ran.openshift.io/ztp-deploy-wave: "2"
spec:
channel: "stable"
name: cluster-logging
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Manual
status:
state: AtLatestKnown ﬂ

The status.state: AtLatestKnown field is used for the latest Operator version available
from the Operator catalog.

NOTE

When a new version of the Operator is available in the registry, the associated
policy becomes non-compliant.

2. Apply the changed Subscription policy to your managed clusters with a ClusterGroupUpgrade
CR.

17.10.6.2. Applying update policies to managed clusters

367

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html-single/governance/index#policy-overview

OpenShift Container Platform 4.12 Scalability and performance

You can update your managed clusters by applying your policies.

Prerequisites

® |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.
® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR in the cgu-1.yaml file.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-1
namespace: default
spec:
managedPolicies: ﬂ
- policy1-common-cluster-version-policy
- policy2-common-nto-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
enable: false
clusters: g
- spoke1
- spoke2
- spoke5
- spoke6
remediationStrategy:
maxConcurrency: 2
timeout: 240 ﬂ

batchTimeoutAction: 9

The name of the policies to apply.
The list of clusters to update.
The maxConcurrency field signifies the number of clusters updated at the same time.

The update timeout in minutes.

0009

Controls what happens if a batch times out. Possible values are abort or continue. If
unspecified, the default is continue.

2. Create the ClusterGroupUpgrade CR by running the following command:

I $ oc create -f cgu-1.yaml

368

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

a. Check if the ClusterGroupUpgrade CR was created in the hub cluster by running the
following command:

I $ oc get cgu --all-namespaces

Example output

NAMESPACE NAME AGE STATE DETAILS
default cgu-1 8m55 NotEnabled Not Enabled

b. Check the status of the update by running the following command:
I $ oc get cgu -n default cgu-1 -ojsonpath="{.status}' | jq
Example output

{

"computedMaxConcurrency": 2,
"conditions": [
{
"lastTransitionTime": "2022-02-25T15:34:07Z",
"message": "Not enabled", ﬂ
"reason": "NotEnabled",
"status": "False",
"type": "Progressing"”
}
1,
"copiedPolicies": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy",
"cgu-policy4-common-sriov-sub-policy”
1,
"managedPoliciesContent": {
"policy1-common-cluster-version-policy": "null",
"policy2-common-nto-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"node-tuning-
operator\",\"namespace\":\"openshift-cluster-node-tuning-operator\"}]",
"policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\",\"namespace\":\"openshift-ptp\"}]",
"policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\" \"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"
b
"managedPoliciesForUpgrade™:
{
"name": "policy1-common-cluster-version-policy",
"namespace": "default”
b
{
"name": "policy2-common-nto-sub-policy",
"namespace": "default”
b
{
"name": "policy3-common-ptp-sub-policy",
"namespace”: "default”

369

OpenShift Container Platform 4.12 Scalability and performance

b
{
"name": "policy4-common-sriov-sub-policy",
"namespace”: "default”
}
1,

"managedPoliciesNs": {

"policy 1-common-cluster-version-policy": "default”,
"policy2-common-nto-sub-policy": "default",
"policy3-common-ptp-sub-policy": "default",
"policy4-common-sriov-sub-policy": "default”

b

"placementBindings": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”

1,

"placementRules": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”

1,

"precaching": {

"spec": {}
b
"remediationPlan": [

[
"spoke1",
"spoke2"

1,

[
"spoke5”,
"spoke6"

]

1,

"status": {}

}

Q The spec.enable field in the ClusterGroupUpgrade CR is set to false.

c. Check the status of the policies by running the following command:
I $ oc get policies -A

Example output

NAMESPACE NAME REMEDIATION ACTION
COMPLIANCE STATE AGE

default cgu-policy1-common-cluster-version-policy enforce

17m €

default cgu-policy2-common-nto-sub-policy enforce

17m

370

CHAPTER17.

default cgu-policy3-common-ptp-sub-policy
17m

default cgu-policy4-common-sriov-sub-policy
17m

default policy1-common-cluster-version-policy
15h

default policy2-common-nto-sub-policy
15h

default policy3-common-ptp-sub-policy
18m

default policy4-common-sriov-sub-policy
18m

CLUSTERS AT THE NETWORK FAR EDGE

enforce

enforce

inform NonCompliant
inform NonCompliant
inform NonCompliant
inform NonCompliant

The spec.remediationAction field of policies currently applied on the clusters is set to
enforce. The managed policies in inform mode from the ClusterGroupUpgrade CR
remain in inform mode during the update.

3. Change the value of the spec.enable field to true by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-1\
--patch '{"spec":{"enable":true}}' --type=merge

Verification

1. Check the status of the update again by running the following command:

I $ oc get cgu -n default cgu-1 -ojsonpath="{.status}' | jq

Example output

{
"computedMaxConcurrency": 2,
"conditions™: [ﬂ
{
"lastTransitionTime": "2022-02-25T15:33:07Z",
"message": "All selected clusters are valid",
"reason": "ClusterSelectionCompleted"”,
"status": "True",
"type": "ClustersSelected",
"lastTransitionTime": "2022-02-25T15:33:07Z",
"message": "Completed validation”,
"reason": "ValidationCompleted",
"status": "True",
"type": "Validated",
"lastTransitionTime": "2022-02-25T15:34:07Z",
"message": "Remediating non-compliant policies",
"reason": "InProgress",
"status": "True",
"type": "Progressing”
}
],
"copiedPolicies": [
"cgu-policy1-common-cluster-version-policy",

371

OpenShift Container Platform 4.12 Scalability and performance

"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”
1,
"managedPoliciesContent": {
"policy1-common-cluster-version-policy": "null",
"policy2-common-nto-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"node-tuning-
operator\",\"namespace\":\"openshift-cluster-node-tuning-operator\"}]",
"policy3-common-ptp-sub-policy”: "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\"\"namespace\":\"openshift-ptp\"}]",
"policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"

b

"managedPoliciesForUpgrade™:
{
"name": "policy1-common-cluster-version-policy",
"namespace”: "default”
b
{
"name": "policy2-common-nto-sub-policy",
"namespace”: "default”
b
{
"name": "policy3-common-ptp-sub-policy",
"namespace": "default”
b
{
"name": "policy4-common-sriov-sub-policy",
"namespace”: "default”
}
1,

"managedPoliciesNs": {

"policy 1-common-cluster-version-policy": "default”,
"policy2-common-nto-sub-policy": "default",
"policy3-common-ptp-sub-policy": "default",
"policy4-common-sriov-sub-policy": "default”

|3

"placementBindings": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”

I,

"placementRules": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy",
"cgu-policy4-common-sriov-sub-policy”

I,

"precaching": {
llspecll: {}

1

"remediationPlan": [

[
"spoke1",
"spoke2"

372

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

1,
[
"spokeb",
"spoke6"
]
1,
"status": {
"currentBatch": 1,
"currentBatchStartedAt": "2022-02-25T15:54:16Z",
"remediationPlanForBatch": {
"spoke1™: 0,
"spoke2": 1
2
"startedAt": "2022-02-25T15:54:16Z"
}

}

Reflects the update progress of the current batch. Run this command again to receive
updated information about the progress.

2. If the policies include Operator subscriptions, you can check the installation progress directly on
the single-node cluster.

a. Export the KUBECONFIG file of the single-node cluster you want to check the installation
progress for by running the following command:

I $ export KUBECONFIG=<cluster_kubeconfig_absolute_path>

b. Check all the subscriptions present on the single-node cluster and look for the one in the
policy you are trying to install through the ClusterGroupUpgrade CR by running the
following command:

I $ oc get subs -A | grep -i <subscription_name>

Example output for cluster-logging policy

NAMESPACE NAME PACKAGE SOURCE
CHANNEL
openshift-logging cluster-logging cluster-logging redhat-

operators stable

3. If one of the managed policies includes a ClusterVersion CR, check the status of platform
updates in the current batch by running the following command against the spoke cluster:

I $ oc get clusterversion
Example output

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.4.12.5 True True 43s Working towards 4.4.12.7: 71 of 735 done
(9% complete)

4. Check the Operator subscription by running the following command:

373

OpenShift Container Platform 4.12 Scalability and performance

I $ oc get subs -n <operator-namespace> <operator-subscription> -ojsonpath="{.status}"

5. Check the install plans present on the single-node cluster that is associated with the desired
subscription by running the following command:

I $ oc get installplan -n <subscription_namespace>

Example output for cluster-logging Operator

NAMESPACE NAME Csv APPROVAL
APPROVED
openshift-logging install-6khtw cluster-logging.5.3.3-4 Manual true

The install plans have their Approval field set to Manual and their Approved field changes
from false to true after TALM approves the install plan.

NOTE

When TALM is remediating a policy containing a subscription, it automatically
approves any install plans attached to that subscription. Where multiple install
plans are needed to get the operator to the latest known version, TALM might
approve multiple install plans, upgrading through one or more intermediate
versions to get to the final version.

6. Check if the cluster service version for the Operator of the policy that the
ClusterGroupUpgrade is installing reached the Succeeded phase by running the following
command:

I $ oc get csv -n <operator_namespace>

Example output for OpenShift Logging Operator

NAME DISPLAY VERSION REPLACES PHASE
cluster-logging.5.4.2 Red Hat OpenShift Logging 5.4.2 Succeeded

17.10.7. Creating a backup of cluster resources before upgrade

For single-node OpenShift, the Topology Aware Lifecycle Manager (TALM) can create a backup of a
deployment before an upgrade. If the upgrade fails, you can recover the previous version and restore a
cluster to a working state without requiring a reprovision of applications.

To use the backup feature you first create a ClusterGroupUpgrade CR with the backup field set to
true. To ensure that the contents of the backup are up to date, the backup is not taken until you set the
enable field in the ClusterGroupUpgrade CR to true.

TALM uses the BackupSucceeded condition to report the status and reasons as follows:
e true

Backup is completed for all clusters or the backup run has completed but failed for one or more
clusters. If backup fails for any cluster, the update does not proceed for that cluster.

374

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

e false
Backup is still in progress for one or more clusters or has failed for all clusters. The backup
process running in the spoke clusters can have the following statuses:

o PreparingToStart
The first reconciliation pass is in progress. The TALM deletes any spoke backup namespace
and hub view resources that have been created in a failed upgrade attempt.

o Starting
The backup prerequisites and backup job are being created.

o Active
The backup is in progress.

o Succeeded
The backup succeeded.

o BackupTimeout
Artifact backup is partially done.

o UnrecoverableError
The backup has ended with a non-zero exit code.

NOTE

If the backup of a cluster fails and enters the BackupTimeout or UnrecoverableError
state, the cluster update does not proceed for that cluster. Updates to other clusters are
not affected and continue.

17.10.7.1. Creating a ClusterGroupUpgrade CR with backup

You can create a backup of a deployment before an upgrade on single-node OpenShift clusters. If the
upgrade fails you can use the upgrade-recovery.sh script generated by Topology Aware Lifecycle
Manager (TALM) to return the system to its preupgrade state. The backup consists of the following
items:

Cluster backup

A snapshot of eted and static pod manifests.
Content backup

Backups of folders, for example, /etec, /usr/local, /var/lib/kubelet.
Changed files backup

Any files managed by machine-config that have been changed.
Deployment

A pinned ostree deployment.
Images (Optional)

Any container images that are in use.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).

® Provision one or more managed clusters.

375

OpenShift Container Platform 4.12 Scalability and performance

® |ogin as a user with cluster-admin privileges.

® |[nstall Red Hat Advanced Cluster Management (RHACM).

NOTE

It is highly recommended that you create a recovery partition. The following is an example
SiteConfig custom resource (CR) for a recovery partition of 50 GB:

nodes:
- hostName: "node-1.example.com"
role: "master”
rootDeviceHints:
hctl: "0:2:0:0"
deviceName: /dev/sda

#Disk /dev/sda: 893.3 GiB, 959119884288 bytes, 1873281024 sectors
diskPartition:
- device: /dev/sda
partitions:
- mount_point: /var/recovery
size: 51200
start: 800000

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the backup and enable fields set to
true in the clustergroupupgrades-group-du.yaml file:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: du-upgrade-4918
namespace: ztp-group-du-sno
spec:
preCaching: true
backup: true
clusters:
- cnfdb1
- cnfdb2
enable: true
managedPolicies:
- du-upgrade-platform-upgrade
remediationStrategy:
maxConcurrency: 2
timeout: 240

2. To start the update, apply the ClusterGroupUpgrade CR by running the following command:

I $ oc apply -f clustergroupupgrades-group-du.yaml

Verification

376

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

® Check the status of the upgrade in the hub cluster by running the following command:
I $ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath="{.status}'

Example output

"backup": {
"clusters": [
"cnfdb2",
"cnfdb1"”

],

"status": {
"cnfdb1": "Succeeded",
"cnfdb2": "Failed")
}
13
"computedMaxConcurrency": 1,
"conditions": [
{
"lastTransitionTime": "2022-04-05T10:37:19Z",
"message": "Backup failed for 1 cluster”, g
"reason": "PartiallyDone", e
"status": "True",
"type": "Succeeded"

}
1,
"precaching": {
"spec": {}

b

"status": {}

ﬂ Backup has failed for one cluster.
9 The message confirms that the backup failed for one cluster.
9 The backup was partially successful.

Q The backup process has finished.

17.10.7.2. Recovering a cluster after a failed upgrade

If an upgrade of a cluster fails, you can manually log in to the cluster and use the backup to return the
cluster to its preupgrade state. There are two stages:

Rollback

If the attempted upgrade included a change to the platform OS deployment, you must roll back to
the previous version before running the recovery script.

IMPORTANT

A rollback is only applicable to upgrades from TALM and single-node OpenShift. This
process does not apply to rollbacks from any other upgrade type.

377

OpenShift Container Platform 4.12 Scalability and performance

Recovery

The recovery shuts down containers and uses files from the backup partition to relaunch containers
and restore clusters.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).

® Provision one or more managed clusters.

® |[nstall Red Hat Advanced Cluster Management (RHACM).
® | ogin as a user with cluster-admin privileges.

® Run an upgrade that is configured for backup.

Procedure

1. Delete the previously created ClusterGroupUpgrade custom resource (CR) by running the
following command:

I $ oc delete cgu/du-upgrade-4918 -n ztp-group-du-sno

2. Login to the cluster that you want to recover.

3. Check the status of the platform OS deployment by running the following command:

I $ ostree admin status
Example outputs

[root@lab-test-spoke2-node-0 corel# ostree admin status
* rhcos c038a8f08458bbed83a77ece033ad3c55597e3f64edad66eal2fdal8cbdceafd.0
Version: 49.84.202202230006-0
Pinned: yes 0
origin refspec:
c038a8f08458bbed83a77ece033ad3c55597e3f64edad66eal2fdal8cbdceaf9

ﬂ The current deployment is pinned. A platform OS deployment rollback is not necessary.

[root@lab-test-spoke2-node-0 corel# ostree admin status
* rhcos f750ff26f2d5550930ccbe17af61af47daafc8018cd9944f2a3a6269af26b0fa.0

Version: 410.84.202204050541-0

origin refspec: f750ff26f2d5550930ccbe17af61af47daafc8018cd9944f2a3a6269af26b0fa
rhcos ad8f159f9dc4ea7e773fd9604c9a16be0fe9b266ae800ac8470f63abc39b52¢ca.0
(rollback) @)

Version: 410.84.202203290245-0

Pinned: yes 9

origin refspec:
ad8f159f9dc4ea7e773fd9604c9a16be0fe9b266ae800ac8470f63abc39b52¢ca

ﬂ This platform OS deployment is marked for rollback.

378

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

9 The previous deployment is pinned and can be rolled back.

4. To trigger a rollback of the platform OS deployment, run the following command:

I $ rom-ostree rollback -r

5. The first phase of the recovery shuts down containers and restores files from the backup
partition to the targeted directories. To begin the recovery, run the following command:

I $ /var/recovery/upgrade-recovery.sh
6. When prompted, reboot the cluster by running the following command:

I $ systemctl reboot

7. After the reboot, restart the recovery by running the following command:

I $ /var/recovery/upgrade-recovery.sh --resume

NOTE

If the recovery utility fails, you can retry with the --restart option:

I $ /var/recovery/upgrade-recovery.sh --restart

Ea

Verification

® To check the status of the recovery run the following command:

I $ oc get clusterversion,nodes,clusteroperator

Example output

NAME VERSION AVAILABLE PROGRESSING SINCE
STATUS
clusterversion.config.openshift.io/version 4.4.12.23 True False 86d Cluster

version is 4.4.12.23 ﬂ

NAME STATUS ROLES AGE VERSION
node/lab-test-spoke1-node-0 Ready master,worker 86d v1.22.3+b93fd359

NAME VERSION AVAILABLE
PROGRESSING DEGRADED SINCE MESSAGE
clusteroperator.config.openshift.io/authentication 441223 True

False False 2d7h 6

clusteroperator.config.openshift.io/baremetal 441223 True False
False 86d

379

OpenShift Container Platform 4.12 Scalability and performance

ﬂ The cluster version is available and has the correct version.
9 The node status is Ready.

9 The ClusterOperator object’s availability is True.

17.10.8. Using the container image pre-cache feature

Single-node OpenShift clusters might have limited bandwidth to access the container image registry,
which can cause a timeout before the updates are completed.

NOTE

The time of the update is not set by TALM. You can apply the ClusterGroupUpgrade CR
at the beginning of the update by manual application or by external automation.

The container image pre-caching starts when the preCaching field is set to true in the
ClusterGroupUpgrade CR.

TALM uses the PrecacheSpecValid condition to report status information as follows:

e true
The pre-caching spec is valid and consistent.

e false
The pre-caching specis incomplete.

TALM uses the PrecachingSucceeded condition to report status information as follows:

e t{rue
TALM has concluded the pre-caching process. If pre-caching fails for any cluster, the update
fails for that cluster but proceeds for all other clusters. A message informs you if pre-caching
has failed for any clusters.

e false
Pre-caching is still in progress for one or more clusters or has failed for all clusters.

After a successful pre-caching process, you can start remediating policies. The remediation actions start
when the enable field is set to true. If there is a pre-caching failure on a cluster, the upgrade fails for
that cluster. The upgrade process continues for all other clusters that have a successful pre-cache.

The pre-caching process can be in the following statuses:

e NotStarted
This is the initial state all clusters are automatically assigned to on the first reconciliation pass of
the ClusterGroupUpgrade CR. In this state, TALM deletes any pre-caching namespace and
hub view resources of spoke clusters that remain from previous incomplete updates. TALM
then creates a new ManagedClusterView resource for the spoke pre-caching namespace to
verify its deletion in the PrecachePreparing state.

® PreparingToStart
Cleaning up any remaining resources from previous incomplete updates is in progress.

e Starting

380

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Pre-caching job prerequisites and the job are created.

e Active
The jobisin "Active"” state.

® Succeeded
The pre-cache job succeeded.

® PrecacheTimeout
The artifact pre-caching is partially done.

e UnrecoverableError
The job ends with a non-zero exit code.

17.10.8.1. Creating a ClusterGroupUpgrade CR with pre-caching

For single-node OpenShift, the pre-cache feature allows the required container images to be present
on the spoke cluster before the update starts.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.

® | ogin as a user with cluster-admin privileges.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the preCaching field set to true in
the clustergroupupgrades-group-du.yaml file:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: du-upgrade-4918
namespace: ztp-group-du-sno
spec:
preCaching: true 0
clusters:
- cnfdb1
- cnfdb2
enable: false
managedPolicies:
- du-upgrade-platform-upgrade
remediationStrategy:
maxConcurrency: 2
timeout: 240

ﬂ The preCaching field is set to true, which enables TALM to pull the container images
before starting the update.

2. When you want to start pre-caching, apply the ClusterGroupUpgrade CR by running the
following command:

381

OpenShift Container Platform 4.12 Scalability and performance

I $ oc apply -f clustergroupupgrades-group-du.yaml

Verification

1. Check if the ClusterGroupUpgrade CR exists in the hub cluster by running the following
command:

I $ oc getcgu -A
Example output

NAMESPACE NAME AGE STATE DETAILS
ztp-group-du-sno du-upgrade-4918 10s InProgress Precaching is required and not done

ﬂ The CRis created.

2. Check the status of the pre-caching task by running the following command:
I $ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath="{.status}'
Example output

{
"conditions": [
{
"lastTransitionTime": "2022-01-27T19:07:24Z",
"message": "Precaching is required and not done",
"reason": "InProgress",
"status": "False",
"type": "PrecachingSucceeded"

—_—

"lastTransitionTime": "2022-01-27T19:07:34Z",
"message": "Pre-caching spec is valid and consistent”,
"reason": "PrecacheSpeclsWellFormed",
"status": "True",
"type": "PrecacheSpecValid"
}
1,
"precaching": {
"clusters": [
"cnfdb1" ﬂ
"cnfdb2"
1,
"spec": {
"platformlmage": "image.example.io"},
"status": {
"cnfdb1": "Active"
"cnfdb2": "Succeeded"}

}
}

382

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

ﬂ Displays the list of identified clusters.

3. Check the status of the pre-caching job by running the following command on the spoke
cluster:

I $ oc get jobs,pods -n openshift-talo-pre-cache

Example output

NAME COMPLETIONS DURATION AGE
job.batch/pre-cache 0/1 3m10s 3m10s
NAME READY STATUS RESTARTS AGE

pod/pre-cache--1-9bmlir 1/1 Running 0 3m10s
4. Check the status of the ClusterGroupUpgrade CR by running the following command:
I $ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath="{.status}'
Example output

"conditions": [
{
"lastTransitionTime": "2022-01-27T19:30:41Z",
"message": "The ClusterGroupUpgrade CR has all clusters compliant with all the
managed policies",
"reason": "UpgradeCompleted",
"status": "True",
"type": "Ready"
b

{
"lastTransitionTime": "2022-01-27T19:28:577",

"message": "Precaching is completed",
"reason": "PrecachingCompleted"”,
"status": "True",

"type": "PrecachingSucceeded" 0

}

ﬂ The pre-cache tasks are done.

17.10.9. Troubleshooting the Topology Aware Lifecycle Manager

The Topology Aware Lifecycle Manager (TALM) is an OpenShift Container Platform Operator that
remediates RHACM policies. When issues occur, use the oc adm must-gather command to gather
details and logs and to take steps in debugging the issues.

For more information about related topics, see the following documentation:

® Red Hat Advanced Cluster Management for Kubernetes 2.4 Support Matrix

® Red Hat Advanced Cluster Management Troubleshooting

383

https://access.redhat.com/articles/6218901
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.0/html/troubleshooting/troubleshooting

OpenShift Container Platform 4.12 Scalability and performance

® The "Troubleshooting Operator issues” section

17.10.9.1. General troubleshooting

You can determine the cause of the problem by reviewing the following questions:

® |s the configuration that you are applying supported?

o Are the RHACM and the OpenShift Container Platform versions compatible?
o Are the TALM and RHACM versions compatible?

® Which of the following components is causing the problem?

o Section 17.10.9.3, “Managed policies”
o Section 17.10.9.4, “Clusters”
o Section 17.10.9.5, “Remediation Strategy”
o Section 17.10.9.6, “Topology Aware Lifecycle Manager”
To ensure that the ClusterGroupUpgrade configuration is functional, you can do the following:
1. Create the ClusterGroupUpgrade CR with the spec.enable field set to false.
2. Wait for the status to be updated and go through the troubleshooting questions.

3. If everything looks as expected, set the spec.enable field to true in the ClusterGroupUpgrade
CR.

' WARNING
A After you set the spec.enable field to true in the ClusterUpgradeGroup CR, the

update procedure starts and you cannot edit the CR’s spec fields anymore.

17.10.9.2. Cannot modify the ClusterUpgradeGroup CR

Issue
You cannot edit the ClusterUpgradeGroup CR after enabling the update.
Resolution

Restart the procedure by performing the following steps:

1. Remove the old ClusterGroupUpgrade CR by running the following command:

$ oc delete cgu -n <ClusterGroupUpgradeCR_namespace>
<ClusterGroupUpgradeCR_name>

2. Check and fix the existing issues with the managed clusters and policies.

a. Ensure that all the clusters are managed clusters and available.

384

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

b. Ensure that all the policies exist and have the spec.remediationAction field set to
inform.

3. Create a new ClusterGroupUpgrade CR with the correct configurations.

I $ oc apply -f <ClusterGroupUpgradeCR_YAML>

17.10.9.3. Managed policies
Checking managed policies on the system

Issue
You want to check if you have the correct managed policies on the system.

Resolution

Run the following command:

I $ oc get cgu lab-upgrade -ojsonpath="{.spec.managedPolicies}'

Example output

['group-du-sno-validator-du-validator-policy”, "policy2-common-nto-sub-policy", "policy3-common-
ptp-sub-policy"]

Checking remediationAction mode

Issue
You want to check if the remediationAction field is set to inform in the spec of the managed
policies.

Resolution

Run the following command:

I $ oc get policies --all-namespaces

Example output

NAMESPACE NAME REMEDIATION ACTION COMPLIANCE
STATE AGE

default policy1-common-cluster-version-policy inform NonCompliant

5d21h

default policy2-common-nto-sub-policy inform Compliant 5d21h
default policy3-common-ptp-sub-policy inform NonCompliant 5d21h
default policy4-common-sriov-sub-policy inform NonCompliant 5d21h

Checking policy compliance state

Issue
You want to check the compliance state of policies.

Resolution

385

OpenShift Container Platform 4.12 Scalability and performance

Run the following command:

I $ oc get policies --all-namespaces

Example output

NAMESPACE NAME REMEDIATION ACTION COMPLIANCE
STATE AGE

default policy1-common-cluster-version-policy inform NonCompliant

5d21h

default policy2-common-nto-sub-policy inform Compliant 5d21h
default policy3-common-ptp-sub-policy inform NonCompliant 5d21h
default policy4-common-sriov-sub-policy inform NonCompliant 5d21h

17.10.9.4. Clusters

Checking if managed clusters are present

Issue
You want to check if the clusters in the ClusterGroupUpgrade CR are managed clusters.

Resolution

Run the following command:

I $ oc get managedclusters

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE

local-cluster true https://api.hub.example.com:6443 True Unknown 13d

spoke1 true https://api.spoke1.example.com:6443 True True 13d

spoke3 true https://api.spoke3.example.com:6443 True True 27h

1. Alternatively, check the TALM manager logs:

a. Getthe name of the TALM manager by running the following command:
I $ oc get pod -n openshift-operators

Example output

NAME READY STATUS RESTARTS AGE
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp 2/2 Running 0
45m

b. Check the TALM manager logs by running the following command:

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

386

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Example output

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error
{"reconciler group": "ran.openshift.io", "reconciler kind": "ClusterGroupUpgrade",
"name": "lab-upgrade”, "namespace": "default”", "error": "Cluster spoke5555 is not a
ManagedCluster"}

sigs.k8s.io/controller-runtime/pkg/internal/controller.
(*Controller).processNextWorkltem

ﬂ The error message shows that the cluster is not a managed cluster.

Checking if managed clusters are available

Issue
You want to check if the managed clusters specified in the ClusterGroupUpgrade CR are available.

Resolution

Run the following command:

I $ oc get managedclusters

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE

local-cluster true https://api.hub.testlab.com:6443 True Unknown 13d

spoke1 true https://api.spokei.testlab.com:6443 True True 13d

spoke3 true https://api.spoke3.testlab.com:6443 True True 27h

wThe value of the AVAILABLE field is True for the managed clusters.

Checking clusterLabelSelector

Issue

You want to check if the clusterLabelSelector field specified in the ClusterGroupUpgrade CR
matches at least one of the managed clusters.

Resolution

Run the following command:
I $ oc get managedcluster --selector=upgrade=true ﬂ

ﬂ The label for the clusters you want to update is upgrade:true.

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED
AVAILABLE AGE
spoke1 true https://api.spoke1.testlab.com:6443 True True 13d

387

OpenShift Container Platform 4.12 Scalability and performance

I spoke3 true https://api.spoke3d.testlab.com:6443 True True

Checking if canary clusters are present

Issue

You want to check if the canary clusters are present in the list of clusters.

Example ClusterGroupUpgrade CR

spec:
remediationStrategy:
canaries:
- spoke3
maxConcurrency: 2
timeout: 240
clusterLabelSelectors:
- matchLabels:
upgrade: true

Resolution

Run the following commands:

I $ oc get cgu lab-upgrade -ojsonpath="{.spec.clusters}'
Example output

I ["spoke1”, "spoke3"]

1. Check if the canary clusters are present in the list of clusters that match
clusterLabelSelector labels by running the following command:

I $ oc get managedcluster --selector=upgrade=true

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE

spoke1 true https://api.spoke1.testlab.com:6443 True True

spoke3 true https://api.spoke3.testlab.com:6443 True True

NOTE

A cluster can be present in spec.clusters and also be matched by the
spec.clusterLabelSelector label.

Checking the pre-caching status on spoke clusters

1. Check the status of pre-caching by running the following command on the spoke cluster:

I $ oc get jobs,pods -n openshift-talo-pre-cache

388

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

17.10.9.5. Remediation Strategy

Checking if remediationStrategy is present in the ClusterGroupUpgrade CR

Issue

You want to check if the remediationStrategy is present in the ClusterGroupUpgrade CR.
Resolution

Run the following command:
I $ oc get cgu lab-upgrade -ojsonpath="{.spec.remediationStrategy}'
Example output

I {"maxConcurrency":2, "timeout":240}

Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

Issue

You want to check if the maxConcurrency is specified in the ClusterGroupUpgrade CR.
Resolution

Run the following command:
I $ oc get cgu lab-upgrade -ojsonpath="{.spec.remediationStrategy.maxConcurrency}'

Example output
| -

17.10.9.6. Topology Aware Lifecycle Manager
Checking condition message and status in the ClusterGroupUpgrade CR

Issue

You want to check the value of the status.conditions field in the ClusterGroupUpgrade CR.
Resolution

Run the following command:
I $ oc get cgu lab-upgrade -ojsonpath='{.status.conditions}'
Example output

{"lastTransitionTime":"2022-02-17T22:25:28Z", "message":"Missing managed policies:[policyList]",
"reason":"NotAllIManagedPoliciesExist", "status":"False", "type":"Validated"}

Checking corresponding copied policies

389

OpenShift Container Platform 4.12 Scalability and performance

Issue

You want to check if every policy from status.managedPoliciesForUpgrade has a corresponding
policy in status.copiedPolicies.

Resolution

Run the following command:
I $ oc get cgu lab-upgrade -oyaml
Example output

status:

copiedPolicies:

- lab-upgrade-policy3-common-ptp-sub-policy

managedPoliciesForUpgrade:

- name: policy3-common-ptp-sub-policy
namespace: default

Checking if status.remediationPlan was computed

Issue

You want to check if status.remediationPlan is computed.
Resolution

Run the following command:

I $ oc get cgu lab-upgrade -ojsonpath='{.status.remediationPlan}'

Example output

I [["spoke2", "spoke3"]

Errors in the TALM manager container

Issue

You want to check the logs of the manager container of TALM.
Resolution

Run the following command:

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

Example output

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error {"reconciler
group": "ran.openshift.io”, "reconciler kind": "ClusterGroupUpgrade", "name": "lab-upgrade”,

"namespace": "default", "error": "Cluster spoke5555 is not a ManagedCluster"} ﬂ
sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextWorkltem

390

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

ﬂ Displays the error.

Clusters are not compliant to some policies after aClusterGroupUpgrade CR has completed

Issue

The policy compliance status that TALM uses to decide if remediation is needed has not yet fully
updated for all clusters. This may be because:

® The CGU was run too soon after a policy was created or updated.

® The remediation of a policy affects the compliance of subsequent policies in the
ClusterGroupUpgrade CR.

Resolution

Create a new and apply ClusterGroupUpdate CR with the same specification .

Additional resources

e Forinformation about troubleshooting, see OpenShift Container Platform Troubleshooting
Operator Issues.

® For more information about using Topology Aware Lifecycle Manager in the ZTP workflow, see
Updating managed policies with Topology Aware Lifecycle Manager .

® For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate
CRD

17.11. UPDATING MANAGED CLUSTERS IN A DISCONNECTED
ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
OpenShift Container Platform managed clusters. TALM uses Red Hat Advanced Cluster Management
(RHACM) policies to perform changes on the target clusters.

Additional resources
® For more information about the Topology Aware Lifecycle Manager, see About the Topology
Aware Lifecycle Manager.
17.11.1. Updating clusters in a disconnected environment
You can upgrade managed clusters and Operators for managed clusters that you have deployed using
GitOps ZTP and Topology Aware Lifecycle Manager (TALM).
17.11.1.1. Setting up the environment

TALM can perform both platform and Operator updates.
You must mirror both the platform image and Operator images that you want to update to in your mirror

registry before you can use TALM to update your disconnected clusters. Complete the following steps
to mirror the images:

391

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/support/#troubleshooting-operator-issues-1

OpenShift Container Platform 4.12 Scalability and performance

® For platform updates, you must perform the following steps:

1. Mirror the desired OpenShift Container Platform image repository. Ensure that the desired
platform image is mirrored by following the "Mirroring the OpenShift Container Platform
image repository" procedure linked in the Additional Resources. Save the contents of the
imageContentSources section in the imageContentSources.yaml file:

Example output

imageContentSources:

- mirrors:
- mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
source: quay.io/openshift-release-dev/ocp-release

- mirrors:
- mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

2. Save the image signature of the desired platform image that was mirrored. You must add
the image signature to the PolicyGenTemplate CR for platform updates. To get the image
signature, perform the following steps:

a. Specify the desired OpenShift Container Platform tag by running the following
command:

I $ OCP_RELEASE_NUMBER=<release version>

b. Specify the architecture of the server by running the following command:

I $ ARCHITECTURE=<server_architecture>

c. Get the release image digest from Quay by running the following command

$ DIGEST="$(oc adm release info quay.io/openshift-release-dev/ocp-
release:${OCP_RELEASE_NUMBER}-${ARCHITECTURE]} | sed -n 's/Pull From:

@l/p")"

d. Set the digest algorithm by running the following command:

I $ DIGEST_ALGO="${DIGEST%%:*}"

e. Set the digest signature by running the following command:

I $ DIGEST_ENCODED="${DIGEST#":}"

f. Get the image signature from the mirror.openshift.com website by running the following
command:

$ SIGNATURE_BASEG64=%(curl -s "https://mirror.openshift.com/pub/openshift-
v4/signatures/openshift/release/${DIGEST_ALGO}=${DIGEST_ENCODED}/signature
-1" | base64 -w0 && echo)

g. Save the image signature to the checksum-<OCP_RELEASE_NUMBER>.yaml file by
running the following commands:

392

https://mirror.openshift.com/pub/openshift-v4/signatures/openshift/release/

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

$ cat >checksum-${OCP_RELEASE_NUMBER}.yam| <<EOF
${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASEG64}
EOF

3. Prepare the update graph. You have two options to prepare the update graph:

a. Use the OpenShift Update Service.
For more information about how to set up the graph on the hub cluster, see Deploy the
operator for OpenShift Update Service and Build the graph data init container.

b. Make a local copy of the upstream graph. Host the update graph on an http or https
server in the disconnected environment that has access to the managed cluster. To
download the update graph, use the following command:

$ curl -s https://api.openshift.com/api/upgrades_info/v1i/graph?channel=stable-4.12 -
o ~/upgrade-graph_stable-4.12

For Operator updates, you must perform the following task:

o Mirror the Operator catalogs. Ensure that the desired operator images are mirrored by
following the procedure in the "Mirroring Operator catalogs for use with disconnected
clusters" section.

Additional resources

For more information about how to update ZTP, see Upgrading GitOps ZTP..

For more information about how to mirror an OpenShift Container Platform image repository,
see Mirroring the OpenShift Container Platform image repository .

For more information about how to mirror Operator catalogs for disconnected clusters, see
Mirroring Operator catalogs for use with disconnected clusters.

For more information about how to prepare the disconnected environment and mirroring the
desired image repository, see Preparing the disconnected environment.

For more information about update channels and releases, see Understanding update channels
and releases.

17.11.1.2. Performing a platform update

You can perform a platform update with the TALM.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).
Update ZTP to the latest version.

Provision one or more managed clusters with ZTP.
Mirror the desired image repository.

Login as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

393

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#deploy-the-operator-for-cincinnati
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#build-the-graph-data-init-container
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#olm-mirror-catalog_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/updating_clusters/#understanding-upgrade-channels-releases

OpenShift Container Platform 4.12 Scalability and performance

Procedure
1. Create a PolicyGenTemplate CR for the platform update:

a. Save the following contents of the PolicyGenTemplate CR in the du-upgrade.yaml file.

Example of PolicyGenTemplate for platform update

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "du-upgrade"
namespace: "ztp-group-du-sno"
spec:
bindingRules:
group-du-sno: "
mcp: "master”
remediationAction: inform
sourceFiles:
- fleName: ImageSignature.yaml| 0
policyName: "platform-upgrade-prep"
binaryData:
${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASE64} 9
- fileName: DisconnectedICSP.yaml|
policyName: "platform-upgrade-prep"
metadata:
name: disconnected-internal-icsp-for-ocp
spec:
repositoryDigestMirrors: e
- mirrors:
- quay-intern.example.com/ocp4/openshift-release-dev
source: quay.io/openshift-release-dev/ocp-release
- mirrors:
- quay-intern.example.com/ocp4/openshift-release-dev
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
- fileName: ClusterVersion.yaml
policyName: "platform-upgrade”
metadata:
name: version
spec:
channel: "stable-4.12"
upstream: http://upgrade.example.com/images/upgrade-graph_stable-4.12
desiredUpdate:
version: 4.12.4
status:
history:
- version: 4.12.4
state: "Completed"

The ConfigMap CR contains the signature of the desired release image to update to.

®9

Shows the image signature of the desired OpenShift Container Platform release. Get
the signature from the checksum-${OCP_RELEASE_NUMBER}.yaml file you saved
when following the procedures in the "Setting up the environment” section.

394

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

9 Shows the mirror repository that contains the desired OpenShift Container Platform
image. Get the mirrors from the imageContentSources.yaml file that you saved when

Q Shows the ClusterVersion CR to trigger the update. The channel, upstream, and
desiredVersion fields are all required for image pre-caching.

The PolicyGenTemplate CR generates two policies:

e The du-upgrade-platform-upgrade-prep policy does the preparation work for the
platform update. It creates the ConfigMap CR for the desired release image signature,
creates the image content source of the mirrored release image repository, and
updates the cluster version with the desired update channel and the update graph
reachable by the managed cluster in the disconnected environment.

e The du-upgrade-platform-upgrade policy is used to perform platform upgrade.

b. Add the du-upgrade.yaml file contents to the kustomization.yaml file located in the ZTP
Git repository for the PolicyGenTemplate CRs and push the changes to the Git repository.

ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

c. Check the created policies by running the following command:
I $ oc get policies -A | grep platform-upgrade

2. Create the ClusterGroupUpdate CR for the platform update with the spec.enable field set to
false.

a. Save the content of the platform update ClusterGroupUpdate CR with the du-upgrade-
platform-upgrade-prep and the du-upgrade-platform-upgrade policies and the target
clusters to the cgu-platform-upgrade.yml file, as shown in the following example:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-platform-upgrade
namespace: default
spec:
managedPolicies:
- du-upgrade-platform-upgrade-prep
- du-upgrade-platform-upgrade
preCaching: false
clusters:
- spoke1
remediationStrategy:
maxConcurrency: 1
enable: false

b. Apply the ClusterGroupUpdate CR to the hub cluster by running the following command:
I $ oc apply -f cgu-platform-upgrade.yml

3. Optional: Pre-cache the images for the platform update.

a. Enable pre-caching in the ClusterGroupUpdate CR by running the following command:

395

OpenShift Container Platform 4.12 Scalability and performance

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the hub cluster:

I $ oc get cgu cgu-platform-upgrade -o jsonpath='{.status.precaching.status}'

4. Start the platform update:

a. Enable the cgu-platform-upgrade policy and disable pre-caching by running the following
command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

Additional resources

® For more information about mirroring the images in a disconnected environment, see Preparing
the disconnected environment.

17.11.1.3. Performing an Operator update

You can perform an Operator update with the TALM.

Prerequisites

® |nstall the Topology Aware Lifecycle Manager (TALM).
® Update ZTP to the latest version.
® Provision one or more managed clusters with ZTP.

® Mirror the desired index image, bundle images, and all Operator images referenced in the
bundle images.

® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure
1. Update the PolicyGenTemplate CR for the Operator update.

a. Update the du-upgrade PolicyGenTemplate CR with the following additional contents in
the du-upgrade.yaml file:

396

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:

name: "du-upgrade"

namespace: "ztp-group-du-sno"
spec:

bindingRules:

group-du-sno: "

mcp: "master”

remediationAction: inform

sourceFiles:

- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "operator-catsrc-policy"
metadata:

name: redhat-operators
spec:
displayName: Red Hat Operators Catalog
image: registry.example.com:5000/olm/redhat-operators:v4.12 ﬂ
updateStrategy: 9
registryPoll:
interval: 1h

The index image URL contains the desired Operator images. If the index images are
always pushed to the same image name and tag, this change is not needed.

Set how frequently the Operator Lifecycle Manager (OLM) polls the index image for
new Operator versions with the registryPoll.interval field. This change is not needed
if a new index image tag is always pushed for y-stream and z-stream Operator
updates. The registryPoll.interval field can be set to a shorter interval to expedite the
update, however shorter intervals increase computational load. To counteract this, you
can restore registryPoll.interval to the default value once the update is complete.

o

b. This update generates one policy, du-upgrade-operator-catsrc-policy, to update the
redhat-operators catalog source with the new index images that contain the desired
Operators images.

NOTE

If you want to use the image pre-caching for Operators and there are
Operators from a different catalog source other than redhat-operators, you
must perform the following tasks:

® Prepare a separate catalog source policy with the new index image or
registry poll interval update for the different catalog source.

® Prepare a separate subscription policy for the desired Operators that are
from the different catalog source.

For example, the desired SRIOV-FEC Operator is available in the certified-operators
catalog source. To update the catalog source and the Operator subscription, add the
following contents to generate two policies, du-upgrade-fec-catsrc-policy and du-
upgrade-subscriptions-fec-policy:

397

OpenShift Container Platform 4.12 Scalability and performance

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:

name: "du-upgrade"

namespace: "ztp-group-du-sno"
spec:

bindingRules:

group-du-sno: "

mcp: "master”

remediationAction: inform

sourceFiles:

- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "fec-catsrc-policy"
metadata:
name: certified-operators
spec:
displayName: Intel SRIOV-FEC Operator
image: registry.example.com:5000/olm/far-edge-sriov-fec:v4.10
updateStrategy:
registryPoll:
interval: 10m
- fileName: AcceleratorsSubscription.yaml
policyName: "subscriptions-fec-policy"
spec:
channel: "stable"
source: certified-operators

c. Remove the specified subscriptions channels in the common PolicyGenTemplate CR, if
they exist. The default subscriptions channels from the ZTP image are used for the update.

NOTE

The default channel for the Operators applied through ZTP 4.12 is stable,
except for the performance-addon-operator. As of OpenShift Container
Platform 4.11, the performance-addon-operator functionality was moved to
the node-tuning-operator. For the 4.10 release, the default channel for PAO
is v4.10. You can also specify the default channels in the common
PolicyGenTemplate CR.

d. Push the PolicyGenTemplate CRs updates to the ZTP Git repository.

ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

e. Check the created policies by running the following command:
I $ oc get policies -A | grep -E "catsrc-policy|subscription”

2. Apply the required catalog source updates before starting the Operator update.

a. Save the content of the ClusterGroupUpgrade CR named operator-upgrade-prep with
the catalog source policies and the target managed clusters to the cgu-operator-upgrade-
prep.yml file:

398

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-operator-upgrade-prep
namespace: default
spec:
clusters:
- spoke1
enable: true
managedPolicies:
- du-upgrade-operator-catsrc-policy
remediationStrategy:
maxConcurrency: 1

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

b. Apply the policy to the hub cluster by running the following command:

I $ oc apply -f cgu-operator-upgrade-prep.ymi

c. Monitor the update process. Upon completion, ensure that the policy is compliant by
running the following command:

I $ oc get policies -A | grep -E "catsrc-policy”

3. Create the ClusterGroupUpgrade CR for the Operator update with the spec.enable field set
to false.

a. Save the content of the Operator update ClusterGroupUpgrade CR with the du-upgrade-
operator-catsrc-policy policy and the subscription policies created from the common
PolicyGenTemplate and the target clusters to the cgu-operator-upgrade.ymil file, as
shown in the following example:

o

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-operator-upgrade
namespace: default
spec:
managedPolicies:

- du-upgrade-operator-catsrc-policy 0

- common-subscriptions-policy

preCaching: false

clusters:

- spoke1

remediationStrategy:
maxConcurrency: 1

enable: false

The policy is needed by the image pre-caching feature to retrieve the operator images

from the catalog source.

The policy contains Operator subscriptions. If you have followed the structure and
content of the reference PolicyGenTemplates, all Operator subscriptions are
grouped into the common-subscriptions-policy policy.

399

OpenShift Container Platform 4.12 Scalability and performance

NOTE

One ClusterGroupUpgrade CR can only pre-cache the images of the
desired Operators defined in the subscription policy from one catalog source
included in the ClusterGroupUpgrade CR. If the desired Operators are from
different catalog sources, such as in the example of the SRIOV-FEC
Operator, another ClusterGroupUpgrade CR must be created with du-
upgrade-fec-catsrc-policy and du-upgrade-subscriptions-fec-policy
policies for the SRIOV-FEC Operator images pre-caching and update.

b. Apply the ClusterGroupUpgrade CR to the hub cluster by running the following command:
I $ oc apply -f cgu-operator-upgrade.yml

4. Optional: Pre-cache the images for the Operator update.

a. Before starting image pre-caching, verify the subscription policy is NonCompliant at this
point by running the following command:

I $ oc get policy common-subscriptions-policy -n <policy_namespace>
Example output

NAME REMEDIATION ACTION COMPLIANCE STATE AGE
common-subscriptions-policy inform NonCompliant 27d

b. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:
$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \

--patch '{"spec":{"preCaching": true}}' --type=merge

c. Monitor the process and wait for the pre-caching to complete. Check the status of pre-
caching by running the following command on the managed cluster:

I $ oc get cgu cgu-operator-upgrade -0 jsonpath='{.status.precaching.status}'

d. Check if the pre-caching is completed before starting the update by running the following
command:

I $ oc get cgu -n default cgu-operator-upgrade -ojsonpath="{.status.conditions}' | jq

Example output

"lastTransitionTime": "2022-03-08T20:49:08.000Z",
"message": "The ClusterGroupUpgrade CR is not enabled",
"reason": "UpgradeNotStarted",

"status": "False",

"type": "Ready"

400

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

"lastTransitionTime": "2022-03-08T20:55:30.000Z",
"message": "Precaching is completed",

"reason": "PrecachingCompleted"”,

"status": "True",

"type": "PrecachingDone"

5. Start the Operator update.

a. Enable the cgu-operator-upgrade ClusterGroupUpgrade CR and disable pre-caching to
start the Operator update by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

Additional resources

® For more information about updating GitOps ZTP, see Upgrading GitOps ZTP..

® Troubleshooting missed Operator updates due to out-of-date policy compliance states .

17.11.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance states

In some scenarios, Topology Aware Lifecycle Manager (TALM) might miss Operator updates due to an
out-of-date policy compliance state.

After a catalog source update, it takes time for the Operator Lifecycle Manager (OLM) to update the
subscription status. The status of the subscription policy might continue to show as compliant while
TALM decides whether remediation is needed. As a result, the Operator specified in the subscription
policy does not get upgraded.

To avoid this scenario, add another catalog source configuration to the PolicyGenTemplate and specify
this configuration in the subscription for any Operators that require an update.

Procedure

1. Add a catalog source configuration in the PolicyGenTemplate resource:

- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "operator-catsrc-policy"
metadata:
name: redhat-operators
spec:
displayName: Red Hat Operators Catalog
image: registry.example.com:5000/olm/redhat-operators:v{product-version}
updateStrategy:
registryPoll:

401

OpenShift Container Platform 4.12 Scalability and performance

interval: 1h
status:
connectionState:
lastObservedState: READY
- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "operator-catsrc-policy"
metadata:
name: redhat-operators-v2 0
spec:
displayName: Red Hat Operators Catalog v2 9
image: registry.example.com:5000/olredhat-operators:<version> 6
updateStrategy:
registryPoll:
interval: 1h
status:
connectionState:
lastObservedState: READY

ﬂ Update the name for the new configuration.
9 Update the display name for the new configuration.

9 Update the index image URL. This fileName.spec.image field overrides any configuration
in the DefaultCatsrc.yaml file.

2. Update the Subscription resource to point to the new configuration for Operators that require
an update:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: operator-subscription
namespace: operator-namspace
#...
spec:
source: redhat-operators-v2 ﬂ
#...

Enter the name of the additional catalog source configuration that you defined in the
PolicyGenTemplate resource.

17.11.1.4. Performing a platform and an Operator update together

You can perform a platform and an Operator update at the same time.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).
® Update ZTP to the latest version.

® Provision one or more managed clusters with ZTP.

402

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure

1. Create the PolicyGenTemplate CR for the updates by following the steps described in the
"Performing a platform update” and "Performing an Operator update" sections.

2. Apply the prep work for the platform and the Operator update.

a. Save the content of the ClusterGroupUpgrade CR with the policies for platform update
preparation work, catalog source updates, and target clusters to the cgu-platform-
operator-upgrade-prep.yml file, for example:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-platform-operator-upgrade-prep
namespace: default
spec:
managedPolicies:
- du-upgrade-platform-upgrade-prep
- du-upgrade-operator-catsrc-policy
clusterSelector:
- group-du-sno
remediationStrategy:
maxConcurrency: 10
enable: true

b. Apply the cgu-platform-operator-upgrade-prep.yml file to the hub cluster by running the
following command:

I $ oc apply -f cgu-platform-operator-upgrade-prep.yml

c. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

3. Create the ClusterGroupUpdate CR for the platform and the Operator update with the
spec.enable field set to false.

a. Save the contents of the platform and Operator update ClusterGroupUpdate CR with the
policies and the target clusters to the cgu-platform-operator-upgrade.yml file, as shown in
the following example:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-du-upgrade
namespace: default
spec:
managedPolicies:
- du-upgrade-platform-upgrade 0

403

OpenShift Container Platform 4.12 Scalability and performance

- du-upgrade-operator-catsrc-policy g
- common-subscriptions-policy
preCaching: true
clusterSelector:
- group-du-sno
remediationStrategy:
maxConcurrency: 1
enable: false

ﬂ This is the platform update policy.

Q This is the policy containing the catalog source information for the Operators to be
updated. It is needed for the pre-caching feature to determine which Operator images
to download to the managed cluster.

9 This is the policy to update the Operators.

b. Apply the cgu-platform-operator-upgrade.yml file to the hub cluster by running the
following command:

I $ oc apply -f cgu-platform-operator-upgrade.yml

4. Optional: Pre-cache the images for the platform and the Operator update.

a. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the managed cluster:
I $ oc get jobs,pods -n openshift-talm-pre-cache

c. Check if the pre-caching is completed before starting the update by running the following
command:

I $ oc get cgu cgu-du-upgrade -ojsonpath="{.status.conditions}'

5. Start the platform and Operator update.

a. Enable the cgu-du-upgrade ClusterGroupUpgrade CR to start the platform and the
Operator update by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

404

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

NOTE

The CRs for the platform and Operator updates can be created from the
beginning by configuring the setting to spec.enable: true. In this case, the
update starts immediately after pre-caching completes and there is no need
to manually enable the CR.

Both pre-caching and the update create extra resources, such as policies,
placement bindings, placement rules, managed cluster actions, and managed
cluster view, to help complete the procedures. Setting the
afterCompletion.deleteObjects field to true deletes all these resources
after the updates complete.

17.11.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

In earlier versions of OpenShift Container Platform, the Performance Addon Operator provided
automatic, low latency performance tuning for applications. In OpenShift Container Platform 4.11 or
later, these functions are part of the Node Tuning Operator.

Do not install the Performance Addon Operator on clusters running OpenShift Container Platform 4.11
or later. If you upgrade to OpenShift Container Platform 4.11 or later, the Node Tuning Operator
automatically removes the Performance Addon Operator.

NOTE

You need to remove any policies that create Performance Addon Operator subscriptions
to prevent a re-installation of the Operator.

The reference DU profile includes the Performance Addon Operator in the PolicyGenTemplate CR
common-ranGen.yaml. To remove the subscription from deployed managed clusters, you must update
common-ranGen.yaml.

NOTE

If you install Performance Addon Operator 4.10.3-5 or later on OpenShift Container
Platform 4.1 or later, the Performance Addon Operator detects the cluster version and
automatically hibernates to avoid interfering with the Node Tuning Operator functions.
However, to ensure best performance, remove the Performance Addon Operator from
your OpenShift Container Platform 4.11 clusters.

Prerequisites

® Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for ArgoCD.

® Update to OpenShift Container Platform 4.11 or later.

® | ogin as a user with cluster-admin privileges.

Procedure

1. Change the complianceType to mustnothave for the Performance Addon Operator
namespace, Operator group, and subscription in the common-ranGen.yaml file.

I - fileName: PaoSubscriptionNS.yaml

405

OpenShift Container Platform 4.12 Scalability and performance

policyName: "subscriptions-policy"
complianceType: mustnothave

- fileName: PaoSubscriptionOperGroup.yaml|
policyName: "subscriptions-policy"
complianceType: mustnothave

- fileName: PaoSubscription.yaml
policyName: "subscriptions-policy"
complianceType: mustnothave

2. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The status of the common-subscriptions-policy
policy changes to Non-Compliant.

3. Apply the change to your target clusters by using the Topology Aware Lifecycle Manager. For
more information about rolling out configuration changes, see the "Additional resources”
section.

4. Monitor the process. When the status of the common-subscriptions-policy policy for a target
cluster is Compliant, the Performance Addon Operator has been removed from the cluster. Get
the status of the common-subscriptions-policy by running the following command:

I $ oc get policy -n ztp-common common-subscriptions-policy

5. Delete the Performance Addon Operator namespace, Operator group and subscription CRs
from .spec.sourceFiles in the common-ranGen.yaml file.

6. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The policy remains compliant.

Additional resources

® For more information about the TALM pre-caching workflow, see Using the container image
pre-cache feature.

17.11.2. About the auto-created ClusterGroupUpgrade CR for ZTP

TALM has a controller called ManagedClusterForCGU that monitors the Ready state of the
ManagedCluster CRs on the hub cluster and creates the ClusterGroupUpgrade CRs for ZTP (zero
touch provisioning).

For any managed cluster in the Ready state without a "ztp-done" label applied, the
ManagedClusterForCGU controller automatically creates a ClusterGroupUpgrade CR in the ztp-
install namespace with its associated RHACM policies that are created during the ZTP process. TALM

then remediates the set of configuration policies that are listed in the auto-created
ClusterGroupUpgrade CR to push the configuration CRs to the managed cluster.

NOTE

If the managed cluster has no bound policies when the cluster becomes Ready, no
ClusterGroupUpgrade CR is created.

Example of an auto-created ClusterGroupUpgrade CR for ZTP

I apiVersion: ran.openshift.io/vialphai

406

o
2]

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

kind: ClusterGroupUpgrade
metadata:
generation: 1
name: spoke1
namespace: ztp-install
ownerReferences:
- apiVersion: cluster.open-cluster-management.io/v1
blockOwnerDeletion: true
controller: true
kind: ManagedCluster
name: spoke1
uid: 98fdb9b2-51ee-4ee7-8f57-a84f7f35b9d5
resourceVersion: "46666836"
uid: b8be9cd2-764f-4a62-87d6-6b767852c7da
spec:
actions:
afterCompletion:
addClusterLabels:
ztp-done: " ﬂ
deleteClusterLabels:
ztp-running: "
deleteObjects: true
beforeEnable:
addClusterLabels:
ztp-running: "
clusters:
- spoke1
enable: true
managedPolicies:
- common-spoke1-config-policy
- common-spoke1-subscriptions-policy
- group-spoke1-config-policy
- spoke1-config-policy
- group-spoke1-validator-du-policy
preCaching: false
remediationStrategy:
maxConcurrency: 1
timeout: 240

Applied to the managed cluster when TALM completes the cluster configuration.

Applied to the managed cluster when TALM starts deploying the configuration policies.

17.12. UPDATING GITOPS ZTP

You can update the Gitops zero touch provisioning (ZTP) infrastructure independently from the hub
cluster, Red Hat Advanced Cluster Management (RHACM), and the managed OpenShift Container

Platform clusters.

NOTE

You can update the Red Hat OpenShift GitOps Operator when new versions become
available. When updating the GitOps ZTP plugin, review the updated files in the
reference configuration and ensure that the changes meet your requirements.

OpenShift Container Platform 4.12 Scalability and performance

17.12.1. Overview of the GitOps ZTP update process

You can update GitOps zero touch provisioning (ZTP) for a fully operational hub cluster running an
earlier version of the GitOps ZTP infrastructure. The update process avoids impact on managed
clusters.

NOTE

Any changes to policy settings, including adding recommended content, results in
updated polices that must be rolled out to the managed clusters and reconciled.

At a high level, the strategy for updating the GitOps ZTP infrastructure is as follows:
1. Label all existing clusters with the ztp-done label.
2. Stop the ArgoCD applications.
3. Install the new GitOps ZTP tools.
4. Update required content and optional changes in the Git repository.

5. Update and restart the application configuration.

17.12.2. Preparing for the upgrade

Use the following procedure to prepare your site for the GitOps zero touch provisioning (ZTP) upgrade.

Procedure

1. Get the latest version of the GitOps ZTP container that has the custom resources (CRs) used to
configure Red Hat OpenShift GitOps for use with GitOps ZTP.

2. Extract the argocd/deployment directory by using the following commands:

I $ mkdir -p ./update

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.12 extract /home/ztp --tar | tar x -C ./update

The /update directory contains the following subdirectories:

e update/extra-manifest: contains the source CR files that the SiteConfig CR uses to
generate the extra manifest configMap.

® update/source-crs: contains the source CR files that the PolicyGenTemplate CR uses to
generate the Red Hat Advanced Cluster Management (RHACM) policies.

e update/argocd/deployment: contains patches and YAML files to apply on the hub cluster
for use in the next step of this procedure.

e update/argocd/example: contains example SiteConfig and PolicyGenTemplate files that
represent the recommended configuration.

3. Update the clusters-app.yaml and policies-app.yaml files to reflect the name of your
applications and the URL, branch, and path for your Git repository.

408

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

If the upgrade includes changes that results in obsolete policies, the obsolete policies should be
removed prior to performing the upgrade.

4. Diff the changes between the configuration and deployment source CRs in the /update folder
and Git repo where you manage your fleet site CRs. Apply and push the required changes to
your site repository.

IMPORTANT

When you update GitOps ZTP to the latest version, you must apply the changes
from the update/argocd/deployment directory to your site repository. Do not
use older versions of the argocd/deployment/ files.

17.12.3. Labeling the existing clusters

To ensure that existing clusters remain untouched by the tool updates, label all existing managed
clusters with the ztp-done label.

NOTE

This procedure only applies when updating clusters that were not provisioned with
Topology Aware Lifecycle Manager (TALM). Clusters that you provision with TALM are
automatically labeled with ztp-done.

Procedure

1. Find a label selector that lists the managed clusters that were deployed with zero touch
provisioning (ZTP), such as local-cluster!=true:

I $ oc get managedcluster -l 'local-cluster!=true'

2. Ensure that the resulting list contains all the managed clusters that were deployed with ZTP,
and then use that selector to add the ztp-done label:

I $ oc label managedcluster - 'local-cluster!=true' ztp-done=

17.12.4. Stopping the existing GitOps ZTP applications

Removing the existing applications ensures that any changes to existing content in the Git repository
are not rolled out until the new version of the tools is available.

Use the application files from the deployment directory. If you used custom names for the applications,
update the names in these files first.

Procedure

1. Perform a non-cascaded delete on the clusters application to leave all generated resources in
place:

I $ oc delete -f update/argocd/deployment/clusters-app.yaml

2. Perform a cascaded delete on the policies application to remove all previous policies:

409

OpenShift Container Platform 4.12 Scalability and performance

$ oc patch -f policies-app.yaml -p '{"metadata": {"finalizers": ["resources-
finalizer.argocd.argoproj.io"]}}' --type merge

I $ oc delete -f update/argocd/deployment/policies-app.yaml

17.12.5. Required changes to the Git repository

When upgrading the ztp-site-generate container from an earlier release of GitOps ZTP to v4.10 or later,
there are additional requirements for the contents of the Git repository. Existing content in the
repository must be updated to reflect these changes.

® Make required changes to PolicyGenTemplate files:
All PolicyGenTemplate files must be created in a Namespace prefixed with ztp. This ensures
that the GitOps zero touch provisioning (ZTP) application is able to manage the policy CRs
generated by GitOps ZTP without conflicting with the way Red Hat Advanced Cluster
Management (RHACM) manages the policies internally.

® Add the kustomization.yaml file to the repository:
All SiteConfig and PolicyGenTemplate CRs must be included in a kustomization.yaml file
under their respective directory trees. For example:

— policygentemplates

—— site1-ns.yaml|

— site1.yaml

— site2-ns.yaml|

— site2.yaml

—— common-ns.yaml

—— common-ranGen.yaml|

—— group-du-sno-ranGen-ns.yaml
—— group-du-sno-ranGen.yaml
—— kustomization.yaml

L siteconfig

— site1.yaml

— site2.yaml

—— kustomization.yaml

NOTE

The files listed in the generator sections must contain either SiteConfig or
PolicyGenTemplate CRs only. If your existing YAML files contain other CRs, for
example, Namespace, these other CRs must be pulled out into separate files and
listed in the resources section.

The PolicyGenTemplate kustomization file must contain all PolicyGenTemplate YAML files in
the generator section and Namespace CRs in the resources section. For example:

apiVersion: kustomize.config.k8s.io/vibetai
kind: Kustomization

generators:

- common-ranGen.yam|

- group-du-sno-ranGen.yaml|
- site1.yaml

410

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

- site2.yaml

resources:
- common-ns.yaml|

- group-du-sno-ranGen-ns.yaml
- site1-ns.yaml

- site2-ns.yaml

The SiteConfig kustomization file must contain all SiteConfig YAML files in the generator
section and any other CRs in the resources:

apiVersion: kustomize.config.k8s.io/vibetai
kind: Kustomization

generators:
- site1.yaml|
- site2.yaml|

Remove the pre-sync.yaml and post-sync.yaml files.

In OpenShift Container Platform 4.10 and later, the pre-sync.yaml and post-sync.yaml files
are no longer required. The update/deployment/kustomization.yaml CR manages the policies
deployment on the hub cluster.

NOTE

There is a set of pre-sync.yaml and post-sync.yaml files under both the
SiteConfig and PolicyGenTemplate trees.

Review and incorporate recommended changes

Each release may include additional recommended changes to the configuration applied to
deployed clusters. Typically these changes result in lower CPU use by the OpenShift platform,
additional features, or improved tuning of the platform.

Review the reference SiteConfig and PolicyGenTemplate CRs applicable to the types of
cluster in your network. These examples can be found in the argocd/example directory
extracted from the GitOps ZTP container.

17.12.6. Installing the new GitOps ZTP applications

Using the extracted argocd/deployment directory, and after ensuring that the applications point to
your site Git repository, apply the full contents of the deployment directory. Applying the full contents
of the directory ensures that all necessary resources for the applications are correctly configured.

Procedure

1.

To patch the ArgoCD instance in the hub cluster by using the patch file that you previously
extracted into the update/argocd/deployment/ directory, enter the following command:

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file update/argocd/deployment/argocd-openshift-gitops-patch.json

. To apply the contents of the argocd/deployment directory, enter the following command:

4n

OpenShift Container Platform 4.12 Scalability and performance

I $ oc apply -k update/argocd/deployment

17.12.7. Rolling out the GitOps ZTP configuration changes

If any configuration changes were included in the upgrade due to implementing recommended changes,
the upgrade process results in a set of policy CRs on the hub cluster in the Non-Compliant state. With
the ZTP GitOps v4.10 and later ztp-site-generate container, these policies are set to inform mode and
are not pushed to the managed clusters without an additional step by the user. This ensures that
potentially disruptive changes to the clusters can be managed in terms of when the changes are made,
for example, during a maintenance window, and how many clusters are updated concurrently.

To roll out the changes, create one or more ClusterGroupUpgrade CRs as detailed in the TALM
documentation. The CR must contain the list of Non-Compliant policies that you want to push out to
the managed clusters as well as a list or selector of which clusters should be included in the update.

Additional resources

e Forinformation about the Topology Aware Lifecycle Manager (TALM), see About the Topology
Aware Lifecycle Manager configuration.

e Forinformation about creating ClusterGroupUpgrade CRs, see About the auto-created
ClusterGroupUpgrade CR for ZTP.

17.13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH
GITOPS ZTP

You can expand single-node OpenShift clusters with GitOps ZTP. When you add worker nodes to
single-node OpenShift clusters, the original single-node OpenShift cluster retains the control plane
node role. Adding worker nodes does not require any downtime for the existing single-node OpenShift
cluster.

NOTE

Although there is no specified limit on the number of worker nodes that you can add to a
single-node OpenShift cluster, you must revaluate the reserved CPU allocation on the
control plane node for the additional worker nodes.

If you require workload partitioning on the worker node, you must deploy and remediate the managed
cluster policies on the hub cluster before installing the node. This way, the workload partitioning
MachineConfig objects are rendered and associated with the worker machine config pool before the
GitOps ZTP workflow applies the MachineConfig ignition file to the worker node.

It is recommended that you first remediate the policies, and then install the worker node. If you create
the workload partitioning manifests after installing the worker node, you must drain the node manually
and delete all the pods managed by daemon sets. When the managing daemon sets create the new
pods, the new pods undergo the workload partitioning process.

412

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

IMPORTANT

Adding worker nodes to single-node OpenShift clusters with GitOps ZTP is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Additional resources

® For more information about single-node OpenShift clusters tuned for vDU application
deployments, see Reference configuration for deploying vDUs on single-node OpenShift.

® For more information about worker nodes, see Adding worker nodes to single-node OpenShift
clusters.

17.13.1. Applying profiles to the worker node

You can configure the additional worker node with a DU profile.
You can apply a RAN distributed unit (DU) profile to the worker node cluster using the ZTP GitOps
common, group, and site-specific PolicyGenTemplate resources. The GitOps ZTP pipeline that is linked
to the ArgoCD policies application includes the following CRs that you can find in the
out/argocd/example/policygentemplates folder when you extract the ztp-site-generate container:
e common-ranGen.yaml
e group-du-sno-ranGen.yaml
e example-sno-site.yaml
® ns.yaml
® kustomization.yaml
Configuring the DU profile on the worker node is considered an upgrade. To initiate the upgrade flow,

you must update the existing policies or create additional ones. Then, you must create a
ClusterGroupUpgrade CR to reconcile the policies in the group of clusters.

17.13.2. (Optional) Ensuring PTP and SR-IOV daemon selector compatibility

If the DU profile was deployed using the GitOps ZTP plugin version 4.11 or earlier, the PTP and SR-IOV
Operators might be configured to place the daemons only on nodes labelled as master. This
configuration prevents the PTP and SR-IOV daemons from operating on the worker node. If the PTP
and SR-IOV daemon node selectors are incorrectly configured on your system, you must change the
daemons before proceeding with the worker DU profile configuration.

Procedure

1. Check the daemon node selector settings of the PTP Operator on one of the spoke clusters:

I $ oc get ptpoperatorconfig/default -n openshift-ptp -ojsonpath="{.spec}' | jq

413

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#adding-worker-nodes-to-single-node-openshift-clusters

OpenShift Container Platform 4.12 Scalability and performance

Example output for PTP Operator
I {"daemonNodeSeIector":{"node-role.kubernetes.io/master":”"}}ﬂ

If the node selector is set to master, the spoke was deployed with the version of the ZTP
plugin that requires changes.

2. Check the daemon node selector settings of the SR-IOV Operator on one of the spoke clusters:

$ oc get sriovoperatorconfig/default -n \
openshift-sriov-network-operator -ojsonpath="{.spec}' | jq

Example output for SR-IOV Operator

{"configDaemonNodeSelector":{"node-
role.kubernetes.io/worker":""},"disableDrain":false,"enablelnjector":true,"enableOperatorWebh

ook":true} ﬂ

If the node selector is set to master, the spoke was deployed with the version of the ZTP
plugin that requires changes.

3. Inthe group policy, add the following complianceType and spec entries:

spec:

- fleName: PtpOperatorConfig.yaml
policyName: "config-policy"
complianceType: mustonlyhave
spec:

daemonNodeSelector:
node-role.kubernetes.io/worker: "

- fleName: SriovOperatorConfig.yaml
policyName: "config-policy"
complianceType: mustonlyhave
spec:

configDaemonNodeSelector:
node-role.kubernetes.io/worker: "

IMPORTANT

Changing the daemonNodeSelector field causes temporary PTP
synchronization loss and SR-IOV connectivity loss.

4. Commit the changes in Git, and then push to the Git repository being monitored by the GitOps
ZTP ArgoCD application.

17.13.3. PTP and SR-IOV node selector compatibility

The PTP configuration resources and SR-IOV network node policies use hode-
role.kubernetes.io/master: "" as the node selector. If the additional worker nodes have the same NIC
configuration as the control plane node, the policies used to configure the control plane node can be

414

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

reused for the worker nodes. However, the node selector must be changed to select both node types,
for example with the "node-role.kubernetes.io/worker" label.

17.13.4. Using PolicyGenTemplate CRs to apply worker node policies to worker
nodes

You can create policies for worker nodes.

Procedure

1. Create the following policy template:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "example-sno-workers"
namespace: "example-sno”
spec:
bindingRules:
sites: "example-sno" ﬂ
mcp: "worker"
sourceFiles:
- fleName: MachineConfigGeneric.yaml e
policyName: "config-policy”
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: enable-workload-partitioning
spec:
config:
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGIltZS53b3JrbGOhZHMubWFuYWdIbWVudFOKYWNOaXZhdGivbl
9hbm5vdGF0aW9ulD0gInRhecmdldC53b3JrbGOhZC5veGVuc2hpZnQuaW8vbWFuYWdIbWVu
dCIKYW5ub3RhdGlvblI9wecmVmaXggPSAicmVzb3VyY2VzLndvemtsb2FkLmOwZW5zaGImdC5
pbylKemVzb3VyY2VzID0geyAiY3B1c2hhcmVzIiA9IDAsICJjcHVzZXQilDOgljAtMylgfQo=
mode: 420
overwrite: true
path: /etc/crio/crio.conf.d/01-workload-partitioning
user:
name: root
- contents:
source: data:text/plain;charset=utf-
8;baseb4,ewoglCJItYW5hZ2ViZW50ljogewogICAgImMNwdXNIdCI6ICIWLTMICiAgfQp9Cg==
mode: 420
overwrite: true
path: /etc/kubernetes/openshift-workload-pinning
user:
name: root
- fileName: PerformanceProfile.yaml
policyName: "config-policy”
metadata:
name: openshift-worker-node-performance-profile

415

OpenShift Container Platform 4.12 Scalability and performance

spec:
cpu:
isolated: "4-47"
reserved: "0-3"
hugepages:
defaultHugepagesSize: 1G
pages:
-size: 1G
count: 32
realTimeKernel:
enabled: true
- fileName: TunedPerformancePatch.yaml
policyName: "config-policy"
metadata:
name: performance-patch-worker
spec:
profile:
- name: performance-patch-worker
data: |
[main]

summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-worker-node-performance-profile

[bootloader]
cmdline_crash=nohz_full=4-47 6
[sysctl]
kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable

recommend:

- profile: performance-patch-worker

The MCP field must be set to worker.

node.

o 009

hardware platform.

The policies are applied to all clusters with this label.

This generic MachineConfig CR is used to configure workload partitioning on the worker

The cpu.isolated and cpu.reserved fields must be configured for each particular

g The cmdline_crash CPU set must match the cpu.isolated set in the PerformanceProfile

section.

A generic MachineConfig CR is used to configure workload partitioning on the worker node.
You can generate the content of crio and kubelet configuration files.

2. Add the created policy template to the Git repository monitored by the ArgoCD policies

application.

3. Add the policy in the kustomization.yaml file.

416

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

4. Commit the changes in Git, and then push to the Git repository being monitored by the GitOps
ZTP ArgoCD application.

5. To remediate the new policies to your spoke cluster, create a TALM custom resource:

$ cat <<EOF | oc apply -f -
apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: example-sno-worker-policies
namespace: default
spec:
backup: false
clusters:
- example-sno
enable: true
managedPolicies:
- group-du-sno-config-policy
- example-sno-workers-config-policy
- example-sno-config-policy
preCaching: false
remediationStrategy:
maxConcurrency: 1
EOF

17.13.5. Adding worker nodes to single-node OpenShift clusters with GitOps ZTP

You can add one or more worker nodes to existing single-node OpenShift clusters to increase available
CPU resources in the cluster.

Prerequisites

® |nstall and configure RHACM 2.6 or later in an OpenShift Container Platform 4.11 or later bare-
metal hub cluster

® |nstall Topology Aware Lifecycle Manager in the hub cluster

e |nstall Red Hat OpenShift GitOps in the hub cluster

® Use the GitOps ZTP ztp-site-generate container image version 4.12 or later

® Deploy a managed single-node OpenShift cluster with GitOps ZTP

e Configure the Central Infrastructure Management as described in the RHACM documentation

e Configure the DNS serving the cluster to resolve the internal APl endpoint api-int.
<cluster_names>.<base_domain>

Procedure

1. If you deployed your cluster by using the example-sno.yaml SiteConfig manifest, add your new
worker node to the spec.clusters['example-sno'].nodes list:

nodes:
- hostName: "example-node2.example.com”

417

OpenShift Container Platform 4.12 Scalability and performance

role: "worker"
bmcAddress: "idrac-
virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded.1"

bmcCredentialsName:
name: "example-node2-bmh-secret”
bootMACAddress: "AA:BB:CC:DD:EE:11"
bootMode: "UEFI"
nodeNetwork:
interfaces:
- name: enol
macAddress: "AA:BB:CC:DD:EE:11"
config:
interfaces:
- name: enof
type: ethernet
state: up
macAddress: "AA:BB:CC:DD:EE:11"
ipvé4:
enabled: false
ipv6:
enabled: true
address:
- ip: 1111:2222:3333:4444::1
prefix-length: 64
dns-resolver:
config:
search:
- example.com
server:
-1111:2222:3333:4444::2
routes:
config:
- destination: ::/0
next-hop-interface: eno1
next-hop-address: 1111:2222:3333:4444::1
table-id: 254

2. Create a BMC authentication secret for the new host, as referenced by the
bmcCredentialsName field in the spec.nodes section of your SiteConfig file:

apiVersion: v1i
data:
password: "password"
username: "username”
kind: Secret
metadata:
name: "example-node2-bmh-secret”
namespace: example-sno
type: Opaque

3. Commit the changes in Git, and then push to the Git repository that is being monitored by the
GitOps ZTP ArgoCD application.
When the ArgoCD cluster application synchronizes, two new manifests appear on the hub
cluster generated by the ZTP plugin:

418

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

o BareMetalHost

o NMStateConfig

IMPORTANT

The cpuset field should not be configured for the worker node. Workload
partitioning for worker nodes is added through management policies after
the node installation is complete.

Verification

You can monitor the installation process in several ways.

® Check if the preprovisioning images are created by running the following command:
I $ oc get ppimg -n example-sno
Example output

NAMESPACE NAME READY REASON
example-sno example-sno True ImageCreated
example-sno example-node2 True ImageCreated

® Check the state of the bare-metal hosts:

I $ oc get bmh -n example-sno

Example output

NAME STATE CONSUMER ONLINE ERROR AGE
example-sno provisioned true 69m
example-node2 provisioning true 4m5036

ﬂ The provisioning state indicates that node booting from the installation media is in
progress.

® Continuously monitor the installation process:

a. Watch the agent install process by running the following command:

I $ oc get agent -n example-sno --watch
Example output

NAME CLUSTER APPROVED ROLE STAGE
671bc05d-5358-8940-ec12-d9ad22804faa example-sno true master Done

[...]

14fd821b-a35d-9cba-7978-00ddf535ff37 example-sno true worker Starting
installation

14fd821b-a35d-9cba-7978-00ddf535ff37 example-sno true worker Installing
14fd821b-a35d-9cba-7978-00ddf535ff37 example-sno true worker Writing image

419

OpenShift Container Platform 4.12 Scalability and performance

to disk

[...]
14fd821b-a35d-9cba-7978-00ddf535ff37 example-sno true worker Waiting for
control plane

[...]
14fd821b-a35d-9cba-7978-00ddf535ff37 example-sno true worker Rebooting
14fd821b-a35d-9cba-7978-00ddf535ff37 example-sno true worker Done

b. When the worker node installation is finished, the worker node certificates are approved
automatically. At this point, the worker appears in the ManagedClusterinfo status. Run the
following command to see the status:

$ oc get managedclusterinfo/example-sno -n example-sno -0 \
jsonpath='{range .status.nodeList[*]}{.name}{"\t"}{.conditions}{"\t"}{.labels}{"\n"Hend}'

Example output

example-sno [{"status":"True","type":"Ready"}] {"node-
role.kubernetes.io/master":"","node-role.kubernetes.io/worker":""}
example-node2 [{"status":"True","type":"Ready"}] {"node-role.kubernetes.io/worker":""}

17.14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT
DEPLOYMENTS

In environments with limited bandwidth where you use the GitOps zero touch provisioning (ZTP)
solution to deploy a large number of clusters, you want to avoid downloading all the images that are
required for bootstrapping and installing OpenShift Container Platform. The limited bandwidth at
remote single-node OpenShift sites can cause long deployment times. The factory-precaching-cli tool
allows you to pre-stage servers before shipping them to the remote site for ZTP provisioning.
The factory-precaching-cli tool does the following:

® Downloads the RHCOS rootfs image that is required by the minimal ISO to boot.

® Creates a partition from the installation disk labelled as data.

® Formats the disk in xfs.

® Creates a GUID Partition Table (GPT) data partition at the end of the disk, where the size of the
partition is configurable by the tool.

® Copies the container images required to install OpenShift Container Platform.
® Copies the container images required by ZTP to install OpenShift Container Platform.

® Optional: Copies Day-2 Operators to the partition.

420

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

IMPORTANT

The factory-precaching-cli tool is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

17.14.1. Getting the factory-precaching-cli tool

The factory-precaching-cli tool Go binary is publicly available in the Telco RAN tools container image.
The factory-precaching-cli tool Go binary in the container image is executed on the server running an
RHCOS live image using podman. If you are working in a disconnected environment or have a private
registry, you need to copy the image there so you can download the image to the server.

Procedure

® Pull the factory-precaching-cli tool image by running the following command:

I # podman pull quay.io/openshift-kni/telco-ran-tools:latest

Verification

® To check that the tool is available, query the current version of the factory-precaching-cli tool
Go binary:

I # podman run quay.io/openshift-kni/telco-ran-tools:latest -- factory-precaching-cli -v
Example output

I factory-precaching-cli version 20221018.120852+main.feecf17

17.14.2. Booting from a live operating system image

You can use the factory-precaching-cli tool with to boot servers where only one disk is available and
external disk drive cannot be attached to the server.

' WARNING
A RHCOS requires the disk to not be in use when the disk is about to be written with

an RHCOS image.

Depending on the server hardware, you can mount the RHCOS live ISO on the blank server using one of
the following methods:

421

https://access.redhat.com/support/offerings/techpreview/
https://quay.io/openshift-kni/telco-ran-tools:latest

OpenShift Container Platform 4.12 Scalability and performance

® Using the Dell RACADM tool on a Dell server.
® Using the HPONCFG tool on a HP server.

® Using the Redfish BMC API.

NOTE

It is recommended to automate the mounting procedure. To automate the procedure,
you need to pull the required images and host them on a local HTTP server.

-

Prerequisites

® You powered up the host.

® You have network connectivity to the host.

PROCEDURE

This example procedure uses the Redfish BMC API to mount the RHCOS live ISO.

1. Mount the RHCOS live ISO:

a. Check virtual media status:

$ curl --globoff -H "Content-Type: application/json" -H \
"Accept: application/json" -k -X GET --user ${username_password} \
https://$BMC_ADDRESS/redfish/vi/Managers/Self/VirtualMedia/1 | python -m json.tool

b. Mount the ISO file as a virtual media:

$ curl --globoff -L -w "%{http_code} %{url_effective}\\n" -ku ${username_password} -H
"Content-Type: application/json" -H "Accept: application/json" -d '{"Image":
"http://[$HTTPd_IP)/RHCOS-live.iso"}' -X POST
https://$BMC_ADDRESS/redfish/vi/Managers/Self/VirtualMedia/1/Actions/VirtualMedia.Ins
ertMedia

c. Set the boot order to boot from the virtual media once:

$ curl --globoff -L -w "%({http_code} %{url_effective}\\n" -ku ${username_password} -H
"Content-Type: application/json" -H "Accept: application/json" -d '{"Boot":{
"BootSourceOverrideEnabled": "Once", "BootSourceOverrideTarget": "Cd",
"BootSourceOverrideMode": "UEFI"}}' -X PATCH
https://$BMC_ADDRESS/redfish/v1/Systems/Self

2. Reboot and ensure that the server is booting from virtual media.

Additional resources

422

® For more information about the butane utility, see About Butane.

® For more information about creating a custom live RHCOS ISO, see Creating a custom live
RHCOS ISO for remote server access.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installation-special-config-butane-about_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#create-custom-live-rhcos-iso_install-sno-installing-sno-with-the-assisted-installer

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

® For more information about using the Dell RACADM tool, see Integrated Dell Remote Access
Controller 9 RACADM CLI Guide.

® For more information about using the HP HPONCFG tool, see Using HPONCFG.

® For more information about using the Redfish BMC API, see Booting from an HTTP-hosted ISO
image using the Redfish API.

17.14.3. Partitioning the disk

To run the full pre-caching process, you have to boot from a live ISO and use the factory-precaching-cli
tool from a container image to partition and pre-cache all the artifacts required.

A live ISO or RHCOS live ISO is required because the disk must not be in use when the operating system

(RHCOS) is written to the device during the provisioning. Single-disk servers can also be enabled with
this procedure.

Prerequisites

® You have a disk that is not partitioned.
® You have access to the quay.io/openshift-kni/telco-ran-tools:latest image.

® You have enough storage to install OpenShift Container Platform and pre-cache the required
images.

Procedure
1. Verify that the disk is cleared:

I # Isblk
Example output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 93.8G 0 loop /run/ephemeral

loop1 7:1 0897.3M 1 loop /sysroot

srO 11:0 1 999M 0 rom /run/media/iso

nvmeOni 259:1 0 1.5T 0 disk

2. Erase any file system, RAID or partition table signatures from the device:
I # wipefs -a /dev/nvmeOn1
Example output

/dev/nvmeOn1: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/nvme0n1: 8 bytes were erased at offset 0x1749a955e00 (gpt): 45 46 49 20 50 41 52 54
/dev/nvme0n1: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa

423

https://www.dell.com/support/manuals/en-ie/poweredge-r440/idrac9_6.xx_racadm_pub/supported-racadm-interfaces?guid=guid-a5747353-fc88-4438-b617-c50ca260448e&lang=en-us
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00007610en_us
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#install-booting-from-an-iso-over-http-redfish_install-sno-installing-sno-with-the-assisted-installer

OpenShift Container Platform 4.12 Scalability and performance

IMPORTANT

The tool fails if the disk is not empty because it uses partition number 1 of the device for
pre-caching the artifacts.

17.14.3.1. Creating the partition

Once the device is ready, you create a single partition and a GPT partition table. The partition is
automatically labelled as data and created at the end of the device. Otherwise, the partition will be
overridden by the coreos-installer.

IMPORTANT

The coreos-installer requires the partition to be created at the end of the device and to

be labelled as data. Both requirements are necessary to save the partition when writing
the RHCOS image to the disk.

Prerequisites
® The container must run as privileged due to formatting host devices.
® You have to mount the /dev folder so that the process can be executed inside the container.

Procedure

In the following example, the size of the partition is 250 GiB due to allow pre-caching the DU profile for
Day 2 Operators.

1. Run the container as privileged and partition the disk:

podman run -v /dev:/dev --privileged \

--rm quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli partition \ 0

-d /dev/nvmeOn1 \9

5250 @

ﬂ Specifies the partitioning function of the factory-precaching-cli tool.
9 Defines the root directory on the disk.

9 Defines the size of the disk in GB.

2. Check the storage information:

I # Isblk
Example output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 93.8G 0 loop /run/ephemeral

loop1 7:1 0897.3M 1 loop /sysroot

sr0 11:0 1 999M 0 rom /run/media/iso

nvmeOn1 259:1 0 1.5T 0disk

LnvmeOnip1 259:3 0 250G O part

424

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Verification

You must verify that the following requirements are met:
® The device has a GPT partition table
® The partition uses the latest sectors of the device.
® The partition is correctly labeled as data.

Query the disk status to verify that the disk is partitioned as expected:
I # gdisk -1 /dev/nvmeOn1
Example output

GPT fdisk (gdisk) version 1.0.3

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Disk /dev/nvmeOn1: 3125627568 sectors, 1.5 TiB

Model: Dell Express Flash PM1725b 1.6TB SFF

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): CB5A9D44-9B3C-4174-A5C1-C64957910B61
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 3125627534

Partitions will be aligned on 2048-sector boundaries

Total free space is 2601338846 sectors (1.2 TiB)

Number Start (sector) End (sector) Size Code Name
1 2601338880 3125627534 250.0 GiB 8300 data

17.14.3.2. Mounting the partition

After verifying that the disk is partitioned correctly, you can mount the device into /mnt.

IMPORTANT

It is recommended to mount the device into /mnt because that mounting point is used
during ZTP preparation.

1. Verify that the partition is formatted as xfs:

I # Isblk -f /dev/nvmeOn1

Example output

425

OpenShift Container Platform 4.12 Scalability and performance

NAME FSTYPE LABEL UUID MOUNTPOINT
nvmeOn1
L—nvmeOn1 p1 xfs 1bee8ea4-d6cf-4339-b690-a76594794071

2. Mount the partition:

I # mount /dev/nvmeOnipi /mnt/

Verification

® Check that the partition is mounted:

I # Isblk
Example output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 93.8G 0 loop /run/ephemeral

loop1 7:1 0897.3M 1 loop /sysroot

sr0 11:0 1 999M 0 rom /run/media/iso

nvmeOn1 259:1 0 1.5T 0disk

LnvmeOnip1 259:2 0 250G 0 part /var/mnt @)

ﬂ The mount point is /var/mnt because the /mnt folder in RHCOS is a link to /var/mnt.

17.14.4. Downloading the images

The factory-precaching-cli tool allows you to download the following images to your partitioned server:
® OpenShift Container Platform images
® Operatorimages that are included in the distributed unit (DU) profile for 5G RAN sites

® Operatorimages from disconnected registries

NOTE

The list of available Operator images can vary in different OpenShift Container Platform
releases.

17.14.4.1. Downloading with parallel workers

The factory-precaching-cli tool uses parallel workers to download multiple images simultaneously. You
can configure the number of workers with the --parallel or -p option. The default number is set to 80%
of the available CPUs to the server.

426

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

NOTE

Your login shell may be restricted to a subset of CPUs, which reduces the CPUs available

to the container. To remove this restriction, you can precede your commands with

taskset Oxffffffff, for example:

I # taskset Oxffffffff podman run --rm quay.io/openshift-kni/telco-ran-tools:latest factory-

precaching-cli download --help

17.14.4.2. Preparing to download the OpenShift Container Platform images

To download OpenShift Container Platform container images, you need to know the multicluster engine

version. When you use the --du-profile flag, you also need to specify the Red Hat Advanced Cluster
Management (RHACM) version running in the hub cluster that is going to provision the single-node

OpenShift.

Prerequisites

® You have RHACM and the multicluster engine Operator installed.
® You partitioned the storage device.

® You have enough space for the images on the partitioned device.
® You connected the bare-metal server to the Internet.

® You have avalid pull secret.

Procedure

1. Check the RHACM version and the multicluster engine version by running the following

commands in the hub cluster:

I $ oc get csv -A | grep -i advanced-cluster-management

Example output

open-cluster-management advanced-cluster-management.v2.6.3
Advanced Cluster Management for Kubernetes 2.6.3 advanced-cluster-
management.v2.6.3 Succeeded

I $ oc get csv -A | grep -i multicluster-engine

Example output

multicluster-engine cluster-group-upgrades-operator.v0.0.3
group-upgrades-operator 0.0.3

multicluster-engine multicluster-engine.v2.1.4 multicluster
engine for Kubernetes 214 multicluster-engine.v2.0.3

Succeeded

multicluster-engine openshift-gitops-operator.v1.5.7

OpenShift GitOps 1.5.7 openshift-gitops-operator.v1.5.6-
0.1664915551.p Succeeded

427

OpenShift Container Platform 4.12 Scalability and performance

multicluster-engine openshift-pipelines-operator-rh.v1.6.4 Red Hat
OpenShift Pipelines 1.6.4 openshift-pipelines-operator-rh.v1.6.3
Succeeded

2. To access the container registry, copy a valid pull secret on the server to be installed:

a. Create the .docker folder:

I $ mkdir /root/.docker

b. Copy the valid pull in the config.json file to the previously created .docker/ folder:

I $ cp config.json /root/.docker/config.json ﬂ

/root/.docker/config.json is the default path where podman checks for the login
credentials for the registry.

NOTE

If you use a different registry to pull the required artifacts, you need to copy the proper
pull secret. If the local registry uses TLS, you need to include the certificates from the
registry as well.

17.14.4.3. Downloading the OpenShift Container Platform images

The factory-precaching-cli tool allows you to pre-cache all the container images required to provision a
specific OpenShift Container Platform release.

Procedure

® Pre-cache the release by running the following command:

Q90009

428

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools --\

factory-precaching-cli download \ ﬂ
14120\ @

--acm-version 2.6.3 \
--mce-version 2.1.4\
£ /mnt\ @

--img quay.io/custom/repository G

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Example output

Generated /mnt/imageset.yam|

Generating list of pre-cached artifacts...

Processing artifact [1/176]: ocp-v4.0-art-
dev@sha256_6ac2b96bf4899c01a87366fd0feae9f57b1b61878e3b5823da0c3f34f707fbf5
Processing artifact [2/176]: ocp-v4.0-art-
dev@sha256_f48b68d5960ba903a0d018a10544ae08db5802e21c2fa5615a14fc58b1c1657¢
Processing artifact [3/176]: ocp-v4.0-art-
dev@sha256_a480390e91b1c07e10091c3da2257180654f6b2a735a4ad4c3b69dbdb77bbc06

Processing artifact [4/176]: ocp-v4.0-art-

dev@sha256 ecc5d8dbd77e326dba6594ff8c2d091eefbc4d90c963a9a85b0b2f0e6155f995
Processing artifact [5/176]: ocp-v4.0-art-
dev@sha256_274b6d561558a2f54db08ea96df9892315bb773fc203b1dbcead 18d20f4c7ad1
Processing artifact [6/176]: ocp-v4.0-art-
dev@sha256_e142bf5020f5ca0d1bdda0026bf97f89b72d21a97c9cc2dc71bf85050e822bbf

Processing artifact [175/176]: ocp-v4.0-art-
dev@sha256_16cd7eda26f0fb0fc965a589e1e96ff8577e560fcd14f06b5fda1643036ed6¢8
Processing artifact [176/176]: ocp-v4.0-art-
dev@sha256_cf4d862b4a4170d4f611b39d06c31c97658e309724f9788e155999ae51e7188f

Summary:

Release: 4.12.0

Hub Version: 2.6.3

ACM Version: 2.6.3

MCE Version: 2.1.4

Include DU Profile: No

Workers: 83
Verification

® Check that all the images are compressed in the target folder of server:

I $ls -I/mntﬂ

ﬂ It is recommended that you pre-cache the images in the /mnt folder.

Example output

-rw-r--r--. 1 root root 136352323 Oct 31 15:19 ocp-v4.0-art-
dev@sha256_edec37e7cd8b1611d0031d45e7958361c65€2005f145b471a8108f1b54316¢07.t
9z

-rw-r--r--. 1 root root 156092894 Oct 31 15:33 ocp-v4.0-art-
dev@sha256_ee51b062b9c3c9f4fe77bd5b3cc9a3b12355d040119a1434425a824f137c61a9.1g
z

-rw-r--r--. 1 root root 172297800 Oct 31 15:29 ocp-v4.0-art-
dev@sha256_ef23d9057c367a36e4a5c4877d23ee097a731e1186ed28a26c8d21501cd82718.t
9z

-rw-r--r--. 1 root root 171539614 Oct 31 15:23 ocp-v4.0-art-
dev@sha256_f0497bb63ef6834a619d4208be9da459510df697596b891c0c633dai144dbb025.1

gz

429

OpenShift Container Platform 4.12 Scalability and performance

-rw-r--r--. 1 root root 160399150 Oct 31 15:20 ocp-v4.0-art-
dev@sha256_f0c339da117cded44c9aae8d0bd054bceb6f19fdb191928f6912a703182330ac2.tgz

-rw-r--r--. 1 root root 175962005 Oct 31 15:17 ocp-v4.0-art-
dev@sha256_f19dd2e80fb41ef31d62bb8c08b339c50d193fdb10fc39cc15b353cbbfeb9b24.tgz

-rw-r--r--. 1 root root 174942008 Oct 31 15:33 ocp-v4.0-art-
dev@sha256_f1dbb81falaa724e96dd2b296b855f52a565fbef003d08030d63590ae6454df.tgz

-rw-r--r--. 1 root root 246693315 Oct 31 15:31 ocp-v4.0-art-
dev@sha256_f44dcf2c94e4fd843cbbfob11128df2ba856cd813786e42e3dalfdfb0f6ddd01.tgz
-rw-r--r--. 1 root root 170148293 Oct 31 15:00 ocp-v4.0-art-
dev@sha256_f48b68d5960ba903a0d018a10544ae08db5802e21c2fa5615a14fc58b1c1657¢.tg
z

-rw-r--r--. 1 root root 168899617 Oct 31 15:16 ocp-v4.0-art-
dev@sha256_f5099b0989120a8d08a963601214b5c5ch23417a707a8624b7eb52ab788a7f75.t
9z

-rw-r--r--. 1 root root 176592362 Oct 31 15:05 ocp-v4.0-art-
dev@sha256_f68c0e6f5e17b0b0f7ab2d4c39559ea89f900751e64b97cb42311a478338d9c3.1g
z

-rw-r--r--. 1 root root 157937478 Oct 31 15:37 ocp-v4.0-art-
dev@sha256_f7ba33a6a9db9cfc4b0ab0f368569e19b9fa08f4c01a0d5f6a243d61ab781bd8.tgz

-rw-r--r--. 1 root root 145535253 Oct 31 15:26 ocp-v4.0-art-
dev@sha256_{8f098911d670287826e9499806553f7a1dd3e2b5332abbec740008c36e84de5.t
gz

-rw-r--r--. 1 root root 158048761 Oct 31 15:40 ocp-v4.0-art-
dev@sha256_f914228ddbb99120986262168a705903a9f49724ffa958bb4bf12b2ec1d7fb47.1gz

-rw-r--r--. 1 root root 167914526 Oct 31 15:37 ocp-v4.0-art-
dev@sha256_fa3ca9401c7a9%efda0502240aeb8d3ae2d239d38890454f17fe5158b62305010.tg
z

-rw-r--r--. 1 root root 164432422 Oct 31 15:24 ocp-v4.0-art-
dev@sha256_fc4783b446c70df30b3120685254b40ce13baba2b0bf8fb1645f116cf6a392f1.tgz

-rw-r--r--. 1 root root 306643814 Oct 31 15:11
troubleshoot@sha256 b86b8aea29a818a9c22944fd18243fa0347c7a2bf1ad8864113ff2bb2d8
e0726.tgz

17.14.4.4. Downloading the Operator images

You can also pre-cache Day-2 Operators used in the 5G Radio Access Network (RAN) Distributed Unit
(DU) cluster configuration. The Day-2 Operators depend on the installed OpenShift Container Platform
version.

Procedure

IMPORTANT

You need to include the RHACM hub and multicluster engine Operator versions by using
the --acm-version and --mce-version flags so the factory-precaching-cli tool can pre-
cache the appropriate containers images for RHACM and the multicluster engine
Operator.

® Pre-cache the Operatorimages:

430

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download \

14120\ @
--acm-version 2.6.3 \
--mce-version 2.1.4\ 8
£ /mnt\ @

--img quay.io/custom/repository G
--du-profile -s

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

SO 99006009

Specifies pre-caching the Operators included in the DU configuration.

Example output

Generated /mnt/imageset.yam|

Generating list of pre-cached artifacts...

Processing artifact [1/379]: ocp-v4.0-art-
dev@sha256_7753a8d9dd5974be8c90649aadd7c914a3d8a1f1e016774c7ac7c9422e9f9958
Processing artifact [2/379]: ose-kube-rbac-
proxy@sha256_c27a7c01e5968aff16b6bb6670423f992d1a1de1al16e7e260d12908d3322431¢

Processing artifact [3/379]: ocp-v4.0-art-
dev@sha256_370e47a14c798ca3f8707a38b28cfc28114f492bb35fe1112e55d1eb51022¢99

Processing artifact [378/379]: ose-local-storage-
operator@sha256_0c81c2b79f79307305e51ce9d3837657cf9ba5866194e464b4d1b299f85034
do

Processing artifact [379/379]: multicluster-operators-channel-

rhel8@sha256 c10febbb84fe36e05816e873a72188018856ad6aac6cc16271a1b3966f73ceb3

Summary:

Release: 4.12.0

Hub Version: 2.6.3

ACM Version: 2.6.3
MCE Version: 2.1.4
Include DU Profile: Yes
Workers: 83

17.14.4.5. Pre-caching custom images in disconnected environments

431

OpenShift Container Platform 4.12 Scalability and performance

The --generate-imageset argument stops the factory-precaching-cli tool after the
ImageSetConfiguration custom resource (CR) is generated. This allows you to customize the
ImageSetConfiguration CR before downloading any images. After you customized the CR, you can use
the --skip-imageset argument to download the images that you specified in the
ImageSetConfiguration CR.

You can customize the ImageSetConfiguration CR in the following ways:

Procedure

432

9 9906006009

® Add Operators and additional images
® Remove Operators and additional images

® Change Operator and catalog sources to local or disconnected registries

1. Pre-cache the images:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-

kni/telco-ran-tools:latest -- factory-precaching-cli download \

14120\ @
--acm-version 2.6.3 \
--mce-version 2.1.4\ 8
£ /mnt\ @

--img quay.io/custom/repository G
--du-profile -s \
--generate-imageset G

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Specifies pre-caching the Operators included in the DU configuration.

The --generate-imageset argument generates the ImageSetConfiguration CR only,
which allows you to customize the CR.

Example output

Generated /mnt/imageset.yam|

Example ImageSetConfiguration CR

apiVersion: mirror.openshift.io/vialpha2

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

kind: ImageSetConfiguration
mirror:
platform:
channels:
- name: stable-4.12
minVersion: 4.12.0 ﬂ
maxVersion: 4.12.0
additionallmages:
- hame: quay.io/custom/repository
operators:
- catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
packages:
- name: advanced-cluster-managementg
channels:
- name: 'release-2.6'
minVersion: 2.6.3
maxVersion: 2.6.3
- name: multicluster-engine 6
channels:
- name: 'stable-2.1'
minVersion: 2.1.4
maxVersion: 2.1.4
- name: local-storage-operator ﬂ
channels:
- name: 'stable’
- name: ptp-operator 9
channels:
- name: 'stable’
- name: sriov-network-operator G
channels:
- hame: 'stable’
- name: cluster-logging ﬂ
channels:
- name: 'stable’
- hame: Ivms-operator@
channels:
- name: 'stable-4.12'
- name: amq7-interconnect-operator 9
channels:
-name: '"1.10.x'
- name: bare-metal-event-relay @
channels:
- name: 'stable’
- catalog: registry.redhat.io/redhat/certified-operator-index:v4.12
packages:
- name: sriov-fec m
channels:
- name: 'stable’

ﬂ The platform versions match the versions passed to the tool.

The versions of RHACM and the multicluster engine Operator match the versions passed
to the tool.

433

OpenShift Container Platform 4.12 Scalability and performance

DI IENIN DT he CR contains all the specified DU Operators.

2. Customize the catalog resource in the CR:

apiVersion: mirror.openshift.io/vialpha2
kind: ImageSetConfiguration
mirror:

platform:

[...]
operators:
- catalog: eko4.cloud.lab.eng.bos.redhat.com:8443/redhat/certified-operator-index:v4.12
packages:
- name: sriov-fec
channels:
- name: 'stable’

When you download images by using a local or disconnected registry, you have to first add
certificates for the registries that you want to pull the content from.

3. To avoid any errors, copy the registry certificate into your server:

I # cp /tmp/eko4-ca.crt /etc/pki/ca-trust/source/anchors/.

4. Then, update the certificates trust store:
I # update-ca-trust

5. Mount the host /etc/pki folder into the factory-cliimage:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker -v /etc/pki:/etc/pki --privileged --rm
quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli download \ 0

14120\ @

--acm-version 2.6.3 \
--mce-version 2.1.4\
£ /mnt\ @

--img quay.io/custom/repository G
--du-profile -s \
--skip-imageset

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

QD009

downloaded and pre-cached on the disk.

434

Optional. Defines the repository where you store your additional images. These images are

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

Q Specifies pre-caching the Operators included in the DU configuration.

The --skip-imageset argument allows you to download the images that you specified in
your customized ImageSetConfiguration CR.

6. Download the images without generating a new imageSetConfiguration CR:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-

kni/telco-ran-tools:latest -- factory-precaching-cli download -r 4.12.0 \
--acm-version 2.6.3 --mce-version 2.1.4 -f /mnt\

--img quay.io/custom/repository \
--du-profile -s \
--skip-imageset

Additional resources

® To access the online Red Hat registries, see OpenShift installation customization tools.

® For more information about using the multicluster engine, see About cluster lifecycle with the

multicluster engine operator.

17.14.5. Pre-caching images in ZTP

The SiteConfig manifest defines how an OpenShift cluster is to be installed and configured. In the ZTP

provisioning workflow, the factory-precaching-cli tool requires the following additional fields in the

SiteConfig manifest:
e clusters.ignitionConfigOverride
® nodes.installerArgs
® nodes.ignitionConfigOverride

Example SiteConfig with additional fields

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "example-5g-lab”
namespace: "example-5g-lab”
spec:
baseDomain: "example.domain.redhat.com”
pullSecretRef:
name: "assisted-deployment-pull-secret”
clusterlmageSetNameRef: "img4.9.10-x86-64-appsub”
sshPublicKey: "ssh-rsa ..."
clusters:
- clusterName: "sno-worker-0"
clusterLabels:
group-du-sno:
common-411:true
sites : "example-5g-lab"
vendor: "OpenShift"
clusterNetwork:

435

https://console.redhat.com/openshift/downloads#tool-pull-secret
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/clusters/cluster_mce_overview#mce-intro

OpenShift Container Platform 4.12 Scalability and performance

436

- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.19.32.192/26
serviceNetwork:
-172.30.0.0/16
networkType: "OVNKubernetes"
additionalNTPSources:
- clock.corp.redhat.com
ignitionConfigOverride: '{"ignition":{"version":"3.1.0"},"systemd":{"units":[{"name":"var-
mnt.mount”,"enabled":true,"contents":"[Unit]\nDescription=Mount partition with
artifacts\nBefore=precache-images.service\nBindsTo=precache-
images.service\nStopWhenUnneeded=true\n\n[Mount]\nWhat=/dev/disk/by-
partlabel/data\nWhere=/var/mnt\nType=xfs\nTimeoutSec=30\n\n[Install\nRequiredBy=precache-
images.service"},{"name":"precache-images.service","enabled":true,"contents":"
[Unit)\nDescription=Extracts the precached images in discovery stage\nAfter=var-
mnt.mount\nBefore=agent.service\n\n[Service]\nType=oneshot\nUser=root\nWorkingDirectory=/var/mnt'
nExecStart=bash /usr/local/bin/extract-ai.sh\n#TimeoutStopSec=30\n\n[Install\nWantedBy=multi-
user.target default.target\nWantedBy=agent.service"}]},"storage":{"files":
[{"overwrite":true,"path":"/usr/local/bin/extract-ai.sh","mode":755,"user":{"name":"root"},"contents":
{"source":"data:,%23%21%2Fbin%2Fbash%0A%0AFOLDER%3D%22%24%7BFOLDER%3A-
%24%28pWd%29%7D%22%0A0CP_RELEASE_LIST%3D%22%24%7BOCP_RELEASE_LIST%3A-
ai-
images.txt%7D%22%0ABINARY_FOLDER%3D%2Fvar%2Fmnt%0A%0Apushd%20%24FOLDER%0
A%0Atotal_copies%3D%24%28s0rt%20-
U%20%24BINARY_FOLDER%2F%240CP_RELEASE_LIST%20%7C%20wc%20-
1%29%20%20%23%20Required%20t0%20keep%%20track%200f%20the%20pull%20task%20vs%20tot
al%0Acurrent_copy%3D1%0A%0Awhile%20read%20-
r%201ine%3B%0Ad0%0A%20%20uri%3D%24%28ech0%20%22%241ine%22%20%7C%20awk%20%
27%7Bprint%241%7D%27%29%0A%20%20%23tar%3D%24%28ech0%20%22%241in€%22%20%7
C%20awk%20%27%7Bprint%242%7D %27 %29%0A%20%20podman%20image%20exists%20%24ur
i%0A%20%20if%20%5B%5B%20%24%3F%20-
€0%200%20%5D%5D%3B%20then%0A%20%20%20%20%20%20ech0%20%22Skipping%20existin
g%20image%20%24tar%22%0A%20%20%20%20%20%20ech0%20%22Copying%20%24%7Buri%7
D%20%5B%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%%7D%5D%22%0A%20%20%20%20
%20%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29%0A%20%20%20%20
%20%20continue%0A%20%20fi%0A%20%20tar%3D%24%28ech0%20%22%24uri%22%20%7C%2
0%20rev%20%7C%20cut%20-d%20%22%2F %22%20-
f1%20%7C%20rev%20%7 C%20tr%20%22%3A%22%20%22_%22%29%0A%20%20tar%20zxv{%20
%24%7Btar%7D.tgz%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%20-
f%20%24%7Btar%7D.g9z%3B%20fi%0A%20%20ech0%20%22Copying%20%24%7Buri%7D%20%5B
%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20skopeo%20copy %620
dir%3A%2F %2F %24%28pwd%29%2F %24%7Btar%7D%20containers-
storage%3A%24%7Buri%7D%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%20-
rf%20%24%7Btar%7D%3B%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29
%3B%20fi%0Adone%20%3C%20%24%7BBINARY_FOLDER%7D%2F%24%7BOCP_RELEASE_LI
ST%7D%0A%0A%23%20workaround%20while%20https%3A%2F%2Fgithub.com%2Fopenshifi%2Fa
ssisted-service%2Fpull%2F3546%0A%23cp%20%2Fvar%2Fmnt%2Fmodified-rhcos-4.10.3-x86_64-
metal.x86_64.raw.gz%20%2Fvar%%2Ftmp%2F.%0A%0Aexit%200"}},
{"overwrite":true,"path":"/usr/local/bin/agent-fix-bz1964591","mode":755,"user":
{"name":"root"},"contents":
{"source":"data:,%23%21%2Fusr%2Fbin%2Fsh%0A%0A%23%20This%20script%20is%20a%20work
around%20for%20bugzilla%201964591%20where%20symlinks%20inside%20%2Fvar%2Flib%2Fcont
ainers%2F%20get%0A%23%20corrupted%20undery%20some%%20circumstances.%0A%23%0A%23%

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

20In%200rder%20t0%20let%20agent.service%20start%20correctly%20we%20are%20checking%20h
ere%20whether%20the%20requested%0A%23%20container%%20image%20exists%20and%20in%20c
ase%20%22podman%20images%22%20returns%20an%20error%20we%20try%20removing%20the
%20faulty%0A%23%20image.%0A%23%0A%23%20In%20such%20a%20scenario%20agent.service
%20will%20detect%20the%20image%20is%20not%20present%20and%20pull%20it%20again.%20In
%20case%0A%23%20the%20image%20is%20present%20and¥%20can%20be%20detected%20correc
tly%2C%20n0%20any%20action%20is%20required.%0A%0AIMAGE%3D%24%28ech0%20%241%2
0%7C%205ed%20%275%2F%3A.%2A%2F %2F %27 %29%0Apodman%20image%20exists %20%24|
MAGE%20%7C%7C%20ech0%20%22already%20loaded%22%20%7C%7C%20ech0%20%22need
%20t0%20be%20pulled%22%0A%23podman%20images%20%7C%209rep%20%24IMAGE%20%7C
%7C%20podman%20rmi%20--force%20%241%20%7C%7C%20true"}1}}'
nodes:
- hostName: "snonode.sno-worker-0.example.domain.redhat.com”

role: "master”

bmcAddress: "idrac-virtualmedia+https://10.19.28.53/redfish/v1/Systems/System.Embedded.1"

bmcCredentialsName:

name: "worker0-bmh-secret"

bootMACAddress: "e4:43:4b:bd:90:46"

bootMode: "UEFI"

rootDeviceHints:

deviceName: /dev/nvmeOn1

cpuset: "0-1,40-41"

installerArgs: '["--save-partlabel”, "data"]'

ignitionConfigOverride: '{"ignition":{"version":"3.1.0"},"systemd":{"units":[{"name":"var-
mnt.mount","enabled":true,"contents":"[Unit]\nDescription=Mount partition with
artifacts\nBefore=precache-ocp-images.service\nBindsTo=precache-ocp-
images.service\nStopWhenUnneeded=true\n\n[Mount]\nWhat=/dev/disk/by-
partlabel/data\nWhere=/var/mnt\nType=xfs\nTimeoutSec=30\n\n[Install]\nRequiredBy=precache-ocp-
images.service"},{"name":"precache-ocp-images.service","enabled":true,"contents":"
[Unit]\nDescription=Extracts the precached OCP images into containers storage\nAfter=var-
mnt.mount\nBefore=machine-config-daemon-pull.service nodeip-
configuration.service\n\n[Service]\nType=oneshot\nUser=root\nWorkingDirectory=/var/mnt\nExecStart=t
ash /usr/local/bin/extract-ocp.sh\nTimeoutStopSec=60\n\n[Install\nWantedBy=multi-
user.target"}]},"storage":{"files":[{"overwrite":true,"path":"/usr/local/bin/extract-
ocp.sh","mode":755,"user":{"name":"root"},"contents":
{"source":"data:,%23%21%2Fbin%2Fbash%0A%0AFOLDER%3D%22%24%7BFOLDER%3A-
%24%28pWd%29%7D%22%0A0CP_RELEASE_LIST%3D%22%24%7BOCP_RELEASE_LIST%3A-
ocp-
images.ixt%7D%22%0ABINARY_FOLDER%3D%2Fvar%2Fmnt%0A%0Apushd%20%24FOLDER%0
A%0Atotal_copies%3D%24%28s0rt%20-
U%20%24BINARY_FOLDER%2F%240CP_RELEASE_LIST%20%7C%20wc%20-
1%29%20%20%23%20Required%20t0%20keep%20track%200f%20the%20pull%20task%20vs%20tot
al%0Acurrent_copy%3D1%0A%0Awhile%20read%20-
r%201in€%3B%0Ad0%0A%20%20uri%3D%24%28ech0%20%22%241ine%22%20%7C%20awk%20%
27%7Bprint%241%7D%27%29%0A%20%20%23tar%3D%24%28ech0%20%22%241in€%22%20%7
C%20awk%20%27 % 7Bprint%242%7D %27 %29%0A%20%20podman%20image%20exists%20%24ur
i%0A%20%20if%20%5B%5B%20%24%3F%20-
€0%200%20%5D%5D%3B%20then%0A%20%20%20%20%20%20ech0%20%22Skipping%20existin
g%20image%20%24tar%22%0A%20%20%20%20%20%20ech0%20%22Copying%20%24%7Buri%7
D%20%5B%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20%20%20
%20%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29%0A%20%20%20%20
%20%20continue%0A%20%20fi%0A%20%20tar%3D%24%28ech0%20%22%24uri%22%20%7C%2
0%20rev%20%7C%20cut%20-d%20%22%2F %22%20-
f1%20%7C%20rev%20%7 C%20tr%20%22%3A%22%20%22_%22%29%0A%20%20tar%20zxv{%20
%24%7Btar%7D.tgz%0A%20%20if%20%5B%20%24%3F%20-
€0%200%20%5D%3B%20then%20rm%20-

437

OpenShift Container Platform 4.12 Scalability and performance

f%20%24%7Btar%7D.gz%3B%20fi%0A%20%20ech0%20%22Copying%20%24%7Buri%7D%20%5B
%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20skopeo%20copy %620
dir%3A%2F %2F %24 %28pwd%29%2F %24%7Btar%7D%20containers-
storage%3A%24%7Buri%7D%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%:20-
rf%20%24%7Btar%7D%3B%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29
%3B%20fi%0Adone%20%3C%20%24%7BBINARY_FOLDER%7D%2F%24%7BOCP_RELEASE_LI
ST%7D%0A%0Aexit%200"}}1}}
nodeNetwork:
config:
interfaces:
- name: ens1f0
type: ethernet
state: up
macAddress: "AA:BB:CC:11:22:33"
ipvé4:
enabled: true
dhcp: true
ipv6:
enabled: false
interfaces:
- name: "ens1f0"
macAddress: "AA:BB:CC:11:22:33"

17.14.5.1. Understanding the clusters.ignitionConfigOverride field

The clusters.ignitionConfigOverride field adds a configuration in Ignition format during the ZTP
discovery stage. The configuration includes systemd services in the ISO mounted in virtual media. This
way, the scripts are part of the discovery RHCOS live ISO and they can be used to load the Assisted
Installer (Al) images.

systemd services

The systemd services are var-mnt.mount and precache-images.services. The precache-
images.service depends on the disk partition to be mounted in /var/mnt by the var-mnt.mount unit.
The service calls a script called extract-ai.sh.

extract-ai.sh

The extract-ai.sh script extracts and loads the required images from the disk partition to the local
container storage. When the script finishes successfully, you can use the images locally.

agent-fix-bz1964591

The agent-fix-bz1964591 script is a workaround for an Al issue. To prevent Al from removing the
images, which can force the agent.service to pull the images again from the registry, the agent-fix-
bz1964591 script checks if the requested container images exist.

17.14.5.2. Understanding the nodes.installerArgs field

The nodes.installerArgs field allows you to configure how the coreos-installer utility writes the
RHCOS live ISO to disk. You need to indicate to save the disk partition labeled as data because the
artifacts saved in the data partition are needed during the OpenShift Container Platform installation
stage.

The extra parameters are passed directly to the coreos-installer utility that writes the live RHCOS to
disk. On the next reboot, the operating system starts from the disk.

You can pass several options to the coreos-installer utility:

438

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

OPTIONS:

-u, --image-url <URL>
Manually specify the image URL

-f, --image-file <path>
Manually specify a local image file

-i, --ignition-file <path>
Embed an Ignition config from a file

-1, --ignition-url <URL>
Embed an Ignition config from a URL

--save-partlabel <Ix>...
Save partitions with this label glob

--save-partindex <id>...
Save partitions with this number or range

--insecure-ignition
Allow Ignition URL without HTTPS or hash

17.14.5.3. Understanding the nodes.ignitionConfigOverride field

Similarly to clusters.ignitionConfigOverride, the nodes.ignitionConfigOverride field allows the
addtion of configurations in Ignition format to the coreos-installer utility, but at the OpenShift
Container Platform installation stage. When the RHCOS is written to disk, the extra configuration
included in the ZTP discovery ISO is no longer available. During the discovery stage, the extra
configuration is stored in the memory of the live OS.

NOTE

At this stage, the number of container images extracted and loaded is bigger than in the
discovery stage. Depending on the OpenShift Container Platform release and whether
you install the Day-2 Operators, the installation time can vary.

At the installation stage, the var-mnt.mount and precache-ocp.services systemd services are used.

precache-ocp.service

The precache-ocp.service depends on the disk partition to be mounted in /var/mnt by the var-
mnt.mount unit. The precache-ocp.service service calls a script called extract-ocp.sh.

IMPORTANT

To extract all the images before the OpenShift Container Platform installation, you
must execute precache-ocp.service before executing the machine-config-daemon-
pull.service and nodeip-configuration.service services.

extract-ocp.sh

The extract-ocp.sh script extracts and loads the required images from the disk partition to the local
container storage. When the script finishes successfully, you can use the images locally.

439

OpenShift Container Platform 4.12 Scalability and performance

When you upload the SiteConfig and the optional PolicyGenTemplates custom resources (CRs) to the
Git repo, which Argo CD is monitoring, you can start the ZTP workflow by syncing the CRs with the hub
cluster.

17.14.6. Troubleshooting

17.14.6.1. Rendered catalog is invalid

When you download images by using a local or disconnected registry, you might see the The rendered
catalog is invalid error. This means that you are missing certificates of the new registry you want to pull
content from.

NOTE

The factory-precaching-cli tool image is built on a UBI RHEL image. Certificate paths and
locations are the same on RHCOS.

Example error

Generating list of pre-cached artifacts...

error: unable to run command oc-mirror -c /mnt/imageset.yaml file:///tmp/fp-cli-3218002584/mirror --
ignore-history --dry-run: Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-
workspace/src/publish

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/v2

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/charts

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/release-signatures
backend is not configured in /mnt/imageset.yaml, using stateless mode

backend is not configured in /mnt/imageset.yaml, using stateless mode

No metadata detected, creating new workspace

level=info msg=trying next host error=failed to do request: Head
"https://eko4.cloud.lab.eng.bos.redhat.com:8443/v2/redhat/redhat-operator-index/manifests/v4.11":
x509: certificate signed by unknown authority host=eko4.cloud.lab.eng.bos.redhat.com:8443

The rendered catalog is invalid.

Run "oc-mirror list operators --catalog CATALOG-NAME --package PACKAGE-NAME" for more
information.

error: error rendering new refs: render reference
"eko4.cloud.lab.eng.bos.redhat.com:8443/redhat/redhat-operator-index:v4.11": error resolving name :
failed to do request: Head "https://eko4.cloud.lab.eng.bos.redhat.com:8443/v2/redhat/redhat-
operator-index/manifests/v4.11": x509: certificate signed by unknown authority

Procedure

1. Copy the registry certificate into your server:

I # cp /tmp/eko4-ca.crt /etc/pki/ca-trust/source/anchors/.

2. Update the certificates trust store:

I # update-ca-trust

440

CHAPTER17. CLUSTERS AT THE NETWORK FAR EDGE

3. Mount the host /etc/pki folder into the factory-cliimage:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker -v /etc/pki:/etc/pki --privileged -it --rm
quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli download -r 4.11.5 --acm-version 2.5.4 \

--mce-version 2.0.4 -f /mnt \--img quay.io/custom/repository

--du-profile -s --skip-imageset

441

	Table of Contents
	CHAPTER 1. RECOMMENDED PERFORMANCE AND SCALABILITY PRACTICES
	1.1. RECOMMENDED CONTROL PLANE PRACTICES
	1.1.1. Recommended practices for scaling the cluster
	1.1.2. Control plane node sizing
	1.1.2.1. Selecting a larger Amazon Web Services instance type for control plane machines

	1.2. RECOMMENDED INFRASTRUCTURE PRACTICES
	1.2.1. Infrastructure node sizing
	1.2.2. Scaling the Cluster Monitoring Operator
	1.2.3. Prometheus database storage requirements
	1.2.4. Configuring cluster monitoring
	1.2.5. Additional resources

	1.3. RECOMMENDED ETCD PRACTICES
	1.3.1. Recommended etcd practices
	1.3.2. Moving etcd to a different disk
	1.3.3. Defragmenting etcd data
	1.3.3.1. Automatic defragmentation
	1.3.3.2. Manual defragmentation

	CHAPTER 2. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
	2.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	2.1.1. Example scenario

	2.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED
	2.2.1. AWS cloud platform
	2.2.2. IBM Power platform
	2.2.3. IBM Z platform

	2.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
	2.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 3. RECOMMENDED HOST PRACTICES FOR IBM Z & IBM(R) LINUXONE ENVIRONMENTS
	3.1. MANAGING CPU OVERCOMMITMENT
	3.2. DISABLE TRANSPARENT HUGE PAGES
	3.3. BOOST NETWORKING PERFORMANCE WITH RECEIVE FLOW STEERING
	3.3.1. Use the Machine Config Operator (MCO) to activate RFS

	3.4. CHOOSE YOUR NETWORKING SETUP
	3.5. ENSURE HIGH DISK PERFORMANCE WITH HYPERPAV ON Z/VM
	3.5.1. Use the Machine Config Operator (MCO) to activate HyperPAV aliases in nodes using z/VM full-pack minidisks

	3.6. RHEL KVM ON IBM Z HOST RECOMMENDATIONS
	3.6.1. Use I/O threads for your virtual block devices
	3.6.2. Avoid virtual SCSI devices
	3.6.3. Configure guest caching for disk
	3.6.4. Exclude the memory balloon device
	3.6.5. Tune the CPU migration algorithm of the host scheduler
	3.6.6. Disable the cpuset cgroup controller
	3.6.7. Tune the polling period for idle virtual CPUs

	CHAPTER 4. USING THE NODE TUNING OPERATOR
	4.1. ABOUT THE NODE TUNING OPERATOR
	4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
	4.3. DEFAULT PROFILES SET ON A CLUSTER
	4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
	4.5. CUSTOM TUNING SPECIFICATION
	4.6. CUSTOM TUNING EXAMPLES
	4.7. SUPPORTED TUNED DAEMON PLUGINS
	4.8. CONFIGURING NODE TUNING IN A HOSTED CLUSTER
	4.9. ADVANCED NODE TUNING FOR HOSTED CLUSTERS BY SETTING KERNEL BOOT PARAMETERS

	CHAPTER 5. USING CPU MANAGER AND TOPOLOGY MANAGER
	5.1. SETTING UP CPU MANAGER
	5.2. TOPOLOGY MANAGER POLICIES
	5.3. SETTING UP TOPOLOGY MANAGER
	5.4. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

	CHAPTER 6. SCHEDULING NUMA-AWARE WORKLOADS
	6.1. ABOUT NUMA-AWARE SCHEDULING
	Introduction to NUMA
	Performance considerations
	NUMA-aware scheduling
	Integration with Node Tuning Operator
	Default scheduling logic
	NUMA-aware pod scheduling diagram

	6.2. INSTALLING THE NUMA RESOURCES OPERATOR
	6.2.1. Installing the NUMA Resources Operator using the CLI
	6.2.2. Installing the NUMA Resources Operator using the web console

	6.3. SCHEDULING NUMA-AWARE WORKLOADS
	6.3.1. Creating the NUMAResourcesOperator custom resource
	6.3.2. Deploying the NUMA-aware secondary pod scheduler
	6.3.3. Configuring a single NUMA node policy
	6.3.4. Sample performance profile
	6.3.5. Creating a KubeletConfig CRD
	6.3.6. Scheduling workloads with the NUMA-aware scheduler

	6.4. OPTIONAL: CONFIGURING POLLING OPERATIONS FOR NUMA RESOURCES UPDATES
	6.5. TROUBLESHOOTING NUMA-AWARE SCHEDULING
	6.5.1. Reporting more exact resource availability
	6.5.2. Checking the NUMA-aware scheduler logs
	6.5.3. Troubleshooting the resource topology exporter
	6.5.4. Correcting a missing resource topology exporter config map

	CHAPTER 7. SCALABILITY AND PERFORMANCE OPTIMIZATION
	7.1. OPTIMIZING STORAGE
	7.1.1. Available persistent storage options
	7.1.2. Recommended configurable storage technology
	7.1.2.1. Specific application storage recommendations
	7.1.2.2. Other specific application storage recommendations

	7.1.3. Data storage management
	7.1.4. Optimizing storage performance for Microsoft Azure
	7.1.5. Additional resources

	7.2. OPTIMIZING ROUTING
	7.2.1. Baseline Ingress Controller (router) performance
	7.2.2. Configuring Ingress Controller liveness, readiness, and startup probes
	7.2.3. Configuring HAProxy reload interval

	7.3. OPTIMIZING NETWORKING
	7.3.1. Optimizing the MTU for your network
	7.3.2. Recommended practices for installing large scale clusters
	7.3.3. Impact of IPsec
	7.3.4. Additional resources

	7.4. OPTIMIZING CPU USAGE WITH MOUNT NAMESPACE ENCAPSULATION
	7.4.1. Encapsulating mount namespaces
	7.4.2. Configuring mount namespace encapsulation
	7.4.3. Inspecting encapsulated namespaces
	7.4.4. Running additional services in the encapsulated namespace
	7.4.5. Additional resources

	CHAPTER 8. MANAGING BARE METAL HOSTS
	8.1. ABOUT BARE METAL HOSTS AND NODES
	8.2. MAINTAINING BARE METAL HOSTS
	8.2.1. Adding a bare metal host to the cluster using the web console
	8.2.2. Adding a bare metal host to the cluster using YAML in the web console
	8.2.3. Automatically scaling machines to the number of available bare metal hosts
	8.2.4. Removing bare metal hosts from the provisioner node

	CHAPTER 9. MONITORING BARE-METAL EVENTS WITH THE BARE METAL EVENT RELAY
	9.1. ABOUT BARE-METAL EVENTS
	9.2. HOW BARE-METAL EVENTS WORK
	9.2.1. Bare Metal Event Relay data flow
	9.2.1.1. Operator-managed pod
	9.2.1.2. Bare Metal Event Relay
	9.2.1.3. Cloud native event
	9.2.1.4. CNCF CloudEvents
	9.2.1.5. HTTP transport or AMQP dispatch router
	9.2.1.6. Cloud event proxy sidecar

	9.2.2. Redfish message parsing service
	9.2.3. Installing the Bare Metal Event Relay using the CLI
	9.2.4. Installing the Bare Metal Event Relay using the web console

	9.3. INSTALLING THE AMQ MESSAGING BUS
	9.4. SUBSCRIBING TO REDFISH BMC BARE-METAL EVENTS FOR A CLUSTER NODE
	9.4.1. Subscribing to bare-metal events
	9.4.2. Querying Redfish bare-metal event subscriptions with curl
	9.4.3. Creating the bare-metal event and Secret CRs

	9.5. SUBSCRIBING APPLICATIONS TO BARE-METAL EVENTS REST API REFERENCE
	api/ocloudNotifications/v1/subscriptions
	HTTP method
	HTTP method

	api/ocloudNotifications/v1/subscriptions/<subscription_id>
	HTTP method

	api/ocloudNotifications/v1/health/
	HTTP method

	9.6. MIGRATING CONSUMER APPLICATIONS TO USE HTTP TRANSPORT FOR PTP OR BARE-METAL EVENTS

	CHAPTER 10. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
	10.1. WHAT HUGE PAGES DO
	10.2. HOW HUGE PAGES ARE CONSUMED BY APPS
	10.3. CONSUMING HUGE PAGES RESOURCES USING THE DOWNWARD API
	10.4. CONFIGURING HUGE PAGES AT BOOT TIME
	10.5. DISABLING TRANSPARENT HUGE PAGES

	CHAPTER 11. LOW LATENCY TUNING
	11.1. UNDERSTANDING LOW LATENCY
	11.1.1. About hyperthreading for low latency and real-time applications

	11.2. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
	11.2.1. Known limitations for real-time
	11.2.2. Provisioning a worker with real-time capabilities
	11.2.3. Verifying the real-time kernel installation
	11.2.4. Creating a workload that works in real-time
	11.2.5. Creating a pod with a QoS class of Guaranteed
	11.2.6. Optional: Disabling CPU load balancing for DPDK
	11.2.7. Assigning a proper node selector
	11.2.8. Scheduling a workload onto a worker with real-time capabilities
	11.2.9. Reducing power consumption by taking CPUs offline
	11.2.10. Optional: Power saving configurations
	11.2.11. Managing device interrupt processing for guaranteed pod isolated CPUs
	11.2.11.1. Disabling CPU CFS quota
	11.2.11.2. Disabling global device interrupts handling in Node Tuning Operator
	11.2.11.3. Disabling interrupt processing for individual pods

	11.2.12. Upgrading the performance profile to use device interrupt processing
	11.2.12.1. Supported API Versions

	11.3. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
	11.3.1. Configuring huge pages
	11.3.2. Allocating multiple huge page sizes
	11.3.3. Configuring a node for IRQ dynamic load balancing
	11.3.4. About support of IRQ affinity setting
	11.3.5. Configuring hyperthreading for a cluster
	11.3.5.1. Disabling hyperthreading for low latency applications

	11.3.6. Understanding workload hints
	11.3.7. Configuring workload hints manually
	11.3.8. Restricting CPUs for infra and application containers

	11.4. REDUCING NIC QUEUES USING THE NODE TUNING OPERATOR
	11.4.1. Adjusting the NIC queues with the performance profile
	11.4.2. Verifying the queue status
	11.4.3. Logging associated with adjusting NIC queues

	11.5. DEBUGGING LOW LATENCY CNF TUNING STATUS
	11.5.1. Machine config pools

	11.6. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
	11.6.1. About the must-gather tool
	11.6.2. About collecting low latency tuning data
	11.6.3. Gathering data about specific features

	CHAPTER 12. PERFORMING LATENCY TESTS FOR PLATFORM VERIFICATION
	12.1. PREREQUISITES FOR RUNNING LATENCY TESTS
	12.2. ABOUT DISCOVERY MODE FOR LATENCY TESTS
	Limiting the nodes used during tests

	12.3. MEASURING LATENCY
	12.4. RUNNING THE LATENCY TESTS
	12.4.1. Running hwlatdetect
	Example hwlatdetect test results

	12.4.2. Running cyclictest
	Example cyclictest results

	12.4.3. Running oslat

	12.5. GENERATING A LATENCY TEST FAILURE REPORT
	12.6. GENERATING A JUNIT LATENCY TEST REPORT
	12.7. RUNNING LATENCY TESTS ON A SINGLE-NODE OPENSHIFT CLUSTER
	12.8. RUNNING LATENCY TESTS IN A DISCONNECTED CLUSTER
	Mirroring the images to a custom registry accessible from the cluster
	Configuring the tests to consume images from a custom registry
	Mirroring images to the cluster OpenShift image registry
	Mirroring a different set of test images

	12.9. TROUBLESHOOTING ERRORS WITH THE CNF-TESTS CONTAINER

	CHAPTER 13. IMPROVING CLUSTER STABILITY IN HIGH LATENCY ENVIRONMENTS USING WORKER LATENCY PROFILES
	13.1. UNDERSTANDING WORKER LATENCY PROFILES
	13.2. IMPLEMENTING WORKER LATENCY PROFILES AT CLUSTER CREATION
	13.3. USING AND CHANGING WORKER LATENCY PROFILES
	13.4. EXAMPLE STEPS FOR DISPLAYING RESULTING VALUES OF WORKERLATENCYPROFILE

	CHAPTER 14. CREATING A PERFORMANCE PROFILE
	14.1. ABOUT THE PERFORMANCE PROFILE CREATOR
	14.1.1. Gathering data about your cluster using the must-gather command
	14.1.2. Running the Performance Profile Creator using podman
	14.1.2.1. How to run podman to create a performance profile

	14.1.3. Running the Performance Profile Creator wrapper script
	14.1.4. Performance Profile Creator arguments

	14.2. REFERENCE PERFORMANCE PROFILES
	14.2.1. A performance profile template for clusters that use OVS-DPDK on OpenStack

	14.3. ADDITIONAL RESOURCES

	CHAPTER 15. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT
	CHAPTER 16. REQUESTING CRI-O AND KUBELET PROFILING DATA BY USING THE NODE OBSERVABILITY OPERATOR
	16.1. WORKFLOW OF THE NODE OBSERVABILITY OPERATOR
	16.2. INSTALLING THE NODE OBSERVABILITY OPERATOR
	16.2.1. Installing the Node Observability Operator using the CLI
	16.2.2. Installing the Node Observability Operator using the web console

	16.3. CREATING THE NODE OBSERVABILITY CUSTOM RESOURCE
	16.4. RUNNING THE PROFILING QUERY

	CHAPTER 17. CLUSTERS AT THE NETWORK FAR EDGE
	17.1. CHALLENGES OF THE NETWORK FAR EDGE
	17.1.1. Overcoming the challenges of the network far edge
	17.1.2. Using ZTP to provision clusters at the network far edge
	17.1.3. Installing managed clusters with SiteConfig resources and RHACM
	17.1.4. Configuring managed clusters with policies and PolicyGenTemplate resources

	17.2. PREPARING THE HUB CLUSTER FOR ZTP
	17.2.1. Telco RAN 4.12 validated solution software versions
	17.2.2. Installing GitOps ZTP in a disconnected environment
	17.2.3. Adding RHCOS ISO and RootFS images to the disconnected mirror host
	17.2.4. Enabling the assisted service
	17.2.5. Configuring the hub cluster to use a disconnected mirror registry
	17.2.6. Configuring the hub cluster to use unauthenticated registries
	17.2.7. Configuring the hub cluster with ArgoCD
	17.2.8. Preparing the GitOps ZTP site configuration repository

	17.3. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES
	17.3.1. GitOps ZTP and Topology Aware Lifecycle Manager
	17.3.2. Overview of deploying managed clusters with ZTP
	Overview of the managed site installation process

	17.3.3. Creating the managed bare-metal host secrets
	17.3.4. Configuring Discovery ISO kernel arguments for installations using GitOps ZTP
	17.3.5. Deploying a managed cluster with SiteConfig and ZTP
	17.3.5.1. Single-node OpenShift SiteConfig CR installation reference

	17.3.6. Monitoring managed cluster installation progress
	17.3.7. Troubleshooting GitOps ZTP by validating the installation CRs
	17.3.8. Troubleshooting {ztp} virtual media booting on Supermicro servers
	17.3.9. Removing a managed cluster site from the ZTP pipeline
	17.3.10. Removing obsolete content from the ZTP pipeline
	17.3.11. Tearing down the ZTP pipeline

	17.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES
	17.4.1. About the PolicyGenTemplate CRD
	17.4.2. Recommendations when customizing PolicyGenTemplate CRs
	17.4.3. PolicyGenTemplate CRs for RAN deployments
	17.4.4. Customizing a managed cluster with PolicyGenTemplate CRs
	17.4.5. Monitoring managed cluster policy deployment progress
	17.4.6. Validating the generation of configuration policy CRs
	17.4.7. Restarting policy reconciliation
	17.4.8. Changing applied managed cluster CRs using policies
	17.4.9. Indication of done for ZTP installations

	17.5. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP
	17.5.1. Generating ZTP installation and configuration CRs manually
	17.5.2. Creating the managed bare-metal host secrets
	17.5.3. Configuring Discovery ISO kernel arguments for manual installations using GitOps ZTP
	17.5.4. Installing a single managed cluster
	17.5.5. Monitoring the managed cluster installation status
	17.5.6. Troubleshooting the managed cluster
	17.5.7. RHACM generated cluster installation CRs reference

	17.6. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS
	17.6.1. Running low latency applications on OpenShift Container Platform
	17.6.2. Recommended cluster host requirements for vDU application workloads
	17.6.3. Configuring host firmware for low latency and high performance
	17.6.4. Connectivity prerequisites for managed cluster networks
	17.6.5. Workload partitioning in single-node OpenShift with GitOps ZTP
	17.6.6. Recommended installation-time cluster configurations
	17.6.6.1. Workload partitioning
	17.6.6.2. Reduced platform management footprint
	17.6.6.3. SCTP
	17.6.6.4. Accelerated container startup
	17.6.6.5. Automatic kernel crash dumps with kdump

	17.6.7. Recommended postinstallation cluster configurations
	17.6.7.1. Operator namespaces and Operator groups
	17.6.7.2. Operator subscriptions
	17.6.7.3. Cluster logging and log forwarding
	17.6.7.4. Performance profile
	17.6.7.5. Configuring cluster time synchronization
	17.6.7.6. PTP
	17.6.7.7. Extended Tuned profile
	17.6.7.8. SR-IOV
	17.6.7.9. Console Operator
	17.6.7.10. Alertmanager
	17.6.7.11. Operator Lifecycle Manager
	17.6.7.12. Network diagnostics

	17.7. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS
	17.7.1. Recommended firmware configuration for vDU cluster hosts
	17.7.2. Recommended cluster configurations to run vDU applications
	17.7.2.1. Recommended cluster MachineConfig CRs
	17.7.2.2. Recommended cluster Operators
	17.7.2.3. Recommended cluster kernel configuration
	17.7.2.4. Checking the realtime kernel version

	17.7.3. Checking that the recommended cluster configurations are applied

	17.8. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES
	17.8.1. Customizing extra installation manifests in the ZTP GitOps pipeline
	17.8.2. Filtering custom resources using SiteConfig filters

	17.9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES
	17.9.1. Deploying additional changes to clusters
	17.9.2. Using PolicyGenTemplate CRs to override source CRs content
	17.9.3. Adding custom content to the GitOps ZTP pipeline
	17.9.4. Configuring policy compliance evaluation timeouts for PolicyGenTemplate CRs
	17.9.5. Signalling ZTP cluster deployment completion with validator inform policies
	17.9.6. Configuring PTP events with PolicyGenTemplate CRs
	17.9.6.1. Configuring PTP events that use HTTP transport
	17.9.6.2. Configuring PTP events that use AMQP transport

	17.9.7. Configuring bare-metal events with PolicyGenTemplate CRs
	17.9.7.1. Configuring bare-metal events that use HTTP transport
	17.9.7.2. Configuring bare-metal events that use AMQP transport

	17.9.8. Configuring the Image Registry Operator for local caching of images
	17.9.8.1. Configuring disk partitioning with SiteConfig
	17.9.8.2. Configuring the image registry using PolicyGenTemplate CRs

	17.9.9. Using hub templates in PolicyGenTemplate CRs
	17.9.9.1. Example hub templates
	17.9.9.2. Specifying host NICs in site PolicyGenTemplate CRs with hub cluster templates
	17.9.9.3. Specifying VLAN IDs in group PolicyGenTemplate CRs with hub cluster templates
	17.9.9.4. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs

	17.10. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	17.10.1. About the Topology Aware Lifecycle Manager configuration
	17.10.2. About managed policies used with Topology Aware Lifecycle Manager
	17.10.3. Installing the Topology Aware Lifecycle Manager by using the web console
	17.10.4. Installing the Topology Aware Lifecycle Manager by using the CLI
	17.10.5. About the ClusterGroupUpgrade CR
	17.10.5.1. Selecting clusters
	17.10.5.2. Validating
	17.10.5.3. Pre-caching
	17.10.5.4. Creating a backup
	17.10.5.5. Updating clusters
	17.10.5.6. Update status
	17.10.5.7. Blocking ClusterGroupUpgrade CRs

	17.10.6. Update policies on managed clusters
	17.10.6.1. Configuring Operator subscriptions for managed clusters that you install with TALM
	17.10.6.2. Applying update policies to managed clusters

	17.10.7. Creating a backup of cluster resources before upgrade
	17.10.7.1. Creating a ClusterGroupUpgrade CR with backup
	17.10.7.2. Recovering a cluster after a failed upgrade

	17.10.8. Using the container image pre-cache feature
	17.10.8.1. Creating a ClusterGroupUpgrade CR with pre-caching

	17.10.9. Troubleshooting the Topology Aware Lifecycle Manager
	17.10.9.1. General troubleshooting
	17.10.9.2. Cannot modify the ClusterUpgradeGroup CR
	17.10.9.3. Managed policies
	17.10.9.4. Clusters
	17.10.9.5. Remediation Strategy
	17.10.9.6. Topology Aware Lifecycle Manager

	17.11. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	17.11.1. Updating clusters in a disconnected environment
	17.11.1.1. Setting up the environment
	17.11.1.2. Performing a platform update
	17.11.1.3. Performing an Operator update
	17.11.1.4. Performing a platform and an Operator update together
	17.11.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

	17.11.2. About the auto-created ClusterGroupUpgrade CR for ZTP

	17.12. UPDATING GITOPS ZTP
	17.12.1. Overview of the GitOps ZTP update process
	17.12.2. Preparing for the upgrade
	17.12.3. Labeling the existing clusters
	17.12.4. Stopping the existing GitOps ZTP applications
	17.12.5. Required changes to the Git repository
	17.12.6. Installing the new GitOps ZTP applications
	17.12.7. Rolling out the GitOps ZTP configuration changes

	17.13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP
	17.13.1. Applying profiles to the worker node
	17.13.2. (Optional) Ensuring PTP and SR-IOV daemon selector compatibility
	17.13.3. PTP and SR-IOV node selector compatibility
	17.13.4. Using PolicyGenTemplate CRs to apply worker node policies to worker nodes
	17.13.5. Adding worker nodes to single-node OpenShift clusters with GitOps ZTP

	17.14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS
	17.14.1. Getting the factory-precaching-cli tool
	17.14.2. Booting from a live operating system image
	17.14.3. Partitioning the disk
	17.14.3.1. Creating the partition
	17.14.3.2. Mounting the partition

	17.14.4. Downloading the images
	17.14.4.1. Downloading with parallel workers
	17.14.4.2. Preparing to download the OpenShift Container Platform images
	17.14.4.3. Downloading the OpenShift Container Platform images
	17.14.4.4. Downloading the Operator images
	17.14.4.5. Pre-caching custom images in disconnected environments

	17.14.5. Pre-caching images in ZTP
	17.14.5.1. Understanding the clusters.ignitionConfigOverride field
	17.14.5.2. Understanding the nodes.installerArgs field
	17.14.5.3. Understanding the nodes.ignitionConfigOverride field

	17.14.6. Troubleshooting
	17.14.6.1. Rendered catalog is invalid

