
OpenShift Container Platform 4.12

Red Hat build of OpenTelemetry

Configuring and using the Red Hat build of OpenTelemetry in OpenShift Container
Platform

Last Updated: 2024-06-06

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

Configuring and using the Red Hat build of OpenTelemetry in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Red Hat build of the open source OpenTelemetry project to collect unified, standardized,
and vendor-neutral telemetry data for cloud-native software in OpenShift Container Platform.

. .

Table of Contents

CHAPTER 1. RELEASE NOTES
1.1. RELEASE NOTES FOR RED HAT BUILD OF OPENTELEMETRY 3.2

1.1.1. Red Hat build of OpenTelemetry overview
1.1.2. Technology Preview features
1.1.3. New features and enhancements
1.1.4. Deprecated functionality
1.1.5. Bug fixes
1.1.6. Getting support
1.1.7. Making open source more inclusive

1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT BUILD OF OPENTELEMETRY
1.2.1. Red Hat build of OpenTelemetry overview
1.2.2. Release notes for Red Hat build of OpenTelemetry 3.1.1

1.2.2.1. CVEs
1.2.3. Release notes for Red Hat build of OpenTelemetry 3.1

1.2.3.1. Technology Preview features
1.2.3.2. New features and enhancements

1.2.4. Release notes for Red Hat build of OpenTelemetry 3.0
1.2.4.1. New features and enhancements
1.2.4.2. Removal notice
1.2.4.3. Bug fixes
1.2.4.4. Known issues

1.2.5. Release notes for Red Hat build of OpenTelemetry 2.9.2
1.2.5.1. CVEs
1.2.5.2. Known issues

1.2.6. Release notes for Red Hat build of OpenTelemetry 2.9.1
1.2.6.1. CVEs
1.2.6.2. Known issues

1.2.7. Release notes for Red Hat build of OpenTelemetry 2.9
1.2.7.1. New features and enhancements
1.2.7.2. Known issues

1.2.8. Release notes for Red Hat build of OpenTelemetry 2.8
1.2.8.1. Bug fixes

1.2.9. Release notes for Red Hat build of OpenTelemetry 2.7
1.2.9.1. Bug fixes

1.2.10. Release notes for Red Hat build of OpenTelemetry 2.6
1.2.10.1. Bug fixes

1.2.11. Release notes for Red Hat build of OpenTelemetry 2.5
1.2.11.1. New features and enhancements
1.2.11.2. Bug fixes

1.2.12. Release notes for Red Hat build of OpenTelemetry 2.4
1.2.12.1. Bug fixes

1.2.13. Release notes for Red Hat build of OpenTelemetry 2.3
1.2.13.1. Bug fixes

1.2.14. Release notes for Red Hat build of OpenTelemetry 2.2
1.2.14.1. Technology Preview features
1.2.14.2. Bug fixes

1.2.15. Release notes for Red Hat build of OpenTelemetry 2.1
1.2.15.1. Technology Preview features
1.2.15.2. Bug fixes

1.2.16. Release notes for Red Hat build of OpenTelemetry 2.0
1.2.17. Getting support

5
5
5
5
6
6
6
7
7
7
7
8
8
8
8
8
8
9
9
9
9

10
11
11
11
11
11
11

12
12
12
13
13
13
13
13
13
14
14
14
14
14
15
15
15
15
15
16
16
16
17

Table of Contents

1

. .

. .

1.2.18. Making open source more inclusive

CHAPTER 2. INSTALLING
2.1. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY FROM THE WEB CONSOLE
2.2. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY BY USING THE CLI
2.3. ADDITIONAL RESOURCES

CHAPTER 3. CONFIGURING THE COLLECTOR
3.1. OPENTELEMETRY COLLECTOR CONFIGURATION OPTIONS
3.2. OPENTELEMETRY COLLECTOR COMPONENTS

3.2.1. Receivers
3.2.1.1. OTLP Receiver
3.2.1.2. Jaeger Receiver
3.2.1.3. Host Metrics Receiver
3.2.1.4. Kubernetes Objects Receiver
3.2.1.5. Kubelet Stats Receiver
3.2.1.6. Prometheus Receiver
3.2.1.7. Zipkin Receiver
3.2.1.8. Kafka Receiver
3.2.1.9. Kubernetes Cluster Receiver
3.2.1.10. OpenCensus Receiver
3.2.1.11. Filelog Receiver
3.2.1.12. Journald Receiver
3.2.1.13. Kubernetes Events Receiver

3.2.2. Processors
3.2.2.1. Batch Processor
3.2.2.2. Memory Limiter Processor
3.2.2.3. Resource Detection Processor
3.2.2.4. Attributes Processor
3.2.2.5. Resource Processor
3.2.2.6. Span Processor
3.2.2.7. Kubernetes Attributes Processor
3.2.2.8. Filter Processor
3.2.2.9. Routing Processor
3.2.2.10. Cumulative to Delta Processor

3.2.3. Exporters
3.2.3.1. OTLP Exporter
3.2.3.2. OTLP HTTP Exporter
3.2.3.3. Debug Exporter
3.2.3.4. Load Balancing Exporter
3.2.3.5. Prometheus Exporter
3.2.3.6. Kafka Exporter

3.2.4. Connectors
3.2.4.1. Forward Connector
3.2.4.2. Spanmetrics Connector

3.2.5. Extensions
3.2.5.1. BearerTokenAuth Extension
3.2.5.2. OAuth2Client Extension
3.2.5.3. File Storage Extension
3.2.5.4. OIDC Auth Extension
3.2.5.5. Jaeger Remote Sampling Extension
3.2.5.6. Performance Profiler Extension
3.2.5.7. Health Check Extension

17

18
18
19
22

23
23
26
26
26
27
28
30
32
33
33
34
35
37
38
38
41

43
43
44
45
46
47
47
48
49
50
50
51
51
52
53
53
54
55
56
56
57
58
58
58
60
61

62
64
64

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

3.2.5.8. Memory Ballast Extension
3.2.5.9. zPages Extension

3.3. CREATING THE REQUIRED RBAC RESOURCES AUTOMATICALLY
3.4. TARGET ALLOCATOR

CHAPTER 4. CONFIGURING THE INSTRUMENTATION
4.1. OPENTELEMETRY INSTRUMENTATION CONFIGURATION OPTIONS

4.1.1. Instrumentation options
4.1.2. Using the instrumentation CR with Service Mesh

4.1.2.1. Configuration of the Apache HTTP Server auto-instrumentation
4.1.2.2. Configuration of the .NET auto-instrumentation
4.1.2.3. Configuration of the Go auto-instrumentation
4.1.2.4. Configuration of the Java auto-instrumentation
4.1.2.5. Configuration of the Node.js auto-instrumentation
4.1.2.6. Configuration of the Python auto-instrumentation
4.1.2.7. Configuration of the OpenTelemetry SDK variables
4.1.2.8. Multi-container pods

CHAPTER 5. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR
5.1. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITH SIDECAR INJECTION

5.2. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITHOUT SIDECAR
INJECTION

CHAPTER 6. CONFIGURING METRICS FOR THE MONITORING STACK
6.1. CONFIGURATION FOR SENDING METRICS TO THE MONITORING STACK
6.2. CONFIGURATION FOR RECEIVING METRICS FROM THE MONITORING STACK
6.3. ADDITIONAL RESOURCES

CHAPTER 7. FORWARDING TRACES TO A TEMPOSTACK INSTANCE

CHAPTER 8. CONFIGURING THE OPENTELEMETRY COLLECTOR METRICS

CHAPTER 9. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

CHAPTER 10. TROUBLESHOOTING
10.1. GETTING THE OPENTELEMETRY COLLECTOR LOGS
10.2. EXPOSING THE METRICS
10.3. DEBUG EXPORTER

CHAPTER 11. MIGRATING
11.1. MIGRATING WITH SIDECARS
11.2. MIGRATING WITHOUT SIDECARS

CHAPTER 12. UPGRADING
12.1. ADDITIONAL RESOURCES

CHAPTER 13. REMOVING
13.1. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE WEB CONSOLE
13.2. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE CLI
13.3. ADDITIONAL RESOURCES

65
66
67
68

71
71
71
73
73
73
74
75
75
76
76
76

78

78

80

83
83
84
86

87

90

91

96
96
96
97

98
98

100

103
103

104
104
104
105

Table of Contents

3

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

4

CHAPTER 1. RELEASE NOTES

1.1. RELEASE NOTES FOR RED HAT BUILD OF OPENTELEMETRY 3.2

1.1.1. Red Hat build of OpenTelemetry overview

Red Hat build of OpenTelemetry is based on the open source OpenTelemetry project, which aims to
provide unified, standardized, and vendor-neutral telemetry data collection for cloud-native software.
Red Hat build of OpenTelemetry product provides support for deploying and managing the
OpenTelemetry Collector and simplifying the workload instrumentation.

The OpenTelemetry Collector can receive, process, and forward telemetry data in multiple formats,
making it the ideal component for telemetry processing and interoperability between telemetry systems.
The Collector provides a unified solution for collecting and processing metrics, traces, and logs.

The OpenTelemetry Collector has a number of features including the following:

Data Collection and Processing Hub

It acts as a central component that gathers telemetry data like metrics and traces from various
sources. This data can be created from instrumented applications and infrastructure.

Customizable telemetry data pipeline

The OpenTelemetry Collector is designed to be customizable. It supports various processors,
exporters, and receivers.

Auto-instrumentation features

Automatic instrumentation simplifies the process of adding observability to applications. Developers
don’t need to manually instrument their code for basic telemetry data.

Here are some of the use cases for the OpenTelemetry Collector:

Centralized data collection

In a microservices architecture, the Collector can be deployed to aggregate data from multiple
services.

Data enrichment and processing

Before forwarding data to analysis tools, the Collector can enrich, filter, and process this data.

Multi-backend receiving and exporting

The Collector can receive and send data to multiple monitoring and analysis platforms
simultaneously.

The Red Hat build of OpenTelemetry is provided through the Red Hat build of OpenTelemetry
Operator.

1.1.2. Technology Preview features

This update introduces the following Technology Preview features:

Host Metrics Receiver

OIDC Auth Extension

Kubernetes Cluster Receiver

CHAPTER 1. RELEASE NOTES

5

https://opentelemetry.io/
https://opentelemetry.io/docs/collector/

Kubernetes Events Receiver

Kubernetes Objects Receiver

Load-Balancing Exporter

Kubelet Stats Receiver

Cumulative to Delta Processor

Forward Connector

Journald Receiver

Filelog Receiver

File Storage Extension

IMPORTANT

Each of these features is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.1.3. New features and enhancements

This update introduces the following enhancement:

Red Hat build of OpenTelemetry 3.2 is based on the open source OpenTelemetry release
0.99.0.

1.1.4. Deprecated functionality

In Red Hat build of OpenTelemetry 3.2, use of empty values and null keywords in the OpenTelemetry
Collector custom resource is deprecated and planned to be unsupported in a future release. Red Hat will
provide bug fixes and support for this syntax during the current release lifecycle, but this syntax will
become unsupported. As an alternative to empty values and null keywords, you can update the
OpenTelemetry Collector custom resource to contain empty JSON objects as open-closed braces {}
instead.

1.1.5. Bug fixes

This update introduces the following bug fix:

Before this update, the checkbox to enable Operator monitoring was not available in the web
console when installing the Red Hat build of OpenTelemetry Operator. As a result, a
ServiceMonitor resource was not created in the openshift-opentelemetry-operator
namespace. With this update, the checkbox appears for the Red Hat build of OpenTelemetry
Operator in the web console so that Operator monitoring can be enabled during installation.
(TRACING-3761)

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

6

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://issues.redhat.com/browse/TRACING-3761

1.1.6. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager Hybrid Cloud
Console. Insights provides details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

1.1.7. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT BUILD OF
OPENTELEMETRY

1.2.1. Red Hat build of OpenTelemetry overview

Red Hat build of OpenTelemetry is based on the open source OpenTelemetry project, which aims to
provide unified, standardized, and vendor-neutral telemetry data collection for cloud-native software.
Red Hat build of OpenTelemetry product provides support for deploying and managing the
OpenTelemetry Collector and simplifying the workload instrumentation.

The OpenTelemetry Collector can receive, process, and forward telemetry data in multiple formats,
making it the ideal component for telemetry processing and interoperability between telemetry systems.
The Collector provides a unified solution for collecting and processing metrics, traces, and logs.

The OpenTelemetry Collector has a number of features including the following:

Data Collection and Processing Hub

It acts as a central component that gathers telemetry data like metrics and traces from various
sources. This data can be created from instrumented applications and infrastructure.

Customizable telemetry data pipeline

The OpenTelemetry Collector is designed to be customizable. It supports various processors,
exporters, and receivers.

Auto-instrumentation features

Automatic instrumentation simplifies the process of adding observability to applications. Developers
don’t need to manually instrument their code for basic telemetry data.

Here are some of the use cases for the OpenTelemetry Collector:

CHAPTER 1. RELEASE NOTES

7

http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12391126
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://opentelemetry.io/
https://opentelemetry.io/docs/collector/

Centralized data collection

In a microservices architecture, the Collector can be deployed to aggregate data from multiple
services.

Data enrichment and processing

Before forwarding data to analysis tools, the Collector can enrich, filter, and process this data.

Multi-backend receiving and exporting

The Collector can receive and send data to multiple monitoring and analysis platforms
simultaneously.

1.2.2. Release notes for Red Hat build of OpenTelemetry 3.1.1

The Red Hat build of OpenTelemetry is provided through the Red Hat build of OpenTelemetry
Operator.

1.2.2.1. CVEs

This release fixes CVE-2023-39326.

1.2.3. Release notes for Red Hat build of OpenTelemetry 3.1

The Red Hat build of OpenTelemetry is provided through the Red Hat build of OpenTelemetry
Operator.

1.2.3.1. Technology Preview features

This update introduces the following Technology Preview feature:

The target allocator is an optional component of the OpenTelemetry Operator that shards
Prometheus receiver scrape targets across the deployed fleet of OpenTelemetry Collector
instances. The target allocator provides integration with the Prometheus PodMonitor and
ServiceMonitor custom resources.

IMPORTANT

The target allocator is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.2.3.2. New features and enhancements

This update introduces the following enhancement:

Red Hat build of OpenTelemetry 3.1 is based on the open source OpenTelemetry release
0.93.0.

1.2.4. Release notes for Red Hat build of OpenTelemetry 3.0

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

8

https://access.redhat.com/security/cve/cve-2023-39326
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/

1.2.4.1. New features and enhancements

This update introduces the following enhancements:

Red Hat build of OpenTelemetry 3.0 is based on the open source OpenTelemetry release
0.89.0.

The OpenShift distributed tracing data collection Operator is renamed as the Red Hat build
of OpenTelemetry Operator.

Support for the ARM architecture.

Support for the Prometheus receiver for metrics collection.

Support for the Kafka receiver and exporter for sending traces and metrics to Kafka.

Support for cluster-wide proxy environments.

The Red Hat build of OpenTelemetry Operator creates the Prometheus ServiceMonitor
custom resource if the Prometheus exporter is enabled.

The Operator enables the Instrumentation custom resource that allows injecting upstream
OpenTelemetry auto-instrumentation libraries.

1.2.4.2. Removal notice

In Red Hat build of OpenTelemetry 3.0, the Jaeger exporter has been removed. Bug fixes and support
are provided only through the end of the 2.9 lifecycle. As an alternative to the Jaeger exporter for
sending data to the Jaeger collector, you can use the OTLP exporter instead.

1.2.4.3. Bug fixes

This update introduces the following bug fixes:

Fixed support for disconnected environments when using the oc adm catalog mirror CLI
command.

1.2.4.4. Known issues

There is currently a known issue:

Curently, the cluster monitoring of the Red Hat build of OpenTelemetry Operator is disabled
due to a bug (TRACING-3761). The bug is preventing the cluster monitoring from scraping
metrics from the Red Hat build of OpenTelemetry Operator due to a missing label
openshift.io/cluster-monitoring=true that is required for the cluster monitoring and service
monitor object.

Workaround

You can enable the cluster monitoring as follows:

1. Add the following label in the Operator namespace: oc label namespace openshift-
opentelemetry-operator openshift.io/cluster-monitoring=true

2. Create a service monitor, role, and role binding:

apiVersion: monitoring.coreos.com/v1

CHAPTER 1. RELEASE NOTES

9

https://opentelemetry.io/
https://issues.redhat.com/browse/TRACING-3761

1.2.5. Release notes for Red Hat build of OpenTelemetry 2.9.2

kind: ServiceMonitor
metadata:
 name: opentelemetry-operator-controller-manager-metrics-service
 namespace: openshift-opentelemetry-operator
spec:
 endpoints:
 - bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
 path: /metrics
 port: https
 scheme: https
 tlsConfig:
 insecureSkipVerify: true
 selector:
 matchLabels:
 app.kubernetes.io/name: opentelemetry-operator
 control-plane: controller-manager

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: otel-operator-prometheus
 namespace: openshift-opentelemetry-operator
 annotations:
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
rules:
- apiGroups:
 - ""
 resources:
 - services
 - endpoints
 - pods
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: otel-operator-prometheus
 namespace: openshift-opentelemetry-operator
 annotations:
 include.release.openshift.io/self-managed-high-availability: "true"
 include.release.openshift.io/single-node-developer: "true"
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: otel-operator-prometheus
subjects:
- kind: ServiceAccount
 name: prometheus-k8s
 namespace: openshift-monitoring

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

10

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.9.2 is based on the open source OpenTelemetry release 0.81.0.

1.2.5.1. CVEs

This release fixes CVE-2023-46234.

1.2.5.2. Known issues

There is currently a known issue:

Currently, you must manually set Operator maturity to Level IV, Deep Insights. (TRACING-3431)

1.2.6. Release notes for Red Hat build of OpenTelemetry 2.9.1

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.9.1 is based on the open source OpenTelemetry release 0.81.0.

1.2.6.1. CVEs

This release fixes CVE-2023-44487.

1.2.6.2. Known issues

There is currently a known issue:

Currently, you must manually set Operator maturity to Level IV, Deep Insights. (TRACING-3431)

1.2.7. Release notes for Red Hat build of OpenTelemetry 2.9

IMPORTANT

CHAPTER 1. RELEASE NOTES

11

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://bugzilla.redhat.com/show_bug.cgi?id=2246470
https://operatorframework.io/operator-capabilities/
https://issues.redhat.com/browse/TRACING-3431
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://access.redhat.com/security/cve/cve-2023-44487
https://operatorframework.io/operator-capabilities/
https://issues.redhat.com/browse/TRACING-3431

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.9 is based on the open source OpenTelemetry release 0.81.0.

1.2.7.1. New features and enhancements

This release introduces the following enhancements for the Red Hat build of OpenTelemetry:

Support OTLP metrics ingestion. The metrics can be forwarded and stored in the user-
workload-monitoring via the Prometheus exporter.

Support the Operator maturity Level IV, Deep Insights, which enables upgrading and monitoring
of OpenTelemetry Collector instances and the Red Hat build of OpenTelemetry Operator.

Report traces and metrics from remote clusters using OTLP or HTTP and HTTPS.

Collect OpenShift Container Platform resource attributes via the resourcedetection
processor.

Support the managed and unmanaged states in the OpenTelemetryCollector custom
resouce.

1.2.7.2. Known issues

There is currently a known issue:

Currently, you must manually set Operator maturity to Level IV, Deep Insights. (TRACING-3431)

1.2.8. Release notes for Red Hat build of OpenTelemetry 2.8

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.8 is based on the open source OpenTelemetry release 0.74.0.

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

12

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://operatorframework.io/operator-capabilities/
https://operatorframework.io/operator-capabilities/
https://issues.redhat.com/browse/TRACING-3431
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/

1.2.8.1. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.9. Release notes for Red Hat build of OpenTelemetry 2.7

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.7 is based on the open source OpenTelemetry release 0.63.1.

1.2.9.1. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.10. Release notes for Red Hat build of OpenTelemetry 2.6

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.6 is based on the open source OpenTelemetry release 0.60.

1.2.10.1. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.11. Release notes for Red Hat build of OpenTelemetry 2.5

IMPORTANT

CHAPTER 1. RELEASE NOTES

13

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.5 is based on the open source OpenTelemetry release 0.56.

1.2.11.1. New features and enhancements

This update introduces the following enhancement:

Support for collecting Kubernetes resource attributes to the Red Hat build of OpenTelemetry
Operator.

1.2.11.2. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.12. Release notes for Red Hat build of OpenTelemetry 2.4

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.4 is based on the open source OpenTelemetry release 0.49.

1.2.12.1. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.13. Release notes for Red Hat build of OpenTelemetry 2.3

IMPORTANT

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

14

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.3.1 is based on the open source OpenTelemetry release 0.44.1.

Red Hat build of OpenTelemetry 2.3.0 is based on the open source OpenTelemetry release 0.44.0.

1.2.13.1. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.14. Release notes for Red Hat build of OpenTelemetry 2.2

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.2 is based on the open source OpenTelemetry release 0.42.0.

1.2.14.1. Technology Preview features

The unsupported OpenTelemetry Collector components included in the 2.1 release are removed.

1.2.14.2. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.15. Release notes for Red Hat build of OpenTelemetry 2.1

IMPORTANT

CHAPTER 1. RELEASE NOTES

15

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://opentelemetry.io/
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.1 is based on the open source OpenTelemetry release 0.41.1.

1.2.15.1. Technology Preview features

This release introduces a breaking change to how to configure certificates in the OpenTelemetry
custom resource file. With this update, the ca_file moves under tls in the custom resource, as shown in
the following examples.

CA file configuration for OpenTelemetry version 0.33

CA file configuration for OpenTelemetry version 0.41.1

1.2.15.2. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.16. Release notes for Red Hat build of OpenTelemetry 2.0

IMPORTANT

spec:
 mode: deployment
 config: |
 exporters:
 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"

spec:
 mode: deployment
 config: |
 exporters:
 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

16

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/

IMPORTANT

The Red Hat build of OpenTelemetry is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Red Hat build of OpenTelemetry 2.0 is based on the open source OpenTelemetry release 0.33.0.

This release adds the Red Hat build of OpenTelemetry as a Technology Preview, which you install using
the Red Hat build of OpenTelemetry Operator. Red Hat build of OpenTelemetry is based on the
OpenTelemetry APIs and instrumentation. The Red Hat build of OpenTelemetry includes the
OpenTelemetry Operator and Collector. You can use the Collector to receive traces in the
OpenTelemetry or Jaeger protocol and send the trace data to the Red Hat build of OpenTelemetry.
Other capabilities of the Collector are not supported at this time. The OpenTelemetry Collector allows
developers to instrument their code with vendor agnostic APIs, avoiding vendor lock-in and enabling a
growing ecosystem of observability tooling.

1.2.17. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager Hybrid Cloud
Console. Insights provides details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

1.2.18. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

CHAPTER 1. RELEASE NOTES

17

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12391126
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 2. INSTALLING
Installing the Red Hat build of OpenTelemetry involves the following steps:

1. Installing the Red Hat build of OpenTelemetry Operator.

2. Creating a namespace for an OpenTelemetry Collector instance.

3. Creating an OpenTelemetryCollector custom resource to deploy the OpenTelemetry Collector
instance.

2.1. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY FROM
THE WEB CONSOLE

You can install the Red Hat build of OpenTelemetry from the Administrator view of the web console.

Prerequisites

You are logged in to the web console as a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must be logged in using an account with the dedicated-
admin role.

Procedure

1. Install the Red Hat build of OpenTelemetry Operator:

a. Go to Operators → OperatorHub and search for Red Hat build of OpenTelemetry
Operator.

b. Select the Red Hat build of OpenTelemetry Operator that is provided by Red Hat →
Install → Install → View Operator.

IMPORTANT

This installs the Operator with the default presets:

Update channel → stable

Installation mode → All namespaces on the cluster

Installed Namespace → openshift-operators

Update approval → Automatic

c. In the Details tab of the installed Operator page, under ClusterServiceVersion details,
verify that the installation Status is Succeeded.

2. Create a project of your choice for the OpenTelemetry Collector instance that you will create
in the next step by going to Home → Projects → Create Project.

3. Create an OpenTelemetry Collector instance.

a. Go to Operators → Installed Operators.

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

18

b. Select OpenTelemetry Collector → Create OpenTelemetry Collector → YAML view.

c. In the YAML view, customize the OpenTelemetryCollector custom resource (CR) with the
OTLP, Jaeger, Zipkin receivers and the debug exporter.

d. Select Create.

Verification

1. Use the Project: dropdown list to select the project of the OpenTelemetry Collector instance.

2. Go to Operators → Installed Operators to verify that the Status of the OpenTelemetry
Collector instance is Condition: Ready.

3. Go to Workloads → Pods to verify that all the component pods of the OpenTelemetry
Collector instance are running.

2.2. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY BY USING
THE CLI

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <project_of_opentelemetry_collector_instance>
spec:
 mode: deployment
 config: |
 receivers:
 otlp:
 protocols:
 grpc:
 http:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 zipkin: {}
 processors:
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 exporters:
 debug: {}
 service:
 pipelines:
 traces:
 receivers: [otlp,jaeger,zipkin]
 processors: [memory_limiter,batch]
 exporters: [debug]

CHAPTER 2. INSTALLING

19

You can install the Red Hat build of OpenTelemetry from the command line.

Prerequisites

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

Procedure

1. Install the Red Hat build of OpenTelemetry Operator:

a. Create a project for the Red Hat build of OpenTelemetry Operator by running the following
command:

b. Create an Operator group by running the following command:

c. Create a subscription by running the following command:

$ oc login --username=<your_username>

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 labels:
 kubernetes.io/metadata.name: openshift-opentelemetry-operator
 openshift.io/cluster-monitoring: "true"
 name: openshift-opentelemetry-operator
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-opentelemetry-operator
 namespace: openshift-opentelemetry-operator
spec:
 upgradeStrategy: Default
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: opentelemetry-product
 namespace: openshift-opentelemetry-operator
spec:
 channel: stable

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

20

d. Check the Operator status by running the following command:

2. Create a project of your choice for the OpenTelemetry Collector instance that you will create in
a subsequent step:

To create a project without metadata, run the following command:

To create a project with metadata, run the following command:

3. Create an OpenTelemetry Collector instance in the project that you created for it.

NOTE

You can create multiple OpenTelemetry Collector instances in separate projects
on the same cluster.

a. Customize the OpenTelemetry Collector custom resource (CR) with the OTLP, Jaeger,
and Zipkin receivers and the debug exporter:

 installPlanApproval: Automatic
 name: opentelemetry-product
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-opentelemetry-operator

$ oc new-project <project_of_opentelemetry_collector_instance>

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: <project_of_opentelemetry_collector_instance>
EOF

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <project_of_opentelemetry_collector_instance>
spec:
 mode: deployment
 config: |
 receivers:
 otlp:
 protocols:
 grpc:
 http:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}

CHAPTER 2. INSTALLING

21

b. Apply the customized CR by running the following command:

Verification

1. Verify that the status.phase of the OpenTelemetry Collector pod is Running and the
conditions are type: Ready by running the following command:

2. Get the OpenTelemetry Collector service by running the following command:

2.3. ADDITIONAL RESOURCES

Creating a cluster admin

OperatorHub.io

Accessing the web console

Installing from OperatorHub using the web console

Creating applications from installed Operators

Getting started with the OpenShift CLI

 thrift_http: {}
 zipkin:
 processors:
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 exporters:
 debug: {}
 service:
 pipelines:
 traces:
 receivers: [otlp,jaeger,zipkin]
 processors: [memory_limiter,batch]
 exporters: [debug]

$ oc apply -f - << EOF
<OpenTelemetryCollector_custom_resource>
EOF

$ oc get pod -l app.kubernetes.io/managed-by=opentelemetry-
operator,app.kubernetes.io/instance=<namespace>.<instance_name> -o yaml

$ oc get service -l app.kubernetes.io/managed-by=opentelemetry-
operator,app.kubernetes.io/instance=<namespace>.<instance_name>

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/post-installation_configuration/#creating-cluster-admin_post-install-preparing-for-users
https://operatorhub.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/web_console/#web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-creating-apps-from-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/cli_tools/#getting-started-cli

CHAPTER 3. CONFIGURING THE COLLECTOR
The Red Hat build of OpenTelemetry Operator uses a custom resource definition (CRD) file that
defines the architecture and configuration settings to be used when creating and deploying the Red Hat
build of OpenTelemetry resources. You can install the default configuration or modify the file.

3.1. OPENTELEMETRY COLLECTOR CONFIGURATION OPTIONS

The OpenTelemetry Collector consists of five types of components that access telemetry data:

Receivers

A receiver, which can be push or pull based, is how data gets into the Collector. Generally, a receiver
accepts data in a specified format, translates it into the internal format, and passes it to processors
and exporters defined in the applicable pipelines. By default, no receivers are configured. One or
more receivers must be configured. Receivers may support one or more data sources.

Processors

Optional. Processors process the data between it is received and exported. By default, no processors
are enabled. Processors must be enabled for every data source. Not all processors support all data
sources. Depending on the data source, multiple processors might be enabled. Note that the order of
processors matters.

Exporters

An exporter, which can be push or pull based, is how you send data to one or more back ends or
destinations. By default, no exporters are configured. One or more exporters must be configured.
Exporters can support one or more data sources. Exporters might be used with their default settings,
but many exporters require configuration to specify at least the destination and security settings.

Connectors

A connector connects two pipelines. It consumes data as an exporter at the end of one pipeline and
emits data as a receiver at the start of another pipeline. It can consume and emit data of the same or
different data type. It can generate and emit data to summarize the consumed data, or it can merely
replicate or route data.

Extensions

An extension adds capabilities to the Collector. For example, authentication can be added to the
receivers and exporters automatically.

You can define multiple instances of components in a custom resource YAML file. When configured,
these components must be enabled through pipelines defined in the spec.config.service section of the
YAML file. As a best practice, only enable the components that you need.

Example of the OpenTelemetry Collector custom resource file

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: tracing-system
spec:
 mode: deployment
 observability:
 metrics:
 enableMetrics: true
 config: |
 receivers:

CHAPTER 3. CONFIGURING THE COLLECTOR

23

1 If a component is configured but not defined in the service section, the component is not enabled.

Table 3.1. Parameters used by the Operator to define the OpenTelemetry Collector

Parameter Description Values Default

receivers:
A receiver is how data
gets into the Collector.
By default, no receivers
are configured. There
must be at least one
enabled receiver for a
configuration to be
considered valid.
Receivers are enabled
by being added to a
pipeline.

otlp, jaeger,
prometheus, zipkin,
kafka, opencensus

None

processors:
Processors run through
the received data before
it is exported. By default,
no processors are
enabled.

batch,
memory_limiter,
resourcedetection,
attributes, span,
k8sattributes, filter,
routing

None

 otlp:
 protocols:
 grpc: {}
 http: {}
 processors: {}
 exporters:
 otlp:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:4317
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 prometheus:
 endpoint: 0.0.0.0:8889
 resource_to_telemetry_conversion:
 enabled: true # by default resource attributes are dropped
 service: 1
 pipelines:
 traces:
 receivers: [otlp]
 processors: []
 exporters: [jaeger]
 metrics:
 receivers: [otlp]
 processors: []
 exporters: [prometheus]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

24

exporters:
An exporter sends data
to one or more back
ends or destinations. By
default, no exporters are
configured. There must
be at least one enabled
exporter for a
configuration to be
considered valid.
Exporters are enabled
by being added to a
pipeline. Exporters
might be used with their
default settings, but
many require
configuration to specify
at least the destination
and security settings.

otlp, otlphttp, debug,
prometheus, kafka

None

connectors:
Connectors join pairs of
pipelines by consuming
data as end-of-pipeline
exporters and emitting
data as start-of-pipeline
receivers. Connectors
can be used to
summarize, replicate, or
route consumed data.

spanmetrics None

extensions:
Optional components
for tasks that do not
involve processing
telemetry data.

bearertokenauth,
oauth2client,
jaegerremotesampli
n, pprof,
health_check,
memory_ballast,
zpages

None

service:
 pipelines:

Components are
enabled by adding them
to a pipeline under
services.pipeline.

service:
 pipelines:
 traces:
 receivers:

You enable receivers for
tracing by adding them
under
service.pipelines.tra
ces.

 None

Parameter Description Values Default

CHAPTER 3. CONFIGURING THE COLLECTOR

25

service:
 pipelines:
 traces:
 processors:

You enable processors
for tracing by adding
them under
service.pipelines.tra
ces.

 None

service:
 pipelines:
 traces:
 exporters:

You enable exporters for
tracing by adding them
under
service.pipelines.tra
ces.

 None

service:
 pipelines:
 metrics:
 receivers:

You enable receivers for
metrics by adding them
under
service.pipelines.me
trics.

 None

service:
 pipelines:
 metrics:
 processors:

You enable processors
for metircs by adding
them under
service.pipelines.me
trics.

 None

service:
 pipelines:
 metrics:
 exporters:

You enable exporters for
metrics by adding them
under
service.pipelines.me
trics.

 None

Parameter Description Values Default

3.2. OPENTELEMETRY COLLECTOR COMPONENTS

3.2.1. Receivers

Receivers get data into the Collector.

3.2.1.1. OTLP Receiver

The OTLP Receiver ingests traces, metrics, and logs by using the OpenTelemetry Protocol (OTLP). The
OTLP Receiver ingests traces and metrics using the OpenTelemetry protocol (OTLP).

OpenTelemetry Collector custom resource with an enabled OTLP Receiver

 config: |

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

26

1

2

3

4

5

6

The OTLP gRPC endpoint. If omitted, the default 0.0.0.0:4317 is used.

The server-side TLS configuration. Defines paths to TLS certificates. If omitted, the TLS is
disabled.

The path to the TLS certificate at which the server verifies a client certificate. This sets the value of
ClientCAs and ClientAuth to RequireAndVerifyClientCert in the TLSConfig. For more
information, see the Config of the Golang TLS package.

Specifies the time interval at which the certificate is reloaded. If the value is not set, the certificate
is never reloaded. The reload_interval field accepts a string containing valid units of time such as
ns, us (or µs), ms, s, m, h.

The OTLP HTTP endpoint. The default value is 0.0.0.0:4318.

The server-side TLS configuration. For more information, see the grpc protocol configuration
section.

3.2.1.2. Jaeger Receiver

The Jaeger Receiver ingests traces in the Jaeger formats.

OpenTelemetry Collector custom resource with an enabled Jaeger Receiver

 receivers:
 otlp:
 protocols:
 grpc:
 endpoint: 0.0.0.0:4317 1
 tls: 2
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 client_ca_file: client.pem 3
 reload_interval: 1h 4
 http:
 endpoint: 0.0.0.0:4318 5
 tls: 6

 service:
 pipelines:
 traces:
 receivers: [otlp]
 metrics:
 receivers: [otlp]

 config: |
 receivers:
 jaeger:
 protocols:
 grpc:
 endpoint: 0.0.0.0:14250 1
 thrift_http:
 endpoint: 0.0.0.0:14268 2

CHAPTER 3. CONFIGURING THE COLLECTOR

27

https://godoc.org/crypto/tls#Config

1

2

3

4

5

The Jaeger gRPC endpoint. If omitted, the default 0.0.0.0:14250 is used.

The Jaeger Thrift HTTP endpoint. If omitted, the default 0.0.0.0:14268 is used.

The Jaeger Thrift Compact endpoint. If omitted, the default 0.0.0.0:6831 is used.

The Jaeger Thrift Binary endpoint. If omitted, the default 0.0.0.0:6832 is used.

The server-side TLS configuration. See the OTLP Receiver configuration section for more details.

3.2.1.3. Host Metrics Receiver

IMPORTANT

The Host Metrics Receiver is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Host Metrics Receiver ingests metrics in the OTLP format.

OpenTelemetry Collector custom resource with an enabled Host Metrics Receiver

 thrift_compact:
 endpoint: 0.0.0.0:6831 3
 thrift_binary:
 endpoint: 0.0.0.0:6832 4
 tls: 5

 service:
 pipelines:
 traces:
 receivers: [jaeger]

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-hostfs-daemonset
 namespace: <namespace>

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
allowHostDirVolumePlugin: true
allowHostIPC: false
allowHostNetwork: false
allowHostPID: true
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: true

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

28

https://access.redhat.com/support/offerings/techpreview/

1 Sets the time interval for host metrics collection. If omitted, the default value is 1m.

allowedCapabilities: null
defaultAddCapabilities:
- SYS_ADMIN
fsGroup:
 type: RunAsAny
groups: []
metadata:
 name: otel-hostmetrics
readOnlyRootFilesystem: true
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- system:serviceaccount:<namespace>:otel-hostfs-daemonset
volumes:
- configMap
- emptyDir
- hostPath
- projected

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <namespace>
spec:
 serviceAccount: otel-hostfs-daemonset
 mode: daemonset
 volumeMounts:
 - mountPath: /hostfs
 name: host
 readOnly: true
 volumes:
 - hostPath:
 path: /
 name: host
 config: |
 receivers:
 hostmetrics:
 collection_interval: 10s 1
 initial_delay: 1s 2
 root_path: / 3
 scrapers: 4
 cpu:
 memory:
 disk:
 service:
 pipelines:
 metrics:
 receivers: [hostmetrics]

CHAPTER 3. CONFIGURING THE COLLECTOR

29

2

3

4

Sets the initial time delay for host metrics collection. If omitted, the default value is 1s.

Configures the root_path so that the Host Metrics Receiver knows where the root filesystem is. If
running multiple instances of the Host Metrics Receiver, set the same root_path value for each
instance.

Lists the enabled host metrics scrapers. Available scrapers are cpu, disk, load, filesystem,
memory, network, paging, processes, and process.

3.2.1.4. Kubernetes Objects Receiver

IMPORTANT

The Kubernetes Objects Receiver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Kubernetes Objects Receiver pulls or watches objects to be collected from the Kubernetes API
server. This receiver watches primarily Kubernetes events, but it can collect any type of Kubernetes
objects. This receiver gathers telemetry for the cluster as a whole, so only one instance of this receiver
suffices for collecting all the data.

OpenTelemetry Collector custom resource with an enabled Kubernetes Objects Receiver

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-k8sobj
 namespace: <namespace>

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-k8sobj
 namespace: <namespace>
rules:
- apiGroups:
 - ""
 resources:
 - events
 - pods
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - "events.k8s.io"
 resources:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

30

https://access.redhat.com/support/offerings/techpreview/

1

2

3

The Resource name that this receiver observes: for example, pods, deployments, or events.

The observation mode that this receiver uses: pull or watch.

Only applicable to the pull mode. The request interval for pulling an object. If omitted, the default
value is 1h.

 - events
 verbs:
 - watch
 - list

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-k8sobj
subjects:
 - kind: ServiceAccount
 name: otel-k8sobj
 namespace: <namespace>
roleRef:
 kind: ClusterRole
 name: otel-k8sobj
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel-k8s-obj
 namespace: <namespace>
spec:
 serviceAccount: otel-k8sobj
 image: ghcr.io/os-observability/redhat-opentelemetry-collector/redhat-opentelemetry-collector:main
 mode: deployment
 config: |
 receivers:
 k8sobjects:
 auth_type: serviceAccount
 objects:
 - name: pods 1
 mode: pull 2
 interval: 30s 3
 label_selector: 4
 field_selector: 5
 namespaces: [<namespace>,...] 6
 - name: events
 mode: watch
 exporters:
 debug:
 service:
 pipelines:
 logs:
 receivers: [k8sobjects]
 exporters: [debug]

CHAPTER 3. CONFIGURING THE COLLECTOR

31

4

5

6

1

The label selector to define targets.

The field selector to filter targets.

The list of namespaces to collect events from. If omitted, the default value is all.

3.2.1.5. Kubelet Stats Receiver

IMPORTANT

The Kubelet Stats Receiver is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Kubelet Stats Receiver extracts metrics related to nodes, pods, containers, and volumes from the
kubelet’s API server. These metrics are then channeled through the metrics-processing pipeline for
additional analysis.

OpenTelemetry Collector custom resource with an enabled Kubelet Stats Receiver

Sets the K8S_NODE_NAME to authenticate to the API.

The Kubelet Stats Receiver requires additional permissions for the service account used for running the
OpenTelemetry Collector.

Permissions required by the service account

...
config: |
 receivers:
 kubeletstats:
 collection_interval: 20s
 auth_type: "serviceAccount"
 endpoint: "https://${env:K8S_NODE_NAME}:10250"
 insecure_skip_verify: true
 service:
 pipelines:
 metrics:
 receivers: [kubeletstats]
env:
 - name: K8S_NODE_NAME 1
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
...

apiVersion: rbac.authorization.k8s.io/v1

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

32

https://access.redhat.com/support/offerings/techpreview/

1

1

2

3

4

The permissions required when using the extra_metadata_labels or request_utilization or
limit_utilization metrics.

3.2.1.6. Prometheus Receiver

The Prometheus Receiver is currently a Technology Preview feature only.

The Prometheus Receiver scrapes the metrics endpoints.

OpenTelemetry Collector custom resource with an enabled Prometheus Receiver

Scrapes configurations using the Prometheus format.

The Prometheus job name.

The lnterval for scraping the metrics data. Accepts time units. The default value is 1m.

The targets at which the metrics are exposed. This example scrapes the metrics from a my-app
application in the example project.

3.2.1.7. Zipkin Receiver

The Zipkin Receiver ingests traces in the Zipkin v1 and v2 formats.

OpenTelemetry Collector custom resource with the enabled Zipkin Receiver

kind: ClusterRole
metadata:
 name: otel-collector
rules:
 - apiGroups: ['']
 resources: ['nodes/stats']
 verbs: ['get', 'watch', 'list']
 - apiGroups: [""]
 resources: ["nodes/proxy"] 1
 verbs: ["get"]

 config: |
 receivers:
 prometheus:
 config:
 scrape_configs: 1
 - job_name: 'my-app' 2
 scrape_interval: 5s 3
 static_configs:
 - targets: ['my-app.example.svc.cluster.local:8888'] 4
 service:
 pipelines:
 metrics:
 receivers: [prometheus]

 config: |

CHAPTER 3. CONFIGURING THE COLLECTOR

33

https://access.redhat.com/support/offerings/techpreview

1

2

1

2

3

4

5

The Zipkin HTTP endpoint. If omitted, the default 0.0.0.0:9411 is used.

The server-side TLS configuration. See the OTLP Receiver configuration section for more details.

3.2.1.8. Kafka Receiver

The Kafka Receiver is currently a Technology Preview feature only.

The Kafka Receiver receives traces, metrics, and logs from Kafka in the OTLP format.

OpenTelemetry Collector custom resource with the enabled Kafka Receiver

The list of Kafka brokers. The default is localhost:9092.

The Kafka protocol version. For example, 2.0.0. This is a required field.

The name of the Kafka topic to read from. The default is otlp_spans.

The plaintext authentication configuration. If omitted, plaintext authentication is disabled.

The client-side TLS configuration. Defines paths to the TLS certificates. If omitted, TLS
authentication is disabled.

 receivers:
 zipkin:
 endpoint: 0.0.0.0:9411 1
 tls: 2

 service:
 pipelines:
 traces:
 receivers: [zipkin]

 config: |
 receivers:
 kafka:
 brokers: ["localhost:9092"] 1
 protocol_version: 2.0.0 2
 topic: otlp_spans 3
 auth:
 plain_text: 4
 username: example
 password: example
 tls: 5
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 insecure: false 6
 server_name_override: kafka.example.corp 7
 service:
 pipelines:
 traces:
 receivers: [kafka]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

34

https://access.redhat.com/support/offerings/techpreview

6

7

Disables verifying the server’s certificate chain and host name. The default is false.

ServerName indicates the name of the server requested by the client to support virtual hosting.

3.2.1.9. Kubernetes Cluster Receiver

IMPORTANT

The Kubernetes Cluster Receiver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Kubernetes Cluster Receiver gathers cluster metrics and entity events from the Kubernetes API
server. It uses the Kubernetes API to receive information about updates. Authentication for this receiver
is only supported through service accounts.

OpenTelemetry Collector custom resource with the enabled Kubernetes Cluster Receiver

This receiver requires a configured service account, RBAC rules for the cluster role, and the cluster role
binding that binds the RBAC with the service account.

ServiceAccount object

...
 receivers:
 k8s_cluster:
 distribution: openshift
 collection_interval: 10s
 exporters:
 debug:
 service:
 pipelines:
 metrics:
 receivers: [k8s_cluster]
 exporters: [debug]
 logs/entity_events:
 receivers: [k8s_cluster]
 exporters: [debug]
...

apiVersion: v1
kind: ServiceAccount
metadata:
 labels:
 app: otelcontribcol
 name: otelcontribcol

CHAPTER 3. CONFIGURING THE COLLECTOR

35

https://access.redhat.com/support/offerings/techpreview/

RBAC rules for the ClusterRole object

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otelcontribcol
 labels:
 app: otelcontribcol
rules:
- apiGroups:
 - quota.openshift.io
 resources:
 - clusterresourcequotas
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - events
 - namespaces
 - namespaces/status
 - nodes
 - nodes/spec
 - pods
 - pods/status
 - replicationcontrollers
 - replicationcontrollers/status
 - resourcequotas
 - services
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apps
 resources:
 - daemonsets
 - deployments
 - replicasets
 - statefulsets
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - extensions
 resources:
 - daemonsets
 - deployments
 - replicasets
 verbs:
 - get
 - list
 - watch

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

36

ClusterRoleBinding object

3.2.1.10. OpenCensus Receiver

The OpenCensus Receiver provides backwards compatibility with the OpenCensus project for easier
migration of instrumented codebases. It receives metrics and traces in the OpenCensus format via
gRPC or HTTP and Json.

OpenTelemetry Collector custom resource with the enabled OpenCensus Receiver

- apiGroups:
 - batch
 resources:
 - jobs
 - cronjobs
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - autoscaling
 resources:
 - horizontalpodautoscalers
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otelcontribcol
 labels:
 app: otelcontribcol
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: otelcontribcol
subjects:
- kind: ServiceAccount
 name: otelcontribcol
 namespace: default

 config: |
 receivers:
 opencensus:
 endpoint: 0.0.0.0:9411 1
 tls: 2
 cors_allowed_origins: 3
 - https://*.<example>.com
 service:
 pipelines:

CHAPTER 3. CONFIGURING THE COLLECTOR

37

1

2

3

1

2

The OpenCensus endpoint. If omitted, the default is 0.0.0.0:55678.

The server-side TLS configuration. See the OTLP Receiver configuration section for more details.

You can also use the HTTP JSON endpoint to optionally configure CORS, which is enabled by
specifying a list of allowed CORS origins in this field. Wildcards with * are accepted under the
cors_allowed_origins. To match any origin, enter only *.

3.2.1.11. Filelog Receiver

IMPORTANT

The Filelog Receiver is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Filelog Receiver tails and parses logs from files.

OpenTelemetry Collector custom resource with the enabled Filelog Receiver that tails a
text file

A list of file glob patterns that match the file paths to be read.

An array of Operators. Each Operator performs a simple task such as parsing a timestamp or JSON.
To process logs into a desired format, chain the Operators together.

3.2.1.12. Journald Receiver

IMPORTANT

 traces:
 receivers: [opencensus]
 ...

receivers:
 filelog:
 include: [/simple.log] 1
 operators: 2
 - type: regex_parser
 regex: '^(?P<time>\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}) (?P<sev>[A-Z]*) (?P<msg>.*)$'
 timestamp:
 parse_from: attributes.time
 layout: '%Y-%m-%d %H:%M:%S'
 severity:
 parse_from: attributes.sev

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

38

https://access.redhat.com/support/offerings/techpreview/

IMPORTANT

The Journald Receiver is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Journald Receiver parses journald events from the systemd journal and sends them as logs.

OpenTelemetry Collector custom resource with the enabled Journald Receiver

kubectl apply -f - <<EOF
apiVersion: v1
kind: Namespace
metadata:
 name: otel-journald
 labels:
 security.openshift.io/scc.podSecurityLabelSync: "false"
 pod-security.kubernetes.io/enforce: "privileged"
 pod-security.kubernetes.io/audit: "privileged"
 pod-security.kubernetes.io/warn: "privileged"

apiVersion: v1
kind: ServiceAccount
metadata:
 name: privileged-sa
 namespace: otel-journald

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-journald-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:openshift:scc:privileged
subjects:
- kind: ServiceAccount
 name: privileged-sa
 namespace: otel-journald

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel-journald-logs
 namespace: otel-journald
spec:
 mode: daemonset
 serviceAccount: privileged-sa
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:

CHAPTER 3. CONFIGURING THE COLLECTOR

39

https://access.redhat.com/support/offerings/techpreview/

1 Filters output by message priorities or priority ranges. The default value is info.

 drop:
 - CHOWN
 - DAC_OVERRIDE
 - FOWNER
 - FSETID
 - KILL
 - NET_BIND_SERVICE
 - SETGID
 - SETPCAP
 - SETUID
 readOnlyRootFilesystem: true
 seLinuxOptions:
 type: spc_t
 seccompProfile:
 type: RuntimeDefault
 config: |
 receivers:
 journald:
 files: /var/log/journal/*/*
 priority: info 1
 units: 2
 - kubelet
 - crio
 - init.scope
 - dnsmasq
 all: true 3
 retry_on_failure:
 enabled: true 4
 initial_interval: 1s 5
 max_interval: 30s 6
 max_elapsed_time: 5m 7
 processors:
 exporters:
 debug:
 verbosity: detailed
 service:
 pipelines:
 logs:
 receivers: [journald]
 exporters: [debug]
 volumeMounts:
 - name: journal-logs
 mountPath: /var/log/journal/
 readOnly: true
 volumes:
 - name: journal-logs
 hostPath:
 path: /var/log/journal
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule
EOF

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

40

2

3

4

5

6

7

Lists the units to read entries from. If empty, entries are read from all units.

Includes very long logs and logs with unprintable characters. The default value is false.

If set to true, the receiver pauses reading a file and attempts to resend the current batch of logs
when encountering an error from downstream components. The default value is false.

The time interval to wait after the first failure before retrying. The default value is 1s. The units are
ms, s, m, h.

The upper bound for the retry backoff interval. When this value is reached, the time interval
between consecutive retry attempts remains constant at this value. The default value is 30s. The
supported units are ms, s, m, h.

The maximum time interval, including retry attempts, for attempting to send a logs batch to a
downstream consumer. When this value is reached, the data are discarded. If the set value is 0,
retrying never stops. The default value is 5m. The supported units are ms, s, m, h.

3.2.1.13. Kubernetes Events Receiver

IMPORTANT

The Kubernetes Events Receiver is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Kubernetes Events Receiver collects events from the Kubernetes API server. The collected events
are converted into logs.

OpenShift Container Platform permissions required for the Kubernetes Events Receiver

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
 labels:
 app: otel-collector
rules:
- apiGroups:
 - ""
 resources:
 - events
 - namespaces
 - namespaces/status
 - nodes
 - nodes/spec
 - pods
 - pods/status

CHAPTER 3. CONFIGURING THE COLLECTOR

41

https://access.redhat.com/support/offerings/techpreview/

OpenTelemetry Collector custom resource with the enabled Kubernetes Event Receiver

 - replicationcontrollers
 - replicationcontrollers/status
 - resourcequotas
 - services
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apps
 resources:
 - daemonsets
 - deployments
 - replicasets
 - statefulsets
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - extensions
 resources:
 - daemonsets
 - deployments
 - replicasets
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - batch
 resources:
 - jobs
 - cronjobs
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - autoscaling
 resources:
 - horizontalpodautoscalers
 verbs:
 - get
 - list
 - watch

 serviceAccount: otel-collector 1
 config: |
 receivers:
 k8s_events:
 namespaces: [project1, project2] 2
 service:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

42

1

2

The service account of the Collector that has the required ClusterRole otel-collector RBAC.

The list of namespaces to collect events from. The default value is empty, which means that all
namespaces are collected.

3.2.2. Processors

Processors run through the data between it is received and exported.

3.2.2.1. Batch Processor

The Batch Processor batches traces and metrics to reduce the number of outgoing connections needed
to transfer the telemetry information.

Example of the OpenTelemetry Collector custom resource when using the Batch Processor

Table 3.2. Parameters used by the Batch Processor

Parameter Description Default

timeout
Sends the batch after a specific
time duration and irrespective of
the batch size.

200ms

send_batch_size
Sends the batch of telemetry
data after the specified number
of spans or metrics.

8192

send_batch_max_size
The maximum allowable size of
the batch. Must be equal or
greater than the
send_batch_size.

0

 pipelines:
 logs:
 receivers: [k8s_events]

 config: |
 processor:
 batch:
 timeout: 5s
 send_batch_max_size: 10000
 service:
 pipelines:
 traces:
 processors: [batch]
 metrics:
 processors: [batch]

CHAPTER 3. CONFIGURING THE COLLECTOR

43

metadata_keys
When activated, a batcher
instance is created for each
unique set of values found in the
client.Metadata.

[]

metadata_cardinality_limit
When the metadata_keys are
populated, this configuration
restricts the number of distinct
metadata key-value combinations
processed throughout the
duration of the process.

1000

Parameter Description Default

3.2.2.2. Memory Limiter Processor

The Memory Limiter Processor periodically checks the Collector’s memory usage and pauses data
processing when the soft memory limit is reached. This processor supports traces, metrics, and logs. The
preceding component, which is typically a receiver, is expected to retry sending the same data and may
apply a backpressure to the incoming data. When memory usage exceeds the hard limit, the Memory
Limiter Processor forces garbage collection to run.

Example of the OpenTelemetry Collector custom resource when using the Memory Limiter
Processor

Table 3.3. Parameters used by the Memory Limiter Processor

Parameter Description Default

check_interval
Time between memory usage
measurements. The optimal value
is 1s. For spiky traffic patterns,
you can decrease the
check_interval or increase the
spike_limit_mib.

0s

 config: |
 processor:
 memory_limiter:
 check_interval: 1s
 limit_mib: 4000
 spike_limit_mib: 800
 service:
 pipelines:
 traces:
 processors: [batch]
 metrics:
 processors: [batch]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

44

limit_mib
The hard limit, which is the
maximum amount of memory in
MiB allocated on the heap.
Typically, the total memory usage
of the OpenTelemetry Collector is
about 50 MiB greater than this
value.

0

spike_limit_mib
Spike limit, which is the maximum
expected spike of memory usage
in MiB. The optimal value is
approximately 20% of limit_mib.
To calculate the soft limit,
subtract the spike_limit_mib
from the limit_mib.

20% of limit_mib

limit_percentage
Same as the limit_mib but
expressed as a percentage of the
total available memory. The
limit_mib setting takes
precedence over this setting.

0

spike_limit_percentage
Same as the spike_limit_mib
but expressed as a percentage of
the total available memory.
Intended to be used with the
limit_percentage setting.

0

Parameter Description Default

3.2.2.3. Resource Detection Processor

The Resource Detection Processor is currently a Technology Preview feature only.

The Resource Detection Processor identifies host resource details in alignment with OpenTelemetry’s
resource semantic standards. Using the detected information, this processor can add or replace the
resource values in telemetry data. This processor supports traces and metrics. You can use this
processor with multiple detectors such as the Docket metadata detector or the
OTEL_RESOURCE_ATTRIBUTES environment variable detector.

OpenShift Container Platform permissions required for the Resource Detection Processor

OpenTelemetry Collector using the Resource Detection Processor

kind: ClusterRole
metadata:
 name: otel-collector
rules:
- apiGroups: ["config.openshift.io"]
 resources: ["infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

CHAPTER 3. CONFIGURING THE COLLECTOR

45

https://access.redhat.com/support/offerings/techpreview

1

OpenTelemetry Collector using the Resource Detection Processor with an environment
variable detector

Specifies which detector to use. In this example, the environment detector is specified.

3.2.2.4. Attributes Processor

The Attributes Processor is currently a Technology Preview feature only.

The Attributes Processor can modify attributes of a span, log, or metric. You can configure this
processor to filter and match input data and include or exclude such data for specific actions.

This processor operates on a list of actions, executing them in the order specified in the configuration.
The following actions are supported:

Insert

Inserts a new attribute into the input data when the specified key does not already exist.

Update

Updates an attribute in the input data if the key already exists.

Upsert

Combines the insert and update actions: Inserts a new attribute if the key does not exist yet. Updates
the attribute if the key already exists.

Delete

Removes an attribute from the input data.

Hash

Hashes an existing attribute value as SHA1.

Extract

Extracts values by using a regular expression rule from the input key to the target keys defined in the
rule. If a target key already exists, it is overridden similarly to the Span Processor’s to_attributes
setting with the existing attribute as the source.

Convert

 config: |
 processor:
 resourcedetection:
 detectors: [openshift]
 override: true
 service:
 pipelines:
 traces:
 processors: [resourcedetection]
 metrics:
 processors: [resourcedetection]

 config: |
 processors:
 resourcedetection/env:
 detectors: [env] 1
 timeout: 2s
 override: false

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

46

https://access.redhat.com/support/offerings/techpreview

Converts an existing attribute to a specified type.

OpenTelemetry Collector using the Attributes Processor

3.2.2.5. Resource Processor

The Resource Processor is currently a Technology Preview feature only.

The Resource Processor applies changes to the resource attributes. This processor supports traces,
metrics, and logs.

OpenTelemetry Collector using the Resource Detection Processor

Attributes represent the actions that are applied to the resource attributes, such as delete the attribute,
insert the attribute, or upsert the attribute.

3.2.2.6. Span Processor

The Span Processor is currently a Technology Preview feature only.

 config: |
 processors:
 attributes/example:
 actions:
 - key: db.table
 action: delete
 - key: redacted_span
 value: true
 action: upsert
 - key: copy_key
 from_attribute: key_original
 action: update
 - key: account_id
 value: 2245
 action: insert
 - key: account_password
 action: delete
 - key: account_email
 action: hash
 - key: http.status_code
 action: convert
 converted_type: int

 config: |
 processor:
 attributes:
 - key: cloud.availability_zone
 value: "zone-1"
 action: upsert
 - key: k8s.cluster.name
 from_attribute: k8s-cluster
 action: insert
 - key: redundant-attribute
 action: delete

CHAPTER 3. CONFIGURING THE COLLECTOR

47

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview

1

2

1

The Span Processor modifies the span name based on its attributes or extracts the span attributes from
the span name. This processor can also change the span status and include or exclude spans. This
processor supports traces.

Span renaming requires specifying attributes for the new name by using the from_attributes
configuration.

OpenTelemetry Collector using the Span Processor for renaming a span

Defines the keys to form the new span name.

An optional separator.

You can use this processor to extract attributes from the span name.

OpenTelemetry Collector using the Span Processor for extracting attributes from a span
name

This rule defines how the extraction is to be executed. You can define more rules: for example, in
this case, if the regular expression matches the name, a documentID attibute is created. In this
example, if the input span name is /api/v1/document/12345678/update, this results in the
/api/v1/document/{documentId}/update output span name, and a new
"documentId"="12345678" attribute is added to the span.

You can have the span status modified.

OpenTelemetry Collector using the Span Processor for status change

3.2.2.7. Kubernetes Attributes Processor

 config: |
 processor:
 span:
 name:
 from_attributes: [<key1>, <key2>, ...] 1
 separator: <value> 2

 config: |
 processor:
 span/to_attributes:
 name:
 to_attributes:
 rules:
 - ^\/api\/v1\/document\/(?P<documentId>.*)\/update$ 1

 config: |
 processor:
 span/set_status:
 status:
 code: Error
 description: "<error_description>"

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

48

1

2

The Kubernetes Attributes Processor is currently a Technology Preview feature only.

The Kubernetes Attributes Processor enables automatic configuration of spans, metrics, and log
resource attributes by using the Kubernetes metadata. This processor supports traces, metrics, and logs.
This processor automatically identifies the Kubernetes resources, extracts the metadata from them, and
incorporates this extracted metadata as resource attributes into relevant spans, metrics, and logs. It
utilizes the Kubernetes API to discover all pods operating within a cluster, maintaining records of their IP
addresses, pod UIDs, and other relevant metadata.

Minimum OpenShift Container Platform permissions required for the Kubernetes
Attributes Processor

OpenTelemetry Collector using the Kubernetes Attributes Processor

3.2.2.8. Filter Processor

The Filter Processor is currently a Technology Preview feature only.

The Filter Processor leverages the OpenTelemetry Transformation Language to establish criteria for
discarding telemetry data. If any of these conditions are satisfied, the telemetry data are discarded. You
can combine the conditions by using the logical OR operator. This processor supports traces, metrics,
and logs.

OpenTelemetry Collector custom resource with an enabled OTLP Exporter

Defines the error mode. When set to ignore, ignores errors returned by conditions. When set to
propagate, returns the error up the pipeline. An error causes the payload to be dropped from the
Collector.

Filters the spans that have the container.name == app_container_1 attribute.

kind: ClusterRole
metadata:
 name: otel-collector
rules:
 - apiGroups: ['']
 resources: ['pods', 'namespaces']
 verbs: ['get', 'watch', 'list']

 config: |
 processors:
 k8sattributes:
 filter:
 node_from_env_var: KUBE_NODE_NAME

config: |
 processors:
 filter/ottl:
 error_mode: ignore 1
 traces:
 span:
 - 'attributes["container.name"] == "app_container_1"' 2
 - 'resource.attributes["host.name"] == "localhost"' 3

CHAPTER 3. CONFIGURING THE COLLECTOR

49

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview

3

1

2

3

Filters the spans that have the host.name == localhost resource attribute.

3.2.2.9. Routing Processor

The Routing Processor is currently a Technology Preview feature only.

The Routing Processor routes logs, metrics, or traces to specific exporters. This processor can read a
header from an incoming gRPC or plain HTTP request or read a resource attribute, and then direct the
trace information to relevant exporters according to the read value.

OpenTelemetry Collector custom resource with an enabled OTLP Exporter

The HTTP header name for the lookup value when performing the route.

The default exporter when the attribute value is not present in the table in the next section.

The table that defines which values are to be routed to which exporters.

You can optionally create an attribute_source configuration, which defines where to look for the
attribute in from_attribute. The allowed value is context to search the context, which includes the HTTP
headers, or resource to search the resource attributes.

3.2.2.10. Cumulative to Delta Processor

This processor converts monotonic, cumulative-sum, and histogram metrics to monotonic delta metrics.

You can filter metrics by using the include: or exclude: fields and specifying the strict or regexp
metric name matching.

This processor does not convert non-monotonic sums and exponential histograms.

IMPORTANT

config: |
 processors:
 routing:
 from_attribute: X-Tenant 1
 default_exporters: 2
 - jaeger
 table: 3
 - value: acme
 exporters: [jaeger/acme]
 exporters:
 jaeger:
 endpoint: localhost:14250
 jaeger/acme:
 endpoint: localhost:24250

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

50

https://access.redhat.com/support/offerings/techpreview

1

2

3

4

IMPORTANT

The Cumulative to Delta Processor is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Example of an OpenTelemetry Collector custom resource with an enabled Cumulative to
Delta Processor

Optional: Configures which metrics to include. When omitted, all metrics, except for those listed in
the exclude field, are converted to delta metrics.

Defines a value provided in the metrics field as a strict exact match or regexp regular expression.

Lists the metric names, which are exact matches or matches for regular expressions, of the metrics
to be converted to delta metrics. If a metric matches both the include and exclude filters, the
exclude filter takes precedence.

Optional: Configures which metrics to exclude. When omitted, no metrics are excluded from
conversion to delta metrics.

3.2.3. Exporters

Exporters send data to one or more back ends or destinations.

3.2.3.1. OTLP Exporter

The OTLP gRPC Exporter exports traces and metrics by using the OpenTelemetry protocol (OTLP).

OpenTelemetry Collector custom resource with an enabled OTLP Exporter

config: |
 processors:
 cumulativetodelta:
 include: 1
 match_type: strict 2
 metrics: 3
 - <metric_1_name>
 - <metric_2_name>
 exclude: 4
 match_type: regexp
 metrics:
 - "<regular_expression_for_metric_names>"

 config: |
 exporters:
 otlp:

CHAPTER 3. CONFIGURING THE COLLECTOR

51

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

The OTLP gRPC endpoint. If the https:// scheme is used, then client transport security is enabled
and overrides the insecure setting in the tls.

The client-side TLS configuration. Defines paths to TLS certificates.

Disables client transport security when set to true. The default value is false by default.

Skips verifying the certificate when set to true. The default value is false.

Specifies the time interval at which the certificate is reloaded. If the value is not set, the certificate
is never reloaded. The reload_interval accepts a string containing valid units of time such as ns, us
(or µs), ms, s, m, h.

Overrides the virtual host name of authority such as the authority header field in requests. You can
use this for testing.

Headers are sent for every request performed during an established connection.

3.2.3.2. OTLP HTTP Exporter

The OTLP HTTP Exporter exports traces and metrics by using the OpenTelemetry protocol (OTLP).

OpenTelemetry Collector custom resource with an enabled OTLP Exporter

 endpoint: tempo-ingester:4317 1
 tls: 2
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 insecure: false 3
 insecure_skip_verify: false # 4
 reload_interval: 1h 5
 server_name_override: <name> 6
 headers: 7
 X-Scope-OrgID: "dev"
 service:
 pipelines:
 traces:
 exporters: [otlp]
 metrics:
 exporters: [otlp]

 config: |
 exporters:
 otlphttp:
 endpoint: http://tempo-ingester:4318 1
 tls: 2
 headers: 3
 X-Scope-OrgID: "dev"
 disable_keep_alives: false 4

 service:
 pipelines:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

52

1

2

3

4

1

The OTLP HTTP endpoint. If the https:// scheme is used, then client transport security is enabled
and overrides the insecure setting in the tls.

The client side TLS configuration. Defines paths to TLS certificates.

Headers are sent in every HTTP request.

If true, disables HTTP keep-alives. It will only use the connection to the server for a single HTTP
request.

3.2.3.3. Debug Exporter

The Debug Exporter prints traces and metrics to the standard output.

OpenTelemetry Collector custom resource with an enabled Debug Exporter

Verbosity of the debug export: detailed or normal or basic. When set to detailed, pipeline data is
verbosely logged. Defaults to normal.

3.2.3.4. Load Balancing Exporter

The Load Balancing Exporter consistently exports spans, metrics, and logs according to the
routing_key configuration.

IMPORTANT

The Load Balancing Exporter is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

OpenTelemetry Collector custom resource with an enabled Load Balancing Exporter

 traces:
 exporters: [otlphttp]
 metrics:
 exporters: [otlphttp]

 config: |
 exporters:
 debug:
 verbosity: detailed 1
 service:
 pipelines:
 traces:
 exporters: [logging]
 metrics:
 exporters: [logging]

CHAPTER 3. CONFIGURING THE COLLECTOR

53

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

The routing_key: service exports spans for the same service name to the same Collector
instance to provide accurate aggregation. The routing_key: traceID exports spans based on their
traceID. The implicit default is traceID based routing.

The OTLP is the only supported load-balancing protocol. All options of the OTLP exporter are
supported.

You can configure only one resolver.

The static resolver distributes the load across the listed endpoints.

You can use the DNS resolver only with a Kubernetes headless service.

The Kubernetes resolver is recommended.

3.2.3.5. Prometheus Exporter

The Prometheus Exporter is currently a Technology Preview feature only.

The Prometheus Exporter exports metrics in the Prometheus or OpenMetrics formats.

OpenTelemetry Collector custom resource with an enabled Prometheus Exporter

...
 config: |
 exporters:
 loadbalancing:
 routing_key: "service" 1
 protocol:
 otlp: 2
 timeout: 1s
 resolver: 3
 static: 4
 hostnames:
 - backend-1:4317
 - backend-2:4317
 dns: 5
 hostname: otelcol-headless.observability.svc.cluster.local
 k8s: 6
 service: lb-svc.kube-public
 ports:
 - 15317
 - 16317
...

 ports:
 - name: promexporter 1
 port: 8889
 protocol: TCP
 config: |
 exporters:
 prometheus:
 endpoint: 0.0.0.0:8889 2

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

54

https://access.redhat.com/support/offerings/techpreview

1

2

3

4

5

6

7

8

9

Exposes the Prometheus port from the Collector pod and service. You can enable scraping of
metrics by Prometheus by using the port name in ServiceMonitor or PodMonitor custom resource.

The network endpoint where the metrics are exposed.

The server-side TLS configuration. Defines paths to TLS certificates.

If set, exports metrics under the provided value. No default.

Key-value pair labels that are applied for every exported metric. No default.

If true, metrics are exported using the OpenMetrics format. Exemplars are only exported in the
OpenMetrics format and only for histogram and monotonic sum metrics such as counter. Disabled
by default.

If enabled is true, all the resource attributes are converted to metric labels by default. Disabled by
default.

Defines how long metrics are exposed without updates. The default is 5m.

Adds the metrics types and units suffixes. Must be disabled if the monitor tab in Jaeger console is
enabled. The default is true.

3.2.3.6. Kafka Exporter

The Kafka Exporter is currently a Technology Preview feature only.

The Kafka Exporter exports logs, metrics, and traces to Kafka. This exporter uses a synchronous
producer that blocks and does not batch messages. You must use it with batch and queued retry
processors for higher throughput and resiliency.

OpenTelemetry Collector custom resource with an enabled Kafka Exporter

 tls: 3
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 namespace: prefix 4
 const_labels: 5
 label1: value1
 enable_open_metrics: true 6
 resource_to_telemetry_conversion: 7
 enabled: true
 metric_expiration: 180m 8
 add_metric_suffixes: false 9
 service:
 pipelines:
 metrics:
 exporters: [prometheus]

 config: |
 exporters:
 kafka:
 brokers: ["localhost:9092"] 1

CHAPTER 3. CONFIGURING THE COLLECTOR

55

https://access.redhat.com/support/offerings/techpreview

1

2

3

4

5

6

7

The list of Kafka brokers. The default is localhost:9092.

The Kafka protocol version. For example, 2.0.0. This is a required field.

The name of the Kafka topic to read from. The following are the defaults: otlp_spans for traces,
otlp_metrics for metrics, otlp_logs for logs.

The plaintext authentication configuration. If omitted, plaintext authentication is disabled.

The client-side TLS configuration. Defines paths to the TLS certificates. If omitted, TLS
authentication is disabled.

Disables verifying the server’s certificate chain and host name. The default is false.

ServerName indicates the name of the server requested by the client to support virtual hosting.

3.2.4. Connectors

Connectors connect two pipelines.

3.2.4.1. Forward Connector

IMPORTANT

The Forward Connector is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Forward Connector merges two pipelines of the same type.

OpenTelemetry Collector custom resource with an enabled Forward Connector

 protocol_version: 2.0.0 2
 topic: otlp_spans 3
 auth:
 plain_text: 4
 username: example
 password: example
 tls: 5
 ca_file: ca.pem
 cert_file: cert.pem
 key_file: key.pem
 insecure: false 6
 server_name_override: kafka.example.corp 7
 service:
 pipelines:
 traces:
 exporters: [kafka]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

56

https://access.redhat.com/support/offerings/techpreview/

1

3.2.4.2. Spanmetrics Connector

The Spanmetrics Connector is currently a Technology Preview feature only.

The Spanmetrics Connector aggregates Request, Error, and Duration (R.E.D) OpenTelemetry metrics
from span data.

OpenTelemetry Collector custom resource with an enabled Spanmetrics Connector

Defines the flush interval of the generated metrics. Defaults to 15s.

receivers:
 otlp:
 protocols:
 grpc:
 jaeger:
 protocols:
 grpc:
processors:
 batch:
exporters:
 otlp:
 endpoint: tempo-simplest-distributor:4317
 tls:
 insecure: true
connectors:
 forward:
service:
 pipelines:
 traces/regiona:
 receivers: [otlp]
 processors: []
 exporters: [forward]
 traces/regionb:
 receivers: [jaeger]
 processors: []
 exporters: [forward]
 traces:
 receivers: [forward]
 processors: [batch]
 exporters: [otlp]

 config: |
 connectors:
 spanmetrics:
 metrics_flush_interval: 15s 1
 service:
 pipelines:
 traces:
 exporters: [spanmetrics]
 metrics:
 receivers: [spanmetrics]

CHAPTER 3. CONFIGURING THE COLLECTOR

57

https://access.redhat.com/support/offerings/techpreview

1

2

3

4

5

3.2.5. Extensions

Extensions add capabilities to the Collector.

3.2.5.1. BearerTokenAuth Extension

The BearerTokenAuth Extension is currently a Technology Preview feature only.

The BearerTokenAuth Extension is an authenticator for receivers and exporters that are based on the
HTTP and the gRPC protocol. You can use the OpenTelemetry Collector custom resource to configure
client authentication and server authentication for the BearerTokenAuth Extension on the receiver and
exporter side. This extension supports traces, metrics, and logs.

OpenTelemetry Collector custom resource with client and server authentication
configured for the BearerTokenAuth Extension

You can configure the BearerTokenAuth Extension to send a custom scheme. The default is
Bearer.

You can add the BearerTokenAuth Extension token as metadata to identify a message.

Path to a file that contains an authorization token that is transmitted with every message.

You can assign the authenticator configuration to an OTLP Receiver.

You can assign the authenticator configuration to an OTLP Exporter.

3.2.5.2. OAuth2Client Extension

 config: |
 extensions:
 bearertokenauth:
 scheme: "Bearer" 1
 token: "<token>" 2
 filename: "<token_file>" 3

 receivers:
 otlp:
 protocols:
 http:
 auth:
 authenticator: bearertokenauth 4
 exporters:
 otlp:
 auth:
 authenticator: bearertokenauth 5

 service:
 extensions: [bearertokenauth]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

58

https://access.redhat.com/support/offerings/techpreview

1

2

3

4

5

The OAuth2Client Extension is currently a Technology Preview feature only.

The OAuth2Client Extension is an authenticator for exporters that are based on the HTTP and the gRPC
protocol. Client authentication for the OAuth2Client Extension is configured in a separate section in the
OpenTelemetry Collector custom resource. This extension supports traces, metrics, and logs.

OpenTelemetry Collector custom resource with client authentication configured for the
OAuth2Client Extension

Client identifier, which is provided by the identity provider.

Confidential key used to authenticate the client to the identity provider.

Further metadata, in the key-value pair format, which is transferred during authentication. For
example, audience specifies the intended audience for the access token, indicating the recipient
of the token.

The URL of the OAuth2 token endpoint, where the Collector requests access tokens.

The scopes define the specific permissions or access levels requested by the client.

The Transport Layer Security (TLS) settings for the token client, which is used to establish a secure

 config: |
 extensions:
 oauth2client:
 client_id: <client_id> 1
 client_secret: <client_secret> 2
 endpoint_params: 3
 audience: <audience>
 token_url: https://example.com/oauth2/default/v1/token 4
 scopes: ["api.metrics"] 5
 # tls settings for the token client
 tls: 6
 insecure: true 7
 ca_file: /var/lib/mycert.pem 8
 cert_file: <cert_file> 9
 key_file: <key_file> 10
 timeout: 2s 11

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 otlp:
 auth:
 authenticator: oauth2client 12

 service:
 extensions: [oauth2client]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

CHAPTER 3. CONFIGURING THE COLLECTOR

59

https://access.redhat.com/support/offerings/techpreview

6

7

8

9

10

11

12

The Transport Layer Security (TLS) settings for the token client, which is used to establish a secure
connection when requesting tokens.

When set to true, configures the Collector to use an insecure or non-verified TLS connection to
call the configured token endpoint.

The path to a Certificate Authority (CA) file that is used to verify the server’s certificate during the
TLS handshake.

The path to the client certificate file that the client must use to authenticate itself to the OAuth2
server if required.

The path to the client’s private key file that is used with the client certificate if needed for
authentication.

Sets a timeout for the token client’s request.

You can assign the authenticator configuration to an OTLP exporter.

3.2.5.3. File Storage Extension

IMPORTANT

The File Storage Extension is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The File Storage Extension supports traces, metrics, and logs. This extension can persist the state to the
local file system. This extension persists the sending queue for the OTLP exporters that are based on
the HTTP and the gRPC protocols. This extension requires the read and write access to a directory. This
extension can use a default directory, but the default directory must already exist.

OpenTelemetry Collector custom resource with a configured File Storage Extension that
persists an OTLP sending queue

 config: |
 extensions:
 file_storage/all_settings:
 directory: /var/lib/otelcol/mydir 1
 timeout: 1s 2
 compaction:
 on_start: true 3
 directory: /tmp/ 4
 max_transaction_size: 65_536 5
 fsync: false 6

 exporters:
 otlp:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

60

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

Specifies the directory in which the telemetry data is stored.

Specifies the timeout time interval for opening the stored files.

Starts compaction when the Collector starts. If omitted, the default is false.

Specifies the directory in which the compactor stores the telemetry data.

Defines the maximum size of the compaction transaction. To ignore the transaction size, set to
zero. If omitted, the default is 65536 bytes.

When set, forces the database to perform an fsync call after each write operation. This helps to
ensure database integrity if there is an interruption to the database process, but at the cost of
performance.

3.2.5.4. OIDC Auth Extension

IMPORTANT

The OIDC Auth Extension is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The OIDC Auth Extension authenticates incoming requests to receivers by using the OpenID Connect
(OIDC) protocol. It validates the ID token in the authorization header against the issuer and updates the
authentication context of the incoming request.

OpenTelemetry Collector custom resource with the configured OIDC Auth Extension

 sending_queue:
 storage: file_storage/all_settings

 service:
 extensions: [file_storage/all_settings]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

 config: |
 extensions:
 oidc:
 attribute: authorization 1
 issuer_url: https://example.com/auth/realms/opentelemetry 2
 issuer_ca_path: /var/run/tls/issuer.pem 3
 audience: otel-collector 4
 username_claim: email 5
 receivers:

CHAPTER 3. CONFIGURING THE COLLECTOR

61

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

The name of the header that contains the ID token. The default name is authorization.

The base URL of the OIDC provider.

Optional: The path to the issuer’s CA certificate.

The audience for the token.

The name of the claim that contains the username. The default name is sub.

3.2.5.5. Jaeger Remote Sampling Extension

The Jaeger Remote Sampling Extension is currently a Technology Preview feature only.

The Jaeger Remote Sampling Extension enables serving sampling strategies after Jaeger’s remote
sampling API. You can configure this extension to proxy requests to a backing remote sampling server
such as a Jaeger collector down the pipeline or to a static JSON file from the local file system.

OpenTelemetry Collector custom resource with a configured Jaeger Remote Sampling
Extension

 otlp:
 protocols:
 grpc:
 auth:
 authenticator: oidc
 exporters:
 otlp:
 endpoint: <endpoint>
 service:
 extensions: [oidc]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

 config: |
 extensions:
 jaegerremotesampling:
 source:
 reload_interval: 30s 1
 remote:
 endpoint: jaeger-collector:14250 2
 file: /etc/otelcol/sampling_strategies.json 3

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 otlp:

 service:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

62

https://access.redhat.com/support/offerings/techpreview

1

2

3

The time interval at which the sampling configuration is updated.

The endpoint for reaching the Jaeger remote sampling strategy provider.

The path to a local file that contains a sampling strategy configuration in the JSON format.

Example of a Jaeger Remote Sampling strategy file

 extensions: [jaegerremotesampling]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

{
 "service_strategies": [
 {
 "service": "foo",
 "type": "probabilistic",
 "param": 0.8,
 "operation_strategies": [
 {
 "operation": "op1",
 "type": "probabilistic",
 "param": 0.2
 },
 {
 "operation": "op2",
 "type": "probabilistic",
 "param": 0.4
 }
]
 },
 {
 "service": "bar",
 "type": "ratelimiting",
 "param": 5
 }
],
 "default_strategy": {
 "type": "probabilistic",
 "param": 0.5,
 "operation_strategies": [
 {
 "operation": "/health",
 "type": "probabilistic",
 "param": 0.0
 },
 {
 "operation": "/metrics",
 "type": "probabilistic",
 "param": 0.0
 }

CHAPTER 3. CONFIGURING THE COLLECTOR

63

1

2

3

4

3.2.5.6. Performance Profiler Extension

The Performance Profiler Extension is currently a Technology Preview feature only.

The Performance Profiler Extension enables the Go net/http/pprof endpoint. Developers use this
extension to collect performance profiles and investigate issues with the service.

OpenTelemetry Collector custom resource with the configured Performance Profiler
Extension

The endpoint at which this extension listens. Use localhost: to make it available only locally or ":"
to make it available on all network interfaces. The default value is localhost:1777.

Sets a fraction of blocking events to be profiled. To disable profiling, set this to 0 or a negative
integer. See the documentation for the runtime package. The default value is 0.

Set a fraction of mutex contention events to be profiled. To disable profiling, set this to 0 or a
negative integer. See the documentation for the runtime package. The default value is 0.

The name of the file in which the CPU profile is to be saved. Profiling starts when the Collector
starts. Profiling is saved to the file when the Collector is terminated.

3.2.5.7. Health Check Extension

The Health Check Extension is currently a Technology Preview feature only.

The Health Check Extension provides an HTTP URL for checking the status of the OpenTelemetry

]
 }
}

 config: |
 extensions:
 pprof:
 endpoint: localhost:1777 1
 block_profile_fraction: 0 2
 mutex_profile_fraction: 0 3
 save_to_file: test.pprof 4

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 otlp:

 service:
 extensions: [pprof]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

64

https://access.redhat.com/support/offerings/techpreview
https://golang.org/pkg/runtime/#SetBlockProfileRate
https://golang.org/pkg/runtime/#SetMutexProfileFraction
https://access.redhat.com/support/offerings/techpreview

1

2

3

4

5

6

7

The Health Check Extension provides an HTTP URL for checking the status of the OpenTelemetry
Collector. You can use this extension as a liveness and readiness probe on OpenShift.

OpenTelemetry Collector custom resource with the configured Health Check Extension

The target IP address for publishing the health check status. The default is 0.0.0.0:13133.

The TLS server-side configuration. Defines paths to TLS certificates. If omitted, the TLS is
disabled.

The path for the health check server. The default is /.

Settings for the Collector pipeline health check.

Enables the Collector pipeline health check. The default is false.

The time interval for checking the number of failures. The default is 5m.

The threshold of a number of failures until which a container is still marked as healthy. The default is
5.

3.2.5.8. Memory Ballast Extension

The Memory Ballast Extension is currently a Technology Preview feature only.

 config: |
 extensions:
 health_check:
 endpoint: "0.0.0.0:13133" 1
 tls: 2
 ca_file: "/path/to/ca.crt"
 cert_file: "/path/to/cert.crt"
 key_file: "/path/to/key.key"
 path: "/health/status" 3
 check_collector_pipeline: 4
 enabled: true 5
 interval: "5m" 6
 exporter_failure_threshold: 5 7

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 otlp:

 service:
 extensions: [health_check]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

CHAPTER 3. CONFIGURING THE COLLECTOR

65

https://access.redhat.com/support/offerings/techpreview

1

2

The Memory Ballast Extension enables applications to configure memory ballast for the process.

OpenTelemetry Collector custom resource with the configured Memory Ballast Extension

Sets the memory ballast size in MiB. Takes priority over the size_in_percentage if both are
specified.

Sets the memory ballast as a percentage, 1-100, of the total memory. Supports containerized and
physical host environments.

3.2.5.9. zPages Extension

The zPages Extension is currently a Technology Preview feature only.

The zPages Extension provides an HTTP endpoint for extensions that serve zPages. At the endpoint,
this extension serves live data for debugging instrumented components. All core exporters and
receivers provide some zPages instrumentation.

zPages are useful for in-process diagnostics without having to depend on a back end to examine traces
or metrics.

OpenTelemetry Collector custom resource with the configured zPages Extension

 config: |
 extensions:
 memory_ballast:
 size_mib: 64 1
 size_in_percentage: 20 2

 receivers:
 otlp:
 protocols:
 http: {}

 exporters:
 otlp:

 service:
 extensions: [memory_ballast]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

 config: |
 extensions:
 zpages:
 endpoint: "localhost:55679" 1

 receivers:
 otlp:
 protocols:
 http: {}
 exporters:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

66

https://access.redhat.com/support/offerings/techpreview

1 Specifies the HTTP endpoint that serves zPages. Use localhost: to make it available only locally, or
":" to make it available on all network interfaces. The default is localhost:55679.

3.3. CREATING THE REQUIRED RBAC RESOURCES AUTOMATICALLY

Some Collector components require configuring the RBAC resources.

Procedure

Add the following permissions to the opentelemetry-operator-controller-manage service
account so that the Red Hat build of OpenTelemetry Operator can create them automatically:

 otlp:

 service:
 extensions: [zpages]
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: generate-processors-rbac
rules:
- apiGroups:
 - rbac.authorization.k8s.io
 resources:
 - clusterrolebindings
 - clusterroles
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - update
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: generate-processors-rbac
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: generate-processors-rbac
subjects:
- kind: ServiceAccount
 name: opentelemetry-operator-controller-manager
 namespace: openshift-opentelemetry-operator

CHAPTER 3. CONFIGURING THE COLLECTOR

67

3.4. TARGET ALLOCATOR

IMPORTANT

The target allocator is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The target allocator is an optional component of the OpenTelemetry Operator that shards scrape
targets across the deployed fleet of OpenTelemetry Collector instances. The target allocator integrates
with the Prometheus PodMonitor and ServiceMonitor custom resources (CR). When the target
allocator is enabled, the OpenTelemetry Operator adds the http_sd_config field to the enabled
prometheus receiver that connects to the target allocator service.

Example OpenTelemetryCollector CR with the enabled target allocator

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 mode: statefulset 1
 targetAllocator:
 enabled: true 2
 serviceAccount: 3
 prometheusCR:
 enabled: true 4
 scrapeInterval: 10s
 serviceMonitorSelector: 5
 name: app1
 podMonitorSelector: 6
 name: app2
 config: |
 receivers:
 prometheus: 7
 config:
 scrape_configs: []
 processors:
 exporters:
 debug: {}
 service:
 pipelines:
 metrics:
 receivers: [prometheus]
 processors: []
 exporters: [debug]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

68

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

When the target allocator is enabled, the deployment mode must be set to statefulset.

Enables the target allocator. Defaults to false.

The service account name of the target allocator deployment. The service account needs to have
RBAC to get the ServiceMonitor, PodMonitor custom resources, and other objects from the
cluster to properly set labels on scraped metrics. The default service name is <collector_name>-
targetallocator.

Enables integration with the Prometheus PodMonitor and ServiceMonitor custom resources.

Label selector for the Prometheus ServiceMonitor custom resources. When left empty, enables all
service monitors.

Label selector for the Prometheus PodMonitor custom resources. When left empty, enables all
pod monitors.

Prometheus receiver with the minimal, empty scrape_config: [] configuration option.

The target allocator deployment uses the Kubernetes API to get relevant objects from the cluster, so it
requires a custom RBAC configuration.

RBAC configuration for the target allocator service account

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-targetallocator
rules:
 - apiGroups: [""]
 resources:
 - services
 - pods
 verbs: ["get", "list", "watch"]
 - apiGroups: ["monitoring.coreos.com"]
 resources:
 - servicemonitors
 - podmonitors
 verbs: ["get", "list", "watch"]
 - apiGroups: ["discovery.k8s.io"]
 resources:
 - endpointslices
 verbs: ["get", "list", "watch"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-targetallocator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: otel-targetallocator
subjects:

CHAPTER 3. CONFIGURING THE COLLECTOR

69

1

2

The name of the target allocator service account mane.

The namespace of the target allocator service account.

 - kind: ServiceAccount
 name: otel-targetallocator 1
 namespace: observability 2

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

70

CHAPTER 4. CONFIGURING THE INSTRUMENTATION

IMPORTANT

OpenTelemetry instrumentation injection is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Red Hat build of OpenTelemetry Operator uses a custom resource definition (CRD) file that
defines the configuration of the instrumentation.

4.1. OPENTELEMETRY INSTRUMENTATION CONFIGURATION
OPTIONS

The Red Hat build of OpenTelemetry can inject and configure the OpenTelemetry auto-instrumentation
libraries into your workloads. Currently, the project supports injection of the instrumentation libraries
from Go, Java, Node.js, Python, .NET, and the Apache HTTP Server (httpd).

Auto-instrumentation in OpenTelemetry refers to the capability where the framework automatically
instruments an application without manual code changes. This enables developers and administrators to
get observability into their applications with minimal effort and changes to the existing codebase.

IMPORTANT

The Red Hat build of OpenTelemetry Operator only supports the injection mechanism of
the instrumentation libraries but does not support instrumentation libraries or upstream
images. Customers can build their own instrumentation images or use community images.

4.1.1. Instrumentation options

Instrumentation options are specified in the OpenTelemetryCollector custom resource.

Sample OpenTelemetryCollector custom resource file

apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
 name: java-instrumentation
spec:
 env:
 - name: OTEL_EXPORTER_OTLP_TIMEOUT
 value: "20"
 exporter:
 endpoint: http://production-collector.observability.svc.cluster.local:4317
 propagators:
 - w3c
 sampler:

CHAPTER 4. CONFIGURING THE INSTRUMENTATION

71

https://access.redhat.com/support/offerings/techpreview/

Table 4.1. Parameters used by the Operator to define the Instrumentation

Parameter Description Values

env
Common environment variables
to define across all the
instrumentations.

exporter
Exporter configuration.

propagators
Propagators defines inter-
process context propagation
configuration.

tracecontext, baggage, b3,
b3multi, jaeger, ottrace, none

resource
Resource attributes configuration.

sampler
Sampling configuration.

apacheHttpd
Configuration for the Apache
HTTP Server instrumentation.

dotnet
Configuration for the .NET
instrumentation.

go
Configuration for the Go
instrumentation.

java
Configuration for the Java
instrumentation.

nodejs
Configuration for the Node.js
instrumentation.

python
Configuration for the Python
instrumentation.

 type: parentbased_traceidratio
 argument: "0.25"
 java:
 env:
 - name: OTEL_JAVAAGENT_DEBUG
 value: "true"

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

72

4.1.2. Using the instrumentation CR with Service Mesh

When using the instrumentation custom resource (CR) with Red Hat OpenShift Service Mesh, you must
use the b3multi propagator.

4.1.2.1. Configuration of the Apache HTTP Server auto-instrumentation

Table 4.2. Parameters for the .spec.apacheHttpd field

Name Description Default

attrs
Attributes specific to the Apache
HTTP Server.

configPath
Location of the Apache HTTP
Server configuration.

/usr/local/apache2/conf

env
Environment variables specific to
the Apache HTTP Server.

image
Container image with the Apache
SDK and auto-instrumentation.

resourceRequirements
The compute resource
requirements.

version
Apache HTTP Server version. 2.4

The PodSpec annotation to enable injection

4.1.2.2. Configuration of the .NET auto-instrumentation

Name Description

env
Environment variables specific to .NET.

image
Container image with the .NET SDK and auto-
instrumentation.

resourceRequirements
The compute resource requirements.

instrumentation.opentelemetry.io/inject-apache-httpd: "true"

CHAPTER 4. CONFIGURING THE INSTRUMENTATION

73

For the .NET auto-instrumentation, the required OTEL_EXPORTER_OTLP_ENDPOINT environment
variable must be set if the endpoint of the exporters is set to 4317. The .NET autoinstrumentation uses
http/proto by default, and the telemetry data must be set to the 4318 port.

The PodSpec annotation to enable injection

4.1.2.3. Configuration of the Go auto-instrumentation

Name Description

env
Environment variables specific to Go.

image
Container image with the Go SDK and auto-
instrumentation.

resourceRequirements
The compute resource requirements.

The PodSpec annotation to enable injection

Additional permissions required for the Go auto-instrumentation in the OpenShift cluster

TIP

instrumentation.opentelemetry.io/inject-dotnet: "true"

instrumentation.opentelemetry.io/inject-go: "true"

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 name: otel-go-instrumentation-scc
allowHostDirVolumePlugin: true
allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities:
- "SYS_PTRACE"
fsGroup:
 type: RunAsAny
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups:
 type: RunAsAny

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

74

TIP

The CLI command for applying the permissions for the Go auto-instrumentation in the OpenShift
cluster is as follows:

4.1.2.4. Configuration of the Java auto-instrumentation

Name Description

env
Environment variables specific to Java.

image
Container image with the Java SDK and auto-
instrumentation.

resourceRequirements
The compute resource requirements.

The PodSpec annotation to enable injection

4.1.2.5. Configuration of the Node.js auto-instrumentation

Name Description

env
Environment variables specific to Node.js.

image
Container image with the Node.js SDK and auto-
instrumentation.

resourceRequirements
The compute resource requirements.

The PodSpec annotations to enable injection

The instrumentation.opentelemetry.io/otel-go-auto-target-exe annotation sets the value for the
required OTEL_GO_AUTO_TARGET_EXE environment variable.

$ oc adm policy add-scc-to-user otel-go-instrumentation-scc -z <service_account>

instrumentation.opentelemetry.io/inject-java: "true"

instrumentation.opentelemetry.io/inject-nodejs: "true"
instrumentation.opentelemetry.io/otel-go-auto-target-exe: "/path/to/container/executable"

CHAPTER 4. CONFIGURING THE INSTRUMENTATION

75

4.1.2.6. Configuration of the Python auto-instrumentation

Name Description

env
Environment variables specific to Python.

image
Container image with the Python SDK and auto-
instrumentation.

resourceRequirements
The compute resource requirements.

For Python auto-instrumentation, the OTEL_EXPORTER_OTLP_ENDPOINT environment variable
must be set if the endpoint of the exporters is set to 4317. Python auto-instrumentation uses
http/proto by default, and the telemetry data must be set to the 4318 port.

The PodSpec annotation to enable injection

4.1.2.7. Configuration of the OpenTelemetry SDK variables

The OpenTelemetry SDK variables in your pod are configurable by using the following annotation:

Note that all the annotations accept the following values:

true

Injects the Instrumentation resource from the namespace.

false

Does not inject any instrumentation.

instrumentation-name

The name of the instrumentation resource to inject from the current namespace.

other-namespace/instrumentation-name

The name of the instrumentation resource to inject from another namespace.

4.1.2.8. Multi-container pods

The instrumentation is run on the first container that is available by default according to the pod
specification. In some cases, you can also specify target containers for injection.

Pod annotation

NOTE

instrumentation.opentelemetry.io/inject-python: "true"

instrumentation.opentelemetry.io/inject-sdk: "true"

instrumentation.opentelemetry.io/container-names: "<container_1>,<container_2>"

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

76

NOTE

The Go auto-instrumentation does not support multi-container auto-instrumentation
injection.

CHAPTER 4. CONFIGURING THE INSTRUMENTATION

77

CHAPTER 5. SENDING TRACES AND METRICS TO THE
OPENTELEMETRY COLLECTOR

You can set up and use the Red Hat build of OpenTelemetry to send traces to the OpenTelemetry
Collector or the TempoStack instance.

Sending traces and metrics to the OpenTelemetry Collector is possible with or without sidecar injection.

5.1. SENDING TRACES AND METRICS TO THE OPENTELEMETRY
COLLECTOR WITH SIDECAR INJECTION

You can set up sending telemetry data to an OpenTelemetry Collector instance with sidecar injection.

The Red Hat build of OpenTelemetry Operator allows sidecar injection into deployment workloads and
automatic configuration of your instrumentation to send telemetry data to the OpenTelemetry
Collector.

Prerequisites

The Red Hat OpenShift distributed tracing platform (Tempo) is installed, and a TempoStack
instance is deployed.

You have access to the cluster through the web console or the OpenShift CLI (oc):

You are logged in to the web console as a cluster administrator with the cluster-admin role.

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

Procedure

1. Create a project for an OpenTelemetry Collector instance.

2. Create a service account.

3. Grant the permissions to the service account for the k8sattributes and resourcedetection
processors.

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: observability

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-sidecar
 namespace: observability

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

78

4. Deploy the OpenTelemetry Collector as a sidecar.

metadata:
 name: otel-collector
rules:
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-sidecar
 namespace: observability
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 serviceAccount: otel-collector-sidecar
 mode: sidecar
 config: |
 serviceAccount: otel-collector-sidecar
 receivers:
 otlp:
 protocols:
 grpc: {}
 http: {}
 processors:
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 timeout: 2s
 exporters:
 otlp:
 endpoint: "tempo-<example>-gateway:8090" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:

CHAPTER 5. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR

79

1 This points to the Gateway of the TempoStack instance deployed by using the <example>
Tempo Operator.

5. Create your deployment using the otel-collector-sidecar service account.

6. Add the sidecar.opentelemetry.io/inject: "true" annotation to your Deployment object. This
will inject all the needed environment variables to send data from your workloads to the
OpenTelemetry Collector instance.

5.2. SENDING TRACES AND METRICS TO THE OPENTELEMETRY
COLLECTOR WITHOUT SIDECAR INJECTION

You can set up sending telemetry data to an OpenTelemetry Collector instance without sidecar
injection, which involves manually setting several environment variables.

Prerequisites

The Red Hat OpenShift distributed tracing platform (Tempo) is installed, and a TempoStack
instance is deployed.

You have access to the cluster through the web console or the OpenShift CLI (oc):

You are logged in to the web console as a cluster administrator with the cluster-admin role.

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

Procedure

1. Create a project for an OpenTelemetry Collector instance.

2. Create a service account.

3. Grant the permissions to the service account for the k8sattributes and resourcedetection
processors.

 receivers: [jaeger]
 processors: [memory_limiter, resourcedetection, batch]
 exporters: [otlp]

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: observability

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment
 namespace: observability

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

80

4. Deploy the OpenTelemetry Collector instance with the OpenTelemetryCollector custom
resource.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: observability
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 mode: deployment
 serviceAccount: otel-collector-deployment
 config: |
 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 opencensus:
 otlp:
 protocols:
 grpc: {}
 http: {}
 zipkin: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:

CHAPTER 5. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR

81

1 This points to the Gateway of the TempoStack instance deployed by using the <example>
Tempo Operator.

5. Set the environment variables in the container with your instrumented application.

Name Description Default value

OTEL_SERVICE_NAME
Sets the value of the
service.name resource
attribute.

""

OTEL_EXPORTER_OTL
P_ENDPOINT

Base endpoint URL for any
signal type with an optionally
specified port number.

https://localhost:4317

OTEL_EXPORTER_OTL
P_CERTIFICATE

Path to the certificate file for
the TLS credentials of the
gRPC client.

https://localhost:4317

OTEL_TRACES_SAMPL
ER

Sampler to be used for traces. parentbased_always_on

OTEL_EXPORTER_OTL
P_PROTOCOL

Transport protocol for the
OTLP exporter.

grpc

OTEL_EXPORTER_OTL
P_TIMEOUT

Maximum time interval for the
OTLP exporter to wait for
each batch export.

10s

OTEL_EXPORTER_OTL
P_INSECURE

Disables client transport
security for gRPC requests. An
HTTPS schema overrides it.

False

 detectors: [openshift]
 exporters:
 otlp:
 endpoint: "tempo-<example>-distributor:4317" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger, opencensus, otlp, zipkin]
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

82

1

CHAPTER 6. CONFIGURING METRICS FOR THE MONITORING
STACK

As a cluster administrator, you can configure the OpenTelemetry Collector custom resource (CR) to
perform the following tasks:

Create a Prometheus ServiceMonitor CR for scraping the Collector’s pipeline metrics and the
enabled Prometheus exporters.

Configure the Prometheus receiver to scrape metrics from the in-cluster monitoring stack.

6.1. CONFIGURATION FOR SENDING METRICS TO THE MONITORING
STACK

One of two following custom resources (CR) configures the sending of metrics to the monitoring stack:

OpenTelemetry Collector CR

Prometheus PodMonitor CR

A configured OpenTelemetry Collector CR can create a Prometheus ServiceMonitor CR for scraping
the Collector’s pipeline metrics and the enabled Prometheus exporters.

Example of the OpenTelemetry Collector CR with the Prometheus exporter

Configures the Operator to create the Prometheus ServiceMonitor CR to scrape the Collector’s
internal metrics endpoint and Prometheus exporter metric endpoints. The metrics will be stored in
the OpenShift monitoring stack.

Alternatively, a manually created Prometheus PodMonitor CR can provide fine control, for example
removing duplicated labels added during Prometheus scraping.

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
spec:
 mode: deployment
 observability:
 metrics:
 enableMetrics: true 1
 config: |
 exporters:
 prometheus:
 endpoint: 0.0.0.0:8889
 resource_to_telemetry_conversion:
 enabled: true # by default resource attributes are dropped
 service:
 telemetry:
 metrics:
 address: ":8888"
 pipelines:
 metrics:
 receivers: [otlp]
 exporters: [prometheus]

CHAPTER 6. CONFIGURING METRICS FOR THE MONITORING STACK

83

1

2

3

Example of the PodMonitor CR that configures the monitoring stack to scrape the Collector
metrics

The name of the OpenTelemetry Collector CR.

The name of the internal metrics port for the OpenTelemetry Collector. This port name is always
metrics.

The name of the Prometheus exporter port for the OpenTelemetry Collector.

6.2. CONFIGURATION FOR RECEIVING METRICS FROM THE
MONITORING STACK

A configured OpenTelemetry Collector custom resource (CR) can set up the Prometheus receiver to
scrape metrics from the in-cluster monitoring stack.

Example of the OpenTelemetry Collector CR for scraping metrics from the in-cluster
monitoring stack

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: otel-collector
spec:
 selector:
 matchLabels:
 app.kubernetes.io/name: <cr_name>-collector 1
 podMetricsEndpoints:
 - port: metrics 2
 - port: promexporter 3
 relabelings:
 - action: labeldrop
 regex: pod
 - action: labeldrop
 regex: container
 - action: labeldrop
 regex: endpoint
 metricRelabelings:
 - action: labeldrop
 regex: instance
 - action: labeldrop
 regex: job

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-monitoring-view 1
subjects:
 - kind: ServiceAccount

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

84

 name: otel-collector
 namespace: observability

kind: ConfigMap
apiVersion: v1
metadata:
 name: cabundle
 namespce: observability
 annotations:
 service.beta.openshift.io/inject-cabundle: "true" 2

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 volumeMounts:
 - name: cabundle-volume
 mountPath: /etc/pki/ca-trust/source/service-ca
 readOnly: true
 volumes:
 - name: cabundle-volume
 configMap:
 name: cabundle
 mode: deployment
 config: |
 receivers:
 prometheus: 3
 config:
 scrape_configs:
 - job_name: 'federate'
 scrape_interval: 15s
 scheme: https
 tls_config:
 ca_file: /etc/pki/ca-trust/source/service-ca/service-ca.crt
 bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
 honor_labels: false
 params:
 'match[]':
 - '{__name__="<metric_name>"}' 4
 metrics_path: '/federate'
 static_configs:
 - targets:
 - "prometheus-k8s.openshift-monitoring.svc.cluster.local:9091"
 exporters:
 debug: 5
 verbosity: detailed
 service:
 pipelines:
 metrics:
 receivers: [prometheus]
 processors: []
 exporters: [debug]

CHAPTER 6. CONFIGURING METRICS FOR THE MONITORING STACK

85

1

2

3

4

5

Assigns the cluster-monitoring-view cluster role to the service account of the OpenTelemetry
Collector so that it can access the metrics data.

Injects the OpenShift service CA for configuring the TLS in the Prometheus receiver.

Configures the Prometheus receiver to scrape the federate endpoint from the in-cluster
monitoring stack.

Uses the Prometheus query language to select the metrics to be scraped. See the in-cluster
monitoring documentation for more details and limitations of the federate endpoint.

Configures the debug exporter to print the metrics to the standard output.

6.3. ADDITIONAL RESOURCES

Querying metrics by using the federation endpoint for Prometheus

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

86

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/monitoring/#monitoring-querying-metrics-by-using-the-federation-endpoint-for-prometheus_accessing-monitoring-apis-by-using-the-cli

1

2

CHAPTER 7. FORWARDING TRACES TO A TEMPOSTACK
INSTANCE

To configure forwarding traces to a TempoStack instance, you can deploy and configure the
OpenTelemetry Collector. You can deploy the OpenTelemetry Collector in the deployment mode by
using the specified processors, receivers, and exporters. For other modes, see the OpenTelemetry
Collector documentation linked in Additional resources .

Prerequisites

The Red Hat build of OpenTelemetry Operator is installed.

The Tempo Operator is installed.

A TempoStack instance is deployed on the cluster.

Procedure

1. Create a service account for the OpenTelemetry Collector.

Example ServiceAccount

2. Create a cluster role for the service account.

Example ClusterRole

The k8sattributesprocessor requires permissions for pods and namespaces resources.

The resourcedetectionprocessor requires permissions for infrastructures and status.

3. Bind the cluster role to the service account.

Example ClusterRoleBinding

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
 1
 2
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

CHAPTER 7. FORWARDING TRACES TO A TEMPOSTACK INSTANCE

87

4. Create the YAML file to define the OpenTelemetryCollector custom resource (CR).

Example OpenTelemetryCollector

metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: otel-collector-example
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
spec:
 mode: deployment
 serviceAccount: otel-collector-deployment
 config: |
 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 opencensus: {}
 otlp:
 protocols:
 grpc: {}
 http: {}
 zipkin: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 exporters:
 otlp:
 endpoint: "tempo-simplest-distributor:4317" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

88

1

2

The Collector exporter is configured to export OTLP and points to the Tempo distributor
endpoint, "tempo-simplest-distributor:4317" in this example, which is already created.

The Collector is configured with a receiver for Jaeger traces, OpenCensus traces over the
OpenCensus protocol, Zipkin traces over the Zipkin protocol, and OTLP traces over the
GRPC protocol.

TIP

You can deploy telemetrygen as a test:

Additional resources

OpenTelemetry Collector documentation

Deployment examples on GitHub

 receivers: [jaeger, opencensus, otlp, zipkin] 2
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]

apiVersion: batch/v1
kind: Job
metadata:
 name: telemetrygen
spec:
 template:
 spec:
 containers:
 - name: telemetrygen
 image: ghcr.io/open-telemetry/opentelemetry-collector-contrib/telemetrygen:latest
 args:
 - traces
 - --otlp-endpoint=otel-collector:4317
 - --otlp-insecure
 - --duration=30s
 - --workers=1
 restartPolicy: Never
 backoffLimit: 4

CHAPTER 7. FORWARDING TRACES TO A TEMPOSTACK INSTANCE

89

https://opentelemetry.io/docs/collector/
https://github.com/os-observability/redhat-rhosdt-samples

CHAPTER 8. CONFIGURING THE OPENTELEMETRY
COLLECTOR METRICS

You can enable metrics and alerts of OpenTelemetry Collector instances.

Prerequisites

Monitoring for user-defined projects is enabled in the cluster.

Procedure

To enable metrics of an OpenTelemetry Collector instance, set the
spec.observability.metrics.enableMetrics field to true:

Verification

You can use the Administrator view of the web console to verify successful configuration:

Go to Observe → Targets, filter by Source: User, and check that the ServiceMonitors in the
opentelemetry-collector-<instance_name> format have the Up status.

Additional resources

Enabling monitoring for user-defined projects

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: <name>
spec:
 observability:
 metrics:
 enableMetrics: true

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

CHAPTER 9. GATHERING THE OBSERVABILITY DATA FROM
MULTIPLE CLUSTERS

For a multicluster configuration, you can create one OpenTelemetry Collector instance in each one of
the remote clusters and then forward all the telemetry data to one OpenTelemetry Collector instance.

Prerequisites

The Red Hat build of OpenTelemetry Operator is installed.

The Tempo Operator is installed.

A TempoStack instance is deployed on the cluster.

The following mounted certificates: Issuer, self-signed certificate, CA issuer, client and server
certificates. To create any of these certificates, see step 1.

Procedure

1. Mount the following certificates in the OpenTelemetry Collector instance, skipping already
mounted certificates.

a. An Issuer to generate the certificates by using the cert-manager Operator for Red Hat
OpenShift.

b. A self-signed certificate.

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: selfsigned-issuer
spec:
 selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: ca
spec:
 isCA: true
 commonName: ca
 subject:
 organizations:
 - Organization # <your_organization_name>
 organizationalUnits:
 - Widgets
 secretName: ca-secret
 privateKey:
 algorithm: ECDSA
 size: 256
 issuerRef:
 name: selfsigned-issuer
 kind: Issuer
 group: cert-manager.io

CHAPTER 9. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

91

1

2

c. A CA issuer.

d. The client and server certificates.

List of exact DNS names to be mapped to a solver in the server OpenTelemetry
Collector instance.

List of exact DNS names to be mapped to a solver in the client OpenTelemetry
Collector instance.

2. Create a service account for the OpenTelemetry Collector instance.

Example ServiceAccount

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: test-ca-issuer
spec:
 ca:
 secretName: ca-secret

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: server
spec:
 secretName: server-tls
 isCA: false
 usages:
 - server auth
 - client auth
 dnsNames:
 - "otel.observability.svc.cluster.local" 1
 issuerRef:
 name: ca-issuer

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: client
spec:
 secretName: client-tls
 isCA: false
 usages:
 - server auth
 - client auth
 dnsNames:
 - "otel.observability.svc.cluster.local" 2
 issuerRef:
 name: ca-issuer

apiVersion: v1
kind: ServiceAccount

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

92

1

2

3. Create a cluster role for the service account.

Example ClusterRole

The k8sattributesprocessor requires permissions for pods and namespace resources.

The resourcedetectionprocessor requires permissions for infrastructures and status.

4. Bind the cluster role to the service account.

Example ClusterRoleBinding

5. Create the YAML file to define the OpenTelemetryCollector custom resource (CR) in the
edge clusters.

Example OpenTelemetryCollector custom resource for the edge clusters

metadata:
 name: otel-collector-deployment

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
 1
 2
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: otel-collector-<example>
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: otel-collector-<example>
spec:
 mode: daemonset
 serviceAccount: otel-collector-deployment
 config: |

CHAPTER 9. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

93

1 The Collector exporter is configured to export OTLP HTTP and points to the
OpenTelemetry Collector from the central cluster.

6. Create the YAML file to define the OpenTelemetryCollector custom resource (CR) in the
central cluster.

Example OpenTelemetryCollector custom resource for the central cluster

 receivers:
 jaeger:
 protocols:
 grpc: {}
 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 opencensus:
 otlp:
 protocols:
 grpc: {}
 http: {}
 zipkin: {}
 processors:
 batch: {}
 k8sattributes: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 exporters:
 otlphttp:
 endpoint: https://observability-cluster.com:443 1
 tls:
 insecure: false
 cert_file: /certs/server.crt
 key_file: /certs/server.key
 ca_file: /certs/ca.crt
 service:
 pipelines:
 traces:
 receivers: [jaeger, opencensus, otlp, zipkin]
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]
 volumes:
 - name: otel-certs
 secret:
 name: otel-certs
 volumeMounts:
 - name: otel-certs
 mountPath: /certs

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

94

1

2

The Collector receiver requires the certificates listed in the first step.

The Collector exporter is configured to export OTLP and points to the Tempo distributor
endpoint, which in this example is "tempo-simplest-distributor:4317" and already created.

 name: otlp-receiver
 namespace: observability
spec:
 mode: "deployment"
 ingress:
 type: route
 route:
 termination: "passthrough"
 config: |
 receivers:
 otlp:
 protocols:
 http:
 tls: 1
 cert_file: /certs/server.crt
 key_file: /certs/server.key
 client_ca_file: /certs/ca.crt
 exporters:
 logging: {}
 otlp:
 endpoint: "tempo-<simplest>-distributor:4317" 2
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [otlp]
 processors: []
 exporters: [otlp]
 volumes:
 - name: otel-certs
 secret:
 name: otel-certs
 volumeMounts:
 - name: otel-certs
 mountPath: /certs

CHAPTER 9. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS

95

1

CHAPTER 10. TROUBLESHOOTING
The OpenTelemetry Collector offers multiple ways to measure its health as well as investigate data
ingestion issues.

10.1. GETTING THE OPENTELEMETRY COLLECTOR LOGS

You can get the logs for the OpenTelemetry Collector as follows.

Procedure

1. Set the relevant log level in the OpenTelemetryCollector custom resource (CR):

Collector’s log level. Supported values include info, warn, error, or debug. Defaults to
info.

2. Use the oc logs command or the web console to retrieve the logs.

10.2. EXPOSING THE METRICS

The OpenTelemetry Collector exposes the metrics about the data volumes it has processed. The
following metrics are for spans, although similar metrics are exposed for metrics and logs signals:

otelcol_receiver_accepted_spans

The number of spans successfully pushed into the pipeline.

otelcol_receiver_refused_spans

The number of spans that could not be pushed into the pipeline.

otelcol_exporter_sent_spans

The number of spans successfully sent to the destination.

otelcol_exporter_enqueue_failed_spans

The number of spans failed to be added to the sending queue.

The Operator creates a <cr_name>-collector-monitoring telemetry service that you can use to scrape
the metrics endpoint.

Procedure

1. Enable the telemetry service by adding the following lines in the OpenTelemetryCollector
custom resource:

 config: |
 service:
 telemetry:
 logs:
 level: debug 1

 config: |
 service:
 telemetry:

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

96

1 The address at which the internal collector metrics are exposed. Defaults to :8888.

1. Retrieve the metrics by running the following command, which uses the port-forwarding
Collector pod:

2. Access the metrics endpoint at http://localhost:8888/metrics.

10.3. DEBUG EXPORTER

You can configure the debug exporter to export the collected data to the standard output.

Procedure

1. Configure the OpenTelemetryCollector custom resource as follows:

2. Use the oc logs command or the web console to export the logs to the standard output.

 metrics:
 address: ":8888" 1

$ oc port-forward <collector_pod>

 config: |
 exporters:
 debug:
 verbosity: detailed
 service:
 pipelines:
 traces:
 exporters: [debug]
 metrics:
 exporters: [debug]
 logs:
 exporters: [debug]

CHAPTER 10. TROUBLESHOOTING

97

CHAPTER 11. MIGRATING

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Jaeger) is a deprecated feature.
Deprecated functionality is still included in OpenShift Container Platform and continues
to be supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

If you are already using the Red Hat OpenShift distributed tracing platform (Jaeger) for your
applications, you can migrate to the Red Hat build of OpenTelemetry, which is based on the
OpenTelemetry open-source project.

The Red Hat build of OpenTelemetry provides a set of APIs, libraries, agents, and instrumentation to
facilitate observability in distributed systems. The OpenTelemetry Collector in the Red Hat build of
OpenTelemetry can ingest the Jaeger protocol, so you do not need to change the SDKs in your
applications.

Migration from the distributed tracing platform (Jaeger) to the Red Hat build of OpenTelemetry
requires configuring the OpenTelemetry Collector and your applications to report traces seamlessly.
You can migrate sidecar and sidecarless deployments.

11.1. MIGRATING WITH SIDECARS

The Red Hat build of OpenTelemetry Operator supports sidecar injection into deployment workloads, so
you can migrate from a distributed tracing platform (Jaeger) sidecar to a Red Hat build of
OpenTelemetry sidecar.

Prerequisites

The Red Hat OpenShift distributed tracing platform (Jaeger) is used on the cluster.

The Red Hat build of OpenTelemetry is installed.

Procedure

1. Configure the OpenTelemetry Collector as a sidecar.

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: <otel-collector-namespace>
spec:
 mode: sidecar
 config: |
 receivers:
 jaeger:
 protocols:
 grpc: {}

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

98

https://opentelemetry.io/

1

1

This endpoint points to the Gateway of a TempoStack instance deployed by using the
<example> Tempo Operator.

2. Create a service account for running your application.

3. Create a cluster role for the permissions needed by some processors.

The resourcedetectionprocessor requires permissions for infrastructures and
infrastructures/status.

4. Create a ClusterRoleBinding to set the permissions for the service account.

 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 processors:
 batch: {}
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 timeout: 2s
 exporters:
 otlp:
 endpoint: "tempo-<example>-gateway:8090" 1
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger]
 processors: [memory_limiter, resourcedetection, batch]
 exporters: [otlp]

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-sidecar

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector-sidecar
rules:
 1
- apiGroups: ["config.openshift.io"]
 resources: ["infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

CHAPTER 11. MIGRATING

99

5. Deploy the OpenTelemetry Collector as a sidecar.

6. Remove the injected Jaeger Agent from your application by removing the
"sidecar.jaegertracing.io/inject": "true" annotation from your Deployment object.

7. Enable automatic injection of the OpenTelemetry sidecar by adding the
sidecar.opentelemetry.io/inject: "true" annotation to the
.spec.template.metadata.annotations field of your Deployment object.

8. Use the created service account for the deployment of your application to allow the processors
to get the correct information and add it to your traces.

11.2. MIGRATING WITHOUT SIDECARS

You can migrate from the distributed tracing platform (Jaeger) to the Red Hat build of OpenTelemetry
without sidecar deployment.

Prerequisites

The Red Hat OpenShift distributed tracing platform (Jaeger) is used on the cluster.

The Red Hat build of OpenTelemetry is installed.

Procedure

1. Configure OpenTelemetry Collector deployment.

2. Create the project where the OpenTelemetry Collector will be deployed.

3. Create a service account for running the OpenTelemetry Collector instance.

4. Create a cluster role for setting the required permissions for the processors.

metadata:
 name: otel-collector-sidecar
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: otel-collector-example
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: observability

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector-deployment
 namespace: observability

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

100

1

2

Permissions for the pods and namespaces resources are required for the
k8sattributesprocessor.

Permissions for infrastructures and infrastructures/status are required for
resourcedetectionprocessor.

5. Create a ClusterRoleBinding to set the permissions for the service account.

6. Create the OpenTelemetry Collector instance.

NOTE

This collector will export traces to a TempoStack instance. You must create your
TempoStack instance by using the Red Hat Tempo Operator and place here the
correct endpoint.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: otel-collector
rules:
 1
 2
- apiGroups: ["", "config.openshift.io"]
 resources: ["pods", "namespaces", "infrastructures", "infrastructures/status"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: otel-collector
subjects:
- kind: ServiceAccount
 name: otel-collector-deployment
 namespace: observability
roleRef:
 kind: ClusterRole
 name: otel-collector
 apiGroup: rbac.authorization.k8s.io

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: otel
 namespace: observability
spec:
 mode: deployment
 serviceAccount: otel-collector-deployment
 config: |
 receivers:
 jaeger:
 protocols:
 grpc: {}

CHAPTER 11. MIGRATING

101

1

7. Point your tracing endpoint to the OpenTelemetry Operator.

8. If you are exporting your traces directly from your application to Jaeger, change the API
endpoint from the Jaeger endpoint to the OpenTelemetry Collector endpoint.

Example of exporting traces by using the jaegerexporter with Golang

The URL points to the OpenTelemetry Collector API endpoint.

 thrift_binary: {}
 thrift_compact: {}
 thrift_http: {}
 processors:
 batch: {}
 k8sattributes:
 memory_limiter:
 check_interval: 1s
 limit_percentage: 50
 spike_limit_percentage: 30
 resourcedetection:
 detectors: [openshift]
 exporters:
 otlp:
 endpoint: "tempo-example-gateway:8090"
 tls:
 insecure: true
 service:
 pipelines:
 traces:
 receivers: [jaeger]
 processors: [memory_limiter, k8sattributes, resourcedetection, batch]
 exporters: [otlp]

exp, err := jaeger.New(jaeger.WithCollectorEndpoint(jaeger.WithEndpoint(url))) 1

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

102

CHAPTER 12. UPGRADING
For version upgrades, the Red Hat build of OpenTelemetry Operator uses the Operator Lifecycle
Manager (OLM), which controls installation, upgrade, and role-based access control (RBAC) of
Operators in a cluster.

The OLM runs in the OpenShift Container Platform by default. The OLM queries for available
Operators as well as upgrades for installed Operators.

When the Red Hat build of OpenTelemetry Operator is upgraded to the new version, it scans for running
OpenTelemetry Collector instances that it manages and upgrades them to the version corresponding to
the Operator’s new version.

12.1. ADDITIONAL RESOURCES

Operator Lifecycle Manager concepts and resources

Updating installed Operators

CHAPTER 12. UPGRADING

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-upgrading-operators

CHAPTER 13. REMOVING
The steps for removing the Red Hat build of OpenTelemetry from an OpenShift Container Platform
cluster are as follows:

1. Shut down all Red Hat build of OpenTelemetry pods.

2. Remove any OpenTelemetryCollector instances.

3. Remove the Red Hat build of OpenTelemetry Operator.

13.1. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY
USING THE WEB CONSOLE

You can remove an OpenTelemetry Collector instance in the Administrator view of the web console.

Prerequisites

You are logged in to the web console as a cluster administrator with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must be logged in using an account with the dedicated-
admin role.

Procedure

1. Go to Operators → Installed Operators → Red Hat build of OpenTelemetry Operator →
OpenTelemetryInstrumentation or OpenTelemetryCollector.

2. To remove the relevant instance, select → Delete …​ → Delete.

3. Optional: Remove the Red Hat build of OpenTelemetry Operator.

13.2. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY
USING THE CLI

You can remove an OpenTelemetry Collector instance on the command line.

Prerequisites

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

Procedure

$ oc login --username=<your_username>

OpenShift Container Platform 4.12 Red Hat build of OpenTelemetry

104

1. Get the name of the OpenTelemetry Collector instance by running the following command:

2. Remove the OpenTelemetry Collector instance by running the following command:

3. Optional: Remove the Red Hat build of OpenTelemetry Operator.

Verification

To verify successful removal of the OpenTelemetry Collector instance, run oc get
deployments again:

13.3. ADDITIONAL RESOURCES

Deleting Operators from a cluster

Getting started with the OpenShift CLI

$ oc get deployments -n <project_of_opentelemetry_instance>

$ oc delete opentelemetrycollectors <opentelemetry_instance_name> -n
<project_of_opentelemetry_instance>

$ oc get deployments -n <project_of_opentelemetry_instance>

CHAPTER 13. REMOVING

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/cli_tools/#getting-started-cli

	Table of Contents
	CHAPTER 1. RELEASE NOTES
	1.1. RELEASE NOTES FOR RED HAT BUILD OF OPENTELEMETRY 3.2
	1.1.1. Red Hat build of OpenTelemetry overview
	1.1.2. Technology Preview features
	1.1.3. New features and enhancements
	1.1.4. Deprecated functionality
	1.1.5. Bug fixes
	1.1.6. Getting support
	1.1.7. Making open source more inclusive

	1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT BUILD OF OPENTELEMETRY
	1.2.1. Red Hat build of OpenTelemetry overview
	1.2.2. Release notes for Red Hat build of OpenTelemetry 3.1.1
	1.2.2.1. CVEs

	1.2.3. Release notes for Red Hat build of OpenTelemetry 3.1
	1.2.3.1. Technology Preview features
	1.2.3.2. New features and enhancements

	1.2.4. Release notes for Red Hat build of OpenTelemetry 3.0
	1.2.4.1. New features and enhancements
	1.2.4.2. Removal notice
	1.2.4.3. Bug fixes
	1.2.4.4. Known issues

	1.2.5. Release notes for Red Hat build of OpenTelemetry 2.9.2
	1.2.5.1. CVEs
	1.2.5.2. Known issues

	1.2.6. Release notes for Red Hat build of OpenTelemetry 2.9.1
	1.2.6.1. CVEs
	1.2.6.2. Known issues

	1.2.7. Release notes for Red Hat build of OpenTelemetry 2.9
	1.2.7.1. New features and enhancements
	1.2.7.2. Known issues

	1.2.8. Release notes for Red Hat build of OpenTelemetry 2.8
	1.2.8.1. Bug fixes

	1.2.9. Release notes for Red Hat build of OpenTelemetry 2.7
	1.2.9.1. Bug fixes

	1.2.10. Release notes for Red Hat build of OpenTelemetry 2.6
	1.2.10.1. Bug fixes

	1.2.11. Release notes for Red Hat build of OpenTelemetry 2.5
	1.2.11.1. New features and enhancements
	1.2.11.2. Bug fixes

	1.2.12. Release notes for Red Hat build of OpenTelemetry 2.4
	1.2.12.1. Bug fixes

	1.2.13. Release notes for Red Hat build of OpenTelemetry 2.3
	1.2.13.1. Bug fixes

	1.2.14. Release notes for Red Hat build of OpenTelemetry 2.2
	1.2.14.1. Technology Preview features
	1.2.14.2. Bug fixes

	1.2.15. Release notes for Red Hat build of OpenTelemetry 2.1
	1.2.15.1. Technology Preview features
	1.2.15.2. Bug fixes

	1.2.16. Release notes for Red Hat build of OpenTelemetry 2.0
	1.2.17. Getting support
	1.2.18. Making open source more inclusive

	CHAPTER 2. INSTALLING
	2.1. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY FROM THE WEB CONSOLE
	2.2. INSTALLING THE RED HAT BUILD OF OPENTELEMETRY BY USING THE CLI
	2.3. ADDITIONAL RESOURCES

	CHAPTER 3. CONFIGURING THE COLLECTOR
	3.1. OPENTELEMETRY COLLECTOR CONFIGURATION OPTIONS
	3.2. OPENTELEMETRY COLLECTOR COMPONENTS
	3.2.1. Receivers
	3.2.1.1. OTLP Receiver
	3.2.1.2. Jaeger Receiver
	3.2.1.3. Host Metrics Receiver
	3.2.1.4. Kubernetes Objects Receiver
	3.2.1.5. Kubelet Stats Receiver
	3.2.1.6. Prometheus Receiver
	3.2.1.7. Zipkin Receiver
	3.2.1.8. Kafka Receiver
	3.2.1.9. Kubernetes Cluster Receiver
	3.2.1.10. OpenCensus Receiver
	3.2.1.11. Filelog Receiver
	3.2.1.12. Journald Receiver
	3.2.1.13. Kubernetes Events Receiver

	3.2.2. Processors
	3.2.2.1. Batch Processor
	3.2.2.2. Memory Limiter Processor
	3.2.2.3. Resource Detection Processor
	3.2.2.4. Attributes Processor
	3.2.2.5. Resource Processor
	3.2.2.6. Span Processor
	3.2.2.7. Kubernetes Attributes Processor
	3.2.2.8. Filter Processor
	3.2.2.9. Routing Processor
	3.2.2.10. Cumulative to Delta Processor

	3.2.3. Exporters
	3.2.3.1. OTLP Exporter
	3.2.3.2. OTLP HTTP Exporter
	3.2.3.3. Debug Exporter
	3.2.3.4. Load Balancing Exporter
	3.2.3.5. Prometheus Exporter
	3.2.3.6. Kafka Exporter

	3.2.4. Connectors
	3.2.4.1. Forward Connector
	3.2.4.2. Spanmetrics Connector

	3.2.5. Extensions
	3.2.5.1. BearerTokenAuth Extension
	3.2.5.2. OAuth2Client Extension
	3.2.5.3. File Storage Extension
	3.2.5.4. OIDC Auth Extension
	3.2.5.5. Jaeger Remote Sampling Extension
	3.2.5.6. Performance Profiler Extension
	3.2.5.7. Health Check Extension
	3.2.5.8. Memory Ballast Extension
	3.2.5.9. zPages Extension

	3.3. CREATING THE REQUIRED RBAC RESOURCES AUTOMATICALLY
	3.4. TARGET ALLOCATOR

	CHAPTER 4. CONFIGURING THE INSTRUMENTATION
	4.1. OPENTELEMETRY INSTRUMENTATION CONFIGURATION OPTIONS
	4.1.1. Instrumentation options
	4.1.2. Using the instrumentation CR with Service Mesh
	4.1.2.1. Configuration of the Apache HTTP Server auto-instrumentation
	4.1.2.2. Configuration of the .NET auto-instrumentation
	4.1.2.3. Configuration of the Go auto-instrumentation
	4.1.2.4. Configuration of the Java auto-instrumentation
	4.1.2.5. Configuration of the Node.js auto-instrumentation
	4.1.2.6. Configuration of the Python auto-instrumentation
	4.1.2.7. Configuration of the OpenTelemetry SDK variables
	4.1.2.8. Multi-container pods

	CHAPTER 5. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR
	5.1. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITH SIDECAR INJECTION
	5.2. SENDING TRACES AND METRICS TO THE OPENTELEMETRY COLLECTOR WITHOUT SIDECAR INJECTION

	CHAPTER 6. CONFIGURING METRICS FOR THE MONITORING STACK
	6.1. CONFIGURATION FOR SENDING METRICS TO THE MONITORING STACK
	6.2. CONFIGURATION FOR RECEIVING METRICS FROM THE MONITORING STACK
	6.3. ADDITIONAL RESOURCES

	CHAPTER 7. FORWARDING TRACES TO A TEMPOSTACK INSTANCE
	CHAPTER 8. CONFIGURING THE OPENTELEMETRY COLLECTOR METRICS
	CHAPTER 9. GATHERING THE OBSERVABILITY DATA FROM MULTIPLE CLUSTERS
	CHAPTER 10. TROUBLESHOOTING
	10.1. GETTING THE OPENTELEMETRY COLLECTOR LOGS
	10.2. EXPOSING THE METRICS
	10.3. DEBUG EXPORTER

	CHAPTER 11. MIGRATING
	11.1. MIGRATING WITH SIDECARS
	11.2. MIGRATING WITHOUT SIDECARS

	CHAPTER 12. UPGRADING
	12.1. ADDITIONAL RESOURCES

	CHAPTER 13. REMOVING
	13.1. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE WEB CONSOLE
	13.2. REMOVING AN OPENTELEMETRY COLLECTOR INSTANCE BY USING THE CLI
	13.3. ADDITIONAL RESOURCES

