
OpenShift Container Platform 4.12

Networking

Configuring and managing cluster networking

Last Updated: 2024-04-26

OpenShift Container Platform 4.12 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT NETWORKING

CHAPTER 2. UNDERSTANDING NETWORKING
2.1. OPENSHIFT CONTAINER PLATFORM DNS
2.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

2.2.1. Comparing routes and Ingress
2.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING

CHAPTER 3. ACCESSING HOSTS
3.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER

CHAPTER 4. NETWORKING OPERATORS OVERVIEW
4.1. CLUSTER NETWORK OPERATOR
4.2. DNS OPERATOR
4.3. INGRESS OPERATOR
4.4. EXTERNAL DNS OPERATOR
4.5. INGRESS NODE FIREWALL OPERATOR
4.6. NETWORK OBSERVABILITY OPERATOR

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. CLUSTER NETWORK OPERATOR
5.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
5.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
5.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
5.5. CLUSTER NETWORK OPERATOR CONFIGURATION

5.5.1. Cluster Network Operator configuration object
defaultNetwork object configuration

Configuration for the OpenShift SDN network plugin
Configuration for the OVN-Kubernetes network plugin

kubeProxyConfig object configuration
5.5.2. Cluster Network Operator example configuration

5.6. ADDITIONAL RESOURCES

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
6.1. DNS OPERATOR
6.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE
6.3. CONTROLLING DNS POD PLACEMENT
6.4. VIEW THE DEFAULT DNS
6.5. USING DNS FORWARDING
6.6. DNS OPERATOR STATUS
6.7. DNS OPERATOR LOGS
6.8. SETTING THE COREDNS LOG LEVEL
6.9. SETTING THE COREDNS OPERATOR LOG LEVEL
6.10. TUNING THE COREDNS CACHE

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
7.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
7.2. THE INGRESS CONFIGURATION ASSET
7.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

7.3.1. Ingress Controller TLS security profiles
7.3.1.1. Understanding TLS security profiles
7.3.1.2. Configuring the TLS security profile for the Ingress Controller

19

20
20
20
21
21

24

24

25
25
25
25
25
25
25

26
26
26
27
27
27
28
29
29
30
35
35
36

37
37
37
38
39
39
43
44
44
44
45

47
47
47
47
58
58
59

Table of Contents

1

. .

. .

7.3.1.3. Configuring mutual TLS authentication
7.4. VIEW THE DEFAULT INGRESS CONTROLLER
7.5. VIEW INGRESS OPERATOR STATUS
7.6. VIEW INGRESS CONTROLLER LOGS
7.7. VIEW INGRESS CONTROLLER STATUS
7.8. CONFIGURING THE INGRESS CONTROLLER

7.8.1. Setting a custom default certificate
7.8.2. Removing a custom default certificate
7.8.3. Autoscaling an Ingress Controller
7.8.4. Scaling an Ingress Controller
7.8.5. Configuring Ingress access logging
7.8.6. Setting Ingress Controller thread count
7.8.7. Configuring an Ingress Controller to use an internal load balancer
7.8.8. Configuring global access for an Ingress Controller on GCP
7.8.9. Setting the Ingress Controller health check interval
7.8.10. Configuring the default Ingress Controller for your cluster to be internal
7.8.11. Configuring the route admission policy
7.8.12. Using wildcard routes
7.8.13. Using X-Forwarded headers

Example use cases
7.8.14. Enabling HTTP/2 Ingress connectivity
7.8.15. Configuring the PROXY protocol for an Ingress Controller
7.8.16. Specifying an alternative cluster domain using the appsDomain option
7.8.17. Converting HTTP header case
7.8.18. Using router compression
7.8.19. Exposing router metrics
7.8.20. Customizing HAProxy error code response pages
7.8.21. Setting the Ingress Controller maximum connections

7.9. ADDITIONAL RESOURCES

CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORM
8.1. INGRESS CONTROLLER SHARDING

8.1.1. Traditional sharding example
8.1.2. Overlapped sharding example
8.1.3. Sharding the default Ingress Controller
8.1.4. Ingress sharding and DNS
8.1.5. Configuring Ingress Controller sharding by using route labels
8.1.6. Configuring Ingress Controller sharding by using namespace labels

8.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING
Additional Resources

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM
9.1. INGRESS NODE FIREWALL OPERATOR
9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR

9.2.1. Installing the Ingress Node Firewall Operator using the CLI
9.2.2. Installing the Ingress Node Firewall Operator using the web console

9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR
9.3.1. Ingress Node Firewall configuration object

Ingress Node Firewall Operator example configuration
9.3.2. Ingress Node Firewall rules object

Ingress object configuration
Ingress Node Firewall rules object example
Zero trust Ingress Node Firewall rules object example

61
62
62
62
62
63
63
64
65
70
71
73
73
75
76
77
78
79
79
80
80
82
83
84
86
86
88
90
91

92
92
93
94
94
95
95
97
98

100

101
101
101
101

103
104
104
105
105
106
107
108

OpenShift Container Platform 4.12 Networking

2

. .

. .

. .

. .

. .

. .

. .

. .

9.4. VIEWING INGRESS NODE FIREWALL OPERATOR RULES
9.5. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR

CHAPTER 10. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT
10.1. MANAGED DNS MANAGEMENT POLICY
10.2. UNMANAGED DNS MANAGEMENT POLICY
10.3. CREATING A CUSTOM INGRESS CONTROLLER WITH THE UNMANAGED DNS MANAGEMENT POLICY

10.4. MODIFYING AN EXISTING INGRESS CONTROLLER
10.5. ADDITIONAL RESOURCES

CHAPTER 11. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
11.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

11.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal
11.1.2. Configuring the Ingress Controller endpoint publishing scope to External

11.2. ADDITIONAL RESOURCES

CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT
12.1. CONNECTION HEALTH CHECKS PERFORMED
12.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
12.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

Connection log fields
12.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK
13.1. ABOUT THE CLUSTER MTU

13.1.1. Service interruption considerations
13.1.2. MTU value selection
13.1.3. How the migration process works

13.2. CHANGING THE CLUSTER MTU
13.3. ADDITIONAL RESOURCES

CHAPTER 14. CONFIGURING THE NODE PORT SERVICE RANGE
14.1. PREREQUISITES
14.2. EXPANDING THE NODE PORT RANGE
14.3. ADDITIONAL RESOURCES

CHAPTER 15. CONFIGURING IP FAILOVER
15.1. IP FAILOVER ENVIRONMENT VARIABLES
15.2. CONFIGURING IP FAILOVER
15.3. ABOUT VIRTUAL IP ADDRESSES
15.4. CONFIGURING CHECK AND NOTIFY SCRIPTS
15.5. CONFIGURING VRRP PREEMPTION
15.6. ABOUT VRRP ID OFFSET
15.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES
15.8. HIGH AVAILABILITY FOR INGRESSIP
15.9. REMOVING IP FAILOVER

CHAPTER 16. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTLS
16.1. CONFIGURING THE TUNING CNI
16.2. ADDITIONAL RESOURCES

CHAPTER 17. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL
CLUSTER

17.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER
PLATFORM

109
109

111
111
111

111
112
113

114
114
115
116
116

117
117
117
117
119

120

125
125
125
125
126
127
133

135
135
135
136

137
138
139
142
143
145
146
146
147
147

150
150
153

154

154

Table of Contents

3

. .

. .

17.1.1. Example configurations using SCTP protocol
17.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
17.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

CHAPTER 18. USING PTP HARDWARE
18.1. ABOUT PTP HARDWARE
18.2. ABOUT PTP

18.2.1. Elements of a PTP domain
18.2.2. Advantages of PTP over NTP
18.2.3. Using PTP with dual NIC hardware

18.3. INSTALLING THE PTP OPERATOR USING THE CLI
18.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE
18.5. CONFIGURING PTP DEVICES

18.5.1. Discovering PTP capable network devices in your cluster
18.5.2. Configuring linuxptp services as a grandmaster clock
18.5.3. Configuring linuxptp services as an ordinary clock
18.5.4. Configuring linuxptp services as a boundary clock
18.5.5. Configuring linuxptp services as boundary clocks for dual NIC hardware
18.5.6. Intel Columbiaville E800 series NIC as PTP ordinary clock reference
18.5.7. Configuring FIFO priority scheduling for PTP hardware
18.5.8. Configuring log filtering for linuxptp services

18.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES
18.6.1. Collecting Precision Time Protocol (PTP) Operator data

18.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK
18.7.1. About PTP and clock synchronization error events
18.7.2. About the PTP fast event notifications framework
18.7.3. Configuring the PTP fast event notifications publisher
18.7.4. Migrating consumer applications to use HTTP transport for PTP or bare-metal events
18.7.5. Installing the AMQ messaging bus
18.7.6. Subscribing DU applications to PTP events REST API reference

18.7.6.1. api/ocloudNotifications/v1/subscriptions
HTTP method
Description

HTTP method
Description

18.7.6.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method
Description

18.7.6.3. api/ocloudNotifications/v1/health/
HTTP method
Description

18.7.6.4. api/ocloudNotifications/v1/publishers
HTTP method
Description

18.7.6.5. /api/ocloudnotifications/v1/<resource_address>/CurrentState
HTTP method
Description

18.7.7. Monitoring PTP fast event metrics

CHAPTER 19. EXTERNAL DNS OPERATOR
19.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

19.1.1. External DNS Operator
19.1.2. External DNS Operator logs

154
155
156

159
159
159
159
160
160
160
162
162
163
163
167
172
178
180
180
182
183
185
186
186
186
188
189
191

192
192
192
192
193
193
193
193
193
194
194
194
194
194
194
196
196
196
198

200
200
200
200

OpenShift Container Platform 4.12 Networking

4

. .

. .

19.1.2.1. External DNS Operator domain name limitations
19.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS

19.2.1. Installing the External DNS Operator
19.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

19.3.1. External DNS Operator configuration parameters
19.4. CREATING DNS RECORDS ON AWS

19.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator
19.5. CREATING DNS RECORDS ON AZURE

19.5.1. Creating DNS records on an Azure public DNS zone
19.6. CREATING DNS RECORDS ON GCP

19.6.1. Creating DNS records on a public managed zone for GCP
19.7. CREATING DNS RECORDS ON INFOBLOX

19.7.1. Creating DNS records on a public DNS zone on Infoblox
19.8. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR

19.8.1. Trusting the certificate authority of the cluster-wide proxy

CHAPTER 20. NETWORK POLICY
20.1. ABOUT NETWORK POLICY

20.1.1. About network policy
20.1.1.1. Using the allow-from-router network policy
20.1.1.2. Using the allow-from-hostnetwork network policy

20.1.2. Optimizations for network policy with OpenShift SDN
20.1.3. Optimizations for network policy with OVN-Kubernetes network plugin
20.1.4. Next steps
20.1.5. Additional resources

20.2. CREATING A NETWORK POLICY
20.2.1. Example NetworkPolicy object
20.2.2. Creating a network policy using the CLI
20.2.3. Creating a default deny all network policy
20.2.4. Creating a network policy to allow traffic from external clients
20.2.5. Creating a network policy allowing traffic to an application from all namespaces
20.2.6. Creating a network policy allowing traffic to an application from a namespace
20.2.7. Additional resources

20.3. VIEWING A NETWORK POLICY
20.3.1. Example NetworkPolicy object
20.3.2. Viewing network policies using the CLI

20.4. EDITING A NETWORK POLICY
20.4.1. Editing a network policy
20.4.2. Example NetworkPolicy object
20.4.3. Additional resources

20.5. DELETING A NETWORK POLICY
20.5.1. Deleting a network policy using the CLI

20.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
20.6.1. Modifying the template for new projects
20.6.2. Adding network policies to the new project template

20.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
20.7.1. Configuring multitenant isolation by using network policy
20.7.2. Next steps
20.7.3. Additional resources

CHAPTER 21. CIDR RANGE DEFINITIONS
21.1. MACHINE CIDR
21.2. SERVICE CIDR

201
201
201

202
202
205
205
207
207
208
208
210
210
212
212

214
214
214
216
216
217
217
219
219
219
219

220
222
223
224
226
229
229
229
230
231
231

232
233
233
233
234
234
235
237
237
239
239

241
241
241

Table of Contents

5

. .

. .

21.3. POD CIDR
21.4. HOST PREFIX

CHAPTER 22. AWS LOAD BALANCER OPERATOR
22.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES

22.1.1. AWS Load Balancer Operator 1.0.0
22.1.1.1. Notable changes
22.1.1.2. Bug fixes

22.1.2. Earlier versions
22.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM

22.2.1. AWS Load Balancer Operator considerations
22.2.2. AWS Load Balancer Operator
22.2.3. AWS Load Balancer Operator logs

22.3. UNDERSTANDING AWS LOAD BALANCER OPERATOR
22.3.1. Installing the AWS Load Balancer Operator

22.4. INSTALLING THE AWS LOAD BALANCER OPERATOR ON A CLUSTER USING THE AWS SECURITY
TOKEN SERVICE

22.4.1. Bootstrapping AWS Load Balancer Operator on Security Token Service cluster
22.4.2. Configuring AWS Load Balancer Operator on Security Token Service cluster by using managed
CredentialsRequest objects
22.4.3. Configuring the AWS Load Balancer Operator on Security Token Service cluster by using specific
credentials
22.4.4. Additional resources

22.5. CREATING AN INSTANCE OF THE AWS LOAD BALANCER CONTROLLER
22.5.1. Creating the AWS Load Balancer Controller

22.6. SERVING MULTIPLE INGRESS RESOURCES THROUGH A SINGLE AWS LOAD BALANCER
22.6.1. Creating multiple ingress resources through a single AWS Load Balancer

22.7. ADDING TLS TERMINATION
22.7.1. Adding TLS termination on the AWS Load Balancer

22.8. CONFIGURING CLUSTER-WIDE PROXY
22.8.1. Trusting the certificate authority of the cluster-wide proxy
22.8.2. Additional resources

CHAPTER 23. MULTIPLE NETWORKS
23.1. UNDERSTANDING MULTIPLE NETWORKS

23.1.1. Usage scenarios for an additional network
23.1.2. Additional networks in OpenShift Container Platform

23.2. CONFIGURING AN ADDITIONAL NETWORK
23.2.1. Approaches to managing an additional network
23.2.2. Configuration for an additional network attachment

23.2.2.1. Configuration of an additional network through the Cluster Network Operator
23.2.2.2. Configuration of an additional network from a YAML manifest

23.2.3. Configurations for additional network types
23.2.3.1. Configuration for a bridge additional network

23.2.3.1.1. bridge configuration example
23.2.3.2. Configuration for a host device additional network

23.2.3.2.1. host-device configuration example
23.2.3.3. Configuration for an IPVLAN additional network

23.2.3.3.1. ipvlan configuration example
23.2.3.4. Configuration for a MACVLAN additional network

23.2.3.4.1. macvlan configuration example
23.2.4. Configuration of IP address assignment for an additional network

23.2.4.1. Static IP address assignment configuration
23.2.4.2. Dynamic IP address (DHCP) assignment configuration

241
241

242
242
242
242
242
242
243
243
243
244
244
244

245
245

246

247
248
248
248
252
252
255
255
256
256
257

258
258
258
258
259
259
259
260
261
261
261

263
263
264
264
265
265
266
266
266
268

OpenShift Container Platform 4.12 Networking

6

. .

23.2.4.3. Dynamic IP address assignment configuration with Whereabouts
23.2.4.4. Creating a Whereabouts reconciler daemon set

23.2.5. Creating an additional network attachment with the Cluster Network Operator
23.2.6. Creating an additional network attachment by applying a YAML manifest

23.3. ABOUT VIRTUAL ROUTING AND FORWARDING
23.3.1. About virtual routing and forwarding

23.3.1.1. Benefits of secondary networks for pods for telecommunications operators
23.4. CONFIGURING MULTI-NETWORK POLICY

23.4.1. Differences between multi-network policy and network policy
23.4.2. Enabling multi-network policy for the cluster
23.4.3. Working with multi-network policy

23.4.3.1. Prerequisites
23.4.3.2. Creating a multi-network policy using the CLI
23.4.3.3. Editing a multi-network policy
23.4.3.4. Viewing multi-network policies using the CLI
23.4.3.5. Deleting a multi-network policy using the CLI
23.4.3.6. Creating a default deny all multi-network policy
23.4.3.7. Creating a multi-network policy to allow traffic from external clients
23.4.3.8. Creating a multi-network policy allowing traffic to an application from all namespaces
23.4.3.9. Creating a multi-network policy allowing traffic to an application from a namespace

23.4.4. Additional resources
23.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

23.5.1. Adding a pod to an additional network
23.5.1.1. Specifying pod-specific addressing and routing options

23.6. REMOVING A POD FROM AN ADDITIONAL NETWORK
23.6.1. Removing a pod from an additional network

23.7. EDITING AN ADDITIONAL NETWORK
23.7.1. Modifying an additional network attachment definition

23.8. REMOVING AN ADDITIONAL NETWORK
23.8.1. Removing an additional network attachment definition

23.9. ASSIGNING A SECONDARY NETWORK TO A VRF
23.9.1. Creating an additional network attachment with the CNI VRF plugin

CHAPTER 24. HARDWARE NETWORKS
24.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS

24.1.1. Components that manage SR-IOV network devices
24.1.1.1. Supported platforms
24.1.1.2. Supported devices
24.1.1.3. Automated discovery of SR-IOV network devices

24.1.1.3.1. Example SriovNetworkNodeState object
24.1.1.4. Example use of a virtual function in a pod
24.1.1.5. DPDK library for use with container applications
24.1.1.6. Huge pages resource injection for Downward API

24.1.2. Additional resources
24.1.3. Next steps

24.2. INSTALLING THE SR-IOV NETWORK OPERATOR
24.2.1. Installing SR-IOV Network Operator

24.2.1.1. CLI: Installing the SR-IOV Network Operator
24.2.1.2. Web console: Installing the SR-IOV Network Operator

24.2.2. Next steps
24.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

24.3.1. Configuring the SR-IOV Network Operator
24.3.1.1. SR-IOV Network Operator config custom resource

269
269
271

272
273
273
273
273
274
274
275
275
275
278
279
280
281
282
283
285
288
288
288
290
293
293
294
294
295
295
296
296

300
300
300
301
301
303
303
304
305
306
307
307
307
307
307
308
310
310
310
310

Table of Contents

7

24.3.1.2. About the Network Resources Injector
24.3.1.3. About the SR-IOV Network Operator admission controller webhook
24.3.1.4. About custom node selectors
24.3.1.5. Disabling or enabling the Network Resources Injector
24.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook
24.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
24.3.1.8. Configuring the SR-IOV Network Operator for single node installations
24.3.1.9. Deploying the SR-IOV Operator for hosted control planes

24.3.2. Next steps
24.4. CONFIGURING AN SR-IOV NETWORK DEVICE

24.4.1. SR-IOV network node configuration object
24.4.1.1. SR-IOV network node configuration examples
24.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

24.4.2. Configuring SR-IOV network devices
24.4.3. Troubleshooting SR-IOV configuration
24.4.4. Assigning an SR-IOV network to a VRF

24.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin
24.4.5. Next steps

24.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
24.5.1. Ethernet device configuration object

24.5.1.1. Configuration of IP address assignment for an additional network
24.5.1.1.1. Static IP address assignment configuration
24.5.1.1.2. Dynamic IP address (DHCP) assignment configuration
24.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts
24.5.1.1.4. Creating a Whereabouts reconciler daemon set

24.5.2. Configuring SR-IOV additional network
24.5.3. Next steps
24.5.4. Additional resources

24.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
24.6.1. InfiniBand device configuration object

24.6.1.1. Configuration of IP address assignment for an additional network
24.6.1.1.1. Static IP address assignment configuration
24.6.1.1.2. Dynamic IP address (DHCP) assignment configuration
24.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts
24.6.1.1.4. Creating a Whereabouts reconciler daemon set

24.6.2. Configuring SR-IOV additional network
24.6.3. Next steps
24.6.4. Additional resources

24.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
24.7.1. Runtime configuration for a network attachment

24.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
24.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

24.7.2. Adding a pod to an additional network
24.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
24.7.4. A test pod template for clusters that use SR-IOV on OpenStack
24.7.5. Additional resources

24.8. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTL SETTINGS FOR SR-IOV NETWORKS
24.8.1. Labeling nodes with an SR-IOV enabled NIC
24.8.2. Setting one sysctl flag

24.8.2.1. Setting one sysctl flag on nodes with SR-IOV network devices
24.8.2.2. Configuring sysctl on a SR-IOV network

24.8.3. Configuring sysctl settings for pods associated with bonded SR-IOV interface flag
24.8.3.1. Setting all sysctl flag on nodes with bonded SR-IOV network devices

311
312
312
312
313
314
314
315
316
317
317
319

320
322
323
323
323
326
326
326
327
327
329
330
330
332
333
333
333
333
334
334
335
336
337
338
339
339
339
339
340
340
341

344
345
346
346
346
346
347
348
352
352

OpenShift Container Platform 4.12 Networking

8

. .

24.8.3.2. Configuring sysctl on a bonded SR-IOV network
24.9. USING HIGH PERFORMANCE MULTICAST

24.9.1. High performance multicast
24.9.2. Configuring an SR-IOV interface for multicast

24.10. USING DPDK AND RDMA
24.10.1. Using a virtual function in DPDK mode with an Intel NIC
24.10.2. Using a virtual function in DPDK mode with a Mellanox NIC
24.10.3. Overview of achieving a specific DPDK line rate
24.10.4. Using SR-IOV and the Node Tuning Operator to achieve a DPDK line rate

24.10.4.1. Example SR-IOV Network Operator for virtual functions
24.10.4.2. Example SR-IOV network operator
24.10.4.3. Example DPDK base workload
24.10.4.4. Example testpmd script

24.10.5. Using a virtual function in RDMA mode with a Mellanox NIC
24.10.6. A test pod template for clusters that use OVS-DPDK on OpenStack
24.10.7. A test pod template for clusters that use OVS hardware offloading on OpenStack
24.10.8. Additional resources

24.11. USING POD-LEVEL BONDING
24.11.1. Configuring a bond interface from two SR-IOV interfaces

24.11.1.1. Creating a bond network attachment definition
24.11.1.2. Creating a pod using a bond interface

24.12. CONFIGURING HARDWARE OFFLOADING
24.12.1. About hardware offloading
24.12.2. Supported devices
24.12.3. Prerequisites
24.12.4. Configuring a machine config pool for hardware offloading
24.12.5. Configuring the SR-IOV network node policy

24.12.5.1. An example SR-IOV network node policy for OpenStack
24.12.6. Creating a network attachment definition
24.12.7. Adding the network attachment definition to your pods

24.13. SWITCHING BLUEFIELD-2 FROM DPU TO NIC
24.13.1. Switching Bluefield-2 from DPU mode to NIC mode

24.14. UNINSTALLING THE SR-IOV NETWORK OPERATOR
24.14.1. Uninstalling the SR-IOV Network Operator

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN
25.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

25.1.1. OVN-Kubernetes purpose
25.1.2. Supported network plugin feature matrix
25.1.3. OVN-Kubernetes IPv6 and dual-stack limitations
25.1.4. Session affinity

Stickiness timeout for session affinity
25.2. OVN-KUBERNETES ARCHITECTURE

25.2.1. Introduction to OVN-Kubernetes architecture
25.2.2. Listing all resources in the OVN-Kubernetes project
25.2.3. Listing the OVN-Kubernetes northbound database contents
25.2.4. Command line arguments for ovn-nbctl to examine northbound database contents
25.2.5. Listing the OVN-Kubernetes southbound database contents
25.2.6. Command line arguments for ovn-sbctl to examine southbound database contents
25.2.7. OVN-Kubernetes logical architecture

25.2.7.1. Installing network-tools on local host
25.2.7.2. Running network-tools

25.2.8. Additional resources

354
358
358
358
360
360
363
366
367
368
370
371
372
372
376
377
377
378
378
378
380
381
381
382
382
382
384
385
385
386
387
387
389
389

391
391
391

392
392
393
393
394
394
396
398
402
403
406
406
408
408
412

Table of Contents

9

25.3. TROUBLESHOOTING OVN-KUBERNETES
25.3.1. Monitoring OVN-Kubernetes health by using readiness probes
25.3.2. Viewing OVN-Kubernetes alerts in the console
25.3.3. Viewing OVN-Kubernetes alerts in the CLI
25.3.4. Viewing the OVN-Kubernetes logs using the CLI
25.3.5. Viewing the OVN-Kubernetes logs using the web console

25.3.5.1. Changing the OVN-Kubernetes log levels
25.3.6. Checking the OVN-Kubernetes pod network connectivity
25.3.7. Additional resources

25.4. TRACING OPENFLOW WITH OVNKUBE-TRACE
25.4.1. Installing the ovnkube-trace on local host
25.4.2. Running ovnkube-trace
25.4.3. Additional resources

25.5. MIGRATING FROM THE OPENSHIFT SDN NETWORK PLUGIN
25.5.1. Migration to the OVN-Kubernetes network plugin

25.5.1.1. Considerations for migrating to the OVN-Kubernetes network plugin
Namespace isolation
Egress IP addresses
Egress network policies
Egress router pods
Multicast
Network policies

25.5.1.2. How the migration process works
25.5.2. Migrating to the OVN-Kubernetes network plugin
25.5.3. Additional resources

25.6. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
25.6.1. Migrating to the OpenShift SDN network plugin

25.7. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
25.7.1. Converting to a dual-stack cluster network
25.7.2. Converting to a single-stack cluster network

25.8. LOGGING FOR EGRESS FIREWALL AND NETWORK POLICY RULES
25.8.1. Audit logging
25.8.2. Audit configuration
25.8.3. Configuring egress firewall and network policy auditing for a cluster
25.8.4. Enabling egress firewall and network policy audit logging for a namespace
25.8.5. Disabling egress firewall and network policy audit logging for a namespace
25.8.6. Additional resources

25.9. CONFIGURING IPSEC ENCRYPTION
25.9.1. Prerequisites
25.9.2. Types of network traffic flows encrypted by IPsec

25.9.2.1. Network connectivity requirements when IPsec is enabled
25.9.3. Encryption protocol and IPsec mode
25.9.4. Security certificate generation and rotation
25.9.5. Enabling IPsec encryption
25.9.6. Disabling IPsec encryption
25.9.7. Additional resources

25.10. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
25.10.1. How an egress firewall works in a project

25.10.1.1. Limitations of an egress firewall
25.10.1.2. Matching order for egress firewall policy rules
25.10.1.3. How Domain Name Server (DNS) resolution works

25.10.2. EgressFirewall custom resource (CR) object
25.10.2.1. EgressFirewall rules

412
412
413
414
414
415
416
418
419
419
419

420
425
425
426
426
427
427
427
428
428
428
428
430
437
437
437
442
443
444
445
445
446
447
451
452
453
453
453
453
454
454
455
455
456
456
457
457
458
459
459
459
460

OpenShift Container Platform 4.12 Networking

10

. .

25.10.2.2. Example EgressFirewall CR objects
25.10.3. Creating an egress firewall policy object

25.11. VIEWING AN EGRESS FIREWALL FOR A PROJECT
25.11.1. Viewing an EgressFirewall object

25.12. EDITING AN EGRESS FIREWALL FOR A PROJECT
25.12.1. Editing an EgressFirewall object

25.13. REMOVING AN EGRESS FIREWALL FROM A PROJECT
25.13.1. Removing an EgressFirewall object

25.14. CONFIGURING AN EGRESS IP ADDRESS
25.14.1. Egress IP address architectural design and implementation

25.14.1.1. Platform support
25.14.1.2. Public cloud platform considerations

25.14.1.2.1. Amazon Web Services (AWS) IP address capacity limits
25.14.1.2.2. Google Cloud Platform (GCP) IP address capacity limits
25.14.1.2.3. Microsoft Azure IP address capacity limits

25.14.1.3. Assignment of egress IPs to pods
25.14.1.4. Assignment of egress IPs to nodes
25.14.1.5. Architectural diagram of an egress IP address configuration

25.14.2. EgressIP object
25.14.3. EgressIPconfig object
25.14.4. Labeling a node to host egress IP addresses
25.14.5. Next steps
25.14.6. Additional resources

25.15. ASSIGNING AN EGRESS IP ADDRESS
25.15.1. Assigning an egress IP address to a namespace
25.15.2. Additional resources

25.16. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
25.16.1. About an egress router pod

25.16.1.1. Egress router modes
25.16.1.2. Egress router pod implementation
25.16.1.3. Deployment considerations
25.16.1.4. Failover configuration

25.16.2. Additional resources
25.17. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

25.17.1. Egress router custom resource
25.17.2. Deploying an egress router in redirect mode

25.18. ENABLING MULTICAST FOR A PROJECT
25.18.1. About multicast
25.18.2. Enabling multicast between pods

25.19. DISABLING MULTICAST FOR A PROJECT
25.19.1. Disabling multicast between pods

25.20. TRACKING NETWORK FLOWS
25.20.1. Network object configuration for tracking network flows
25.20.2. Adding destinations for network flows collectors
25.20.3. Deleting all destinations for network flows collectors
25.20.4. Additional resources

25.21. CONFIGURING HYBRID NETWORKING
25.21.1. Configuring hybrid networking with OVN-Kubernetes
25.21.2. Additional resources

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN
26.1. ABOUT THE OPENSHIFT SDN NETWORK PLUGIN

26.1.1. OpenShift SDN network isolation modes

460
461

462
462
463
463
463
463
464
464
464
465
466
467
467
467
467
468
469
471
472
472
472
473
473
474
474
474
474
474
475
475
476
476
476
478
481
481
481

483
484
484
485
486
487
488
488
488
489

491
491
491

Table of Contents

11

26.1.2. Supported network plugin feature matrix
26.2. MIGRATING TO THE OPENSHIFT SDN NETWORK PLUGIN

26.2.1. How the migration process works
26.2.2. Migrating to the OpenShift SDN network plugin
26.2.3. Additional resources

26.3. ROLLING BACK TO THE OVN-KUBERNETES NETWORK PLUGIN
26.3.1. Migrating to the OVN-Kubernetes network plugin

26.4. CONFIGURING EGRESS IPS FOR A PROJECT
26.4.1. Egress IP address architectural design and implementation

26.4.1.1. Platform support
26.4.1.2. Public cloud platform considerations

26.4.1.2.1. Amazon Web Services (AWS) IP address capacity limits
26.4.1.2.2. Google Cloud Platform (GCP) IP address capacity limits
26.4.1.2.3. Microsoft Azure IP address capacity limits

26.4.1.3. Limitations
26.4.1.4. IP address assignment approaches

26.4.1.4.1. Considerations when using automatically assigned egress IP addresses
26.4.1.4.2. Considerations when using manually assigned egress IP addresses

26.4.2. Configuring automatically assigned egress IP addresses for a namespace
26.4.3. Configuring manually assigned egress IP addresses for a namespace
26.4.4. Additional resources

26.5. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
26.5.1. How an egress firewall works in a project

26.5.1.1. Limitations of an egress firewall
26.5.1.2. Matching order for egress firewall policy rules
26.5.1.3. How Domain Name Server (DNS) resolution works

26.5.2. EgressNetworkPolicy custom resource (CR) object
26.5.2.1. EgressNetworkPolicy rules
26.5.2.2. Example EgressNetworkPolicy CR objects

26.5.3. Creating an egress firewall policy object
26.6. EDITING AN EGRESS FIREWALL FOR A PROJECT

26.6.1. Viewing an EgressNetworkPolicy object
26.7. EDITING AN EGRESS FIREWALL FOR A PROJECT

26.7.1. Editing an EgressNetworkPolicy object
26.8. REMOVING AN EGRESS FIREWALL FROM A PROJECT

26.8.1. Removing an EgressNetworkPolicy object
26.9. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

26.9.1. About an egress router pod
26.9.1.1. Egress router modes
26.9.1.2. Egress router pod implementation
26.9.1.3. Deployment considerations
26.9.1.4. Failover configuration

26.9.2. Additional resources
26.10. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

26.10.1. Egress router pod specification for redirect mode
26.10.2. Egress destination configuration format
26.10.3. Deploying an egress router pod in redirect mode
26.10.4. Additional resources

26.11. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
26.11.1. Egress router pod specification for HTTP mode
26.11.2. Egress destination configuration format
26.11.3. Deploying an egress router pod in HTTP proxy mode
26.11.4. Additional resources

491
492
492
493
498
498
498
505
505
506
506
508
508
508
508
509
509
509
510
511
512
513
513
514
515
515
516
516
517
517
518
518
518
519
519
519

520
520
520
521
521
521

522
522
522
524
524
525
525
525
526
527
528

OpenShift Container Platform 4.12 Networking

12

. .

. .

26.12. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
26.12.1. Egress router pod specification for DNS mode
26.12.2. Egress destination configuration format
26.12.3. Deploying an egress router pod in DNS proxy mode
26.12.4. Additional resources

26.13. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
26.13.1. Configuring an egress router destination mappings with a config map
26.13.2. Additional resources

26.14. ENABLING MULTICAST FOR A PROJECT
26.14.1. About multicast
26.14.2. Enabling multicast between pods

26.15. DISABLING MULTICAST FOR A PROJECT
26.15.1. Disabling multicast between pods

26.16. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
26.16.1. Prerequisites
26.16.2. Joining projects
26.16.3. Isolating a project
26.16.4. Disabling network isolation for a project

26.17. CONFIGURING KUBE-PROXY
26.17.1. About iptables rules synchronization
26.17.2. kube-proxy configuration parameters
26.17.3. Modifying the kube-proxy configuration

CHAPTER 27. CONFIGURING ROUTES
27.1. ROUTE CONFIGURATION

27.1.1. Creating an HTTP-based route
27.1.2. Creating a route for Ingress Controller sharding
27.1.3. Configuring route timeouts
27.1.4. HTTP Strict Transport Security

27.1.4.1. Enabling HTTP Strict Transport Security per-route
27.1.4.2. Disabling HTTP Strict Transport Security per-route
27.1.4.3. Enforcing HTTP Strict Transport Security per-domain

27.1.5. Throughput issue troubleshooting methods
27.1.6. Using cookies to keep route statefulness

27.1.6.1. Annotating a route with a cookie
27.1.7. Path-based routes
27.1.8. Route-specific annotations
27.1.9. Configuring the route admission policy
27.1.10. Creating a route through an Ingress object
27.1.11. Creating a route using the default certificate through an Ingress object
27.1.12. Creating a route using the destination CA certificate in the Ingress annotation
27.1.13. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

27.2. SECURED ROUTES
27.2.1. Creating a re-encrypt route with a custom certificate
27.2.2. Creating an edge route with a custom certificate
27.2.3. Creating a passthrough route

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC
28.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

28.1.1. Comparision: Fault tolerant access to external IP addresses
28.2. CONFIGURING EXTERNALIPS FOR SERVICES

28.2.1. Prerequisites
28.2.2. About ExternalIP

528
528
529
530
531
531
531
533
533
533
533
535
535
536
536
536
536
537
537
537
537
538

540
540
540
541

543
544
544
545
546
549
550
550
551

552
559
560
562
564
565
566
566
568
569

571
571
571

572
572
572

Table of Contents

13

. .

28.2.2.1. Configuration for ExternalIP
28.2.2.2. Restrictions on the assignment of an external IP address
28.2.2.3. Example policy objects

28.2.3. ExternalIP address block configuration
Example external IP configurations

28.2.4. Configure external IP address blocks for your cluster
28.2.5. Next steps

28.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
28.3.1. Using Ingress Controllers and routes
28.3.2. Prerequisites
28.3.3. Creating a project and service
28.3.4. Exposing the service by creating a route
28.3.5. Configuring Ingress Controller sharding by using route labels
28.3.6. Configuring Ingress Controller sharding by using namespace labels
28.3.7. Creating a route for Ingress Controller sharding
28.3.8. Additional resources

28.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
28.4.1. Using a load balancer to get traffic into the cluster
28.4.2. Prerequisites
28.4.3. Creating a project and service
28.4.4. Exposing the service by creating a route
28.4.5. Creating a load balancer service

28.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS
28.5.1. Configuring Classic Load Balancer timeouts on AWS

28.5.1.1. Configuring route timeouts
28.5.1.2. Configuring Classic Load Balancer timeouts

28.5.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer
28.5.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network Load Balancer

28.5.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic Load Balancer

28.5.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
28.5.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
28.5.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster

28.5.3. Additional resources
28.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP

28.6.1. Prerequisites
28.6.2. Attaching an ExternalIP to a service
28.6.3. Additional resources

28.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
28.7.1. Using a NodePort to get traffic into the cluster
28.7.2. Prerequisites
28.7.3. Creating a project and service
28.7.4. Exposing the service by creating a route
28.7.5. Additional resources

28.8. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD BALANCER ALLOWED SOURCE RANGES

28.8.1. Configuring load balancer allowed source ranges
28.8.2. Migrating to load balancer allowed source ranges
28.8.3. Additional resources

CHAPTER 29. KUBERNETES NMSTATE
29.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

573
574
575
575
576
577
578
578
578
579
579
580
580
582
583
585
585
586
586
586
587
588
590
590
590
591
591

591

593
594
595
596
597
597
598
598
599
599
599
599
600
600
602

602
602
603
604

605
605

OpenShift Container Platform 4.12 Networking

14

. .

. .

. .

. .

29.1.1. Installing the Kubernetes NMState Operator
29.1.1.1. Installing the Kubernetes NMState Operator using the web console
29.1.1.2. Installing the Kubernetes NMState Operator using the CLI

29.2. OBSERVING AND UPDATING THE NODE NETWORK STATE AND CONFIGURATION
29.2.1. Viewing the network state of a node
29.2.2. Managing policy by using the CLI

29.2.2.1. Creating an interface on nodes
Additional resources

29.2.3. Confirming node network policy updates on nodes
29.2.4. Removing an interface from nodes
29.2.5. Example policy configurations for different interfaces

29.2.5.1. Example: Linux bridge interface node network configuration policy
29.2.5.2. Example: VLAN interface node network configuration policy
29.2.5.3. Example: Bond interface node network configuration policy
29.2.5.4. Example: Ethernet interface node network configuration policy
29.2.5.5. Example: Multiple interfaces in the same node network configuration policy

29.2.6. Capturing the static IP of a NIC attached to a bridge
29.2.6.1. Example: Linux bridge interface node network configuration policy to inherit static IP address from
the NIC attached to the bridge

29.2.7. Examples: IP management
29.2.7.1. Static
29.2.7.2. No IP address
29.2.7.3. Dynamic host configuration
29.2.7.4. DNS
29.2.7.5. Static routing

29.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION
29.3.1. Troubleshooting an incorrect node network configuration policy configuration

CHAPTER 30. CONFIGURING THE CLUSTER-WIDE PROXY
30.1. PREREQUISITES
30.2. ENABLING THE CLUSTER-WIDE PROXY
30.3. REMOVING THE CLUSTER-WIDE PROXY

Additional resources

CHAPTER 31. CONFIGURING A CUSTOM PKI
31.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
31.2. ENABLING THE CLUSTER-WIDE PROXY
31.3. CERTIFICATE INJECTION USING OPERATORS

CHAPTER 32. LOAD BALANCING ON RHOSP
32.1. LIMITATIONS OF LOAD BALANCER SERVICES

32.1.1. Local external traffic policies
32.1.2. Load balancer source ranges

32.2. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
32.3. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA

32.3.1. Scaling clusters by using Octavia
32.3.2. Scaling clusters that use Kuryr by using Octavia

32.4. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
32.5. SERVICES FOR AN EXTERNAL LOAD BALANCER

32.5.1. Configuring an external load balancer

CHAPTER 33. LOAD BALANCING WITH METALLB
33.1. ABOUT METALLB AND THE METALLB OPERATOR

33.1.1. When to use MetalLB

605
605
606
608
608
609
609
610
610
611

612
612
613
614
616
617
618

618
619
619

620
620
621
621
622
622

627
627
627
629
630

631
631

633
635

637
637
637
637
637
639
639
641
641

644
647

653
653
653

Table of Contents

15

33.1.2. MetalLB Operator custom resources
33.1.3. MetalLB software components
33.1.4. MetalLB and external traffic policy
33.1.5. MetalLB concepts for layer 2 mode
33.1.6. MetalLB concepts for BGP mode
33.1.7. Limitations and restrictions

33.1.7.1. Infrastructure considerations for MetalLB
33.1.7.2. Limitations for layer 2 mode

33.1.7.2.1. Single-node bottleneck
33.1.7.2.2. Slow failover performance
33.1.7.2.3. Additional Network and MetalLB cannot use same network

33.1.7.3. Limitations for BGP mode
33.1.7.3.1. Node failure can break all active connections
33.1.7.3.2. Support for a single ASN and a single router ID only

33.1.8. Additional resources
33.2. INSTALLING THE METALLB OPERATOR

33.2.1. Installing the MetalLB Operator from the OperatorHub using the web console
33.2.2. Installing from OperatorHub using the CLI
33.2.3. Starting MetalLB on your cluster
33.2.4. Deployment specifications for MetalLB

33.2.4.1. Limit speaker pods to specific nodes
33.2.4.2. Configuring a container runtime class in a MetalLB deployment
33.2.4.3. Configuring pod priority and pod affinity in a MetalLB deployment
33.2.4.4. Configuring pod CPU limits in a MetalLB deployment

33.2.5. Additional resources
33.2.6. Next steps

33.3. UPGRADING THE METALLB
33.3.1. Deleting the MetalLB Operator from a cluster using the web console
33.3.2. Deleting MetalLB Operator from a cluster using the CLI
33.3.3. Editing the MetalLB Operator Operator group
33.3.4. Upgrading the MetalLB Operator
33.3.5. Additional resources

33.4. CONFIGURING METALLB ADDRESS POOLS
33.4.1. About the IPAddressPool custom resource
33.4.2. Configuring an address pool
33.4.3. Example address pool configurations

33.4.3.1. Example: IPv4 and CIDR ranges
33.4.3.2. Example: Reserve IP addresses
33.4.3.3. Example: IPv4 and IPv6 addresses

33.4.4. Additional resources
33.4.5. Next steps

33.5. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS
33.5.1. About the BGPAdvertisement custom resource
33.5.2. Configuring MetalLB with a BGP advertisement and a basic use case

33.5.2.1. Example: Advertise a basic address pool configuration with BGP
33.5.3. Configuring MetalLB with a BGP advertisement and an advanced use case

33.5.3.1. Example: Advertise an advanced address pool configuration with BGP
33.5.4. Advertising an IP address pool from a subset of nodes
33.5.5. About the L2Advertisement custom resource
33.5.6. Configuring MetalLB with an L2 advertisement
33.5.7. Configuring MetalLB with a L2 advertisement and label
33.5.8. Additional resources

33.6. CONFIGURING METALLB BGP PEERS

653
654
655
656
658
659
659
660
660
660
660
660
660
661
661
661
661

662
664
665
665
666
667
669
670
670
670
671
671
672
674
675
675
675
676
677
677
677
678
678
678
678
678
680
680
681
681

683
684
684
685
686
686

OpenShift Container Platform 4.12 Networking

16

. .

33.6.1. About the BGP peer custom resource
33.6.2. Configuring a BGP peer
33.6.3. Configure a specific set of BGP peers for a given address pool
33.6.4. Example BGP peer configurations

33.6.4.1. Example: Limit which nodes connect to a BGP peer
33.6.4.2. Example: Specify a BFD profile for a BGP peer
33.6.4.3. Example: Specify BGP peers for dual-stack networking

33.6.5. Next steps
33.7. CONFIGURING COMMUNITY ALIAS

33.7.1. About the community custom resource
33.7.2. Configuring MetalLB with a BGP advertisement and community alias

33.8. CONFIGURING METALLB BFD PROFILES
33.8.1. About the BFD profile custom resource
33.8.2. Configuring a BFD profile
33.8.3. Next steps

33.9. CONFIGURING SERVICES TO USE METALLB
33.9.1. Request a specific IP address
33.9.2. Request an IP address from a specific pool
33.9.3. Accept any IP address
33.9.4. Share a specific IP address
33.9.5. Configuring a service with MetalLB

33.10. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
33.10.1. Setting the MetalLB logging levels

33.10.1.1. FRRouting (FRR) log levels
33.10.2. Troubleshooting BGP issues
33.10.3. Troubleshooting BFD issues
33.10.4. MetalLB metrics for BGP and BFD
33.10.5. About collecting MetalLB data

CHAPTER 34. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
34.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING

34.1.1. Network Metrics Daemon
34.1.2. Metrics with network name

686
688
689
691
691
691

692
692
692
693
693
695
695
696
697
697
697
698
698
699
700
701
701

705
706
709
710
710

712
712
712
713

Table of Contents

17

OpenShift Container Platform 4.12 Networking

18

CHAPTER 1. ABOUT NETWORKING
Red Hat OpenShift Networking is an ecosystem of features, plugins and advanced networking
capabilities that extend Kubernetes networking with the advanced networking-related features that
your cluster needs to manage its network traffic for one or multiple hybrid clusters. This ecosystem of
networking capabilities integrates ingress, egress, load balancing, high-performance throughput,
security, inter- and intra-cluster traffic management and provides role-based observability tooling to
reduce its natural complexities.

The following list highlights some of the most commonly used Red Hat OpenShift Networking features
available on your cluster:

Primary cluster network provided by either of the following Container Network Interface (CNI)
plugins:

OVN-Kubernetes network plugin , the default plugin

OpenShift SDN network plugin

Certified 3rd-party alternative primary network plugins

Cluster Network Operator for network plugin management

Ingress Operator for TLS encrypted web traffic

DNS Operator for name assignment

MetalLB Operator for traffic load balancing on bare metal clusters

IP failover support for high-availability

Additional hardware network support through multiple CNI plugins, including for macvlan, ipvlan,
and SR-IOV hardware networks

IPv4, IPv6, and dual stack addressing

Hybrid Linux-Windows host clusters for Windows-based workloads

Red Hat OpenShift Service Mesh for discovery, load balancing, service-to-service
authentication, failure recovery, metrics, and monitoring of services

Single-node OpenShift

Network Observability Operator for network debugging and insights

Submariner and Red Hat Application Interconnect technologies for inter-cluster networking

CHAPTER 1. ABOUT NETWORKING

19

https://catalog.redhat.com/software/container-stacks/detail/5f0c67b7ce85fb9e399f3a12
https://access.redhat.com/documentation/en-us/red_hat_application_interconnect/1.0/html/introduction_to_application_interconnect/index

CHAPTER 2. UNDERSTANDING NETWORKING
Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

Service types, such as node ports or load balancers

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can network, but clients outside the cluster do not have networking access.
When you expose your application to external traffic, giving each pod its own IP address means that
pods can be treated like physical hosts or virtual machines in terms of port allocation, networking,
naming, service discovery, load balancing, application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the pod spec to true.

If you allow a pod host network access, you grant the pod privileged access to the
underlying network infrastructure.

2.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple pods,
environment variables are created for user names, service IPs, and more so the front-end pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

2.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

OpenShift Container Platform 4.12 Networking

20

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

2.2.1. Comparing routes and Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster. The most common way to manage
Ingress traffic is with the Ingress Controller. You can scale and replicate this pod like any other regular
pod. This router service is based on HAProxy, which is an open source load balancer solution.

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

Ingress traffic accesses services in the cluster through a route. Routes and Ingress are the main
resources for handling Ingress traffic. Ingress provides features similar to a route, such as accepting
external requests and delegating them based on the route. However, with Ingress you can only allow
certain types of connections: HTTP/2, HTTPS and server name identification (SNI), and TLS with
certificate. In OpenShift Container Platform, routes are generated to meet the conditions specified by
the Ingress resource.

2.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM NETWORKING

This glossary defines common terms that are used in the networking content.

authentication

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure
user authentication and ensure only approved users access the cluster. To interact with an
OpenShift Container Platform cluster, you must authenticate to the OpenShift Container Platform
API. You can authenticate by providing an OAuth access token or an X.509 client certificate in your
requests to the OpenShift Container Platform API.

AWS Load Balancer Operator

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-
balancer-controller.

Cluster Network Operator

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) network plugin selected for the cluster during installation.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

custom resource (CR)

A CR is extension of the Kubernetes API. You can create custom resources.

DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

DNS Operator

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods.
This enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

CHAPTER 2. UNDERSTANDING NETWORKING

21

http://www.haproxy.org/

domain

Domain is a DNS name serviced by the Ingress Controller.

egress

The process of data sharing externally through a network’s outbound traffic from a pod.

External DNS Operator

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

HTTP-based route

An HTTP-based route is an unsecured route that uses the basic HTTP routing protocol and exposes
a service on an unsecured application port.

Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster.

Ingress Controller

The Ingress Operator manages Ingress Controllers. Using an Ingress Controller is the most common
way to allow external access to an OpenShift Container Platform cluster.

installer-provisioned infrastructure

The installation program deploys and configures the infrastructure that the cluster runs on.

kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are running in a
pod.

Kubernetes NMState Operator

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState.

kube-proxy

Kube-proxy is a proxy service which runs on each node and helps in making services available to the
external host. It helps in forwarding the request to correct containers and is capable of performing
primitive load balancing.

load balancers

OpenShift Container Platform uses load balancers for communicating from outside the cluster with
services running in the cluster.

MetalLB Operator

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service
of type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the
service.

multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking

Network information of a OpenShift Container Platform cluster.

node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

OpenShift Container Platform 4.12 Networking

22

OpenShift Container Platform Ingress Operator

The Ingress Operator implements the IngressController API and is the component responsible for
enabling external access to OpenShift Container Platform services.

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

PTP Operator

The PTP Operator creates and manages the linuxptp services.

route

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

scaling

Increasing or decreasing the resource capacity.

service

Exposes a running application on a set of pods.

Single Root I/O Virtualization (SR-IOV) Network Operator

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network
devices and network attachments in your cluster.

software-defined networking (SDN)

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a
unified cluster network that enables communication between pods across the OpenShift Container
Platform cluster.

Stream Control Transmission Protocol (SCTP)

SCTP is a reliable message based protocol that runs on top of an IP network.

taint

Taints and tolerations ensure that pods are scheduled onto appropriate nodes. You can apply one or
more taints on a node.

toleration

You can apply tolerations to pods. Tolerations allow the scheduler to schedule pods with matching
taints.

web console

A user interface (UI) to manage OpenShift Container Platform.

CHAPTER 2. UNDERSTANDING NETWORKING

23

CHAPTER 3. ACCESSING HOSTS
Learn how to create a bastion host to access OpenShift Container Platform instances and access the
control plane nodes with secure shell (SSH) access.

3.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. To be able to SSH to your OpenShift Container Platform hosts, you must
follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS (RHCOS), for example, you can provide keys via
Ignition, like the installer does.

4. After you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH key
that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes API is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The
hostname looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that control
plane host. Ensure that you use the same SSH key you specified during the installation:

$ ssh -i <ssh-key-path> core@<master-hostname>

OpenShift Container Platform 4.12 Networking

24

CHAPTER 4. NETWORKING OPERATORS OVERVIEW
OpenShift Container Platform supports multiple types of networking Operators. You can manage the
cluster networking using these networking Operators.

4.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) network plugin selected for the cluster during installation. For more information, see Cluster
Network Operator in OpenShift Container Platform.

4.2. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods. This
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform. For more
information, see DNS Operator in OpenShift Container Platform .

4.3. INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated IP addresses. The IP addresses are accessible to other pods and services running
nearby but are not accessible to external clients. The Ingress Operator implements the Ingress
Controller API and is responsible for enabling external access to OpenShift Container Platform cluster
services. For more information, see Ingress Operator in OpenShift Container Platform .

4.4. EXTERNAL DNS OPERATOR

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform. For more
information, see Understanding the External DNS Operator .

4.5. INGRESS NODE FIREWALL OPERATOR

The Ingress Node Firewall Operator uses an extended Berkley Packet Filter (eBPF) and eXpress Data
Path (XDP) plugin to process node firewall rules, update statistics and generate events for dropped
traffic. The operator manages ingress node firewall resources, verifies firewall configuration, does not
allow incorrectly configured rules that can prevent cluster access, and loads ingress node firewall XDP
programs to the selected interfaces in the rule’s object(s). For more information, see Understanding the
Ingress Node Firewall Operator

4.6. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator is an optional Operator that allows cluster administrators to
observe the network traffic for OpenShift Container Platform clusters. The Network Observability
Operator uses the eBPF technology to create network flows. The network flows are then enriched with
OpenShift Container Platform information and stored in Loki. You can view and analyze the stored
network flows information in the OpenShift Container Platform console for further insight and
troubleshooting. For more information, see About Network Observability Operator.

CHAPTER 4. NETWORKING OPERATORS OVERVIEW

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/network_observability/#dependency-network-observability

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) network plugin
selected for the cluster during installation.

5.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OVN-Kubernetes network plugin, or the network provider plugin that you
selected during cluster installation, by using a daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

Example output

2. Run the following command to view the state of the Cluster Network Operator:

Example output

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

5.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

Example output

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.5.4 True False False 50m

$ oc describe network.config/cluster

OpenShift Container Platform 4.12 Networking

26

1

2

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

5.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

5.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

5.5. CLUSTER NETWORK OPERATOR CONFIGURATION

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 8951
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Events: <none>

$ oc describe clusteroperators/network

$ oc logs --namespace=openshift-network-operator deployment/network-operator

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

27

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group and these fields cannot be changed:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network plugin, such as OpenShift SDN or OVN-Kubernetes.

NOTE

After cluster installation, you cannot modify the fields listed in the previous section.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

5.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 5.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.clusterNet
work

array A list specifying the blocks of IP addresses from which pod IP
addresses are allocated and the subnet prefix length assigned to
each individual node in the cluster. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec:
 clusterNetwork:
 - cidr: 10.128.0.0/19
 hostPrefix: 23
 - cidr: 10.128.32.0/19
 hostPrefix: 23

OpenShift Container Platform 4.12 Networking

28

spec.serviceNet
work

array A block of IP addresses for services. The OpenShift SDN and
OVN-Kubernetes network plugins support only a single IP
address block for the service network. For example:

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet
work

object Configures the network plugin for the cluster network.

spec.kubeProxy
Config

object The fields for this object specify the kube-proxy configuration. If
you are using the OVN-Kubernetes cluster network plugin, the
kube-proxy configuration has no effect.

Field Type Description

defaultNetwork object configuration
The values for the defaultNetwork object are defined in the following table:

Table 5.2. defaultNetwork object

Field Type Description

type string Either OpenShiftSDN or OVNKubernetes. The
Red Hat OpenShift Networking network plugin is
selected during installation. This value cannot be
changed after cluster installation.

NOTE

OpenShift Container Platform uses
the OVN-Kubernetes network plugin
by default.

openshiftSDNConfig object This object is only valid for the OpenShift SDN
network plugin.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
network plugin.

Configuration for the OpenShift SDN network plugin
The following table describes the configuration fields for the OpenShift SDN network plugin:

spec:
 serviceNetwork:
 - 172.30.0.0/14

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

29

Table 5.3. openshiftSDNConfig object

Field Type Description

mode string The network isolation mode for OpenShift SDN.

mtu integer The maximum transmission unit (MTU) for the VXLAN overlay
network. This value is normally configured automatically.

vxlanPort integer The port to use for all VXLAN packets. The default value is 4789.

NOTE

You can only change the configuration for your cluster network plugin during cluster
installation.

Example OpenShift SDN configuration

Configuration for the OVN-Kubernetes network plugin
The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 5.4. ovnKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object If the field is present, IPsec is enabled for the cluster.

policyAuditConf
ig

object Specify a configuration object for customizing network policy
audit logging. If unset, the defaults audit log settings are used.

defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789

OpenShift Container Platform 4.12 Networking

30

gatewayConfig object Optional: Specify a configuration object for customizing how
egress traffic is sent to the node gateway.

NOTE

While migrating egress traffic, you can expect
some disruption to workloads and service traffic
until the Cluster Network Operator (CNO)
successfully rolls out the changes.

Field Type Description

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

31

v4InternalSubne
t

If your existing
network
infrastructure
overlaps with the
100.64.0.0/16
IPv4 subnet, you
can specify a
different IP
address range for
internal use by
OVN-Kubernetes.
You must ensure
that the IP address
range does not
overlap with any
other subnet used
by your OpenShift
Container
Platform
installation. The IP
address range
must be larger
than the maximum
number of nodes
that can be added
to the cluster. For
example, if the
clusterNetwork.
cidr value is
10.128.0.0/14
and the
clusterNetwork.
hostPrefix value
is /23, then the
maximum number
of nodes is 2^(23-
14)=512.

This field cannot
be changed after
installation.

The default value is 100.64.0.0/16.

Field Type Description

OpenShift Container Platform 4.12 Networking

32

v6InternalSubne
t

If your existing
network
infrastructure
overlaps with the
fd98::/48 IPv6
subnet, you can
specify a different
IP address range
for internal use by
OVN-Kubernetes.
You must ensure
that the IP address
range does not
overlap with any
other subnet used
by your OpenShift
Container
Platform
installation. The IP
address range
must be larger
than the maximum
number of nodes
that can be added
to the cluster.

This field cannot
be changed after
installation.

The default value is fd98::/48.

Field Type Description

Table 5.5. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

33

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

Field Type Description

Table 5.6. gatewayConfig object

Field Type Description

routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

NOTE

You can only change the configuration for your cluster network plugin during cluster
installation, except for the gatewayConfig field that can be changed at runtime as a
postinstallation activity.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
 type: OVNKubernetes
 ovnKubernetesConfig:
 mtu: 1400
 genevePort: 6081
 ipsecConfig: {}

OpenShift Container Platform 4.12 Networking

34

kubeProxyConfig object configuration
The values for the kubeProxyConfig object are defined in the following table:

Table 5.7. kubeProxyConfig object

Field Type Description

iptablesSyncPeriod string The refresh period for iptables rules. The default
value is 30s. Valid suffixes include s, m, and h and
are described in the Go time package
documentation.

NOTE

Because of performance
improvements introduced in
OpenShift Container Platform 4.3
and greater, adjusting the
iptablesSyncPeriod parameter is
no longer necessary.

proxyArguments.iptables-
min-sync-period

array The minimum duration before refreshing iptables
rules. This field ensures that the refresh does not
happen too frequently. Valid suffixes include s, m,
and h and are described in the Go time package.
The default value is:

5.5.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

Example Cluster Network Operator object

kubeProxyConfig:
 proxyArguments:
 iptables-min-sync-period:
 - 0s

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork: 1
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork: 2
 - 172.30.0.0/16
 defaultNetwork: 3
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450

CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

35

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

1 2 3 Configured only during cluster installation.

5.6. ADDITIONAL RESOURCES

Network API in the operator.openshift.io API group

 vxlanPort: 4789
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 0s

OpenShift Container Platform 4.12 Networking

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-operator-openshift-io-v1

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift Container Platform.

6.1. DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet
to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

Example output

2. Use the oc get command to view the state of the DNS Operator:

Example output

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition.

6.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE

DNS manages the CoreDNS component to provide a name resolution service for pods and services in
the cluster. The managementState of the DNS Operator is set to Managed by default, which means
that the DNS Operator is actively managing its resources. You can change it to Unmanaged, which
means the DNS Operator is not managing its resources.

The following are use cases for changing the DNS Operator managementState:

You are a developer and want to test a configuration change to see if it fixes an issue in
CoreDNS. You can stop the DNS Operator from overwriting the fix by setting the
managementState to Unmanaged.

You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

$ oc get clusteroperator/dns

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

37

You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a
workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

Change managementState DNS Operator:

6.3. CONTROLLING DNS POD PLACEMENT

The DNS Operator has two daemon sets: one for CoreDNS and one for managing the /etc/hosts file.
The daemon set for /etc/hosts must run on every node host to add an entry for the cluster image
registry to support pulling images. Security policies can prohibit communication between pairs of nodes,
which prevents the daemon set for CoreDNS from running on every node.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

You installed the oc CLI.

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To prevent communication between certain nodes, configure the
spec.nodePlacement.nodeSelector API field:

1. Modify the DNS Operator object named default:

2. Specify a node selector that includes only control plane nodes in the
spec.nodePlacement.nodeSelector API field:

To allow the daemon set for CoreDNS to run on nodes, configure a taint and toleration:

1. Modify the DNS Operator object named default:

2. Specify a taint key and a toleration for the taint:

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

$ oc edit dns.operator/default

 spec:
 nodePlacement:
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc edit dns.operator/default

 spec:
 nodePlacement:

OpenShift Container Platform 4.12 Networking

38

1

1

2

If the taint is dns-only, it can be tolerated indefinitely. You can omit
tolerationSeconds.

6.4. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

Example output

The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR of your cluster, use the oc get command:

Example output

6.5. USING DNS FORWARDING

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file

 tolerations:
 - effect: NoExecute
 key: "dns-only"
 operators: Equal
 value: abc
 tolerationSeconds: 3600 1

$ oc describe dns.operator/default

Name: default
Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:
 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

[172.30.0.0/16]

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

39

1

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

Specify name servers for every zone. If the forwarded zone is the Ingress domain managed by
OpenShift Container Platform, then the upstream name server must be authorized for the
domain.

Provide a list of upstream DNS servers.

Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

1. Modify the DNS Operator object named default:

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on Server. If none of the
servers have a zone that matches the query, then name resolution falls back to the upstream
DNS servers.

Configuring DNS forwarding

Must comply with the rfc6335 service name syntax.

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:
 - name: example-server 1
 zones: 2
 - example.com
 forwardPlugin:
 policy: Random 3
 upstreams: 4
 - 1.1.1.1
 - 2.2.2.2:5353
 upstreamResolvers: 5
 policy: Random 6
 upstreams: 7
 - type: SystemResolvConf 8
 - type: Network
 address: 1.2.3.4 9
 port: 53 10

OpenShift Container Platform 4.12 Networking

40

2

3

4

5

6

7

8

9

10

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Determines the order in which upstream servers are selected for querying. You can specify
one of these values: Random, RoundRobin, or Sequential. The default value is
Sequential.

Optional. You can use it to provide upstream resolvers.

You can specify two types of upstreams - SystemResolvConf and Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. The address field must
be a valid IPv4 or IPv6 address.

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, by default port
853 is tried.

2. Optional: When working in a highly regulated environment, you might need the ability to secure
DNS traffic when forwarding requests to upstream resolvers so that you can ensure additional
DNS traffic and data privacy. Cluster administrators can configure transport layer security
(TLS) for forwarded DNS queries.

Configuring DNS forwarding with TLS

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:
 - name: example-server 1
 zones: 2
 - example.com
 forwardPlugin:
 transportConfig:
 transport: TLS 3
 tls:
 caBundle:
 name: mycacert
 serverName: dnstls.example.com 4
 policy: Random 5
 upstreams: 6
 - 1.1.1.1

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

41

1

2

3

4

5

6

7

8

9

10

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field. The cluster
domain, cluster.local, is an invalid subdomain for zones.

When configuring TLS for forwarded DNS queries, set the transport field to have the value
TLS. By default, CoreDNS caches forwarded connections for 10 seconds. CoreDNS will
hold a TCP connection open for those 10 seconds if no request is issued. With large
clusters, ensure that your DNS server is aware that it might get many new connections to
hold open because you can initiate a connection per node. Set up your DNS hierarchy
accordingly to avoid performance issues.

When configuring TLS for forwarded DNS queries, this is a mandatory server name used as
part of the server name indication (SNI) to validate the upstream TLS server certificate.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

Required. You can use it to provide upstream resolvers. A maximum of 15 upstreams
entries are allowed per forwardPlugin entry.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Network type indicates that this upstream resolver should handle forwarded requests
separately from the upstream resolvers listed in /etc/resolv.conf. Only the Network type is
allowed when using TLS and you must provide an IP address.

The address field must be a valid IPv4 or IPv6 address.

You can optionally provide a port. The port must have a value between 1 and 65535. If you
do not specify a port for the upstream, by default port 853 is tried.

NOTE

If servers is undefined or invalid, the config map only contains the default server.

Verification

 - 2.2.2.2:5353
 upstreamResolvers: 7
 transportConfig:
 transport: TLS
 tls:
 caBundle:
 name: mycacert
 serverName: dnstls.example.com
 upstreams:
 - type: Network 8
 address: 1.2.3.4 9
 port: 53 10

OpenShift Container Platform 4.12 Networking

42

1

1. View the config map:

Sample DNS ConfigMap based on previous sample DNS

Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

6.6. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 example.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf 1.2.3.4:53 {
 policy Random
 }
 cache 30
 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

$ oc describe clusteroperators/dns

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

43

https://coredns.io/plugins/forward/

6.7. DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

6.8. SETTING THE COREDNS LOG LEVEL

You can configure the CoreDNS log level to determine the amount of detail in logged error messages.
The valid values for CoreDNS log level are Normal, Debug, and Trace. The default logLevel is Normal.

NOTE

The errors plugin is always enabled. The following logLevel settings report different error
responses:

logLevel: Normal enables the "errors" class: log . { class error }.

logLevel: Debug enables the "denial" class: log . { class denial error }.

logLevel: Trace enables the "all" class: log . { class all }.

Procedure

To set logLevel to Debug, enter the following command:

To set logLevel to Trace, enter the following command:

Verification

To ensure the desired log level was set, check the config map:

6.9. SETTING THE COREDNS OPERATOR LOG LEVEL

Cluster administrators can configure the Operator log level to more quickly track down OpenShift DNS
issues. The valid values for operatorLogLevel are Normal, Debug, and Trace. Trace has the most
detailed information. The default operatorlogLevel is Normal. There are seven logging levels for issues:
Trace, Debug, Info, Warning, Error, Fatal and Panic. After the logging level is set, log entries with that
severity or anything above it will be logged.

operatorLogLevel: "Normal" sets logrus.SetLogLevel("Info").

operatorLogLevel: "Debug" sets logrus.SetLogLevel("Debug").

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Trace"}}' --type=merge

$ oc get configmap/dns-default -n openshift-dns -o yaml

OpenShift Container Platform 4.12 Networking

44

1

2

operatorLogLevel: "Trace" sets logrus.SetLogLevel("Trace").

Procedure

To set operatorLogLevel to Debug, enter the following command:

To set operatorLogLevel to Trace, enter the following command:

6.10. TUNING THE COREDNS CACHE

You can configure the maximum duration of both successful or unsuccessful caching, also known as
positive or negative caching respectively, done by CoreDNS. Tuning the duration of caching of DNS
query responses can reduce the load for any upstream DNS resolvers.

Procedure

1. Edit the DNS Operator object named default by running the following command:

2. Modify the time-to-live (TTL) caching values:

Configuring DNS caching

The string value 1h is converted to its respective number of seconds by CoreDNS. If this
field is omitted, the value is assumed to be 0s and the cluster uses the internal default
value of 900s as a fallback.

The string value can be a combination of units such as 0.5h10m and is converted to its
respective number of seconds by CoreDNS. If this field is omitted, the value is assumed to
be 0s and the cluster uses the internal default value of 30s as a fallback.

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --
type=merge

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --
type=merge

$ oc edit dns.operator.openshift.io/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 cache:
 positiveTTL: 1h 1
 negativeTTL: 0.5h10m 2

CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

45

WARNING

Setting TTL fields to low values could lead to an increased load on the
cluster, any upstream resolvers, or both.

OpenShift Container Platform 4.12 Networking

46

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

7.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

7.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

7.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

47

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress Controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

On GCP, AWS, and Azure you can configure the following
endpointPublishingStrategy fields:

loadBalancer.scope

loadBalancer.allowedSourceRanges

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

Amazon Web Services (AWS): LoadBalancerService (with External
scope)

Azure: LoadBalancerService (with External scope)

Google Cloud Platform (GCP): LoadBalancerService (with
External scope)

Bare metal: NodePortService

Other: HostNetwork

NOTE

Parameter Description

OpenShift Container Platform 4.12 Networking

48

NOTE

HostNetwork has a hostNetwork field with the
following default values for the optional binding ports:
httpPort: 80, httpsPort: 443, and statsPort: 1936.
With the binding ports, you can deploy multiple
Ingress Controllers on the same node for the
HostNetwork strategy.

Example

NOTE

On Red Hat OpenStack Platform (RHOSP), the
LoadBalancerService endpoint publishing strategy
is only supported if a cloud provider is configured to
create health monitors. For RHOSP 16.2, this strategy
is only possible if you use the Amphora Octavia
provider.

For more information, see the "Setting cloud provider
options" section of the RHOSP installation
documentation.

For most platforms, the endpointPublishingStrategy value can be
updated. On GCP, you can configure the following
endpointPublishingStrategy fields:

loadBalancer.scope

loadbalancer.providerParameters.gcp.clientAccess

hostNetwork.protocol

nodePort.protocol

Parameter Description

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: internal
 namespace: openshift-ingress-operator
spec:
 domain: example.com
 endpointPublishingStrategy:
 type: HostNetwork
 hostNetwork:
 httpPort: 80
 httpsPort: 443
 statsPort: 1936

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

49

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

Parameter Description

nodePlacement:
 nodeSelector:
 matchLabels:
 kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

OpenShift Container Platform 4.12 Networking

50

tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of an Old or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate’s
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

Parameter Description

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

51

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

Parameter Description

OpenShift Container Platform 4.12 Networking

52

IngressControllerLoggi
ng

logging defines parameters for what is logged where. If this field is empty,
operational logs are enabled but access logs are disabled.

access describes how client requests are logged. If this field is
empty, access logging is disabled.

destination describes a destination for log messages.

type is the type of destination for logs:

Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

syslog describes parameters for the Syslog logging
destination type:

address is the IP address of the syslog endpoint that
receives log messages.

port is the UDP port number of the syslog endpoint that
receives log messages.

maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, lpr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3. local4, local5, local6, or local7.

httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy’s default
HTTP log format, see the HAProxy documentation.

Parameter Description

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

53

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

httpCompression httpCompression defines the policy for HTTP traffic compression.

mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern, type/subtype;
[;attribute=value]. The types are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

Parameter Description

OpenShift Container Platform 4.12 Networking

54

https://datatracker.ietf.org/doc/html/rfc1341#page-7

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in
access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

name specifies the name of the cookie.

maxLength specifies tha maximum length of the cookie.

matchType specifies if the field name of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.
The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and the maxlength field must
specify the maximum length of the header. For example:

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 1s.

clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

headerBufferBytes specifies how much memory is reserved, in

Parameter Description

 httpCaptureCookies:
 - matchType: Exact
 maxLength: 128
 name: MYCOOKIE

 httpCaptureHeaders:
 request:
 - maxLength: 256
 name: Connection
 - maxLength: 128
 name: User-Agent
 response:
 - maxLength: 256
 name: Content-Type
 - maxLength: 256
 name: Content-Length

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

55

bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

healthCheckInterval specifies how long the router waits between
health checks. The default is 5s.

serverFinTimeout specifies how long a connection is held open
while waiting for the server response to the client that is closing the
connection. The default timeout is 1s.

serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

tlsInspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. The default timeout
is 1h.

maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod to handle more
connections at the cost of additional system resources. Permitted
values are 0, -1, any value within the range 2000 and 2000000, or the
field can be left empty.

If this field is left empty or has the value 0, the Ingress Controller
will use the default value of 50000. This value is subject to
change in future releases.

If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the

Parameter Description

OpenShift Container Platform 4.12 Networking

56

running container. This process results in a large computed value
that will incur significant memory usage compared to the current
default value of 50000.

If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value is Log.

The LoggingPolicy type accepts either one of two values:

Log: Setting this value to Log indicates that an event should be
logged.

Ignore: Setting this value to Ignore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP
olicy

HTTPEmptyRequestsPolicy describes how HTTP connections are handled
if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value is Respond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

Ignore: Setting this option to Ignore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

Parameter Description

NOTE

All parameters are optional.

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

57

7.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

7.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

You can specify one of the following TLS security profiles for each component:

Table 7.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

OpenShift Container Platform 4.12 Networking

58

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

7.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 old: {}
 type: Old
 ...

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

59

1

2

3

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the profile is set in the IngressController CR:

Example output

kind: IngressController
 ...
spec:
 tlsSecurityProfile:
 type: Custom 1
 custom: 2
 ciphers: 3
 - ECDHE-ECDSA-CHACHA20-POLY1305
 - ECDHE-RSA-CHACHA20-POLY1305
 - ECDHE-RSA-AES128-GCM-SHA256
 - ECDHE-ECDSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11
 ...

$ oc describe IngressController default -n openshift-ingress-operator

Name: default
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController
 ...
Spec:
 ...
 Tls Security Profile:
 Custom:
 Ciphers:
 ECDHE-ECDSA-CHACHA20-POLY1305
 ECDHE-RSA-CHACHA20-POLY1305
 ECDHE-RSA-AES128-GCM-SHA256
 ECDHE-ECDSA-AES128-GCM-SHA256

OpenShift Container Platform 4.12 Networking

60

1

7.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config
map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a PEM-encoded CA certificate bundle.

If your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:

The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

 Min TLS Version: VersionTLS11
 Type: Custom
 ...

 Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
 Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
 Full Name:
 URI:http://crl.example.com/example.crl

$ oc create configmap \
 router-ca-certs-default \
 --from-file=ca-bundle.pem=client-ca.crt \ 1
 -n openshift-config

$ oc edit IngressController default -n openshift-ingress-operator

 apiVersion: operator.openshift.io/v1

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

61

7.4. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

7.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

7.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

7.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

 kind: IngressController
 metadata:
 name: default
 namespace: openshift-ingress-operator
 spec:
 clientTLS:
 clientCertificatePolicy: Required
 clientCA:
 name: router-ca-certs-default
 allowedSubjectPatterns:
 - "^/CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift$"

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

OpenShift Container Platform 4.12 Networking

62

Procedure

View the status of an Ingress Controller:

7.8. CONFIGURING THE INGRESS CONTROLLER

7.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

Your certificate meets the following requirements:

The certificate is valid for the ingress domain.

The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

You must have an IngressController CR. You may use the default one:

Example output

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME AGE
default 10m

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

63

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

2. Update the IngressController CR to reference the new certificate secret:

3. Verify the update was effective:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

TIP

You can alternatively apply the following YAML to set a custom default certificate:

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

7.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\
 openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 defaultCertificate:
 name: custom-certs-default

OpenShift Container Platform 4.12 Networking

64

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You previously configured a custom default certificate for the Ingress Controller.

Procedure

To remove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

To confirm that the original cluster certificate is restored, enter the following command:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

7.8.3. Autoscaling an Ingress Controller

Automatically scale an Ingress Controller to dynamically meet routing performance or availability
requirements such as the requirement to increase throughput. The following procedure provides an
example for scaling up the default IngressController.

Prerequisites

1. You have the OpenShift CLI (oc) installed.

2. You have access to an OpenShift Container Platform cluster as a user with the cluster-admin
role.

3. You have the Custom Metrics Autoscaler Operator installed.

Procedure

1. Create a project in the openshift-ingress-operator namespace by running the following

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
 --type json -p $'- op: remove\n path: /spec/defaultCertificate'

$ echo Q | \
 openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null | \
 openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

65

1

1. Create a project in the openshift-ingress-operator namespace by running the following
command:

2. Enable OpenShift monitoring for user-defined projects by creating and applying a config map:

a. Create a new ConfigMap object, cluster-monitoring-config.yaml:

cluster-monitoring-config.yaml

When set to true, the enableUserWorkload parameter enables monitoring for user-
defined projects in a cluster.

b. Apply the config map by running the following command:

3. Create a service account to authenticate with Thanos by running the following command:

Example output

4. Define a TriggerAuthentication object within the openshift-ingress-operator namespace
using the service account’s token.

a. Define the variable secret that contains the secret by running the following command:

b. Create the TriggerAuthentication object and pass the value of the secret variable to the
TOKEN parameter:

$ oc project openshift-ingress-operator

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true 1

$ oc apply -f cluster-monitoring-config.yaml

$ oc create serviceaccount thanos && oc describe serviceaccount thanos

Name: thanos
Namespace: openshift-ingress-operator
Labels: <none>
Annotations: <none>
Image pull secrets: thanos-dockercfg-b4l9s
Mountable secrets: thanos-dockercfg-b4l9s
Tokens: thanos-token-c422q
Events: <none>

$ secret=$(oc get secret | grep thanos-token | head -n 1 | awk '{ print $1 }')

$ oc process TOKEN="$secret" -f - <<EOF | oc apply -f -

OpenShift Container Platform 4.12 Networking

66

5. Create and apply a role for reading metrics from Thanos:

a. Create a new role, thanos-metrics-reader.yaml, that reads metrics from pods and nodes:

thanos-metrics-reader.yaml

b. Apply the new role by running the following command:

apiVersion: template.openshift.io/v1
kind: Template
parameters:
- name: TOKEN
objects:
- apiVersion: keda.sh/v1alpha1
 kind: TriggerAuthentication
 metadata:
 name: keda-trigger-auth-prometheus
 spec:
 secretTargetRef:
 - parameter: bearerToken
 name: \${TOKEN}
 key: token
 - parameter: ca
 name: \${TOKEN}
 key: ca.crt
EOF

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: thanos-metrics-reader
rules:
- apiGroups:
 - ""
 resources:
 - pods
 - nodes
 verbs:
 - get
- apiGroups:
 - metrics.k8s.io
 resources:
 - pods
 - nodes
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - ""
 resources:
 - namespaces
 verbs:
 - get

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

67

1

2

6. Add the new role to the service account by entering the following commands:

NOTE

The argument add-cluster-role-to-user is only required if you use cross-
namespace queries. The following step uses a query from the kube-metrics
namespace which requires this argument.

7. Create a new ScaledObject YAML file, ingress-autoscaler.yaml, that targets the default
Ingress Controller deployment:

Example ScaledObject definition

The custom resource that you are targeting. In this case, the Ingress Controller.

Optional: The maximum number of replicas. If you omit this field, the default maximum is
set to 100 replicas.

$ oc apply -f thanos-metrics-reader.yaml

$ oc adm policy add-role-to-user thanos-metrics-reader -z thanos --
role=namespace=openshift-ingress-operator

$ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view
-z thanos

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: ingress-scaler
spec:
 scaleTargetRef: 1
 apiVersion: operator.openshift.io/v1
 kind: IngressController
 name: default
 envSourceContainerName: ingress-operator
 minReplicaCount: 1
 maxReplicaCount: 20 2
 cooldownPeriod: 1
 pollingInterval: 1
 triggers:
 - type: prometheus
 metricType: AverageValue
 metadata:
 serverAddress: https://<example-cluster>:9091 3
 namespace: openshift-ingress-operator 4
 metricName: 'kube-node-role'
 threshold: '1'
 query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 5
 authModes: "bearer"
 authenticationRef:
 name: keda-trigger-auth-prometheus

OpenShift Container Platform 4.12 Networking

68

3

4

5

The cluster address and port.

The Ingress Operator namespace.

This expression evaluates to however many worker nodes are present in the deployed
cluster.

IMPORTANT

If you are using cross-namespace queries, you must target port 9091 and not port
9092 in the serverAddress field. You also must have elevated privileges to read
metrics from this port.

8. Apply the custom resource definition by running the following command:

Verification

Verify that the default Ingress Controller is scaled out to match the value returned by the kube-
state-metrics query by running the following commands:

Use the grep command to search the Ingress Controller YAML file for replicas:

Example output

Get the pods in the openshift-ingress project:

Example output

Additional resources

Enabling monitoring for user-defined projects

Installing the custom metrics autoscaler

Understanding custom metrics autoscaler trigger authentications

Configuring the custom metrics autoscaler to use OpenShift Container Platform monitoring

Understanding how to add custom metrics autoscalers

$ oc apply -f ingress-autoscaler.yaml

$ oc get ingresscontroller/default -o yaml | grep replicas:

replicas: 3

$ oc get pods -n openshift-ingress

NAME READY STATUS RESTARTS AGE
router-default-7b5df44ff-l9pmm 2/2 Running 0 17h
router-default-7b5df44ff-s5sl5 2/2 Running 0 3d22h
router-default-7b5df44ff-wwsth 2/2 Running 0 66s

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/monitoring/#enabling-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-cma-autoscaling-custom-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-cma-autoscaling-custom-trigger-auth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-cma-autoscaling-custom-prometheus
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-cma-autoscaling-custom-adding

7.8.4. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

Example output

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

Example output

3. Verify that the default IngressController scaled to the number of replicas that you specified:

Example output

TIP

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

2

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

3

OpenShift Container Platform 4.12 Networking

70

1

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

If you need a different amount of replicas, change the replicas value.

7.8.5. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 3 1

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Container

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

71

When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

Example output

Configure Ingress access logging to a Syslog endpoint.

To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2

OpenShift Container Platform 4.12 Networking

72

Disable Ingress access logging.

To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

7.8.6. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to increase the number of threads:

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

7.8.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

 logging:
 access:
 destination:
 type: Syslog
 syslog:
 address: 1.2.3.4
 port: 10514
 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 replicas: 2
 logging:
 access: null

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

73

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 7.1. Diagram of LoadBalancer

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

OpenShift Container Platform 4.12 Networking

74

1

2

3

1

You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

7.8.8. Configuring global access for an Ingress Controller on GCP

An Ingress Controller created on GCP with an internal load balancer generates an internal IP address for
the service. A cluster administrator can specify the global access option, which enables clients in any
region within the same VPC network and compute region as the load balancer, to reach the workloads
running on your cluster.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

75

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

1

For more information, see the GCP documentation for global access.

Prerequisites

You deployed an OpenShift Container Platform cluster on GCP infrastructure.

You configured an Ingress Controller to use an internal load balancer.

You installed the OpenShift CLI (oc).

Procedure

1. Configure the Ingress Controller resource to allow global access.

NOTE

You can also create an Ingress Controller and specify the global access option.

a. Configure the Ingress Controller resource:

b. Edit the YAML file:

Sample clientAccess configuration to Global

Set gcp.clientAccess to Global.

c. Save the file to apply the changes.

2. Run the following command to verify that the service allows global access:

The output shows that global access is enabled for GCP with the annotation,
networking.gke.io/internal-load-balancer-allow-global-access.

7.8.9. Setting the Ingress Controller health check interval

A cluster administrator can set the health check interval to define how long the router waits between
two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

$ oc -n openshift-ingress-operator edit ingresscontroller/default

 spec:
 endpointPublishingStrategy:
 loadBalancer:
 providerParameters:
 gcp:
 clientAccess: Global 1
 type: GCP
 scope: Internal
 type: LoadBalancerService

$ oc -n openshift-ingress edit svc/router-default -o yaml

OpenShift Container Platform 4.12 Networking

76

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

Prerequisites

The following assumes that you already created an Ingress Controller.

Procedure

Update the Ingress Controller to change the interval between back end health checks:

NOTE

To override the healthCheckInterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

7.8.10. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthCheckInterval": "8s"}}}'

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

77

7.8.11. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

TIP

 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

OpenShift Container Platform 4.12 Networking

78

TIP

You can alternatively apply the following YAML to configure the route admission policy:

7.8.12. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure

1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

7.8.13. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

$ oc edit IngressController

spec:
 routeAdmission:
 wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

$ oc edit IngressController

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

79

Example use cases
As a cluster administrator, you can:

Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

7.8.14. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 forwardedHeaderPolicy: Append

OpenShift Container Platform 4.12 Networking

80

Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

WARNING

Using WebSockets with a re-encrypt route and with HTTP/2 enabled on an Ingress
Controller requires WebSocket support over HTTP/2. WebSockets over HTTP/2 is a
feature of HAProxy 2.4, which is unsupported in OpenShift Container Platform at
this time.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

To enable HTTP/2 on an Ingress Controller, enter the oc annotate command:

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.

Enable HTTP/2 on the entire cluster.

To enable HTTP/2 for the entire cluster, enter the oc annotate command:

TIP

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

81

TIP

You can alternatively apply the following YAML to add the annotation:

7.8.15. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an IngressController specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use TCP.

WARNING

The PROXY protocol is unsupported for the default Ingress Controller with
installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:

2. Set the PROXY configuration:

If your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
 annotations:
 ingress.operator.openshift.io/default-enable-http2: "true"

$ oc -n openshift-ingress-operator edit ingresscontroller/default

OpenShift Container Platform 4.12 Networking

82

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

If your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

If your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

7.8.16. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

 spec:
 endpointPublishingStrategy:
 hostNetwork:
 protocol: PROXY
 type: HostNetwork

 spec:
 endpointPublishingStrategy:
 nodePort:
 protocol: PROXY
 type: NodePortService

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

83

1

2

Specifies the default domain. You cannot modify the default domain after installation.

Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

Example output:

7.8.17. Converting HTTP header case

HAProxy 2.2 lowercases HTTP header names by default, for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because OpenShift Container Platform includes HAProxy 2.2, make sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

metadata:
 name: cluster
spec:
 domain: apps.example.com 1
 appsDomain: <test.example.com> 2

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
hello-openshift hello_openshift-<my_project>.test.example.com
hello-openshift 8080-tcp None

OpenShift Container Platform 4.12 Networking

84

1

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

2. Annotate the route of the application:

The Ingress Controller then adjusts the host request header as specified.

Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

Example Ingress Controller YAML

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

Set haproxy.router.openshift.io/h1-adjust-case to true.

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'

$ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpHeaders:
 headerNameCaseAdjustments:
 - Host

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/h1-adjust-case: true 1
 name: my-application
 namespace: my-application
spec:
 to:
 kind: Service
 name: my-application

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

85

7.8.18. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFC1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and js, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

Procedure

1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

7.8.19. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

You configured your firewall to access the default stats port, 1936.

Procedure

$ oc edit -n openshift-ingress-operator ingresscontrollers/default

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 httpCompression:
 mimeTypes:
 - "text/html"
 - "text/css; charset=utf-8"
 - "application/json"
 ...

OpenShift Container Platform 4.12 Networking

86

https://datatracker.ietf.org/doc/html/rfc1341#page-7

1. Get the router pod name by running the following command:

Example output

2. Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

b. Get the password by running the following command:

3. Get the router IP and metrics certificates by running the following command:

4. Get the raw statistics in Prometheus format by running the following command:

5. Access the metrics securely by running the following command:

6. Access the default stats port, 1936, by running the following command:

Example 7.1. Example output

$ oc get pods -n openshift-ingress

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66c-46qwp 1/1 Running 0 11h

$ oc rsh <router_pod_name> cat metrics-auth/statsUsername

$ oc rsh <router_pod_name> cat metrics-auth/statsPassword

$ oc describe pod <router_pod>

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

$ curl -u user:password https://<router_IP>:<stats_port>/metrics -k

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

...
HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0
...
HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.
TYPE haproxy_exporter_server_threshold gauge

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

87

7. Launch the stats window by entering the following URL in a browser:

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

7.8.20. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom
page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500
...
HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070
...
HELP haproxy_server_bytes_in_total Current total of incoming bytes.
TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service="
"} 0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""}
0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0
...

http://<user>:<password>@<router_IP>:<stats_port>

http://<user>:<password>@<router_ip>:1936/metrics;csv

OpenShift Container Platform 4.12 Networking

88

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

1

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

3. Display the copy:

Example output

NAME DATA AGE
default-errorpages 2 25s 1

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

For 503 custom HTTP custom error code response:

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

$ oc get cm default-errorpages -n openshift-ingress

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

89

For 404 custom HTTP custom error code response:

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

4. Check if the errorfile attribute is properly in the haproxy.config file:

7.8.21. Setting the Ingress Controller maximum connections

A cluster administrator can set the maximum number of simultaneous connections for OpenShift router
deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

The following assumes that you already created an Ingress Controller

Procedure

Update the Ingress Controller to change the maximum number of connections for HAProxy:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

 $ oc new-project test-ingress

$ oc new-app django-psql-example

$ curl -vk <route_hostname>

$ curl -vk <route_hostname>

$ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'

OpenShift Container Platform 4.12 Networking

90

WARNING

If you set the spec.tuningOptions.maxConnections value greater than
the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters" section for
more information about this parameter.

7.9. ADDITIONAL RESOURCES

Configuring a custom PKI

CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

91

CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER
PLATFORM

In OpenShift Container Platform, an Ingress Controller can serve all routes, or it can serve a subset of
routes. By default, the Ingress Controller serves any route created in any namespace in the cluster. You
can add additional Ingress Controllers to your cluster to optimize routing by creating shards, which are
subsets of routes based on selected characteristics. To mark a route as a member of a shard, use labels
in the route or namespace metadata field. The Ingress Controller uses selectors, also known as a
selection expression, to select a subset of routes from the entire pool of routes to serve.

Ingress sharding is useful in cases where you want to load balance incoming traffic across multiple
Ingress Controllers, when you want to isolate traffic to be routed to a specific Ingress Controller, or for a
variety of other reasons described in the next section.

By default, each route uses the default domain of the cluster. However, routes can be configured to use
the domain of the router instead. For more information, see Creating a route for Ingress Controller
Sharding.

8.1. INGRESS CONTROLLER SHARDING

You can use Ingress sharding, also known as router sharding, to distribute a set of routes across multiple
routers by adding labels to routes, namespaces, or both. The Ingress Controller uses a corresponding
set of selectors to admit only the routes that have a specified label. Each Ingress shard comprises the
routes that are filtered using a given selection expression.

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller can be
significant. As a cluster administrator, you can shard the routes to:

Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.

Allocate certain routes to have different reliability guarantees than other routes.

Allow certain Ingress Controllers to have different policies defined.

Allow only specific routes to use additional features.

Expose different routes on different addresses so that internal and external users can see
different routes, for example.

Transfer traffic from one version of an application to another during a blue green deployment.

When Ingress Controllers are sharded, a given route is admitted to zero or more Ingress Controllers in
the group. A route’s status describes whether an Ingress Controller has admitted it or not. An Ingress
Controller will only admit a route if it is unique to its shard.

An Ingress Controller can use three sharding methods:

Adding only a namespace selector to the Ingress Controller, so that all routes in a namespace
with labels that match the namespace selector are in the Ingress shard.

Adding only a route selector to the Ingress Controller, so that all routes with labels that match
the route selector are in the Ingress shard.

Adding both a namespace selector and route selector to the Ingress Controller, so that routes
with labels that match the route selector in a namespace with labels that match the namespace
selector are in the Ingress shard.

OpenShift Container Platform 4.12 Networking

92

With sharding, you can distribute subsets of routes over multiple Ingress Controllers. These subsets can
be non-overlapping, also called traditional sharding, or overlapping, otherwise known as overlapped
sharding.

8.1.1. Traditional sharding example

An Ingress Controller finops-router is configured with the label selector
spec.namespaceSelector.matchLabels.name set to finance and ops:

Example YAML definition for finops-router

A second Ingress Controller dev-router is configured with the label selector
spec.namespaceSelector.matchLabels.name set to dev:

Example YAML definition for dev-router

If all application routes are in separate namespaces, each labeled with name:finance, name:ops, and
name:dev respectively, this configuration effectively distributes your routes between the two Ingress
Controllers. OpenShift Container Platform routes for console, authentication, and other purposes
should not be handled.

In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: finops-router
 namespace: openshift-ingress-operator
spec:
 namespaceSelector:
 matchLabels:
 name:
 - finance
 - ops

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: dev-router
 namespace: openshift-ingress-operator
spec:
 namespaceSelector:
 matchLabels:
 name: dev

CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORM

93

WARNING

The default Ingress Controller continues to serve all routes unless the
namespaceSelector or routeSelector fields contain routes that are meant for
exclusion. See this Red Hat Knowledgebase solution and the section "Sharding the
default Ingress Controller" for more information on how to exclude routes from the
default Ingress Controller.

8.1.2. Overlapped sharding example

In addition to finops-router and dev-router in the example above, you also have devops-router, which
is configured with the label selector spec.namespaceSelector.matchLabels.name set to dev and ops:

Example YAML definition for devops-router

The routes in the namespaces labeled name:dev and name:ops are now serviced by two different
Ingress Controllers. With this configuration, you have overlapping subsets of routes.

With overlapping subsets of routes you can create more complex routing rules. For example, you can
divert higher priority traffic to the dedicated finops-router while sending lower priority traffic to
devops-router.

8.1.3. Sharding the default Ingress Controller

After creating a new Ingress shard, there might be routes that are admitted to your new Ingress shard
that are also admitted by the default Ingress Controller. This is because the default Ingress Controller
has no selectors and admits all routes by default.

You can restrict an Ingress Controller from servicing routes with specific labels using either namespace
selectors or route selectors. The following procedure restricts the default Ingress Controller from
servicing your newly sharded finance, ops, and dev, routes using a namespace selector. This adds
further isolation to Ingress shards.

IMPORTANT

You must keep all of OpenShift Container Platform’s administration routes on the same
Ingress Controller. Therefore, avoid adding additional selectors to the default Ingress
Controller that exclude these essential routes.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: devops-router
 namespace: openshift-ingress-operator
spec:
 namespaceSelector:
 matchLabels:
 name:
 - dev
 - ops

OpenShift Container Platform 4.12 Networking

94

https://access.redhat.com/solutions/5097511

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

Procedure

1. Modify the default Ingress Controller by running the following command:

2. Edit the Ingress Controller to contain a namespaceSelector that excludes the routes with any
of the finance, ops, and dev labels:

The default Ingress Controller will no longer serve the namespaces labeled name:finance, name:ops,
and name:dev.

8.1.4. Ingress sharding and DNS

The cluster administrator is responsible for making a separate DNS entry for each router in a project. A
router will not forward unknown routes to another router.

Consider the following example:

Router A lives on host 192.168.0.5 and has routes with *.foo.com.

Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

*.foo.com A IN 192.168.0.5

*.example.com A IN 192.168.1.9

8.1.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Figure 8.1. Ingress sharding using route labels

$ oc edit ingresscontroller -n openshift-ingress-operator default

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 namespaceSelector:
 matchExpressions:
 - key: type
 operator: NotIn
 values:
 - finance
 - ops
 - dev

CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORM

95

1

Figure 8.1. Ingress sharding using route labels

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

cat router-internal.yaml
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: sharded
 namespace: openshift-ingress-operator
spec:
 domain: <apps-sharded.basedomain.example.net> 1
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded

OpenShift Container Platform 4.12 Networking

96

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

8.1.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Figure 8.2. Ingress sharding using namespace labels

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Example output

oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

cat router-internal.yaml

CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORM

97

1 Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

8.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING

A route allows you to host your application at a URL. In this case, the hostname is not set and the route
uses a subdomain instead. When you specify a subdomain, you automatically use the domain of the
Ingress Controller that exposes the route. For situations where a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLs.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: sharded
 namespace: openshift-ingress-operator
spec:
 domain: <apps-sharded.basedomain.example.net> 1
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded

oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

OpenShift Container Platform 4.12 Networking

98

1

2

You have configured the Ingress Controller for sharding.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding:

Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

Verification

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded 1
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift 2
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift

$ oc -n hello-openshift create -f hello-openshift-route.yaml

CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORM

99

1

2

3

Get the status of the route with the following command:

The resulting Route resource should look similar to the following:

Example output

The hostname the Ingress Controller, or router, uses to expose the route. The value of the
host field is automatically determined by the Ingress Controller, and uses its domain. In this
example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

The hostname of the Ingress Controller.

The name of the Ingress Controller. In this example, the Ingress Controller has the name
sharded.

Additional Resources

Baseline Ingress Controller (router) performance

$ oc -n hello-openshift get routes/hello-openshift-edge -o yaml

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift
status:
 ingress:
 - host: hello-openshift.<apps-sharded.basedomain.example.net> 1
 routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> 2
 routerName: sharded 3

OpenShift Container Platform 4.12 Networking

100

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/scalability_and_performance/#baseline-router-performance_routing-optimization

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN
OPENSHIFT CONTAINER PLATFORM

The Ingress Node Firewall Operator allows administrators to manage firewall configurations at the node
level.

9.1. INGRESS NODE FIREWALL OPERATOR

The Ingress Node Firewall Operator provides ingress firewall rules at a node level by deploying the
daemon set to nodes you specify and manage in the firewall configurations. To deploy the daemon set,
you create an IngressNodeFirewallConfig custom resource (CR). The Operator applies the
IngressNodeFirewallConfig CR to create ingress node firewall daemon set daemon, which run on all
nodes that match the nodeSelector.

You configure rules of the IngressNodeFirewall CR and apply them to clusters using the
nodeSelector and setting values to "true".

IMPORTANT

The Ingress Node Firewall Operator supports only stateless firewall rules.

The maximum transmission units (MTU) parameter is 4Kb (kilobytes) in OpenShift
Container Platform 4.12.

Network interface controllers (NICs) that do not support native XDP drivers will run at a
lower performance.

9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR

As a cluster administrator, you can install the Ingress Node Firewall Operator by using the OpenShift
Container Platform CLI or the web console.

9.2.1. Installing the Ingress Node Firewall Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

Procedure

1. To create the openshift-ingress-node-firewall namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 labels:
 pod-security.kubernetes.io/enforce: privileged

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

101

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the Ingress Node Firewall Operator.

a. To create a Subscription CR for the Ingress Node Firewall Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

5. To verify the version of the Operator, enter the following command:

Example output

 pod-security.kubernetes.io/enforce-version: v1.24
 name: openshift-ingress-node-firewall
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ingress-node-firewall-operators
 namespace: openshift-ingress-node-firewall
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ingress-node-firewall-sub
 namespace: openshift-ingress-node-firewall
spec:
 name: ingress-node-firewall
 channel: stable
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get ip -n openshift-ingress-node-firewall

NAME CSV APPROVAL APPROVED
install-5cvnz ingress-node-firewall.4.12.0-202211122336 Automatic true

$ oc get csv -n openshift-ingress-node-firewall

NAME DISPLAY VERSION REPLACES
PHASE
ingress-node-firewall.4.12.0-202211122336 Ingress Node Firewall Operator 4.12.0-
202211122336 ingress-node-firewall.4.12.0-202211102047 Succeeded

OpenShift Container Platform 4.12 Networking

102

9.2.2. Installing the Ingress Node Firewall Operator using the web console

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

You have installed the OpenShift CLI (oc).

You have an account with administrator privileges.

Procedure

1. Install the Ingress Node Firewall Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select Ingress Node Firewall Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the Ingress Node Firewall Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that Ingress Node Firewall Operator is listed in the openshift-ingress-node-
firewall project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not have a Status of InstallSucceeded, troubleshoot using the
following steps:

Inspect the Operator Subscriptions and Install Plans tabs for any failures or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
ingress-node-firewall project.

Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

NOTE

$ oc annotate ns/openshift-ingress-node-firewall
workload.openshift.io/allowed=management

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

103

NOTE

For single-node OpenShift clusters, the openshift-ingress-node-
firewall namespace requires the
workload.openshift.io/allowed=management annotation.

9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR

Prerequisite

The Ingress Node Firewall Operator is installed.

Procedure

To deploy the Ingress Node Firewall Operator, create a IngressNodeFirewallConfig custom resource
that will deploy the Operator’s daemon set. You can deploy one or multiple IngressNodeFirewall CRDs
to nodes by applying firewall rules.

1. Create the IngressNodeFirewallConfig inside the openshift-ingress-node-firewall
namespace named ingressnodefirewallconfig.

2. Run the following command to deploy Ingress Node Firewall Operator rules:

9.3.1. Ingress Node Firewall configuration object

The fields for the Ingress Node Firewall configuration object are described in the following table:

Table 9.1. Ingress Node Firewall Configuration object

Field Type Description

metadata.name string The name of the CR object. The name of the firewall rules object
must be ingressnodefirewallconfig.

metadata.name
space

string Namespace for the Ingress Firewall Operator CR object. The
IngressNodeFirewallConfig CR must be created inside the
openshift-ingress-node-firewall namespace.

$ oc apply -f rule.yaml

OpenShift Container Platform 4.12 Networking

104

spec.nodeSelec
tor

string A node selection constraint used to target nodes through
specified node labels. For example:

NOTE

One label used in nodeSelector must match a
label on the nodes in order for the daemon set
to start. For example, if the node labels node-
role.kubernetes.io/worker and node-
type.kubernetes.io/vm are applied to a node,
then at least one label must be set using
nodeSelector for the daemon set to start.

Field Type Description

NOTE

The Operator consumes the CR and creates an ingress node firewall daemon set on all
the nodes that match the nodeSelector.

Ingress Node Firewall Operator example configuration
A complete Ingress Node Firewall Configuration is specified in the following example:

Example Ingress Node Firewall Configuration object

NOTE

The Operator consumes the CR and creates an ingress node firewall daemon set on all
the nodes that match the nodeSelector.

9.3.2. Ingress Node Firewall rules object

spec:
 nodeSelector:
 node-role.kubernetes.io/worker: ""

apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewallConfig
metadata:
 name: ingressnodefirewallconfig
 namespace: openshift-ingress-node-firewall
spec:
 nodeSelector:
 node-role.kubernetes.io/worker: ""

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

105

The fields for the Ingress Node Firewall rules object are described in the following table:

Table 9.2. Ingress Node Firewall rules object

Field Type Description

metadata.name string The name of the CR object.

interfaces array The fields for this object specify the interfaces to apply the
firewall rules to. For example, - en0 and - en1.

nodeSelector array You can use nodeSelector to select the nodes to apply the
firewall rules to. Set the value of your named nodeselector
labels to true to apply the rule.

ingress object ingress allows you to configure the rules that allow outside
access to the services on your cluster.

Ingress object configuration
The values for the ingress object are defined in the following table:

Table 9.3. ingress object

Field Type Description

sourceCIDRs array Allows you to set the CIDR block. You can configure
multiple CIDRs from different address families.

NOTE

Different CIDRs allow you to use the
same order rule. In the case that
there are multiple
IngressNodeFirewall objects for
the same nodes and interfaces with
overlapping CIDRs, the order field
will specify which rule is applied first.
Rules are applied in ascending order.

OpenShift Container Platform 4.12 Networking

106

rules array Ingress firewall rules.order objects are ordered
starting at 1 for each source.CIDR with up to 100
rules per CIDR. Lower order rules are executed first.

rules.protocolConfig.protocol supports the
following protocols: TCP, UDP, SCTP, ICMP and
ICMPv6. ICMP and ICMPv6 rules can match against
ICMP and ICMPv6 types or codes. TCP, UDP, and
SCTP rules can match against a single destination
port or a range of ports using <start : end-1>
format.

Set rules.action to allow to apply the rule or deny
to disallow the rule.

NOTE

Ingress firewall rules are verified
using a verification webhook that
blocks any invalid configuration. The
verification webhook prevents you
from blocking any critical cluster
services such as the API server or
SSH.

Field Type Description

Ingress Node Firewall rules object example
A complete Ingress Node Firewall configuration is specified in the following example:

Example Ingress Node Firewall configuration

apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewall
metadata:
 name: ingressnodefirewall
spec:
 interfaces:
 - eth0
 nodeSelector:
 matchLabels:
 <ingress_firewall_label_name>: <label_value> 1
 ingress:
 - sourceCIDRs:
 - 172.16.0.0/12
 rules:
 - order: 10
 protocolConfig:
 protocol: ICMP
 icmp:
 icmpType: 8 #ICMP Echo request
 action: Deny
 - order: 20
 protocolConfig:
 protocol: TCP

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

107

1 A <label_name> and a <label_value> must exist on the node and must match the nodeselector label
and value applied to the nodes you want the ingressfirewallconfig CR to run on. The <label_value>
can be true or false. By using nodeSelector labels, you can target separate groups of nodes to
apply different rules to using the ingressfirewallconfig CR.

Zero trust Ingress Node Firewall rules object example
Zero trust Ingress Node Firewall rules can provide additional security to multi-interface clusters. For
example, you can use zero trust Ingress Node Firewall rules to drop all traffic on a specific interface
except for SSH.

A complete configuration of a zero trust Ingress Node Firewall rule set is specified in the following
example:

IMPORTANT

Users need to add all ports their application will use to their allowlist in the following case
to ensure proper functionality.

Example zero trust Ingress Node Firewall rules

 tcp:
 ports: "8000-9000"
 action: Deny
 - sourceCIDRs:
 - fc00:f853:ccd:e793::0/64
 rules:
 - order: 10
 protocolConfig:
 protocol: ICMPv6
 icmpv6:
 icmpType: 128 #ICMPV6 Echo request
 action: Deny

apiVersion: ingressnodefirewall.openshift.io/v1alpha1
kind: IngressNodeFirewall
metadata:
 name: ingressnodefirewall-zero-trust
spec:
 interfaces:
 - eth1 1
 nodeSelector:
 matchLabels:
 <ingress_firewall_label_name>: <label_value> 2
 ingress:
 - sourceCIDRs:
 - 0.0.0.0/0 3
 rules:
 - order: 10
 protocolConfig:
 protocol: TCP
 tcp:
 ports: 22

OpenShift Container Platform 4.12 Networking

108

1

2

3

4

Network-interface cluster

The <label_name> and <label_value> needs to match the nodeSelector label and value applied to
the specific nodes with which you wish to apply the ingressfirewallconfig CR.

0.0.0.0/0 set to match any CIDR

action set to Deny

9.4. VIEWING INGRESS NODE FIREWALL OPERATOR RULES

Procedure

1. Run the following command to view all current rules :

2. Choose one of the returned <resource> names and run the following command to view the
rules or configs:

9.5. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR

Run the following command to list installed Ingress Node Firewall custom resource definitions
(CRD):

Example output

Run the following command to view the state of the Ingress Node Firewall Operator:

Example output

The following fields provide information about the status of the Operator: READY, STATUS,

 action: Allow
 - order: 20
 action: Deny 4

$ oc get ingressnodefirewall

$ oc get <resource> <name> -o yaml

$ oc get crds | grep ingressnodefirewall

NAME READY UP-TO-DATE AVAILABLE AGE
ingressnodefirewallconfigs.ingressnodefirewall.openshift.io 2022-08-25T10:03:01Z
ingressnodefirewallnodestates.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z
ingressnodefirewalls.ingressnodefirewall.openshift.io 2022-08-25T10:03:00Z

$ oc get pods -n openshift-ingress-node-firewall

NAME READY STATUS RESTARTS AGE
ingress-node-firewall-controller-manager 2/2 Running 0 5d21h
ingress-node-firewall-daemon-pqx56 3/3 Running 0 5d21h

CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM

109

The following fields provide information about the status of the Operator: READY, STATUS,
AGE, and RESTARTS. The STATUS field is Running when the Ingress Node Firewall Operator
is deploying a daemon set to the assigned nodes.

Run the following command to collect all ingress firewall node pods' logs:

The logs are available in the sos node’s report containing eBPF bpftool outputs at
/sos_commands/ebpf. These reports include lookup tables used or updated as the ingress
firewall XDP handles packet processing, updates statistics, and emits events.

$ oc adm must-gather – gather_ingress_node_firewall

OpenShift Container Platform 4.12 Networking

110

CHAPTER 10. CONFIGURING AN INGRESS CONTROLLER FOR
MANUAL DNS MANAGEMENT

As a cluster administrator, when you create an Ingress Controller, the Operator manages the DNS
records automatically. This has some limitations when the required DNS zone is different from the
cluster DNS zone or when the DNS zone is hosted outside the cloud provider.

As a cluster administrator, you can configure an Ingress Controller to stop automatic DNS management
and start manual DNS management. Set dnsManagementPolicy to specify when it should be
automatically or manually managed.

When you change an Ingress Controller from Managed to Unmanaged DNS management policy, the
Operator does not clean up the previous wildcard DNS record provisioned on the cloud. When you
change an Ingress Controller from Unmanaged to Managed DNS management policy, the Operator
attempts to create the DNS record on the cloud provider if it does not exist or updates the DNS record
if it already exists.

IMPORTANT

When you set dnsManagementPolicy to unmanaged, you have to manually manage the
lifecycle of the wildcard DNS record on the cloud provider.

10.1. MANAGED DNS MANAGEMENT POLICY

The Managed DNS management policy for Ingress Controllers ensures that the lifecycle of the wildcard
DNS record on the cloud provider is automatically managed by the Operator.

10.2. UNMANAGED DNS MANAGEMENT POLICY

The Unmanaged DNS management policy for Ingress Controllers ensures that the lifecycle of the
wildcard DNS record on the cloud provider is not automatically managed, instead it becomes the
responsibility of the cluster administrator.

NOTE

On the AWS cloud platform, if the domain on the Ingress Controller does not match with
dnsConfig.Spec.BaseDomain then the DNS management policy is automatically set to
Unmanaged.

10.3. CREATING A CUSTOM INGRESS CONTROLLER WITH THE
UNMANAGED DNS MANAGEMENT POLICY

As a cluster administrator, you can create a new custom Ingress Controller with the Unmanaged DNS
management policy.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

CHAPTER 10. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT

111

1

2

3

4

1. Create a custom resource (CR) file named sample-ingress.yaml containing the following:

Specify the <name> with a name for the IngressController object.

Specify the domain based on the DNS record that was created as a prerequisite.

Specify the scope as External to expose the load balancer externally.

dnsManagementPolicy indicates if the Ingress Controller is managing the lifecycle of the
wildcard DNS record associated with the load balancer. The valid values are Managed and
Unmanaged. The default value is Managed.

2. Save the file to apply the changes.

10.4. MODIFYING AN EXISTING INGRESS CONTROLLER

As a cluster administrator, you can modify an existing Ingress Controller to manually manage the DNS
record lifecycle.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Modify the chosen IngressController to set dnsManagementPolicy:

2. Optional: You can delete the associated DNS record in the cloud provider.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 dnsManagementPolicy: Unmanaged 4

oc apply -f <name>.yaml 1

SCOPE=$(oc -n openshift-ingress-operator get ingresscontroller <name> -o=jsonpath="
{.status.endpointPublishingStrategy.loadBalancer.scope}")

oc -n openshift-ingress-operator patch ingresscontrollers/<name> --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"dnsManagementPolicy":"Unmanaged", "scope":"${SCOPE}"}}}}'

OpenShift Container Platform 4.12 Networking

112

10.5. ADDITIONAL RESOURCES

Ingress Controller configuration parameters

CHAPTER 10. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT

113

CHAPTER 11. CONFIGURING THE INGRESS CONTROLLER
ENDPOINT PUBLISHING STRATEGY

11.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 11.1. Diagram of NodePortService

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

When the client connects to a node that is down, for example, by connecting the 10.0.128.4 IP

OpenShift Container Platform 4.12 Networking

114

address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.

HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress Controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

11.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External. Cluster administrators can change an
External scoped Ingress Controller to Internal.

Prerequisites

You installed the oc CLI.

Procedure

To change an External scoped Ingress Controller to Internal, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"Internal"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

$ oc -n openshift-ingress delete services/router-default

CHAPTER 11. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

115

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

If you delete the service, the Ingress Operator recreates it as Internal.

11.1.2. Configuring the Ingress Controller endpoint publishing scope to External

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External.

The Ingress Controller’s scope can be configured to be Internal during installation or after, and cluster
administrators can change an Internal Ingress Controller to External.

IMPORTANT

On some platforms, it is necessary to delete and recreate the service.

Changing the scope can cause disruption to Ingress traffic, potentially for several
minutes. This applies to platforms where it is necessary to delete and recreate the
service, because the procedure can cause OpenShift Container Platform to deprovision
the existing service load balancer, provision a new one, and update DNS.

Prerequisites

You installed the oc CLI.

Procedure

To change an Internal scoped Ingress Controller to External, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

If you delete the service, the Ingress Operator recreates it as External.

11.2. ADDITIONAL RESOURCES

For more information, see Ingress Controller configuration parameters .

$ oc -n openshift-ingress-operator patch ingresscontrollers/private --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"External"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

$ oc -n openshift-ingress delete services/router-default

OpenShift Container Platform 4.12 Networking

116

CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT
The Cluster Network Operator (CNO) runs a controller, the connectivity check controller, that performs
a connection health check between resources within your cluster. By reviewing the results of the health
checks, you can diagnose connection problems or eliminate network connectivity as the cause of an
issue that you are investigating.

12.1. CONNECTION HEALTH CHECKS PERFORMED

To verify that cluster resources are reachable, a TCP connection is made to each of the following cluster
API services:

Kubernetes API server service

Kubernetes API server endpoints

OpenShift API server service

OpenShift API server endpoints

Load balancers

To verify that services and service endpoints are reachable on every node in the cluster, a TCP
connection is made to each of the following targets:

Health check target service

Health check target endpoints

12.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS

The connectivity check controller orchestrates connection verification checks in your cluster. The results
for the connection tests are stored in PodNetworkConnectivity objects in the openshift-network-
diagnostics namespace. Connection tests are performed every minute in parallel.

The Cluster Network Operator (CNO) deploys several resources to the cluster to send and receive
connectivity health checks:

Health check source

This program deploys in a single pod replica set managed by a Deployment object. The program
consumes PodNetworkConnectivity objects and connects to the spec.targetEndpoint specified in
each object.

Health check target

A pod deployed as part of a daemon set on every node in the cluster. The pod listens for inbound
health checks. The presence of this pod on every node allows for the testing of connectivity to each
node.

12.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

The PodNetworkConnectivityCheck object fields are described in the following tables.

Table 12.1. PodNetworkConnectivityCheck object fields

CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT

117

Field Type Description

metadata.name string The name of the object in the following format:
<source>-to-<target>. The destination described
by <target> includes one of following strings:

load-balancer-api-external

load-balancer-api-internal

kubernetes-apiserver-endpoint

kubernetes-apiserver-service-cluster

network-check-target

openshift-apiserver-endpoint

openshift-apiserver-service-cluster

metadata.namespace string The namespace that the object is associated with.
This value is always openshift-network-
diagnostics.

spec.sourcePod string The name of the pod where the connection check
originates, such as network-check-source-
596b4c6566-rgh92.

spec.targetEndpoint string The target of the connection check, such as
api.devcluster.example.com:6443.

spec.tlsClientCert object Configuration for the TLS certificate to use.

spec.tlsClientCert.name string The name of the TLS certificate used, if any. The
default value is an empty string.

status object An object representing the condition of the
connection test and logs of recent connection
successes and failures.

status.conditions array The latest status of the connection check and any
previous statuses.

status.failures array Connection test logs from unsuccessful attempts.

status.outages array Connect test logs covering the time periods of any
outages.

status.successes array Connection test logs from successful attempts.

The following table describes the fields for objects in the status.conditions array:

OpenShift Container Platform 4.12 Networking

118

Table 12.2. status.conditions

Field Type Description

lastTransitionTime string The time that the condition of the connection
transitioned from one status to another.

message string The details about last transition in a human readable
format.

reason string The last status of the transition in a machine readable
format.

status string The status of the condition.

type string The type of the condition.

The following table describes the fields for objects in the status.conditions array:

Table 12.3. status.outages

Field Type Description

end string The timestamp from when the connection failure is
resolved.

endLogs array Connection log entries, including the log entry
related to the successful end of the outage.

message string A summary of outage details in a human readable
format.

start string The timestamp from when the connection failure is
first detected.

startLogs array Connection log entries, including the original failure.

Connection log fields
The fields for a connection log entry are described in the following table. The object is used in the
following fields:

status.failures[]

status.successes[]

status.outages[].startLogs[]

status.outages[].endLogs[]

Table 12.4. Connection log object

CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT

119

Field Type Description

latency string Records the duration of the action.

message string Provides the status in a human readable format.

reason string Provides the reason for status in a machine readable
format. The value is one of TCPConnect,
TCPConnectError, DNSResolve, DNSError.

success boolean Indicates if the log entry is a success or failure.

time string The start time of connection check.

12.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

As a cluster administrator, you can verify the connectivity of an endpoint, such as an API server, load
balancer, service, or pod.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. To list the current PodNetworkConnectivityCheck objects, enter the following command:

Example output

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

NAME AGE
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 73m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-

OpenShift Container Platform 4.12 Networking

120

2. View the connection test logs:

a. From the output of the previous command, identify the endpoint that you want to review
the connectivity logs for.

b. To view the object, enter the following command:

where <name> specifies the name of the PodNetworkConnectivityCheck object.

Example output

ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-2 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2 74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster 75m

$ oc get podnetworkconnectivitycheck <name> \
 -n openshift-network-diagnostics -o yaml

apiVersion: controlplane.operator.openshift.io/v1alpha1
kind: PodNetworkConnectivityCheck
metadata:
 name: network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0
 namespace: openshift-network-diagnostics
 ...
spec:
 sourcePod: network-check-source-7c88f6d9f-hmg2f
 targetEndpoint: 10.0.0.4:6443
 tlsClientCert:
 name: ""
status:
 conditions:
 - lastTransitionTime: "2021-01-13T20:11:34Z"
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnectSuccess
 status: "True"
 type: Reachable
 failures:
 - latency: 2.241775ms

CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT

121

 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
 to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
 connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 outages:
 - end: "2021-01-13T20:11:34Z"
 endLogs:
 - latency: 2.032018ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 tcp connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T20:11:34Z"
 - latency: 2.241775ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:10:34Z"
 - latency: 2.582129ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:09:34Z"
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 message: Connectivity restored after 2m59.999789186s
 start: "2021-01-13T20:08:34Z"
 startLogs:
 - latency: 3.483578ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
 failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:

OpenShift Container Platform 4.12 Networking

122

 connect: connection refused'
 reason: TCPConnectError
 success: false
 time: "2021-01-13T20:08:34Z"
 successes:
 - latency: 2.845865ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:14:34Z"
 - latency: 2.926345ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:13:34Z"
 - latency: 2.895796ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:12:34Z"
 - latency: 2.696844ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:11:34Z"
 - latency: 1.502064ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:10:34Z"
 - latency: 1.388857ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:09:34Z"
 - latency: 1.906383ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:08:34Z"
 - latency: 2.089073ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:07:34Z"
 - latency: 2.156994ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'

CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT

123

 reason: TCPConnect
 success: true
 time: "2021-01-13T21:06:34Z"
 - latency: 1.777043ms
 message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
 connection to 10.0.0.4:6443 succeeded'
 reason: TCPConnect
 success: true
 time: "2021-01-13T21:05:34Z"

OpenShift Container Platform 4.12 Networking

124

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER
NETWORK

As a cluster administrator, you can change the MTU for the cluster network after cluster installation.
This change is disruptive as cluster nodes must be rebooted to finalize the MTU change. You can
change the MTU only for clusters using the OVN-Kubernetes or OpenShift SDN network plugins.

13.1. ABOUT THE CLUSTER MTU

During installation the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You do not
normally need to override the detected MTU.

You might want to change the MTU of the cluster network for several reasons:

The MTU detected during cluster installation is not correct for your infrastructure

Your cluster infrastructure now requires a different MTU, such as from the addition of nodes
that need a different MTU for optimal performance

You can change the cluster MTU for only the OVN-Kubernetes and OpenShift SDN cluster network
plugins.

13.1.1. Service interruption considerations

When you initiate an MTU change on your cluster the following effects might impact service availability:

At least two rolling reboots are required to complete the migration to a new MTU. During this
time, some nodes are not available as they restart.

Specific applications deployed to the cluster with shorter timeout intervals than the absolute
TCP timeout interval might experience disruption during the MTU change.

13.1.2. MTU value selection

When planning your MTU migration there are two related but distinct MTU values to consider.

Hardware MTU: This MTU value is set based on the specifics of your network infrastructure.

Cluster network MTU: This MTU value is always less than your hardware MTU to account for
the cluster network overlay overhead. The specific overhead is determined by your network
plugin:

OVN-Kubernetes: 100 bytes

OpenShift SDN: 50 bytes

If your cluster requires different MTU values for different nodes, you must subtract the overhead value
for your network plugin from the lowest MTU value that is used by any node in your cluster. For example,
if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this
value to 1400.

IMPORTANT

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK

125

IMPORTANT

To avoid selecting an MTU value that is not acceptable by a node, verify the maximum
MTU value (maxmtu) that is accepted by the network interface by using the ip -d link
command.

13.1.3. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 13.1. Live migration of the cluster MTU

User-initiated steps OpenShift Container Platform activity

Set the following values in the Cluster Network
Operator configuration:

spec.migration.mtu.machine.to

spec.migration.mtu.network.from

spec.migration.mtu.network.to

Cluster Network Operator (CNO): Confirms that
each field is set to a valid value.

The mtu.machine.to must be set to either
the new hardware MTU or to the current
hardware MTU if the MTU for the hardware
is not changing. This value is transient and is
used as part of the migration process.
Separately, if you specify a hardware MTU
that is different from your existing hardware
MTU value, you must manually configure
the MTU to persist by other means, such as
with a machine config, DHCP setting, or a
Linux kernel command line.

The mtu.network.from field must equal
the
network.status.clusterNetworkMTU
field, which is the current MTU of the cluster
network.

The mtu.network.to field must be set to
the target cluster network MTU and must
be lower than the hardware MTU to allow for
the overlay overhead of the network plugin.
For OVN-Kubernetes, the overhead is 100
bytes and for OpenShift SDN the overhead
is 50 bytes.

If the values provided are valid, the CNO writes out a
new temporary configuration with the MTU for the
cluster network set to the value of the
mtu.network.to field.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster.

OpenShift Container Platform 4.12 Networking

126

Reconfigure the MTU of the primary network
interface for the nodes on the cluster. You can use a
variety of methods to accomplish this, including:

Deploying a new NetworkManager
connection profile with the MTU change

Changing the MTU through a DHCP server
setting

Changing the MTU through boot
parameters

N/A

Set the mtu value in the CNO configuration for the
network plugin and set spec.migration to null.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster with the
new MTU configuration.

User-initiated steps OpenShift Container Platform activity

13.2. CHANGING THE CLUSTER MTU

As a cluster administrator, you can change the maximum transmission unit (MTU) for your cluster. The
migration is disruptive and nodes in your cluster might be temporarily unavailable as the MTU update
rolls out.

The following procedure describes how to change the cluster MTU by using either machine configs,
DHCP, or an ISO. If you use the DHCP or ISO approach, you must refer to configuration artifacts that
you kept after installing your cluster to complete the procedure.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You identified the target MTU for your cluster. The correct MTU varies depending on the
network plugin that your cluster uses:

OVN-Kubernetes: The cluster MTU must be set to 100 less than the lowest hardware MTU
value in your cluster.

OpenShift SDN: The cluster MTU must be set to 50 less than the lowest hardware MTU
value in your cluster.

Procedure

To increase or decrease the MTU for the cluster network complete the following procedure.

1. To obtain the current MTU for the cluster network, enter the following command:

Example output

$ oc describe network.config cluster

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK

127

2. Prepare your configuration for the hardware MTU:

If your hardware MTU is specified with DHCP, update your DHCP configuration such as with
the following dnsmasq configuration:

where:

<mtu>

Specifies the hardware MTU for the DHCP server to advertise.

If your hardware MTU is specified with a kernel command line with PXE, update that
configuration accordingly.

If your hardware MTU is specified in a NetworkManager connection configuration, complete
the following steps. This approach is the default for OpenShift Container Platform if you do
not explicitly specify your network configuration with DHCP, a kernel command line, or some
other method. Your cluster nodes must all use the same underlying network configuration
for the following procedure to work unmodified.

i. Find the primary network interface:

If you are using the OpenShift SDN network plugin, enter the following command:

where:

<node_name>

Specifies the name of a node in your cluster.

If you are using the OVN-Kubernetes network plugin, enter the following command:

where:

<node_name>

Specifies the name of a node in your cluster.

ii. Create the following NetworkManager configuration in the <interface>-mtu.conf file:

Example NetworkManager connection configuration

...
Status:
 Cluster Network:
 Cidr: 10.217.0.0/22
 Host Prefix: 23
 Cluster Network MTU: 1400
 Network Type: OpenShiftSDN
 Service Network:
 10.217.4.0/23
...

dhcp-option-force=26,<mtu>

$ oc debug node/<node_name> -- chroot /host ip route list match 0.0.0.0/0 | awk
'{print $5 }'

$ oc debug node/<node_name> -- chroot /host nmcli -g connection.interface-
name c show ovs-if-phys0

OpenShift Container Platform 4.12 Networking

128

1 1

2

Example NetworkManager connection configuration

where:

<mtu>

Specifies the new hardware MTU value.

<interface>

Specifies the primary network interface name.

iii. Create two MachineConfig objects, one for the control plane nodes and another for
the worker nodes in your cluster:

A. Create the following Butane config in the control-plane-interface.bu file:

Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

B. Create the following Butane config in the worker-interface.bu file:

Specify the NetworkManager connection name for the primary network

[connection-<interface>-mtu]
match-device=interface-name:<interface>
ethernet.mtu=<mtu>

variant: openshift
version: 4.12.0
metadata:
 name: 01-control-plane-interface
 labels:
 machineconfiguration.openshift.io/role: master
storage:
 files:
 - path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf 1
 contents:
 local: <interface>-mtu.conf 2
 mode: 0600

variant: openshift
version: 4.12.0
metadata:
 name: 01-worker-interface
 labels:
 machineconfiguration.openshift.io/role: worker
storage:
 files:
 - path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf 1
 contents:
 local: <interface>-mtu.conf 2
 mode: 0600

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK

129

1

2

Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

C. Create MachineConfig objects from the Butane configs by running the following
command:

3. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

where:

<overlay_from>

Specifies the current cluster network MTU value.

<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value for
<machine_to> and for OVN-Kubernetes must be 100 less and for OpenShift SDN must be
50 less.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

Example that increases the cluster MTU

4. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

$ for manifest in control-plane-interface worker-interface; do
 butane --files-dir . $manifest.bu > $manifest.yaml
 done

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to> } ,
"machine": { "to" : <machine_to> } } } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": { "mtu": { "network": { "from": 1400, "to": 9000 } , "machine": { "to" :
9100} } } } }'

$ oc get mcp

OpenShift Container Platform 4.12 Networking

130

5. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

6. Update the underlying network interface MTU value:

If you are specifying the new MTU with a NetworkManager connection configuration, enter
the following command. The MachineConfig Operator automatically performs a rolling
reboot of the nodes in your cluster.

If you are specifying the new MTU with a DHCP server option or a kernel command line and
PXE, make the necessary changes for your infrastructure.

7. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/mtu-migration.sh

$ for manifest in control-plane-interface worker-interface; do
 oc create -f $manifest.yaml
 done

$ oc get mcp

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK

131

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

8. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

If the machine config is successfully deployed, the previous output contains the
/etc/NetworkManager/system-connections/<connection_name> file path.

The machine config must not contain the ExecStart=/usr/local/bin/mtu-migration.sh line.

9. To finalize the MTU migration, enter one of the following commands:

If you are using the OVN-Kubernetes network plugin:

where:

<mtu>

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep path:

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu>
}}}}'

OpenShift Container Platform 4.12 Networking

132

Specifies the new cluster network MTU that you specified with <overlay_to>.

If you are using the OpenShift SDN network plugin:

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

10. After finalizing the MTU migration, each MCP node is rebooted one by one. You must wait until
all the nodes are updated. Check the machine config pool status by entering the following
command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

Verification

You can verify that a node in your cluster uses an MTU that you specified in the previous procedure.

1. To get the current MTU for the cluster network, enter the following command:

2. Get the current MTU for the primary network interface of a node.

a. To list the nodes in your cluster, enter the following command:

b. To obtain the current MTU setting for the primary network interface on a node, enter the
following command:

where:

<node>

Specifies a node from the output from the previous step.

<interface>

Specifies the primary network interface name for the node.

Example output

13.3. ADDITIONAL RESOURCES

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
 '{"spec": { "migration": null, "defaultNetwork":{ "openshiftSDNConfig": { "mtu": <mtu> }}}}'

$ oc get mcp

$ oc describe network.config cluster

$ oc get nodes

$ oc debug node/<node> -- chroot /host ip address show <interface>

ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8051

CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK

133

Using advanced networking options for PXE and ISO installations

Manually creating NetworkManager profiles in key file format

Configuring a dynamic Ethernet connection using nmcli

OpenShift Container Platform 4.12 Networking

134

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installation-user-infra-machines-advanced_network_installing-bare-metal
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#proc_manually-creating-a-networkmanager-profile-in-keyfile-format_assembly_networkmanager-connection-profiles-in-keyfile-format
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#configuring-a-dynamic-ethernet-connection-using-nmcli_configuring-an-ethernet-connection

CHAPTER 14. CONFIGURING THE NODE PORT SERVICE
RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

14.1. PREREQUISITES

Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

14.2. EXPANDING THE NODE PORT RANGE

You can expand the node port range for the cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

TIP

You can alternatively apply the following YAML to update the node port range:

Example output

2. To confirm that the configuration is active, enter the following command. It can take several

$ oc patch network.config.openshift.io cluster --type=merge -p \
 '{
 "spec":
 { "serviceNodePortRange": "30000-<port>" }
 }'

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 serviceNodePortRange: "30000-<port>"

network.config.openshift.io/cluster patched

CHAPTER 14. CONFIGURING THE NODE PORT SERVICE RANGE

135

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

Example output

14.3. ADDITIONAL RESOURCES

Configuring ingress cluster traffic using a NodePort

Network [config.openshift.io/v1]

Service [core/v1]

$ oc get configmaps -n openshift-kube-apiserver config \
 -o jsonpath="{.data['config\.yaml']}" | \
 grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

"service-node-port-range":["30000-33000"]

OpenShift Container Platform 4.12 Networking

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#service-v1

CHAPTER 15. CONFIGURING IP FAILOVER
This topic describes configuring IP failover for pods and services on your OpenShift Container Platform
cluster.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long a single node is available, the VIPs are served. There is
no way to explicitly distribute the VIPs over the nodes, so there can be nodes with no VIPs and other
nodes with many VIPs. If there is only one node, all VIPs are on it.

NOTE

The VIPs must be routable from outside the cluster.

IP failover monitors a port on each VIP to determine whether the port is reachable on the node. If the
port is not reachable, the VIP is not assigned to the node. If the port is set to 0, this check is suppressed.
The check script does the needed testing.

IP failover uses Keepalived to host a set of externally accessible VIP addresses on a set of hosts. Each
VIP is only serviced by a single host at a time. Keepalived uses the Virtual Router Redundancy Protocol
(VRRP) to determine which host, from the set of hosts, services which VIP. If a host becomes
unavailable, or if the service that Keepalived is watching does not respond, the VIP is switched to
another host from the set. This means a VIP is always serviced as long as a host is available.

When a node running Keepalived passes the check script, the VIP on that node can enter the master
state based on its priority and the priority of the current master and as determined by the preemption
strategy.

A cluster administrator can provide a script through the OPENSHIFT_HA_NOTIFY_SCRIPT variable,
and this script is called whenever the state of the VIP on the node changes. Keepalived uses the master
state when it is servicing the VIP, the backup state when another node is servicing the VIP, or in the
fault state when the check script fails. The notify script is called with the new state whenever the state
changes.

You can create an IP failover deployment configuration on OpenShift Container Platform. The IP
failover deployment configuration specifies the set of VIP addresses, and the set of nodes on which to
service them. A cluster can have multiple IP failover deployment configurations, with each managing its
own set of unique VIP addresses. Each node in the IP failover configuration runs an IP failover pod, and
this pod runs Keepalived.

When using VIPs to access a pod with host networking, the application pod runs on all nodes that are
running the IP failover pods. This enables any of the IP failover nodes to become the master and service
the VIPs when needed. If application pods are not running on all nodes with IP failover, either some IP
failover nodes never service the VIPs or some application pods never receive any traffic. Use the same
selector and replication count, for both IP failover and the application pods, to avoid this mismatch.

While using VIPs to access a service, any of the nodes can be in the IP failover set of nodes, since the
service is reachable on all nodes, no matter where the application pod is running. Any of the IP failover
nodes can become master at any time. The service can either use external IPs and a service port or it can
use a NodePort.

When using external IPs in the service definition, the VIPs are set to the external IPs, and the IP failover
monitoring port is set to the service port. When using a node port, the port is open on every node in the
cluster, and the service load-balances traffic from whatever node currently services the VIP. In this case,
the IP failover monitoring port is set to the NodePort in the service definition.

CHAPTER 15. CONFIGURING IP FAILOVER

137

http://www.keepalived.org/

IMPORTANT

Setting up a NodePort is a privileged operation.

IMPORTANT

Even though a service VIP is highly available, performance can still be affected.
Keepalived makes sure that each of the VIPs is serviced by some node in the
configuration, and several VIPs can end up on the same node even when other nodes
have none. Strategies that externally load-balance across a set of VIPs can be thwarted
when IP failover puts multiple VIPs on the same node.

When you use ingressIP, you can set up IP failover to have the same VIP range as the ingressIP range.
You can also disable the monitoring port. In this case, all the VIPs appear on same node in the cluster.
Any user can set up a service with an ingressIP and have it highly available.

IMPORTANT

There are a maximum of 254 VIPs in the cluster.

15.1. IP FAILOVER ENVIRONMENT VARIABLES

The following table contains the variables used to configure IP failover.

Table 15.1. IP failover environment variables

Variable Name Default Description

OPENSHIFT_HA_MONITOR_POR
T

80 The IP failover pod tries to open a TCP connection
to this port on each Virtual IP (VIP). If connection is
established, the service is considered to be running.
If this port is set to 0, the test always passes.

OPENSHIFT_HA_NETWORK_INT
ERFACE

 The interface name that IP failover uses to send
Virtual Router Redundancy Protocol (VRRP) traffic.
The default value is eth0.

OPENSHIFT_HA_REPLICA_COU
NT

2 The number of replicas to create. This must match
spec.replicas value in IP failover deployment
configuration.

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. For example, 1.2.3.4-6,1.2.3.9.

OPENSHIFT_HA_VRRP_ID_OFFS
ET

0 The offset value used to set the virtual router IDs.
Using different offset values allows multiple IP
failover configurations to exist within the same
cluster. The default offset is 0, and the allowed range
is 0 through 255.

OpenShift Container Platform 4.12 Networking

138

OPENSHIFT_HA_VIP_GROUPS The number of groups to create for VRRP. If not set,
a group is created for each virtual IP range specified
with the OPENSHIFT_HA_VIP_GROUPS
variable.

OPENSHIFT_HA_IPTABLES_CHA
IN

INPUT The name of the iptables chain, to automatically add
an iptables rule to allow the VRRP traffic on. If the
value is not set, an iptables rule is not added. If the
chain does not exist, it is not created.

OPENSHIFT_HA_CHECK_SCRIP
T

 The full path name in the pod file system of a script
that is periodically run to verify the application is
operating.

OPENSHIFT_HA_CHECK_INTER
VAL

2 The period, in seconds, that the check script is run.

OPENSHIFT_HA_NOTIFY_SCRIP
T

 The full path name in the pod file system of a script
that is run whenever the state changes.

OPENSHIFT_HA_PREEMPTION preempt
_nodelay
300

The strategy for handling a new higher priority host.
The nopreempt strategy does not move master
from the lower priority host to the higher priority
host.

Variable Name Default Description

15.2. CONFIGURING IP FAILOVER

As a cluster administrator, you can configure IP failover on an entire cluster, or on a subset of nodes, as
defined by the label selector. You can also configure multiple IP failover deployment configurations in
your cluster, where each one is independent of the others.

The IP failover deployment configuration ensures that a failover pod runs on each of the nodes
matching the constraints or the label used.

This pod runs Keepalived, which can monitor an endpoint and use Virtual Router Redundancy Protocol
(VRRP) to fail over the virtual IP (VIP) from one node to another if the first node cannot reach the
service or endpoint.

For production use, set a selector that selects at least two nodes, and set replicas equal to the number
of selected nodes.

Prerequisites

You are logged in to the cluster with a user with cluster-admin privileges.

You created a pull secret.

Procedure

CHAPTER 15. CONFIGURING IP FAILOVER

139

Procedure

1. Create an IP failover service account:

2. Update security context constraints (SCC) for hostNetwork:

3. Create a deployment YAML file to configure IP failover:

Example deployment YAML for IP failover configuration

$ oc create sa ipfailover

$ oc adm policy add-scc-to-user privileged -z ipfailover
$ oc adm policy add-scc-to-user hostnetwork -z ipfailover

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ipfailover-keepalived 1
 labels:
 ipfailover: hello-openshift
spec:
 strategy:
 type: Recreate
 replicas: 2
 selector:
 matchLabels:
 ipfailover: hello-openshift
 template:
 metadata:
 labels:
 ipfailover: hello-openshift
 spec:
 serviceAccountName: ipfailover
 privileged: true
 hostNetwork: true
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 containers:
 - name: openshift-ipfailover
 image: quay.io/openshift/origin-keepalived-ipfailover
 ports:
 - containerPort: 63000
 hostPort: 63000
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: true
 volumeMounts:
 - name: lib-modules
 mountPath: /lib/modules
 readOnly: true
 - name: host-slash
 mountPath: /host
 readOnly: true
 mountPropagation: HostToContainer
 - name: etc-sysconfig

OpenShift Container Platform 4.12 Networking

140

 mountPath: /etc/sysconfig
 readOnly: true
 - name: config-volume
 mountPath: /etc/keepalive
 env:
 - name: OPENSHIFT_HA_CONFIG_NAME
 value: "ipfailover"
 - name: OPENSHIFT_HA_VIRTUAL_IPS 2
 value: "1.1.1.1-2"
 - name: OPENSHIFT_HA_VIP_GROUPS 3
 value: "10"
 - name: OPENSHIFT_HA_NETWORK_INTERFACE 4
 value: "ens3" #The host interface to assign the VIPs
 - name: OPENSHIFT_HA_MONITOR_PORT 5
 value: "30060"
 - name: OPENSHIFT_HA_VRRP_ID_OFFSET 6
 value: "0"
 - name: OPENSHIFT_HA_REPLICA_COUNT 7
 value: "2" #Must match the number of replicas in the deployment
 - name: OPENSHIFT_HA_USE_UNICAST
 value: "false"
 #- name: OPENSHIFT_HA_UNICAST_PEERS
 #value: "10.0.148.40,10.0.160.234,10.0.199.110"
 - name: OPENSHIFT_HA_IPTABLES_CHAIN 8
 value: "INPUT"
 #- name: OPENSHIFT_HA_NOTIFY_SCRIPT 9
 # value: /etc/keepalive/mynotifyscript.sh
 - name: OPENSHIFT_HA_CHECK_SCRIPT 10
 value: "/etc/keepalive/mycheckscript.sh"
 - name: OPENSHIFT_HA_PREEMPTION 11
 value: "preempt_delay 300"
 - name: OPENSHIFT_HA_CHECK_INTERVAL 12
 value: "2"
 livenessProbe:
 initialDelaySeconds: 10
 exec:
 command:
 - pgrep
 - keepalived
 volumes:
 - name: lib-modules
 hostPath:
 path: /lib/modules
 - name: host-slash
 hostPath:
 path: /
 - name: etc-sysconfig
 hostPath:
 path: /etc/sysconfig
 # config-volume contains the check script
 # created with `oc create configmap keepalived-checkscript --from-file=mycheckscript.sh`
 - configMap:
 defaultMode: 0755
 name: keepalived-checkscript

CHAPTER 15. CONFIGURING IP FAILOVER

141

1

2

3

4

5

6

7

8

9

10

11

12

13

The name of the IP failover deployment.

The list of IP address ranges to replicate. This must be provided. For example, 1.2.3.4-
6,1.2.3.9.

The number of groups to create for VRRP. If not set, a group is created for each virtual IP
range specified with the OPENSHIFT_HA_VIP_GROUPS variable.

The interface name that IP failover uses to send VRRP traffic. By default, eth0 is used.

The IP failover pod tries to open a TCP connection to this port on each VIP. If connection is
established, the service is considered to be running. If this port is set to 0, the test always
passes. The default value is 80.

The offset value used to set the virtual router IDs. Using different offset values allows
multiple IP failover configurations to exist within the same cluster. The default offset is 0,
and the allowed range is 0 through 255.

The number of replicas to create. This must match spec.replicas value in IP failover
deployment configuration. The default value is 2.

The name of the iptables chain to automatically add an iptables rule to allow the VRRP
traffic on. If the value is not set, an iptables rule is not added. If the chain does not exist, it
is not created, and Keepalived operates in unicast mode. The default is INPUT.

The full path name in the pod file system of a script that is run whenever the state
changes.

The full path name in the pod file system of a script that is periodically run to verify the
application is operating.

The strategy for handling a new higher priority host. The default value is preempt_delay
300, which causes a Keepalived instance to take over a VIP after 5 minutes if a lower-
priority master is holding the VIP.

The period, in seconds, that the check script is run. The default value is 2.

Create the pull secret before creating the deployment, otherwise you will get an error when
creating the deployment.

15.3. ABOUT VIRTUAL IP ADDRESSES

Keepalived manages a set of virtual IP addresses (VIP). The administrator must make sure that all of
these addresses:

Are accessible on the configured hosts from outside the cluster.

Are not used for any other purpose within the cluster.

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported

 name: config-volume
 imagePullSecrets:
 - name: openshift-pull-secret 13

OpenShift Container Platform 4.12 Networking

142

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node serves the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

15.4. CONFIGURING CHECK AND NOTIFY SCRIPTS

Keepalived monitors the health of the application by periodically running an optional user supplied check
script. For example, the script can test a web server by issuing a request and verifying the response.

When a check script is not provided, a simple default script is run that tests the TCP connection. This
default test is suppressed when the monitor port is 0.

Each IP failover pod manages a Keepalived daemon that manages one or more virtual IPs (VIP) on the
node where the pod is running. The Keepalived daemon keeps the state of each VIP for that node. A
particular VIP on a particular node may be in master, backup, or fault state.

When the check script for that VIP on the node that is in master state fails, the VIP on that node enters
the fault state, which triggers a renegotiation. During renegotiation, all VIPs on a node that are not in the
fault state participate in deciding which node takes over the VIP. Ultimately, the VIP enters the master
state on some node, and the VIP stays in the backup state on the other nodes.

When a node with a VIP in backup state fails, the VIP on that node enters the fault state. When the
check script passes again for a VIP on a node in the fault state, the VIP on that node exits the fault
state and negotiates to enter the master state. The VIP on that node may then enter either the master
or the backup state.

As cluster administrator, you can provide an optional notify script, which is called whenever the state
changes. Keepalived passes the following three parameters to the script:

$1 - group or instance

$2 - Name of the group or instance

$3 - The new state: master, backup, or fault

The check and notify scripts run in the IP failover pod and use the pod file system, not the host file
system. However, the IP failover pod makes the host file system available under the /hosts mount path.
When configuring a check or notify script, you must provide the full path to the script. The
recommended approach for providing the scripts is to use a config map.

The full path names of the check and notify scripts are added to the Keepalived configuration file,
_/etc/keepalived/keepalived.conf, which is loaded every time Keepalived starts. The scripts can be
added to the pod with a config map as follows.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

CHAPTER 15. CONFIGURING IP FAILOVER

143

1. Create the desired script and create a config map to hold it. The script has no input arguments
and must return 0 for OK and 1 for fail.
The check script, mycheckscript.sh:

2. Create the config map:

3. Add the script to the pod. The defaultMode for the mounted config map files must able to run
by using oc commands or by editing the deployment configuration. A value of 0755, 493
decimal, is typical:

NOTE

The oc set env command is whitespace sensitive. There must be no whitespace
on either side of the = sign.

TIP

#!/bin/bash
 # Whatever tests are needed
 # E.g., send request and verify response
exit 0

$ oc create configmap mycustomcheck --from-file=mycheckscript.sh

$ oc set env deploy/ipfailover-keepalived \
 OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh

$ oc set volume deploy/ipfailover-keepalived --add --overwrite \
 --name=config-volume \
 --mount-path=/etc/keepalive \
 --source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

OpenShift Container Platform 4.12 Networking

144

1

2
3
4

TIP

You can alternatively edit the ipfailover-keepalived deployment configuration:

In the spec.container.env field, add the OPENSHIFT_HA_CHECK_SCRIPT environment
variable to point to the mounted script file.
Add the spec.container.volumeMounts field to create the mount point.
Add a new spec.volumes field to mention the config map.
This sets run permission on the files. When read back, it is displayed in decimal, 493.

Save the changes and exit the editor. This restarts ipfailover-keepalived.

15.5. CONFIGURING VRRP PREEMPTION

When a Virtual IP (VIP) on a node leaves the fault state by passing the check script, the VIP on the node
enters the backup state if it has lower priority than the VIP on the node that is currently in the master
state. However, if the VIP on the node that is leaving fault state has a higher priority, the preemption
strategy determines its role in the cluster.

The nopreempt strategy does not move master from the lower priority VIP on the host to the higher
priority VIP on the host. With preempt_delay 300, the default, Keepalived waits the specified 300
seconds and moves master to the higher priority VIP on the host.

Prerequisites

You installed the OpenShift CLI (oc).

Procedure

To specify preemption enter oc edit deploy ipfailover-keepalived to edit the router
deployment configuration:

$ oc edit deploy ipfailover-keepalived

 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_CHECK_SCRIPT 1
 value: /etc/keepalive/mycheckscript.sh
...
 volumeMounts: 2
 - mountPath: /etc/keepalive
 name: config-volume
 dnsPolicy: ClusterFirst
...
 volumes: 3
 - configMap:
 defaultMode: 0755 4
 name: customrouter
 name: config-volume
...

$ oc edit deploy ipfailover-keepalived

CHAPTER 15. CONFIGURING IP FAILOVER

145

1 Set the OPENSHIFT_HA_PREEMPTION value:

preempt_delay 300: Keepalived waits the specified 300 seconds and moves master
to the higher priority VIP on the host. This is the default value.

nopreempt: does not move master from the lower priority VIP on the host to the
higher priority VIP on the host.

15.6. ABOUT VRRP ID OFFSET

Each IP failover pod managed by the IP failover deployment configuration, 1 pod per node or replica,
runs a Keepalived daemon. As more IP failover deployment configurations are configured, more pods are
created and more daemons join into the common Virtual Router Redundancy Protocol (VRRP)
negotiation. This negotiation is done by all the Keepalived daemons and it determines which nodes
service which virtual IPs (VIP).

Internally, Keepalived assigns a unique vrrp-id to each VIP. The negotiation uses this set of vrrp-ids,
when a decision is made, the VIP corresponding to the winning vrrp-id is serviced on the winning node.

Therefore, for every VIP defined in the IP failover deployment configuration, the IP failover pod must
assign a corresponding vrrp-id. This is done by starting at OPENSHIFT_HA_VRRP_ID_OFFSET and
sequentially assigning the vrrp-ids to the list of VIPs. The vrrp-ids can have values in the range 1..255.

When there are multiple IP failover deployment configurations, you must specify
OPENSHIFT_HA_VRRP_ID_OFFSET so that there is room to increase the number of VIPs in the
deployment configuration and none of the vrrp-id ranges overlap.

15.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES

IP failover management is limited to 254 groups of Virtual IP (VIP) addresses. By default OpenShift
Container Platform assigns one IP address to each group. You can use the
OPENSHIFT_HA_VIP_GROUPS variable to change this so multiple IP addresses are in each group and
define the number of VIP groups available for each Virtual Router Redundancy Protocol (VRRP)
instance when configuring IP failover.

Grouping VIPs creates a wider range of allocation of VIPs per VRRP in the case of VRRP failover events,
and is useful when all hosts in the cluster have access to a service locally. For example, when a service is
being exposed with an ExternalIP.

NOTE

As a rule for failover, do not limit services, such as the router, to one specific host. Instead,
services should be replicated to each host so that in the case of IP failover, the services
do not have to be recreated on the new host.

NOTE

...
 spec:
 containers:
 - env:
 - name: OPENSHIFT_HA_PREEMPTION 1
 value: preempt_delay 300
...

OpenShift Container Platform 4.12 Networking

146

1

NOTE

If you are using OpenShift Container Platform health checks, the nature of IP failover and
groups means that all instances in the group are not checked. For that reason, the
Kubernetes health checks must be used to ensure that services are live.

Prerequisites

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To change the number of IP addresses assigned to each group, change the value for the
OPENSHIFT_HA_VIP_GROUPS variable, for example:

Example Deployment YAML for IP failover configuration

If OPENSHIFT_HA_VIP_GROUPS is set to 3 in an environment with seven VIPs, it creates
three groups, assigning three VIPs to the first group, and two VIPs to the two remaining
groups.

NOTE

If the number of groups set by OPENSHIFT_HA_VIP_GROUPS is fewer than the number
of IP addresses set to fail over, the group contains more than one IP address, and all of
the addresses move as a single unit.

15.8. HIGH AVAILABILITY FOR INGRESSIP

In non-cloud clusters, IP failover and ingressIP to a service can be combined. The result is high
availability services for users that create services using ingressIP.

The approach is to specify an ingressIPNetworkCIDR range and then use the same range in creating
the IP failover configuration.

Because IP failover can support up to a maximum of 255 VIPs for the entire cluster, the
ingressIPNetworkCIDR must be /24 or smaller.

15.9. REMOVING IP FAILOVER

When IP failover is initially configured, the worker nodes in the cluster are modified with an iptables rule
that explicitly allows multicast packets on 224.0.0.18 for Keepalived. Because of the change to the
nodes, removing IP failover requires running a job to remove the iptables rule and removing the virtual
IP addresses used by Keepalived.

...
 spec:
 env:
 - name: OPENSHIFT_HA_VIP_GROUPS 1
 value: "3"
...

CHAPTER 15. CONFIGURING IP FAILOVER

147

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Procedure

1. Optional: Identify and delete any check and notify scripts that are stored as config maps:

a. Identify whether any pods for IP failover use a config map as a volume:

Example output

Namespace: default
Pod: keepalived-worker-59df45db9c-2x9mn
Volumes that use config maps:
 volume: config-volume
 configMap: mycustomcheck

b. If the preceding step provided the names of config maps that are used as volumes, delete
the config maps:

2. Identify an existing deployment for IP failover:

Example output

3. Delete the deployment:

4. Remove the ipfailover service account:

5. Run a job that removes the IP tables rule that was added when IP failover was initially
configured:

a. Create a file such as remove-ipfailover-job.yaml with contents that are similar to the
following example:

$ oc get pod -l ipfailover \
 -o jsonpath="\
{range .items[?(@.spec.volumes[*].configMap)]}
{'Namespace: '}{.metadata.namespace}
{'Pod: '}{.metadata.name}
{'Volumes that use config maps:'}
{range .spec.volumes[?(@.configMap)]} {'volume: '}{.name}
 {'configMap: '}{.configMap.name}{'\n'}{end}
{end}"

$ oc delete configmap <configmap_name>

$ oc get deployment -l ipfailover

NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE
default ipfailover 2/2 2 2 105d

$ oc delete deployment <ipfailover_deployment_name>

$ oc delete sa ipfailover

apiVersion: batch/v1

OpenShift Container Platform 4.12 Networking

148

<.> Run the job for each node in your cluster that was configured for IP failover and replace
the hostname each time.

b. Run the job:

Example output

job.batch/remove-ipfailover-2h8dm created

Verification

Confirm that the job removed the initial configuration for IP failover.

Example output

kind: Job
metadata:
 generateName: remove-ipfailover-
 labels:
 app: remove-ipfailover
spec:
 template:
 metadata:
 name: remove-ipfailover
 spec:
 containers:
 - name: remove-ipfailover
 image: quay.io/openshift/origin-keepalived-ipfailover:4.12
 command: ["/var/lib/ipfailover/keepalived/remove-failover.sh"]
 nodeSelector:
 kubernetes.io/hostname: <host_name> <.>
 restartPolicy: Never

$ oc create -f remove-ipfailover-job.yaml

$ oc logs job/remove-ipfailover-2h8dm

remove-failover.sh: OpenShift IP Failover service terminating.
 - Removing ip_vs module ...
 - Cleaning up ...
 - Releasing VIPs (interface eth0) ...

CHAPTER 15. CONFIGURING IP FAILOVER

149

CHAPTER 16. CONFIGURING INTERFACE-LEVEL NETWORK
SYSCTLS

In Linux, sysctl allows an administrator to modify kernel parameters at runtime. You can modify
interface-level network sysctls using the tuning Container Network Interface (CNI) meta plugin. The
tuning CNI meta plugin operates in a chain with a main CNI plugin as illustrated.

The main CNI plugin assigns the interface and passes this to the tuning CNI meta plugin at runtime. You
can change some sysctls and several interface attributes (promiscuous mode, all-multicast mode, MTU,
and MAC address) in the network namespace by using the tuning CNI meta plugin. In the tuning CNI
meta plugin configuration, the interface name is represented by the IFNAME token, and is replaced with
the actual name of the interface at runtime.

NOTE

In OpenShift Container Platform, the tuning CNI meta plugin only supports changing
interface-level network sysctls.

16.1. CONFIGURING THE TUNING CNI

The following procedure configures the tuning CNI to change the interface-level network
net.ipv4.conf.IFNAME.accept_redirects sysctl. This example enables accepting and sending ICMP-
redirected packets.

Procedure

1. Create a network attachment definition, such as tuning-example.yaml, with the following
content:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: <name> 1
 namespace: default 2
spec:
 config: '{
 "cniVersion": "0.4.0", 3
 "name": "<name>", 4
 "plugins": [{
 "type": "<main_CNI_plugin>" 5
 },

OpenShift Container Platform 4.12 Networking

150

1

2

3

4

5

6

7

Specifies the name for the additional network attachment to create. The name must be
unique within the specified namespace.

Specifies the namespace that the object is associated with.

Specifies the CNI specification version.

Specifies the name for the configuration. It is recommended to match the configuration
name to the name value of the network attachment definition.

Specifies the name of the main CNI plugin to configure.

Specifies the name of the CNI meta plugin.

Specifies the sysctl to set.

An example yaml file is shown here:

2. Apply the yaml by running the following command:

Example output

 {
 "type": "tuning", 6
 "sysctl": {
 "net.ipv4.conf.IFNAME.accept_redirects": "1" 7
 }
 }
]
}

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: tuningnad
 namespace: default
spec:
 config: '{
 "cniVersion": "0.4.0",
 "name": "tuningnad",
 "plugins": [{
 "type": "bridge"
 },
 {
 "type": "tuning",
 "sysctl": {
 "net.ipv4.conf.IFNAME.accept_redirects": "1"
 }
 }
]
}'

$ oc apply -f tuning-example.yaml

CHAPTER 16. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTLS

151

1

2

3

4

5

6

7

3. Create a pod such as examplepod.yaml with the network attachment definition similar to the
following:

Specify the name of the configured NetworkAttachmentDefinition.

runAsUser controls which user ID the container is run with.

runAsGroup controls which primary group ID the containers is run with.

allowPrivilegeEscalation determines if a pod can request to allow privilege escalation. If
unspecified, it defaults to true. This boolean directly controls whether the no_new_privs
flag gets set on the container process.

capabilities permit privileged actions without giving full root access. This policy ensures all
capabilities are dropped from the pod.

runAsNonRoot: true requires that the container will run with a user with any UID other
than 0.

RuntimeDefault enables the default seccomp profile for a pod or container workload.

4. Apply the yaml by running the following command:

5. Verify that the pod is created by running the following command:

networkattachmentdefinition.k8.cni.cncf.io/tuningnad created

apiVersion: v1
kind: Pod
metadata:
 name: tunepod
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: tuningnad 1
spec:
 containers:
 - name: podexample
 image: centos
 command: ["/bin/bash", "-c", "sleep INF"]
 securityContext:
 runAsUser: 2000 2
 runAsGroup: 3000 3
 allowPrivilegeEscalation: false 4
 capabilities: 5
 drop: ["ALL"]
 securityContext:
 runAsNonRoot: true 6
 seccompProfile: 7
 type: RuntimeDefault

$ oc apply -f examplepod.yaml

$ oc get pod

OpenShift Container Platform 4.12 Networking

152

Example output

6. Log in to the pod by running the following command:

7. Verify the values of the configured sysctl flags. For example, find the value
net.ipv4.conf.net1.accept_redirects by running the following command:

Expected output

16.2. ADDITIONAL RESOURCES

Using sysctls in containers

NAME READY STATUS RESTARTS AGE
tunepod 1/1 Running 0 47s

$ oc rsh tunepod

sh-4.4# sysctl net.ipv4.conf.net1.accept_redirects

net.ipv4.conf.net1.accept_redirects = 1

CHAPTER 16. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTLS

153

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-containers-sysctls

CHAPTER 17. USING THE STREAM CONTROL TRANSMISSION
PROTOCOL (SCTP) ON A BARE METAL CLUSTER

As a cluster administrator, you can use the Stream Control Transmission Protocol (SCTP) on a cluster.

17.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) ON OPENSHIFT CONTAINER PLATFORM

As a cluster administrator, you can enable SCTP on the hosts in the cluster. On Red Hat Enterprise Linux
CoreOS (RHCOS), the SCTP module is disabled by default.

SCTP is a reliable message based protocol that runs on top of an IP network.

When enabled, you can use SCTP as a protocol with pods, services, and network policy. A Service object
must be defined with the type parameter set to either the ClusterIP or NodePort value.

17.1.1. Example configurations using SCTP protocol

You can configure a pod or service to use SCTP by setting the protocol parameter to the SCTP value in
the pod or service object.

In the following example, a pod is configured to use SCTP:

In the following example, a service is configured to use SCTP:

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port

apiVersion: v1
kind: Pod
metadata:
 namespace: project1
 name: example-pod
spec:
 containers:
 - name: example-pod
...
 ports:
 - containerPort: 30100
 name: sctpserver
 protocol: SCTP

apiVersion: v1
kind: Service
metadata:
 namespace: project1
 name: sctpserver
spec:
...
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30100
 targetPort: 30100
 type: ClusterIP

OpenShift Container Platform 4.12 Networking

154

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port
80 from any pods with a specific label:

17.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP)

As a cluster administrator, you can load and enable the blacklisted SCTP kernel module on worker nodes
in your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file named load-sctp-module.yaml that contains the following YAML definition:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-sctp-on-http
spec:
 podSelector:
 matchLabels:
 role: web
 ingress:
 - ports:
 - protocol: SCTP
 port: 80

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: load-sctp-module
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/modprobe.d/sctp-blacklist.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,
 - path: /etc/modules-load.d/sctp-load.conf
 mode: 0644
 overwrite: true
 contents:
 source: data:,sctp

CHAPTER 17. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

155

2. To create the MachineConfig object, enter the following command:

3. Optional: To watch the status of the nodes while the MachineConfig Operator applies the
configuration change, enter the following command. When the status of a node transitions to
Ready, the configuration update is applied.

17.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) IS ENABLED

You can verify that SCTP is working on a cluster by creating a pod with an application that listens for
SCTP traffic, associating it with a service, and then connecting to the exposed service.

Prerequisites

Access to the internet from the cluster to install the nc package.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a pod starts an SCTP listener:

a. Create a file named sctp-server.yaml that defines a pod with the following YAML:

b. Create the pod by entering the following command:

2. Create a service for the SCTP listener pod.

$ oc create -f load-sctp-module.yaml

$ oc get nodes

apiVersion: v1
kind: Pod
metadata:
 name: sctpserver
 labels:
 app: sctpserver
spec:
 containers:
 - name: sctpserver
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]
 ports:
 - containerPort: 30102
 name: sctpserver
 protocol: SCTP

$ oc create -f sctp-server.yaml

OpenShift Container Platform 4.12 Networking

156

a. Create a file named sctp-service.yaml that defines a service with the following YAML:

b. To create the service, enter the following command:

3. Create a pod for the SCTP client.

a. Create a file named sctp-client.yaml with the following YAML:

b. To create the Pod object, enter the following command:

4. Run an SCTP listener on the server.

a. To connect to the server pod, enter the following command:

b. To start the SCTP listener, enter the following command:

apiVersion: v1
kind: Service
metadata:
 name: sctpservice
 labels:
 app: sctpserver
spec:
 type: NodePort
 selector:
 app: sctpserver
 ports:
 - name: sctpserver
 protocol: SCTP
 port: 30102
 targetPort: 30102

$ oc create -f sctp-service.yaml

apiVersion: v1
kind: Pod
metadata:
 name: sctpclient
 labels:
 app: sctpclient
spec:
 containers:
 - name: sctpclient
 image: registry.access.redhat.com/ubi8/ubi
 command: ["/bin/sh", "-c"]
 args:
 ["dnf install -y nc && sleep inf"]

$ oc apply -f sctp-client.yaml

$ oc rsh sctpserver

$ nc -l 30102 --sctp

CHAPTER 17. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

157

5. Connect to the SCTP listener on the server.

a. Open a new terminal window or tab in your terminal program.

b. Obtain the IP address of the sctpservice service. Enter the following command:

c. To connect to the client pod, enter the following command:

d. To start the SCTP client, enter the following command. Replace <cluster_IP> with the
cluster IP address of the sctpservice service.

$ oc get services sctpservice -o go-template='{{.spec.clusterIP}}{{"\n"}}'

$ oc rsh sctpclient

nc <cluster_IP> 30102 --sctp

OpenShift Container Platform 4.12 Networking

158

CHAPTER 18. USING PTP HARDWARE
You can configure linuxptp services and use PTP-capable hardware in OpenShift Container Platform
cluster nodes.

18.1. ABOUT PTP HARDWARE

You can use the OpenShift Container Platform console or OpenShift CLI (oc) to install PTP by
deploying the PTP Operator. The PTP Operator creates and manages the linuxptp services and
provides the following features:

Discovery of the PTP-capable devices in the cluster.

Management of the configuration of linuxptp services.

Notification of PTP clock events that negatively affect the performance and reliability of your
application with the PTP Operator cloud-event-proxy sidecar.

NOTE

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-
metal infrastructure.

18.2. ABOUT PTP

Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than Network
Time Protocol (NTP).

The linuxptp package includes the ptp4l and phc2sys programs for clock synchronization. ptp4l
implements the PTP boundary clock and ordinary clock. ptp4l synchronizes the PTP hardware clock to
the source clock with hardware time stamping and synchronizes the system clock to the source clock
with software time stamping. phc2sys is used for hardware time stamping to synchronize the system
clock to the PTP hardware clock on the network interface controller (NIC).

18.2.1. Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The clocks
synchronized by PTP are organized in a source-destination hierarchy. The hierarchy is created and
updated automatically by the best master clock (BMC) algorithm, which runs on every clock. Destination
clocks are synchronized to source clocks, and destination clocks can themselves be the source for other
downstream clocks. The following types of clocks can be included in configurations:

Grandmaster clock

The grandmaster clock provides standard time information to other clocks across the network and
ensures accurate and stable synchronisation. It writes time stamps and responds to time requests
from other clocks. Grandmaster clocks can be synchronized to a Global Positioning System (GPS)
time source.

Ordinary clock

The ordinary clock has a single port connection that can play the role of source or destination clock,
depending on its position in the network. The ordinary clock can read and write time stamps.

Boundary clock

The boundary clock has ports in two or more communication paths and can be a source and a

CHAPTER 18. USING PTP HARDWARE

159

The boundary clock has ports in two or more communication paths and can be a source and a
destination to other destination clocks at the same time. The boundary clock works as a destination
clock upstream. The destination clock receives the timing message, adjusts for delay, and then
creates a new source time signal to pass down the network. The boundary clock produces a new
timing packet that is still correctly synced with the source clock and can reduce the number of
connected devices reporting directly to the source clock.

18.2.2. Advantages of PTP over NTP

One of the main advantages that PTP has over NTP is the hardware support present in various network
interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for
delays in message transfer and improves the accuracy of time synchronization. To achieve the best
possible accuracy, it is recommended that all networking components between PTP clocks are PTP
hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can time stamp the PTP packets at the
exact moment they are sent and received. Compare this to software-based PTP, which requires
additional processing of the PTP packets by the operating system.

IMPORTANT

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable
the chrony time service (chronyd) using a MachineConfig custom resource. For more
information, see Disabling chrony time service .

18.2.3. Using PTP with dual NIC hardware

OpenShift Container Platform supports single and dual NIC hardware for precision PTP timing in the
cluster.

For 5G telco networks that deliver mid-band spectrum coverage, each virtual distributed unit (vDU)
requires connections to 6 radio units (RUs). To make these connections, each vDU host requires 2 NICs
configured as boundary clocks.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate
ptp4l instances for each NIC feeding the downstream clocks.

18.3. INSTALLING THE PTP OPERATOR USING THE CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the PTP Operator.

a. Save the following YAML in the ptp-namespace.yaml file:

OpenShift Container Platform 4.12 Networking

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/post-installation_configuration/#cnf-disable-chronyd_post-install-machine-configuration-tasks

b. Create the Namespace CR:

2. Create an Operator group for the PTP Operator.

a. Save the following YAML in the ptp-operatorgroup.yaml file:

b. Create the OperatorGroup CR:

3. Subscribe to the PTP Operator.

a. Save the following YAML in the ptp-sub.yaml file:

b. Create the Subscription CR:

4. To verify that the Operator is installed, enter the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-ptp
 annotations:
 workload.openshift.io/allowed: management
 labels:
 name: openshift-ptp
 openshift.io/cluster-monitoring: "true"

$ oc create -f ptp-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp
spec:
 targetNamespaces:
 - openshift-ptp

$ oc create -f ptp-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: "stable"
 name: ptp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f ptp-sub.yaml

$ oc get csv -n openshift-ptp -o custom-
columns=Name:.metadata.name,Phase:.status.phase

CHAPTER 18. USING PTP HARDWARE

161

Example output

18.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE

As a cluster administrator, you can install the PTP Operator using the web console.

NOTE

You have to create the namespace and Operator group as mentioned in the previous
section.

Procedure

1. Install the PTP Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Install Operator page, under A specific namespace on the cluster select
openshift-ptp. Then, click Install.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-ptp
project.

18.5. CONFIGURING PTP DEVICES

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform.

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node.

Name Phase
4.12.0-202301261535 Succeeded

OpenShift Container Platform 4.12 Networking

162

1

2

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node.
It creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a
compatible PTP-capable network device.

18.5.1. Discovering PTP capable network devices in your cluster

To return a complete list of PTP capable network devices in your cluster, run the following
command:

Example output

The value for the name parameter is the same as the name of the parent node.

The devices collection includes a list of the PTP capable devices that the PTP Operator
discovers for the node.

18.5.2. Configuring linuxptp services as a grandmaster clock

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock by creating a
PtpConfig custom resource (CR) that configures the host NIC.

The ts2phc utility allows you to synchronize the system clock with the PTP grandmaster clock so that
the node can stream precision clock signal to downstream PTP ordinary clocks and boundary clocks.

NOTE

$ oc get NodePtpDevice -n openshift-ptp -o yaml

apiVersion: v1
items:
- apiVersion: ptp.openshift.io/v1
 kind: NodePtpDevice
 metadata:
 creationTimestamp: "2022-01-27T15:16:28Z"
 generation: 1
 name: dev-worker-0 1
 namespace: openshift-ptp
 resourceVersion: "6538103"
 uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
 spec: {}
 status:
 devices: 2
 - name: eno1
 - name: eno2
 - name: eno3
 - name: eno4
 - name: enp5s0f0
 - name: enp5s0f1
...

CHAPTER 18. USING PTP HARDWARE

163

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the grandmaster clock for your particular hardware and environment. This example CR
does not configure PTP fast events. To configure PTP fast events, set appropriate
values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used
only when events are enabled. See "Configuring the PTP fast event notifications
publisher" for more information.

Prerequisites

Install an Intel Westport Channel network interface in the bare-metal cluster host.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the PtpConfig resource. For example:

a. Save the following YAML in the grandmaster-clock-ptp-config.yaml file:

Example PTP grandmaster clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: grandmaster-clock
 namespace: openshift-ptp
 annotations: {}
spec:
 profile:
 - name: grandmaster-clock
 # The interface name is hardware-specific
 interface: $interface
 ptp4lOpts: "-2"
 phc2sysOpts: "-a -r -r -n 24"
 ptpSchedulingPolicy: SCHED_FIFO
 ptpSchedulingPriority: 10
 ptpSettings:
 logReduce: "true"
 ptp4lConf: |
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 0
 priority1 128
 priority2 128
 domainNumber 24
 #utc_offset 37
 clockClass 255

OpenShift Container Platform 4.12 Networking

164

 clockAccuracy 0xFE
 offsetScaledLogVariance 0xFFFF
 free_running 0
 freq_est_interval 1
 dscp_event 0
 dscp_general 0
 dataset_comparison G.8275.x
 G.8275.defaultDS.localPriority 128
 #
 # Port Data Set
 #
 logAnnounceInterval -3
 logSyncInterval -4
 logMinDelayReqInterval -4
 logMinPdelayReqInterval -4
 announceReceiptTimeout 3
 syncReceiptTimeout 0
 delayAsymmetry 0
 fault_reset_interval -4
 neighborPropDelayThresh 20000000
 masterOnly 0
 G.8275.portDS.localPriority 128
 #
 # Run time options
 #
 assume_two_step 0
 logging_level 6
 path_trace_enabled 0
 follow_up_info 0
 hybrid_e2e 0
 inhibit_multicast_service 0
 net_sync_monitor 0
 tc_spanning_tree 0
 tx_timestamp_timeout 50
 unicast_listen 0
 unicast_master_table 0
 unicast_req_duration 3600
 use_syslog 1
 verbose 0
 summary_interval 0
 kernel_leap 1
 check_fup_sync 0
 clock_class_threshold 7
 #
 # Servo Options
 #
 pi_proportional_const 0.0
 pi_integral_const 0.0
 pi_proportional_scale 0.0
 pi_proportional_exponent -0.3
 pi_proportional_norm_max 0.7
 pi_integral_scale 0.0
 pi_integral_exponent 0.4
 pi_integral_norm_max 0.3
 step_threshold 2.0
 first_step_threshold 0.00002

CHAPTER 18. USING PTP HARDWARE

165

b. Create the CR by running the following command:

Verification

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

Example output

 max_frequency 900000000
 clock_servo pi
 sanity_freq_limit 200000000
 ntpshm_segment 0
 #
 # Transport options
 #
 transportSpecific 0x0
 ptp_dst_mac 01:1B:19:00:00:00
 p2p_dst_mac 01:80:C2:00:00:0E
 udp_ttl 1
 udp6_scope 0x0E
 uds_address /var/run/ptp4l
 #
 # Default interface options
 #
 clock_type OC
 network_transport L2
 delay_mechanism E2E
 time_stamping hardware
 tsproc_mode filter
 delay_filter moving_median
 delay_filter_length 10
 egressLatency 0
 ingressLatency 0
 boundary_clock_jbod 0
 #
 # Clock description
 #
 productDescription ;;
 revisionData ;;
 manufacturerIdentity 00:00:00
 userDescription ;
 timeSource 0xA0
 recommend:
 - profile: grandmaster-clock
 priority: 4
 match:
 - nodeLabel: "node-role.kubernetes.io/$mcp"

$ oc create -f grandmaster-clock-ptp-config.yaml

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE

OpenShift Container Platform 4.12 Networking

166

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

18.5.3. Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom
resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
an ordinary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for
ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is required only
when events are enabled. See "Configuring the PTP fast event notifications publisher"
for more information.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-
config.yaml file.

Example PTP ordinary clock configuration

linuxptp-daemon-74m2g 3/3 Running 3 4d15h 10.16.230.7 compute-
1.example.com
ptp-operator-5f4f48d7c-x7zkf 1/1 Running 1 4d15h 10.128.1.145 compute-
1.example.com

$ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container

ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns
ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr
0 src 1676577330.901342528 diff -1
ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset -1 s2 freq -1
ts2phc[94980.441]: [ts2phc.0.config] nmea sentence:
GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset 943 s2 freq -
89604 delay 504
phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1000 s2 freq -
89264 delay 474

CHAPTER 18. USING PTP HARDWARE

167

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: ordinary-clock
 namespace: openshift-ptp
 annotations: {}
spec:
 profile:
 - name: ordinary-clock
 # The interface name is hardware-specific
 interface: $interface
 ptp4lOpts: "-2 -s"
 phc2sysOpts: "-a -r -n 24"
 ptpSchedulingPolicy: SCHED_FIFO
 ptpSchedulingPriority: 10
 ptpSettings:
 logReduce: "true"
 ptp4lConf: |
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 1
 priority1 128
 priority2 128
 domainNumber 24
 #utc_offset 37
 clockClass 255
 clockAccuracy 0xFE
 offsetScaledLogVariance 0xFFFF
 free_running 0
 freq_est_interval 1
 dscp_event 0
 dscp_general 0
 dataset_comparison G.8275.x
 G.8275.defaultDS.localPriority 128
 #
 # Port Data Set
 #
 logAnnounceInterval -3
 logSyncInterval -4
 logMinDelayReqInterval -4
 logMinPdelayReqInterval -4
 announceReceiptTimeout 3
 syncReceiptTimeout 0
 delayAsymmetry 0
 fault_reset_interval -4
 neighborPropDelayThresh 20000000
 masterOnly 0
 G.8275.portDS.localPriority 128
 #
 # Run time options
 #
 assume_two_step 0
 logging_level 6

OpenShift Container Platform 4.12 Networking

168

 path_trace_enabled 0
 follow_up_info 0
 hybrid_e2e 0
 inhibit_multicast_service 0
 net_sync_monitor 0
 tc_spanning_tree 0
 tx_timestamp_timeout 50
 unicast_listen 0
 unicast_master_table 0
 unicast_req_duration 3600
 use_syslog 1
 verbose 0
 summary_interval 0
 kernel_leap 1
 check_fup_sync 0
 clock_class_threshold 7
 #
 # Servo Options
 #
 pi_proportional_const 0.0
 pi_integral_const 0.0
 pi_proportional_scale 0.0
 pi_proportional_exponent -0.3
 pi_proportional_norm_max 0.7
 pi_integral_scale 0.0
 pi_integral_exponent 0.4
 pi_integral_norm_max 0.3
 step_threshold 2.0
 first_step_threshold 0.00002
 max_frequency 900000000
 clock_servo pi
 sanity_freq_limit 200000000
 ntpshm_segment 0
 #
 # Transport options
 #
 transportSpecific 0x0
 ptp_dst_mac 01:1B:19:00:00:00
 p2p_dst_mac 01:80:C2:00:00:0E
 udp_ttl 1
 udp6_scope 0x0E
 uds_address /var/run/ptp4l
 #
 # Default interface options
 #
 clock_type OC
 network_transport L2
 delay_mechanism E2E
 time_stamping hardware
 tsproc_mode filter
 delay_filter moving_median
 delay_filter_length 10
 egressLatency 0
 ingressLatency 0
 boundary_clock_jbod 0
 #

CHAPTER 18. USING PTP HARDWARE

169

Table 18.1. PTP ordinary clock CR configuration options

Custom resource
field

Description

name The name of the PtpConfig CR.

profile Specify an array of one or more profile objects. Each profile must be
uniquely named.

interface Specify the network interface to be used by the ptp4l service, for example
ens787f1.

ptp4lOpts Specify system config options for the ptp4l service, for example -2 to
select the IEEE 802.3 network transport. The options should not include
the network interface name -i <interface> and service config file -f
/etc/ptp4l.conf because the network interface name and the service
config file are automatically appended. Append --summary_interval -4
to use PTP fast events with this interface.

phc2sysOpts Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service. For Intel
Columbiaville 800 Series NICs, set phc2sysOpts options to -a -r -m -n
24 -N 8 -R 16. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

ptp4lConf Specify a string that contains the configuration to replace the default
/etc/ptp4l.conf file. To use the default configuration, leave the field
empty.

tx_timestamp_time
out

For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to
50.

boundary_clock_jb
od

For Intel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.

ptpSchedulingPoli
cy

Scheduling policy for ptp4l and phc2sys processes. Default value is
SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

 # Clock description
 #
 productDescription ;;
 revisionData ;;
 manufacturerIdentity 00:00:00
 userDescription ;
 timeSource 0xA0
 recommend:
 - profile: ordinary-clock
 priority: 4
 match:
 - nodeLabel: "node-role.kubernetes.io/$mcp"

OpenShift Container Platform 4.12 Networking

170

ptpSchedulingPrio
rity

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys
processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

ptpClockThreshold Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

recommend Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

.recommend.profil
e

Specify the .recommend.profile object name defined in the profile
section.

.recommend.priorit
y

Set .recommend.priority to 0 for ordinary clock.

.recommend.matc
h

Specify .recommend.match rules with nodeLabel or nodeName
values.

.recommend.matc
h.nodeLabel

Set nodeLabel with the key of the node.Labels field from the node
object by using the oc get nodes --show-labels command. For
example, node-role.kubernetes.io/worker.

.recommend.matc
h.nodeName

Set nodeName with the value of the node.Name field from the node
object by using the oc get nodes command. For example, compute-
1.example.com.

Custom resource
field

Description

2. Create the PtpConfig CR by running the following command:

Verification

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

$ oc create -f ordinary-clock-ptp-config.yaml

CHAPTER 18. USING PTP HARDWARE

171

Example output

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

Additional resources

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

For more information about configuring PTP fast events, see Configuring the PTP fast event
notifications publisher.

18.5.4. Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig
custom resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the boundary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for
ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when
events are enabled. See "Configuring the PTP fast event notifications publisher" for
more information.

Prerequisites

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com
linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-
1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

OpenShift Container Platform 4.12 Networking

172

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-
config.yaml file.

Example PTP boundary clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: boundary-clock
 namespace: openshift-ptp
 annotations: {}
spec:
 profile:
 - name: boundary-clock
 ptp4lOpts: "-2"
 phc2sysOpts: "-a -r -n 24"
 ptpSchedulingPolicy: SCHED_FIFO
 ptpSchedulingPriority: 10
 ptpSettings:
 logReduce: "true"
 ptp4lConf: |
 # The interface name is hardware-specific
 [$iface_slave]
 masterOnly 0
 [$iface_master_1]
 masterOnly 1
 [$iface_master_2]
 masterOnly 1
 [$iface_master_3]
 masterOnly 1
 [global]
 #
 # Default Data Set
 #
 twoStepFlag 1
 slaveOnly 0
 priority1 128
 priority2 128
 domainNumber 24
 #utc_offset 37
 clockClass 248
 clockAccuracy 0xFE
 offsetScaledLogVariance 0xFFFF
 free_running 0
 freq_est_interval 1
 dscp_event 0
 dscp_general 0
 dataset_comparison G.8275.x

CHAPTER 18. USING PTP HARDWARE

173

 G.8275.defaultDS.localPriority 128
 #
 # Port Data Set
 #
 logAnnounceInterval -3
 logSyncInterval -4
 logMinDelayReqInterval -4
 logMinPdelayReqInterval -4
 announceReceiptTimeout 3
 syncReceiptTimeout 0
 delayAsymmetry 0
 fault_reset_interval -4
 neighborPropDelayThresh 20000000
 masterOnly 0
 G.8275.portDS.localPriority 128
 #
 # Run time options
 #
 assume_two_step 0
 logging_level 6
 path_trace_enabled 0
 follow_up_info 0
 hybrid_e2e 0
 inhibit_multicast_service 0
 net_sync_monitor 0
 tc_spanning_tree 0
 tx_timestamp_timeout 50
 unicast_listen 0
 unicast_master_table 0
 unicast_req_duration 3600
 use_syslog 1
 verbose 0
 summary_interval 0
 kernel_leap 1
 check_fup_sync 0
 clock_class_threshold 135
 #
 # Servo Options
 #
 pi_proportional_const 0.0
 pi_integral_const 0.0
 pi_proportional_scale 0.0
 pi_proportional_exponent -0.3
 pi_proportional_norm_max 0.7
 pi_integral_scale 0.0
 pi_integral_exponent 0.4
 pi_integral_norm_max 0.3
 step_threshold 2.0
 first_step_threshold 0.00002
 max_frequency 900000000
 clock_servo pi
 sanity_freq_limit 200000000
 ntpshm_segment 0
 #
 # Transport options
 #

OpenShift Container Platform 4.12 Networking

174

Table 18.2. PTP boundary clock CR configuration options

Custom resource
field

Description

name The name of the PtpConfig CR.

profile Specify an array of one or more profile objects.

name Specify the name of a profile object which uniquely identifies a profile
object.

ptp4lOpts Specify system config options for the ptp4l service. The options should
not include the network interface name -i <interface> and service config
file -f /etc/ptp4l.conf because the network interface name and the
service config file are automatically appended.

ptp4lConf Specify the required configuration to start ptp4l as boundary clock. For
example, ens1f0 synchronizes from a grandmaster clock and ens1f3
synchronizes connected devices.

 transportSpecific 0x0
 ptp_dst_mac 01:1B:19:00:00:00
 p2p_dst_mac 01:80:C2:00:00:0E
 udp_ttl 1
 udp6_scope 0x0E
 uds_address /var/run/ptp4l
 #
 # Default interface options
 #
 clock_type BC
 network_transport L2
 delay_mechanism E2E
 time_stamping hardware
 tsproc_mode filter
 delay_filter moving_median
 delay_filter_length 10
 egressLatency 0
 ingressLatency 0
 boundary_clock_jbod 0
 #
 # Clock description
 #
 productDescription ;;
 revisionData ;;
 manufacturerIdentity 00:00:00
 userDescription ;
 timeSource 0xA0
 recommend:
 - profile: boundary-clock
 priority: 4
 match:
 - nodeLabel: "node-role.kubernetes.io/$mcp"

CHAPTER 18. USING PTP HARDWARE

175

<interface_1> The interface that receives the synchronization clock.

<interface_2> The interface that sends the synchronization clock.

tx_timestamp_time
out

For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to
50.

boundary_clock_jb
od

For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod
is set to 0. For Intel Fortville X710 Series NICs, ensure
boundary_clock_jbod is set to 1.

phc2sysOpts Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service.

ptpSchedulingPoli
cy

Scheduling policy for ptp4l and phc2sys processes. Default value is
SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

ptpSchedulingPrio
rity

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys
processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

ptpClockThreshold Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

recommend Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

.recommend.profil
e

Specify the .recommend.profile object name defined in the profile
section.

.recommend.priorit
y

Specify the priority with an integer value between 0 and 99. A larger
number gets lower priority, so a priority of 99 is lower than a priority of 10.
If a node can be matched with multiple profiles according to rules defined
in the match field, the profile with the higher priority is applied to that
node.

Custom resource
field

Description

OpenShift Container Platform 4.12 Networking

176

.recommend.matc
h

Specify .recommend.match rules with nodeLabel or nodeName
values.

.recommend.matc
h.nodeLabel

Set nodeLabel with the key of the node.Labels field from the node
object by using the oc get nodes --show-labels command. For
example, node-role.kubernetes.io/worker.

.recommend.matc
h.nodeName

Set nodeName with the value of the node.Name field from the node
object by using the oc get nodes command. For example, compute-
1.example.com.

Custom resource
field

Description

2. Create the CR by running the following command:

Verification

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

Example output

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

$ oc create -f boundary-clock-ptp-config.yaml

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com
linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-
1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface:

CHAPTER 18. USING PTP HARDWARE

177

Additional resources

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

For more information about configuring PTP fast events, see Configuring the PTP fast event
notifications publisher.

18.5.5. Configuring linuxptp services as boundary clocks for dual NIC hardware

IMPORTANT

Precision Time Protocol (PTP) hardware with dual NIC configured as boundary clocks is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clocks for dual NIC hardware by
creating a PtpConfig custom resource (CR) object for each NIC.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate
ptp4l instances for each NIC feeding the downstream clocks.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create two separate PtpConfig CRs, one for each NIC, using the reference CR in "Configuring
linuxptp services as a boundary clock" as the basis for each CR. For example:

a. Create boundary-clock-ptp-config-nic1.yaml, specifying values for phc2sysOpts:

I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: boundary-clock-ptp-config-nic1
 namespace: openshift-ptp
spec:
 profile:

OpenShift Container Platform 4.12 Networking

178

https://access.redhat.com/support/offerings/techpreview/

1

2

1

Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0
synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

b. Create boundary-clock-ptp-config-nic2.yaml, removing the phc2sysOpts field
altogether to disable the phc2sys service for the second NIC:

Specify the required interfaces to start ptp4l as a boundary clock on the second NIC.

NOTE

You must completely remove the phc2sysOpts field from the second
PtpConfig CR to disable the phc2sys service on the second NIC.

2. Create the dual NIC PtpConfig CRs by running the following commands:

a. Create the CR that configures PTP for the first NIC:

b. Create the CR that configures PTP for the second NIC:

 - name: "profile1"
 ptp4lOpts: "-2 --summary_interval -4"
 ptp4lConf: | 1
 [ens5f1]
 masterOnly 1
 [ens5f0]
 masterOnly 0
 ...
 phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: boundary-clock-ptp-config-nic2
 namespace: openshift-ptp
spec:
 profile:
 - name: "profile2"
 ptp4lOpts: "-2 --summary_interval -4"
 ptp4lConf: | 1
 [ens7f1]
 masterOnly 1
 [ens7f0]
 masterOnly 0
...

$ oc create -f boundary-clock-ptp-config-nic1.yaml

$ oc create -f boundary-clock-ptp-config-nic2.yaml

CHAPTER 18. USING PTP HARDWARE

179

Verification

Check that the PTP Operator has applied the PtpConfig CRs for both NICs. Examine the logs
for the linuxptp daemon corresponding to the node that has the dual NIC hardware installed.
For example, run the following command:

Example output

18.5.6. Intel Columbiaville E800 series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration in
order to use Intel Columbiaville E800 series NICs as ordinary clocks. Make the changes in a PtpConfig
custom resource (CR) that you apply to the cluster.

Table 18.3. Recommended PTP settings for Intel Columbiaville NIC

PTP configuration Recommended setting

phc2sysOpts -a -r -m -n 24 -N 8 -R 16

tx_timestamp_timeout 50

boundary_clock_jbod 0

NOTE

For phc2sysOpts, -m prints messages to stdout. The linuxptp-daemon DaemonSet
parses the logs and generates Prometheus metrics.

Additional resources

For a complete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock .

18.5.7. Configuring FIFO priority scheduling for PTP hardware

In telco or other deployment configurations that require low latency performance, PTP daemon threads
run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP
threads run with the SCHED_OTHER policy. Under high load, these threads might not get the
scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp
services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR,
then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the
ptpSchedulingPriority field of the PtpConfig CR.

$ oc logs linuxptp-daemon-cvgr6 -n openshift-ptp -c linuxptp-daemon-container

ptp4l[80828.335]: [ptp4l.1.config] master offset 5 s2 freq -5727 path delay 519
ptp4l[80828.343]: [ptp4l.0.config] master offset -5 s2 freq -10607 path delay 533
phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1 s2 freq -87239
delay 539

OpenShift Container Platform 4.12 Networking

180

1

2

NOTE

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing
latency errors.

Procedure

1. Edit the PtpConfig CR profile:

2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that
support FIFO scheduling.

Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and
phc2sys processes.

3. Save and exit to apply the changes to the PtpConfig CR.

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

Example output

2. Check that the ptp4l process is running with the updated chrt FIFO priority:

$ oc edit PtpConfig -n openshift-ptp

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: <ptp_config_name>
 namespace: openshift-ptp
...
spec:
 profile:
 - name: "profile1"
...
 ptpSchedulingPolicy: SCHED_FIFO 1
 ptpSchedulingPriority: 10 2

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-
1.example.com
ptp-operator-3r4dcvf7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-
1.example.com

CHAPTER 18. USING PTP HARDWARE

181

Example output

18.5.8. Configuring log filtering for linuxptp services

The linuxptp daemon generates logs that you can use for debugging purposes. In telco or other
deployment configurations that feature a limited storage capacity, these logs can add to the storage
demand.

To reduce the number log messages, you can configure the PtpConfig custom resource (CR) to
exclude log messages that report the master offset value. The master offset log message reports the
difference between the current node’s clock and the master clock in nanoseconds.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Edit the PtpConfig CR:

2. In spec.profile, add the ptpSettings.logReduce specification and set the value to true:

NOTE

For debugging purposes, you can revert this specification to False to include the
master offset messages.

3. Save and exit to apply the changes to the PtpConfig CR.

$ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt

I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f
/var/run/ptp4l.0.config -2 --summary_interval -4 -m

$ oc edit PtpConfig -n openshift-ptp

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: <ptp_config_name>
 namespace: openshift-ptp
...
spec:
 profile:
 - name: "profile1"
...
 ptpSettings:
 logReduce: "true"

OpenShift Container Platform 4.12 Networking

182

1

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

Example output

2. Verify that master offset messages are excluded from the logs by running the following
command:

<linux_daemon_container> is the name of the linuxptp-daemon pod, for example
linuxptp-daemon-gmv2n.

When you configure the logReduce specification, this command does not report any instances
of master offset in the logs of the linuxptp daemon.

18.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

1. Check the Operator and operands are successfully deployed in the cluster for the configured
nodes.

Example output

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-
1.example.com
ptp-operator-3r4dcvf7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-
1.example.com

$ oc -n openshift-ptp logs <linux_daemon_container> -c linuxptp-daemon-container | grep
"master offset" 1

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-lmvgn 3/3 Running 0 4d17h 10.1.196.24 compute-

CHAPTER 18. USING PTP HARDWARE

183

NOTE

When the PTP fast event bus is enabled, the number of ready linuxptp-daemon
pods is 3/3. If the PTP fast event bus is not enabled, 2/2 is displayed.

2. Check that supported hardware is found in the cluster.

Example output

3. Check the available PTP network interfaces for a node:

where:

<node_name>

Specifies the node you want to query, for example, compute-0.example.com.

Example output

0.example.com
linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-
1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-plane-
1.example.com

$ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

NAME AGE
control-plane-0.example.com 10d
control-plane-1.example.com 10d
compute-0.example.com 10d
compute-1.example.com 10d
compute-2.example.com 10d

$ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
 creationTimestamp: "2021-09-14T16:52:33Z"
 generation: 1
 name: compute-0.example.com
 namespace: openshift-ptp
 resourceVersion: "177400"
 uid: 30413db0-4d8d-46da-9bef-737bacd548fd
spec: {}
status:
 devices:
 - name: eno1
 - name: eno2
 - name: eno3
 - name: eno4
 - name: enp5s0f0
 - name: enp5s0f1

OpenShift Container Platform 4.12 Networking

184

4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the
linuxptp-daemon pod for the corresponding node.

a. Get the name of the linuxptp-daemon pod and corresponding node you want to
troubleshoot by running the following command:

Example output

b. Remote shell into the required linuxptp-daemon container:

where:

<linux_daemon_container>

is the container you want to diagnose, for example linuxptp-daemon-lmvgn.

c. In the remote shell connection to the linuxptp-daemon container, use the PTP
Management Client (pmc) tool to diagnose the network interface. Run the following pmc
command to check the sync status of the PTP device, for example ptp4l.

Example output when the node is successfully synced to the primary clock

18.6.1. Collecting Precision Time Protocol (PTP) Operator data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with Precision Time Protocol (PTP) Operator.

Prerequisites

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-lmvgn 3/3 Running 0 4d17h 10.1.196.24 compute-
0.example.com
linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-
1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-
plane-1.example.com

$ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

sending: GET PORT_DATA_SET
 40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
 portIdentity 40a6b7.fffe.166ef0-1
 portState SLAVE
 logMinDelayReqInterval -4
 peerMeanPathDelay 0
 logAnnounceInterval -3
 announceReceiptTimeout 3
 logSyncInterval -4
 delayMechanism 1
 logMinPdelayReqInterval -4
 versionNumber 2

CHAPTER 18. USING PTP HARDWARE

185

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You have installed the PTP Operator.

Procedure

To collect PTP Operator data with must-gather, you must specify the PTP Operator must-
gather image.

18.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK

Cloud native applications such as virtual RAN (vRAN) require access to notifications about hardware
timing events that are critical to the functioning of the overall network. PTP clock synchronization errors
can negatively affect the performance and reliability of your low-latency application, for example, a
vRAN application running in a distributed unit (DU).

18.7.1. About PTP and clock synchronization error events

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the
radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node
in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster
nodes to communicate PTP clock sync status to the vRAN application running in the DU.

Event notifications are available to vRAN applications running on the same DU node. A publish-
subscribe REST API passes events notifications to the messaging bus. Publish-subscribe messaging, or
pub-sub messaging, is an asynchronous service-to-service communication architecture where any
message published to a topic is immediately received by all of the subscribers to the topic.

The PTP Operator generates fast event notifications for every PTP-capable network interface. You can
access the events by using a cloud-event-proxy sidecar container over an HTTP or Advanced Message
Queuing Protocol (AMQP) message bus.

NOTE

PTP fast event notifications are available for network interfaces configured to use PTP
ordinary clocks or PTP boundary clocks.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

18.7.2. About the PTP fast event notifications framework

Use the Precision Time Protocol (PTP) fast event notifications framework to subscribe cluster

$ oc adm must-gather --image=registry.redhat.io/openshift4/ptp-must-gather-rhel8:v4.12

OpenShift Container Platform 4.12 Networking

186

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

Use the Precision Time Protocol (PTP) fast event notifications framework to subscribe cluster
applications to PTP events that the bare-metal cluster node generates.

NOTE

The fast events notifications framework uses a REST API for communication. The REST
API is based on the O-RAN O-Cloud Notification API Specification for Event Consumers
3.0 that is available from O-RAN ALLIANCE Specifications.

The framework consists of a publisher, subscriber, and an AMQ or HTTP messaging protocol to handle
communications between the publisher and subscriber applications. Applications run the cloud-event-
proxy container in a sidecar pattern to subscribe to PTP events. The cloud-event-proxy sidecar
container can access the same resources as the primary application container without using any of the
resources of the primary application and with no significant latency.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Figure 18.1. Overview of PTP fast events

 Event is generated on the cluster host

linuxptp-daemon in the PTP Operator-managed pod runs as a Kubernetes DaemonSet and
manages the various linuxptp processes (ptp4l, phc2sys, and optionally for grandmaster clocks,
ts2phc). The linuxptp-daemon passes the event to the UNIX domain socket.

 Event is passed to the cloud-event-proxy sidecar

The PTP plugin reads the event from the UNIX domain socket and passes it to the cloud-event-
proxy sidecar in the PTP Operator-managed pod. cloud-event-proxy delivers the event from the
Kubernetes infrastructure to Cloud-Native Network Functions (CNFs) with low latency.

 Event is persisted

CHAPTER 18. USING PTP HARDWARE

187

https://orandownloadsweb.azurewebsites.net/specifications
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

1

The cloud-event-proxy sidecar in the PTP Operator-managed pod processes the event and
publishes the cloud-native event by using a REST API.

 Message is transported

The message transporter transports the event to the cloud-event-proxy sidecar in the application
pod over HTTP or AMQP 1.0 QPID.

 Event is available from the REST API

The cloud-event-proxy sidecar in the Application pod processes the event and makes it available by
using the REST API.

 Consumer application requests a subscription and receives the subscribed event

The consumer application sends an API request to the cloud-event-proxy sidecar in the application
pod to create a PTP events subscription. The cloud-event-proxy sidecar creates an AMQ or HTTP
messaging listener protocol for the resource specified in the subscription.

The cloud-event-proxy sidecar in the application pod receives the event from the PTP Operator-
managed pod, unwraps the cloud events object to retrieve the data, and posts the event to the
consumer application. The consumer application listens to the address specified in the resource qualifier
and receives and processes the PTP event.

18.7.3. Configuring the PTP fast event notifications publisher

To start using PTP fast event notifications for a network interface in your cluster, you must enable the
fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure
ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites

You have installed the OpenShift Container Platform CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have installed the PTP Operator.

Procedure

1. Modify the default PTP Operator config to enable PTP fast events.

a. Save the following YAML in the ptp-operatorconfig.yaml file:

Set enableEventPublisher to true to enable PTP fast event notifications.

NOTE

apiVersion: ptp.openshift.io/v1
kind: PtpOperatorConfig
metadata:
 name: default
 namespace: openshift-ptp
spec:
 daemonNodeSelector:
 node-role.kubernetes.io/worker: ""
 ptpEventConfig:
 enableEventPublisher: true 1

OpenShift Container Platform 4.12 Networking

188

1

2

3

4

NOTE

In OpenShift Container Platform 4.12 or later, you do not need to set the
spec.ptpEventConfig.transportHost field in the PtpOperatorConfig
resource when you use HTTP transport for PTP events. Set transportHost
only when you use AMQP transport for PTP events.

b. Update the PtpOperatorConfig CR:

2. Create a PtpConfig custom resource (CR) for the PTP enabled interface, and set the required
values for ptpClockThreshold and ptp4lOpts. The following YAML illustrates the required
values that you must set in the PtpConfig CR:

Append --summary_interval -4 to use PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file.
To use the default configuration, leave the field empty.

Optional. If the ptpClockThreshold stanza is not present, default values are used for the
ptpClockThreshold fields. The stanza shows default ptpClockThreshold values. The
ptpClockThreshold values configure how long after the PTP master clock is disconnected
before PTP events are triggered. holdOverTimeout is the time value in seconds before
the PTP clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure
offset values in nanoseconds that compare against the values for CLOCK_REALTIME
(phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this
range, the PTP clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

Additional resources

For a complete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock .

18.7.4. Migrating consumer applications to use HTTP transport for PTP or bare-
metal events

$ oc apply -f ptp-operatorconfig.yaml

spec:
 profile:
 - name: "profile1"
 interface: "enp5s0f0"
 ptp4lOpts: "-2 -s --summary_interval -4" 1
 phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2
 ptp4lConf: "" 3
 ptpClockThreshold: 4
 holdOverTimeout: 5
 maxOffsetThreshold: 100
 minOffsetThreshold: -100

CHAPTER 18. USING PTP HARDWARE

189

1

If you have previously deployed PTP or bare-metal events consumer applications, you need to update
the applications to use HTTP message transport.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have updated the PTP Operator or Bare Metal Event Relay to version 4.12 or later which
uses HTTP transport by default.

Procedure

1. Update your events consumer application to use HTTP transport. Set the http-event-
publishers variable for the cloud event sidecar deployment.
For example, in a cluster with PTP events configured, the following YAML snippet illustrates a
cloud event sidecar deployment:

The PTP Operator automatically resolves NODE_NAME to the host that is generating the
PTP events. For example, compute-1.example.com.

In a cluster with bare-metal events configured, set the http-event-publishers field to hw-
event-publisher-service.openshift-bare-metal-events.svc.cluster.local:9043 in the cloud
event sidecar deployment CR.

2. Deploy the consumer-events-subscription-service service alongside the events consumer
application. For example:

containers:
 - name: cloud-event-sidecar
 image: cloud-event-sidecar
 args:
 - "--metrics-addr=127.0.0.1:9091"
 - "--store-path=/store"
 - "--transport-host=consumer-events-subscription-service.cloud-
events.svc.cluster.local:9043"
 - "--http-event-publishers=ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043" 1
 - "--api-port=8089"

apiVersion: v1
kind: Service
metadata:
 annotations:
 prometheus.io/scrape: "true"
 service.alpha.openshift.io/serving-cert-secret-name: sidecar-consumer-secret
 name: consumer-events-subscription-service
 namespace: cloud-events
 labels:
 app: consumer-service
spec:
 ports:
 - name: sub-port

OpenShift Container Platform 4.12 Networking

190

18.7.5. Installing the AMQ messaging bus

To pass PTP fast event notifications between publisher and subscriber on a node, you can install and
configure an AMQ messaging bus to run locally on the node. To use AMQ messaging, you must install
the AMQ Interconnect Operator.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

Install the AMQ Interconnect Operator to its own amq-interconnect namespace. See Adding
the Red Hat Integration - AMQ Interconnect Operator.

Verification

1. Check that the AMQ Interconnect Operator is available and the required pods are running:

Example output

2. Check that the required linuxptp-daemon PTP event producer pods are running in the
openshift-ptp namespace.

Example output

 port: 9043
 selector:
 app: consumer
 clusterIP: None
 sessionAffinity: None
 type: ClusterIP

$ oc get pods -n amq-interconnect

NAME READY STATUS RESTARTS AGE
amq-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
interconnect-operator-5cb5fc7cc-4v7qm 1/1 Running 0 23h

$ oc get pods -n openshift-ptp

CHAPTER 18. USING PTP HARDWARE

191

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp

18.7.6. Subscribing DU applications to PTP events REST API reference

Use the PTP event notifications REST API to subscribe a distributed unit (DU) application to the PTP
events that are generated on the parent node.

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp,
where <node_name> is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container
in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-
event-proxy container in the application pod.

Use the following API endpoints to subscribe the cloud-event-consumer DU application to PTP events
posted by the cloud-event-proxy container at http://localhost:8089/api/ocloudNotifications/v1/ in
the DU application pod:

/api/ocloudNotifications/v1/subscriptions

POST: Creates a new subscription

GET: Retrieves a list of subscriptions

/api/ocloudNotifications/v1/subscriptions/<subscription_id>

GET: Returns details for the specified subscription ID

/api/ocloudNotifications/v1/health

GET: Returns the health status of ocloudNotifications API

api/ocloudNotifications/v1/publishers

GET: Returns an array of os-clock-sync-state, ptp-clock-class-change, and lock-state
messages for the cluster node

/api/ocloudnotifications/v1/<resource_address>/CurrentState

GET: Returns the current state of one the following event types: os-clock-sync-state, ptp-
clock-class-change, or lock-state events

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your DU application as required.

18.7.6.1. api/ocloudNotifications/v1/subscriptions

HTTP method
GET api/ocloudNotifications/v1/subscriptions

Description

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 12h
linuxptp-daemon-k8n88 3/3 Running 0 12h

OpenShift Container Platform 4.12 Networking

192

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

Example API response

HTTP method
POST api/ocloudNotifications/v1/subscriptions

Description
Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created
status code is returned.

Table 18.4. Query parameters

Parameter Type

subscription data

Example payload

18.7.6.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>

HTTP method
GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

Description
Returns details for the subscription with ID <subscription_id>

Table 18.5. Query parameters

Parameter Type

<subscription_id> string

Example API response

[
 {
 "id": "75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
 "endpointUri": "http://localhost:9089/event",
 "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/75b1ad8f-c807-4c23-
acf5-56f4b7ee3826",
 "resource": "/cluster/node/compute-1.example.com/ptp"
 }
]

{
 "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions",
 "resource": "/cluster/node/compute-1.example.com/ptp"
}

{

CHAPTER 18. USING PTP HARDWARE

193

18.7.6.3. api/ocloudNotifications/v1/health/

HTTP method
GET api/ocloudNotifications/v1/health/

Description
Returns the health status for the ocloudNotifications REST API.

Example API response

18.7.6.4. api/ocloudNotifications/v1/publishers

HTTP method
GET api/ocloudNotifications/v1/publishers

Description
Returns an array of os-clock-sync-state, ptp-clock-class-change, and lock-state details for the
cluster node. The system generates notifications when the relevant equipment state changes.

os-clock-sync-state notifications describe the host operating system clock synchronization
state. Can be in LOCKED or FREERUN state.

ptp-clock-class-change notifications describe the current state of the PTP clock class.

lock-state notifications describe the current status of the PTP equipment lock state. Can be in
LOCKED, HOLDOVER or FREERUN state.

Example API response

 "id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",
 "endpointUri": "http://localhost:9089/event",
 "uriLocation":"http://localhost:8089/api/ocloudNotifications/v1/subscriptions/48210fb3-45be-4ce0-
aa9b-41a0e58730ab",
 "resource":"/cluster/node/compute-1.example.com/ptp"
}

OK

[
 {
 "id": "0fa415ae-a3cf-4299-876a-589438bacf75",
 "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
 "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/0fa415ae-a3cf-4299-
876a-589438bacf75",
 "resource": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state"
 },
 {
 "id": "28cd82df-8436-4f50-bbd9-7a9742828a71",
 "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
 "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/28cd82df-8436-4f50-
bbd9-7a9742828a71",
 "resource": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change"
 },
 {
 "id": "44aa480d-7347-48b0-a5b0-e0af01fa9677",

OpenShift Container Platform 4.12 Networking

194

You can find os-clock-sync-state, ptp-clock-class-change and lock-state events in the logs for the
cloud-event-proxy container. For example:

Example os-clock-sync-state event

Example ptp-clock-class-change event

 "endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy",
 "uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/44aa480d-7347-48b0-
a5b0-e0af01fa9677",
 "resource": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state"
 }
]

$ oc logs -f linuxptp-daemon-cvgr6 -n openshift-ptp -c cloud-event-proxy

{
 "id":"c8a784d1-5f4a-4c16-9a81-a3b4313affe5",
 "type":"event.sync.sync-status.os-clock-sync-state-change",
 "source":"/cluster/compute-1.example.com/ptp/CLOCK_REALTIME",
 "dataContentType":"application/json",
 "time":"2022-05-06T15:31:23.906277159Z",
 "data":{
 "version":"v1",
 "values":[
 {
 "resource":"/sync/sync-status/os-clock-sync-state",
 "dataType":"notification",
 "valueType":"enumeration",
 "value":"LOCKED"
 },
 {
 "resource":"/sync/sync-status/os-clock-sync-state",
 "dataType":"metric",
 "valueType":"decimal64.3",
 "value":"-53"
 }
]
 }
}

{
 "id":"69eddb52-1650-4e56-b325-86d44688d02b",
 "type":"event.sync.ptp-status.ptp-clock-class-change",
 "source":"/cluster/compute-1.example.com/ptp/ens2fx/master",
 "dataContentType":"application/json",
 "time":"2022-05-06T15:31:23.147100033Z",
 "data":{
 "version":"v1",
 "values":[
 {
 "resource":"/sync/ptp-status/ptp-clock-class-change",
 "dataType":"metric",
 "valueType":"decimal64.3",

CHAPTER 18. USING PTP HARDWARE

195

Example lock-state event

18.7.6.5. /api/ocloudnotifications/v1/<resource_address>/CurrentState

HTTP method
GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/lock-
state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/sync-status/os-clock-sync-
state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-
change/CurrentState

Description
Configure the CurrentState API endpoint to return the current state of the os-clock-sync-state, ptp-
clock-class-change, or lock-state events for the cluster node.

os-clock-sync-state notifications describe the host operating system clock synchronization
state. Can be in LOCKED or FREERUN state.

ptp-clock-class-change notifications describe the current state of the PTP clock class.

lock-state notifications describe the current status of the PTP equipment lock state. Can be in

 "value":"135"
 }
]
 }
}

{
 "id":"305ec18b-1472-47b3-aadd-8f37933249a9",
 "type":"event.sync.ptp-status.ptp-state-change",
 "source":"/cluster/compute-1.example.com/ptp/ens2fx/master",
 "dataContentType":"application/json",
 "time":"2022-05-06T15:31:23.467684081Z",
 "data":{
 "version":"v1",
 "values":[
 {
 "resource":"/sync/ptp-status/lock-state",
 "dataType":"notification",
 "valueType":"enumeration",
 "value":"LOCKED"
 },
 {
 "resource":"/sync/ptp-status/lock-state",
 "dataType":"metric",
 "valueType":"decimal64.3",
 "value":"62"
 }
]
 }
}

OpenShift Container Platform 4.12 Networking

196

lock-state notifications describe the current status of the PTP equipment lock state. Can be in
LOCKED, HOLDOVER or FREERUN state.

Table 18.6. Query parameters

Parameter Type

<resource_address> string

Example lock-state API response

Example os-clock-sync-state API response

{
 "id": "c1ac3aa5-1195-4786-84f8-da0ea4462921",
 "type": "event.sync.ptp-status.ptp-state-change",
 "source": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state",
 "dataContentType": "application/json",
 "time": "2023-01-10T02:41:57.094981478Z",
 "data": {
 "version": "v1",
 "values": [
 {
 "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
 "dataType": "notification",
 "valueType": "enumeration",
 "value": "LOCKED"
 },
 {
 "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
 "dataType": "metric",
 "valueType": "decimal64.3",
 "value": "29"
 }
]
 }
}

{
 "specversion": "0.3",
 "id": "4f51fe99-feaa-4e66-9112-66c5c9b9afcb",
 "source": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state",
 "type": "event.sync.sync-status.os-clock-sync-state-change",
 "subject": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state",
 "datacontenttype": "application/json",
 "time": "2022-11-29T17:44:22.202Z",
 "data": {
 "version": "v1",
 "values": [
 {
 "resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
 "dataType": "notification",
 "valueType": "enumeration",
 "value": "LOCKED"

CHAPTER 18. USING PTP HARDWARE

197

Example ptp-clock-class-change API response

18.7.7. Monitoring PTP fast event metrics

You can monitor PTP fast events metrics from cluster nodes where the linuxptp-daemon is running.
You can also monitor PTP fast event metrics in the OpenShift Container Platform web console by using
the preconfigured and self-updating Prometheus monitoring stack.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in as a user with cluster-admin privileges.

Install and configure the PTP Operator on a node with PTP-capable hardware.

Procedure

1. Check for exposed PTP metrics on any node where the linuxptp-daemon is running. For
example, run the following command:

Example output

 },
 {
 "resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
 "dataType": "metric",
 "valueType": "decimal64.3",
 "value": "27"
 }
]
 }
}

{
 "id": "064c9e67-5ad4-4afb-98ff-189c6aa9c205",
 "type": "event.sync.ptp-status.ptp-clock-class-change",
 "source": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change",
 "dataContentType": "application/json",
 "time": "2023-01-10T02:41:56.785673989Z",
 "data": {
 "version": "v1",
 "values": [
 {
 "resource": "/cluster/node/compute-1.example.com/ens5fx/master",
 "dataType": "metric",
 "valueType": "decimal64.3",
 "value": "165"
 }
]
 }
}

$ curl http://<node_name>:9091/metrics

OpenShift Container Platform 4.12 Networking

198

HELP openshift_ptp_clock_state 0 = FREERUN, 1 = LOCKED, 2 = HOLDOVER
TYPE openshift_ptp_clock_state gauge
openshift_ptp_clock_state{iface="ens1fx",node="compute-1.example.com",process="ptp4l"}
1
openshift_ptp_clock_state{iface="ens3fx",node="compute-1.example.com",process="ptp4l"}
1
openshift_ptp_clock_state{iface="ens5fx",node="compute-1.example.com",process="ptp4l"}
1
openshift_ptp_clock_state{iface="ens7fx",node="compute-1.example.com",process="ptp4l"}
1
HELP openshift_ptp_delay_ns
TYPE openshift_ptp_delay_ns gauge
openshift_ptp_delay_ns{from="master",iface="ens1fx",node="compute-
1.example.com",process="ptp4l"} 842
openshift_ptp_delay_ns{from="master",iface="ens3fx",node="compute-
1.example.com",process="ptp4l"} 480
openshift_ptp_delay_ns{from="master",iface="ens5fx",node="compute-
1.example.com",process="ptp4l"} 584
openshift_ptp_delay_ns{from="master",iface="ens7fx",node="compute-
1.example.com",process="ptp4l"} 482
openshift_ptp_delay_ns{from="phc",iface="CLOCK_REALTIME",node="compute-
1.example.com",process="phc2sys"} 547
HELP openshift_ptp_offset_ns
TYPE openshift_ptp_offset_ns gauge
openshift_ptp_offset_ns{from="master",iface="ens1fx",node="compute-
1.example.com",process="ptp4l"} -2
openshift_ptp_offset_ns{from="master",iface="ens3fx",node="compute-
1.example.com",process="ptp4l"} -44
openshift_ptp_offset_ns{from="master",iface="ens5fx",node="compute-
1.example.com",process="ptp4l"} -8
openshift_ptp_offset_ns{from="master",iface="ens7fx",node="compute-
1.example.com",process="ptp4l"} 3
openshift_ptp_offset_ns{from="phc",iface="CLOCK_REALTIME",node="compute-
1.example.com",process="phc2sys"} 12

2. To view the PTP event in the OpenShift Container Platform web console, copy the name of the
PTP metric you want to query, for example, openshift_ptp_offset_ns.

3. In the OpenShift Container Platform web console, click Observe → Metrics.

4. Paste the PTP metric name into the Expression field, and click Run queries.

Additional resources

Managing metrics

CHAPTER 18. USING PTP HARDWARE

199

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/monitoring/#managing-metrics

CHAPTER 19. EXTERNAL DNS OPERATOR

19.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

19.1.1. External DNS Operator

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.
The External DNS Operator updates services, routes, and external DNS providers.

Prerequisites

You have installed the yq CLI tool.

Procedure

You can deploy the External DNS Operator on demand from the OperatorHub. Deploying the External
DNS Operator creates a Subscription object.

1. Check the name of an install plan by running the following command:

Example output

2. Check if the status of an install plan is Complete by running the following command:

Example output

3. View the status of the external-dns-operator deployment by running the following command:

Example output

19.1.2. External DNS Operator logs

You can view External DNS Operator logs by using the oc logs command.

$ oc -n external-dns-operator get sub external-dns-operator -o yaml | yq
'.status.installplan.name'

install-zcvlr

$ oc -n external-dns-operator get ip <install_plan_name> -o yaml | yq '.status.phase'

Complete

$ oc get -n external-dns-operator deployment/external-dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
external-dns-operator 1/1 1 1 23h

OpenShift Container Platform 4.12 Networking

200

Procedure

1. View the logs of the External DNS Operator by running the following command:

19.1.2.1. External DNS Operator domain name limitations

The External DNS Operator uses the TXT registry which adds the prefix for TXT records. This reduces
the maximum length of the domain name for TXT records. A DNS record cannot be present without a
corresponding TXT record, so the domain name of the DNS record must follow the same limit as the
TXT records. For example, a DNS record of <domain_name_from_source> results in a TXT record of
external-dns-<record_type>-<domain_name_from_source>.

The domain name of the DNS records generated by the External DNS Operator has the following
limitations:

Record type Number of characters

CNAME 44

Wildcard CNAME records
on AzureDNS

42

A 48

Wildcard A records on
AzureDNS

46

The following error appears in the External DNS Operator logs if the generated domain name exceeds
any of the domain name limitations:

19.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS

You can install the External DNS Operator on cloud providers such as AWS, Azure, and GCP.

19.2.1. Installing the External DNS Operator

You can install the External DNS Operator by using the OpenShift Container Platform OperatorHub.

Procedure

1. Click Operators → OperatorHub in the OpenShift Container Platform web console.

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to

$ oc logs -n external-dns-operator deployment/external-dns-operator -c external-dns-operator

time="2022-09-02T08:53:57Z" level=error msg="Failure in zone test.example.io. [Id:
/hostedzone/Z06988883Q0H0RL6UMXXX]"
time="2022-09-02T08:53:57Z" level=error msg="InvalidChangeBatch: [FATAL problem:
DomainLabelTooLong (Domain label is too long) encountered with 'external-dns-a-hello-openshift-
aaaaaaaaaa-bbbbbbbbbb-ccccccc']\n\tstatus code: 400, request id: e54dfd5a-06c6-47b0-bcb9-
a4f7c3a4e0c6"

CHAPTER 19. EXTERNAL DNS OPERATOR

201

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to
search for External DNS Operator from the list of Operators.

3. Select the external-dns-operator namespace.

4. On the External DNS Operator page, click Install.

5. On the Install Operator page, ensure that you selected the following options:

a. Update the channel as stable-v1.

b. Installation mode as A specific name on the cluster.

c. Installed namespace as external-dns-operator. If namespace external-dns-operator does
not exist, it gets created during the Operator installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

e. Click Install.

If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must
then manually approve that update request to have the Operator updated to the new version.

Verification

Verify that the External DNS Operator shows the Status as Succeeded on the Installed Operators
dashboard.

19.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

The External DNS Operator includes the following configuration parameters.

19.3.1. External DNS Operator configuration parameters

The External DNS Operator includes the following configuration parameters:

Parameter Description

OpenShift Container Platform 4.12 Networking

202

1

2

1

1

2

3

4

5

spec Enables the type of a cloud provider.

Defines available options such as AWS, GCP, Azure, and Infoblox.

Defines a secret name for your cloud provider.

zones Enables you to specify DNS zones by their domains. If you do not specify zones,
the ExternalDNS resource discovers all of the zones present in your cloud
provider account.

Specifies the name of DNS zones.

domains Enables you to specify AWS zones by their domains. If you do not specify
domains, the ExternalDNS resource discovers all of the zones present in your
cloud provider account.

Ensures that the ExternalDNS resource includes the domain name.

Instructs ExtrnalDNS that the domain matching has to be exact as
opposed to regular expression match.

Defines the name of the domain.

Sets the regex-domain-filter flag in the ExternalDNS resource. You
can limit possible domains by using a Regex filter.

Defines the regex pattern to be used by the ExternalDNS resource to
filter the domains of the target zones.

source Enables you to specify the source for the DNS records, Service or Route.

Parameter Description

spec:
 provider:
 type: AWS 1
 aws:
 credentials:
 name: aws-access-key 2

zones:
- "myzoneid" 1

domains:
- filterType: Include 1
 matchType: Exact 2
 name: "myzonedomain1.com" 3
- filterType: Include
 matchType: Pattern 4
 pattern: ".*\\.otherzonedomain\\.com" 5

CHAPTER 19. EXTERNAL DNS OPERATOR

203

1

2

3

4

5

6

1

2

Defines the settings for the source of DNS records.

The ExternalDNS resource uses the Service type as the source for
creating DNS records.

Sets the service-type-filter flag in the ExternalDNS resource. The
serviceType contains the following fields:

default: LoadBalancer

expected: ClusterIP

NodePort

LoadBalancer

ExternalName

Ensures that the controller considers only those resources which matches
with label filter.

The default value for hostnameAnnotation is Ignore which instructs
ExternalDNS to generate DNS records using the templates specified in
the field fqdnTemplates. When the value is Allow the DNS records get
generated based on the value specified in the external-
dns.alpha.kubernetes.io/hostname annotation.

The External DNS Operator uses a string to generate DNS names from
sources that don’t define a hostname, or to add a hostname suffix when
paired with the fake source.

Creates DNS records.

If the source type is OpenShiftRoute, then you can pass the Ingress
Controller name. The ExternalDNS resource uses the canonical name of
the Ingress Controller as the target for CNAME records.

Parameter Descriptionsource: 1
 type: Service 2
 service:
 serviceType: 3
 - LoadBalancer
 - ClusterIP
 labelFilter: 4
 matchLabels:
 external-dns.mydomain.org/publish: "yes"
 hostnameAnnotation: "Allow" 5
 fqdnTemplate:
 - "{{.Name}}.myzonedomain.com" 6

source:
 type: OpenShiftRoute 1
 openshiftRouteOptions:
 routerName: default 2
 labelFilter:
 matchLabels:
 external-dns.mydomain.org/publish: "yes"

OpenShift Container Platform 4.12 Networking

204

Parameter Description

19.4. CREATING DNS RECORDS ON AWS

You can create DNS records on AWS and AWS GovCloud by using External DNS Operator.

19.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat
External DNS Operator

You can create DNS records on a public hosted zone for AWS by using the Red Hat External DNS
Operator. You can use the same instructions to create DNS records on a hosted zone for AWS
GovCloud.

Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don’t have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

Example output

2. Fetch the values from aws-creds secret present in kube-system namespace.

3. Get the routes to check the domain:

Example output

4. Get the list of dns zones to find the one which corresponds to the previously found route’s
domain:

$ oc whoami

system:admin

$ export AWS_ACCESS_KEY_ID=$(oc get secrets aws-creds -n kube-system --template=
{{.data.aws_access_key_id}} | base64 -d)
$ export AWS_SECRET_ACCESS_KEY=$(oc get secrets aws-creds -n kube-system --
template={{.data.aws_secret_access_key}} | base64 -d)

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-
console.apps.testextdnsoperator.apacshift.support console https
reencrypt/Redirect None
openshift-console downloads downloads-openshift-
console.apps.testextdnsoperator.apacshift.support downloads http
edge/Redirect None

$ aws route53 list-hosted-zones | grep testextdnsoperator.apacshift.support

CHAPTER 19. EXTERNAL DNS OPERATOR

205

1

2

3

4

5

6

7

8

Example output

5. Create ExternalDNS resource for route source:

Defines the name of external DNS resource.

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the AWS Route53 DNS provider.

Defines options for the source of DNS records.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

If the source is OpenShiftRoute, then you can pass the OpenShift Ingress Controller
name. External DNS Operator selects the canonical hostname of that router as the target
while creating CNAME record.

6. Check the records created for OCP routes using the following command:

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J6O
testextdnsoperator.apacshift.support. 5

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-aws 1
spec:
 domains:
 - filterType: Include 2
 matchType: Exact 3
 name: testextdnsoperator.apacshift.support 4
 provider:
 type: AWS 5
 source: 6
 type: OpenShiftRoute 7
 openshiftRouteOptions:
 routerName: default 8
EOF

$ aws route53 list-resource-record-sets --hosted-zone-id Z02355203TNN1XXXX1J6O --
query "ResourceRecordSets[?Type == 'CNAME']" | grep console

OpenShift Container Platform 4.12 Networking

206

19.5. CREATING DNS RECORDS ON AZURE

You can create DNS records on Azure by using the External DNS Operator.

19.5.1. Creating DNS records on an Azure public DNS zone

You can create DNS records on a public DNS zone for Azure by using the External DNS Operator.

Prerequisites

You must have administrator privileges.

The admin user must have access to the kube-system namespace.

Procedure

1. Fetch the credentials from the kube-system namespace to use the cloud provider client by
running the following command:

2. Log in to Azure by running the following command:

3. Get a list of routes by running the following command:

Example output

4. Get a list of DNS zones by running the following command:

5. Create a YAML file, for example, external-dns-sample-azure.yaml, that defines the

$ CLIENT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_id}} | base64 -d)
$ CLIENT_SECRET=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_secret}} | base64 -d)
$ RESOURCE_GROUP=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_resourcegroup}} | base64 -d)
$ SUBSCRIPTION_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_subscription_id}} | base64 -d)
$ TENANT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_tenant_id}} | base64 -d)

$ az login --service-principal -u "${CLIENT_ID}" -p "${CLIENT_SECRET}" --tenant
"${TENANT_ID}"

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-
console.apps.test.azure.example.com console https reencrypt/Redirect
None
openshift-console downloads downloads-openshift-
console.apps.test.azure.example.com downloads http edge/Redirect
None

$ az network dns zone list --resource-group "${RESOURCE_GROUP}"

CHAPTER 19. EXTERNAL DNS OPERATOR

207

1

2

3

4

5

6

5. Create a YAML file, for example, external-dns-sample-azure.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-azure.yaml file

Specifies the External DNS name.

Defines the zone ID.

Defines the provider type.

You can define options for the source of DNS records.

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

Defines the route resource as the source for the Azure DNS records.

6. Check the DNS records created for OpenShift Container Platform routes by running the
following command:

NOTE

To create records on private hosted zones on private Azure DNS, you need to
specify the private zone under the zones field which populates the provider type
to azure-private-dns in the ExternalDNS container arguments.

19.6. CREATING DNS RECORDS ON GCP

You can create DNS records on GCP by using the External DNS Operator.

19.6.1. Creating DNS records on a public managed zone for GCP

apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-azure 1
spec:
 zones:
 - "/subscriptions/1234567890/resourceGroups/test-azure-xxxxx-
rg/providers/Microsoft.Network/dnszones/test.azure.example.com" 2
 provider:
 type: Azure 3
 source:
 openshiftRouteOptions: 4
 routerName: default 5
 type: OpenShiftRoute 6

$ az network dns record-set list -g "${RESOURCE_GROUP}" -z test.azure.example.com |
grep console

OpenShift Container Platform 4.12 Networking

208

You can create DNS records on a public managed zone for GCP by using the External DNS Operator.

Prerequisites

You must have administrator privileges.

Procedure

1. Copy the gcp-credentials secret in the encoded-gcloud.json file by running the following
command:

2. Export your Google credentials by running the following command:

3. Activate your account by using the following command:

4. Set your project by running the following command:

5. Get a list of routes by running the following command:

Example output

6. Get a list of managed zones by running the following command:

Example output

7. Create a YAML file, for example, external-dns-sample-gcp.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-gcp.yaml file

$ oc get secret gcp-credentials -n kube-system --template='{{$v := index .data
"service_account.json"}}{{$v}}' | base64 -d - > decoded-gcloud.json

$ export GOOGLE_CREDENTIALS=decoded-gcloud.json

$ gcloud auth activate-service-account <client_email as per decoded-gcloud.json> --key-
file=decoded-gcloud.json

$ gcloud config set project <project_id as per decoded-gcloud.json>

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-
console.apps.test.gcp.example.com console https reencrypt/Redirect
None
openshift-console downloads downloads-openshift-
console.apps.test.gcp.example.com downloads http edge/Redirect
None

$ gcloud dns managed-zones list | grep test.gcp.example.com

qe-cvs4g-private-zone test.gcp.example.com

CHAPTER 19. EXTERNAL DNS OPERATOR

209

1

2

3

4

5

6

7

8

Specifies the External DNS name.

By default, all hosted zones are selected as potential targets. You can include your hosted
zone.

The domain of the target must match the string defined by the name key.

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the provider type.

You can define options for the source of DNS records.

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

Defines the route resource as the source for GCP DNS records.

8. Check the DNS records created for OpenShift Container Platform routes by running the
following command:

19.7. CREATING DNS RECORDS ON INFOBLOX

You can create DNS records on Infoblox by using the External DNS Operator.

19.7.1. Creating DNS records on a public DNS zone on Infoblox

You can create DNS records on a public DNS zone on Infoblox by using the External DNS Operator.

Prerequisites

You have access to the OpenShift CLI (oc).

apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-gcp 1
spec:
 domains:
 - filterType: Include 2
 matchType: Exact 3
 name: test.gcp.example.com 4
 provider:
 type: GCP 5
 source:
 openshiftRouteOptions: 6
 routerName: default 7
 type: OpenShiftRoute 8

$ gcloud dns record-sets list --zone=qe-cvs4g-private-zone | grep console

OpenShift Container Platform 4.12 Networking

210

1

2

You have access to the Infoblox UI.

Procedure

1. Create a secret object with Infoblox credentials by running the following command:

2. Get a list of routes by running the following command:

Example Output

3. Create a YAML file, for example, external-dns-sample-infoblox.yaml, that defines the
ExternalDNS object:

Example external-dns-sample-infoblox.yaml file

Specifies the External DNS name.

Defines the provider type.

$ oc -n external-dns-operator create secret generic infoblox-credentials --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_USERNAME=<infoblox_username> --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_PASSWORD=<infoblox_password>

$ oc get routes --all-namespaces | grep console

openshift-console console console-openshift-console.apps.test.example.com
console https reencrypt/Redirect None
openshift-console downloads downloads-openshift-
console.apps.test.example.com downloads http edge/Redirect
None

apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: sample-infoblox 1
spec:
 provider:
 type: Infoblox 2
 infoblox:
 credentials:
 name: infoblox-credentials
 gridHost: ${INFOBLOX_GRID_PUBLIC_IP}
 wapiPort: 443
 wapiVersion: "2.3.1"
 domains:
 - filterType: Include
 matchType: Exact
 name: test.example.com
 source:
 type: OpenShiftRoute 3
 openshiftRouteOptions:
 routerName: default 4

CHAPTER 19. EXTERNAL DNS OPERATOR

211

3

4

You can define options for the source of DNS records.

If the source type is OpenShiftRoute, you can pass the OpenShift Ingress Controller
name. External DNS selects the canonical hostname of that router as the target while
creating CNAME record.

4. Create the ExternalDNS resource on Infoblox by running the following command:

5. From the Infoblox UI, check the DNS records created for console routes:

a. Click Data Management → DNS → Zones.

b. Select the zone name.

19.8. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL
DNS OPERATOR

After configuring the cluster-wide proxy, the Operator Lifecycle Manager (OLM) triggers automatic
updates to all of the deployed Operators with the new contents of the HTTP_PROXY, HTTPS_PROXY,
and NO_PROXY environment variables.

19.8.1. Trusting the certificate authority of the cluster-wide proxy

You can configure the External DNS Operator to trust the certificate authority of the cluster-wide
proxy.

Procedure

1. Create the config map to contain the CA bundle in the external-dns-operator namespace by
running the following command:

2. To inject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

3. Update the subscription of the External DNS Operator by running the following command:

Verification

After the deployment of the External DNS Operator is completed, verify that the trusted CA
environment variable is added to the external-dns-operator deployment by running the
following command:

$ oc create -f external-dns-sample-infoblox.yaml

$ oc -n external-dns-operator create configmap trusted-ca

$ oc -n external-dns-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

$ oc -n external-dns-operator patch subscription external-dns-operator --type='json' -
p='[{"op": "add", "path": "/spec/config", "value":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}]}}]'

OpenShift Container Platform 4.12 Networking

212

Example output

$ oc -n external-dns-operator exec deploy/external-dns-operator -c external-dns-operator --
printenv TRUSTED_CA_CONFIGMAP_NAME

trusted-ca

CHAPTER 19. EXTERNAL DNS OPERATOR

213

CHAPTER 20. NETWORK POLICY

20.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

20.1.1. About network policy

In a cluster using a network plugin that supports Kubernetes network policy, network isolation is
controlled entirely by NetworkPolicy objects. In OpenShift Container Platform 4.12, OpenShift SDN
supports using network policy in its default network isolation mode.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost or from their resident nodes.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

Only allow connections from the OpenShift Container Platform Ingress Controller:

To make a project allow only connections from the OpenShift Container Platform Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector: {}
 ingress: []

OpenShift Container Platform 4.12 Networking

214

To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP
 port: 80
 - protocol: TCP
 port: 443

CHAPTER 20. NETWORK POLICY

215

1

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

20.1.1.1. Using the allow-from-router network policy

Use the following NetworkPolicy to allow external traffic regardless of the router configuration:

policy-group.network.openshift.io/ingress:"" label supports both OpenShift-SDN and OVN-
Kubernetes.

20.1.1.2. Using the allow-from-hostnetwork network policy

Add the following allow-from-hostnetwork NetworkPolicy object to direct traffic from the host
network pods:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-router
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: "" 1
 podSelector: {}
 policyTypes:
 - Ingress

apiVersion: networking.k8s.io/v1

OpenShift Container Platform 4.12 Networking

216

20.1.2. Optimizations for network policy with OpenShift SDN

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

It is inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need
to be isolated.
NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

20.1.3. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

For network policies with the same spec.podSelector spec, it is more efficient to use one
network policy with multiple ingress or egress rules, than multiple network policies with subsets
of ingress or egress rules.

Every ingress or egress rule based on the podSelector or namespaceSelector spec
generates the number of OVS flows proportional to number of pods selected by network
policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use
the podSelector or namespaceSelector spec that can select as many pods as you need in one
rule, instead of creating individual rules for every pod.
For example, the following policy contains two rules:

kind: NetworkPolicy
metadata:
 name: allow-from-hostnetwork
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/host-network: ""
 podSelector: {}
 policyTypes:
 - Ingress

apiVersion: networking.k8s.io/v1

CHAPTER 20. NETWORK POLICY

217

The following policy expresses those same two rules as one:

The same guideline applies to the spec.podSelector spec. If you have the same ingress or
egress rules for different network policies, it might be more efficient to create one network
policy with a common spec.podSelector spec. For example, the following two policies have
different rules:

kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend
 - from:
 - podSelector:
 matchLabels:
 role: backend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [frontend, backend]}

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy1
spec:
 podSelector:
 matchLabels:
 role: db
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy2
spec:
 podSelector:
 matchLabels:

OpenShift Container Platform 4.12 Networking

218

The following network policy expresses those same two rules as one:

You can apply this optimization when only multiple selectors are expressed as one. In cases
where selectors are based on different labels, it may not be possible to apply this optimization. In
those cases, consider applying some new labels for network policy optimization specifically.

20.1.4. Next steps

Creating a network policy

Optional: Defining a default network policy

20.1.5. Additional resources

Projects and namespaces

Configuring multitenant network policy

NetworkPolicy API

20.2. CREATING A NETWORK POLICY

As a user with the admin role, you can create a network policy for a namespace.

20.2.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

 role: client
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: policy3
spec:
 podSelector:
 matchExpressions:
 - {key: role, operator: In, values: [db, client]}
 ingress:
 - from:
 - podSelector:
 matchLabels:
 role: frontend

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:

CHAPTER 20. NETWORK POLICY

219

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#networkpolicy-networking-k8s-io-v1

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

20.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ touch <policy_name>.yaml

OpenShift Container Platform 4.12 Networking

220

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

Allow ingress from all pods in the same namespace

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

2. To create the network policy object, enter the following command:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-traffic-pod
spec:
 podSelector:
 matchLabels:
 pod: pod-a
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: namespace-y

$ oc apply -f <policy_name>.yaml -n <namespace>

CHAPTER 20. NETWORK POLICY

221

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

20.2.3. Creating a default deny all network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the
configuration of other deployed network policies. This procedure enforces a default deny-by-default
policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

networkpolicy.networking.k8s.io/deny-by-default created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
 namespace: default 1

OpenShift Container Platform 4.12 Networking

222

1

2

3

namespace: default deploys this policy to the default namespace.

podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to
all pods in the default namespace.

There are no ingress rules specified. This causes incoming traffic to be dropped to all
pods.

2. Apply the policy by entering the following command:

Example output

20.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

spec:
 podSelector: {} 2
 ingress: [] 3

$ oc apply -f deny-by-default.yaml

networkpolicy.networking.k8s.io/deny-by-default created

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1

CHAPTER 20. NETWORK POLICY

223

2. Apply the policy by entering the following command:

Example output

This policy allows traffic from all resources, including external traffic as illustrated in the following
diagram:

20.2.5. Creating a network policy allowing traffic to an application from all
namespaces

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a
particular application.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift

metadata:
 name: web-allow-external
 namespace: default
spec:
 policyTypes:
 - Ingress
 podSelector:
 matchLabels:
 app: web
 ingress:
 - {}

$ oc apply -f web-allow-external.yaml

networkpolicy.networking.k8s.io/web-allow-external created

OpenShift Container Platform 4.12 Networking

224

1

2

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

Applies the policy only to app:web pods in default namespace.

Selects all pods in all namespaces.

NOTE

By default, if you omit specifying a namespaceSelector it does not select any
namespaces, which means the policy allows traffic only from the namespace the
network policy is deployed to.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-all-namespaces
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector: {} 2

$ oc apply -f web-allow-all-namespaces.yaml

networkpolicy.networking.k8s.io/web-allow-all-namespaces created

CHAPTER 20. NETWORK POLICY

225

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

3. Run the following command in the shell and observe that the request is allowed:

Expected output

20.2.6. Creating a network policy allowing traffic to an application from a
namespace

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a
particular namespace. You might want to do this to:

Restrict traffic to a production database only to namespaces where production workloads are
deployed.

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

OpenShift Container Platform 4.12 Networking

226

1

2

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

Applies the policy only to app:web pods in the default namespace.

Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-prod
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production 2

$ oc apply -f web-allow-prod.yaml

networkpolicy.networking.k8s.io/web-allow-prod created

CHAPTER 20. NETWORK POLICY

227

2. Run the following command to create the prod namespace:

3. Run the following command to label the prod namespace:

4. Run the following command to create the dev namespace:

5. Run the following command to label the dev namespace:

6. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

7. Run the following command in the shell and observe that the request is blocked:

Expected output

8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

9. Run the following command in the shell and observe that the request is allowed:

Expected output

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc create namespace dev

$ oc label namespace/dev purpose=testing

$ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

wget: download timed out

$ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>

OpenShift Container Platform 4.12 Networking

228

1

2

3

20.2.7. Additional resources

Accessing the web console

Logging for egress firewall and network policy rules

20.3. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

20.3.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

CHAPTER 20. NETWORK POLICY

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/web_console/#web-console

4 A list of one or more destination ports on which to accept traffic.

20.3.2. Viewing network policies using the CLI

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

Output for oc describe command

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name: allow-same-namespace
Namespace: ns1
Created on: 2021-05-24 22:28:56 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:

OpenShift Container Platform 4.12 Networking

230

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

20.4. EDITING A NETWORK POLICY

As a user with the admin role, you can edit an existing network policy for a namespace.

20.4.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

If you saved the network policy definition in a file, edit the file and make any necessary

 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 PodSelector: <none>
 Not affecting egress traffic
 Policy Types: Ingress

$ oc get networkpolicy

CHAPTER 20. NETWORK POLICY

231

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the network policy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

20.4.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-27107 1

OpenShift Container Platform 4.12 Networking

232

1

2

3

4

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

20.4.3. Additional resources

Creating a network policy

20.5. DELETING A NETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

20.5.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

CHAPTER 20. NETWORK POLICY

233

To delete a network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

20.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS

As a cluster administrator, you can modify the new project template to automatically include network
policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

20.6.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.
Using the web console:

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

OpenShift Container Platform 4.12 Networking

234

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

20.6.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default CNI network provider that supports NetworkPolicy objects, such as
the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default
for OpenShift SDN.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestTemplate:
 name: <template_name>
...

$ oc edit template <project_template> -n openshift-config

CHAPTER 20. NETWORK POLICY

235

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-kube-apiserver-operator
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: openshift-kube-apiserver-operator
 podSelector:
 matchLabels:
 app: kube-apiserver-operator
 policyTypes:
 - Ingress
...

$ oc new-project <project> 1

OpenShift Container Platform 4.12 Networking

236

1 Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

20.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

If you are using the OpenShift SDN network plugin, configuring network policies as
described in this section provides network isolation similar to multitenant mode but with
network policy mode set.

20.7.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 policy-group.network.openshift.io/ingress: ""
 podSelector: {}

CHAPTER 20. NETWORK POLICY

237

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

c. A policy named allow-same-namespace:

d. A policy named allow-from-kube-apiserver-operator:

 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-kube-apiserver-operator
spec:
 ingress:
 - from:
 - namespaceSelector:

OpenShift Container Platform 4.12 Networking

238

For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

20.7.2. Next steps

Defining a default network policy

20.7.3. Additional resources

 matchLabels:
 kubernetes.io/metadata.name: openshift-kube-apiserver-operator
 podSelector:
 matchLabels:
 app: kube-apiserver-operator
 policyTypes:
 - Ingress
EOF

$ oc describe networkpolicy

Name: allow-from-openshift-ingress
Namespace: example1
Created on: 2020-06-09 00:28:17 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: ingress
 Not affecting egress traffic
 Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: example1
Created on: 2020-06-09 00:29:57 -0400 EDT
Labels: <none>
Annotations: <none>
Spec:
 PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
 Allowing ingress traffic:
 To Port: <any> (traffic allowed to all ports)
 From:
 NamespaceSelector: network.openshift.io/policy-group: monitoring
 Not affecting egress traffic
 Policy Types: Ingress

CHAPTER 20. NETWORK POLICY

239

https://access.redhat.com/solutions/6964520

OpenShift SDN network isolation modes

OpenShift Container Platform 4.12 Networking

240

CHAPTER 21. CIDR RANGE DEFINITIONS
You must specify non-overlapping ranges for the following CIDR ranges.

NOTE

Machine CIDR ranges cannot be changed after creating your cluster.

IMPORTANT

OVN-Kubernetes, the default network provider in OpenShift Container Platform 4.11 and
later, uses the 100.64.0.0/16 IP address range internally. If your cluster uses OVN-
Kubernetes, do not include the 100.64.0.0/16 IP address range in any other CIDR
definitions in your cluster.

21.1. MACHINE CIDR

In the Machine CIDR field, you must specify the IP address range for machines or cluster nodes.

The default is 10.0.0.0/16. This range must not conflict with any connected networks.

21.2. SERVICE CIDR

In the Service CIDR field, you must specify the IP address range for services. The range must be large
enough to accommodate your workload. The address block must not overlap with any external service
accessed from within the cluster. The default is 172.30.0.0/16.

21.3. POD CIDR

In the pod CIDR field, you must specify the IP address range for pods.

The pod CIDR is the same as the clusterNetwork CIDR and the cluster CIDR. The range must be large
enough to accommodate your workload. The address block must not overlap with any external service
accessed from within the cluster. The default is 10.128.0.0/14. You can expand the range after cluster
installation.

Additional resources

Cluster Network Operator Configuration

21.4. HOST PREFIX

In the Host Prefix field, you must specify the subnet prefix length assigned to pods scheduled to
individual machines. The host prefix determines the pod IP address pool for each machine.

For example, if the host prefix is set to /23, each machine is assigned a /23 subnet from the pod CIDR
address range. The default is /23, allowing 510 cluster nodes, and 510 pod IP addresses per node.

CHAPTER 21. CIDR RANGE DEFINITIONS

241

CHAPTER 22. AWS LOAD BALANCER OPERATOR

22.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the
AWSLoadBalancerController resource.

These release notes track the development of the AWS Load Balancer Operator in OpenShift Container
Platform.

For an overview of the AWS Load Balancer Operator, see AWS Load Balancer Operator in OpenShift
Container Platform.

NOTE

AWS Load Balancer Operator currently does not support AWS GovCloud.

22.1.1. AWS Load Balancer Operator 1.0.0

The AWS Load Balancer Operator is now generally available with this release. The AWS Load Balancer
Operator version 1.0.0 supports the AWS Load Balancer Controller version 2.4.4.

The following advisory is available for the AWS Load Balancer Operator version 1.0.0:

RHEA-2023:1954 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

22.1.1.1. Notable changes

This release uses the new v1 API version.

22.1.1.2. Bug fixes

Previously, the controller provisioned by the AWS Load Balancer Operator did not properly use
the configuration for the cluster-wide proxy. These settings are now applied appropriately to
the controller. (OCPBUGS-4052, OCPBUGS-5295)

22.1.2. Earlier versions

The two earliest versions of the AWS Load Balancer Operator are available as a Technology Preview.
These versions should not be used in a production cluster. For more information about the support
scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope .

The following advisory is available for the AWS Load Balancer Operator version 0.2.0:

RHEA-2022:9084 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

The following advisory is available for the AWS Load Balancer Operator version 0.0.1:

RHEA-2022:5780 Release of AWS Load Balancer Operator on OperatorHub Enhancement
Advisory Update

22.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER

OpenShift Container Platform 4.12 Networking

242

https://access.redhat.com/errata/RHEA-2023:1954
https://issues.redhat.com/browse/OCPBUGS-4052
https://issues.redhat.com/browse/OCPBUGS-5295
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHEA-2022:9084
https://access.redhat.com/errata/RHEA-2022:5780

22.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from OperatorHub by using OpenShift Container Platform web
console or CLI.

22.2.1. AWS Load Balancer Operator considerations

Review the following limitations before installing and using the AWS Load Balancer Operator:

The IP traffic mode only works on AWS Elastic Kubernetes Service (EKS). The AWS Load
Balancer Operator disables the IP traffic mode for the AWS Load Balancer Controller. As a
result of disabling the IP traffic mode, the AWS Load Balancer Controller cannot use the pod
readiness gate.

The AWS Load Balancer Operator adds command-line flags such as --disable-ingress-class-
annotation and --disable-ingress-group-name-annotation to the AWS Load Balancer
Controller. Therefore, the AWS Load Balancer Operator does not allow using the
kubernetes.io/ingress.class and alb.ingress.kubernetes.io/group.name annotations in the
Ingress resource.

22.2.2. AWS Load Balancer Operator

The AWS Load Balancer Operator can tag the public subnets if the kubernetes.io/role/elb tag is
missing. Also, the AWS Load Balancer Operator detects the following information from the underlying
AWS cloud:

The ID of the virtual private cloud (VPC) on which the cluster hosting the Operator is deployed
in.

Public and private subnets of the discovered VPC.

The AWS Load Balancer Operator supports the Kubernetes service resource of type LoadBalancer by
using Network Load Balancer (NLB) with the instance target type only.

Prerequisites

You must have the AWS credentials secret. The credentials are used to provide subnet tagging
and VPC discovery.

Procedure

1. You can deploy the AWS Load Balancer Operator on demand from OperatorHub, by creating a
Subscription object by running the following command:

Example output

2. Check if the status of an install plan is Complete by running the following command:

$ oc -n aws-load-balancer-operator get sub aws-load-balancer-operator --
template='{{.status.installplan.name}}{{"\n"}}'

install-zlfbt

CHAPTER 22. AWS LOAD BALANCER OPERATOR

243

Example output

3. View the status of the aws-load-balancer-operator-controller-manager deployment by
running the following command:

Example output

22.2.3. AWS Load Balancer Operator logs

You can view the AWS Load Balancer Operator logs by using the oc logs command.

Procedure

View the logs of the AWS Load Balancer Operator by running the following command:

22.3. UNDERSTANDING AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can
install the AWS Load Balancer Operator from the OperatorHub by using OpenShift Container Platform
web console or CLI.

22.3.1. Installing the AWS Load Balancer Operator

You can install the AWS Load Balancer Operator from the OperatorHub by using the OpenShift
Container Platform web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

Your cluster is configured with AWS as the platform type and cloud provider.

Procedure

1. Navigate to Operators → OperatorHub in the OpenShift Container Platform web console.

2. Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use

$ oc -n aws-load-balancer-operator get ip <install_plan_name> --template='{{.status.phase}}
{{"\n"}}'

Complete

$ oc get -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager

NAME READY UP-TO-DATE AVAILABLE AGE
aws-load-balancer-operator-controller-manager 1/1 1 1 23h

$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager -c manager

OpenShift Container Platform 4.12 Networking

244

2. Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use
the filter list to search for the AWS Load Balancer Operator from the list of Operators.

3. Select the aws-load-balancer-operator namespace.

4. Follow the instructions to prepare the Operator for installation.

5. On the AWS Load Balancer Operator page, click Install.

6. On the Install Operator page, select the following options:

a. Update the channel as stable-v1.

b. Installation mode as A specific namespace on the cluster.

c. Installed Namespace as aws-load-balancer-operator. If the aws-load-balancer-operator
namespace does not exist, it gets created during the Operator installation.

d. Select Update approval as Automatic or Manual. By default, the Update approval is set to
Automatic. If you select automatic updates, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention. If
you select manual updates, the OLM creates an update request. As a cluster administrator,
you must then manually approve that update request to update the Operator updated to
the new version.

e. Click Install.

Verification

Verify that the AWS Load Balancer Operator shows the Status as Succeeded on the Installed
Operators dashboard.

22.4. INSTALLING THE AWS LOAD BALANCER OPERATOR ON A
CLUSTER USING THE AWS SECURITY TOKEN SERVICE

You can install the AWS Load Balancer Operator on a cluster that uses STS.

The AWS Load Balancer Operator relies on the CredentialsRequest object to bootstrap the Operator
and the AWS Load Balancer Controller. The AWS Load Balancer Operator waits until the required
secrets are created and available. The Cloud Credential Operator does not provision the secrets
automatically in the STS cluster. You must set the credentials secrets manually by using the ccoctl
binary.

If you do not want to provision credential secret by using the Cloud Credential Operator, you can
configure the AWSLoadBalancerController instance on the STS cluster by specifying the credential
secret in the AWS load Balancer Controller custom resource (CR).

22.4.1. Bootstrapping AWS Load Balancer Operator on Security Token Service
cluster

Prerequisites

You must extract and prepare the ccoctl binary.

Procedure

CHAPTER 22. AWS LOAD BALANCER OPERATOR

245

1. Create the aws-load-balancer-operator namespace by running the following command:

2. Download the CredentialsRequest custom resource (CR) of the AWS Load Balancer Operator,
and create a directory to store it by running the following command:

3. Use the ccoctl tool to process CredentialsRequest objects of the AWS Load Balancer
Operator, by running the following command:

4. Apply the secrets generated in the manifests directory of your cluster by running the following
command:

5. Verify that the credentials secret of the AWS Load Balancer Operator is created by running the
following command:

Example output

22.4.2. Configuring AWS Load Balancer Operator on Security Token Service cluster
by using managed CredentialsRequest objects

Prerequisites

You must extract and prepare the ccoctl binary.

Procedure

1. The AWS Load Balancer Operator creates the CredentialsRequest object in the openshift-
cloud-credential-operator namespace for each AWSLoadBalancerController custom
resource (CR). You can extract and save the created CredentialsRequest object in a directory
by running the following command:

$ oc create namespace aws-load-balancer-operator

$ curl --create-dirs -o <path-to-credrequests-dir>/cr.yaml
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-
credentials-request.yaml

$ ccoctl aws create-iam-roles \
 --name <name> --region=<aws_region> \
 --credentials-requests-dir=<path-to-credrequests-dir> \
 --identity-provider-arn <oidc-arn>

$ ls manifests/*-credentials.yaml | xargs -I{} oc apply -f {}

$ oc -n aws-load-balancer-operator get secret aws-load-balancer-operator --
template='{{index .data "credentials"}}' | base64 -d

[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::999999999999:role/aws-load-balancer-operator-aws-load-balancer-
operator
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token

OpenShift Container Platform 4.12 Networking

246

1 The aws-load-balancer-controller-<cr-name> parameter specifies the credential request
name created by the AWS Load Balancer Operator. The cr-name specifies the name of
the AWS Load Balancer Controller instance.

2. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests directory
by running the following command:

3. Apply the secrets generated in manifests directory to your cluster, by running the following
command:

4. Verify that the aws-load-balancer-controller pod is created:

22.4.3. Configuring the AWS Load Balancer Operator on Security Token Service
cluster by using specific credentials

You can specify the credential secret by using the spec.credentials field in the AWS Load Balancer
Controller custom resource (CR). You can use the predefined CredentialsRequest object of the
controller to know which roles are required.

Prerequisites

You must extract and prepare the ccoctl binary.

Procedure

1. Download the CredentialsRequest custom resource (CR) of the AWS Load Balancer Controller,
and create a directory to store it by running the following command:

2. Use the ccoctl tool to process the CredentialsRequest object of the controller:

$ oc get credentialsrequest -n openshift-cloud-credential-operator \
 aws-load-balancer-controller-<cr-name> -o yaml > <path-to-credrequests-dir>/cr.yaml 1

$ ccoctl aws create-iam-roles \
 --name <name> --region=<aws_region> \
 --credentials-requests-dir=<path-to-credrequests-dir> \
 --identity-provider-arn <oidc-arn>

$ ls manifests/*-credentials.yaml | xargs -I{} oc apply -f {}

$ oc -n aws-load-balancer-operator get pods
NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-cluster-9b766d6-gg82c 1/1 Running 0 137m
aws-load-balancer-operator-controller-manager-b55ff68cc-85jzg 2/2 Running 0
3h26m

$ curl --create-dirs -o <path-to-credrequests-dir>/cr.yaml
https://raw.githubusercontent.com/openshift/aws-load-balancer-
operator/main/hack/controller/controller-credentials-request.yaml

$ ccoctl aws create-iam-roles \
 --name <name> --region=<aws_region> \

CHAPTER 22. AWS LOAD BALANCER OPERATOR

247

1

2

3

3. Apply the secrets to your cluster:

4. Verify the credentials secret has been created for use by the controller:

Example output

[default]
 sts_regional_endpoints = regional
 role_arn = arn:aws:iam::999999999999:role/aws-load-balancer-operator-aws-load-
balancer-controller
 web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token

5. Create the AWSLoadBalancerController resource YAML file, for example, sample-aws-lb-
manual-creds.yaml, as follows:

Defines the AWSLoadBalancerController resource.

Defines the AWS Load Balancer Controller instance name. This instance name gets added
as a suffix to all related resources.

Specifies the secret name containing AWS credentials that the controller uses.

22.4.4. Additional resources

Configuring the Cloud Credential Operator utility

22.5. CREATING AN INSTANCE OF THE AWS LOAD BALANCER
CONTROLLER

After installing the AWS Load Balancer Operator, you can create the AWS Load Balancer Controller.

22.5.1. Creating the AWS Load Balancer Controller

You can install only a single instance of the AWSLoadBalancerController object in a cluster. You can

 --credentials-requests-dir=<path-to-credrequests-dir> \
 --identity-provider-arn <oidc-arn>

$ ls manifests/*-credentials.yaml | xargs -I{} oc apply -f {}

$ oc -n aws-load-balancer-operator get secret aws-load-balancer-controller-manual-cluster --
template='{{index .data "credentials"}}' | base64 -d

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController 1
metadata:
 name: cluster 2
spec:
 credentials:
 name: <secret-name> 3

OpenShift Container Platform 4.12 Networking

248

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/authentication_and_authorization/#cco-ccoctl-configuring_cco-mode-sts

1

2

3

4

5

6

7

You can install only a single instance of the AWSLoadBalancerController object in a cluster. You can
create the AWS Load Balancer Controller by using CLI. The AWS Load Balancer Operator reconciles
only the cluster named resource.

Prerequisites

You have created the echoserver namespace.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController object:

Example sample-aws-lb.yaml file

Defines the AWSLoadBalancerController object.

Defines the AWS Load Balancer Controller name. This instance name gets added as a
suffix to all related resources.

Configures the subnet tagging method for the AWS Load Balancer Controller. The
following values are valid:

Auto: The AWS Load Balancer Operator determines the subnets that belong to the
cluster and tags them appropriately. The Operator cannot determine the role correctly
if the internal subnet tags are not present on internal subnet.

Manual: You manually tag the subnets that belong to the cluster with the appropriate
role tags. Use this option if you installed your cluster on user-provided infrastructure.

Defines the tags used by the AWS Load Balancer Controller when it provisions AWS
resources.

Defines the ingress class name. The default value is alb.

Specifies the number of replicas of the AWS Load Balancer Controller.

Specifies annotations as an add-on for the AWS Load Balancer Controller.

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController 1
metadata:
 name: cluster 2
spec:
 subnetTagging: Auto 3
 additionalResourceTags: 4
 - key: example.org/security-scope
 value: staging
 ingressClass: alb 5
 config:
 replicas: 2 6
 enabledAddons: 7
 - AWSWAFv2 8

CHAPTER 22. AWS LOAD BALANCER OPERATOR

249

8

1

2

3

Enables the alb.ingress.kubernetes.io/wafv2-acl-arn annotation.

2. Create the AWSLoadBalancerController object by running the following command:

3. Create a YAML file that defines the Deployment resource:

Example sample-aws-lb.yaml file

Defines the deployment resource.

Specifies the deployment name.

Specifies the number of replicas of the deployment.

4. Create a YAML file that defines the Service resource:

Example service-albo.yaml file:

$ oc create -f sample-aws-lb.yaml

apiVersion: apps/v1
kind: Deployment 1
metadata:
 name: <echoserver> 2
 namespace: echoserver
spec:
 selector:
 matchLabels:
 app: echoserver
 replicas: 3 3
 template:
 metadata:
 labels:
 app: echoserver
 spec:
 containers:
 - image: openshift/origin-node
 command:
 - "/bin/socat"
 args:
 - TCP4-LISTEN:8080,reuseaddr,fork
 - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"'
 imagePullPolicy: Always
 name: echoserver
 ports:
 - containerPort: 8080

apiVersion: v1
kind: Service 1
metadata:
 name: <echoserver> 2
 namespace: echoserver

OpenShift Container Platform 4.12 Networking

250

1

2

1

2

Defines the service resource.

Specifies the service name.

5. Create a YAML file that defines the Ingress resource:

Example ingress-albo.yaml file:

Specify a name for the Ingress resource.

Specifies the service name.

Verification

Save the status of the Ingress resource in the HOST variable by running the following
command:

Verify the status of the Ingress resource by running the following command:

spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: NodePort
 selector:
 app: echoserver

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: <name> 1
 namespace: echoserver
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
 alb.ingress.kubernetes.io/target-type: instance
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: <echoserver> 2
 port:
 number: 80

$ HOST=$(oc get ingress -n echoserver echoserver --template='{{(index
.status.loadBalancer.ingress 0).hostname}}')

$ curl $HOST

CHAPTER 22. AWS LOAD BALANCER OPERATOR

251

1

2

3

22.6. SERVING MULTIPLE INGRESS RESOURCES THROUGH A SINGLE
AWS LOAD BALANCER

You can route the traffic to different services that are part of a single domain through a single AWS
Load Balancer. Each Ingress resource provides different endpoints of the domain.

22.6.1. Creating multiple ingress resources through a single AWS Load Balancer

You can route the traffic to multiple ingress resources through a single AWS Load Balancer by using the
CLI.

Prerequisites

You have an access to the OpenShift CLI (oc).

Procedure

1. Create an IngressClassParams resource YAML file, for example, sample-single-lb-
params.yaml, as follows:

Defines the API group and version of the IngressClassParams resource.

Specifies the IngressClassParams resource name.

Specifies the IngressGroup resource name. All of the Ingress resources of this class
belong to this IngressGroup.

2. Create the IngressClassParams resource by running the following command:

3. Create the IngressClass resource YAML file, for example, sample-single-lb-class.yaml, as
follows:

apiVersion: elbv2.k8s.aws/v1beta1 1
kind: IngressClassParams
metadata:
 name: single-lb-params 2
spec:
 group:
 name: single-lb 3

$ oc create -f sample-single-lb-params.yaml

apiVersion: networking.k8s.io/v1 1
kind: IngressClass
metadata:
 name: single-lb 2
spec:
 controller: ingress.k8s.aws/alb 3
 parameters:

OpenShift Container Platform 4.12 Networking

252

1

2

3

4

5

6

1

Defines the API group and version of the IngressClass resource.

Specifies the ingress class name.

Defines the controller name. The ingress.k8s.aws/alb value denotes that all ingress
resources of this class should be managed by the AWS Load Balancer Controller.

Defines the API group of the IngressClassParams resource.

Defines the resource type of the IngressClassParams resource.

Defines the IngressClassParams resource name.

4. Create the IngressClass resource by running the following command:

5. Create the AWSLoadBalancerController resource YAML file, for example, sample-single-
lb.yaml, as follows:

Defines the name of the IngressClass resource.

6. Create the AWSLoadBalancerController resource by running the following command:

7. Create the Ingress resource YAML file, for example, sample-multiple-ingress.yaml, as follows:

 apiGroup: elbv2.k8s.aws 4
 kind: IngressClassParams 5
 name: single-lb-params 6

$ oc create -f sample-single-lb-class.yaml

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 subnetTagging: Auto
 ingressClass: single-lb 1

$ oc create -f sample-single-lb.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-1 1
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing 2
 alb.ingress.kubernetes.io/group.order: "1" 3
 alb.ingress.kubernetes.io/target-type: instance 4
spec:
 ingressClassName: single-lb 5
 rules:
 - host: example.com 6

CHAPTER 22. AWS LOAD BALANCER OPERATOR

253

1 Specifies the ingress name.

 http:
 paths:
 - path: /blog 7
 pathType: Prefix
 backend:
 service:
 name: example-1 8
 port:
 number: 80 9

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-2
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
 alb.ingress.kubernetes.io/group.order: "2"
 alb.ingress.kubernetes.io/target-type: instance
spec:
 ingressClassName: single-lb
 rules:
 - host: example.com
 http:
 paths:
 - path: /store
 pathType: Prefix
 backend:
 service:
 name: example-2
 port:
 number: 80

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-3
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
 alb.ingress.kubernetes.io/group.order: "3"
 alb.ingress.kubernetes.io/target-type: instance
spec:
 ingressClassName: single-lb
 rules:
 - host: example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: example-3
 port:
 number: 80

OpenShift Container Platform 4.12 Networking

254

2

3

4

5

6

7

8

9

1

Indicates the load balancer to provision in the public subnet to access the internet.

Specifies the order in which the rules from the multiple ingress resources are matched
when the request is received at the load balancer.

Indicates that the load balancer will target OpenShift Container Platform nodes to reach
the service.

Specifies the ingress class that belongs to this ingress.

Defines a domain name used for request routing.

Defines the path that must route to the service.

Defines the service name that serves the endpoint configured in the Ingress resource.

Defines the port on the service that serves the endpoint.

8. Create the Ingress resource by running the following command:

22.7. ADDING TLS TERMINATION

You can add TLS termination on the AWS Load Balancer.

22.7.1. Adding TLS termination on the AWS Load Balancer

You can route the traffic for the domain to pods of a service and add TLS termination on the AWS Load
Balancer.

Prerequisites

You have an access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file that defines the AWSLoadBalancerController resource:

Example add-tls-termination-albc.yaml file

Defines the ingress class name. If the ingress class is not present in your cluster the AWS
Load Balancer Controller creates one. The AWS Load Balancer Controller reconciles the
additional ingress class values if spec.controller is set to ingress.k8s.aws/alb.

$ oc create -f sample-multiple-ingress.yaml

apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 subnetTagging: Auto
 ingressClass: tls-termination 1

CHAPTER 22. AWS LOAD BALANCER OPERATOR

255

1

2

3

4

5

6

2. Create a YAML file that defines the Ingress resource:

Example add-tls-termination-ingress.yaml file

Specifies the ingress name.

The controller provisions the load balancer for ingress in a public subnet to access the load
balancer over the internet.

The Amazon Resource Name (ARN) of the certificate that you attach to the load balancer.

Defines the ingress class name.

Defines the domain for traffic routing.

Defines the service for traffic routing.

22.8. CONFIGURING CLUSTER-WIDE PROXY

You can configure the cluster-wide proxy in the AWS Load Balancer Operator. After configuring the
cluster-wide proxy, Operator Lifecycle Manager (OLM) automatically updates all the deployments of
the Operators with the environment variables such as HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY. These variables are populated to the managed controller by the AWS Load Balancer
Operator.

22.8.1. Trusting the certificate authority of the cluster-wide proxy

1. Create the config map to contain the certificate authority (CA) bundle in the aws-load-
balancer-operator namespace by running the following command:

2. To inject the trusted CA bundle into the config map, add the config.openshift.io/inject-

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: <example> 1
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing 2
 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx 3
spec:
 ingressClassName: tls-termination 4
 rules:
 - host: <example.com> 5
 http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: <example-service> 6
 port:
 number: 80

$ oc -n aws-load-balancer-operator create configmap trusted-ca

OpenShift Container Platform 4.12 Networking

256

2. To inject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

3. Update the AWS Load Balancer Operator subscription to access the config map in the AWS
Load Balancer Operator deployment by running the following command:

4. After the AWS Load Balancer Operator is deployed, verify that the CA bundle is added to the
aws-load-balancer-operator-controller-manager deployment by running the following
command:

Example output

5. Optional: Restart deployment of the AWS Load Balancer Operator every time the config map
changes by running the following command:

22.8.2. Additional resources

Certificate injection using Operators

$ oc -n aws-load-balancer-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

$ oc -n aws-load-balancer-operator patch subscription aws-load-balancer-operator --
type='merge' -p '{"spec":{"config":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}],"volumes":
[{"name":"trusted-ca","configMap":{"name":"trusted-ca"}}],"volumeMounts":[{"name":"trusted-
ca","mountPath":"/etc/pki/tls/certs/albo-tls-ca-bundle.crt","subPath":"ca-bundle.crt"}]}}}'

$ oc -n aws-load-balancer-operator exec deploy/aws-load-balancer-operator-controller-
manager -c manager -- bash -c "ls -l /etc/pki/tls/certs/albo-tls-ca-bundle.crt; printenv
TRUSTED_CA_CONFIGMAP_NAME"

-rw-r--r--. 1 root 1000690000 5875 Jan 11 12:25 /etc/pki/tls/certs/albo-tls-ca-bundle.crt
trusted-ca

$ oc -n aws-load-balancer-operator rollout restart deployment/aws-load-balancer-operator-
controller-manager

CHAPTER 22. AWS LOAD BALANCER OPERATOR

257

CHAPTER 23. MULTIPLE NETWORKS

23.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plugins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plugin to allow chaining of CNI plugins. During cluster
installation, you configure your default pod network. The default network handles all ordinary network
traffic for the cluster. You can define an additional network based on the available CNI plugins and attach
one or more of these networks to your pods. You can define more than one additional network for your
cluster, depending on your needs. This gives you flexibility when you configure pods that deliver network
functionality, such as switching or routing.

23.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance

You can send traffic on two different planes to manage how much traffic is along each plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network. You can
view the interfaces for a pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, …, netN.

To attach additional network interfaces to a pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a NetworkAttachmentDefinition custom
resource (CR). A CNI configuration inside each of these CRs defines how that interface is created.

23.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plugins for creating additional networks in
your cluster:

bridge: Configure a bridge-based additional network to allow pods on the same host to
communicate with each other and the host.

host-device: Configure a host-device additional network to allow pods access to a physical
Ethernet network device on the host system.

ipvlan: Configure an ipvlan-based additional network to allow pods on a host to communicate
with other hosts and pods on those hosts, similar to a macvlan-based additional network. Unlike
a macvlan-based additional network, each pod shares the same MAC address as the parent
physical network interface.

macvlan: Configure a macvlan-based additional network to allow pods on a host to
communicate with other hosts and pods on those hosts by using a physical network interface.

OpenShift Container Platform 4.12 Networking

258

Each pod that is attached to a macvlan-based additional network is provided a unique MAC
address.

SR-IOV: Configure an SR-IOV based additional network to allow pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

23.2. CONFIGURING AN ADDITIONAL NETWORK

As a cluster administrator, you can configure an additional network for your cluster. The following
network types are supported:

Bridge

Host device

IPVLAN

MACVLAN

23.2.1. Approaches to managing an additional network

You can manage the life cycle of an additional network by two approaches. Each approach is mutually
exclusive and you can only use one approach for managing an additional network at a time. For either
approach, the additional network is managed by a Container Network Interface (CNI) plugin that you
configure.

For an additional network, IP addresses are provisioned through an IP Address Management (IPAM) CNI
plugin that you configure as part of the additional network. The IPAM plugin supports a variety of IP
address assignment approaches including DHCP and static assignment.

Modify the Cluster Network Operator (CNO) configuration: The CNO automatically creates and
manages the NetworkAttachmentDefinition object. In addition to managing the object
lifecycle the CNO ensures a DHCP is available for an additional network that uses a DHCP
assigned IP address.

Applying a YAML manifest: You can manage the additional network directly by creating an
NetworkAttachmentDefinition object. This approach allows for the chaining of CNI plugins.

NOTE

When deploying OpenShift Container Platform nodes with multiple network interfaces on
Red Hat OpenStack Platform (RHOSP) with OVN SDN, DNS configuration of the
secondary interface might take precedence over the DNS configuration of the primary
interface. In this case, remove the DNS nameservers for the subnet id that is attached to
the secondary interface:

23.2.2. Configuration for an additional network attachment

An additional network is configured by using the NetworkAttachmentDefinition API in the
k8s.cni.cncf.io API group.

IMPORTANT

$ openstack subnet set --dns-nameserver 0.0.0.0 <subnet_id>

CHAPTER 23. MULTIPLE NETWORKS

259

1

2

3

4

IMPORTANT

Do not store any sensitive information or a secret in the NetworkAttachmentDefinition
object because this information is accessible by the project administration user.

The configuration for the API is described in the following table:

Table 23.1. NetworkAttachmentDefinition API fields

Field Type Description

metadata.name string The name for the additional network.

metadata.namespace string The namespace that the object is associated with.

spec.config string The CNI plugin configuration in JSON format.

23.2.2.1. Configuration of an additional network through the Cluster Network Operator

The configuration for an additional network attachment is specified as part of the Cluster Network
Operator (CNO) configuration.

The following YAML describes the configuration parameters for managing an additional network with
the CNO:

Cluster Network Operator configuration

An array of one or more additional network configurations.

The name for the additional network attachment that you are creating. The name must be unique
within the specified namespace.

The namespace to create the network attachment in. If you do not specify a value, then the default
namespace is used.

A CNI plugin configuration in JSON format.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks: 1
 - name: <name> 2
 namespace: <namespace> 3
 rawCNIConfig: |- 4
 {
 ...
 }
 type: Raw

OpenShift Container Platform 4.12 Networking

260

1

2

23.2.2.2. Configuration of an additional network from a YAML manifest

The configuration for an additional network is specified from a YAML configuration file, such as in the
following example:

The name for the additional network attachment that you are creating.

A CNI plugin configuration in JSON format.

23.2.3. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

23.2.3.1. Configuration for a bridge additional network

The following object describes the configuration parameters for the bridge CNI plugin:

Table 23.2. Bridge CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: bridge.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

bridge string Optional: Specify the name of the virtual bridge to use. If the
bridge interface does not exist on the host, it is created. The
default value is cni0.

ipMasq boolean Optional: Set to true to enable IP masquerading for traffic that
leaves the virtual network. The source IP address for all traffic is
rewritten to the bridge’s IP address. If the bridge does not have
an IP address, this setting has no effect. The default value is
false.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: <name> 1
spec:
 config: |- 2
 {
 ...
 }

CHAPTER 23. MULTIPLE NETWORKS

261

isGateway boolean Optional: Set to true to assign an IP address to the bridge. The
default value is false.

isDefaultGatewa
y

boolean Optional: Set to true to configure the bridge as the default
gateway for the virtual network. The default value is false. If
isDefaultGateway is set to true, then isGateway is also set
to true automatically.

forceAddress boolean Optional: Set to true to allow assignment of a previously
assigned IP address to the virtual bridge. When set to false, if an
IPv4 address or an IPv6 address from overlapping subsets is
assigned to the virtual bridge, an error occurs. The default value
is false.

hairpinMode boolean Optional: Set to true to allow the virtual bridge to send an
Ethernet frame back through the virtual port it was received on.
This mode is also known as reflective relay. The default value is
false.

promiscMode boolean Optional: Set to true to enable promiscuous mode on the
bridge. The default value is false.

vlan string Optional: Specify a virtual LAN (VLAN) tag as an integer value.
By default, no VLAN tag is assigned.

preserveDefault
Vlan

string Optional: Indicates whether the default vlan must be preserved
on the veth end connected to the bridge. Defaults to true.

vlanTrunk list Optional: Assign a VLAN trunk tag. The default value is none.

mtu string Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

enabledad boolean Optional: Enables duplicate address detection for the container
side veth. The default value is false.

macspoofchk boolean Optional: Enables mac spoof check, limiting the traffic
originating from the container to the mac address of the
interface. The default value is false.

Field Type Description

NOTE

The VLAN parameter configures the VLAN tag on the host end of the veth and also
enables the vlan_filtering feature on the bridge interface.

NOTE

OpenShift Container Platform 4.12 Networking

262

NOTE

To configure uplink for a L2 network you need to allow the vlan on the uplink interface by
using the following command:

23.2.3.1.1. bridge configuration example

The following example configures an additional network named bridge-net:

23.2.3.2. Configuration for a host device additional network

NOTE

Specify your network device by setting only one of the following parameters:
device,hwaddr, kernelpath, or pciBusID.

The following object describes the configuration parameters for the host-device CNI plugin:

Table 23.3. Host device CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: host-device.

device string Optional: The name of the device, such as eth0.

hwaddr string Optional: The device hardware MAC address.

kernelpath string Optional: The Linux kernel device path, such as
/sys/devices/pci0000:00/0000:00:1f.6.

$ bridge vlan add vid VLAN_ID dev DEV

{
 "cniVersion": "0.3.1",
 "name": "bridge-net",
 "type": "bridge",
 "isGateway": true,
 "vlan": 2,
 "ipam": {
 "type": "dhcp"
 }
}

CHAPTER 23. MULTIPLE NETWORKS

263

pciBusID string Optional: The PCI address of the network device, such as
0000:00:1f.6.

Field Type Description

23.2.3.2.1. host-device configuration example

The following example configures an additional network named hostdev-net:

23.2.3.3. Configuration for an IPVLAN additional network

The following object describes the configuration parameters for the IPVLAN CNI plugin:

Table 23.4. IPVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: ipvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.
This is required unless the plugin is chained.

mode string Optional: The operating mode for the virtual network. The value
must be l2, l3, or l3s. The default value is l2.

master string Optional: The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

mtu integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

NOTE

{
 "cniVersion": "0.3.1",
 "name": "hostdev-net",
 "type": "host-device",
 "device": "eth1"
}

OpenShift Container Platform 4.12 Networking

264

NOTE

The ipvlan object does not allow virtual interfaces to communicate with the
master interface. Therefore the container will not be able to reach the host by
using the ipvlan interface. Be sure that the container joins a network that
provides connectivity to the host, such as a network supporting the Precision
Time Protocol (PTP).

A single master interface cannot simultaneously be configured to use both
macvlan and ipvlan.

For IP allocation schemes that cannot be interface agnostic, the ipvlan plugin
can be chained with an earlier plugin that handles this logic. If the master is
omitted, then the previous result must contain a single interface name for the
ipvlan plugin to enslave. If ipam is omitted, then the previous result is used to
configure the ipvlan interface.

23.2.3.3.1. ipvlan configuration example

The following example configures an additional network named ipvlan-net:

23.2.3.4. Configuration for a MACVLAN additional network

The following object describes the configuration parameters for the macvlan CNI plugin:

Table 23.5. MACVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: macvlan.

{
 "cniVersion": "0.3.1",
 "name": "ipvlan-net",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l3",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.10.10/24"
 }
]
 }
}

CHAPTER 23. MULTIPLE NETWORKS

265

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

mode string Optional: Configures traffic visibility on the virtual network.
Must be either bridge, passthru, private, or vepa. If a value is
not provided, the default value is bridge.

master string Optional: The host network interface to associate with the newly
created macvlan interface. If a value is not specified, then the
default route interface is used.

mtu string Optional: The maximum transmission unit (MTU) to the specified
value. The default value is automatically set by the kernel.

Field Type Description

NOTE

If you specify the master key for the plugin configuration, use a different physical
network interface than the one that is associated with your primary network plugin to
avoid possible conflicts.

23.2.3.4.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

23.2.4. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

23.2.4.1. Static IP address assignment configuration

{
 "cniVersion": "0.3.1",
 "name": "macvlan-net",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.12 Networking

266

The following table describes the configuration for static IP address assignment:

Table 23.6. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 23.7. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 23.8. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 23.9. ipam.dns object

Field Type Description

nameservers array An array of one or more IP addresses for to send DNS queries to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

CHAPTER 23. MULTIPLE NETWORKS

267

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Field Type Description

Static IP address assignment configuration example

23.2.4.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

OpenShift Container Platform 4.12 Networking

268

Table 23.10. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

23.2.4.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 23.11. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

23.2.4.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

CHAPTER 23. MULTIPLE NETWORKS

269

pods gets a unique IP address from the specified IP address range. It also handles IP address releases
when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

Example output

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: whereabouts-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "whereabouts-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "whereabouts"
 }
 }
 type: Raw

$ oc get all -n openshift-multus | grep whereabouts-reconciler

OpenShift Container Platform 4.12 Networking

270

23.2.5. Creating an additional network attachment with the Cluster Network
Operator

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition object automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition objects that the Cluster Network
Operator manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Optional: Create the namespace for the additional networks:

2. To edit the CNO configuration, enter the following command:

3. Modify the CR that you are creating by adding the configuration for the additional network that
you are creating, as in the following example CR.

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

$ oc create namespace <namespace_name>

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 # ...
 additionalNetworks:
 - name: tertiary-net
 namespace: namespace2
 type: Raw
 rawCNIConfig: |-
 {
 "cniVersion": "0.3.1",
 "name": "tertiary-net",
 "type": "ipvlan",

CHAPTER 23. MULTIPLE NETWORKS

271

4. Save your changes and quit the text editor to commit your changes.

Verification

Confirm that the CNO created the NetworkAttachmentDefinition object by running the
following command. There might be a delay before the CNO creates the object.

where:

<namespace>

Specifies the namespace for the network attachment that you added to the CNO
configuration.

Example output

23.2.6. Creating an additional network attachment by applying a YAML manifest

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file with your additional network configuration, such as in the following example:

 "master": "eth1",
 "mode": "l2",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "192.168.1.23/24"
 }
]
 }
 }

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
test-network-1 14m

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: next-net
spec:
 config: |-
 {
 "cniVersion": "0.3.1",
 "name": "work-network",

OpenShift Container Platform 4.12 Networking

272

2. To create the additional network, enter the following command:

where:

<file>

Specifies the name of the file contained the YAML manifest.

23.3. ABOUT VIRTUAL ROUTING AND FORWARDING

23.3.1. About virtual routing and forwarding

Virtual routing and forwarding (VRF) devices combined with IP rules provide the ability to create virtual
routing and forwarding domains. VRF reduces the number of permissions needed by CNF, and provides
increased visibility of the network topology of secondary networks. VRF is used to provide multi-tenancy
functionality, for example, where each tenant has its own unique routing tables and requires different
default gateways.

Processes can bind a socket to the VRF device. Packets through the binded socket use the routing table
associated with the VRF device. An important feature of VRF is that it impacts only OSI model layer 3
traffic and above so L2 tools, such as LLDP, are not affected. This allows higher priority IP rules such as
policy based routing to take precedence over the VRF device rules directing specific traffic.

23.3.1.1. Benefits of secondary networks for pods for telecommunications operators

In telecommunications use cases, each CNF can potentially be connected to multiple different networks
sharing the same address space. These secondary networks can potentially conflict with the cluster’s
main network CIDR. Using the CNI VRF plugin, network functions can be connected to different
customers' infrastructure using the same IP address, keeping different customers isolated. IP addresses
are overlapped with OpenShift Container Platform IP space. The CNI VRF plugin also reduces the
number of permissions needed by CNF and increases the visibility of network topologies of secondary
networks.

23.4. CONFIGURING MULTI-NETWORK POLICY

As a cluster administrator, you can configure multi-network for additional networks. You can specify
multi-network policy for SR-IOV and macvlan additional networks. Macvlan additional networks are fully
supported. Other types of additional networks, such as ipvlan, are not supported.

IMPORTANT

 "type": "host-device",
 "device": "eth1",
 "ipam": {
 "type": "dhcp"
 }
 }

$ oc apply -f <file>.yaml

CHAPTER 23. MULTIPLE NETWORKS

273

IMPORTANT

Support for configuring multi-network policies for SR-IOV additional networks is a
Technology Preview feature and is only supported with kernel network interface cards
(NICs). SR-IOV is not supported for Data Plane Development Kit (DPDK) applications.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

NOTE

Configured network policies are ignored in IPv6 networks.

23.4.1. Differences between multi-network policy and network policy

Although the MultiNetworkPolicy API implements the NetworkPolicy API, there are several important
differences:

You must use the MultiNetworkPolicy API:

You must use the multi-networkpolicy resource name when using the CLI to interact with
multi-network policies. For example, you can view a multi-network policy object with the oc get
multi-networkpolicy <name> command where <name> is the name of a multi-network policy.

You must specify an annotation with the name of the network attachment definition that
defines the macvlan or SR-IOV additional network:

where:

<network_name>

Specifies the name of a network attachment definition.

23.4.2. Enabling multi-network policy for the cluster

As a cluster administrator, you can enable multi-network policy support on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create the multinetwork-enable-patch.yaml file with the following YAML:

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>

OpenShift Container Platform 4.12 Networking

274

https://access.redhat.com/support/offerings/techpreview/

2. Configure the cluster to enable multi-network policy:

Example output

23.4.3. Working with multi-network policy

As a cluster administrator, you can create, edit, view, and delete multi-network policies.

23.4.3.1. Prerequisites

You have enabled multi-network policy support for your cluster.

23.4.3.2. Creating a multi-network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a multi-network policy.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the multi-network policy file name.

b. Define a multi-network policy in the file that you just created, such as in the following

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 useMultiNetworkPolicy: true

$ oc patch network.operator.openshift.io cluster --type=merge --patch-file=multinetwork-
enable-patch.yaml

network.operator.openshift.io/cluster patched

$ touch <policy_name>.yaml

CHAPTER 23. MULTIPLE NETWORKS

275

b. Define a multi-network policy in the file that you just created, such as in the following
examples:

Deny ingress from all pods in all namespaces

This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic
allowed by the configuration of other Network Policies.

where:

<network_name>

Specifies the name of a network attachment definition.

Allow ingress from all pods in the same namespace

where:

<network_name>

Specifies the name of a network attachment definition.

Allow ingress traffic to one pod from a particular namespace

This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: deny-by-default
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 ingress: []

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: allow-same-namespace
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: allow-traffic-pod
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:

OpenShift Container Platform 4.12 Networking

276

where:

<network_name>

Specifies the name of a network attachment definition.

Restrict traffic to a service

This policy when applied ensures every pod with both labels app=bookstore and role=api
can only be accessed by pods with label app=bookstore. In this example the application
could be a REST API server, marked with labels app=bookstore and role=api.

This example addresses the following use cases:

Restricting the traffic to a service to only the other microservices that need to use it.

Restricting the connections to a database to only permit the application using it.

where:

<network_name>

Specifies the name of a network attachment definition.

2. To create the multi-network policy object, enter the following command:

where:

 podSelector:
 matchLabels:
 pod: pod-a
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: namespace-y

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: api-allow
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 matchLabels:
 app: bookstore
 role: api
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: bookstore

$ oc apply -f <policy_name>.yaml -n <namespace>

CHAPTER 23. MULTIPLE NETWORKS

277

<policy_name>

Specifies the multi-network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

23.4.3.3. Editing a multi-network policy

You can edit a multi-network policy in a namespace.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

1. Optional: To list the multi-network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the multi-network policy object.

If you saved the multi-network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

multinetworkpolicy.k8s.cni.cncf.io/deny-by-default created

$ oc get multi-networkpolicy

$ oc apply -n <namespace> -f <policy_file>.yaml

OpenShift Container Platform 4.12 Networking

278

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the multi-network policy object directly, enter the following
command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the multi-network policy object is updated.

where:

<policy_name>

Specifies the name of the multi-network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

23.4.3.4. Viewing multi-network policies using the CLI

You can examine the multi-network policies in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

List multi-network policies in a namespace:

$ oc edit multi-networkpolicy <policy_name> -n <namespace>

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

CHAPTER 23. MULTIPLE NETWORKS

279

To view multi-network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific multi-network policy, enter the following command:

where:

<policy_name>

Specifies the name of the multi-network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

23.4.3.5. Deleting a multi-network policy using the CLI

You can delete a multi-network policy in a namespace.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

To delete a multi-network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the multi-network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

$ oc get multi-networkpolicy

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

$ oc delete multi-networkpolicy <policy_name> -n <namespace>

OpenShift Container Platform 4.12 Networking

280

1

2

3

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

23.4.3.6. Creating a default deny all multi-network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the
configuration of other deployed network policies. This procedure enforces a default deny-by-default
policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

namespace: default deploys this policy to the default namespace.

network_name: specifies the name of a network attachment definition.

podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to

multinetworkpolicy.k8s.cni.cncf.io/default-deny deleted

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: deny-by-default
 namespace: default 1
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name> 2
spec:
 podSelector: {} 3
 ingress: [] 4

CHAPTER 23. MULTIPLE NETWORKS

281

4 There are no ingress rules specified. This causes incoming traffic to be dropped to all
pods.

2. Apply the policy by entering the following command:

Example output

23.4.3.7. Creating a multi-network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from
external clients to a pod with the label app=web.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows external service from the public Internet directly
or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to
access the pod. Save the YAML in the web-allow-external.yaml file:

$ oc apply -f deny-by-default.yaml

multinetworkpolicy.k8s.cni.cncf.io/deny-by-default created

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: web-allow-external
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 policyTypes:
 - Ingress
 podSelector:

OpenShift Container Platform 4.12 Networking

282

2. Apply the policy by entering the following command:

Example output

This policy allows traffic from all resources, including external traffic as illustrated in the following
diagram:

23.4.3.8. Creating a multi-network policy allowing traffic to an application from all
namespaces

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a
particular application.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

 matchLabels:
 app: web
 ingress:
 - {}

$ oc apply -f web-allow-external.yaml

multinetworkpolicy.k8s.cni.cncf.io/web-allow-external created

CHAPTER 23. MULTIPLE NETWORKS

283

1

2

You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in all namespaces to a particular application.
Save the YAML in the web-allow-all-namespaces.yaml file:

Applies the policy only to app:web pods in default namespace.

Selects all pods in all namespaces.

NOTE

By default, if you omit specifying a namespaceSelector it does not select any
namespaces, which means the policy allows traffic only from the namespace the
network policy is deployed to.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to deploy an alpine image in the secondary namespace and to
start a shell:

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: web-allow-all-namespaces
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector: {} 2

$ oc apply -f web-allow-all-namespaces.yaml

multinetworkpolicy.k8s.cni.cncf.io/web-allow-all-namespaces created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

OpenShift Container Platform 4.12 Networking

284

3. Run the following command in the shell and observe that the request is allowed:

Expected output

23.4.3.9. Creating a multi-network policy allowing traffic to an application from a
namespace

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a
particular namespace. You might want to do this to:

Restrict traffic to a production database only to namespaces where production workloads are
deployed.

Enable monitoring tools deployed to a particular namespace to scrape metrics from the current
namespace.

Prerequisites

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift

$ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

CHAPTER 23. MULTIPLE NETWORKS

285

1

2

Your cluster uses a network plugin that supports NetworkPolicy objects, such as the OpenShift
SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift
SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

Applies the policy only to app:web pods in the default namespace.

Restricts traffic to only pods in namespaces that have the label purpose=production.

2. Apply the policy by entering the following command:

Example output

Verification

1. Start a web service in the default namespace by entering the following command:

2. Run the following command to create the prod namespace:

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
 name: web-allow-prod
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
 podSelector:
 matchLabels:
 app: web 1
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production 2

$ oc apply -f web-allow-prod.yaml

multinetworkpolicy.k8s.cni.cncf.io/web-allow-prod created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

OpenShift Container Platform 4.12 Networking

286

3. Run the following command to label the prod namespace:

4. Run the following command to create the dev namespace:

5. Run the following command to label the dev namespace:

6. Run the following command to deploy an alpine image in the dev namespace and to start a
shell:

7. Run the following command in the shell and observe that the request is blocked:

Expected output

8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

9. Run the following command in the shell and observe that the request is allowed:

Expected output

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc create namespace dev

$ oc label namespace/dev purpose=testing

$ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

wget: download timed out

$ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh

wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

CHAPTER 23. MULTIPLE NETWORKS

287

23.4.4. Additional resources

About network policy

Understanding multiple networks

Configuring a macvlan network

Configuring an SR-IOV network device

23.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

As a cluster user you can attach a pod to an additional network.

23.5.1. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

OpenShift Container Platform 4.12 Networking

288

1

1

2

3

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{

CHAPTER 23. MULTIPLE NETWORKS

289

1

1

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

23.5.1.1. Specifying pod-specific addressing and routing options

When attaching a pod to an additional network, you may want to specify further properties about that
network in a particular pod. This allows you to change some aspects of routing, as well as specify static
IP addresses and MAC addresses. To accomplish this, you can use the JSON formatted annotations.

Prerequisites

The pod must be in the same namespace as the additional network.

Install the OpenShift CLI (oc).

You must log in to the cluster.

Procedure

To add a pod to an additional network while specifying addressing and/or routing options, complete the
following steps:

1. Edit the Pod resource definition. If you are editing an existing Pod resource, run the following
command to edit its definition in the default editor. Replace <name> with the name of the Pod
resource to edit.

2. In the Pod resource definition, add the k8s.v1.cni.cncf.io/networks parameter to the pod
metadata mapping. The k8s.v1.cni.cncf.io/networks accepts a JSON string of a list of objects
that reference the name of NetworkAttachmentDefinition custom resource (CR) names in
addition to specifying additional properties.

Replace <network> with a JSON object as shown in the following examples. The single
quotes are required.

 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

$ oc edit pod <name>

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: '[<network>[,<network>,...]]' 1

OpenShift Container Platform 4.12 Networking

290

1

2

quotes are required.

3. In the following example the annotation specifies which network attachment will have the
default route, using the default-route parameter.

The name key is the name of the additional network to associate with the pod.

The default-route key specifies a value of a gateway for traffic to be routed over if no
other routing entry is present in the routing table. If more than one default-route key is
specified, this will cause the pod to fail to become active.

The default route will cause any traffic that is not specified in other routes to be routed to the gateway.

IMPORTANT

Setting the default route to an interface other than the default network interface for
OpenShift Container Platform may cause traffic that is anticipated for pod-to-pod
traffic to be routed over another interface.

To verify the routing properties of a pod, the oc command may be used to execute the ip command
within a pod.

NOTE

You may also reference the pod’s k8s.v1.cni.cncf.io/networks-status to see which
additional network has been assigned the default route, by the presence of the default-
route key in the JSON-formatted list of objects.

To set a static IP address or MAC address for a pod you can use the JSON formatted annotations. This
requires you create networks that specifically allow for this functionality. This can be specified in a
rawCNIConfig for the CNO.

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "net1"
 },
 {
 "name": "net2", 1
 "default-route": ["192.0.2.1"] 2
 }]'
spec:
 containers:
 - name: example-pod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

$ oc exec -it <pod_name> -- ip route

CHAPTER 23. MULTIPLE NETWORKS

291

1

2

3

1

2

3

1. Edit the CNO CR by running the following command:

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plugin configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for utilizing static MAC address and IP
address using the macvlan CNI plugin:

macvlan CNI plugin JSON configuration object using static IP and MAC address

Specifies the name for the additional network attachment to create. The name must be unique
within the specified namespace.

Specifies an array of CNI plugin configurations. The first object specifies a macvlan plugin
configuration and the second object specifies a tuning plugin configuration.

Specifies that a request is made to enable the static IP address functionality of the CNI plugin

$ oc edit networks.operator.openshift.io cluster

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

{
 "cniVersion": "0.3.1",
 "name": "<name>", 1
 "plugins": [{ 2
 "type": "macvlan",
 "capabilities": { "ips": true }, 3
 "master": "eth0", 4
 "mode": "bridge",
 "ipam": {
 "type": "static"
 }
 }, {
 "capabilities": { "mac": true }, 5
 "type": "tuning"
 }]
}

OpenShift Container Platform 4.12 Networking

292

4

5

1

2

3

Specifies that a request is made to enable the static IP address functionality of the CNI plugin
runtime configuration capabilities.

Specifies the interface that the macvlan plugin uses.

Specifies that a request is made to enable the static MAC address functionality of a CNI plugin.

The above network attachment can be referenced in a JSON formatted annotation, along with keys to
specify which static IP and MAC address will be assigned to a given pod.

Edit the pod with:

macvlan CNI plugin JSON configuration object using static IP and MAC address

Use the <name> as provided when creating the rawCNIConfig above.

Provide an IP address including the subnet mask.

Provide the MAC address.

NOTE

Static IP addresses and MAC addresses do not have to be used at the same time, you
may use them individually, or together.

To verify the IP address and MAC properties of a pod with additional networks, use the oc command to
execute the ip command within a pod.

23.6. REMOVING A POD FROM AN ADDITIONAL NETWORK

As a cluster user you can remove a pod from an additional network.

23.6.1. Removing a pod from an additional network

$ oc edit pod <name>

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "<name>", 1
 "ips": ["192.0.2.205/24"], 2
 "mac": "CA:FE:C0:FF:EE:00" 3
 }
]'

$ oc exec -it <pod_name> -- ip a

CHAPTER 23. MULTIPLE NETWORKS

293

You can remove a pod from an additional network only by deleting the pod.

Prerequisites

An additional network is attached to the pod.

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

To delete the pod, enter the following command:

<name> is the name of the pod.

<namespace> is the namespace that contains the pod.

23.7. EDITING AN ADDITIONAL NETWORK

As a cluster administrator you can modify the configuration for an existing additional network.

23.7.1. Modifying an additional network attachment definition

As a cluster administrator, you can make changes to an existing additional network. Any existing pods
attached to the additional network will not be updated.

Prerequisites

You have configured an additional network for your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To edit an additional network for your cluster, complete the following steps:

1. Run the following command to edit the Cluster Network Operator (CNO) CR in your default text
editor:

2. In the additionalNetworks collection, update the additional network with your changes.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO updated the NetworkAttachmentDefinition object by running
the following command. Replace <network-name> with the name of the additional network to
display. There might be a delay before the CNO updates the NetworkAttachmentDefinition
object to reflect your changes.

$ oc delete pod <name> -n <namespace>

$ oc edit networks.operator.openshift.io cluster

OpenShift Container Platform 4.12 Networking

294

1

For example, the following console output displays a NetworkAttachmentDefinition object that
is named net1:

23.8. REMOVING AN ADDITIONAL NETWORK

As a cluster administrator you can remove an additional network attachment.

23.8.1. Removing an additional network attachment definition

As a cluster administrator, you can remove an additional network from your OpenShift Container
Platform cluster. The additional network is not removed from any pods it is attached to.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To remove an additional network from your cluster, complete the following steps:

1. Edit the Cluster Network Operator (CNO) in your default text editor by running the following
command:

2. Modify the CR by removing the configuration from the additionalNetworks collection for the
network attachment definition you are removing.

If you are removing the configuration mapping for the only additional network attachment
definition in the additionalNetworks collection, you must specify an empty collection.

3. Save your changes and quit the text editor to commit your changes.

$ oc get network-attachment-definitions <network-name> -o yaml

$ oc get network-attachment-definitions net1 -o go-template='{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan",
"master": "ens5",
"mode": "bridge",
"ipam": {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal","search":["us-west-
2.compute.internal"]}} }

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: [] 1

CHAPTER 23. MULTIPLE NETWORKS

295

4. Optional: Confirm that the additional network CR was deleted by running the following
command:

23.9. ASSIGNING A SECONDARY NETWORK TO A VRF

As a cluster administrator, you can configure an additional network for a virtual routing and forwarding
(VRF) domain by using the CNI VRF plugin. The virtual network that this plugin creates is associated with
the physical interface that you specify.

Using a secondary network with a VRF instance has the following advantages:

Workload isolation

Isolate workload traffic by configuring a VRF instance for the additional network.

Improved security

Enable improved security through isolated network paths in the VRF domain.

Multi-tenancy support

Support multi-tenancy through network segmentation with a unique routing table in the VRF domain
for each tenant.

NOTE

Applications that use VRFs must bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. The SO_BINDTODEVICE option binds the
socket to the device that is specified in the passed interface name, for example, eth1. To
use the SO_BINDTODEVICE option, the application must have CAP_NET_RAW
capabilities.

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

Additional resources

About virtual routing and forwarding

23.9.1. Creating an additional network attachment with the CNI VRF plugin

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition custom resource
(CR) automatically.

NOTE

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

To create an additional network attachment with the CNI VRF plugin, perform the following procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

$ oc get network-attachment-definition --all-namespaces

OpenShift Container Platform 4.12 Networking

296

1

2

3

4

Log in to the OpenShift cluster as a user with cluster-admin privileges.

Procedure

1. Create the Network custom resource (CR) for the additional network attachment and insert the
rawCNIConfig configuration for the additional network, as in the following example CR. Save
the YAML as the file additional-network-attachment.yaml.

plugins must be a list. The first item in the list must be the secondary network
underpinning the VRF network. The second item in the list is the VRF plugin configuration.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

Optional. table is the routing table ID. By default, the tableid parameter is used. If it is not
specified, the CNI assigns a free routing table ID to the VRF.

NOTE

VRF functions correctly only when the resource is of type netdevice.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: test-network-1
 namespace: additional-network-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "macvlan-vrf",
 "plugins": [1
 {
 "type": "macvlan",
 "master": "eth1",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.23/24"
 }
]
 }
 },
 {
 "type": "vrf", 2
 "vrfname": "vrf-1", 3
 "table": 1001 4
 }]
 }'

CHAPTER 23. MULTIPLE NETWORKS

297

1

2. Create the Network resource:

3. Confirm that the CNO created the NetworkAttachmentDefinition CR by running the following
command. Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-network-1.

Example output

NOTE

There might be a delay before the CNO creates the CR.

Verification

1. Create a pod and assign it to the additional network with the VRF instance:

a. Create a YAML file that defines the Pod resource:

Example pod-additional-net.yaml file

Specify the name of the additional network with the VRF instance.

b. Create the Pod resource by running the following command:

Example output

$ oc create -f additional-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
additional-network-1 14m

apiVersion: v1
kind: Pod
metadata:
 name: pod-additional-net
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "test-network-1" 1
 }
]'
spec:
 containers:
 - name: example-pod-1
 command: ["/bin/bash", "-c", "sleep 9000000"]
 image: centos:8

$ oc create -f pod-additional-net.yaml

OpenShift Container Platform 4.12 Networking

298

2. Verify that the pod network attachment is connected to the VRF additional network. Start a
remote session with the pod and run the following command:

Example output

3. Confirm that the VRF interface is the controller for the additional interface:

Example output

pod/test-pod created

$ ip vrf show

Name Table

vrf-1 1001

$ ip link

5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode

CHAPTER 23. MULTIPLE NETWORKS

299

CHAPTER 24. HARDWARE NETWORKS

24.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE
NETWORKS

The Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCI device
assignment that can share a single device with multiple pods.

SR-IOV can segment a compliant network device, recognized on the host node as a physical function
(PF), into multiple virtual functions (VFs). The VF is used like any other network device. The SR-IOV
network device driver for the device determines how the VF is exposed in the container:

netdevice driver: A regular kernel network device in the netns of the container

vfio-pci driver: A character device mounted in the container

You can use SR-IOV network devices with additional networks on your OpenShift Container Platform
cluster installed on bare metal or Red Hat OpenStack Platform (RHOSP) infrastructure for applications
that require high bandwidth or low latency.

You can configure multi-network policies for SR-IOV networks. The support for this is technology
preview and SR-IOV additional networks are only supported with kernel NICs. They are not supported
for Data Plane Development Kit (DPDK) applications.

NOTE

Creating multi-network policies on SR-IOV networks might not deliver the same
performance to applications compared to SR-IOV networks without a multi-network
policy configured.

IMPORTANT

Multi-network policies for SR-IOV network is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can enable SR-IOV on a node by using the following command:

24.1.1. Components that manage SR-IOV network devices

The SR-IOV Network Operator creates and manages the components of the SR-IOV stack. It performs
the following functions:

Orchestrates discovery and management of SR-IOV network devices

Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container

$ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

OpenShift Container Platform 4.12 Networking

300

https://access.redhat.com/support/offerings/techpreview/

Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container
Network Interface (CNI)

Creates and updates the configuration of the SR-IOV network device plugin

Creates node specific SriovNetworkNodeState custom resources

Updates the spec.interfaces field in each SriovNetworkNodeState custom resource

The Operator provisions the following components:

SR-IOV network configuration daemon

A daemon set that is deployed on worker nodes when the SR-IOV Network Operator starts. The
daemon is responsible for discovering and initializing SR-IOV network devices in the cluster.

SR-IOV Network Operator webhook

A dynamic admission controller webhook that validates the Operator custom resource and sets
appropriate default values for unset fields.

SR-IOV Network resources injector

A dynamic admission controller webhook that provides functionality for patching Kubernetes pod
specifications with requests and limits for custom network resources such as SR-IOV VFs. The SR-
IOV network resources injector adds the resource field to only the first container in a pod
automatically.

SR-IOV network device plugin

A device plugin that discovers, advertises, and allocates SR-IOV network virtual function (VF)
resources. Device plugins are used in Kubernetes to enable the use of limited resources, typically in
physical devices. Device plugins give the Kubernetes scheduler awareness of resource availability, so
that the scheduler can schedule pods on nodes with sufficient resources.

SR-IOV CNI plugin

A CNI plugin that attaches VF interfaces allocated from the SR-IOV network device plugin directly
into a pod.

SR-IOV InfiniBand CNI plugin

A CNI plugin that attaches InfiniBand (IB) VF interfaces allocated from the SR-IOV network device
plugin directly into a pod.

NOTE

The SR-IOV Network resources injector and SR-IOV Network Operator webhook are
enabled by default and can be disabled by editing the default SriovOperatorConfig CR.
Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices.

24.1.1.1. Supported platforms

The SR-IOV Network Operator is supported on the following platforms:

Bare metal

Red Hat OpenStack Platform (RHOSP)

24.1.1.2. Supported devices

CHAPTER 24. HARDWARE NETWORKS

301

OpenShift Container Platform supports the following network interface controllers:

Table 24.1. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Broadcom BCM57414 14e4 16d7

Broadcom BCM57508 14e4 1750

Broadcom BCM57504 14e4 1751

Intel X710 8086 1572

Intel XL710 8086 1583

Intel X710 Base T 8086 15ff

Intel XXV710 8086 158b

Intel E810-CQDA2 8086 1592

Intel E810-2CQDA2 8086 1592

Intel E810-XXVDA2 8086 159b

Intel E810-XXVDA4 8086 1593

Mellanox MT27700 Family [ConnectX‑4] 15b3 1013

Mellanox MT27710 Family [ConnectX‑4 Lx] 15b3 1015

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28880 Family [ConnectX‑5 Ex] 15b3 1019

Mellanox MT28908 Family [ConnectX‑6] 15b3 101b

Mellanox MT2892 Family [ConnectX‑6 Dx] 15b3 101d

Mellanox MT2894 Family [ConnectX‑6 Lx] 15b3 101f

Mellanox MT42822 BlueField‑2 in ConnectX‑6 NIC
mode

15b3 a2d6

Pensando [1] DSC-25 dual-port 25G distributed
services card for ionic driver

0x1dd8 0x1002

OpenShift Container Platform 4.12 Networking

302

Pensando [1] DSC-100 dual-port 100G distributed
services card for ionic driver

0x1dd8 0x1003

Silicom STS Family 8086 1591

Manufacturer Model Vendor ID Device ID

1. OpenShift SR-IOV is supported, but you must set a static, Virtual Function (VF) media access
control (MAC) address using the SR-IOV CNI config file when using SR-IOV.

NOTE

For the most up-to-date list of supported cards and compatible OpenShift Container
Platform versions available, see Openshift Single Root I/O Virtualization (SR-IOV) and
PTP hardware networks Support Matrix.

24.1.1.3. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CR is assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

IMPORTANT

Do not modify a SriovNetworkNodeState object. The Operator creates and manages
these resources automatically.

24.1.1.3.1. Example SriovNetworkNodeState object

The following YAML is an example of a SriovNetworkNodeState object created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
 name: node-25 1
 namespace: openshift-sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
spec:
 dpConfigVersion: "39824"
status:
 interfaces: 2

CHAPTER 24. HARDWARE NETWORKS

303

https://access.redhat.com/articles/6954499

1

2

The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

24.1.1.4. Example use of a virtual function in a pod

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)
application in a pod with SR-IOV VF attached.

This example shows a pod using a virtual function (VF) in RDMA mode:

Pod spec that uses RDMA mode

 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f0
 pciAddress: "0000:18:00.0"
 totalvfs: 8
 vendor: 15b3
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f1
 pciAddress: "0000:18:00.1"
 totalvfs: 8
 vendor: 15b3
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f0
 pciAddress: 0000:81:00.0
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f1
 pciAddress: 0000:81:00.1
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens803f0
 pciAddress: 0000:86:00.0
 totalvfs: 64
 vendor: "8086"
 syncStatus: Succeeded

apiVersion: v1
kind: Pod
metadata:

OpenShift Container Platform 4.12 Networking

304

The following example shows a pod with a VF in DPDK mode:

Pod spec that uses DPDK mode

24.1.1.5. DPDK library for use with container applications

An optional library, app-netutil, provides several API methods for gathering network information about a
pod from within a container running within that pod.

 name: rdma-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-rdma-mlnx
spec:
 containers:
 - name: testpmd
 image: <RDMA_image>
 imagePullPolicy: IfNotPresent
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 command: ["sleep", "infinity"]

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-dpdk-net
spec:
 containers:
 - name: testpmd
 image: <DPDK_image>
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 requests:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 24. HARDWARE NETWORKS

305

https://github.com/openshift/app-netutil

This library can assist with integrating SR-IOV virtual functions (VFs) in Data Plane Development Kit
(DPDK) mode into the container. The library provides both a Golang API and a C API.

Currently there are three API methods implemented:

GetCPUInfo()

This function determines which CPUs are available to the container and returns the list.

GetHugepages()

This function determines the amount of huge page memory requested in the Pod spec for each
container and returns the values.

GetInterfaces()

This function determines the set of interfaces in the container and returns the list. The return value
includes the interface type and type-specific data for each interface.

The repository for the library includes a sample Dockerfile to build a container image, dpdk-app-centos.
The container image can run one of the following DPDK sample applications, depending on an
environment variable in the pod specification: l2fwd, l3wd or testpmd. The container image provides an
example of integrating the app-netutil library into the container image itself. The library can also
integrate into an init container. The init container can collect the required data and pass the data to an
existing DPDK workload.

24.1.1.6. Huge pages resource injection for Downward API

When a pod specification includes a resource request or limit for huge pages, the Network Resources
Injector automatically adds Downward API fields to the pod specification to provide the huge pages
information to the container.

The Network Resources Injector adds a volume that is named podnetinfo and is mounted at
/etc/podnetinfo for each container in the pod. The volume uses the Downward API and includes a file
for huge pages requests and limits. The file naming convention is as follows:

/etc/podnetinfo/hugepages_1G_request_<container-name>

/etc/podnetinfo/hugepages_1G_limit_<container-name>

/etc/podnetinfo/hugepages_2M_request_<container-name>

/etc/podnetinfo/hugepages_2M_limit_<container-name>

The paths specified in the previous list are compatible with the app-netutil library. By default, the library
is configured to search for resource information in the /etc/podnetinfo directory. If you choose to
specify the Downward API path items yourself manually, the app-netutil library searches for the
following paths in addition to the paths in the previous list.

/etc/podnetinfo/hugepages_request

/etc/podnetinfo/hugepages_limit

/etc/podnetinfo/hugepages_1G_request

/etc/podnetinfo/hugepages_1G_limit

/etc/podnetinfo/hugepages_2M_request

/etc/podnetinfo/hugepages_2M_limit

OpenShift Container Platform 4.12 Networking

306

As with the paths that the Network Resources Injector can create, the paths in the preceding list can
optionally end with a _<container-name> suffix.

24.1.2. Additional resources

Configuring multi-network policy

24.1.3. Next steps

Installing the SR-IOV Network Operator

Optional: Configuring the SR-IOV Network Operator

Configuring an SR-IOV network device

If you use OpenShift Virtualization: Connecting a virtual machine to an SR-IOV network

Configuring an SR-IOV network attachment

Adding a pod to an SR-IOV additional network

24.2. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

24.2.1. Installing SR-IOV Network Operator

As a cluster administrator, you can install the SR-IOV Network Operator by using the OpenShift
Container Platform CLI or the web console.

24.2.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. To create the openshift-sriov-network-operator namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator

CHAPTER 24. HARDWARE NETWORKS

307

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/virtualization/#virt-attaching-vm-to-sriov-network

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the SR-IOV Network Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.

b. To create a Subscription CR for the SR-IOV Network Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

24.2.1.2. Web console: Installing the SR-IOV Network Operator

 annotations:
 workload.openshift.io/allowed: management
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "${OC_VERSION}"
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-sriov-network-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-network-operator.4.12.0-202310121402 Succeeded

OpenShift Container Platform 4.12 Networking

308

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Install the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that SR-IOV Network Operator is listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

NOTE

$ oc annotate ns/openshift-sriov-network-operator
workload.openshift.io/allowed=management

CHAPTER 24. HARDWARE NETWORKS

309

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the
namespace.

24.2.2. Next steps

Optional: Configuring the SR-IOV Network Operator

24.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

24.3.1. Configuring the SR-IOV Network Operator

IMPORTANT

Modifying the SR-IOV Network Operator configuration is not normally necessary. The
default configuration is recommended for most use cases. Complete the steps to modify
the relevant configuration only if the default behavior of the Operator is not compatible
with your use case.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition resource. The Operator automatically creates a SriovOperatorConfig
custom resource (CR) named default in the openshift-sriov-network-operator namespace.

NOTE

The default CR contains the SR-IOV Network Operator configuration for your cluster. To
change the Operator configuration, you must modify this CR.

24.3.1.1. SR-IOV Network Operator config custom resource

The fields for the sriovoperatorconfig custom resource are described in the following table:

Table 24.2. SR-IOV Network Operator config custom resource

Field Type Description

metadata.name string Specifies the name of the SR-IOV Network Operator instance.
The default value is default. Do not set a different value.

metadata.name
space

string Specifies the namespace of the SR-IOV Network Operator
instance. The default value is openshift-sriov-network-
operator. Do not set a different value.

spec.configDae
monNodeSelect
or

string Specifies the node selection to control scheduling the SR-IOV
Network Config Daemon on selected nodes. By default, this field
is not set and the Operator deploys the SR-IOV Network Config
daemon set on worker nodes.

OpenShift Container Platform 4.12 Networking

310

spec.disableDra
in

boolean Specifies whether to disable the node draining process or enable
the node draining process when you apply a new policy to
configure the NIC on a node. Setting this field to true facilitates
software development and installing OpenShift Container
Platform on a single node. By default, this field is not set.

For single-node clusters, set this field to true after installing the
Operator. This field must remain set to true.

spec.enableInje
ctor

boolean Specifies whether to enable or disable the Network Resources
Injector daemon set. By default, this field is set to true.

spec.enableOpe
ratorWebhook

boolean Specifies whether to enable or disable the Operator Admission
Controller webhook daemon set. By default, this field is set to
true.

spec.logLevel integer Specifies the log verbosity level of the Operator. Set to 0 to
show only the basic logs. Set to 2 to show all the available logs.
By default, this field is set to 2.

Field Type Description

24.3.1.2. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application. It provides
the following capabilities:

Mutation of resource requests and limits in a pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

Mutation of a pod specification with a Downward API volume to expose pod annotations, labels,
and huge pages requests and limits. Containers that run in the pod can access the exposed
information as files under the /etc/podnetinfo path.

By default, the Network Resources Injector is enabled by the SR-IOV Network Operator and runs as a
daemon set on all control plane nodes. The following is an example of Network Resources Injector pods
running in a cluster with three control plane nodes:

Example output

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
network-resources-injector-5cz5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

CHAPTER 24. HARDWARE NETWORKS

311

24.3.1.3. About the SR-IOV Network Operator admission controller webhook

The SR-IOV Network Operator Admission Controller webhook is a Kubernetes Dynamic Admission
Controller application. It provides the following capabilities:

Validation of the SriovNetworkNodePolicy CR when it is created or updated.

Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

By default the SR-IOV Network Operator Admission Controller webhook is enabled by the Operator and
runs as a daemon set on all control plane nodes.

NOTE

Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices. For information about
configuring unsupported devices, see Configuring the SR-IOV Network Operator to use
an unsupported NIC.

The following is an example of the Operator Admission Controller webhook pods running in a cluster
with three control plane nodes:

Example output

24.3.1.4. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

24.3.1.5. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, which is enabled by default, complete the following
procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

OpenShift Container Platform 4.12 Networking

312

https://access.redhat.com/articles/7010183

Set the enableInjector field. Replace <value> with false to disable the feature or true to
enable the feature.

TIP

You can alternatively apply the following YAML to update the Operator:

24.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook

To disable or enable the admission controller webhook, which is enabled by default, complete the
following procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

Set the enableOperatorWebhook field. Replace <value> with false to disable the feature or
true to enable it:

TIP

You can alternatively apply the following YAML to update the Operator:

$ oc patch sriovoperatorconfig default \
 --type=merge -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableInjector": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: <value>

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableOperatorWebhook: <value>

CHAPTER 24. HARDWARE NETWORKS

313

24.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

To update the node selector for the operator, enter the following command:

Replace <node_label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": "".

TIP

You can alternatively apply the following YAML to update the Operator:

24.3.1.8. Configuring the SR-IOV Network Operator for single node installations

By default, the SR-IOV Network Operator drains workloads from a node before every policy change.
The Operator performs this action to ensure that there no workloads using the virtual functions before
the reconfiguration.

For installations on a single node, there are no other nodes to receive the workloads. As a result, the
Operator must be configured not to drain the workloads from the single node.

IMPORTANT

$ oc patch sriovoperatorconfig default --type=json \
 -n openshift-sriov-network-operator \
 --patch '[{
 "op": "replace",
 "path": "/spec/configDaemonNodeSelector",
 "value": {<node_label>}
 }]'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 configDaemonNodeSelector:
 <node_label>

OpenShift Container Platform 4.12 Networking

314

IMPORTANT

After performing the following procedure to disable draining workloads, you must remove
any workload that uses an SR-IOV network interface before you change any SR-IOV
network node policy.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

To set the disableDrain field to true, enter the following command:

TIP

You can alternatively apply the following YAML to update the Operator:

24.3.1.9. Deploying the SR-IOV Operator for hosted control planes

IMPORTANT

Hosted control planes is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

After you configure and deploy your hosting service cluster, you can create a subscription to the SR-IOV
Operator on a hosted cluster. The SR-IOV pod runs on worker machines rather than the control plane.

Prerequisites

You have configured and deployed the hosted cluster.

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "disableDrain": true } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 disableDrain: true

CHAPTER 24. HARDWARE NETWORKS

315

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/clusters/cluster_mce_overview#hosted-control-planes-configure

Procedure

1. Create a namespace and an Operator group:

2. Create a subscription to the SR-IOV Operator:

Verification

1. To verify that the SR-IOV Operator is ready, run the following command and view the resulting
output:

Example output

2. To verify that the SR-IOV pods are deployed, run the following command:

24.3.2. Next steps

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subsription
 namespace: openshift-sriov-network-operator
spec:
 channel: "4.12"
 name: sriov-network-operator
 config:
 nodeSelector:
 node-role.kubernetes.io/worker: ""
 source: s/qe-app-registry/redhat-operators
 sourceNamespace: openshift-marketplace

$ oc get csv -n openshift-sriov-network-operator

NAME DISPLAY VERSION REPLACES
PHASE
sriov-network-operator.4.12.0-202211021237 SR-IOV Network Operator 4.12.0-
202211021237 sriov-network-operator.4.12.0-202210290517 Succeeded

$ oc get pods -n openshift-sriov-network-operator

OpenShift Container Platform 4.12 Networking

316

1

2

3

4

Configuring an SR-IOV network device

24.4. CONFIGURING AN SR-IOV NETWORK DEVICE

You can configure a Single Root I/O Virtualization (SR-IOV) device in your cluster.

24.4.1. SR-IOV network node configuration object

You specify the SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. The API object for the policy is part of the sriovnetwork.openshift.io API group.

The following YAML describes an SR-IOV network node policy:

The name for the custom resource object.

The namespace where the SR-IOV Network Operator is installed.

The resource name of the SR-IOV network device plugin. You can create multiple SR-IOV network
node policies for a resource name.

When specifying a name, be sure to use the accepted syntax expression ̂ [a-zA-Z0-9_]+$ in the
resourceName.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the selected
nodes are configured. The SR-IOV Container Network Interface (CNI) plugin and device plugin are
deployed on selected nodes only.

IMPORTANT

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 needVhostNet: false 7
 numVfs: <num> 8
 nicSelector: 9
 vendor: "<vendor_code>" 10
 deviceID: "<device_id>" 11
 pfNames: ["<pf_name>", ...] 12
 rootDevices: ["<pci_bus_id>", ...] 13
 netFilter: "<filter_string>" 14
 deviceType: <device_type> 15
 isRdma: false 16
 linkType: <link_type> 17
 eSwitchMode: <mode> 18

CHAPTER 24. HARDWARE NETWORKS

317

5

6

7

8

9

10

11

12

13

14

IMPORTANT

The SR-IOV Network Operator applies node network configuration policies to nodes
in sequence. Before applying node network configuration policies, the SR-IOV
Network Operator checks if the machine config pool (MCP) for a node is in an
unhealthy state such as Degraded or Updating. If a node is in an unhealthy MCP,
the process of applying node network configuration policies to all targeted nodes in
the cluster pauses until the MCP returns to a healthy state.

To avoid a node in an unhealthy MCP from blocking the application of node network
configuration policies to other nodes, including nodes in other MCPs, you must
create a separate node network configuration policy for each MCP.

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher priority.
For example, a priority of 10 is a higher priority than 99. The default value is 99.

Optional: The maximum transmission unit (MTU) of the virtual function. The maximum MTU value
can vary for different network interface controller (NIC) models.

IMPORTANT

If you want to create virtual function on the default network interface, ensure that
the MTU is set to a value that matches the cluster MTU.

Optional: Set needVhostNet to true to mount the /dev/vhost-net device in the pod. Use the
mounted /dev/vhost-net device with Data Plane Development Kit (DPDK) to forward traffic to the
kernel network stack.

The number of the virtual functions (VF) to create for the SR-IOV physical network device. For an
Intel network interface controller (NIC), the number of VFs cannot be larger than the total VFs
supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to specify
values for all the parameters. It is recommended to identify the network device with enough
precision to avoid selecting a device unintentionally.

If you specify rootDevices, you must also specify a value for vendor, deviceID, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they refer to the same
device. If you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: The vendor hexadecimal code of the SR-IOV network device. The only allowed values are
8086 and 15b3.

Optional: The device hexadecimal code of the SR-IOV network device. For example, 101b is the
device ID for a Mellanox ConnectX-6 device.

Optional: An array of one or more physical function (PF) names for the device.

Optional: An array of one or more PCI bus addresses for the PF of the device. Provide the address
in the following format: 0000:02:00.1.

Optional: The platform-specific network filter. The only supported platform is Red Hat OpenStack
Platform (RHOSP). Acceptable values use the following format: openstack/NetworkID:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx. Replace xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx with the value
from the /var/config/openstack/latest/network_data.json metadata file.

OpenShift Container Platform 4.12 Networking

318

15

16

17

18

Optional: The driver type for the virtual functions. The only allowed values are netdevice and vfio-
pci. The default value is netdevice.

For a Mellanox NIC to work in DPDK mode on bare metal nodes, use the netdevice driver type and
set isRdma to true.

Optional: Configures whether to enable remote direct memory access (RDMA) mode. The default
value is false.

If the isRdma parameter is set to true, you can continue to use the RDMA-enabled VF as a normal
network device. A device can be used in either mode.

Set isRdma to true and additionally set needVhostNet to true to configure a Mellanox NIC for
use with Fast Datapath DPDK applications.

Optional: The link type for the VFs. The default value is eth for Ethernet. Change this value to 'ib'
for InfiniBand.

When linkType is set to ib, isRdma is automatically set to true by the SR-IOV Network Operator
webhook. When linkType is set to ib, deviceType should not be set to vfio-pci.

Do not set linkType to 'eth' for SriovNetworkNodePolicy, because this can lead to an incorrect
number of available devices reported by the device plugin.

Optional: The NIC device mode. The only allowed values are legacy or switchdev.

When eSwitchMode is set to legacy, the default SR-IOV behavior is enabled.

When eSwitchMode is set to switchdev, hardware offloading is enabled.

24.4.1.1. SR-IOV network node configuration examples

The following example describes the configuration for an InfiniBand device:

Example configuration for an InfiniBand device

The following example describes the configuration for an SR-IOV network device in a RHOSP virtual

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-ib-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: ibnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 rootDevices:
 - "0000:19:00.0"
 linkType: ib
 isRdma: true

CHAPTER 24. HARDWARE NETWORKS

319

1

2

The following example describes the configuration for an SR-IOV network device in a RHOSP virtual
machine:

Example configuration for an SR-IOV device in a virtual machine

The numVfs field is always set to 1 when configuring the node network policy for a virtual machine.

The netFilter field must refer to a network ID when the virtual machine is deployed on RHOSP.
Valid values for netFilter are available from an SriovNetworkNodeState object.

24.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

In some cases, you might want to split virtual functions (VFs) from the same physical function (PF) into
multiple resource pools. For example, you might want some of the VFs to load with the default driver
and the remaining VFs load with the vfio-pci driver. In such a deployment, the pfNames selector in your
SriovNetworkNodePolicy custom resource (CR) can be used to specify a range of VFs for a pool using
the following format: <pfname>#<first_vf>-<last_vf>.

For example, the following YAML shows the selector for an interface named netpf0 with VF 2 through 7:

netpf0 is the PF interface name.

2 is the first VF index (0-based) that is included in the range.

7 is the last VF index (0-based) that is included in the range.

You can select VFs from the same PF by using different policy CRs if the following requirements are
met:

The numVfs value must be identical for policies that select the same PF.

The VF index must be in the range of 0 to <numVfs>-1. For example, if you have a policy with
numVfs set to 8, then the <first_vf> value must not be smaller than 0, and the <last_vf> must
not be larger than 7.

The VFs ranges in different policies must not overlap.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-sriov-net-openstack-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: sriovnic1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 1 1
 nicSelector:
 vendor: "15b3"
 deviceID: "101b"
 netFilter: "openstack/NetworkID:ea24bd04-8674-4f69-b0ee-fa0b3bd20509" 2

pfNames: ["netpf0#2-7"]

OpenShift Container Platform 4.12 Networking

320

1

The <first_vf> must not be larger than the <last_vf>.

The following example illustrates NIC partitioning for an SR-IOV device.

The policy policy-net-1 defines a resource pool net-1 that contains the VF 0 of PF netpf0 with the
default VF driver. The policy policy-net-1-dpdk defines a resource pool net-1-dpdk that contains the
VF 8 to 15 of PF netpf0 with the vfio VF driver.

Policy policy-net-1:

Policy policy-net-1-dpdk:

Verifying that the interface is successfully partitioned

Confirm that the interface partitioned to virtual functions (VFs) for the SR-IOV device by running the
following command.

Replace <interface> with the interface that you specified when partitioning to VFs for the SR-IOV
device, for example, ens3f1.

Example output

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16
 nicSelector:
 pfNames: ["netpf0#0-0"]
 deviceType: netdevice

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-net-1-dpdk
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1dpdk
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 16
 nicSelector:
 pfNames: ["netpf0#8-15"]
 deviceType: vfio-pci

$ ip link show <interface> 1

5: ens3f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode

CHAPTER 24. HARDWARE NETWORKS

321

24.4.2. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

2. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace

DEFAULT group default qlen 1000
link/ether 3c:fd:fe:d1:bc:01 brd ff:ff:ff:ff:ff:ff

vf 0 link/ether 5a:e7:88:25:ea:a0 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 1 link/ether 3e:1d:36:d7:3d:49 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 2 link/ether ce:09:56:97:df:f9 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 3 link/ether 5e:91:cf:88:d1:38 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 4 link/ether e6:06:a1:96:2f:de brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off

$ oc create -f <name>-sriov-node-network.yaml

OpenShift Container Platform 4.12 Networking

322

4. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

Additional resources

Understanding how to update labels on nodes .

24.4.3. Troubleshooting SR-IOV configuration

After following the procedure to configure an SR-IOV network device, the following sections address
some error conditions.

To display the state of nodes, run the following command:

where: <node_name> specifies the name of a node with an SR-IOV network device.

Error output: Cannot allocate memory

When a node indicates that it cannot allocate memory, check the following items:

Confirm that global SR-IOV settings are enabled in the BIOS for the node.

Confirm that VT-d is enabled in the BIOS for the node.

24.4.4. Assigning an SR-IOV network to a VRF

As a cluster administrator, you can assign an SR-IOV network interface to your VRF domain by using the
CNI VRF plugin.

To do this, add the VRF configuration to the optional metaPlugins parameter of the SriovNetwork
resource.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

24.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin

The SR-IOV Network Operator manages additional network definitions. When you specify an additional

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name>

"lastSyncError": "write /sys/bus/pci/devices/0000:3b:00.1/sriov_numvfs: cannot allocate memory"

CHAPTER 24. HARDWARE NETWORKS

323

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working

1

2

The SR-IOV Network Operator manages additional network definitions. When you specify an additional
SR-IOV network to create, the SR-IOV Network Operator creates the NetworkAttachmentDefinition
custom resource (CR) automatically.

NOTE

Do not edit NetworkAttachmentDefinition custom resources that the SR-IOV Network
Operator manages. Doing so might disrupt network traffic on your additional network.

To create an additional SR-IOV network attachment with the CNI VRF plugin, perform the following
procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

Procedure

1. Create the SriovNetwork custom resource (CR) for the additional SR-IOV network attachment
and insert the metaPlugins configuration, as in the following example CR. Save the YAML as
the file sriov-network-attachment.yaml.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: example-network
 namespace: additional-sriov-network-1
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 vlan: 0
 resourceName: intelnics
 metaPlugins : |
 {
 "type": "vrf", 1
 "vrfname": "example-vrf-name" 2
 }

OpenShift Container Platform 4.12 Networking

324

1

2. Create the SriovNetwork resource:

Verifying that the NetworkAttachmentDefinition CR is successfully created

Confirm that the SR-IOV Network Operator created the NetworkAttachmentDefinition CR by
running the following command.

Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-sriov-network-1.

Example output

NOTE

There might be a delay before the SR-IOV Network Operator creates the CR.

Verifying that the additional SR-IOV network attachment is successful

To verify that the VRF CNI is correctly configured and the additional SR-IOV network attachment is
attached, do the following:

1. Create an SR-IOV network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the SR-IOV additional network.
Remote shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

$ oc create -f sriov-network-attachment.yaml

$ oc get network-attachment-definitions -n <namespace> 1

NAME AGE
additional-sriov-network-1 14m

$ ip vrf show

Name Table

red 10

$ ip link

...

CHAPTER 24. HARDWARE NETWORKS

325

1

2

3

4

5

24.4.5. Next steps

Configuring an SR-IOV network attachment

24.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT

You can configure an Ethernet network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

24.5.1. Ethernet device configuration object

You can configure an Ethernet network device by defining an SriovNetwork object.

The following YAML describes an SriovNetwork object:

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Network Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovNetwork object. Only pods in the target namespace can
attach to the additional network.

Optional: A Virtual LAN (VLAN) ID for the additional network. The integer value must be from 0 to
4095. The default value is 0.

5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode
...

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5
 spoofChk: "<spoof_check>" 6
 ipam: |- 7
 {}
 linkState: <link_state> 8
 maxTxRate: <max_tx_rate> 9
 minTxRate: <min_tx_rate> 10
 vlanQoS: <vlan_qos> 11
 trust: "<trust_vf>" 12
 capabilities: <capabilities> 13

OpenShift Container Platform 4.12 Networking

326

6

7

8

9

10

11

12

13

Optional: The spoof check mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the object is rejected by the
SR-IOV Network Operator.

A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin manages IP
address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed value are enable, disable and auto.

Optional: A maximum transmission rate, in Mbps, for the VF.

Optional: A minimum transmission rate, in Mbps, for the VF. This value must be less than or equal to
the maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: An IEEE 802.1p priority level for the VF. The default value is 0.

Optional: The trust mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value that you specify in quotes, or the SR-IOV Network
Operator rejects the object.

Optional: The capabilities to configure for this additional network. You can specify "{ "ips": true }"
to enable IP address support or "{ "mac": true }" to enable MAC address support.

24.5.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

24.5.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 24.3. ipam static configuration object

CHAPTER 24. HARDWARE NETWORKS

327

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 24.4. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 24.5. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 24.6. ipam.dns object

Field Type Description

nameservers array An array of one or more IP addresses for to send DNS queries to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

OpenShift Container Platform 4.12 Networking

328

24.5.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

The SR-IOV Network Operator does not create a DHCP server deployment; The Cluster
Network Operator is responsible for creating the minimal DHCP server deployment.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 24.7. ipam DHCP configuration object

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

CHAPTER 24. HARDWARE NETWORKS

329

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

24.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 24.8. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

24.5.1.1.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each
pods gets a unique IP address from the specified IP address range. It also handles IP address releases

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

OpenShift Container Platform 4.12 Networking

330

when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

Example output

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: whereabouts-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "whereabouts-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "whereabouts"
 }
 }
 type: Raw

$ oc get all -n openshift-multus | grep whereabouts-reconciler

CHAPTER 24. HARDWARE NETWORKS

331

24.5.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork
object. When you create an SriovNetwork object, the SR-IOV Network Operator automatically creates
a NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovNetwork object if it is attached to any pods in a running
state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovNetwork object, and then save the YAML in the <name>.yaml file, where
<name> is a name for this additional network. The object specification might resemble the
following example:

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

OpenShift Container Platform 4.12 Networking

332

1

2

3

4

5

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the networkNamespace you specified in the SriovNetwork object.

24.5.3. Next steps

Adding a pod to an SR-IOV additional network

24.5.4. Additional resources

Configuring an SR-IOV network device

24.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK
ATTACHMENT

You can configure an InfiniBand (IB) network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

24.6.1. InfiniBand device configuration object

You can configure an InfiniBand (IB) network device by defining an SriovIBNetwork object.

The following YAML describes an SriovIBNetwork object:

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovIBNetwork object. Only pods in the target namespace can
attach to the network device.

Optional: A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

$ oc get net-attach-def -n <namespace>

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 ipam: |- 5
 {}
 linkState: <link_state> 6
 capabilities: <capabilities> 7

CHAPTER 24. HARDWARE NETWORKS

333

6

7

Optional: The link state of virtual function (VF). Allowed values are enable, disable and auto.

Optional: The capabilities to configure for this network. You can specify "{ "ips": true }" to enable
IP address support or "{ "infinibandGUID": true }" to enable IB Global Unique Identifier (GUID)
support.

24.6.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

24.6.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 24.9. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 24.10. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 24.11. ipam.routes[] array

OpenShift Container Platform 4.12 Networking

334

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 24.12. ipam.dns object

Field Type Description

nameservers array An array of one or more IP addresses for to send DNS queries to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

24.6.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7/24"
 }
]
 }
}

CHAPTER 24. HARDWARE NETWORKS

335

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 24.13. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

24.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 24.14. ipam whereabouts configuration object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 type: Raw
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "dhcp"
 }
 }
 # ...

{
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.12 Networking

336

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

24.6.1.1.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each
pods gets a unique IP address from the specified IP address range. It also handles IP address releases
when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

{
 "ipam": {
 "type": "whereabouts",
 "range": "192.0.2.192/27",
 "exclude": [
 "192.0.2.192/30",
 "192.0.2.196/32"
]
 }
}

$ oc edit network.operator.openshift.io cluster

CHAPTER 24. HARDWARE NETWORKS

337

2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

Example output

24.6.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovIBNetwork
object. When you create an SriovIBNetwork object, the SR-IOV Network Operator automatically
creates a NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovIBNetwork object if it is attached to any pods in a
running state.

Prerequisites

Install the OpenShift CLI (oc).

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks:
 - name: whereabouts-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "whereabouts-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "ipam": {
 "type": "whereabouts"
 }
 }
 type: Raw

$ oc get all -n openshift-multus | grep whereabouts-reconciler

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

OpenShift Container Platform 4.12 Networking

338

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovIBNetwork object, and then save the YAML in the <name>.yaml file, where
<name> is a name for this additional network. The object specification might resemble the
following example:

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the
SriovIBNetwork object that you created in the previous step exists, enter the following
command. Replace <namespace> with the networkNamespace you specified in the
SriovIBNetwork object.

24.6.3. Next steps

Adding a pod to an SR-IOV additional network

24.6.4. Additional resources

Configuring an SR-IOV network device

24.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK

You can add a pod to an existing Single Root I/O Virtualization (SR-IOV) network.

24.7.1. Runtime configuration for a network attachment

When attaching a pod to an additional network, you can specify a runtime configuration to make specific

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
 name: attach1
 namespace: openshift-sriov-network-operator
spec:
 resourceName: net1
 networkNamespace: project2
 ipam: |-
 {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "gateway": "10.56.217.1"
 }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

CHAPTER 24. HARDWARE NETWORKS

339

1

2

3

When attaching a pod to an additional network, you can specify a runtime configuration to make specific
customizations for the pod. For example, you can request a specific MAC hardware address.

You specify the runtime configuration by setting an annotation in the pod specification. The annotation
key is k8s.v1.cni.cncf.io/networks, and it accepts a JSON object that describes the runtime
configuration.

24.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment

The following JSON describes the runtime configuration options for an Ethernet-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

Optional: The MAC address for the SR-IOV device that is allocated from the resource type defined
in the SR-IOV network attachment definition CR. To use this feature, you also must specify {
"mac": true } in the SriovNetwork object.

Optional: IP addresses for the SR-IOV device that is allocated from the resource type defined in
the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To
use this feature, you also must specify { "ips": true } in the SriovNetwork object.

Example runtime configuration

24.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

[
 {
 "name": "<name>", 1
 "mac": "<mac_address>", 2
 "ips": ["<cidr_range>"] 3
 }
]

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "net1",
 "mac": "20:04:0f:f1:88:01",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

OpenShift Container Platform 4.12 Networking

340

1

2

3

The following JSON describes the runtime configuration options for an InfiniBand-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

The InfiniBand GUID for the SR-IOV device. To use this feature, you also must specify {
"infinibandGUID": true } in the SriovIBNetwork object.

The IP addresses for the SR-IOV device that is allocated from the resource type defined in the
SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To use
this feature, you also must specify { "ips": true } in the SriovIBNetwork object.

Example runtime configuration

24.7.2. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

NOTE

[
 {
 "name": "<network_attachment>", 1
 "infiniband-guid": "<guid>", 2
 "ips": ["<cidr_range>"] 3
 }
]

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "ib1",
 "infiniband-guid": "c2:11:22:33:44:55:66:77",
 "ips": ["192.168.10.1/24", "2001::1/64"]
 }
]
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

CHAPTER 24. HARDWARE NETWORKS

341

1

NOTE

The SR-IOV Network Resource Injector adds the resource field to the first container in a
pod automatically.

If you are using an Intel network interface controller (NIC) in Data Plane Development Kit
(DPDK) mode, only the first container in your pod is configured to access the NIC. Your
SR-IOV additional network is configured for DPDK mode if the deviceType is set to vfio-
pci in the SriovNetworkNodePolicy object.

You can work around this issue by either ensuring that the container that needs access to
the NIC is the first container defined in the Pod object or by disabling the Network
Resource Injector. For more information, see BZ#1990953.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Install the SR-IOV Operator.

Create either an SriovNetwork object or an SriovIBNetwork object to attach the pod to.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

OpenShift Container Platform 4.12 Networking

342

https://bugzilla.redhat.com/show_bug.cgi?id=1990953

1

2

3

1

Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

CHAPTER 24. HARDWARE NETWORKS

343

1

2

3

4

24.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

You can create a NUMA aligned SR-IOV pod by restricting SR-IOV and the CPU resources allocated
from the same NUMA node with restricted or single-numa-node Topology Manager polices.

Prerequisites

You have installed the OpenShift CLI (oc).

You have configured the CPU Manager policy to static. For more information on CPU Manager,
see the "Additional resources" section.

You have configured the Topology Manager policy to single-numa-node.

NOTE

When single-numa-node is unable to satisfy the request, you can configure the
Topology Manager policy to restricted.

Procedure

1. Create the following SR-IOV pod spec, and then save the YAML in the <name>-sriov-
pod.yaml file. Replace <name> with a name for this pod.
The following example shows an SR-IOV pod spec:

Replace <name> with the name of the SR-IOV network attachment definition CR.

Replace <image> with the name of the sample-pod image.

To create the SR-IOV pod with guaranteed QoS, set memory limits equal to memory
requests.

To create the SR-IOV pod with guaranteed QoS, set cpu limits equals to cpu requests.

2. Create the sample SR-IOV pod by running the following command:

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: <name> 1
spec:
 containers:
 - name: sample-container
 image: <image> 2
 command: ["sleep", "infinity"]
 resources:
 limits:
 memory: "1Gi" 3
 cpu: "2" 4
 requests:
 memory: "1Gi"
 cpu: "2"

OpenShift Container Platform 4.12 Networking

344

1 Replace <filename> with the name of the file you created in the previous step.

3. Confirm that the sample-pod is configured with guaranteed QoS.

4. Confirm that the sample-pod is allocated with exclusive CPUs.

5. Confirm that the SR-IOV device and CPUs that are allocated for the sample-pod are on the
same NUMA node.

24.7.4. A test pod template for clusters that use SR-IOV on OpenStack

The following testpmd pod demonstrates container creation with huge pages, reserved CPUs, and the
SR-IOV port.

An example testpmd pod

$ oc create -f <filename> 1

$ oc describe pod sample-pod

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

apiVersion: v1
kind: Pod
metadata:
 name: testpmd-sriov
 namespace: mynamespace
 annotations:
 cpu-load-balancing.crio.io: "disable"
 cpu-quota.crio.io: "disable"
...
spec:
 containers:
 - name: testpmd
 command: ["sleep", "99999"]
 image: registry.redhat.io/openshift4/dpdk-base-rhel8:v4.9
 securityContext:
 capabilities:
 add: ["IPC_LOCK","SYS_ADMIN"]
 privileged: true
 runAsUser: 0
 resources:
 requests:
 memory: 1000Mi
 hugepages-1Gi: 1Gi
 cpu: '2'
 openshift.io/sriov1: 1
 limits:
 hugepages-1Gi: 1Gi
 cpu: '2'

CHAPTER 24. HARDWARE NETWORKS

345

1 This example assumes that the name of the performance profile is cnf-performance profile.

24.7.5. Additional resources

Configuring an SR-IOV Ethernet network attachment

Configuring an SR-IOV InfiniBand network attachment

Using CPU Manager

24.8. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTL
SETTINGS FOR SR-IOV NETWORKS

As a cluster administrator, you can modify interface-level network sysctls using the tuning Container
Network Interface (CNI) meta plugin for a pod connected to a SR-IOV network device.

24.8.1. Labeling nodes with an SR-IOV enabled NIC

If you want to enable SR-IOV on only SR-IOV capable nodes there are a couple of ways to do this:

1. Install the Node Feature Discovery (NFD) Operator. NFD detects the presence of SR-IOV
enabled NICs and labels the nodes with node.alpha.kubernetes-incubator.io/nfd-network-
sriov.capable = true.

2. Examine the SriovNetworkNodeState CR for each node. The interfaces stanza includes a list
of all of the SR-IOV devices discovered by the SR-IOV Network Operator on the worker node.
Label each node with feature.node.kubernetes.io/network-sriov.capable: "true" by using the
following command:

NOTE

You can label the nodes with whatever name you want.

24.8.2. Setting one sysctl flag

You can set interface-level network sysctl settings for a pod connected to a SR-IOV network device.

In this example, net.ipv4.conf.IFNAME.accept_redirects is set to 1 on the created virtual interfaces.

 memory: 1000Mi
 openshift.io/sriov1: 1
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 readOnly: False
 runtimeClassName: performance-cnf-performanceprofile 1
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

$ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

OpenShift Container Platform 4.12 Networking

346

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/scalability_and_performance/#using-cpu-manager

1

2

3

4

The sysctl-tuning-test is a namespace used in this example.

Use the following command to create the sysctl-tuning-test namespace:

$ oc create namespace sysctl-tuning-test

24.8.2.1. Setting one sysctl flag on nodes with SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io custom
resource definition (CRD) to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain and reboot the nodes.

It can take several minutes for a configuration change to apply.

Follow this procedure to create a SriovNetworkNodePolicy custom resource (CR).

Procedure

1. Create an SriovNetworkNodePolicy custom resource (CR). For example, save the following
YAML as the file policyoneflag-sriov-node-network.yaml:

The name for the custom resource object.

The namespace where the SR-IOV Network Operator is installed.

The resource name of the SR-IOV network device plugin. You can create multiple SR-IOV
network node policies for a resource name.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the
selected nodes are configured. The SR-IOV Container Network Interface (CNI) plugin and
device plugin are deployed on selected nodes only.

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policyoneflag 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: policyoneflag 3
 nodeSelector: 4
 feature.node.kubernetes.io/network-sriov.capable="true"
 priority: 10 5
 numVfs: 5 6
 nicSelector: 7
 pfNames: ["ens5"] 8
 deviceType: "netdevice" 9
 isRdma: false 10

CHAPTER 24. HARDWARE NETWORKS

347

5

6

7

8

9

10

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher
priority. For example, a priority of 10 is a higher priority than 99. The default value is 99.

The number of the virtual functions (VFs) to create for the SR-IOV physical network
device. For an Intel network interface controller (NIC), the number of VFs cannot be larger
than the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot
be larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to
specify values for all the parameters. It is recommended to identify the network device with
enough precision to avoid selecting a device unintentionally. If you specify rootDevices,
you must also specify a value for vendor, deviceID, or pfNames. If you specify both
pfNames and rootDevices at the same time, ensure that they refer to the same device. If
you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: An array of one or more physical function (PF) names for the device.

Optional: The driver type for the virtual functions. The only allowed value is netdevice. For
a Mellanox NIC to work in DPDK mode on bare metal nodes, set isRdma to true.

Optional: Configures whether to enable remote direct memory access (RDMA) mode. The
default value is false. If the isRdma parameter is set to true, you can continue to use the
RDMA-enabled VF as a normal network device. A device can be used in either mode. Set
isRdma to true and additionally set needVhostNet to true to configure a Mellanox NIC
for use with Fast Datapath DPDK applications.

NOTE

The vfio-pci driver type is not supported.

2. Create the SriovNetworkNodePolicy object:

After applying the configuration update, all the pods in sriov-network-operator namespace
change to the Running status.

3. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

Example output

24.8.2.2. Configuring sysctl on a SR-IOV network

You can set interface specific sysctl settings on virtual interfaces created by SR-IOV by adding the
tuning configuration to the optional metaPlugins parameter of the SriovNetwork resource.

$ oc create -f policyoneflag-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

Succeeded

OpenShift Container Platform 4.12 Networking

348

1

2

3

4

The SR-IOV Network Operator manages additional network definitions. When you specify an additional
SR-IOV network to create, the SR-IOV Network Operator creates the NetworkAttachmentDefinition
custom resource (CR) automatically.

NOTE

Do not edit NetworkAttachmentDefinition custom resources that the SR-IOV Network
Operator manages. Doing so might disrupt network traffic on your additional network.

To change the interface-level network net.ipv4.conf.IFNAME.accept_redirects sysctl settings, create
an additional SR-IOV network with the Container Network Interface (CNI) tuning plugin.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

Procedure

1. Create the SriovNetwork custom resource (CR) for the additional SR-IOV network attachment
and insert the metaPlugins configuration, as in the following example CR. Save the YAML as
the file sriov-network-interface-sysctl.yaml.

A name for the object. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition object with same name.

The namespace where the SR-IOV Network Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy
object that defines the SR-IOV hardware for this additional network.

The target namespace for the SriovNetwork object. Only pods in the target namespace

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: onevalidflag 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: policyoneflag 3
 networkNamespace: sysctl-tuning-test 4
 ipam: '{ "type": "static" }' 5
 capabilities: '{ "mac": true, "ips": true }' 6
 metaPlugins : | 7
 {
 "type": "tuning",
 "capabilities":{
 "mac":true
 },
 "sysctl":{
 "net.ipv4.conf.IFNAME.accept_redirects": "1"
 }
 }

CHAPTER 24. HARDWARE NETWORKS

349

5

6

7

1

A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin manages
IP address assignment for the attachment definition.

Optional: Set capabilities for the additional network. You can specify "{ "ips": true }" to
enable IP address support or "{ "mac": true }" to enable MAC address support.

Optional: The metaPlugins parameter is used to add additional capabilities to the device. In
this use case set the type field to tuning. Specify the interface-level network sysctl you
want to set in the sysctl field.

2. Create the SriovNetwork resource:

Verifying that the NetworkAttachmentDefinition CR is successfully created

Confirm that the SR-IOV Network Operator created the NetworkAttachmentDefinition CR by
running the following command:

Replace <namespace> with the value for networkNamespace that you specified in the
SriovNetwork object. For example, sysctl-tuning-test.

Example output

NOTE

There might be a delay before the SR-IOV Network Operator creates the CR.

Verifying that the additional SR-IOV network attachment is successful

To verify that the tuning CNI is correctly configured and the additional SR-IOV network attachment is
attached, do the following:

1. Create a Pod CR. Save the following YAML as the file examplepod.yaml:

$ oc create -f sriov-network-interface-sysctl.yaml

$ oc get network-attachment-definitions -n <namespace> 1

NAME AGE
onevalidflag 14m

apiVersion: v1
kind: Pod
metadata:
 name: tunepod
 namespace: sysctl-tuning-test
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "onevalidflag", 1
 "mac": "0a:56:0a:83:04:0c", 2

OpenShift Container Platform 4.12 Networking

350

1

2

3

The name of the SR-IOV network attachment definition CR.

Optional: The MAC address for the SR-IOV device that is allocated from the resource type
defined in the SR-IOV network attachment definition CR. To use this feature, you also
must specify { "mac": true } in the SriovNetwork object.

Optional: IP addresses for the SR-IOV device that are allocated from the resource type
defined in the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses
are supported. To use this feature, you also must specify { "ips": true } in the
SriovNetwork object.

2. Create the Pod CR:

3. Verify that the pod is created by running the following command:

Example output

4. Log in to the pod by running the following command:

5. Verify the values of the configured sysctl flag. Find the value
net.ipv4.conf.IFNAME.accept_redirects by running the following command::

 "ips": ["10.100.100.200/24"] 3
 }
]
spec:
 containers:
 - name: podexample
 image: centos
 command: ["/bin/bash", "-c", "sleep INF"]
 securityContext:
 runAsUser: 2000
 runAsGroup: 3000
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

$ oc apply -f examplepod.yaml

$ oc get pod -n sysctl-tuning-test

NAME READY STATUS RESTARTS AGE
tunepod 1/1 Running 0 47s

$ oc rsh -n sysctl-tuning-test tunepod

$ sysctl net.ipv4.conf.net1.accept_redirects

CHAPTER 24. HARDWARE NETWORKS

351

Example output

24.8.3. Configuring sysctl settings for pods associated with bonded SR-IOV
interface flag

You can set interface-level network sysctl settings for a pod connected to a bonded SR-IOV network
device.

In this example, the specific network interface-level sysctl settings that can be configured are set on
the bonded interface.

The sysctl-tuning-test is a namespace used in this example.

Use the following command to create the sysctl-tuning-test namespace:

$ oc create namespace sysctl-tuning-test

24.8.3.1. Setting all sysctl flag on nodes with bonded SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io custom
resource definition (CRD) to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Follow this procedure to create a SriovNetworkNodePolicy custom resource (CR).

Procedure

1. Create an SriovNetworkNodePolicy custom resource (CR). Save the following YAML as the
file policyallflags-sriov-node-network.yaml. Replace policyallflags with the name for the
configuration.

net.ipv4.conf.net1.accept_redirects = 1

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policyallflags 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: policyallflags 3
 nodeSelector: 4
 node.alpha.kubernetes-incubator.io/nfd-network-sriov.capable = `true`
 priority: 10 5
 numVfs: 5 6
 nicSelector: 7

OpenShift Container Platform 4.12 Networking

352

1

2

3

4

5

6

7

8

9

10

The name for the custom resource object.

The namespace where the SR-IOV Network Operator is installed.

The resource name of the SR-IOV network device plugin. You can create multiple SR-IOV
network node policies for a resource name.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the
selected nodes are configured. The SR-IOV Container Network Interface (CNI) plugin and
device plugin are deployed on selected nodes only.

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher
priority. For example, a priority of 10 is a higher priority than 99. The default value is 99.

The number of virtual functions (VFs) to create for the SR-IOV physical network device.
For an Intel network interface controller (NIC), the number of VFs cannot be larger than
the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot be
larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to
specify values for all the parameters. It is recommended to identify the network device with
enough precision to avoid selecting a device unintentionally. If you specify rootDevices,
you must also specify a value for vendor, deviceID, or pfNames. If you specify both
pfNames and rootDevices at the same time, ensure that they refer to the same device. If
you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: An array of one or more physical function (PF) names for the device.

Optional: The driver type for the virtual functions. The only allowed value is netdevice. For
a Mellanox NIC to work in DPDK mode on bare metal nodes, set isRdma to true.

Optional: Configures whether to enable remote direct memory access (RDMA) mode. The
default value is false. If the isRdma parameter is set to true, you can continue to use the
RDMA-enabled VF as a normal network device. A device can be used in either mode. Set
isRdma to true and additionally set needVhostNet to true to configure a Mellanox NIC
for use with Fast Datapath DPDK applications.

NOTE

The vfio-pci driver type is not supported.

2. Create the SriovNetworkNodePolicy object:

After applying the configuration update, all the pods in sriov-network-operator namespace
change to the Running status.

3. To verify that the SR-IOV network device is configured, enter the following command. Replace

 pfNames: ["ens1f0"] 8
 deviceType: "netdevice" 9
 isRdma: false 10

$ oc create -f policyallflags-sriov-node-network.yaml

CHAPTER 24. HARDWARE NETWORKS

353

1

2

3

3. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

Example output

24.8.3.2. Configuring sysctl on a bonded SR-IOV network

You can set interface specific sysctl settings on a bonded interface created from two SR-IOV
interfaces. Do this by adding the tuning configuration to the optional Plugins parameter of the bond
network attachment definition.

NOTE

Do not edit NetworkAttachmentDefinition custom resources that the SR-IOV Network
Operator manages. Doing so might disrupt network traffic on your additional network.

To change specific interface-level network sysctl settings create the SriovNetwork custom resource
(CR) with the Container Network Interface (CNI) tuning plugin by using the following procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

Procedure

1. Create the SriovNetwork custom resource (CR) for the bonded interface as in the following
example CR. Save the YAML as the file sriov-network-attachment.yaml.

A name for the object. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition object with same name.

The namespace where the SR-IOV Network Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy
object that defines the SR-IOV hardware for this additional network.

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

Succeeded

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: allvalidflags 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: policyallflags 3
 networkNamespace: sysctl-tuning-test 4
 capabilities: '{ "mac": true, "ips": true }' 5

OpenShift Container Platform 4.12 Networking

354

4

5

The target namespace for the SriovNetwork object. Only pods in the target namespace
can attach to the additional network.

Optional: The capabilities to configure for this additional network. You can specify "{
"ips": true }" to enable IP address support or "{ "mac": true }" to enable MAC address
support.

2. Create the SriovNetwork resource:

3. Create a bond network attachment definition as in the following example CR. Save the YAML as
the file sriov-bond-network-interface.yaml.

$ oc create -f sriov-network-attachment.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: bond-sysctl-network
 namespace: sysctl-tuning-test
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name":"bound-net",
 "plugins":[
 {
 "type":"bond", 1
 "mode": "active-backup", 2
 "failOverMac": 1, 3
 "linksInContainer": true, 4
 "miimon": "100",
 "links": [5
 {"name": "net1"},
 {"name": "net2"}
],
 "ipam":{ 6
 "type":"static"
 }
 },
 {
 "type":"tuning", 7
 "capabilities":{
 "mac":true
 },
 "sysctl":{
 "net.ipv4.conf.IFNAME.accept_redirects": "0",
 "net.ipv4.conf.IFNAME.accept_source_route": "0",
 "net.ipv4.conf.IFNAME.disable_policy": "1",
 "net.ipv4.conf.IFNAME.secure_redirects": "0",
 "net.ipv4.conf.IFNAME.send_redirects": "0",
 "net.ipv6.conf.IFNAME.accept_redirects": "0",
 "net.ipv6.conf.IFNAME.accept_source_route": "1",
 "net.ipv6.neigh.IFNAME.base_reachable_time_ms": "20000",
 "net.ipv6.neigh.IFNAME.retrans_time_ms": "2000"
 }

CHAPTER 24. HARDWARE NETWORKS

355

1

2

3

4

5

6

7

1

The type is bond.

The mode attribute specifies the bonding mode. The bonding modes supported are:

balance-rr - 0

active-backup - 1

balance-xor - 2
For balance-rr or balance-xor modes, you must set the trust mode to on for the SR-
IOV virtual function.

The failover attribute is mandatory for active-backup mode.

The linksInContainer=true flag informs the Bond CNI that the required interfaces are to
be found inside the container. By default, Bond CNI looks for these interfaces on the host
which does not work for integration with SRIOV and Multus.

The links section defines which interfaces will be used to create the bond. By default,
Multus names the attached interfaces as: "net", plus a consecutive number, starting with
one.

A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin manages
IP address assignment for the attachment definition. In this pod example IP addresses are
configured manually, so in this case,ipam is set to static.

Add additional capabilities to the device. For example, set the type field to tuning. Specify
the interface-level network sysctl you want to set in the sysctl field. This example sets all
interface-level network sysctl settings that can be set.

4. Create the bond network attachment resource:

Verifying that the NetworkAttachmentDefinition CR is successfully created

Confirm that the SR-IOV Network Operator created the NetworkAttachmentDefinition CR by
running the following command:

Replace <namespace> with the networkNamespace that you specified when configuring
the network attachment, for example, sysctl-tuning-test.

Example output

 }
]
}'

$ oc create -f sriov-bond-network-interface.yaml

$ oc get network-attachment-definitions -n <namespace> 1

NAME AGE
bond-sysctl-network 22m
allvalidflags 47m

OpenShift Container Platform 4.12 Networking

356

1

2

3

NOTE

There might be a delay before the SR-IOV Network Operator creates the CR.

Verifying that the additional SR-IOV network resource is successful

To verify that the tuning CNI is correctly configured and the additional SR-IOV network attachment is
attached, do the following:

1. Create a Pod CR. For example, save the following YAML as the file examplepod.yaml:

The name of the SR-IOV network attachment definition CR.

Optional: The MAC address for the SR-IOV device that is allocated from the resource type
defined in the SR-IOV network attachment definition CR. To use this feature, you also
must specify { "mac": true } in the SriovNetwork object.

Optional: IP addresses for the SR-IOV device that are allocated from the resource type
defined in the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses
are supported. To use this feature, you also must specify { "ips": true } in the
SriovNetwork object.

apiVersion: v1
kind: Pod
metadata:
 name: tunepod
 namespace: sysctl-tuning-test
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {"name": "allvalidflags"}, 1
 {"name": "allvalidflags"},
 {
 "name": "bond-sysctl-network",
 "interface": "bond0",
 "mac": "0a:56:0a:83:04:0c", 2
 "ips": ["10.100.100.200/24"] 3
 }
]
spec:
 containers:
 - name: podexample
 image: centos
 command: ["/bin/bash", "-c", "sleep INF"]
 securityContext:
 runAsUser: 2000
 runAsGroup: 3000
 allowPrivilegeEscalation: false
 capabilities:
 drop: ["ALL"]
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

CHAPTER 24. HARDWARE NETWORKS

357

2. Apply the YAML:

3. Verify that the pod is created by running the following command:

Example output

4. Log in to the pod by running the following command:

5. Verify the values of the configured sysctl flag. Find the value
net.ipv6.neigh.IFNAME.base_reachable_time_ms by running the following command::

Example output

24.9. USING HIGH PERFORMANCE MULTICAST

You can use multicast on your Single Root I/O Virtualization (SR-IOV) hardware network.

24.9.1. High performance multicast

The OpenShift SDN network plugin supports multicast between pods on the default network. This is
best used for low-bandwidth coordination or service discovery, and not high-bandwidth applications.
For applications such as streaming media, like Internet Protocol television (IPTV) and multipoint
videoconferencing, you can utilize Single Root I/O Virtualization (SR-IOV) hardware to provide near-
native performance.

When using additional SR-IOV interfaces for multicast:

Multicast packages must be sent or received by a pod through the additional SR-IOV interface.

The physical network which connects the SR-IOV interfaces decides the multicast routing and
topology, which is not controlled by OpenShift Container Platform.

24.9.2. Configuring an SR-IOV interface for multicast

The follow procedure creates an example SR-IOV interface for multicast.

Prerequisites

$ oc apply -f examplepod.yaml

$ oc get pod -n sysctl-tuning-test

NAME READY STATUS RESTARTS AGE
tunepod 1/1 Running 0 47s

$ oc rsh -n sysctl-tuning-test tunepod

$ sysctl net.ipv6.neigh.bond0.base_reachable_time_ms

net.ipv6.neigh.bond0.base_reachable_time_ms = 20000

OpenShift Container Platform 4.12 Networking

358

1 2

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Create a SriovNetworkNodePolicy object:

2. Create a SriovNetwork object:

If you choose to configure DHCP as IPAM, ensure that you provision the following default
routes through your DHCP server: 224.0.0.0/5 and 232.0.0.0/5. This is to override the
static multicast route set by the default network provider.

3. Create a pod with multicast application:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-example
 namespace: openshift-sriov-network-operator
spec:
 resourceName: example
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "8086"
 pfNames: ['ens803f0']
 rootDevices: ['0000:86:00.0']

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: net-example
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: default
 ipam: | 1
 {
 "type": "host-local", 2
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [
 {"dst": "224.0.0.0/5"},
 {"dst": "232.0.0.0/5"}
],
 "gateway": "10.56.217.1"
 }
 resourceName: example

apiVersion: v1
kind: Pod

CHAPTER 24. HARDWARE NETWORKS

359

1 The NET_ADMIN capability is required only if your application needs to assign the
multicast IP address to the SR-IOV interface. Otherwise, it can be omitted.

24.10. USING DPDK AND RDMA

The containerized Data Plane Development Kit (DPDK) application is supported on OpenShift Container
Platform. You can use Single Root I/O Virtualization (SR-IOV) network hardware with the Data Plane
Development Kit (DPDK) and with remote direct memory access (RDMA).

For information on supported devices, refer to Supported devices.

24.10.1. Using a virtual function in DPDK mode with an Intel NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the intel-
dpdk-node-policy.yaml file.

metadata:
 name: testpmd
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: nic1
spec:
 containers:
 - name: example
 image: rhel7:latest
 securityContext:
 capabilities:
 add: ["NET_ADMIN"] 1
 command: ["sleep", "infinity"]

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: intel-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intelnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "8086"

OpenShift Container Platform 4.12 Networking

360

1

1

Specify the driver type for the virtual functions to vfio-pci.

NOTE

See the Configuring SR-IOV network devices section for a detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the intel-dpdk-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetwork object by running the following command:

 deviceID: "158b"
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: vfio-pci 1

$ oc create -f intel-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: intel-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |-
... 1
 vlan: <vlan>
 resourceName: intelnics

CHAPTER 24. HARDWARE NETWORKS

361

1

2

3

4

5

5. Create the following Pod spec, and then save the YAML in the intel-dpdk-pod.yaml file.

Specify the same target_namespace where the SriovNetwork object intel-dpdk-network
is created. If you would like to create the pod in a different namespace, change
target_namespace in both the Pod spec and the SriovNetwork object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount a hugepage volume to the DPDK pod under /mnt/huge. The hugepage volume is
backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by the SR-IOV
network resource injector. The SR-IOV network resource injector is an admission controller

$ oc create -f intel-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: intel-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /mnt/huge 4
 name: hugepage
 resources:
 limits:
 openshift.io/intelnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/intelnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.12 Networking

362

6

7

component managed by the SR-IOV Operator. It is enabled by default and can be disabled
by setting enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs to be
allocated from the kubelet. This is achieved by setting CPU Manager policy to static and
creating a pod with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes. For example,
adding kernel arguments default_hugepagesz=1GB, hugepagesz=1G and
hugepages=16 will result in 16*1Gi hugepages be allocated during system boot.

6. Create the DPDK pod by running the following command:

24.10.2. Using a virtual function in DPDK mode with a Mellanox NIC

You can create a network node policy and create a Data Plane Development Kit (DPDK) pod using a
virtual function in DPDK mode with a Mellanox NIC.

Prerequisites

You have installed the OpenShift CLI (oc).

You have installed the Single Root I/O Virtualization (SR-IOV) Network Operator.

You have logged in as a user with cluster-admin privileges.

Procedure

1. Save the following SriovNetworkNodePolicy YAML configuration to an mlx-dpdk-node-
policy.yaml file:

$ oc create -f intel-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

CHAPTER 24. HARDWARE NETWORKS

363

1

2

3

1

Specify the device hex code of the SR-IOV network device.

Specify the driver type for the virtual functions to netdevice. A Mellanox SR-IOV Virtual
Function (VF) can work in DPDK mode without using the vfio-pci device type. The VF
device appears as a kernel network interface inside a container.

Enable Remote Direct Memory Access (RDMA) mode. This is required for Mellanox cards
to work in DPDK mode.

NOTE

See Configuring an SR-IOV network device for a detailed explanation of each
option in the SriovNetworkNodePolicy object.

When applying the configuration specified in an SriovNetworkNodePolicy
object, the SR-IOV Operator might drain the nodes, and in some cases, reboot
nodes. It might take several minutes for a configuration change to apply. Ensure
that there are enough available nodes in your cluster to handle the evicted
workload beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Save the following SriovNetwork YAML configuration to an mlx-dpdk-network.yaml file:

Specify a configuration object for the IP Address Management (IPAM) Container Network
Interface (CNI) plugin as a YAML block scalar. The plugin manages IP address assignment
for the attachment definition.

NOTE

See Configuring an SR-IOV network device for a detailed explanation on each
option in the SriovNetwork object.

The app-netutil option library provides several API methods for gathering network information
about the parent pod of a container.

$ oc create -f mlx-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
...
 vlan: <vlan>
 resourceName: mlxnics

OpenShift Container Platform 4.12 Networking

364

1

2

3

4

4. Create the SriovNetwork object by running the following command:

5. Save the following Pod YAML configuration to an mlx-dpdk-pod.yaml file:

Specify the same target_namespace where SriovNetwork object mlx-dpdk-network is
created. To create the pod in a different namespace, change target_namespace in both
the Pod spec and SriovNetwork object.

Specify the DPDK image which includes your application and the DPDK library used by the
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to the DPDK pod under /mnt/huge. The hugepage volume is
backed by the emptyDir volume type with the medium being Hugepages.

$ oc create -f mlx-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /mnt/huge 4
 name: hugepage
 resources:
 limits:
 openshift.io/mlxnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/mlxnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 24. HARDWARE NETWORKS

365

5

6

7

Optional: Specify the number of DPDK devices allocated for the DPDK pod. If not explicitly
specified, this resource request and limit is automatically added by the SR-IOV network

Specify the number of CPUs. The DPDK pod usually requires that exclusive CPUs be
allocated from the kubelet. To do this, set the CPU Manager policy to static and create a
pod with Guaranteed Quality of Service (QoS).

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepages requires adding kernel arguments to Nodes.

6. Create the DPDK pod by running the following command:

24.10.3. Overview of achieving a specific DPDK line rate

To achieve a specific Data Plane Development Kit (DPDK) line rate, deploy a Node Tuning Operator and
configure Single Root I/O Virtualization (SR-IOV). You must also tune the DPDK settings for the
following resources:

Isolated CPUs

Hugepages

The topology scheduler

NOTE

In previous versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift Container Platform applications. In OpenShift Container Platform 4.11 and
later, this functionality is part of the Node Tuning Operator.

DPDK test environment

The following diagram shows the components of a traffic-testing environment:

$ oc create -f mlx-dpdk-pod.yaml

OpenShift Container Platform 4.12 Networking

366

Traffic generator: An application that can generate high-volume packet traffic.

SR-IOV-supporting NIC: A network interface card compatible with SR-IOV. The card runs a
number of virtual functions on a physical interface.

Physical Function (PF): A PCI Express (PCIe) function of a network adapter that supports the
SR-IOV interface.

Virtual Function (VF): A lightweight PCIe function on a network adapter that supports SR-IOV.
The VF is associated with the PCIe PF on the network adapter. The VF represents a virtualized
instance of the network adapter.

Switch: A network switch. Nodes can also be connected back-to-back.

testpmd: An example application included with DPDK. The testpmd application can be used to
test the DPDK in a packet-forwarding mode. The testpmd application is also an example of how
to build a fully-fledged application using the DPDK Software Development Kit (SDK).

worker 0 and worker 1: OpenShift Container Platform nodes.

24.10.4. Using SR-IOV and the Node Tuning Operator to achieve a DPDK line rate

You can use the Node Tuning Operator to configure isolated CPUs, hugepages, and a topology
scheduler. You can then use the Node Tuning Operator with Single Root I/O Virtualization (SR-IOV) to
achieve a specific Data Plane Development Kit (DPDK) line rate.

Prerequisites

You have installed the OpenShift CLI (oc).

You have installed the SR-IOV Network Operator.

You have logged in as a user with cluster-admin privileges.

You have deployed a standalone Node Tuning Operator.

NOTE

In previous versions of OpenShift Container Platform, the Performance Addon
Operator was used to implement automatic tuning to achieve low latency
performance for OpenShift applications. In OpenShift Container Platform 4.11
and later, this functionality is part of the Node Tuning Operator.

Procedure

1. Create a PerformanceProfile object based on the following example:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 globallyDisableIrqLoadBalancing: true
 cpu:
 isolated: 21-51,73-103 1

CHAPTER 24. HARDWARE NETWORKS

367

1

2

3

If hyperthreading is enabled on the system, allocate the relevant symbolic links to the
isolated and reserved CPU groups. If the system contains multiple non-uniform memory
access nodes (NUMAs), allocate CPUs from both NUMAs to both groups. You can also use
the Performance Profile Creator for this task. For more information, see Creating a
performance profile.

You can also specify a list of devices that will have their queues set to the reserved CPU
count. For more information, see Reducing NIC queues using the Node Tuning Operator .

Allocate the number and size of hugepages needed. You can specify the NUMA
configuration for the hugepages. By default, the system allocates an even number to every
NUMA node on the system. If needed, you can request the use of a realtime kernel for the
nodes. See Provisioning a worker with real-time capabilities for more information.

2. Save the yaml file as mlx-dpdk-perfprofile-policy.yaml.

3. Apply the performance profile using the following command:

24.10.4.1. Example SR-IOV Network Operator for virtual functions

You can use the Single Root I/O Virtualization (SR-IOV) Network Operator to allocate and configure
Virtual Functions (VFs) from SR-IOV-supporting Physical Function NICs on the nodes.

For more information on deploying the Operator, see Installing the SR-IOV Network Operator . For more
information on configuring an SR-IOV network device, see Configuring an SR-IOV network device .

There are some differences between running Data Plane Development Kit (DPDK) workloads on Intel
VFs and Mellanox VFs. This section provides object configuration examples for both VF types. The
following is an example of an sriovNetworkNodePolicy object used to run DPDK applications on Intel
NICs:

 reserved: 0-20,52-72 2
 hugepages:
 defaultHugepagesSize: 1G 3
 pages:
 - count: 32
 size: 1G
 net:
 userLevelNetworking: true
 numa:
 topologyPolicy: "single-numa-node"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

$ oc create -f mlx-dpdk-perfprofile-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: dpdk-nic-1
 namespace: openshift-sriov-network-operator
spec:
 deviceType: vfio-pci 1
 needVhostNet: true 2

OpenShift Container Platform 4.12 Networking

368

1

2

For Intel NICs, deviceType must be vfio-pci.

If kernel communication with DPDK workloads is required, add needVhostNet: true. This mounts
the /dev/net/tun and /dev/vhost-net devices into the container so the application can create a tap
device and connect the tap device to the DPDK workload.

The following is an example of an sriovNetworkNodePolicy object for Mellanox NICs:

 nicSelector:
 pfNames: ["ens3f0"]
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numVfs: 10
 priority: 99
 resourceName: dpdk_nic_1

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: dpdk-nic-1
 namespace: openshift-sriov-network-operator
spec:
 deviceType: vfio-pci
 needVhostNet: true
 nicSelector:
 pfNames: ["ens3f1"]
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numVfs: 10
 priority: 99
 resourceName: dpdk_nic_2

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: dpdk-nic-1
 namespace: openshift-sriov-network-operator
spec:
 deviceType: netdevice 1
 isRdma: true 2
 nicSelector:
 rootDevices:
 - "0000:5e:00.1"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numVfs: 5
 priority: 99
 resourceName: dpdk_nic_1

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: dpdk-nic-2
 namespace: openshift-sriov-network-operator
spec:

CHAPTER 24. HARDWARE NETWORKS

369

1

2

1

2

For Mellanox devices the deviceType must be netdevice.

For Mellanox devices isRdma must be true. Mellanox cards are connected to DPDK applications
using Flow Bifurcation. This mechanism splits traffic between Linux user space and kernel space,
and can enhance line rate processing capability.

24.10.4.2. Example SR-IOV network operator

The following is an example definition of an sriovNetwork object. In this case, Intel and Mellanox
configurations are identical:

You can use a different IP Address Management (IPAM) implementation, such as Whereabouts.
For more information, see Dynamic IP address assignment configuration with Whereabouts .

You must request the networkNamespace where the network attachment definition will be
created. You must create the sriovNetwork CR under the openshift-sriov-network-operator
namespace.

The resourceName value must match that of the resourceName created under the

 deviceType: netdevice
 isRdma: true
 nicSelector:
 rootDevices:
 - "0000:5e:00.0"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""
 numVfs: 5
 priority: 99
 resourceName: dpdk_nic_2

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: dpdk-network-1
 namespace: openshift-sriov-network-operator
spec:
 ipam: '{"type": "host-local","ranges": [[{"subnet": "10.0.1.0/24"}]],"dataDir":
 "/run/my-orchestrator/container-ipam-state-1"}' 1
 networkNamespace: dpdk-test 2
 spoofChk: "off"
 trust: "on"
 resourceName: dpdk_nic_1 3

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: dpdk-network-2
 namespace: openshift-sriov-network-operator
spec:
 ipam: '{"type": "host-local","ranges": [[{"subnet": "10.0.2.0/24"}]],"dataDir":
 "/run/my-orchestrator/container-ipam-state-1"}'
 networkNamespace: dpdk-test
 spoofChk: "off"
 trust: "on"
 resourceName: dpdk_nic_2

OpenShift Container Platform 4.12 Networking

370

3 The resourceName value must match that of the resourceName created under the
sriovNetworkNodePolicy.

24.10.4.3. Example DPDK base workload

The following is an example of a Data Plane Development Kit (DPDK) container:

apiVersion: v1
kind: Namespace
metadata:
 name: dpdk-test

apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: '[1
 {
 "name": "dpdk-network-1",
 "namespace": "dpdk-test"
 },
 {
 "name": "dpdk-network-2",
 "namespace": "dpdk-test"
 }
]'
 irq-load-balancing.crio.io: "disable" 2
 cpu-load-balancing.crio.io: "disable"
 cpu-quota.crio.io: "disable"
 labels:
 app: dpdk
 name: testpmd
 namespace: dpdk-test
spec:
 runtimeClassName: performance-performance 3
 containers:
 - command:
 - /bin/bash
 - -c
 - sleep INF
 image: registry.redhat.io/openshift4/dpdk-base-rhel8
 imagePullPolicy: Always
 name: dpdk
 resources: 4
 limits:
 cpu: "16"
 hugepages-1Gi: 8Gi
 memory: 2Gi
 requests:
 cpu: "16"
 hugepages-1Gi: 8Gi
 memory: 2Gi
 securityContext:
 capabilities:

CHAPTER 24. HARDWARE NETWORKS

371

1

2

3

4

Request the SR-IOV networks you need. Resources for the devices will be injected automatically.

Disable the CPU and IRQ load balancing base. See Disabling interrupt processing for individual
pods for more information.

Set the runtimeClass to performance-performance. Do not set the runtimeClass to
HostNetwork or privileged.

Request an equal number of resources for requests and limits to start the pod with Guaranteed
Quality of Service (QoS).

NOTE

Do not start the pod with SLEEP and then exec into the pod to start the testpmd or the
DPDK workload. This can add additional interrupts as the exec process is not pinned to
any CPU.

24.10.4.4. Example testpmd script

The following is an example script for running testpmd:

This example uses two different sriovNetwork CRs. The environment variable contains the Virtual
Function (VF) PCI address that was allocated for the pod. If you use the same network in the pod
definition, you must split the pciAddress. It is important to configure the correct MAC addresses of the
traffic generator. This example uses custom MAC addresses.

24.10.5. Using a virtual function in RDMA mode with a Mellanox NIC

IMPORTANT

 add:
 - IPC_LOCK
 - SYS_RESOURCE
 - NET_RAW
 - NET_ADMIN
 runAsUser: 0
 volumeMounts:
 - mountPath: /mnt/huge
 name: hugepages
 terminationGracePeriodSeconds: 5
 volumes:
 - emptyDir:
 medium: HugePages
 name: hugepages

#!/bin/bash
set -ex
export CPU=$(cat /sys/fs/cgroup/cpuset/cpuset.cpus)
echo ${CPU}

dpdk-testpmd -l ${CPU} -a ${PCIDEVICE_OPENSHIFT_IO_DPDK_NIC_1} -a
${PCIDEVICE_OPENSHIFT_IO_DPDK_NIC_2} -n 4 -- -i --nb-cores=15 --rxd=4096 --txd=4096 --
rxq=7 --txq=7 --forward-mode=mac --eth-peer=0,50:00:00:00:00:01 --eth-peer=1,50:00:00:00:00:02

OpenShift Container Platform 4.12 Networking

372

1

2

3

IMPORTANT

RDMA over Converged Ethernet (RoCE) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

RDMA over Converged Ethernet (RoCE) is the only supported mode when using RDMA on OpenShift
Container Platform.

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
rdma-node-policy.yaml file.

Specify the device hex code of the SR-IOV network device.

Specify the driver type for the virtual functions to netdevice.

Enable RDMA mode.

NOTE

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-rdma-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

CHAPTER 24. HARDWARE NETWORKS

373

https://access.redhat.com/support/offerings/techpreview/

1

NOTE

See the Configuring SR-IOV network devices section for a detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-rdma-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetworkNodePolicy object by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-rdma-pod.yaml file.

$ oc create -f mlx-rdma-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-rdma-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-rdma-network.yaml

apiVersion: v1
kind: Pod
metadata:

OpenShift Container Platform 4.12 Networking

374

1

2

3

4

5

6

Specify the same target_namespace where SriovNetwork object mlx-rdma-network is
created. If you would like to create the pod in a different namespace, change
target_namespace in both Pod spec and SriovNetwork object.

Specify the RDMA image which includes your application and RDMA library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to RDMA pod under /mnt/huge. The hugepage volume is
backed by the emptyDir volume type with the medium being Hugepages.

Specify number of CPUs. The RDMA pod usually requires exclusive CPUs be allocated
from the kubelet. This is achieved by setting CPU Manager policy to static and create pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the RDMA pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the RDMA pod by running the following command:

 name: rdma-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-rdma-network
spec:
 containers:
 - name: testpmd
 image: <RDMA_image> 2
 securityContext:
 runAsUser: 0
 capabilities:
 add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
 volumeMounts:
 - mountPath: /mnt/huge 4
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "4" 5
 hugepages-1Gi: "4Gi" 6
 requests:
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

$ oc create -f mlx-rdma-pod.yaml

CHAPTER 24. HARDWARE NETWORKS

375

1

2

24.10.6. A test pod template for clusters that use OVS-DPDK on OpenStack

The following testpmd pod demonstrates container creation with huge pages, reserved CPUs, and the
SR-IOV port.

An example testpmd pod

The name dpdk1 in this example is a user-created SriovNetworkNodePolicy resource. You can
substitute this name for that of a resource that you create.

If your performance profile is not named cnf-performance profile, replace that string with the
correct performance profile name.

24.10.7. A test pod template for clusters that use OVS hardware offloading on

apiVersion: v1
kind: Pod
metadata:
 name: testpmd-dpdk
 namespace: mynamespace
 annotations:
 cpu-load-balancing.crio.io: "disable"
 cpu-quota.crio.io: "disable"
...
spec:
 containers:
 - name: testpmd
 command: ["sleep", "99999"]
 image: registry.redhat.io/openshift4/dpdk-base-rhel8:v4.9
 securityContext:
 capabilities:
 add: ["IPC_LOCK","SYS_ADMIN"]
 privileged: true
 runAsUser: 0
 resources:
 requests:
 memory: 1000Mi
 hugepages-1Gi: 1Gi
 cpu: '2'
 openshift.io/dpdk1: 1 1
 limits:
 hugepages-1Gi: 1Gi
 cpu: '2'
 memory: 1000Mi
 openshift.io/dpdk1: 1
 volumeMounts:
 - mountPath: /mnt/huge
 name: hugepage
 readOnly: False
 runtimeClassName: performance-cnf-performanceprofile 2
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.12 Networking

376

1

24.10.7. A test pod template for clusters that use OVS hardware offloading on
OpenStack

The following testpmd pod demonstrates Open vSwitch (OVS) hardware offloading on Red Hat
OpenStack Platform (RHOSP).

An example testpmd pod

If your performance profile is not named cnf-performance profile, replace that string with the
correct performance profile name.

24.10.8. Additional resources

Creating a performance profile

Reducing NIC queues using the Node Tuning Operator

Provisioning a worker with real-time capabilities

apiVersion: v1
kind: Pod
metadata:
 name: testpmd-sriov
 namespace: mynamespace
 annotations:
 k8s.v1.cni.cncf.io/networks: hwoffload1
spec:
 runtimeClassName: performance-cnf-performanceprofile 1
 containers:
 - name: testpmd
 command: ["sleep", "99999"]
 image: registry.redhat.io/openshift4/dpdk-base-rhel8:v4.9
 securityContext:
 capabilities:
 add: ["IPC_LOCK","SYS_ADMIN"]
 privileged: true
 runAsUser: 0
 resources:
 requests:
 memory: 1000Mi
 hugepages-1Gi: 1Gi
 cpu: '2'
 limits:
 hugepages-1Gi: 1Gi
 cpu: '2'
 memory: 1000Mi
 volumeMounts:
 - mountPath: /mnt/huge
 name: hugepage
 readOnly: False
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 24. HARDWARE NETWORKS

377

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/scalability_and_performance/#cnf-about-the-profile-creator-tool_cnf-create-performance-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/scalability_and_performance/#adjusting-nic-queues-with-the-performance-profile_cnf-master
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/scalability_and_performance/#node-tuning-operator-provisioning-worker-with-real-time-capabilities_cnf-master

Installing the SR-IOV Network Operator

Configuring an SR-IOV network device

Dynamic IP address assignment configuration with Whereabouts

Disabling interrupt processing for individual pods

Configuring an SR-IOV Ethernet network attachment

The app-netutil library provides several API methods for gathering network information about a
container’s parent pod.

24.11. USING POD-LEVEL BONDING

Bonding at the pod level is vital to enable workloads inside pods that require high availability and more
throughput. With pod-level bonding, you can create a bond interface from multiple single root I/O
virtualization (SR-IOV) virtual function interfaces in a kernel mode interface. The SR-IOV virtual
functions are passed into the pod and attached to a kernel driver.

One scenario where pod level bonding is required is creating a bond interface from multiple SR-IOV
virtual functions on different physical functions. Creating a bond interface from two different physical
functions on the host can be used to achieve high availability and throughput at pod level.

For guidance on tasks such as creating a SR-IOV network, network policies, network attachment
definitions and pods, see Configuring an SR-IOV network device .

24.11.1. Configuring a bond interface from two SR-IOV interfaces

Bonding enables multiple network interfaces to be aggregated into a single logical "bonded" interface.
Bond Container Network Interface (Bond-CNI) brings bond capability into containers.

Bond-CNI can be created using Single Root I/O Virtualization (SR-IOV) virtual functions and placing
them in the container network namespace.

OpenShift Container Platform only supports Bond-CNI using SR-IOV virtual functions. The SR-IOV
Network Operator provides the SR-IOV CNI plugin needed to manage the virtual functions. Other CNIs
or types of interfaces are not supported.

Prerequisites

The SR-IOV Network Operator must be installed and configured to obtain virtual functions in a
container.

To configure SR-IOV interfaces, an SR-IOV network and policy must be created for each
interface.

The SR-IOV Network Operator creates a network attachment definition for each SR-IOV
interface, based on the SR-IOV network and policy defined.

The linkState is set to the default value auto for the SR-IOV virtual function.

24.11.1.1. Creating a bond network attachment definition

Now that the SR-IOV virtual functions are available, you can create a bond network attachment
definition.

OpenShift Container Platform 4.12 Networking

378

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/scalability_and_performance/#disabling_interrupt_processing_for_individual_pods_cnf-master

1

2

3

4

5

The cni-type is always set to bond.

The mode attribute specifies the bonding mode.

NOTE

The bonding modes supported are:

balance-rr - 0

active-backup - 1

balance-xor - 2

For balance-rr or balance-xor modes, you must set the trust mode to on for the
SR-IOV virtual function.

The failover attribute is mandatory for active-backup mode and must be set to 1.

The linksInContainer=true flag informs the Bond CNI that the required interfaces are to be found
inside the container. By default, Bond CNI looks for these interfaces on the host which does not
work for integration with SRIOV and Multus.

The links section defines which interfaces will be used to create the bond. By default, Multus
names the attached interfaces as: "net", plus a consecutive number, starting with one.

apiVersion: "k8s.cni.cncf.io/v1"
 kind: NetworkAttachmentDefinition
 metadata:
 name: bond-net1
 namespace: demo
 spec:
 config: '{
 "type": "bond", 1
 "cniVersion": "0.3.1",
 "name": "bond-net1",
 "mode": "active-backup", 2
 "failOverMac": 1, 3
 "linksInContainer": true, 4
 "miimon": "100",
 "mtu": 1500,
 "links": [5
 {"name": "net1"},
 {"name": "net2"}
],
 "ipam": {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 }'

CHAPTER 24. HARDWARE NETWORKS

379

1

1

24.11.1.2. Creating a pod using a bond interface

1. Test the setup by creating a pod with a YAML file named for example podbonding.yaml with
content similar to the following:

Note the network annotation: it contains two SR-IOV network attachments, and one bond
network attachment. The bond attachment uses the two SR-IOV interfaces as bonded
port interfaces.

2. Apply the yaml by running the following command:

3. Inspect the pod interfaces with the following command:

The bond interface is automatically named net3. To set a specific interface name add
@name suffix to the pod’s k8s.v1.cni.cncf.io/networks annotation.

apiVersion: v1
 kind: Pod
 metadata:
 name: bondpod1
 namespace: demo
 annotations:
 k8s.v1.cni.cncf.io/networks: demo/sriovnet1, demo/sriovnet2, demo/bond-net1 1
 spec:
 containers:
 - name: podexample
 image: quay.io/openshift/origin-network-interface-bond-cni:4.11.0
 command: ["/bin/bash", "-c", "sleep INF"]

$ oc apply -f podbonding.yaml

$ oc rsh -n demo bondpod1
sh-4.4#
sh-4.4# ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
3: eth0@if150: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc
noqueue state UP
link/ether 62:b1:b5:c8:fb:7a brd ff:ff:ff:ff:ff:ff
inet 10.244.1.122/24 brd 10.244.1.255 scope global eth0
valid_lft forever preferred_lft forever
4: net3: <BROADCAST,MULTICAST,UP,LOWER_UP400> mtu 1500 qdisc noqueue state
UP qlen 1000
link/ether 9e:23:69:42:fb:8a brd ff:ff:ff:ff:ff:ff 1
inet 10.56.217.66/24 scope global bond0
valid_lft forever preferred_lft forever
43: net1: <BROADCAST,MULTICAST,UP,LOWER_UP800> mtu 1500 qdisc mq master
bond0 state UP qlen 1000
link/ether 9e:23:69:42:fb:8a brd ff:ff:ff:ff:ff:ff 2
44: net2: <BROADCAST,MULTICAST,UP,LOWER_UP800> mtu 1500 qdisc mq master
bond0 state UP qlen 1000
link/ether 9e:23:69:42:fb:8a brd ff:ff:ff:ff:ff:ff 3

OpenShift Container Platform 4.12 Networking

380

2

3

The net1 interface is based on an SR-IOV virtual function.

The net2 interface is based on an SR-IOV virtual function.

NOTE

If no interface names are configured in the pod annotation, interface names are
assigned automatically as net<n>, with <n> starting at 1.

4. Optional: If you want to set a specific interface name for example bond0, edit the
k8s.v1.cni.cncf.io/networks annotation and set bond0 as the interface name as follows:

24.12. CONFIGURING HARDWARE OFFLOADING

As a cluster administrator, you can configure hardware offloading on compatible nodes to increase data
processing performance and reduce load on host CPUs.

24.12.1. About hardware offloading

Open vSwitch hardware offloading is a method of processing network tasks by diverting them away from
the CPU and offloading them to a dedicated processor on a network interface controller. As a result,
clusters can benefit from faster data transfer speeds, reduced CPU workloads, and lower computing
costs.

The key element for this feature is a modern class of network interface controllers known as SmartNICs.
A SmartNIC is a network interface controller that is able to handle computationally-heavy network
processing tasks. In the same way that a dedicated graphics card can improve graphics performance, a
SmartNIC can improve network performance. In each case, a dedicated processor improves
performance for a specific type of processing task.

In OpenShift Container Platform, you can configure hardware offloading for bare metal nodes that have
a compatible SmartNIC. Hardware offloading is configured and enabled by the SR-IOV Network
Operator.

Hardware offloading is not compatible with all workloads or application types. Only the following two
communication types are supported:

pod-to-pod

pod-to-service, where the service is a ClusterIP service backed by a regular pod

In all cases, hardware offloading takes place only when those pods and services are assigned to nodes
that have a compatible SmartNIC. Suppose, for example, that a pod on a node with hardware offloading
tries to communicate with a service on a regular node. On the regular node, all the processing takes
place in the kernel, so the overall performance of the pod-to-service communication is limited to the
maximum performance of that regular node. Hardware offloading is not compatible with DPDK
applications.

Enabling hardware offloading on a node, but not configuring pods to use, it can result in decreased
throughput performance for pod traffic. You cannot configure hardware offloading for pods that are
managed by OpenShift Container Platform.

annotations:
 k8s.v1.cni.cncf.io/networks: demo/sriovnet1, demo/sriovnet2, demo/bond-net1@bond0

CHAPTER 24. HARDWARE NETWORKS

381

24.12.2. Supported devices

Hardware offloading is supported on the following network interface controllers:

Table 24.15. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28880 Family [ConnectX‑5 Ex] 15b3 1019

Table 24.16. Technology Preview network interface controllers

Manufacturer Model Vendor ID Device ID

Mellanox MT2892 Family [ConnectX-6 Dx] 15b3 101d

Mellanox MT2894 Family [ConnectX-6 Lx] 15b3 101f

Mellanox MT42822 BlueField-2 in ConnectX-6 NIC
mode

15b3 a2d6

IMPORTANT

Using a ConnectX-6 Lx or BlueField-2 in ConnectX-6 NIC mode device is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

24.12.3. Prerequisites

Your cluster has at least one bare metal machine with a network interface controller that is
supported for hardware offloading.

You installed the SR-IOV Network Operator .

Your cluster uses the OVN-Kubernetes network plugin .

In your OVN-Kubernetes network plugin configuration , the gatewayConfig.routingViaHost
field is set to false.

24.12.4. Configuring a machine config pool for hardware offloading

To enable hardware offloading, you must first create a dedicated machine config pool and configure it
to work with the SR-IOV Network Operator.

OpenShift Container Platform 4.12 Networking

382

https://access.redhat.com/support/offerings/techpreview/

1 2

3

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a machine config pool for machines you want to use hardware offloading on.

a. Create a file, such as mcp-offloading.yaml, with content like the following example:

The name of your machine config pool for hardware offloading.

This node role label is used to add nodes to the machine config pool.

b. Apply the configuration for the machine config pool:

2. Add nodes to the machine config pool. Label each node with the node role label of your pool:

3. Optional: To verify that the new pool is created, run the following command:

Example output

4. Add this machine config pool to the SriovNetworkPoolConfig custom resource:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: mcp-offloading 1
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,mcp-
offloading]} 2
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/mcp-offloading: "" 3

$ oc create -f mcp-offloading.yaml

$ oc label node worker-2 node-role.kubernetes.io/mcp-offloading=""

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master-0 Ready master 2d v1.25.0
master-1 Ready master 2d v1.25.0
master-2 Ready master 2d v1.25.0
worker-0 Ready worker 2d v1.25.0
worker-1 Ready worker 2d v1.25.0
worker-2 Ready mcp-offloading,worker 47h v1.25.0
worker-3 Ready mcp-offloading,worker 47h v1.25.0

CHAPTER 24. HARDWARE NETWORKS

383

1

a. Create a file, such as sriov-pool-config.yaml, with content like the following example:

The name of your machine config pool for hardware offloading.

b. Apply the configuration:

NOTE

When you apply the configuration specified in a SriovNetworkPoolConfig
object, the SR-IOV Operator drains and restarts the nodes in the machine
config pool.

It might take several minutes for a configuration changes to apply.

24.12.5. Configuring the SR-IOV network node policy

You can create an SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. To enable hardware offloading, you must define the .spec.eSwitchMode field with the value
"switchdev".

The following procedure creates an SR-IOV interface for a network interface controller with hardware
offloading.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file, such as sriov-node-policy.yaml, with content like the following example:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkPoolConfig
metadata:
 name: sriovnetworkpoolconfig-offload
 namespace: openshift-sriov-network-operator
spec:
 ovsHardwareOffloadConfig:
 name: mcp-offloading 1

$ oc create -f <SriovNetworkPoolConfig_name>.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-node-policy <.>
 namespace: openshift-sriov-network-operator
spec:
 deviceType: netdevice <.>
 eSwitchMode: "switchdev" <.>
 nicSelector:

OpenShift Container Platform 4.12 Networking

384

<.> The name for the custom resource object. <.> Required. Hardware offloading is not
supported with vfio-pci. <.> Required.

2. Apply the configuration for the policy:

NOTE

When you apply the configuration specified in a SriovNetworkPoolConfig
object, the SR-IOV Operator drains and restarts the nodes in the machine config
pool.

It might take several minutes for a configuration change to apply.

24.12.5.1. An example SR-IOV network node policy for OpenStack

The following example describes an SR-IOV interface for a network interface controller (NIC) with
hardware offloading on Red Hat OpenStack Platform (RHOSP).

An SR-IOV interface for a NIC with hardware offloading on RHOSP

24.12.6. Creating a network attachment definition

After you define the machine config pool and the SR-IOV network node policy, you can create a network
attachment definition for the network interface card you specified.

 deviceID: "1019"
 rootDevices:
 - 0000:d8:00.0
 vendor: "15b3"
 pfNames:
 - ens8f0
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 6
 priority: 5
 resourceName: mlxnics

$ oc create -f sriov-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: ${name}
 namespace: openshift-sriov-network-operator
spec:
 deviceType: switchdev
 isRdma: true
 nicSelector:
 netFilter: openstack/NetworkID:${net_id}
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: 'true'
 numVfs: 1
 priority: 99
 resourceName: ${name}

CHAPTER 24. HARDWARE NETWORKS

385

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file, such as net-attach-def.yaml, with content like the following example:

<.> The name for your network attachment definition. <.> The namespace for your network
attachment definition. <.> This is the value of the spec.resourceName field you specified in the
SriovNetworkNodePolicy object.

2. Apply the configuration for the network attachment definition:

Verification

Run the following command to see whether the new definition is present:

Example output

24.12.7. Adding the network attachment definition to your pods

After you create the machine config pool, the SriovNetworkPoolConfig and SriovNetworkNodePolicy
custom resources, and the network attachment definition, you can apply these configurations to your
pods by adding the network attachment definition to your pod specifications.

Procedure

In the pod specification, add the .metadata.annotations.k8s.v1.cni.cncf.io/networks field and
specify the network attachment definition you created for hardware offloading:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: net-attach-def <.>
 namespace: net-attach-def <.>
 annotations:
 k8s.v1.cni.cncf.io/resourceName: openshift.io/mlxnics <.>
spec:
 config: '{"cniVersion":"0.3.1","name":"ovn-kubernetes","type":"ovn-k8s-cni-overlay","ipam":
{},"dns":{}}'

$ oc create -f net-attach-def.yaml

$ oc get net-attach-def -A

NAMESPACE NAME AGE
net-attach-def net-attach-def 43h

....
metadata:

OpenShift Container Platform 4.12 Networking

386

<.> The value must be the name and namespace of the network attachment definition you
created for hardware offloading.

24.13. SWITCHING BLUEFIELD-2 FROM DPU TO NIC

You can switch the Bluefield-2 network device from data processing unit (DPU) mode to network
interface controller (NIC) mode.

IMPORTANT

Switching Bluefield-2 from data processing unit (DPU) mode to network interface
controller (NIC) mode is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

24.13.1. Switching Bluefield-2 from DPU mode to NIC mode

Use the following procedure to switch Bluefield-2 from data processing units (DPU) mode to network
interface controller (NIC) mode.

IMPORTANT

Currently, only switching Bluefield-2 from DPU to NIC mode is supported. Switching from
NIC mode to DPU mode is unsupported.

Prerequisites

You have installed the SR-IOV Network Operator. For more information, see "Installing SR-IOV
Network Operator".

You have updated Bluefield-2 to the latest firmware. For more information, see Firmware for
NVIDIA BlueField-2.

Procedure

1. Add the following labels to each of your worker nodes by entering the following commands:

2. Create a machine config pool for the SR-IOV Operator, for example:

 annotations:
 v1.multus-cni.io/default-network: net-attach-def/net-attach-def <.>

$ oc label node <example_node_name_one> node-role.kubernetes.io/sriov=

$ oc label node <example_node_name_two> node-role.kubernetes.io/sriov=

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool

CHAPTER 24. HARDWARE NETWORKS

387

https://access.redhat.com/support/offerings/techpreview/
https://network.nvidia.com/support/firmware/bluefield2/

3. Apply the following machineconfig.yaml file to the worker nodes:

Optional: The PCI address of a specific card can optionally be specified, for example

metadata:
 name: sriov
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,sriov]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/sriov: ""

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: sriov
 name: 99-bf2-dpu
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,ZmluZF9jb250YWluZXIoKSB7CiAgY3JpY3RsIHBzIC1vIGpzb24gfCBqcSAtciAnLmNv
bnRhaW5lcnNbXSB8IHNlbGVjdCgubWV0YWRhdGEubmFtZT09InNyaW92LW5ldHdvcmstY29
uZmlnLWRhZW1vbiIpIHwgLmlkJwp9CnVudGlsIG91dHB1dD0kKGZpbmRfY29udGFpbmVyKT
sgW1sgLW4gIiRvdXRwdXQiIF1dOyBkbwogIGVjaG8gIndhaXRpbmcgZm9yIGNvbnRhaW5lciB
0byBjb21lIHVwIgogIHNsZWVwIDE7CmRvbmUKISBzdWRvIGNyaWN0bCBleGVjICRvdXRwdX
QgL2JpbmRhdGEvc2NyaXB0cy9iZjItc3dpdGNoLW1vZGUuc2ggIiRAIgo=
 mode: 0755
 overwrite: true
 path: /etc/default/switch_in_sriov_config_daemon.sh
 systemd:
 units:
 - name: dpu-switch.service
 enabled: true
 contents: |
 [Unit]
 Description=Switch BlueField2 card to NIC/DPU mode
 RequiresMountsFor=%t/containers
 Wants=network.target
 After=network-online.target kubelet.service
 [Service]
 SuccessExitStatus=0 120
 RemainAfterExit=True
 ExecStart=/bin/bash -c '/etc/default/switch_in_sriov_config_daemon.sh nic ||
shutdown -r now' 1
 Type=oneshot
 [Install]
 WantedBy=multi-user.target

OpenShift Container Platform 4.12 Networking

388

1 Optional: The PCI address of a specific card can optionally be specified, for example
ExecStart=/bin/bash -c '/etc/default/switch_in_sriov_config_daemon.sh nic
0000:5e:00.0 || echo done'. By default, the first device is selected. If there is more than
one device, you must specify which PCI address to be used. The PCI address must be the
same on all nodes that are switching Bluefield-2 from DPU mode to NIC mode.

4. Wait for the worker nodes to restart. After restarting, the Bluefield-2 network device on the
worker nodes is switched into NIC mode.

Additional resources

Installing SR-IOV Network Operator

24.14. UNINSTALLING THE SR-IOV NETWORK OPERATOR

To uninstall the SR-IOV Network Operator, you must delete any running SR-IOV workloads, uninstall the
Operator, and delete the webhooks that the Operator used.

24.14.1. Uninstalling the SR-IOV Network Operator

As a cluster administrator, you can uninstall the SR-IOV Network Operator.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have the SR-IOV Network Operator installed.

Procedure

1. Delete all SR-IOV custom resources (CRs):

2. Follow the instructions in the "Deleting Operators from a cluster" section to remove the SR-IOV
Network Operator from your cluster.

3. Delete the SR-IOV custom resource definitions that remain in the cluster after the SR-IOV
Network Operator is uninstalled:

$ oc delete sriovnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all

$ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

$ oc delete crd sriovibnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

CHAPTER 24. HARDWARE NETWORKS

389

4. Delete the SR-IOV webhooks:

5. Delete the SR-IOV Network Operator namespace:

Additional resources

Deleting Operators from a cluster

$ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

$ oc delete crd sriovnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

$ oc delete mutatingwebhookconfigurations network-resources-injector-config

$ oc delete MutatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete ValidatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete namespace openshift-sriov-network-operator

OpenShift Container Platform 4.12 Networking

390

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-deleting-operators-from-a-cluster

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

25.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

The OpenShift Container Platform cluster uses a virtualized network for pod and service networks.

Part of Red Hat OpenShift Networking, the OVN-Kubernetes network plugin is the default network
provider for OpenShift Container Platform. OVN-Kubernetes is based on Open Virtual Network (OVN)
and provides an overlay-based networking implementation. A cluster that uses the OVN-Kubernetes
plugin also runs Open vSwitch (OVS) on each node. OVN configures OVS on each node to implement
the declared network configuration.

NOTE

OVN-Kubernetes is the default networking solution for OpenShift Container Platform
and single-node OpenShift deployments.

OVN-Kubernetes, which arose from the OVS project, uses many of the same constructs, such as open
flow rules, to determine how packets travel through the network. For more information, see the Open
Virtual Network website.

OVN-Kubernetes is a series of daemons for OVS that translate virtual network configurations into
OpenFlow rules. OpenFlow is a protocol for communicating with network switches and routers,
providing a means for remotely controlling the flow of network traffic on a network device, allowing
network administrators to configure, manage, and monitor the flow of network traffic.

OVN-Kubernetes provides more of the advanced functionality not available with OpenFlow. OVN
supports distributed virtual routing, distributed logical switches, access control, DHCP and DNS. OVN
implements distributed virtual routing within logic flows which equate to open flows. So for example if
you have a pod that sends out a DHCP request on the network, it sends out that broadcast looking for
DHCP address there will be a logic flow rule that matches that packet, and it responds giving it a
gateway, a DNS server an IP address and so on.

OVN-Kubernetes runs a daemon on each node. There are daemon sets for the databases and for the
OVN controller that run on every node. The OVN controller programs the Open vSwitch daemon on the
nodes to support the network provider features; egress IPs, firewalls, routers, hybrid networking, IPSEC
encryption, IPv6, network policy, network policy logs, hardware offloading and multicast.

25.1.1. OVN-Kubernetes purpose

The OVN-Kubernetes network plugin is an open-source, fully-featured Kubernetes CNI plugin that uses
Open Virtual Network (OVN) to manage network traffic flows. OVN is a community developed, vendor-
agnostic network virtualization solution. The OVN-Kubernetes network plugin:

Uses OVN (Open Virtual Network) to manage network traffic flows. OVN is a community
developed, vendor-agnostic network virtualization solution.

Implements Kubernetes network policy support, including ingress and egress rules.

Uses the Geneve (Generic Network Virtualization Encapsulation) protocol rather than VXLAN
to create an overlay network between nodes.

The OVN-Kubernetes network plugin provides the following advantages over OpenShift SDN.

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

391

https://www.ovn.org/en/

Full support for IPv6 single-stack and IPv4/IPv6 dual-stack networking on supported platforms

Support for hybrid clusters with both Linux and Microsoft Windows workloads

Optional IPsec encryption of intra-cluster communications

Offload of network data processing from host CPU to compatible network cards and data
processing units (DPUs)

25.1.2. Supported network plugin feature matrix

Red Hat OpenShift Networking offers two options for the network plugin, OpenShift SDN and OVN-
Kubernetes, for the network plugin. The following table summarizes the current feature support for both
network plugins:

Table 25.1. Default CNI network plugin feature comparison

Feature OVN-Kubernetes OpenShift SDN

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported [2] Supported

Hybrid networking Supported Not supported

IPsec encryption for intra-cluster communication Supported Not supported

IPv6 Supported [3] [4] Not supported

Kubernetes network policy Supported Supported

Kubernetes network policy logs Supported Not supported

Hardware offloading Supported Not supported

Multicast Supported Supported

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

2. Egress router for OVN-Kubernetes supports only redirect mode.

3. IPv6 is supported only on bare metal, IBM Power, and IBM Z clusters.

4. IPv6 single stack does not support Kubernetes NMState and is not supported on IBM Power and
IBM Z clusters.

25.1.3. OVN-Kubernetes IPv6 and dual-stack limitations

OpenShift Container Platform 4.12 Networking

392

The OVN-Kubernetes network plugin has the following limitations:

For clusters configured for dual-stack networking, both IPv4 and IPv6 traffic must use the
same network interface as the default gateway. If this requirement is not met, pods on the host
in the ovnkube-node daemon set enter the CrashLoopBackOff state. If you display a pod with
a command such as oc get pod -n openshift-ovn-kubernetes -l app=ovnkube-node -o yaml,
the status field contains more than one message about the default gateway, as shown in the
following output:

The only resolution is to reconfigure the host networking so that both IP families use the same
network interface for the default gateway.

For clusters configured for dual-stack networking, both the IPv4 and IPv6 routing tables must
contain the default gateway. If this requirement is not met, pods on the host in the ovnkube-
node daemon set enter the CrashLoopBackOff state. If you display a pod with a command
such as oc get pod -n openshift-ovn-kubernetes -l app=ovnkube-node -o yaml, the status
field contains more than one message about the default gateway, as shown in the following
output:

The only resolution is to reconfigure the host networking so that both IP families contain the
default gateway.

25.1.4. Session affinity

Session affinity is a feature that applies to Kubernetes Service objects. You can use session affinity if
you want to ensure that each time you connect to a <service_VIP>:<Port>, the traffic is always load
balanced to the same back end. For more information, including how to set session affinity based on a
client’s IP address, see Session affinity.

Stickiness timeout for session affinity
The OVN-Kubernetes network plugin for OpenShift Container Platform calculates the stickiness
timeout for a session from a client based on the last packet. For example, if you run a curl command 10
times, the sticky session timer starts from the tenth packet not the first. As a result, if the client is
continuously contacting the service, then the session never times out. The timeout starts when the
service has not received a packet for the amount of time set by the timeoutSeconds parameter.

Additional resources

Configuring an egress firewall for a project

About network policy

Logging network policy events

I1006 16:09:50.985852 60651 helper_linux.go:73] Found default gateway interface br-ex
192.168.127.1
I1006 16:09:50.985923 60651 helper_linux.go:73] Found default gateway interface ens4
fe80::5054:ff:febe:bcd4
F1006 16:09:50.985939 60651 ovnkube.go:130] multiple gateway interfaces detected: br-ex
ens4

I0512 19:07:17.589083 108432 helper_linux.go:74] Found default gateway interface br-ex
192.168.123.1
F0512 19:07:17.589141 108432 ovnkube.go:133] failed to get default gateway interface

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

393

https://kubernetes.io/docs/reference/networking/virtual-ips/#session-affinity
https://kubernetes.io/docs/reference/networking/virtual-ips/#session-stickiness-timeout

Enabling multicast for a project

Configuring IPsec encryption

Network [operator.openshift.io/v1]

25.2. OVN-KUBERNETES ARCHITECTURE

25.2.1. Introduction to OVN-Kubernetes architecture

The following diagram shows the OVN-Kubernetes architecture.

Figure 25.1. OVK-Kubernetes architecture

OpenShift Container Platform 4.12 Networking

394

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-operator-openshift-io-v1

Figure 25.1. OVK-Kubernetes architecture

The key components are:

Cloud Management System (CMS) - A platform specific client for OVN that provides a CMS
specific plugin for OVN integration. The plugin translates the cloud management system’s
concept of the logical network configuration, stored in the CMS configuration database in a
CMS-specific format, into an intermediate representation understood by OVN.

OVN Northbound database (nbdb) - Stores the logical network configuration passed by the
CMS plugin.

OVN Southbound database (sbdb) - Stores the physical and logical network configuration
state for OpenVswitch (OVS) system on each node, including tables that bind them.

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

395

ovn-northd - This is the intermediary client between nbdb and sbdb. It translates the logical
network configuration in terms of conventional network concepts, taken from the nbdb, into
logical data path flows in the sbdb below it. The container name is northd and it runs in the
ovnkube-master pods.

ovn-controller - This is the OVN agent that interacts with OVS and hypervisors, for any
information or update that is needed for sbdb. The ovn-controller reads logical flows from the
sbdb, translates them into OpenFlow flows and sends them to the node’s OVS daemon. The
container name is ovn-controller and it runs in the ovnkube-node pods.

The OVN northbound database has the logical network configuration passed down to it by the cloud
management system (CMS). The OVN northbound Database contains the current desired state of the
network, presented as a collection of logical ports, logical switches, logical routers, and more. The ovn-
northd (northd container) connects to the OVN northbound database and the OVN southbound
database. It translates the logical network configuration in terms of conventional network concepts,
taken from the OVN northbound Database, into logical data path flows in the OVN southbound
database.

The OVN southbound database has physical and logical representations of the network and binding
tables that link them together. Every node in the cluster is represented in the southbound database, and
you can see the ports that are connected to it. It also contains all the logic flows, the logic flows are
shared with the ovn-controller process that runs on each node and the ovn-controller turns those into
OpenFlow rules to program Open vSwitch.

The Kubernetes control plane nodes each contain an ovnkube-master pod which hosts containers for
the OVN northbound and southbound databases. All OVN northbound databases form a Raft cluster
and all southbound databases form a separate Raft cluster. At any given time a single ovnkube-master
is the leader and the other ovnkube-master pods are followers.

25.2.2. Listing all resources in the OVN-Kubernetes project

Finding the resources and containers that run in the OVN-Kubernetes project is important to help you
understand the OVN-Kubernetes networking implementation.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

Procedure

1. Run the following command to get all resources, endpoints, and ConfigMaps in the OVN-
Kubernetes project:

Example output

$ oc get all,ep,cm -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE
pod/ovnkube-master-9g7zt 6/6 Running 1 (48m ago) 57m
pod/ovnkube-master-lqs4v 6/6 Running 0 57m
pod/ovnkube-master-vxhtq 6/6 Running 0 57m
pod/ovnkube-node-9k9kc 5/5 Running 0 57m

OpenShift Container Platform 4.12 Networking

396

There are three ovnkube-masters that run on the control plane nodes, and two daemon sets
used to deploy the ovnkube-master and ovnkube-node pods. There is one ovnkube-node
pod for each node in the cluster. In this example, there are 5, and since there is one ovnkube-
node per node in the cluster, there are five nodes in the cluster. The ovnkube-config
ConfigMap has the OpenShift Container Platform OVN-Kubernetes configurations started by
online-master and ovnkube-node. The ovn-kubernetes-master ConfigMap has the
information of the current online master leader.

2. List all the containers in the ovnkube-master pods by running the following command:

Expected output

The ovnkube-master pod is made up of several containers. It is responsible for hosting the
northbound database (nbdb container), the southbound database (sbdb container), watching

pod/ovnkube-node-jg52r 5/5 Running 0 51m
pod/ovnkube-node-k8wf7 5/5 Running 0 57m
pod/ovnkube-node-tlwk6 5/5 Running 0 47m
pod/ovnkube-node-xsvnk 5/5 Running 0 57m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ovn-kubernetes-master ClusterIP None <none> 9102/TCP 57m
service/ovn-kubernetes-node ClusterIP None <none> 9103/TCP,9105/TCP
57m
service/ovnkube-db ClusterIP None <none> 9641/TCP,9642/TCP 57m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE
daemonset.apps/ovnkube-master 3 3 3 3 3
beta.kubernetes.io/os=linux,node-role.kubernetes.io/master= 57m
daemonset.apps/ovnkube-node 5 5 5 5 5
beta.kubernetes.io/os=linux 57m

NAME ENDPOINTS AGE
endpoints/ovn-kubernetes-master 10.0.132.11:9102,10.0.151.18:9102,10.0.192.45:9102
57m
endpoints/ovn-kubernetes-node 10.0.132.11:9105,10.0.143.72:9105,10.0.151.18:9105 + 7
more... 57m
endpoints/ovnkube-db 10.0.132.11:9642,10.0.151.18:9642,10.0.192.45:9642 + 3
more... 57m

NAME DATA AGE
configmap/control-plane-status 1 55m
configmap/kube-root-ca.crt 1 57m
configmap/openshift-service-ca.crt 1 57m
configmap/ovn-ca 1 57m
configmap/ovn-kubernetes-master 0 55m
configmap/ovnkube-config 1 57m
configmap/signer-ca 1 57m

$ oc get pods ovnkube-master-9g7zt \
-o jsonpath='{.spec.containers[*].name}' -n openshift-ovn-kubernetes

northd nbdb kube-rbac-proxy sbdb ovnkube-master ovn-dbchecker

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

397

for cluster events for pods, egressIP, namespaces, services, endpoints, egress firewall, and
network policy and writing them to the northbound database (ovnkube-master pod), as well as
managing pod subnet allocation to nodes.

3. List all the containers in the ovnkube-node pods by running the following command:

Expected output

The ovnkube-node pod has a container (ovn-controller) that resides on each OpenShift
Container Platform node. Each node’s ovn-controller connects the OVN northbound to the
OVN southbound database to learn about the OVN configuration. The ovn-controller connects
southbound to ovs-vswitchd as an OpenFlow controller, for control over network traffic, and to
the local ovsdb-server to allow it to monitor and control Open vSwitch configuration.

25.2.3. Listing the OVN-Kubernetes northbound database contents

To understand logic flow rules you need to examine the northbound database and understand what
objects are there to see how they are translated into logic flow rules. The up to date information is
present on the OVN Raft leader and this procedure describes how to find the Raft leader and
subsequently query it to list the OVN northbound database contents.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

Procedure

1. Find the OVN Raft leader for the northbound database.

NOTE

The Raft leader stores the most up to date information.

a. List the pods by running the following command:

Example output

$ oc get pods ovnkube-node-jg52r \
-o jsonpath='{.spec.containers[*].name}' -n openshift-ovn-kubernetes

ovn-controller ovn-acl-logging kube-rbac-proxy kube-rbac-proxy-ovn-metrics ovnkube-node

$ oc get po -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE
ovnkube-master-7j97q 6/6 Running 2 (148m ago) 149m
ovnkube-master-gt4ms 6/6 Running 1 (140m ago) 147m
ovnkube-master-mk6p6 6/6 Running 0 148m
ovnkube-node-8qvtr 5/5 Running 0 149m

OpenShift Container Platform 4.12 Networking

398

1

2

3

b. Choose one of the master pods at random and run the following command:

Example output

This pod is identified as a follower

The leader is identified as 2b4f

The 2b4f is on IP address 10.0.242.240

c. Find the ovnkube-master pod running on IP Address 10.0.242.240 using the following
command:

Example output

ovnkube-node-fqdc9 5/5 Running 0 149m
ovnkube-node-tlfwv 5/5 Running 0 149m
ovnkube-node-wlwkn 5/5 Running 0 142m

$ oc exec -n openshift-ovn-kubernetes ovnkube-master-7j97q \
-- /usr/bin/ovn-appctl -t /var/run/ovn/ovnnb_db.ctl \
--timeout=3 cluster/status OVN_Northbound

Defaulted container "northd" out of: northd, nbdb, kube-rbac-proxy, sbdb, ovnkube-
master, ovn-dbchecker
1c57
Name: OVN_Northbound
Cluster ID: c48a (c48aa5c0-a704-4c77-a066-24fe99d9b338)
Server ID: 1c57 (1c57b6fc-2849-49b7-8679-fbf18bafe339)
Address: ssl:10.0.147.219:9643
Status: cluster member
Role: follower 1
Term: 5
Leader: 2b4f 2
Vote: unknown

Election timer: 10000
Log: [2, 3018]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: ->0000 ->0000 <-8844 <-2b4f
Disconnections: 0
Servers:
 1c57 (1c57 at ssl:10.0.147.219:9643) (self)
 8844 (8844 at ssl:10.0.163.212:9643) last msg 8928047 ms ago
 2b4f (2b4f at ssl:10.0.242.240:9643) last msg 620 ms ago 3

$ oc get po -o wide -n openshift-ovn-kubernetes | grep 10.0.242.240 | grep -v ovnkube-
node

ovnkube-master-gt4ms 6/6 Running 1 (143m ago) 150m 10.0.242.240 ip-
10-0-242-240.ec2.internal <none> <none>

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

399

The ovnkube-master-gt4ms pod runs on IP Address 10.0.242.240.

2. Run the following command to show all the objects in the northbound database:

The output is too long to list here. The list includes the NAT rules, logical switches, load
balancers and so on.

Run the following command to display the options available with the command ovn-nbctl:

You can narrow down and focus on specific components by using some of the following
commands:

3. Run the following command to show the list of logical routers:

Example output

NOTE

From this output you can see there is router on each node plus an
ovn_cluster_router.

4. Run the following command to show the list of logical switches:

Example output

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-gt4ms \
-c northd -- ovn-nbctl show

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-mk6p6 \
-c northd ovn-nbctl --help

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-gt4ms \
-c northd -- ovn-nbctl lr-list

f971f1f3-5112-402f-9d1e-48f1d091ff04 (GR_ip-10-0-145-205.ec2.internal)
69c992d8-a4cf-429e-81a3-5361209ffe44 (GR_ip-10-0-147-219.ec2.internal)
7d164271-af9e-4283-b84a-48f2a44851cd (GR_ip-10-0-163-212.ec2.internal)
111052e3-c395-408b-97b2-8dd0a20a29a5 (GR_ip-10-0-165-9.ec2.internal)
ed50ce33-df5d-48e8-8862-2df6a59169a0 (GR_ip-10-0-209-170.ec2.internal)
f44e2a96-8d1e-4a4d-abae-ed8728ac6851 (GR_ip-10-0-242-240.ec2.internal)
ef3d0057-e557-4b1a-b3c6-fcc3463790b0 (ovn_cluster_router)

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-gt4ms \
-c northd -- ovn-nbctl ls-list

82808c5c-b3bc-414a-bb59-8fec4b07eb14 (ext_ip-10-0-145-205.ec2.internal)
3d22444f-0272-4c51-afc6-de9e03db3291 (ext_ip-10-0-147-219.ec2.internal)
bf73b9df-59ab-4c58-a456-ce8205b34ac5 (ext_ip-10-0-163-212.ec2.internal)
bee1e8d0-ec87-45eb-b98b-63f9ec213e5e (ext_ip-10-0-165-9.ec2.internal)
812f08f2-6476-4abf-9a78-635f8516f95e (ext_ip-10-0-209-170.ec2.internal)
f65e710b-32f9-482b-8eab-8d96a44799c1 (ext_ip-10-0-242-240.ec2.internal)
84dad700-afb8-4129-86f9-923a1ddeace9 (ip-10-0-145-205.ec2.internal)

OpenShift Container Platform 4.12 Networking

400

NOTE

From this output you can see there is an ext switch for each node plus switches
with the node name itself and a join switch.

5. Run the following command to show the list of load balancers:

Example output

1b7b448b-e36c-4ca3-9f38-4a2cf6814bfd (ip-10-0-147-219.ec2.internal)
d92d1f56-2606-4f23-8b6a-4396a78951de (ip-10-0-163-212.ec2.internal)
6864a6b2-de15-4de3-92d8-f95014b6f28f (ip-10-0-165-9.ec2.internal)
c26bf618-4d7e-4afd-804f-1a2cbc96ec6d (ip-10-0-209-170.ec2.internal)
ab9a4526-44ed-4f82-ae1c-e20da04947d9 (ip-10-0-242-240.ec2.internal)
a8588aba-21da-4276-ba0f-9d68e88911f0 (join)

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-gt4ms \
-c northd -- ovn-nbctl lb-list

UUID LB PROTO VIP IPs
f0fb50f9-4968-4b55-908c-616bae4db0a2 Service_default/ tcp 172.30.0.1:443
10.0.147.219:6443,10.0.163.212:6443,169.254.169.2:6443
0dc42012-4f5b-432e-ae01-2cc4bfe81b00 Service_default/ tcp 172.30.0.1:443
10.0.147.219:6443,169.254.169.2:6443,10.0.242.240:6443
f7fff5d5-5eff-4a40-98b1-3a4ba8f7f69c Service_default/ tcp 172.30.0.1:443
169.254.169.2:6443,10.0.163.212:6443,10.0.242.240:6443
12fe57a0-50a4-4a1b-ac10-5f288badee07 Service_default/ tcp 172.30.0.1:443
10.0.147.219:6443,10.0.163.212:6443,10.0.242.240:6443
3f137fbf-0b78-4875-ba44-fbf89f254cf7 Service_openshif tcp 172.30.23.153:443
10.130.0.14:8443
174199fe-0562-4141-b410-12094db922a7 Service_openshif tcp 172.30.69.51:50051
10.130.0.84:50051
5ee2d4bd-c9e2-4d16-a6df-f54cd17c9ac3 Service_openshif tcp 172.30.143.87:9001
10.0.145.205:9001,10.0.147.219:9001,10.0.163.212:9001,10.0.165.9:9001,10.0.209.170:9001,
10.0.242.240:9001
a056ae3d-83f8-45bc-9c80-ef89bce7b162 Service_openshif tcp 172.30.164.74:443
10.0.147.219:6443,10.0.163.212:6443,10.0.242.240:6443
bac51f3d-9a6f-4f5e-ac02-28fd343a332a Service_openshif tcp 172.30.0.10:53
10.131.0.6:5353
 tcp 172.30.0.10:9154 10.131.0.6:9154
48105bbc-51d7-4178-b975-417433f9c20a Service_openshif tcp 172.30.26.159:2379
10.0.147.219:2379,169.254.169.2:2379,10.0.242.240:2379
 tcp 172.30.26.159:9979
10.0.147.219:9979,169.254.169.2:9979,10.0.242.240:9979
7de2b8fc-342a-415f-ac13-1a493f4e39c0 Service_openshif tcp 172.30.53.219:443
10.128.0.7:8443
 tcp 172.30.53.219:9192 10.128.0.7:9192
2cef36bc-d720-4afb-8d95-9350eff1d27a Service_openshif tcp 172.30.81.66:443
10.128.0.23:8443
365cb6fb-e15e-45a4-a55b-21868b3cf513 Service_openshif tcp 172.30.96.51:50051
10.130.0.19:50051
41691cbb-ec55-4cdb-8431-afce679c5e8d Service_openshif tcp 172.30.98.218:9099
169.254.169.2:9099
82df10ba-8143-400b-977a-8f5f416a4541 Service_openshif tcp 172.30.26.159:2379

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

401

NOTE

From this truncated output you can see there are many OVN-Kubernetes load
balancers. Load balancers in OVN-Kubernetes are representations of services.

25.2.4. Command line arguments for ovn-nbctl to examine northbound database
contents

The following table describes the command line arguments that can be used with ovn-nbctl to examine
the contents of the northbound database.

Table 25.2. Command line arguments to examine northbound database contents

Argument Description

ovn-nbctl show An overview of the northbound database contents.

10.0.147.219:2379,10.0.163.212:2379,169.254.169.2:2379
 tcp 172.30.26.159:9979
10.0.147.219:9979,10.0.163.212:9979,169.254.169.2:9979
debe7f3a-39a8-490e-bc0a-ebbfafdffb16 Service_openshif tcp 172.30.23.244:443
10.128.0.48:8443,10.129.0.27:8443,10.130.0.45:8443
8a749239-02d9-4dc2-8737-716528e0da7b Service_openshif tcp
172.30.124.255:8443 10.128.0.14:8443
880c7c78-c790-403d-a3cb-9f06592717a3 Service_openshif tcp 172.30.0.10:53
10.130.0.20:5353
 tcp 172.30.0.10:9154 10.130.0.20:9154
d2f39078-6751-4311-a161-815bbaf7f9c7 Service_openshif tcp 172.30.26.159:2379
169.254.169.2:2379,10.0.163.212:2379,10.0.242.240:2379
 tcp 172.30.26.159:9979
169.254.169.2:9979,10.0.163.212:9979,10.0.242.240:9979
30948278-602b-455c-934a-28e64c46de12 Service_openshif tcp
172.30.157.35:9443 10.130.0.43:9443
2cc7e376-7c02-4a82-89e8-dfa1e23fb003 Service_openshif tcp
172.30.159.212:17698 10.128.0.48:17698,10.129.0.27:17698,10.130.0.45:17698
e7d22d35-61c2-40c2-bc30-265cff8ed18d Service_openshif tcp 172.30.143.87:9001
10.0.145.205:9001,10.0.147.219:9001,10.0.163.212:9001,10.0.165.9:9001,10.0.209.170:9001,
169.254.169.2:9001
75164e75-e0c5-40fb-9636-bfdbf4223a02 Service_openshif tcp 172.30.150.68:1936
10.129.4.8:1936,10.131.0.10:1936
 tcp 172.30.150.68:443
10.129.4.8:443,10.131.0.10:443
 tcp 172.30.150.68:80
10.129.4.8:80,10.131.0.10:80
7bc4ee74-dccf-47e9-9149-b011f09aff39 Service_openshif tcp 172.30.164.74:443
10.0.147.219:6443,10.0.163.212:6443,169.254.169.2:6443
0db59e74-1cc6-470c-bf44-57c520e0aa8f Service_openshif tcp 10.0.163.212:31460
 tcp 10.0.163.212:32361
c300e134-018c-49af-9f84-9deb1d0715f8 Service_openshif tcp 172.30.42.244:50051
10.130.0.47:50051
5e352773-429b-4881-afb3-a13b7ba8b081 Service_openshif tcp 172.30.244.66:443
10.129.0.8:8443,10.130.0.8:8443
54b82d32-1939-4465-a87d-f26321442a7a Service_openshif tcp 172.30.12.9:8443
10.128.0.35:8443

OpenShift Container Platform 4.12 Networking

402

ovn-nbctl show
<switch_or_router>

Show the details associated with the specified switch or router.

ovn-nbctl lr-list Show the logical routers.

ovn-nbctl lrp-list <router> Using the router information from ovn-nbctl lr-list to show the router
ports.

ovn-nbctl lr-nat-list
<router>

Show network address translation details for the specified router.

ovn-nbctl ls-list Show the logical switches

ovn-nbctl lsp-list
<switch>

Using the switch information from ovn-nbctl ls-list to show the switch
port.

ovn-nbctl lsp-get-type
<port>

Get the type for the logical port.

ovn-nbctl lb-list Show the load balancers.

Argument Description

25.2.5. Listing the OVN-Kubernetes southbound database contents

Logic flow rules are stored in the southbound database that is a representation of your infrastructure.
The up to date information is present on the OVN Raft leader and this procedure describes how to find
the Raft leader and query it to list the OVN southbound database contents.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

Procedure

1. Find the OVN Raft leader for the southbound database.

NOTE

The Raft leader stores the most up to date information.

a. List the pods by running the following command:

Example output

$ oc get po -n openshift-ovn-kubernetes

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

403

1

2

3

b. Choose one of the master pods at random and run the following command to find the OVN
southbound Raft leader:

Example output

This pod is identified as a follower

The leader is identified as 7081

The 7081 is on IP address 10.0.163.212

c. Find the ovnkube-master pod running on IP Address 10.0.163.212 using the following
command:

NAME READY STATUS RESTARTS AGE
ovnkube-master-7j97q 6/6 Running 2 (134m ago) 135m
ovnkube-master-gt4ms 6/6 Running 1 (126m ago) 133m
ovnkube-master-mk6p6 6/6 Running 0 134m
ovnkube-node-8qvtr 5/5 Running 0 135m
ovnkube-node-bqztb 5/5 Running 0 117m
ovnkube-node-fqdc9 5/5 Running 0 135m
ovnkube-node-tlfwv 5/5 Running 0 135m
ovnkube-node-wlwkn 5/5 Running 0 128m

$ oc exec -n openshift-ovn-kubernetes ovnkube-master-7j97q \
-- /usr/bin/ovn-appctl -t /var/run/ovn/ovnsb_db.ctl \
--timeout=3 cluster/status OVN_Southbound

Defaulted container "northd" out of: northd, nbdb, kube-rbac-proxy, sbdb, ovnkube-
master, ovn-dbchecker
1930
Name: OVN_Southbound
Cluster ID: f772 (f77273c0-7986-42dd-bd3c-a9f18e25701f)
Server ID: 1930 (1930f4b7-314b-406f-9dcb-b81fe2729ae1)
Address: ssl:10.0.147.219:9644
Status: cluster member
Role: follower 1
Term: 3
Leader: 7081 2
Vote: unknown

Election timer: 16000
Log: [2, 2423]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: ->0000 ->7145 <-7081 <-7145
Disconnections: 0
Servers:
 7081 (7081 at ssl:10.0.163.212:9644) last msg 59 ms ago 3
 1930 (1930 at ssl:10.0.147.219:9644) (self)
 7145 (7145 at ssl:10.0.242.240:9644) last msg 7871735 ms ago

OpenShift Container Platform 4.12 Networking

404

Example output

The ovnkube-master-mk6p6 pod runs on IP Address 10.0.163.212.

2. Run the following command to show all the information stored in the southbound database:

Example output

This detailed output shows the chassis and the ports that are attached to the chassis which in
this case are all of the router ports and anything that runs like host networking. Any pods
communicate out to the wider network using source network address translation (SNAT). Their
IP address is translated into the IP address of the node that the pod is running on and then sent
out into the network.

In addition to the chassis information the southbound database has all the logic flows and those
logic flows are then sent to the ovn-controller running on each of the nodes. The ovn-
controller translates the logic flows into open flow rules and ultimately programs OpenvSwitch
so that your pods can then follow open flow rules and make it out of the network.

Run the following command to display the options available with the command ovn-sbctl:

$ oc get po -o wide -n openshift-ovn-kubernetes | grep 10.0.163.212 | grep -v ovnkube-
node

ovnkube-master-mk6p6 6/6 Running 0 136m 10.0.163.212 ip-10-0-163-
212.ec2.internal <none> <none>

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-mk6p6 \
-c northd -- ovn-sbctl show

Chassis "8ca57b28-9834-45f0-99b0-96486c22e1be"
 hostname: ip-10-0-156-16.ec2.internal
 Encap geneve
 ip: "10.0.156.16"
 options: {csum="true"}
 Port_Binding k8s-ip-10-0-156-16.ec2.internal
 Port_Binding etor-GR_ip-10-0-156-16.ec2.internal
 Port_Binding jtor-GR_ip-10-0-156-16.ec2.internal
 Port_Binding openshift-ingress-canary_ingress-canary-hsblx
 Port_Binding rtoj-GR_ip-10-0-156-16.ec2.internal
 Port_Binding openshift-monitoring_prometheus-adapter-658fc5967-9l46x
 Port_Binding rtoe-GR_ip-10-0-156-16.ec2.internal
 Port_Binding openshift-multus_network-metrics-daemon-77nvz
 Port_Binding openshift-ingress_router-default-64fd8c67c7-df598
 Port_Binding openshift-dns_dns-default-ttpcq
 Port_Binding openshift-monitoring_alertmanager-main-0
 Port_Binding openshift-e2e-loki_loki-promtail-g2pbh
 Port_Binding openshift-network-diagnostics_network-check-target-m6tn4
 Port_Binding openshift-monitoring_thanos-querier-75b5cf8dcb-qf8qj
 Port_Binding cr-rtos-ip-10-0-156-16.ec2.internal
 Port_Binding openshift-image-registry_image-registry-7b7bc44566-mp9b8

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

405

25.2.6. Command line arguments for ovn-sbctl to examine southbound database
contents

The following table describes the command line arguments that can be used with ovn-sbctl to examine
the contents of the southbound database.

Table 25.3. Command line arguments to examine southbound database contents

Argument Description

ovn-sbctl show Overview of the southbound database contents.

ovn-sbctl list
Port_Binding <port>

List the contents of southbound database for a the specified port .

ovn-sbctl dump-flows List the logical flows.

25.2.7. OVN-Kubernetes logical architecture

OVN is a network virtualization solution. It creates logical switches and routers. These switches and
routers are interconnected to create any network topologies. When you run ovnkube-trace with the log
level set to 2 or 5 the OVN-Kubernetes logical components are exposed. The following diagram shows
how the routers and switches are connected in OpenShift Container Platform.

Figure 25.2. OVN-Kubernetes router and switch components

$ oc exec -n openshift-ovn-kubernetes -it ovnkube-master-mk6p6 \
-c northd -- ovn-sbctl --help

OpenShift Container Platform 4.12 Networking

406

Figure 25.2. OVN-Kubernetes router and switch components

The key components involved in packet processing are:

Gateway routers

Gateway routers sometimes called L3 gateway routers, are typically used between the distributed
routers and the physical network. Gateway routers including their logical patch ports are bound to a
physical location (not distributed), or chassis. The patch ports on this router are known as l3gateway
ports in the ovn-southbound database (ovn-sbdb).

Distributed logical routers

Distributed logical routers and the logical switches behind them, to which virtual machines and
containers attach, effectively reside on each hypervisor.

Join local switch

Join local switches are used to connect the distributed router and gateway routers. It reduces the
number of IP addresses needed on the distributed router.

Logical switches with patch ports

Logical switches with patch ports are used to virtualize the network stack. They connect remote
logical ports through tunnels.

Logical switches with localnet ports

Logical switches with localnet ports are used to connect OVN to the physical network. They connect
remote logical ports by bridging the packets to directly connected physical L2 segments using
localnet ports.

Patch ports

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

407

Patch ports represent connectivity between logical switches and logical routers and between peer
logical routers. A single connection has a pair of patch ports at each such point of connectivity, one
on each side.

l3gateway ports

l3gateway ports are the port binding entries in the ovn-sbdb for logical patch ports used in the
gateway routers. They are called l3gateway ports rather than patch ports just to portray the fact that
these ports are bound to a chassis just like the gateway router itself.

localnet ports

localnet ports are present on the bridged logical switches that allows a connection to a locally
accessible network from each ovn-controller instance. This helps model the direct connectivity to
the physical network from the logical switches. A logical switch can only have a single localnet port
attached to it.

25.2.7.1. Installing network-tools on local host

Install network-tools on your local host to make a collection of tools available for debugging OpenShift
Container Platform cluster network issues.

Procedure

1. Clone the network-tools repository onto your workstation with the following command:

2. Change into the directory for the repository you just cloned:

3. Optional: List all available commands:

25.2.7.2. Running network-tools

Get information about the logical switches and routers by running network-tools.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster as a user with cluster-admin privileges.

You have installed network-tools on local host.

Procedure

1. List the routers by running the following command:

Example output

$ git clone git@github.com:openshift/network-tools.git

$ cd network-tools

$./debug-scripts/network-tools -h

$./debug-scripts/network-tools ovn-db-run-command ovn-nbctl lr-list

OpenShift Container Platform 4.12 Networking

408

2. List the localnet ports by running the following command:

Example output

Leader pod is ovnkube-master-vslqm
5351ddd1-f181-4e77-afc6-b48b0a9df953 (GR_helix13.lab.eng.tlv2.redhat.com)
ccf9349e-1948-4df8-954e-39fb0c2d4d06 (GR_helix14.lab.eng.tlv2.redhat.com)
e426b918-75a8-4220-9e76-20b7758f92b7 (GR_hlxcl7-master-
0.hlxcl7.lab.eng.tlv2.redhat.com)
dded77c8-0cc3-4b99-8420-56cd2ae6a840 (GR_hlxcl7-master-
1.hlxcl7.lab.eng.tlv2.redhat.com)
4f6747e6-e7ba-4e0c-8dcd-94c8efa51798 (GR_hlxcl7-master-
2.hlxcl7.lab.eng.tlv2.redhat.com)
52232654-336e-4952-98b9-0b8601e370b4 (ovn_cluster_router)

$./debug-scripts/network-tools ovn-db-run-command \
ovn-sbctl find Port_Binding type=localnet

Leader pod is ovnkube-master-vslqm
_uuid : 3de79191-cca8-4c28-be5a-a228f0f9ebfc
additional_chassis : []
additional_encap : []
chassis : []
datapath : 3f1a4928-7ff5-471f-9092-fe5f5c67d15c
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : br-ex_helix13.lab.eng.tlv2.redhat.com
mac : [unknown]
nat_addresses : []
options : {network_name=physnet}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 2
type : localnet
up : false
virtual_parent : []

_uuid : dbe21daf-9594-4849-b8f0-5efbfa09a455
additional_chassis : []
additional_encap : []
chassis : []
datapath : db2a6067-fe7c-4d11-95a7-ff2321329e11
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : br-ex_hlxcl7-master-2.hlxcl7.lab.eng.tlv2.redhat.com
mac : [unknown]
nat_addresses : []

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

409

3. List the l3gateway ports by running the following command:

Example output

options : {network_name=physnet}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 2
type : localnet
up : false
virtual_parent : []

[...]

$./debug-scripts/network-tools ovn-db-run-command \
ovn-sbctl find Port_Binding type=l3gateway

Leader pod is ovnkube-master-vslqm
_uuid : 9314dc80-39e1-4af7-9cc0-ae8a9708ed59
additional_chassis : []
additional_encap : []
chassis : 336a923d-99e8-4e71-89a6-12564fde5760
datapath : db2a6067-fe7c-4d11-95a7-ff2321329e11
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : etor-GR_hlxcl7-master-2.hlxcl7.lab.eng.tlv2.redhat.com
mac : ["52:54:00:3e:95:d3"]
nat_addresses : ["52:54:00:3e:95:d3 10.46.56.77"]
options : {l3gateway-chassis="7eb1f1c3-87c2-4f68-8e89-60f5ca810971", peer=rtoe-
GR_hlxcl7-master-2.hlxcl7.lab.eng.tlv2.redhat.com}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 1
type : l3gateway
up : true
virtual_parent : []

_uuid : ad7eb303-b411-4e9f-8d36-d07f1f268e27
additional_chassis : []
additional_encap : []
chassis : f41453b8-29c5-4f39-b86b-e82cf344bce4
datapath : 082e7a60-d9c7-464b-b6ec-117d3426645a
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : etor-GR_helix14.lab.eng.tlv2.redhat.com

OpenShift Container Platform 4.12 Networking

410

4. List the patch ports by running the following command:

Example output

mac : ["34:48:ed:f3:e2:2c"]
nat_addresses : ["34:48:ed:f3:e2:2c 10.46.56.14"]
options : {l3gateway-chassis="2e8abe3a-cb94-4593-9037-f5f9596325e2", peer=rtoe-
GR_helix14.lab.eng.tlv2.redhat.com}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 1
type : l3gateway
up : true
virtual_parent : []

[...]

$./debug-scripts/network-tools ovn-db-run-command \
ovn-sbctl find Port_Binding type=patch

Leader pod is ovnkube-master-vslqm
_uuid : c48b1380-ff26-4965-a644-6bd5b5946c61
additional_chassis : []
additional_encap : []
chassis : []
datapath : 72734d65-fae1-4bd9-a1ee-1bf4e085a060
encap : []
external_ids : {}
gateway_chassis : []
ha_chassis_group : []
logical_port : jtor-ovn_cluster_router
mac : [router]
nat_addresses : []
options : {peer=rtoj-ovn_cluster_router}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 4
type : patch
up : false
virtual_parent : []

_uuid : 5df51302-f3cd-415b-a059-ac24389938f7
additional_chassis : []
additional_encap : []
chassis : []
datapath : 0551c90f-e891-4909-8e9e-acc7909e06d0
encap : []
external_ids : {}
gateway_chassis : []

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

411

25.2.8. Additional resources

How to list OVN database contents with ovn-kubernetes in Red Hat OpenShift Container
Platform 4.x?

Tracing Openflow with ovnkube-trace

OVN architecture

Raft (algorithm)

ovn-nbctl linux manual page

ovn-sbctl linux manual page

25.3. TROUBLESHOOTING OVN-KUBERNETES

OVN-Kubernetes has many sources of built-in health checks and logs.

25.3.1. Monitoring OVN-Kubernetes health by using readiness probes

The ovnkube-master and ovnkube-node pods have containers configured with readiness probes.

Prerequisites

Access to the OpenShift CLI (oc).

You have access to the cluster with cluster-admin privileges.

You have installed jq.

Procedure

1. Review the details of the ovnkube-master readiness probe by running the following command:

ha_chassis_group : []
logical_port : rtos-hlxcl7-master-1.hlxcl7.lab.eng.tlv2.redhat.com
mac : ["0a:58:0a:82:00:01 10.130.0.1/23"]
nat_addresses : []
options : {chassis-redirect-port=cr-rtos-hlxcl7-master-1.hlxcl7.lab.eng.tlv2.redhat.com,
peer=stor-hlxcl7-master-1.hlxcl7.lab.eng.tlv2.redhat.com}
parent_port : []
port_security : []
requested_additional_chassis: []
requested_chassis : []
tag : []
tunnel_key : 4
type : patch
up : false
virtual_parent : []

[...]

OpenShift Container Platform 4.12 Networking

412

https://access.redhat.com/solutions/5660751
https://www.ovn.org/support/dist-docs/ovn-architecture.7.html
https://en.wikipedia.org/wiki/Raft_(algorithm)
https://man7.org/linux/man-pages/man8/ovn-nbctl.8.html
https://man7.org/linux/man-pages/man8/ovn-sbctl.8.html

The readiness probe for the northbound and southbound database containers in the ovnkube-
master pod checks for the health of the Raft cluster hosting the databases.

2. Review the details of the ovnkube-node readiness probe by running the following command:

The ovnkube-node container in the ovnkube-node pod has a readiness probe to verify the
presence of the ovn-kubernetes CNI configuration file, the absence of which would indicate
that the pod is not running or is not ready to accept requests to configure pods.

3. Show all events including the probe failures, for the namespace by using the following
command:

4. Show the events for just this pod:

5. Show the messages and statuses from the cluster network operator:

6. Show the ready status of each container in ovnkube-master pods by running the following
script:

NOTE

The expectation is all container statuses are reporting as true. Failure of a
readiness probe sets the status to false.

Additional resources

Monitoring application health by using health checks

25.3.2. Viewing OVN-Kubernetes alerts in the console

The Alerting UI provides detailed information about alerts and their governing alerting rules and silences.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project

$ oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-master \
-o json | jq '.items[0].spec.containers[] | .name,.readinessProbe'

$ oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-master \
-o json | jq '.items[0].spec.containers[] | .name,.readinessProbe'

$ oc get events -n openshift-ovn-kubernetes

$ oc describe pod ovnkube-master-tp2z8 -n openshift-ovn-kubernetes

$ oc get co/network -o json | jq '.status.conditions[]'

$ for p in $(oc get pods --selector app=ovnkube-master -n openshift-ovn-kubernetes \
-o jsonpath='{range.items[*]}{" "}{.metadata.name}'); do echo === $p ===; \
oc get pods -n openshift-ovn-kubernetes $p -o json | jq '.status.containerStatuses[] | .name,
.ready'; \
done

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

413

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/building_applications/#application-health

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

Procedure (UI)

1. In the Administrator perspective, select Observe → Alerting. The three main pages in the
Alerting UI in this perspective are the Alerts, Silences, and Alerting Rules pages.

2. View the rules for OVN-Kubernetes alerts by selecting Observe → Alerting → Alerting Rules.

25.3.3. Viewing OVN-Kubernetes alerts in the CLI

You can get information about alerts and their governing alerting rules and silences from the command
line.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift CLI (oc) installed.

You have installed jq.

Procedure

1. View active or firing alerts by running the following commands.

a. Set the alert manager route environment variable by running the following command:

b. Issue a curl request to the alert manager route API with the correct authorization details
requesting specific fields by running the following command:

2. View alerting rules by running the following command:

25.3.4. Viewing the OVN-Kubernetes logs using the CLI

You can view the logs for each of the pods in the ovnkube-master and ovnkube-node pods using the
OpenShift CLI (oc).

Prerequisites

$ ALERT_MANAGER=$(oc get route alertmanager-main -n openshift-monitoring \
-o jsonpath='{@.spec.host}')

$ curl -s -k -H "Authorization: Bearer \
$(oc create token prometheus-k8s -n openshift-monitoring)" \
https://$ALERT_MANAGER/api/v1/alerts \
| jq '.data[] | "\(.labels.severity) \(.labels.alertname) \(.labels.pod) \(.labels.container) \
(.labels.endpoint) \(.labels.instance)"'

$ oc -n openshift-monitoring exec -c prometheus prometheus-k8s-0 -- curl -s
'http://localhost:9090/api/v1/rules' | jq '.data.groups[].rules[] | select(((.name|contains("ovn"))
or (.name|contains("OVN")) or (.name|contains("Ovn")) or (.name|contains("North")) or
(.name|contains("South"))) and .type=="alerting")'

OpenShift Container Platform 4.12 Networking

414

Access to the cluster as a user with the cluster-admin role.

Access to the OpenShift CLI (oc).

You have installed jq.

Procedure

1. View the log for a specific pod:

where:

-f

Optional: Specifies that the output follows what is being written into the logs.

<pod_name>

Specifies the name of the pod.

<container_name>

Optional: Specifies the name of a container. When a pod has more than one container, you
must specify the container name.

<namespace>

Specify the namespace the pod is running in.

For example:

The contents of log files are printed out.

2. Examine the most recent entries in all the containers in the ovnkube-master pods:

3. View the last 5 lines of every log in every container in an ovnkube-master pod using the
following command:

25.3.5. Viewing the OVN-Kubernetes logs using the web console

You can view the logs for each of the pods in the ovnkube-master and ovnkube-node pods in the web
console.

Prerequisites

$ oc logs -f <pod_name> -c <container_name> -n <namespace>

$ oc logs ovnkube-master-7h4q7 -n openshift-ovn-kubernetes

$ oc logs -f ovnkube-master-7h4q7 -n openshift-ovn-kubernetes -c ovn-dbchecker

$ for p in $(oc get pods --selector app=ovnkube-master -n openshift-ovn-kubernetes \
-o jsonpath='{range.items[*]}{" "}{.metadata.name}'); \
do echo === $p ===; for container in $(oc get pods -n openshift-ovn-kubernetes $p \
-o json | jq -r '.status.containerStatuses[] | .name');do echo ---$container---; \
oc logs -c $container $p -n openshift-ovn-kubernetes --tail=5; done; done

$ oc logs -l app=ovnkube-master -n openshift-ovn-kubernetes --all-containers --tail 5

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

415

Access to the OpenShift CLI (oc).

Procedure

1. In the OpenShift Container Platform console, navigate to Workloads → Pods or navigate to the
pod through the resource you want to investigate.

2. Select the openshift-ovn-kubernetes project from the drop-down menu.

3. Click the name of the pod you want to investigate.

4. Click Logs. By default for the ovnkube-master the logs associated with the northd container
are displayed.

5. Use the down-down menu to select logs for each container in turn.

25.3.5.1. Changing the OVN-Kubernetes log levels

The default log level for OVN-Kubernetes is 2. To debug OVN-Kubernetes set the log level to 5. Follow
this procedure to increase the log level of the OVN-Kubernetes to help you debug an issue.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

Procedure

1. Run the following command to get detailed information for all pods in the OVN-Kubernetes
project:

Example output

$ oc get po -o wide -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
ovnkube-master-84nc9 6/6 Running 0 50m 10.0.134.156 ip-10-0-134-
156.ec2.internal <none> <none>
ovnkube-master-gmlqv 6/6 Running 0 50m 10.0.209.180 ip-10-0-209-
180.ec2.internal <none> <none>
ovnkube-master-nhts2 6/6 Running 1 (48m ago) 50m 10.0.147.31 ip-10-0-147-
31.ec2.internal <none> <none>
ovnkube-node-2cbh8 5/5 Running 0 43m 10.0.217.114 ip-10-0-217-
114.ec2.internal <none> <none>
ovnkube-node-6fvzl 5/5 Running 0 50m 10.0.147.31 ip-10-0-147-
31.ec2.internal <none> <none>
ovnkube-node-f4lzz 5/5 Running 0 24m 10.0.146.76 ip-10-0-146-
76.ec2.internal <none> <none>
ovnkube-node-jf67d 5/5 Running 0 50m 10.0.209.180 ip-10-0-209-
180.ec2.internal <none> <none>
ovnkube-node-np9mf 5/5 Running 0 40m 10.0.165.191 ip-10-0-165-

OpenShift Container Platform 4.12 Networking

416

1

2

2. Create a ConfigMap file similar to the following example and use a filename such as env-
overrides.yaml:

Example ConfigMap file

Specify the name of the node you want to set the debug log level on.

Specify _master to set the log levels of ovnkube-master components.

3. Apply the ConfigMap file by using the following command:

Example output

4. Restart the ovnkube pods to apply the new log level by using the following commands:

191.ec2.internal <none> <none>
ovnkube-node-qjldg 5/5 Running 0 50m 10.0.134.156 ip-10-0-134-
156.ec2.internal <none> <none>

kind: ConfigMap
apiVersion: v1
metadata:
 name: env-overrides
 namespace: openshift-ovn-kubernetes
data:
 ip-10-0-217-114.ec2.internal: | 1
 # This sets the log level for the ovn-kubernetes node process:
 OVN_KUBE_LOG_LEVEL=5
 # You might also/instead want to enable debug logging for ovn-controller:
 OVN_LOG_LEVEL=dbg
 ip-10-0-209-180.ec2.internal: |
 # This sets the log level for the ovn-kubernetes node process:
 OVN_KUBE_LOG_LEVEL=5
 # You might also/instead want to enable debug logging for ovn-controller:
 OVN_LOG_LEVEL=dbg
 _master: | 2
 # This sets the log level for the ovn-kubernetes master process as well as the ovn-
dbchecker:
 OVN_KUBE_LOG_LEVEL=5
 # You might also/instead want to enable debug logging for northd, nbdb and sbdb on all
masters:
 OVN_LOG_LEVEL=dbg

$ oc apply -n openshift-ovn-kubernetes -f env-overrides.yaml

configmap/env-overrides.yaml created

$ oc delete pod -n openshift-ovn-kubernetes \
--field-selector spec.nodeName=ip-10-0-217-114.ec2.internal -l app=ovnkube-node

$ oc delete pod -n openshift-ovn-kubernetes \
--field-selector spec.nodeName=ip-10-0-209-180.ec2.internal -l app=ovnkube-node

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

417

25.3.6. Checking the OVN-Kubernetes pod network connectivity

The connectivity check controller, in OpenShift Container Platform 4.10 and later, orchestrates
connection verification checks in your cluster. These include Kubernetes API, OpenShift API and
individual nodes. The results for the connection tests are stored in PodNetworkConnectivity objects in
the openshift-network-diagnostics namespace. Connection tests are performed every minute in
parallel.

Prerequisites

Access to the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

You have installed jq.

Procedure

1. To list the current PodNetworkConnectivityCheck objects, enter the following command:

2. View the most recent success for each connection object by using the following command:

3. View the most recent failures for each connection object by using the following command:

4. View the most recent outages for each connection object by using the following command:

The connectivity check controller also logs metrics from these checks into Prometheus.

5. View all the metrics by running the following command:

6. View the latency between the source pod and the openshift api service for the last 5 minutes:

$ oc delete pod -n openshift-ovn-kubernetes -l app=ovnkube-master

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics \
-o json | jq '.items[]| .spec.targetEndpoint,.status.successes[0]'

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics \
-o json | jq '.items[]| .spec.targetEndpoint,.status.failures[0]'

$ oc get podnetworkconnectivitychecks -n openshift-network-diagnostics \
-o json | jq '.items[]| .spec.targetEndpoint,.status.outages[0]'

$ oc exec prometheus-k8s-0 -n openshift-monitoring -- \
promtool query instant http://localhost:9090 \
'{component="openshift-network-diagnostics"}'

$ oc exec prometheus-k8s-0 -n openshift-monitoring -- \
promtool query instant http://localhost:9090 \
'{component="openshift-network-diagnostics"}'

OpenShift Container Platform 4.12 Networking

418

25.3.7. Additional resources

How do I change the ovn-kubernetes loglevel in OpenShift 4?

Implementation of connection health checks

Verifying network connectivity for an endpoint

25.4. TRACING OPENFLOW WITH OVNKUBE-TRACE

OVN and OVS traffic flows can be simulated in a single utility called ovnkube-trace. The ovnkube-trace
utility runs ovn-trace, ovs-appctl ofproto/trace and ovn-detrace and correlates that information in a
single output.

You can execute the ovnkube-trace binary from a dedicated container. For releases after OpenShift
Container Platform 4.7, you can also copy the binary to a local host and execute it from that host.

NOTE

The binaries in the Quay images do not currently work for Dual IP stack or IPv6 only
environments. For those environments, you must build from source.

25.4.1. Installing the ovnkube-trace on local host

The ovnkube-trace tool traces packet simulations for arbitrary UDP or TCP traffic between points in an
OVN-Kubernetes driven OpenShift Container Platform cluster. Copy the ovnkube-trace binary to your
local host making it available to run against the cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create a pod variable by using the following command:

2. Run the following command on your local host to copy the binary from the ovnkube-master
pods:

3. Make ovnkube-trace executable by running the following command:

4. Display the options available with ovnkube-trace by running the following command:

$ POD=$(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-master -o name | head -
1 | awk -F '/' '{print $NF}')

$ oc cp -n openshift-ovn-kubernetes $POD:/usr/bin/ovnkube-trace ovnkube-trace

$ chmod +x ovnkube-trace

$./ovnkube-trace -help

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

419

https://access.redhat.com/solutions/5892971

Expected output

The command-line arguments supported are familiar Kubernetes constructs, such as
namespaces, pods, services so you do not need to find the MAC address, the IP address of the
destination nodes, or the ICMP type.

The log levels are:

0 (minimal output)

2 (more verbose output showing results of trace commands)

5 (debug output)

25.4.2. Running ovnkube-trace

Run ovn-trace to simulate packet forwarding within an OVN logical network.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You have installed ovnkube-trace on local host

I0111 15:05:27.973305 204872 ovs.go:90] Maximum command line arguments set to:
191102
Usage of ./ovnkube-trace:
 -dst string
 dest: destination pod name
 -dst-ip string
 destination IP address (meant for tests to external targets)
 -dst-namespace string
 k8s namespace of dest pod (default "default")
 -dst-port string
 dst-port: destination port (default "80")
 -kubeconfig string
 absolute path to the kubeconfig file
 -loglevel string
 loglevel: klog level (default "0")
 -ovn-config-namespace string
 namespace used by ovn-config itself
 -service string
 service: destination service name
 -skip-detrace
 skip ovn-detrace command
 -src string
 src: source pod name
 -src-namespace string
 k8s namespace of source pod (default "default")
 -tcp
 use tcp transport protocol
 -udp
 use udp transport protocol

OpenShift Container Platform 4.12 Networking

420

1

2

3

4

5

6

Example: Testing that DNS resolution works from a deployed pod

This example illustrates how to test the DNS resolution from a deployed pod to the core DNS pod that
runs in the cluster.

Procedure

1. Start a web service in the default namespace by entering the following command:

2. List the pods running in the openshift-dns namespace:

Example output

3. Run the following ovn-kube-trace command to verify DNS resolution is working:

Namespace of the source pod

Source pod name

Namespace of destination pod

Destination pod name

Use the udp transport protocol. Port 53 is the port the DNS service uses.

Set the log level to 1 (0 is minimal and 5 is debug)

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

oc get pods -n openshift-dns

NAME READY STATUS RESTARTS AGE
dns-default-467qw 2/2 Running 0 49m
dns-default-6prvx 2/2 Running 0 53m
dns-default-fkqr8 2/2 Running 0 53m
dns-default-qv2rg 2/2 Running 0 49m
dns-default-s29vr 2/2 Running 0 49m
dns-default-vdsbn 2/2 Running 0 53m
node-resolver-6thtt 1/1 Running 0 53m
node-resolver-7ksdn 1/1 Running 0 49m
node-resolver-8sthh 1/1 Running 0 53m
node-resolver-c5ksw 1/1 Running 0 50m
node-resolver-gbvdp 1/1 Running 0 53m
node-resolver-sxhkd 1/1 Running 0 50m

$./ovnkube-trace \
 -src-namespace default \ 1
 -src web \ 2
 -dst-namespace openshift-dns \ 3
 -dst dns-default-467qw \ 4
 -udp -dst-port 53 \ 5
 -loglevel 0 6

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

421

Expected output

The ouput indicates success from the deployed pod to the DNS port and also indicates that it is
successful going back in the other direction. So you know bi-directional traffic is supported on
UDP port 53 if my web pod wants to do dns resolution from core DNS.

If for example that did not work and you wanted to get the ovn-trace, the ovs-appctl ofproto/trace and
ovn-detrace, and more debug type information increase the log level to 2 and run the command again
as follows:

The output from this increased log level is too much to list here. In a failure situation the output of this
command shows which flow is dropping that traffic. For example an egress or ingress network policy may
be configured on the cluster that does not allow that traffic.

Example: Verifying by using debug output a configured default deny

This example illustrates how to identify by using the debug output that an ingress default deny policy
blocks traffic.

Procedure

1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods
in all namespaces. Save the YAML in the deny-by-default.yaml file:

2. Apply the policy by entering the following command:

I0116 10:19:35.601303 17900 ovs.go:90] Maximum command line arguments set to:
191102
ovn-trace source pod to destination pod indicates success from web to dns-default-467qw
ovn-trace destination pod to source pod indicates success from dns-default-467qw to web
ovs-appctl ofproto/trace source pod to destination pod indicates success from web to dns-
default-467qw
ovs-appctl ofproto/trace destination pod to source pod indicates success from dns-default-
467qw to web
ovn-detrace source pod to destination pod indicates success from web to dns-default-467qw
ovn-detrace destination pod to source pod indicates success from dns-default-467qw to web

$./ovnkube-trace \
 -src-namespace default \
 -src web \
 -dst-namespace openshift-dns \
 -dst dns-default-467qw \
 -udp -dst-port 53 \
 -loglevel 2

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
 namespace: default
spec:
 podSelector: {}
 ingress: []

OpenShift Container Platform 4.12 Networking

422

Example output

3. Start a web service in the default namespace by entering the following command:

4. Run the following command to create the prod namespace:

5. Run the following command to label the prod namespace:

6. Run the following command to deploy an alpine image in the prod namespace and start a shell:

7. Open another terminal session.

8. In this new terminal session run ovn-trace to verify the failure in communication between the
source pod test-6459 running in namespace prod and destination pod running in the default
namespace:

Expected output

9. Increase the log level to 2 to expose the reason for the failure by running the following
command:

$ oc apply -f deny-by-default.yaml

networkpolicy.networking.k8s.io/deny-by-default created

$ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80

$ oc create namespace prod

$ oc label namespace/prod purpose=production

$ oc run test-6459 --namespace=prod --rm -i -t --image=alpine -- sh

$./ovnkube-trace \
 -src-namespace prod \
 -src test-6459 \
 -dst-namespace default \
 -dst web \
 -tcp -dst-port 80 \
 -loglevel 0

I0116 14:20:47.380775 50822 ovs.go:90] Maximum command line arguments set to:
191102
ovn-trace source pod to destination pod indicates failure from test-6459 to web

$./ovnkube-trace \
 -src-namespace prod \
 -src test-6459 \
 -dst-namespace default \

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

423

1

Expected output

Ingress traffic is blocked due to the default deny policy being in place

10. Create a policy that allows traffic from all pods in a particular namespaces with a label
purpose=production. Save the YAML in the web-allow-prod.yaml file:

11. Apply the policy by entering the following command:

12. Run ovnkube-trace to verify that traffic is now allowed by entering the following command:

 -dst web \
 -tcp -dst-port 80 \
 -loglevel 2

ct_lb_mark /* default (use --ct to customize) */
--
 3. ls_out_acl_hint (northd.c:6092): !ct.new && ct.est && !ct.rpl && ct_mark.blocked == 0,
priority 4, uuid 32d45ad4
 reg0[8] = 1;
 reg0[10] = 1;
 next;
 4. ls_out_acl (northd.c:6435): reg0[10] == 1 && (outport ==
@a16982411286042166782_ingressDefaultDeny), priority 2000, uuid f730a887 1
 ct_commit { ct_mark.blocked = 1; };

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: web-allow-prod
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: web
 policyTypes:
 - Ingress
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 purpose: production

$ oc apply -f web-allow-prod.yaml

$./ovnkube-trace \
 -src-namespace prod \
 -src test-6459 \
 -dst-namespace default \
 -dst web \
 -tcp -dst-port 80 \
 -loglevel 0

OpenShift Container Platform 4.12 Networking

424

Expected output

13. In the open shell run the following command:

Expected output

25.4.3. Additional resources

Tracing Openflow with ovnkube-trace utility

ovnkube-trace

25.5. MIGRATING FROM THE OPENSHIFT SDN NETWORK PLUGIN

As a cluster administrator, you can migrate to the OVN-Kubernetes network plugin from the OpenShift
SDN network plugin.

I0116 14:25:44.055207 51695 ovs.go:90] Maximum command line arguments set to:
191102
ovn-trace source pod to destination pod indicates success from test-6459 to web
ovn-trace destination pod to source pod indicates success from web to test-6459
ovs-appctl ofproto/trace source pod to destination pod indicates success from test-6459 to
web
ovs-appctl ofproto/trace destination pod to source pod indicates success from web to test-
6459
ovn-detrace source pod to destination pod indicates success from test-6459 to web
ovn-detrace destination pod to source pod indicates success from web to test-6459

 wget -qO- --timeout=2 http://web.default

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
html { color-scheme: light dark; }
body { width: 35em; margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

425

https://access.redhat.com/solutions/5887511
https://github.com/ovn-org/ovn-kubernetes/blob/master/docs/ovnkube-trace.md

To learn more about OVN-Kubernetes, read About the OVN-Kubernetes network plugin .

25.5.1. Migration to the OVN-Kubernetes network plugin

Migrating to the OVN-Kubernetes network plugin is a manual process that includes some downtime
during which your cluster is unreachable. Although a rollback procedure is provided, the migration is
intended to be a one-way process.

A migration to the OVN-Kubernetes network plugin is supported on the following platforms:

Bare metal hardware

Amazon Web Services (AWS)

Google Cloud Platform (GCP)

IBM Cloud

Microsoft Azure

Red Hat OpenStack Platform (RHOSP)

Red Hat Virtualization (RHV)

VMware vSphere

IMPORTANT

Migrating to or from the OVN-Kubernetes network plugin is not supported for managed
OpenShift cloud services such as Red Hat OpenShift Dedicated, Azure Red Hat
OpenShift(ARO), and Red Hat OpenShift Service on AWS (ROSA).

Migrating from OpenShift SDN network plugin to OVN-Kubernetes network plugin is not
supported on Nutanix.

25.5.1.1. Considerations for migrating to the OVN-Kubernetes network plugin

If you have more than 150 nodes in your OpenShift Container Platform cluster, then open a support case
for consultation on your migration to the OVN-Kubernetes network plugin.

The subnets assigned to nodes and the IP addresses assigned to individual pods are not preserved
during the migration.

While the OVN-Kubernetes network plugin implements many of the capabilities present in the
OpenShift SDN network plugin, the configuration is not the same.

If your cluster uses any of the following OpenShift SDN network plugin capabilities, you must
manually configure the same capability in the OVN-Kubernetes network plugin:

Namespace isolation

Egress router pods

If your cluster or surrounding network uses any part of the 100.64.0.0/16 address range, you
must choose another unused IP range by specifying the v4InternalSubnet spec under the
spec.defaultNetwork.ovnKubernetesConfig object definition. OVN-Kubernetes uses the IP

OpenShift Container Platform 4.12 Networking

426

range 100.64.0.0/16 internally by default.

The following sections highlight the differences in configuration between the aforementioned
capabilities in OVN-Kubernetes and OpenShift SDN network plugins.

Namespace isolation
OVN-Kubernetes supports only the network policy isolation mode.

IMPORTANT

If your cluster uses OpenShift SDN configured in either the multitenant or subnet
isolation modes, you cannot migrate to the OVN-Kubernetes network plugin.

Egress IP addresses
OpenShift SDN supports two different Egress IP modes:

In the automatically assigned approach, an egress IP address range is assigned to a node.

In the manually assigned approach, a list of one or more egress IP addresses is assigned to a
node.

The migration process supports migrating Egress IP configurations that use the automatically assigned
mode.

The differences in configuring an egress IP address between OVN-Kubernetes and OpenShift SDN is
described in the following table:

Table 25.4. Differences in egress IP address configuration

OVN-Kubernetes OpenShift SDN

Create an EgressIPs object

Add an annotation on a Node object

Patch a NetNamespace object

Patch a HostSubnet object

For more information on using egress IP addresses in OVN-Kubernetes, see "Configuring an egress IP
address".

Egress network policies
The difference in configuring an egress network policy, also known as an egress firewall, between OVN-
Kubernetes and OpenShift SDN is described in the following table:

Table 25.5. Differences in egress network policy configuration

OVN-Kubernetes OpenShift SDN

Create an EgressFirewall object in a
namespace

Create an EgressNetworkPolicy object
in a namespace

NOTE

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

427

NOTE

Because the name of an EgressFirewall object can only be set to default, after the
migration all migrated EgressNetworkPolicy objects are named default, regardless of
what the name was under OpenShift SDN.

If you subsequently rollback to OpenShift SDN, all EgressNetworkPolicy objects are
named default as the prior name is lost.

For more information on using an egress firewall in OVN-Kubernetes, see "Configuring an
egress firewall for a project".

Egress router pods
OVN-Kubernetes supports egress router pods in redirect mode. OVN-Kubernetes does not support
egress router pods in HTTP proxy mode or DNS proxy mode.

When you deploy an egress router with the Cluster Network Operator, you cannot specify a node
selector to control which node is used to host the egress router pod.

Multicast
The difference between enabling multicast traffic on OVN-Kubernetes and OpenShift SDN is described
in the following table:

Table 25.6. Differences in multicast configuration

OVN-Kubernetes OpenShift SDN

Add an annotation on a Namespace
object

Add an annotation on a NetNamespace
object

For more information on using multicast in OVN-Kubernetes, see "Enabling multicast for a project".

Network policies
OVN-Kubernetes fully supports the Kubernetes NetworkPolicy API in the networking.k8s.io/v1 API
group. No changes are necessary in your network policies when migrating from OpenShift SDN.

25.5.1.2. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 25.7. Migrating to OVN-Kubernetes from OpenShift SDN

User-initiated steps Migration activity

OpenShift Container Platform 4.12 Networking

428

Set the migration field of the
Network.operator.openshift.io custom resource
(CR) named cluster to OVNKubernetes. Make
sure the migration field is null before setting it to a
value.

Cluster Network Operator (CNO)
Updates the status of the
Network.config.openshift.io CR named
cluster accordingly.

Machine Config Operator (MCO)
Rolls out an update to the systemd configuration
necessary for OVN-Kubernetes; the MCO
updates a single machine per pool at a time by
default, causing the total time the migration takes
to increase with the size of the cluster.

Update the networkType field of the
Network.config.openshift.io CR. CNO

Performs the following actions:

Destroys the OpenShift SDN control
plane pods.

Deploys the OVN-Kubernetes control
plane pods.

Updates the Multus objects to reflect
the new network plugin.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OVN-Kubernetes cluster network.

User-initiated steps Migration activity

If a rollback to OpenShift SDN is required, the following table describes the process.

Table 25.8. Performing a rollback to OpenShift SDN

User-initiated steps Migration activity

Suspend the MCO to ensure that it does not
interrupt the migration.

The MCO stops.

Set the migration field of the
Network.operator.openshift.io custom resource
(CR) named cluster to OpenShiftSDN. Make sure
the migration field is null before setting it to a
value.

CNO
Updates the status of the
Network.config.openshift.io CR named
cluster accordingly.

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

429

Update the networkType field.
CNO

Performs the following actions:

Destroys the OVN-Kubernetes control
plane pods.

Deploys the OpenShift SDN control
plane pods.

Updates the Multus objects to reflect
the new network plugin.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OpenShift-SDN network.

Enable the MCO after all nodes in the cluster reboot.
MCO

Rolls out an update to the systemd configuration
necessary for OpenShift SDN; the MCO updates
a single machine per pool at a time by default, so
the total time the migration takes increases with
the size of the cluster.

User-initiated steps Migration activity

25.5.2. Migrating to the OVN-Kubernetes network plugin

As a cluster administrator, you can change the network plugin for your cluster to OVN-Kubernetes.
During the migration, you must reboot every node in your cluster.

IMPORTANT

While performing the migration, your cluster is unavailable and workloads might be
interrupted. Perform the migration only when an interruption in service is acceptable.

Prerequisites

A cluster configured with the OpenShift SDN CNI network plugin in the network policy isolation
mode.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A recent backup of the etcd database is available.

A reboot can be triggered manually for each node.

The cluster is in a known good state, without any errors.

On all cloud platforms after updating software, a security group rule must be in place to allow

OpenShift Container Platform 4.12 Networking

430

On all cloud platforms after updating software, a security group rule must be in place to allow
UDP packets on port 6081 for all nodes.

Procedure

1. To backup the configuration for the cluster network, enter the following command:

2. To prepare all the nodes for the migration, set the migration field on the Cluster Network
Operator configuration object by entering the following command:

NOTE

This step does not deploy OVN-Kubernetes immediately. Instead, specifying the
migration field triggers the Machine Config Operator (MCO) to apply new
machine configs to all the nodes in the cluster in preparation for the OVN-
Kubernetes deployment.

3. Optional: You can disable automatic migration of several OpenShift SDN capabilities to the
OVN-Kubernetes equivalents:

Egress IPs

Egress firewall

Multicast

To disable automatic migration of the configuration for any of the previously noted OpenShift
SDN features, specify the following keys:

where:

bool: Specifies whether to enable migration of the feature. The default is true.

4. Optional: You can customize the following settings for OVN-Kubernetes to meet your network
infrastructure requirements:

$ oc get Network.config.openshift.io cluster -o yaml > cluster-openshift-sdn.yaml

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": { "networkType": "OVNKubernetes" } } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{
 "spec": {
 "migration": {
 "networkType": "OVNKubernetes",
 "features": {
 "egressIP": <bool>,
 "egressFirewall": <bool>,
 "multicast": <bool>
 }
 }
 }
 }'

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

431

Maximum transmission unit (MTU). Consider the following before customizing the MTU for
this optional step:

If you use the default MTU, and you want to keep the default MTU during migration,
this step can be ignored.

If you used a custom MTU, and you want to keep the custom MTU during migration, you
must declare the custom MTU value in this step.

This step does not work if you want to change the MTU value during migration. Instead,
you must first follow the instructions for "Changing the cluster MTU". You can then
keep the custom MTU value by performing this procedure and declaring the custom
MTU value in this step.

NOTE

OpenShift-SDN and OVN-Kubernetes have different overlay overhead.
MTU values should be selected by following the guidelines found on the
"MTU value selection" page.

Geneve (Generic Network Virtualization Encapsulation) overlay network port

OVN-Kubernetes IPv4 internal subnet

OVN-Kubernetes IPv6 internal subnet

To customize either of the previously noted settings, enter and customize the following
command. If you do not need to change the default value, omit the key from the patch.

where:

mtu

The MTU for the Geneve overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 100 less than the smallest node MTU value.

port

The UDP port for the Geneve overlay network. If a value is not specified, the default is 6081.
The port cannot be the same as the VXLAN port that is used by OpenShift SDN. The default
value for the VXLAN port is 4789.

ipv4_subnet

An IPv4 address range for internal use by OVN-Kubernetes. You must ensure that the IP
address range does not overlap with any other subnet used by your OpenShift Container
Platform installation. The IP address range must be larger than the maximum number of

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":<mtu>,
 "genevePort":<port>,
 "v4InternalSubnet":"<ipv4_subnet>",
 "v6InternalSubnet":"<ipv6_subnet>"
 }}}}'

OpenShift Container Platform 4.12 Networking

432

nodes that can be added to the cluster. The default value is 100.64.0.0/16.

ipv6_subnet

An IPv6 address range for internal use by OVN-Kubernetes. You must ensure that the IP
address range does not overlap with any other subnet used by your OpenShift Container
Platform installation. The IP address range must be larger than the maximum number of
nodes that can be added to the cluster. The default value is fd98::/48.

Example patch command to update mtu field

5. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

6. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":1200
 }}}}'

$ oc get mcp

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

433

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. Display the pod log for the first machine config daemon pod shown in the previous
output by enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

7. To start the migration, configure the OVN-Kubernetes network plugin by using one of the
following commands:

To specify the network provider without changing the cluster network IP address block,
enter the following command:

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/configure-ovs.sh OVNKubernetes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

OpenShift Container Platform 4.12 Networking

434

enter the following command:

To specify a different cluster network IP address block, enter the following command:

where cidr is a CIDR block and prefix is the slice of the CIDR block apportioned to each
node in your cluster. You cannot use any CIDR block that overlaps with the 100.64.0.0/16
CIDR block because the OVN-Kubernetes network provider uses this block internally.

IMPORTANT

You cannot change the service network address block during the migration.

8. Verify that the Multus daemon set rollout is complete before continuing with subsequent steps:

The name of the Multus pods is in the form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

9. To complete changing the network plugin, reboot each node in your cluster. You can reboot the
nodes in your cluster with either of the following approaches:

With the oc rsh command, you can use a bash script similar to the following:

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{ "spec": { "networkType": "OVNKubernetes" } }'

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{
 "spec": {
 "clusterNetwork": [
 {
 "cidr": "<cidr>",
 "hostPrefix": <prefix>
 }
],
 "networkType": "OVNKubernetes"
 }
 }'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash
readarray -t POD_NODES <<< "$(oc get pod -n openshift-machine-config-operator -o
wide| grep daemon|awk '{print $1" "$7}')"

for i in "${POD_NODES[@]}"
do
 read -r POD NODE <<< "$i"

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

435

With the ssh command, you can use a bash script similar to the following. The script
assumes that you have configured sudo to not prompt for a password.

10. Confirm that the migration succeeded:

a. To confirm that the network plugin is OVN-Kubernetes, enter the following command. The
value of status.networkType must be OVNKubernetes.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

d. To confirm that all of the cluster Operators are not in an abnormal state, enter the following
command:

The status of every cluster Operator must be the following: AVAILABLE="True",
PROGRESSING="False", DEGRADED="False". If a cluster Operator is not available or
degraded, check the logs for the cluster Operator for more information.

11. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the CNO configuration object, enter the
following command:

b. To remove custom configuration for the OpenShift SDN network provider, enter the
following command:

 until oc rsh -n openshift-machine-config-operator "$POD" chroot /rootfs shutdown -r +1
 do
 echo "cannot reboot node $NODE, retry" && sleep 3
 done
done

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc get co

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

OpenShift Container Platform 4.12 Networking

436

c. To remove the OpenShift SDN network provider namespace, enter the following command:

25.5.3. Additional resources

Configuration parameters for the OVN-Kubernetes network plugin

Backing up etcd

About network policy

Changing the cluster MTU

MTU value selection

OVN-Kubernetes capabilities

Configuring an egress IP address

Configuring an egress firewall for a project

Enabling multicast for a project

OpenShift SDN capabilities

Configuring egress IPs for a project

Configuring an egress firewall for a project

Enabling multicast for a project

Network [operator.openshift.io/v1]

25.6. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER

As a cluster administrator, you can rollback to the OpenShift SDN network plugin from the OVN-
Kubernetes network plugin if the migration to OVN-Kubernetes is unsuccessful.

25.6.1. Migrating to the OpenShift SDN network plugin

As a cluster administrator, you can migrate to the OpenShift SDN Container Network Interface (CNI)
network plugin. During the migration you must reboot every node in your cluster.

IMPORTANT

Rollback to OpenShift SDN if the migration to OVN-Kubernetes fails.

Prerequisites

Install the OpenShift CLI (oc).

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "openshiftSDNConfig": null } } }'

$ oc delete namespace openshift-sdn

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

437

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/backup_and_restore/#backup-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-operator-openshift-io-v1

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes network plugin.

A recent backup of the etcd database is available.

A reboot can be triggered manually for each node.

The cluster is in a known good state, without any errors.

Procedure

1. Stop all of the machine configuration pools managed by the Machine Config Operator (MCO):

Stop the master configuration pool:

Stop the worker machine configuration pool:

2. To prepare for the migration, set the migration field to null by entering the following command:

3. To start the migration, set the network plugin back to OpenShift SDN by entering the following
commands:

4. Optional: You can disable automatic migration of several OVN-Kubernetes capabilities to the
OpenShift SDN equivalents:

Egress IPs

Egress firewall

Multicast

To disable automatic migration of the configuration for any of the previously noted OpenShift
SDN features, specify the following keys:

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": true } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec":{ "paused": true } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": { "networkType": "OpenShiftSDN" } } }'

$ oc patch Network.config.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "networkType": "OpenShiftSDN" } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{
 "spec": {
 "migration": {
 "networkType": "OpenShiftSDN",

OpenShift Container Platform 4.12 Networking

438

where:

bool: Specifies whether to enable migration of the feature. The default is true.

5. Optional: You can customize the following settings for OpenShift SDN to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

VXLAN port

To customize either or both of the previously noted settings, customize and enter the following
command. If you do not need to change the default value, omit the key from the patch.

mtu

The MTU for the VXLAN overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 50 less than the smallest node MTU value.

port

The UDP port for the VXLAN overlay network. If a value is not specified, the default is 4789.
The port cannot be the same as the Geneve port that is used by OVN-Kubernetes. The
default value for the Geneve port is 6081.

Example patch command

6. Reboot each node in your cluster. You can reboot the nodes in your cluster with either of the
following approaches:

With the oc rsh command, you can use a bash script similar to the following:

 "features": {
 "egressIP": <bool>,
 "egressFirewall": <bool>,
 "multicast": <bool>
 }
 }
 }
 }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":<mtu>,
 "vxlanPort":<port>
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":1200
 }}}}'

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

439

With the oc rsh command, you can use a bash script similar to the following:

With the ssh command, you can use a bash script similar to the following. The script
assumes that you have configured sudo to not prompt for a password.

7. Wait until the Multus daemon set rollout completes. Run the following command to see your
rollout status:

The name of the Multus pods is in the form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

8. After the nodes in your cluster have rebooted and the multus pods are rolled out, start all of the
machine configuration pools by running the following commands::

Start the master configuration pool:

Start the worker configuration pool:

#!/bin/bash
readarray -t POD_NODES <<< "$(oc get pod -n openshift-machine-config-operator -o
wide| grep daemon|awk '{print $1" "$7}')"

for i in "${POD_NODES[@]}"
do
 read -r POD NODE <<< "$i"
 until oc rsh -n openshift-machine-config-operator "$POD" chroot /rootfs shutdown -r +1
 do
 echo "cannot reboot node $NODE, retry" && sleep 3
 done
done

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec": { "paused": false } }'

OpenShift Container Platform 4.12 Networking

440

As the MCO updates machines in each config pool, it reboots each node.

By default the MCO updates a single machine per pool at a time, so the time that the migration
requires to complete grows with the size of the cluster.

9. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

10. Confirm that the migration succeeded:

a. To confirm that the network plugin is OpenShift SDN, enter the following command. The
value of status.networkType must be OpenShiftSDN.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

441

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. To display the pod log for each machine config daemon pod shown in the previous
output, enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

d. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

11. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the Cluster Network Operator configuration
object, enter the following command:

b. To remove the OVN-Kubernetes configuration, enter the following command:

c. To remove the OVN-Kubernetes network provider namespace, enter the following
command:

25.7. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING

As a cluster administrator, you can convert your IPv4 single-stack cluster to a dual-network cluster

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "ovnKubernetesConfig":null } } }'

$ oc delete namespace openshift-ovn-kubernetes

OpenShift Container Platform 4.12 Networking

442

As a cluster administrator, you can convert your IPv4 single-stack cluster to a dual-network cluster
network that supports IPv4 and IPv6 address families. After converting to dual-stack, all newly created
pods are dual-stack enabled.

NOTE

A dual-stack network is supported on clusters provisioned on bare metal, IBM Power, IBM
Z infrastructure, and single node OpenShift clusters.

NOTE

While using dual-stack networking, you cannot use IPv4-mapped IPv6 addresses, such as
::FFFF:198.51.100.1, where IPv6 is required.

25.7.1. Converting to a dual-stack cluster network

As a cluster administrator, you can convert your single-stack cluster network to a dual-stack cluster
network.

NOTE

After converting to dual-stack networking only newly created pods are assigned IPv6
addresses. Any pods created before the conversion must be recreated to receive an IPv6
address.

IMPORTANT

Before proceeding, make sure your OpenShift cluster uses version 4.12.5 or later.
Otherwise, the conversion can fail due to the bug ovnkube node pod crashed after
converting to a dual-stack cluster network.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Your cluster uses the OVN-Kubernetes network plugin.

The cluster nodes have IPv6 addresses.

You have configured an IPv6-enabled router based on your infrastructure.

Procedure

1. To specify IPv6 address blocks for the cluster and service networks, create a file containing the
following YAML:

- op: add
 path: /spec/clusterNetwork/-
 value: 1
 cidr: fd01::/48
 hostPrefix: 64

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

443

https://issues.redhat.com/browse/OCPBUGS-6040

1

2

Specify an object with the cidr and hostPrefix fields. The host prefix must be 64 or
greater. The IPv6 CIDR prefix must be large enough to accommodate the specified host
prefix.

Specify an IPv6 CIDR with a prefix of 112. Kubernetes uses only the lowest 16 bits. For a
prefix of 112, IP addresses are assigned from 112 to 128 bits.

2. To patch the cluster network configuration, enter the following command:

where:

file

Specifies the name of the file you created in the previous step.

Example output

Verification

Complete the following step to verify that the cluster network recognizes the IPv6 address blocks that
you specified in the previous procedure.

1. Display the network configuration:

Example output

25.7.2. Converting to a single-stack cluster network

As a cluster administrator, you can convert your dual-stack cluster network to a single-stack cluster

- op: add
 path: /spec/serviceNetwork/-
 value: fd02::/112 2

$ oc patch network.config.openshift.io cluster \
 --type='json' --patch-file <file>.yaml

network.config.openshift.io/cluster patched

$ oc describe network

Status:
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cidr: fd01::/48
 Host Prefix: 64
 Cluster Network MTU: 1400
 Network Type: OVNKubernetes
 Service Network:
 172.30.0.0/16
 fd02::/112

OpenShift Container Platform 4.12 Networking

444

As a cluster administrator, you can convert your dual-stack cluster network to a single-stack cluster
network.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Your cluster uses the OVN-Kubernetes network plugin.

The cluster nodes have IPv6 addresses.

You have enabled dual-stack networking.

Procedure

1. Edit the networks.config.openshift.io custom resource (CR) by running the following
command:

2. Remove the IPv6 specific configuration that you have added to the cidr and hostPrefix fields in
the previous procedure.

25.8. LOGGING FOR EGRESS FIREWALL AND NETWORK POLICY
RULES

As a cluster administrator, you can configure audit logging for your cluster and enable logging for one or
more namespaces. OpenShift Container Platform produces audit logs for both egress firewalls and
network policies.

NOTE

Audit logging is available for only the OVN-Kubernetes network plugin .

25.8.1. Audit logging

The OVN-Kubernetes network plugin uses Open Virtual Network (OVN) ACLs to manage egress
firewalls and network policies. Audit logging exposes allow and deny ACL events.

You can configure the destination for audit logs, such as a syslog server or a UNIX domain socket.
Regardless of any additional configuration, an audit log is always saved to /var/log/ovn/acl-audit-
log.log on each OVN-Kubernetes pod in the cluster.

Audit logging is enabled per namespace by annotating the namespace with the k8s.ovn.org/acl-
logging key as in the following example:

Example namespace annotation

$ oc edit networks.config.openshift.io

kind: Namespace
apiVersion: v1
metadata:
 name: example1

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

445

The logging format is compatible with syslog as defined by RFC5424. The syslog facility is configurable
and defaults to local0. An example log entry might resemble the following:

Example ACL deny log entry for a network policy

The following table describes namespace annotation values:

Table 25.9. Audit logging namespace annotation

Annotation Value

k8s.ovn.org/acl-logging You must specify at least one of allow, deny, or both to enable
audit logging for a namespace.

deny
Optional: Specify alert, warning, notice, info, or debug.

allow
Optional: Specify alert, warning, notice, info, or debug.

25.8.2. Audit configuration

The configuration for audit logging is specified as part of the OVN-Kubernetes cluster network provider
configuration. The following YAML illustrates the default values for the audit logging:

Audit logging configuration

The following table describes the configuration fields for audit logging.

 annotations:
 k8s.ovn.org/acl-logging: |-
 {
 "deny": "info",
 "allow": "info"
 }

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-logging_deny-all",
verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,nw_dst=
10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 policyAuditConfig:
 destination: "null"
 maxFileSize: 50
 rateLimit: 20
 syslogFacility: local0

OpenShift Container Platform 4.12 Networking

446

Table 25.10. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

25.8.3. Configuring egress firewall and network policy auditing for a cluster

As a cluster administrator, you can customize audit logging for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To customize the audit logging configuration, enter the following command:

TIP

$ oc edit network.operator.openshift.io/cluster

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

447

TIP

You can alternatively customize and apply the following YAML to configure audit logging:

Verification

1. To create a namespace with network policies complete the following steps:

a. Create a namespace for verification:

Example output

b. Enable audit logging:

c. Create network policies for the namespace:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 policyAuditConfig:
 destination: "null"
 maxFileSize: 50
 rateLimit: 20
 syslogFacility: local0

$ cat <<EOF| oc create -f -
kind: Namespace
apiVersion: v1
metadata:
 name: verify-audit-logging
 annotations:
 k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert" }'
EOF

namespace/verify-audit-logging created

$ oc annotate namespace verify-audit-logging k8s.ovn.org/acl-logging='{ "deny": "alert",
"allow": "alert" }'

namespace/verify-audit-logging annotated

$ cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all
spec:
 podSelector:
 matchLabels:

OpenShift Container Platform 4.12 Networking

448

Example output

2. Create a pod for source traffic in the default namespace:

3. Create two pods in the verify-audit-logging namespace:

 policyTypes:
 - Ingress
 - Egress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-same-namespace
spec:
 podSelector: {}
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - podSelector: {}
 egress:
 - to:
 - namespaceSelector:
 matchLabels:
 namespace: verify-audit-logging
EOF

networkpolicy.networking.k8s.io/deny-all created
networkpolicy.networking.k8s.io/allow-from-same-namespace created

$ cat <<EOF| oc create -n default -f -
apiVersion: v1
kind: Pod
metadata:
 name: client
spec:
 containers:
 - name: client
 image: registry.access.redhat.com/rhel7/rhel-tools
 command: ["/bin/sh", "-c"]
 args:
 ["sleep inf"]
EOF

$ for name in client server; do
cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: v1
kind: Pod
metadata:
 name: ${name}
spec:
 containers:

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

449

Example output

4. To generate traffic and produce network policy audit log entries, complete the following steps:

a. Obtain the IP address for pod named server in the verify-audit-logging namespace:

b. Ping the IP address from the previous command from the pod named client in the default
namespace and confirm that all packets are dropped:

Example output

c. Ping the IP address saved in the POD_IP shell environment variable from the pod named
client in the verify-audit-logging namespace and confirm that all packets are allowed:

Example output

5. Display the latest entries in the network policy audit log:

 - name: ${name}
 image: registry.access.redhat.com/rhel7/rhel-tools
 command: ["/bin/sh", "-c"]
 args:
 ["sleep inf"]
EOF
done

pod/client created
pod/server created

$ POD_IP=$(oc get pods server -n verify-audit-logging -o jsonpath='{.status.podIP}')

$ oc exec -it client -n default -- /bin/ping -c 2 $POD_IP

PING 10.128.2.55 (10.128.2.55) 56(84) bytes of data.

--- 10.128.2.55 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 2041ms

$ oc exec -it client -n verify-audit-logging -- /bin/ping -c 2 $POD_IP

PING 10.128.0.86 (10.128.0.86) 56(84) bytes of data.
64 bytes from 10.128.0.86: icmp_seq=1 ttl=64 time=2.21 ms
64 bytes from 10.128.0.86: icmp_seq=2 ttl=64 time=0.440 ms

--- 10.128.0.86 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.440/1.329/2.219/0.890 ms

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
 oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log

OpenShift Container Platform 4.12 Networking

450

Example output

25.8.4. Enabling egress firewall and network policy audit logging for a namespace

As a cluster administrator, you can enable audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To enable audit logging for a namespace, enter the following command:

where:

<namespace>

Specifies the name of the namespace.

TIP

 done

Defaulting container name to ovn-controller.
Use 'oc describe pod/ovnkube-node-hdb8v -n openshift-ovn-kubernetes' to see all of the
containers in this pod.
2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:33:12.614Z|00006|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:10.037Z|00007|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:11.037Z|00008|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate namespace <namespace> \
 k8s.ovn.org/acl-logging='{ "deny": "alert", "allow": "notice" }'

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

451

TIP

You can alternatively apply the following YAML to enable audit logging:

Example output

Verification

Display the latest entries in the audit log:

Example output

25.8.5. Disabling egress firewall and network policy audit logging for a namespace

As a cluster administrator, you can disable audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To disable audit logging for a namespace, enter the following command:

where:

kind: Namespace
apiVersion: v1
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/acl-logging: |-
 {
 "deny": "alert",
 "allow": "notice"
 }

namespace/verify-audit-logging annotated

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
 oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
 done

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate --overwrite namespace <namespace> k8s.ovn.org/acl-logging-

OpenShift Container Platform 4.12 Networking

452

<namespace>

Specifies the name of the namespace.

TIP

You can alternatively apply the following YAML to disable audit logging:

Example output

25.8.6. Additional resources

About network policy

Configuring an egress firewall for a project

25.9. CONFIGURING IPSEC ENCRYPTION

With IPsec enabled, all pod-to-pod network traffic between nodes on the OVN-Kubernetes cluster
network is encrypted with IPsec Transport mode.

IPsec is disabled by default. It can be enabled either during or after installing the cluster. For information
about cluster installation, see OpenShift Container Platform installation overview . If you need to enable
IPsec after cluster installation, you must first resize your cluster MTU to account for the overhead of the
IPsec ESP IP header.

The following documentation describes how to enable and disable IPSec after cluster installation.

25.9.1. Prerequisites

You have decreased the size of the cluster MTU by 46 bytes to allow for the additional
overhead of the IPsec ESP header. For more information on resizing the MTU that your cluster
uses, see Changing the MTU for the cluster network .

25.9.2. Types of network traffic flows encrypted by IPsec

With IPsec enabled, only the following network traffic flows between pods are encrypted:

Traffic between pods on different nodes on the cluster network

Traffic from a pod on the host network to a pod on the cluster network

The following traffic flows are not encrypted:

Traffic between pods on the same node on the cluster network

kind: Namespace
apiVersion: v1
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/acl-logging: null

namespace/verify-audit-logging annotated

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

453

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#ocp-installation-overview

Traffic between pods on the host network

Traffic from a pod on the cluster network to a pod on the host network

The encrypted and unencrypted flows are illustrated in the following diagram:

25.9.2.1. Network connectivity requirements when IPsec is enabled

You must configure the network connectivity between machines to allow OpenShift Container Platform
cluster components to communicate. Each machine must be able to resolve the hostnames of all other
machines in the cluster.

Table 25.11. Ports used for all-machine to all-machine communications

Protocol Port Description

UDP 500 IPsec IKE packets

4500 IPsec NAT-T packets

ESP N/A IPsec Encapsulating Security Payload (ESP)

25.9.3. Encryption protocol and IPsec mode

The encrypt cipher used is AES-GCM-16-256. The integrity check value (ICV) is 16 bytes. The key length
is 256 bits.

The IPsec mode used is Transport mode, a mode that encrypts end-to-end communication by adding an

OpenShift Container Platform 4.12 Networking

454

The IPsec mode used is Transport mode, a mode that encrypts end-to-end communication by adding an
Encapsulated Security Payload (ESP) header to the IP header of the original packet and encrypts the
packet data. OpenShift Container Platform does not currently use or support IPsec Tunnel mode for
pod-to-pod communication.

25.9.4. Security certificate generation and rotation

The Cluster Network Operator (CNO) generates a self-signed X.509 certificate authority (CA) that is
used by IPsec for encryption. Certificate signing requests (CSRs) from each node are automatically
fulfilled by the CNO.

The CA is valid for 10 years. The individual node certificates are valid for 5 years and are automatically
rotated after 4 1/2 years elapse.

25.9.5. Enabling IPsec encryption

As a cluster administrator, you can enable IPsec encryption after cluster installation.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

You have reduced the size of your cluster MTU by 46 bytes to allow for the overhead of the
IPsec ESP header.

Procedure

To enable IPsec encryption, enter the following command:

Verification

1. To find the names of the OVN-Kubernetes control plane pods, enter the following command:

Example output

2. Verify that IPsec is enabled on your cluste by running the following command:

where:

$ oc patch networks.operator.openshift.io cluster --type=merge \
-p '{"spec":{"defaultNetwork":{"ovnKubernetesConfig":{"ipsecConfig":{ }}}}}'

$ oc get pods -l app=ovnkube-master -n openshift-ovn-kubernetes

NAME READY STATUS RESTARTS AGE
ovnkube-master-fvtnh 6/6 Running 0 122m
ovnkube-master-hsgmm 6/6 Running 0 122m
ovnkube-master-qcmdc 6/6 Running 0 122m

$ oc -n openshift-ovn-kubernetes rsh ovnkube-master-<XXXXX> \
 ovn-nbctl --no-leader-only get nb_global . ipsec

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

455

<XXXXX>

Specifies the random sequence of letters for a pod from the previous step.

Example output

25.9.6. Disabling IPsec encryption

As a cluster administrator, you can disable IPsec encryption only if you enabled IPsec after cluster
installation.

NOTE

If you enabled IPsec when you installed your cluster, you cannot disable IPsec with this
procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. To disable IPsec encryption, enter the following command:

2. Optional: You can increase the size of your cluster MTU by 46 bytes because there is no longer
any overhead from the IPsec ESP header in IP packets.

3. Verify that IPsec is disabled on your cluster:

where:

<XXXXX>

Specifies the random sequence of letters for a pod from the previous step.

Example output

25.9.7. Additional resources

About the OVN-Kubernetes Container Network Interface (CNI) network plugin

true

$ oc patch networks.operator.openshift.io/cluster --type=json \
 -p='[{"op":"remove", "path":"/spec/defaultNetwork/ovnKubernetesConfig/ipsecConfig"}]'

$ oc -n openshift-ovn-kubernetes -c nbdb rsh ovnkube-master-<XXXXX> \
 ovn-nbctl --no-leader-only get nb_global . ipsec

false

OpenShift Container Platform 4.12 Networking

456

Changing the MTU for the cluster network

Network [operator.openshift.io/v1] API

25.10. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

25.10.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

NOTE

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

You configure an egress firewall policy by creating an EgressFirewall custom resource (CR) object. The
egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

A port number

A protocol that is one of the following protocols: TCP, UDP, and SCTP

IMPORTANT

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

457

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-operator-openshift-io-v1

1
2
3

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. You must either add allow rules for each IP
address.

The following example illustrates the order of the egress firewall rules necessary to
ensure API server access:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

25.10.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressFirewall object.

A maximum of one EgressFirewall object with a maximum of 8,000 rules can be defined per
project.

If you are using the OVN-Kubernetes network plugin with shared gateway mode in Red Hat
OpenShift Networking, return ingress replies are affected by egress firewall rules. If the egress
firewall rules drop the ingress reply destination IP, the traffic is dropped.

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny

OpenShift Container Platform 4.12 Networking

458

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

Violating any of these restrictions results in a broken egress firewall for the project. Consequently, all
external network traffic is dropped, which can cause security risks for your organization.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system,
openshift and openshift- projects.

25.10.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

25.10.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 minutes. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL and the TTL is less than 30 minutes, the controller
sets the duration for that DNS name to the returned value. Each DNS name is queried after the
TTL for the DNS record expires.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressFirewall objects is
only recommended for domains with infrequent IP address changes.

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

25.10.2. EgressFirewall custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressFirewall CR object:

EgressFirewall object

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

459

1

2

1

2

3

4

5

1

2

The name for the object must be default.

A collection of one or more egress network policy rules as described in the following section.

25.10.2.1. EgressFirewall rules

The following YAML describes an egress firewall rule object. The user can select either an IP address
range in CIDR format or a domain name. The egress stanza expects an array of one or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule that specifies the cidrSelector field or the
dnsName field. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A DNS domain name.

Optional: A stanza describing a collection of network ports and protocols for the rule.

Ports stanza

A network port, such as 80 or 443. If you specify a value for this field, you must also specify a value
for protocol.

A network protocol. The value must be either TCP, UDP, or SCTP.

25.10.2.2. Example EgressFirewall CR objects

The following example defines several egress firewall policy rules:

 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4
 ports: 5
 ...

ports:
- port: <port> 1
 protocol: <protocol> 2

OpenShift Container Platform 4.12 Networking

460

1 A collection of egress firewall policy rule objects.

The following example defines a policy rule that denies traffic to the host at the 172.16.1.1 IP address, if
the traffic is using either the TCP protocol and destination port 80 or any protocol and destination port
443.

25.10.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressFirewall object defined, you must edit the existing
policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OVN-Kubernetes network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
 name: default
spec:
 egress:
 - type: Deny
 to:
 cidrSelector: 172.16.1.1
 ports:
 - port: 80
 protocol: TCP
 - port: 443

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

461

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressFirewall object is created in a project named project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

25.11. VIEWING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can list the names of any existing egress firewalls and view the traffic
rules for a specific egress firewall.

25.11.1. Viewing an EgressFirewall object

You can view an EgressFirewall object in your cluster.

Prerequisites

A cluster using the OVN-Kubernetes network plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressFirewall objects defined in your cluster, enter the
following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

$ oc create -f <policy_name>.yaml -n <project>

$ oc create -f default.yaml -n project1

egressfirewall.k8s.ovn.org/v1 created

$ oc get egressfirewall --all-namespaces

$ oc describe egressfirewall <policy_name>

Name: default

OpenShift Container Platform 4.12 Networking

462

25.12. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

25.12.1. Editing an EgressFirewall object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OVN-Kubernetes network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Optional: If you did not save a copy of the EgressFirewall object when you created the egress
network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressFirewall object. Replace <filename> with the name of the file containing the updated
EgressFirewall object.

25.13. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

25.13.1. Removing an EgressFirewall object

As a cluster administrator, you can remove an egress firewall from a project.

Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

$ oc get -n <project> egressfirewall

$ oc get -n <project> egressfirewall <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

463

Prerequisites

A cluster using the OVN-Kubernetes network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Enter the following command to delete the EgressFirewall object. Replace <project> with the
name of the project and <name> with the name of the object.

25.14. CONFIGURING AN EGRESS IP ADDRESS

As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
network plugin to assign one or more egress IP addresses to a namespace, or to specific pods in a
namespace.

25.14.1. Egress IP address architectural design and implementation

The OpenShift Container Platform egress IP address functionality allows you to ensure that the traffic
from one or more pods in one or more namespaces has a consistent source IP address for services
outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address assigned to a namespace is different from an egress router, which is used to send
traffic to specific destinations.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

25.14.1.1. Platform support

Support for the egress IP address functionality on various platforms is summarized in the following
table:

$ oc get -n <project> egressfirewall

$ oc delete -n <project> egressfirewall <name>

OpenShift Container Platform 4.12 Networking

464

Platform Supported

Bare metal Yes

VMware vSphere Yes

Red Hat OpenStack Platform (RHOSP) Yes

Amazon Web Services (AWS) Yes

Google Cloud Platform (GCP) Yes

Microsoft Azure Yes

IMPORTANT

The assignment of egress IP addresses to control plane nodes with the EgressIP feature
is not supported on a cluster provisioned on Amazon Web Services (AWS).
(BZ#2039656)

25.14.1.2. Public cloud platform considerations

For clusters provisioned on public cloud infrastructure, there is a constraint on the absolute number of
assignable IP addresses per node. The maximum number of assignable IP addresses per node, or the IP
capacity, can be described in the following formula:

While the Egress IPs capability manages the IP address capacity per node, it is important to plan for this
constraint in your deployments. For example, for a cluster installed on bare-metal infrastructure with 8
nodes you can configure 150 egress IP addresses. However, if a public cloud provider limits IP address
capacity to 10 IP addresses per node, the total number of assignable IP addresses is only 80. To achieve
the same IP address capacity in this example cloud provider, you would need to allocate 7 additional
nodes.

To confirm the IP capacity and subnets for any node in your public cloud environment, you can enter the
oc get node <node_name> -o yaml command. The cloud.network.openshift.io/egress-ipconfig
annotation includes capacity and subnet information for the node.

The annotation value is an array with a single object with fields that provide the following information for
the primary network interface:

interface: Specifies the interface ID on AWS and Azure and the interface name on GCP.

ifaddr: Specifies the subnet mask for one or both IP address families.

capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is
provided per IP address family. On Azure and GCP, the IP address capacity includes both IPv4
and IPv6 addresses.

Automatic attachment and detachment of egress IP addresses for traffic between nodes are available.
This allows for traffic from many pods in namespaces to have a consistent source IP address to locations

IP capacity = public cloud default capacity - sum(current IP assignments)

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

465

https://bugzilla.redhat.com/show_bug.cgi?id=2039656

outside of the cluster. This also supports OpenShift SDN and OVN-Kubernetes, which is the default
networking plugin in Red Hat OpenShift Networking in OpenShift Container Platform 4.12.

NOTE

The RHOSP egress IP address feature creates a Neutron reservation port called
egressip-<IP address>. Using the same RHOSP user as the one used for the OpenShift
Container Platform cluster installation, you can assign a floating IP address to this
reservation port to have a predictable SNAT address for egress traffic. When an egress IP
address on an RHOSP network is moved from one node to another, because of a node
failover, for example, the Neutron reservation port is removed and recreated. This means
that the floating IP association is lost and you need to manually reassign the floating IP
address to the new reservation port.

NOTE

When an RHOSP cluster administrator assigns a floating IP to the reservation port,
OpenShift Container Platform cannot delete the reservation port. The
CloudPrivateIPConfig object cannot perform delete and move operations until an
RHOSP cluster administrator unassigns the floating IP from the reservation port.

The following examples illustrate the annotation from nodes on several public cloud providers. The
annotations are indented for readability.

Example cloud.network.openshift.io/egress-ipconfig annotation on AWS

Example cloud.network.openshift.io/egress-ipconfig annotation on GCP

The following sections describe the IP address capacity for supported public cloud environments for use
in your capacity calculation.

25.14.1.2.1. Amazon Web Services (AWS) IP address capacity limits

On AWS, constraints on IP address assignments depend on the instance type configured. For more
information, see IP addresses per network interface per instance type

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"eni-078d267045138e436",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ipv4":14,"ipv6":15}
 }
]

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"nic0",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ip":14}
 }
]

OpenShift Container Platform 4.12 Networking

466

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI

25.14.1.2.2. Google Cloud Platform (GCP) IP address capacity limits

On GCP, the networking model implements additional node IP addresses through IP address aliasing,
rather than IP address assignments. However, IP address capacity maps directly to IP aliasing capacity.

The following capacity limits exist for IP aliasing assignment:

Per node, the maximum number of IP aliases, both IPv4 and IPv6, is 100.

Per VPC, the maximum number of IP aliases is unspecified, but OpenShift Container Platform
scalability testing reveals the maximum to be approximately 15,000.

For more information, see Per instance quotas and Alias IP ranges overview .

25.14.1.2.3. Microsoft Azure IP address capacity limits

On Azure, the following capacity limits exist for IP address assignment:

Per NIC, the maximum number of assignable IP addresses, for both IPv4 and IPv6, is 256.

Per virtual network, the maximum number of assigned IP addresses cannot exceed 65,536.

For more information, see Networking limits .

25.14.1.3. Assignment of egress IPs to pods

To assign one or more egress IPs to a namespace or specific pods in a namespace, the following
conditions must be satisfied:

At least one node in your cluster must have the k8s.ovn.org/egress-assignable: "" label.

An EgressIP object exists that defines one or more egress IP addresses to use as the source IP
address for traffic leaving the cluster from pods in a namespace.

IMPORTANT

If you create EgressIP objects prior to labeling any nodes in your cluster for egress IP
assignment, OpenShift Container Platform might assign every egress IP address to the
first node with the k8s.ovn.org/egress-assignable: "" label.

To ensure that egress IP addresses are widely distributed across nodes in the cluster,
always apply the label to the nodes you intent to host the egress IP addresses before
creating any EgressIP objects.

25.14.1.4. Assignment of egress IPs to nodes

When creating an EgressIP object, the following conditions apply to nodes that are labeled with the
k8s.ovn.org/egress-assignable: "" label:

An egress IP address is never assigned to more than one node at a time.

An egress IP address is equally balanced between available nodes that can host the egress IP
address.

If the spec.EgressIPs array in an EgressIP object specifies more than one IP address, the
following conditions apply:

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

467

https://cloud.google.com/vpc/docs/quota#per_instance
https://cloud.google.com/vpc/docs/alias-ip
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits?toc=/azure/virtual-network/toc.json#networking-limits

No node will ever host more than one of the specified IP addresses.

Traffic is balanced roughly equally between the specified IP addresses for a given
namespace.

If a node becomes unavailable, any egress IP addresses assigned to it are automatically
reassigned, subject to the previously described conditions.

When a pod matches the selector for multiple EgressIP objects, there is no guarantee which of the
egress IP addresses that are specified in the EgressIP objects is assigned as the egress IP address for
the pod.

Additionally, if an EgressIP object specifies multiple egress IP addresses, there is no guarantee which of
the egress IP addresses might be used. For example, if a pod matches a selector for an EgressIP object
with two egress IP addresses, 10.10.20.1 and 10.10.20.2, either might be used for each TCP connection
or UDP conversation.

25.14.1.5. Architectural diagram of an egress IP address configuration

The following diagram depicts an egress IP address configuration. The diagram describes four pods in
two different namespaces running on three nodes in a cluster. The nodes are assigned IP addresses
from the 192.168.126.0/18 CIDR block on the host network.

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

Both Node 1 and Node 3 are labeled with k8s.ovn.org/egress-assignable: "" and thus available for the
assignment of egress IP addresses.

The dashed lines in the diagram depict the traffic flow from pod1, pod2, and pod3 traveling through the
pod network to egress the cluster from Node 1 and Node 3. When an external service receives traffic
from any of the pods selected by the example EgressIP object, the source IP address is either
192.168.126.10 or 192.168.126.102. The traffic is balanced roughly equally between these two nodes.

The following resources from the diagram are illustrated in detail:

Namespace objects

The namespaces are defined in the following manifest:

Namespace objects

apiVersion: v1
kind: Namespace
metadata:
 name: namespace1
 labels:

OpenShift Container Platform 4.12 Networking

468

EgressIP object

The following EgressIP object describes a configuration that selects all pods in any namespace with
the env label set to prod. The egress IP addresses for the selected pods are 192.168.126.10 and
192.168.126.102.

EgressIP object

For the configuration in the previous example, OpenShift Container Platform assigns both egress IP
addresses to the available nodes. The status field reflects whether and where the egress IP
addresses are assigned.

25.14.2. EgressIP object

The following YAML describes the API for the EgressIP object. The scope of the object is cluster-wide;
it is not created in a namespace.

 env: prod

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 labels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egressips-prod
spec:
 egressIPs:
 - 192.168.126.10
 - 192.168.126.102
 namespaceSelector:
 matchLabels:
 env: prod
status:
 items:
 - node: node1
 egressIP: 192.168.126.10
 - node: node3
 egressIP: 192.168.126.102

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: <name> 1
spec:
 egressIPs: 2
 - <ip_address>
 namespaceSelector: 3

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

469

1

2

3

4

1

1

The name for the EgressIPs object.

An array of one or more IP addresses.

One or more selectors for the namespaces to associate the egress IP addresses with.

Optional: One or more selectors for pods in the specified namespaces to associate egress IP
addresses with. Applying these selectors allows for the selection of a subset of pods within a
namespace.

The following YAML describes the stanza for the namespace selector:

Namespace selector stanza

One or more matching rules for namespaces. If more than one match rule is provided, all matching
namespaces are selected.

The following YAML describes the optional stanza for the pod selector:

Pod selector stanza

Optional: One or more matching rules for pods in the namespaces that match the specified
namespaceSelector rules. If specified, only pods that match are selected. Others pods in the
namespace are not selected.

In the following example, the EgressIP object associates the 192.168.126.11 and 192.168.126.102
egress IP addresses with pods that have the app label set to web and are in the namespaces that have
the env label set to prod:

Example EgressIP object

 ...
 podSelector: 4
 ...

namespaceSelector: 1
 matchLabels:
 <label_name>: <label_value>

podSelector: 1
 matchLabels:
 <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group1
spec:
 egressIPs:
 - 192.168.126.11
 - 192.168.126.102

OpenShift Container Platform 4.12 Networking

470

In the following example, the EgressIP object associates the 192.168.127.30 and 192.168.127.40
egress IP addresses with any pods that do not have the environment label set to development:

Example EgressIP object

25.14.3. EgressIPconfig object

As a feature of egress IP, the reachabilityTotalTimeoutSeconds parameter configures the total
timeout for checks that are sent by probes to egress IP nodes. The egressIPConfig object allows users
to set the reachabilityTotalTimeoutSeconds spec. If the EgressIP node cannot be reached within this
timeout, the node is declared down.

You can increase this value if your network is not stable enough to handle the current default value of 1
second.

The following YAML describes changing the reachabilityTotalTimeoutSeconds from the default 1
second probes to 5 second probes:

 podSelector:
 matchLabels:
 app: web
 namespaceSelector:
 matchLabels:
 env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-group2
spec:
 egressIPs:
 - 192.168.127.30
 - 192.168.127.40
 namespaceSelector:
 matchExpressions:
 - key: environment
 operator: NotIn
 values:
 - development

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 ovnKubernetesConfig:
 egressIPConfig: 1
 reachabilityTotalTimeoutSeconds: 5 2

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

471

1

2

1

The egressIPConfig holds the configurations for the options of the EgressIP object. Changing
these configurations allows you to extend the EgressIP object.

The value for reachabilityTotalTimeoutSeconds accepts integer values from 0 to 60. A value of 0
disables the reachability check of the egressIP node. Values of 1 to 60 correspond to the duration
in seconds between probes sending the reachability check for the node.

25.14.4. Labeling a node to host egress IP addresses

You can apply the k8s.ovn.org/egress-assignable="" label to a node in your cluster so that OpenShift
Container Platform can assign one or more egress IP addresses to the node.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Procedure

To label a node so that it can host one or more egress IP addresses, enter the following
command:

The name of the node to label.

TIP

You can alternatively apply the following YAML to add the label to a node:

25.14.5. Next steps

Assigning egress IPs

25.14.6. Additional resources

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

 gatewayConfig:
 routingViaHost: false
 genevePort: 6081

$ oc label nodes <node_name> k8s.ovn.org/egress-assignable="" 1

apiVersion: v1
kind: Node
metadata:
 labels:
 k8s.ovn.org/egress-assignable: ""
 name: <node_name>

OpenShift Container Platform 4.12 Networking

472

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#labelselector-meta-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#labelselectorrequirement-meta-v1

1

25.15. ASSIGNING AN EGRESS IP ADDRESS

As a cluster administrator, you can assign an egress IP address for traffic leaving the cluster from a
namespace or from specific pods in a namespace.

25.15.1. Assigning an egress IP address to a namespace

You can assign one or more egress IP addresses to a namespace or to specific pods in a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Configure at least one node to host an egress IP address.

Procedure

1. Create an EgressIP object:

a. Create a <egressips_name>.yaml file where <egressips_name> is the name of the
object.

b. In the file that you created, define an EgressIP object, as in the following example:

2. To create the object, enter the following command.

Replace <egressips_name> with the name of the object.

Example output

3. Optional: Save the <egressips_name>.yaml file so that you can make changes later.

4. Add labels to the namespace that requires egress IP addresses. To add a label to the
namespace of an EgressIP object defined in step 1, run the following command:

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: egress-project1
spec:
 egressIPs:
 - 192.168.127.10
 - 192.168.127.11
 namespaceSelector:
 matchLabels:
 env: qa

$ oc apply -f <egressips_name>.yaml 1

egressips.k8s.ovn.org/<egressips_name> created

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

473

1 Replace <namespace> with the namespace that requires egress IP addresses.

25.15.2. Additional resources

Configuring egress IP addresses

25.16. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

25.16.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

25.16.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be configured to access the service for the egress router rather than connecting directly
to the destination IP. You can access the destination service and port from the application pod by using
the curl command. For example:

NOTE

The egress router CNI plugin supports redirect mode only. This is a difference with the
egress router implementation that you can deploy with OpenShift SDN. Unlike the egress
router for OpenShift SDN, the egress router CNI plugin does not support HTTP proxy
mode or DNS proxy mode.

25.16.1.2. Egress router pod implementation

The egress router implementation uses the egress router Container Network Interface (CNI) plugin. The
plugin adds a secondary network interface to a pod.

$ oc label ns <namespace> env=qa 1

$ curl <router_service_IP> <port>

OpenShift Container Platform 4.12 Networking

474

An egress router is a pod that has two network interfaces. For example, the pod can have eth0 and net1
network interfaces. The eth0 interface is on the cluster network and the pod continues to use the
interface for ordinary cluster-related network traffic. The net1 interface is on a secondary network and
has an IP address and gateway for that network. Other pods in the OpenShift Container Platform
cluster can access the egress router service and the service enables the pods to access external
services. The egress router acts as a bridge between pods and an external system.

Traffic that leaves the egress router exits through a node, but the packets have the MAC address of the
net1 interface from the egress router pod.

When you add an egress router custom resource, the Cluster Network Operator creates the following
objects:

The network attachment definition for the net1 secondary network interface of the pod.

A deployment for the egress router.

If you delete an egress router custom resource, the Operator deletes the two objects in the preceding
list that are associated with the egress router.

25.16.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

25.16.1.4. Failover configuration

To avoid downtime, the Cluster Network Operator deploys the egress router pod as a deployment

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

475

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

To avoid downtime, the Cluster Network Operator deploys the egress router pod as a deployment
resource. The deployment name is egress-router-cni-deployment. The pod that corresponds to the
deployment has a label of app=egress-router-cni.

To create a new service for the deployment, use the oc expose deployment/egress-router-cni-
deployment --port <port_number> command or create a file like the following example:

25.16.2. Additional resources

Deploying an egress router in redirection mode

25.17. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod to redirect traffic to specified
destination IP addresses from a reserved source IP address.

The egress router implementation uses the egress router Container Network Interface (CNI) plugin.

25.17.1. Egress router custom resource

Define the configuration for an egress router pod in an egress router custom resource. The following
YAML describes the fields for the configuration of an egress router in redirect mode:

apiVersion: v1
kind: Service
metadata:
 name: app-egress
spec:
 ports:
 - name: tcp-8080
 protocol: TCP
 port: 8080
 - name: tcp-8443
 protocol: TCP
 port: 8443
 - name: udp-80
 protocol: UDP
 port: 80
 type: ClusterIP
 selector:
 app: egress-router-cni

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: <egress_router_name>
 namespace: <namespace> <.>
spec:
 addresses: [<.>
 {
 ip: "<egress_router>", <.>
 gateway: "<egress_gateway>" <.>
 }
]

OpenShift Container Platform 4.12 Networking

476

<.> Optional: The namespace field specifies the namespace to create the egress router in. If you do not
specify a value in the file or on the command line, the default namespace is used.

<.> The addresses field specifies the IP addresses to configure on the secondary network interface.

<.> The ip field specifies the reserved source IP address and netmask from the physical network that the
node is on to use with egress router pod. Use CIDR notation to specify the IP address and netmask.

<.> The gateway field specifies the IP address of the network gateway.

<.> Optional: The redirectRules field specifies a combination of egress destination IP address, egress
router port, and protocol. Incoming connections to the egress router on the specified port and protocol
are routed to the destination IP address.

<.> Optional: The targetPort field specifies the network port on the destination IP address. If this field is
not specified, traffic is routed to the same network port that it arrived on.

<.> The protocol field supports TCP, UDP, or SCTP.

<.> Optional: The fallbackIP field specifies a destination IP address. If you do not specify any redirect
rules, the egress router sends all traffic to this fallback IP address. If you specify redirect rules, any
connections to network ports that are not defined in the rules are sent by the egress router to this
fallback IP address. If you do not specify this field, the egress router rejects connections to network ports
that are not defined in the rules.

Example egress router specification

 mode: Redirect
 redirect: {
 redirectRules: [<.>
 {
 destinationIP: "<egress_destination>",
 port: <egress_router_port>,
 targetPort: <target_port>, <.>
 protocol: <network_protocol> <.>
 },
 ...
],
 fallbackIP: "<egress_destination>" <.>
 }

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
 name: egress-router-redirect
spec:
 networkInterface: {
 macvlan: {
 mode: "Bridge"
 }
 }
 addresses: [
 {
 ip: "192.168.12.99/24",
 gateway: "192.168.12.1"
 }

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

477

25.17.2. Deploying an egress router in redirect mode

You can deploy an egress router to redirect traffic from its own reserved source IP address to one or
more destination IP addresses.

After you add an egress router, the client pods that need to use the reserved source IP address must be
modified to connect to the egress router rather than connecting directly to the destination IP.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router definition.

2. To ensure that other pods can find the IP address of the egress router pod, create a service that
uses the egress router, as in the following example:

]
 mode: Redirect
 redirect: {
 redirectRules: [
 {
 destinationIP: "10.0.0.99",
 port: 80,
 protocol: UDP
 },
 {
 destinationIP: "203.0.113.26",
 port: 8080,
 targetPort: 80,
 protocol: TCP
 },
 {
 destinationIP: "203.0.113.27",
 port: 8443,
 targetPort: 443,
 protocol: TCP
 }
]
 }

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: web-app
 protocol: TCP
 port: 8080

OpenShift Container Platform 4.12 Networking

478

<.> Specify the label for the egress router. The value shown is added by the Cluster Network
Operator and is not configurable.

After you create the service, your pods can connect to the service. The egress router pod
redirects traffic to the corresponding port on the destination IP address. The connections
originate from the reserved source IP address.

Verification

To verify that the Cluster Network Operator started the egress router, complete the following
procedure:

1. View the network attachment definition that the Operator created for the egress router:

The name of the network attachment definition is not configurable.

Example output

2. View the deployment for the egress router pod:

The name of the deployment is not configurable.

Example output

3. View the status of the egress router pod:

Example output

4. View the logs and the routing table for the egress router pod.

a. Get the node name for the egress router pod:

 type: ClusterIP
 selector:
 app: egress-router-cni <.>

$ oc get network-attachment-definition egress-router-cni-nad

NAME AGE
egress-router-cni-nad 18m

$ oc get deployment egress-router-cni-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
egress-router-cni-deployment 1/1 1 1 18m

$ oc get pods -l app=egress-router-cni

NAME READY STATUS RESTARTS AGE
egress-router-cni-deployment-575465c75c-qkq6m 1/1 Running 0 18m

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

479

b. Enter into a debug session on the target node. This step instantiates a debug pod called
<node_name>-debug:

c. Set /host as the root directory within the debug shell. The debug pod mounts the root file
system of the host in /host within the pod. By changing the root directory to /host, you can run
binaries from the executable paths of the host:

d. From within the chroot environment console, display the egress router logs:

Example output

The logging file location and logging level are not configurable when you start the egress router
by creating an EgressRouter object as described in this procedure.

e. From within the chroot environment console, get the container ID:

Example output

$ POD_NODENAME=$(oc get pod -l app=egress-router-cni -o jsonpath="
{.items[0].spec.nodeName}")

$ oc debug node/$POD_NODENAME

chroot /host

cat /tmp/egress-router-log

2021-04-26T12:27:20Z [debug] Called CNI ADD
2021-04-26T12:27:20Z [debug] Gateway: 192.168.12.1
2021-04-26T12:27:20Z [debug] IP Source Addresses: [192.168.12.99/24]
2021-04-26T12:27:20Z [debug] IP Destinations: [80 UDP 10.0.0.99/30 8080 TCP
203.0.113.26/30 80 8443 TCP 203.0.113.27/30 443]
2021-04-26T12:27:20Z [debug] Created macvlan interface
2021-04-26T12:27:20Z [debug] Renamed macvlan to "net1"
2021-04-26T12:27:20Z [debug] Adding route to gateway 192.168.12.1 on macvlan interface
2021-04-26T12:27:20Z [debug] deleted default route {Ifindex: 3 Dst: <nil> Src: <nil> Gw:
10.128.10.1 Flags: [] Table: 254}
2021-04-26T12:27:20Z [debug] Added new default route with gateway 192.168.12.1
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
UDP --dport 80 -j DNAT --to-destination 10.0.0.99
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8080 -j DNAT --to-destination 203.0.113.26:80
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p
TCP --dport 8443 -j DNAT --to-destination 203.0.113.27:443
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat -o net1 -j SNAT --to-
source 192.168.12.99

crictl ps --name egress-router-cni-pod | awk '{print $1}'

CONTAINER
bac9fae69ddb6

OpenShift Container Platform 4.12 Networking

480

f. Determine the process ID of the container. In this example, the container ID is bac9fae69ddb6:

Example output

g. Enter the network namespace of the container:

h. Display the routing table:

In the following example output, the net1 network interface is the default route. Traffic for the
cluster network uses the eth0 network interface. Traffic for the 192.168.12.0/24 network uses
the net1 network interface and originates from the reserved source IP address 192.168.12.99.
The pod routes all other traffic to the gateway at IP address 192.168.12.1. Routing for the
service network is not shown.

Example output

25.18. ENABLING MULTICAST FOR A PROJECT

25.18.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service
discovery and not a high-bandwidth solution.

By default, network policies affect all connections in a namespace. However,
multicast is unaffected by network policies. If multicast is enabled in the same
namespace as your network policies, it is always allowed, even if there is a deny-
all network policy. Cluster administrators should consider the implications to the
exemption of multicast from network policies before enabling it.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OVN-Kubernetes network plugin, you can enable multicast on a per-project basis.

25.18.2. Enabling multicast between pods

crictl inspect -o yaml bac9fae69ddb6 | grep 'pid:' | awk '{print $2}'

68857

nsenter -n -t 68857

ip route

default via 192.168.12.1 dev net1
10.128.10.0/23 dev eth0 proto kernel scope link src 10.128.10.18
192.168.12.0/24 dev net1 proto kernel scope link src 192.168.12.99
192.168.12.1 dev net1

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

481

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

TIP

You can alternatively apply the following YAML to add the annotation:

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

$ oc annotate namespace <namespace> \
 k8s.ovn.org/multicast-enabled=true

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: "true"

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102

OpenShift Container Platform 4.12 Networking

482

3. Create a pod to act as a multicast sender:

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

25.19. DISABLING MULTICAST FOR A PROJECT

 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

483

1

25.19.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

TIP

You can alternatively apply the following YAML to delete the annotation:

25.20. TRACKING NETWORK FLOWS

As a cluster administrator, you can collect information about pod network flows from your cluster to
assist with the following areas:

Monitor ingress and egress traffic on the pod network.

Troubleshoot performance issues.

Gather data for capacity planning and security audits.

When you enable the collection of the network flows, only the metadata about the traffic is collected.
For example, packet data is not collected, but the protocol, source address, destination address, port
numbers, number of bytes, and other packet-level information is collected.

The data is collected in one or more of the following record formats:

NetFlow

sFlow

IPFIX

When you configure the Cluster Network Operator (CNO) with one or more collector IP addresses and

$ oc annotate namespace <namespace> \ 1
 k8s.ovn.org/multicast-enabled-

apiVersion: v1
kind: Namespace
metadata:
 name: <namespace>
 annotations:
 k8s.ovn.org/multicast-enabled: null

OpenShift Container Platform 4.12 Networking

484

When you configure the Cluster Network Operator (CNO) with one or more collector IP addresses and
port numbers, the Operator configures Open vSwitch (OVS) on each node to send the network flows
records to each collector.

You can configure the Operator to send records to more than one type of network flow collector. For
example, you can send records to NetFlow collectors and also send records to sFlow collectors.

When OVS sends data to the collectors, each type of collector receives identical records. For example, if
you configure two NetFlow collectors, OVS on a node sends identical records to the two collectors. If
you also configure two sFlow collectors, the two sFlow collectors receive identical records. However,
each collector type has a unique record format.

Collecting the network flows data and sending the records to collectors affects performance. Nodes
process packets at a slower rate. If the performance impact is too great, you can delete the destinations
for collectors to disable collecting network flows data and restore performance.

NOTE

Enabling network flow collectors might have an impact on the overall performance of the
cluster network.

25.20.1. Network object configuration for tracking network flows

The fields for configuring network flows collectors in the Cluster Network Operator (CNO) are shown in
the following table:

Table 25.12. Network flows configuration

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.exportNet
workFlows

object One or more of netFlow, sFlow, or ipfix.

spec.exportNet
workFlows.netF
low.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.sFlo
w.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.ipfix.
collectors

array A list of IP address and network port pairs for up to 10 collectors.

After applying the following manifest to the CNO, the Operator configures Open vSwitch (OVS) on
each node in the cluster to send network flows records to the NetFlow collector that is listening at
192.168.1.99:2056.

Example configuration for tracking network flows

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

485

25.20.2. Adding destinations for network flows collectors

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to send network
flows metadata about the pod network to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You have a network flows collector and know the IP address and port that it listens on.

Procedure

1. Create a patch file that specifies the network flows collector type and the IP address and port
information of the collectors:

2. Configure the CNO with the network flows collectors:

Example output

Verification

Verification is not typically necessary. You can run the following command to confirm that Open vSwitch
(OVS) on each node is configured to send network flows records to one or more collectors.

1. View the Operator configuration to confirm that the exportNetworkFlows field is configured:

Example output

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

spec:
 exportNetworkFlows:
 netFlow:
 collectors:
 - 192.168.1.99:2056

$ oc patch network.operator cluster --type merge -p "$(cat <file_name>.yaml)"

network.operator.openshift.io/cluster patched

$ oc get network.operator cluster -o jsonpath="{.spec.exportNetworkFlows}"

OpenShift Container Platform 4.12 Networking

486

2. View the network flows configuration in OVS from each node:

Example output

25.20.3. Deleting all destinations for network flows collectors

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to stop sending
network flows metadata to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Remove all network flows collectors:

Example output

{"netFlow":{"collectors":["192.168.1.99:2056"]}}

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node -o
jsonpath='{range@.items[*]}{.metadata.name}{"\n"}{end}');
 do ;
 echo;
 echo $pod;
 oc -n openshift-ovn-kubernetes exec -c ovnkube-node $pod \
 -- bash -c 'for type in ipfix sflow netflow ; do ovs-vsctl find $type ; done';
done

ovnkube-node-xrn4p
_uuid : a4d2aaca-5023-4f3d-9400-7275f92611f9
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]

ovnkube-node-z4vq9
_uuid : 61d02fdb-9228-4993-8ff5-b27f01a29bd6
active_timeout : 60
add_id_to_interface : false
engine_id : []
engine_type : []
external_ids : {}
targets : ["192.168.1.99:2056"]-

...

$ oc patch network.operator cluster --type='json' \
 -p='[{"op":"remove", "path":"/spec/exportNetworkFlows"}]'

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

487

Example output

25.20.4. Additional resources

Network [operator.openshift.io/v1]

25.21. CONFIGURING HYBRID NETWORKING

As a cluster administrator, you can configure the Red Hat OpenShift Networking OVN-Kubernetes
network plugin to allow Linux and Windows nodes to host Linux and Windows workloads, respectively.

25.21.1. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid
cluster that supports different node networking configurations. For example, this is necessary to run
both Linux and Windows nodes in a cluster.

IMPORTANT

You must configure hybrid networking with OVN-Kubernetes during the installation of
your cluster. You cannot switch to hybrid networking after the installation process.

Prerequisites

You defined OVNKubernetes for the networking.networkType parameter in the install-
config.yaml file. See the installation documentation for configuring OpenShift Container
Platform network customizations on your chosen cloud provider for more information.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

where:

<installation_directory>

Specifies the name of the directory that contains the install-config.yaml file for your
cluster.

2. Create a stub manifest file for the advanced network configuration that is named cluster-
network-03-config.yml in the <installation_directory>/manifests/ directory:

network.operator.openshift.io/cluster patched

$./openshift-install create manifests --dir <installation_directory>

$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
EOF

OpenShift Container Platform 4.12 Networking

488

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-operator-openshift-io-v1

1

2

where:

<installation_directory>

Specifies the directory name that contains the manifests/ directory for your cluster.

3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with
hybrid networking, such as in the following example:

Specify a hybrid networking configuration

Specify the CIDR configuration used for nodes on the additional overlay network. The
hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.

Specify a custom VXLAN port for the additional overlay network. This is required for
running Windows nodes in a cluster installed on vSphere, and must not be configured for
any other cloud provider. The custom port can be any open port excluding the default 4789
port. For more information on this requirement, see the Microsoft documentation on Pod-
to-pod connectivity between hosts is broken.

NOTE

Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is
not supported on clusters with a custom hybridOverlayVXLANPort value
because this Windows server version does not support selecting a custom VXLAN
port.

4. Save the cluster-network-03-config.yml file and quit the text editor.

5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program
deletes the manifests/ directory when creating the cluster.

Complete any further installation configurations, and then create your cluster. Hybrid networking is
enabled when the installation process is finished.

25.21.2. Additional resources

Understanding Windows container workloads

Enabling Windows container workloads

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 defaultNetwork:
 ovnKubernetesConfig:
 hybridOverlayConfig:
 hybridClusterNetwork: 1
 - cidr: 10.132.0.0/14
 hostPrefix: 23
 hybridOverlayVXLANPort: 9898 2

CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN

489

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/windows_container_support_for_openshift/#understanding-windows-container-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/windows_container_support_for_openshift/#enabling-windows-container-workloads

Installing a cluster on AWS with network customizations

Installing a cluster on Azure with network customizations

OpenShift Container Platform 4.12 Networking

490

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-azure-network-customizations

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

26.1. ABOUT THE OPENSHIFT SDN NETWORK PLUGIN

Part of Red Hat OpenShift Networking, OpenShift SDN is a network plugin that uses a software-
defined networking (SDN) approach to provide a unified cluster network that enables communication
between pods across the OpenShift Container Platform cluster. This pod network is established and
maintained by OpenShift SDN, which configures an overlay network using Open vSwitch (OVS).

26.1.1. OpenShift SDN network isolation modes

OpenShift SDN provides three SDN modes for configuring the pod network:

Network policy mode allows project administrators to configure their own isolation policies using
NetworkPolicy objects. Network policy is the default mode in OpenShift Container Platform
4.12.

Multitenant mode provides project-level isolation for pods and services. Pods from different
projects cannot send packets to or receive packets from pods and services of a different
project. You can disable isolation for a project, allowing it to send network traffic to all pods and
services in the entire cluster and receive network traffic from those pods and services.

Subnet mode provides a flat pod network where every pod can communicate with every other
pod and service. The network policy mode provides the same functionality as subnet mode.

26.1.2. Supported network plugin feature matrix

Red Hat OpenShift Networking offers two options for the network plugin, OpenShift SDN and OVN-
Kubernetes, for the network plugin. The following table summarizes the current feature support for both
network plugins:

Table 26.1. Default CNI network plugin feature comparison

Feature OpenShift SDN OVN-Kubernetes

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported Supported [2]

Hybrid networking Not supported Supported

IPsec encryption Not supported Supported

IPv6 Not supported Supported [3] [4]

Kubernetes network policy Supported Supported

Kubernetes network policy logs Not supported Supported

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

491

Multicast Supported Supported

Hardware offloading Not supported Supported

Feature OpenShift SDN OVN-Kubernetes

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

2. Egress router for OVN-Kubernetes supports only redirect mode.

3. IPv6 is supported only on bare metal, IBM Power, and IBM Z clusters.

4. IPv6 single stack does not support Kubernetes NMState and is not supported on IBM Power and
IBM Z clusters.

26.2. MIGRATING TO THE OPENSHIFT SDN NETWORK PLUGIN

As a cluster administrator, you can migrate to the OpenShift SDN network plugin from the OVN-
Kubernetes network plugin.

To learn more about OpenShift SDN, read About the OpenShift SDN network plugin .

26.2.1. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 26.2. Migrating to OpenShift SDN from OVN-Kubernetes

User-initiated steps Migration activity

Set the migration field of the
Network.operator.openshift.io custom resource
(CR) named cluster to OpenShiftSDN. Make sure
the migration field is null before setting it to a
value.

Cluster Network Operator (CNO)
Updates the status of the
Network.config.openshift.io CR named
cluster accordingly.

Machine Config Operator (MCO)
Rolls out an update to the systemd configuration
necessary for OpenShift SDN; the MCO updates
a single machine per pool at a time by default,
causing the total time the migration takes to
increase with the size of the cluster.

OpenShift Container Platform 4.12 Networking

492

Update the networkType field of the
Network.config.openshift.io CR. CNO

Performs the following actions:

Destroys the OVN-Kubernetes control
plane pods.

Deploys the OpenShift SDN control
plane pods.

Updates the Multus objects to reflect
the new network plugin.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OpenShift SDN cluster network.

User-initiated steps Migration activity

26.2.2. Migrating to the OpenShift SDN network plugin

As a cluster administrator, you can migrate to the OpenShift SDN Container Network Interface (CNI)
network plugin. During the migration you must reboot every node in your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes network plugin.

A recent backup of the etcd database is available.

A reboot can be triggered manually for each node.

The cluster is in a known good state, without any errors.

Procedure

1. Stop all of the machine configuration pools managed by the Machine Config Operator (MCO):

Stop the master configuration pool:

Stop the worker machine configuration pool:

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": true } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec":{ "paused": true } }'

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

493

2. To prepare for the migration, set the migration field to null by entering the following command:

3. To start the migration, set the network plugin back to OpenShift SDN by entering the following
commands:

4. Optional: You can disable automatic migration of several OVN-Kubernetes capabilities to the
OpenShift SDN equivalents:

Egress IPs

Egress firewall

Multicast

To disable automatic migration of the configuration for any of the previously noted OpenShift
SDN features, specify the following keys:

where:

bool: Specifies whether to enable migration of the feature. The default is true.

5. Optional: You can customize the following settings for OpenShift SDN to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

VXLAN port

To customize either or both of the previously noted settings, customize and enter the following
command. If you do not need to change the default value, omit the key from the patch.

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": { "networkType": "OpenShiftSDN" } } }'

$ oc patch Network.config.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "networkType": "OpenShiftSDN" } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{
 "spec": {
 "migration": {
 "networkType": "OpenShiftSDN",
 "features": {
 "egressIP": <bool>,
 "egressFirewall": <bool>,
 "multicast": <bool>
 }
 }
 }
 }'

$ oc patch Network.operator.openshift.io cluster --type=merge \

OpenShift Container Platform 4.12 Networking

494

mtu

The MTU for the VXLAN overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 50 less than the smallest node MTU value.

port

The UDP port for the VXLAN overlay network. If a value is not specified, the default is 4789.
The port cannot be the same as the Geneve port that is used by OVN-Kubernetes. The
default value for the Geneve port is 6081.

Example patch command

6. Reboot each node in your cluster. You can reboot the nodes in your cluster with either of the
following approaches:

With the oc rsh command, you can use a bash script similar to the following:

With the ssh command, you can use a bash script similar to the following. The script
assumes that you have configured sudo to not prompt for a password.

 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":<mtu>,
 "vxlanPort":<port>
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "openshiftSDNConfig":{
 "mtu":1200
 }}}}'

#!/bin/bash
readarray -t POD_NODES <<< "$(oc get pod -n openshift-machine-config-operator -o
wide| grep daemon|awk '{print $1" "$7}')"

for i in "${POD_NODES[@]}"
do
 read -r POD NODE <<< "$i"
 until oc rsh -n openshift-machine-config-operator "$POD" chroot /rootfs shutdown -r +1
 do
 echo "cannot reboot node $NODE, retry" && sleep 3
 done
done

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

495

7. Wait until the Multus daemon set rollout completes. Run the following command to see your
rollout status:

The name of the Multus pods is in the form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

8. After the nodes in your cluster have rebooted and the multus pods are rolled out, start all of the
machine configuration pools by running the following commands::

Start the master configuration pool:

Start the worker configuration pool:

As the MCO updates machines in each config pool, it reboots each node.

By default the MCO updates a single machine per pool at a time, so the time that the migration
requires to complete grows with the size of the cluster.

9. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

$ oc patch MachineConfigPool master --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
 '{ "spec": { "paused": false } }'

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

OpenShift Container Platform 4.12 Networking

496

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

10. Confirm that the migration succeeded:

a. To confirm that the network plugin is OpenShift SDN, enter the following command. The
value of status.networkType must be OpenShiftSDN.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. To display the pod log for each machine config daemon pod shown in the previous
output, enter the following command:

$ oc get machineconfig <config_name> -o yaml

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m
machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

497

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

d. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

11. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the Cluster Network Operator configuration
object, enter the following command:

b. To remove the OVN-Kubernetes configuration, enter the following command:

c. To remove the OVN-Kubernetes network provider namespace, enter the following
command:

26.2.3. Additional resources

Configuration parameters for the OpenShift SDN network plugin

Backing up etcd

About network policy

OpenShift SDN capabilities

Configuring egress IPs for a project

Configuring an egress firewall for a project

Enabling multicast for a project

Network [operator.openshift.io/v1]

26.3. ROLLING BACK TO THE OVN-KUBERNETES NETWORK PLUGIN

As a cluster administrator, you can rollback to the OVN-Kubernetes network plugin from the OpenShift
SDN network plugin if the migration to OpenShift SDN is unsuccessful.

To learn more about OVN-Kubernetes, read About the OVN-Kubernetes network plugin .

26.3.1. Migrating to the OVN-Kubernetes network plugin

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "ovnKubernetesConfig":null } } }'

$ oc delete namespace openshift-ovn-kubernetes

OpenShift Container Platform 4.12 Networking

498

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/backup_and_restore/#backup-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/api_reference/#network-operator-openshift-io-v1

As a cluster administrator, you can change the network plugin for your cluster to OVN-Kubernetes.
During the migration, you must reboot every node in your cluster.

IMPORTANT

While performing the migration, your cluster is unavailable and workloads might be
interrupted. Perform the migration only when an interruption in service is acceptable.

Prerequisites

A cluster configured with the OpenShift SDN CNI network plugin in the network policy isolation
mode.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A recent backup of the etcd database is available.

A reboot can be triggered manually for each node.

The cluster is in a known good state, without any errors.

On all cloud platforms after updating software, a security group rule must be in place to allow
UDP packets on port 6081 for all nodes.

Procedure

1. To backup the configuration for the cluster network, enter the following command:

2. To prepare all the nodes for the migration, set the migration field on the Cluster Network
Operator configuration object by entering the following command:

NOTE

This step does not deploy OVN-Kubernetes immediately. Instead, specifying the
migration field triggers the Machine Config Operator (MCO) to apply new
machine configs to all the nodes in the cluster in preparation for the OVN-
Kubernetes deployment.

3. Optional: You can disable automatic migration of several OpenShift SDN capabilities to the
OVN-Kubernetes equivalents:

Egress IPs

Egress firewall

Multicast

To disable automatic migration of the configuration for any of the previously noted OpenShift

$ oc get Network.config.openshift.io cluster -o yaml > cluster-openshift-sdn.yaml

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": { "networkType": "OVNKubernetes" } } }'

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

499

To disable automatic migration of the configuration for any of the previously noted OpenShift
SDN features, specify the following keys:

where:

bool: Specifies whether to enable migration of the feature. The default is true.

4. Optional: You can customize the following settings for OVN-Kubernetes to meet your network
infrastructure requirements:

Maximum transmission unit (MTU). Consider the following before customizing the MTU for
this optional step:

If you use the default MTU, and you want to keep the default MTU during migration,
this step can be ignored.

If you used a custom MTU, and you want to keep the custom MTU during migration, you
must declare the custom MTU value in this step.

This step does not work if you want to change the MTU value during migration. Instead,
you must first follow the instructions for "Changing the cluster MTU". You can then
keep the custom MTU value by performing this procedure and declaring the custom
MTU value in this step.

NOTE

OpenShift-SDN and OVN-Kubernetes have different overlay overhead.
MTU values should be selected by following the guidelines found on the
"MTU value selection" page.

Geneve (Generic Network Virtualization Encapsulation) overlay network port

OVN-Kubernetes IPv4 internal subnet

OVN-Kubernetes IPv6 internal subnet

To customize either of the previously noted settings, enter and customize the following
command. If you do not need to change the default value, omit the key from the patch.

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{
 "spec": {
 "migration": {
 "networkType": "OVNKubernetes",
 "features": {
 "egressIP": <bool>,
 "egressFirewall": <bool>,
 "multicast": <bool>
 }
 }
 }
 }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{

OpenShift Container Platform 4.12 Networking

500

where:

mtu

The MTU for the Geneve overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 100 less than the smallest node MTU value.

port

The UDP port for the Geneve overlay network. If a value is not specified, the default is 6081.
The port cannot be the same as the VXLAN port that is used by OpenShift SDN. The default
value for the VXLAN port is 4789.

ipv4_subnet

An IPv4 address range for internal use by OVN-Kubernetes. You must ensure that the IP
address range does not overlap with any other subnet used by your OpenShift Container
Platform installation. The IP address range must be larger than the maximum number of
nodes that can be added to the cluster. The default value is 100.64.0.0/16.

ipv6_subnet

An IPv6 address range for internal use by OVN-Kubernetes. You must ensure that the IP
address range does not overlap with any other subnet used by your OpenShift Container
Platform installation. The IP address range must be larger than the maximum number of
nodes that can be added to the cluster. The default value is fd98::/48.

Example patch command to update mtu field

5. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":<mtu>,
 "genevePort":<port>,
 "v4InternalSubnet":"<ipv4_subnet>",
 "v6InternalSubnet":"<ipv6_subnet>"
 }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
 --patch '{
 "spec":{
 "defaultNetwork":{
 "ovnKubernetesConfig":{
 "mtu":1200
 }}}}'

$ oc get mcp

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

501

6. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/configure-ovs.sh OVNKubernetes

$ oc get pod -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
machine-config-controller-75f756f89d-sjp8b 1/1 Running 0 37m
machine-config-daemon-5cf4b 2/2 Running 0 43h
machine-config-daemon-7wzcd 2/2 Running 0 43h
machine-config-daemon-fc946 2/2 Running 0 43h
machine-config-daemon-g2v28 2/2 Running 0 43h
machine-config-daemon-gcl4f 2/2 Running 0 43h
machine-config-daemon-l5tnv 2/2 Running 0 43h
machine-config-operator-79d9c55d5-hth92 1/1 Running 0 37m

OpenShift Container Platform 4.12 Networking

502

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. Display the pod log for the first machine config daemon pod shown in the previous
output by enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

7. To start the migration, configure the OVN-Kubernetes network plugin by using one of the
following commands:

To specify the network provider without changing the cluster network IP address block,
enter the following command:

To specify a different cluster network IP address block, enter the following command:

where cidr is a CIDR block and prefix is the slice of the CIDR block apportioned to each
node in your cluster. You cannot use any CIDR block that overlaps with the 100.64.0.0/16
CIDR block because the OVN-Kubernetes network provider uses this block internally.

IMPORTANT

You cannot change the service network address block during the migration.

8. Verify that the Multus daemon set rollout is complete before continuing with subsequent steps:

The name of the Multus pods is in the form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

machine-config-server-bsc8h 1/1 Running 0 43h
machine-config-server-hklrm 1/1 Running 0 43h
machine-config-server-k9rtx 1/1 Running 0 43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{ "spec": { "networkType": "OVNKubernetes" } }'

$ oc patch Network.config.openshift.io cluster \
 --type='merge' --patch '{
 "spec": {
 "clusterNetwork": [
 {
 "cidr": "<cidr>",
 "hostPrefix": <prefix>
 }
],
 "networkType": "OVNKubernetes"
 }
 }'

$ oc -n openshift-multus rollout status daemonset/multus

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

503

Example output

9. To complete changing the network plugin, reboot each node in your cluster. You can reboot the
nodes in your cluster with either of the following approaches:

With the oc rsh command, you can use a bash script similar to the following:

With the ssh command, you can use a bash script similar to the following. The script
assumes that you have configured sudo to not prompt for a password.

10. Confirm that the migration succeeded:

a. To confirm that the network plugin is OVN-Kubernetes, enter the following command. The
value of status.networkType must be OVNKubernetes.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

d. To confirm that all of the cluster Operators are not in an abnormal state, enter the following

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash
readarray -t POD_NODES <<< "$(oc get pod -n openshift-machine-config-operator -o
wide| grep daemon|awk '{print $1" "$7}')"

for i in "${POD_NODES[@]}"
do
 read -r POD NODE <<< "$i"
 until oc rsh -n openshift-machine-config-operator "$POD" chroot /rootfs shutdown -r +1
 do
 echo "cannot reboot node $NODE, retry" && sleep 3
 done
done

#!/bin/bash

for ip in $(oc get nodes -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
 echo "reboot node $ip"
 ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

OpenShift Container Platform 4.12 Networking

504

d. To confirm that all of the cluster Operators are not in an abnormal state, enter the following
command:

The status of every cluster Operator must be the following: AVAILABLE="True",
PROGRESSING="False", DEGRADED="False". If a cluster Operator is not available or
degraded, check the logs for the cluster Operator for more information.

11. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the CNO configuration object, enter the
following command:

b. To remove custom configuration for the OpenShift SDN network provider, enter the
following command:

c. To remove the OpenShift SDN network provider namespace, enter the following command:

26.4. CONFIGURING EGRESS IPS FOR A PROJECT

As a cluster administrator, you can configure the OpenShift SDN Container Network Interface (CNI)
network plugin to assign one or more egress IP addresses to a project.

26.4.1. Egress IP address architectural design and implementation

The OpenShift Container Platform egress IP address functionality allows you to ensure that the traffic
from one or more pods in one or more namespaces has a consistent source IP address for services
outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address assigned to a namespace is different from an egress router, which is used to send
traffic to specific destinations.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

An egress IP address is implemented as an additional IP address on the primary network interface of a
node and must be in the same subnet as the primary IP address of the node. The additional IP address
must not be assigned to any other node in the cluster.

IMPORTANT

$ oc get co

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
 --patch '{ "spec": { "defaultNetwork": { "openshiftSDNConfig": null } } }'

$ oc delete namespace openshift-sdn

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

505

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

26.4.1.1. Platform support

Support for the egress IP address functionality on various platforms is summarized in the following
table:

Platform Supported

Bare metal Yes

VMware vSphere Yes

Red Hat OpenStack Platform (RHOSP) Yes

Amazon Web Services (AWS) Yes

Google Cloud Platform (GCP) Yes

Microsoft Azure Yes

IMPORTANT

The assignment of egress IP addresses to control plane nodes with the EgressIP feature
is not supported on a cluster provisioned on Amazon Web Services (AWS).
(BZ#2039656)

26.4.1.2. Public cloud platform considerations

For clusters provisioned on public cloud infrastructure, there is a constraint on the absolute number of
assignable IP addresses per node. The maximum number of assignable IP addresses per node, or the IP
capacity, can be described in the following formula:

While the Egress IPs capability manages the IP address capacity per node, it is important to plan for this
constraint in your deployments. For example, for a cluster installed on bare-metal infrastructure with 8
nodes you can configure 150 egress IP addresses. However, if a public cloud provider limits IP address
capacity to 10 IP addresses per node, the total number of assignable IP addresses is only 80. To achieve
the same IP address capacity in this example cloud provider, you would need to allocate 7 additional
nodes.

To confirm the IP capacity and subnets for any node in your public cloud environment, you can enter the
oc get node <node_name> -o yaml command. The cloud.network.openshift.io/egress-ipconfig
annotation includes capacity and subnet information for the node.

The annotation value is an array with a single object with fields that provide the following information for
the primary network interface:

IP capacity = public cloud default capacity - sum(current IP assignments)

OpenShift Container Platform 4.12 Networking

506

https://bugzilla.redhat.com/show_bug.cgi?id=2039656

interface: Specifies the interface ID on AWS and Azure and the interface name on GCP.

ifaddr: Specifies the subnet mask for one or both IP address families.

capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is
provided per IP address family. On Azure and GCP, the IP address capacity includes both IPv4
and IPv6 addresses.

Automatic attachment and detachment of egress IP addresses for traffic between nodes are available.
This allows for traffic from many pods in namespaces to have a consistent source IP address to locations
outside of the cluster. This also supports OpenShift SDN and OVN-Kubernetes, which is the default
networking plugin in Red Hat OpenShift Networking in OpenShift Container Platform 4.12.

NOTE

The RHOSP egress IP address feature creates a Neutron reservation port called
egressip-<IP address>. Using the same RHOSP user as the one used for the OpenShift
Container Platform cluster installation, you can assign a floating IP address to this
reservation port to have a predictable SNAT address for egress traffic. When an egress IP
address on an RHOSP network is moved from one node to another, because of a node
failover, for example, the Neutron reservation port is removed and recreated. This means
that the floating IP association is lost and you need to manually reassign the floating IP
address to the new reservation port.

NOTE

When an RHOSP cluster administrator assigns a floating IP to the reservation port,
OpenShift Container Platform cannot delete the reservation port. The
CloudPrivateIPConfig object cannot perform delete and move operations until an
RHOSP cluster administrator unassigns the floating IP from the reservation port.

The following examples illustrate the annotation from nodes on several public cloud providers. The
annotations are indented for readability.

Example cloud.network.openshift.io/egress-ipconfig annotation on AWS

Example cloud.network.openshift.io/egress-ipconfig annotation on GCP

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"eni-078d267045138e436",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ipv4":14,"ipv6":15}
 }
]

cloud.network.openshift.io/egress-ipconfig: [
 {
 "interface":"nic0",
 "ifaddr":{"ipv4":"10.0.128.0/18"},
 "capacity":{"ip":14}
 }
]

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

507

The following sections describe the IP address capacity for supported public cloud environments for use
in your capacity calculation.

26.4.1.2.1. Amazon Web Services (AWS) IP address capacity limits

On AWS, constraints on IP address assignments depend on the instance type configured. For more
information, see IP addresses per network interface per instance type

26.4.1.2.2. Google Cloud Platform (GCP) IP address capacity limits

On GCP, the networking model implements additional node IP addresses through IP address aliasing,
rather than IP address assignments. However, IP address capacity maps directly to IP aliasing capacity.

The following capacity limits exist for IP aliasing assignment:

Per node, the maximum number of IP aliases, both IPv4 and IPv6, is 100.

Per VPC, the maximum number of IP aliases is unspecified, but OpenShift Container Platform
scalability testing reveals the maximum to be approximately 15,000.

For more information, see Per instance quotas and Alias IP ranges overview .

26.4.1.2.3. Microsoft Azure IP address capacity limits

On Azure, the following capacity limits exist for IP address assignment:

Per NIC, the maximum number of assignable IP addresses, for both IPv4 and IPv6, is 256.

Per virtual network, the maximum number of assigned IP addresses cannot exceed 65,536.

For more information, see Networking limits .

26.4.1.3. Limitations

The following limitations apply when using egress IP addresses with the OpenShift SDN network plugin:

You cannot use manually assigned and automatically assigned egress IP addresses on the same
nodes.

If you manually assign egress IP addresses from an IP address range, you must not make that
range available for automatic IP assignment.

You cannot share egress IP addresses across multiple namespaces using the OpenShift SDN
egress IP address implementation.

If you need to share IP addresses across namespaces, the OVN-Kubernetes network plugin egress IP
address implementation allows you to span IP addresses across multiple namespaces.

NOTE

If you use OpenShift SDN in multitenant mode, you cannot use egress IP addresses with
any namespace that is joined to another namespace by the projects that are associated
with them. For example, if project1 and project2 are joined by running the oc adm pod-
network join-projects --to=project1 project2 command, neither project can use an
egress IP address. For more information, see BZ#1645577.

OpenShift Container Platform 4.12 Networking

508

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://cloud.google.com/vpc/docs/quota#per_instance
https://cloud.google.com/vpc/docs/alias-ip
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits?toc=/azure/virtual-network/toc.json#networking-limits
https://bugzilla.redhat.com/show_bug.cgi?id=1645577

26.4.1.4. IP address assignment approaches

You can assign egress IP addresses to namespaces by setting the egressIPs parameter of the
NetNamespace object. After an egress IP address is associated with a project, OpenShift SDN allows
you to assign egress IP addresses to hosts in two ways:

In the automatically assigned approach, an egress IP address range is assigned to a node.

In the manually assigned approach, a list of one or more egress IP address is assigned to a node.

Namespaces that request an egress IP address are matched with nodes that can host those egress IP
addresses, and then the egress IP addresses are assigned to those nodes. If the egressIPs parameter is
set on a NetNamespace object, but no node hosts that egress IP address, then egress traffic from the
namespace will be dropped.

High availability of nodes is automatic. If a node that hosts an egress IP address is unreachable and
there are nodes that are able to host that egress IP address, then the egress IP address will move to a
new node. When the unreachable node comes back online, the egress IP address automatically moves
to balance egress IP addresses across nodes.

26.4.1.4.1. Considerations when using automatically assigned egress IP addresses

When using the automatic assignment approach for egress IP addresses the following considerations
apply:

You set the egressCIDRs parameter of each node’s HostSubnet resource to indicate the
range of egress IP addresses that can be hosted by a node. OpenShift Container Platform sets
the egressIPs parameter of the HostSubnet resource based on the IP address range you
specify.

If the node hosting the namespace’s egress IP address is unreachable, OpenShift Container Platform
will reassign the egress IP address to another node with a compatible egress IP address range. The
automatic assignment approach works best for clusters installed in environments with flexibility in
associating additional IP addresses with nodes.

26.4.1.4.2. Considerations when using manually assigned egress IP addresses

This approach allows you to control which nodes can host an egress IP address.

NOTE

If your cluster is installed on public cloud infrastructure, you must ensure that each node
that you assign egress IP addresses to has sufficient spare capacity to host the IP
addresses. For more information, see "Platform considerations" in a previous section.

When using the manual assignment approach for egress IP addresses the following considerations apply:

You set the egressIPs parameter of each node’s HostSubnet resource to indicate the IP
addresses that can be hosted by a node.

Multiple egress IP addresses per namespace are supported.

If a namespace has multiple egress IP addresses and those addresses are hosted on multiple nodes, the
following additional considerations apply:

If a pod is on a node that is hosting an egress IP address, that pod always uses the egress IP

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

509

If a pod is on a node that is hosting an egress IP address, that pod always uses the egress IP
address on the node.

If a pod is not on a node that is hosting an egress IP address, that pod uses an egress IP address
at random.

26.4.2. Configuring automatically assigned egress IP addresses for a namespace

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a
specific namespace across one or more nodes.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object with the egress IP address using the following JSON:

where:

<project_name>

Specifies the name of the project.

<ip_address>

Specifies one or more egress IP addresses for the egressIPs array.

For example, to assign project1 to an IP address of 192.168.1.100 and project2 to an IP address
of 192.168.1.101:

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for
each host using the following JSON:

 $ oc patch netnamespace <project_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>"
]
 }'

$ oc patch netnamespace project1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
 '{"egressIPs": ["192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \

OpenShift Container Platform 4.12 Networking

510

where:

<node_name>

Specifies a node name.

<ip_address_range>

Specifies an IP address range in CIDR format. You can specify more than one address range
for the egressCIDRs array.

For example, to set node1 and node2 to host egress IP addresses in the range 192.168.1.0 to
192.168.1.255:

OpenShift Container Platform automatically assigns specific egress IP addresses to available
nodes in a balanced way. In this case, it assigns the egress IP address 192.168.1.100 to node1 and
the egress IP address 192.168.1.101 to node2 or vice versa.

26.4.3. Configuring manually assigned egress IP addresses for a namespace

In OpenShift Container Platform you can associate one or more egress IP addresses with a namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object by specifying the following JSON object with the desired IP
addresses:

where:

<project_name>

Specifies the name of the project.

<ip_address>

 '{
 "egressCIDRs": [
 "<ip_address_range>", "<ip_address_range>"
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'

 $ oc patch netnamespace <project_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>"
]
 }'

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

511

Specifies one or more egress IP addresses for the egressIPs array.

For example, to assign the project1 project to the IP addresses 192.168.1.100 and
192.168.1.101:

To provide high availability, set the egressIPs value to two or more IP addresses on different
nodes. If multiple egress IP addresses are set, then pods use all egress IP addresses roughly
equally.

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Manually assign the egress IP address to the node hosts.
If your cluster is installed on public cloud infrastructure, you must confirm that the node has
available IP address capacity.

Set the egressIPs parameter on the HostSubnet object on the node host. Using the following
JSON, include as many IP addresses as you want to assign to that node host:

where:

<node_name>

Specifies a node name.

<ip_address>

Specifies an IP address. You can specify more than one IP address for the egressIPs array.

For example, to specify that node1 should have the egress IPs 192.168.1.100, 192.168.1.101,
and 192.168.1.102:

In the previous example, all egress traffic for project1 will be routed to the node hosting the
specified egress IP, and then connected through Network Address Translation (NAT) to that IP
address.

26.4.4. Additional resources

If you are configuring manual egress IP address assignment, see Platform considerations for

$ oc patch netnamespace project1 --type=merge \
 -p '{"egressIPs": ["192.168.1.100","192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \
 '{
 "egressIPs": [
 "<ip_address>",
 "<ip_address>"
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

OpenShift Container Platform 4.12 Networking

512

If you are configuring manual egress IP address assignment, see Platform considerations for
information about IP capacity planning.

26.5. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

26.5.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

NOTE

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

You configure an egress firewall policy by creating an EgressNetworkPolicy custom resource (CR)
object. The egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

IMPORTANT

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

513

1
2
3

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. You must either add allow rules for each IP
address.

The following example illustrates the order of the egress firewall rules necessary to
ensure API server access:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

IMPORTANT

You must have OpenShift SDN configured to use either the network policy or multitenant
mode to configure an egress firewall.

If you use network policy mode, an egress firewall is compatible with only one policy per
namespace and will not work with projects that share a network, such as global projects.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

26.5.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
 namespace: <namespace> 1
spec:
 egress:
 - to:
 cidrSelector: <api_server_address_range> 2
 type: Allow
...
 - to:
 cidrSelector: 0.0.0.0/0 3
 type: Deny

OpenShift Container Platform 4.12 Networking

514

https://bugzilla.redhat.com/show_bug.cgi?id=1988324

No project can have more than one EgressNetworkPolicy object.

IMPORTANT

The creation of more than one EgressNetworkPolicy object is allowed, however it
should not be done. When you create more than one EgressNetworkPolicy
object, the following message is returned: dropping all rules. In actuality, all
external traffic is dropped, which can cause security risks for your organization.

A maximum of one EgressNetworkPolicy object with a maximum of 1,000 rules can be defined
per project.

The default project cannot use an egress firewall.

When using the OpenShift SDN network plugin in multitenant mode, the following limitations
apply:

Global projects cannot use an egress firewall. You can make a project global by using the oc
adm pod-network make-projects-global command.

Projects merged by using the oc adm pod-network join-projects command cannot use an
egress firewall in any of the joined projects.

Violating any of these restrictions results in a broken egress firewall for the project. Consequently, all
external network traffic is dropped, which can cause security risks for your organization.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system,
openshift and openshift- projects.

26.5.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

26.5.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 seconds. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL that is less than 30 seconds, the controller sets the
duration to the returned value. If the TTL in the response is greater than 30 minutes, the
controller sets the duration to 30 minutes. If the TTL is between 30 seconds and 30 minutes,
the controller ignores the value and sets the duration to 30 seconds.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressNetworkPolicy
objects is only recommended for domains with infrequent IP address changes.

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

515

1

2

1

2

3

4

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

26.5.2. EgressNetworkPolicy custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressNetworkPolicy CR object:

EgressNetworkPolicy object

A name for your egress firewall policy.

A collection of one or more egress network policy rules as described in the following section.

26.5.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The user can select either an IP address
range in CIDR format or a domain name. The egress stanza expects an array of one or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule. A value for either the cidrSelector field or the
dnsName field for the rule. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A domain name.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns_name> 4

OpenShift Container Platform 4.12 Networking

516

1

26.5.2.2. Example EgressNetworkPolicy CR objects

The following example defines several egress firewall policy rules:

A collection of egress firewall policy rule objects.

26.5.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressNetworkPolicy object defined, you must edit the
existing policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OpenShift SDN network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressNetworkPolicy object is created in a project named
project1:

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default
spec:
 egress: 1
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

$ oc create -f <policy_name>.yaml -n <project>

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

517

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

26.6. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

26.6.1. Viewing an EgressNetworkPolicy object

You can view an EgressNetworkPolicy object in your cluster.

Prerequisites

A cluster using the OpenShift SDN network plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressNetworkPolicy objects defined in your cluster, enter
the following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

26.7. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

$ oc create -f default.yaml -n project1

egressnetworkpolicy.network.openshift.io/v1 created

$ oc get egressnetworkpolicy --all-namespaces

$ oc describe egressnetworkpolicy <policy_name>

Name: default
Namespace: project1
Created: 20 minutes ago
Labels: <none>
Annotations: <none>
Rule: Allow to 1.2.3.0/24
Rule: Allow to www.example.com
Rule: Deny to 0.0.0.0/0

OpenShift Container Platform 4.12 Networking

518

26.7.1. Editing an EgressNetworkPolicy object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OpenShift SDN network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Optional: If you did not save a copy of the EgressNetworkPolicy object when you created the
egress network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressNetworkPolicy object. Replace <filename> with the name of the file containing the
updated EgressNetworkPolicy object.

26.8. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

26.8.1. Removing an EgressNetworkPolicy object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OpenShift SDN network plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

$ oc get -n <project> egressnetworkpolicy

$ oc get -n <project> egressnetworkpolicy <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

519

2. Enter the following command to delete the EgressNetworkPolicy object. Replace <project>
with the name of the project and <name> with the name of the object.

26.9. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

26.9.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

26.9.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be configured to access the service for the egress router rather than connecting directly
to the destination IP. You can access the destination service and port from the application pod by using
the curl command. For example:

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

In DNS proxy mode , an egress router pod runs as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses. To make use of the reserved, source IP address, client
pods must be modified to connect to the egress router pod rather than connecting directly to the
destination IP address. This modification ensures that external destinations treat traffic as though it
were coming from a known source.

Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use
HTTP proxy mode. For TCP-based services with IP addresses or domain names, use DNS proxy mode.

$ oc get -n <project> egressnetworkpolicy

$ oc delete -n <project> egressnetworkpolicy <name>

$ curl <router_service_IP> <port>

OpenShift Container Platform 4.12 Networking

520

26.9.1.2. Egress router pod implementation

The egress router pod setup is performed by an initialization container. That container runs in a
privileged context so that it can configure the macvlan interface and set up iptables rules. After the
initialization container finishes setting up the iptables rules, it exits. Next the egress router pod
executes the container to handle the egress router traffic. The image used varies depending on the
egress router mode.

The environment variables determine which addresses the egress-router image uses. The image
configures the macvlan interface to use EGRESS_SOURCE as its IP address, with
EGRESS_GATEWAY as the IP address for the gateway.

Network Address Translation (NAT) rules are set up so that connections to the cluster IP address of the
pod on any TCP or UDP port are redirected to the same port on IP address specified by the
EGRESS_DESTINATION variable.

If only some of the nodes in your cluster are capable of claiming the specified source IP address and
using the specified gateway, you can specify a nodeName or nodeSelector to identify which nodes are
acceptable.

26.9.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

26.9.1.4. Failover configuration

To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the

$ openstack port set --allowed-address \
 ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

521

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

1

2

To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the
following example. To create a new Service object for the example deployment, use the oc expose
deployment/egress-demo-controller command.

Ensure that replicas is set to 1, because only one pod can use a given egress source IP address at
any time. This means that only a single copy of the router runs on a node.

Specify the Pod object template for the egress router pod.

26.9.2. Additional resources

Deploying an egress router in redirection mode

Deploying an egress router in HTTP proxy mode

Deploying an egress router in DNS proxy mode

26.10. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod that is configured to redirect traffic to
specified destination IP addresses.

26.10.1. Egress router pod specification for redirect mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in redirect mode:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: egress-demo-controller
spec:
 replicas: 1 1
 selector:
 matchLabels:
 name: egress-router
 template:
 metadata:
 name: egress-router
 labels:
 name: egress-router
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
 spec: 2
 initContainers:
 ...
 containers:
 ...

apiVersion: v1
kind: Pod
metadata:
 name: egress-1

OpenShift Container Platform 4.12 Networking

522

1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

External server to direct traffic to. Using this example, connections to the pod are redirected to
203.0.113.25, with a source IP address of 192.168.12.99.

Example egress router pod specification

 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress_router>
 - name: EGRESS_GATEWAY 3
 value: <egress_gateway>
 - name: EGRESS_DESTINATION 4
 value: <egress_destination>
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

apiVersion: v1
kind: Pod
metadata:
 name: egress-multi
 labels:
 name: egress-multi
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

523

26.10.2. Egress destination configuration format

When an egress router pod is deployed in redirect mode, you can specify redirection rules by using one
or more of the following formats:

<port> <protocol> <ip_address> - Incoming connections to the given <port> should be
redirected to the same port on the given <ip_address>. <protocol> is either tcp or udp.

<port> <protocol> <ip_address> <remote_port> - As above, except that the connection is
redirected to a different <remote_port> on <ip_address>.

<ip_address> - If the last line is a single IP address, then any connections on any other port will
be redirected to the corresponding port on that IP address. If there is no fallback IP address
then connections on other ports are rejected.

In the example that follows several rules are defined:

The first line redirects traffic from local port 80 to port 80 on 203.0.113.25.

The second and third lines redirect local ports 8080 and 8443 to remote ports 80 and 443 on
203.0.113.26.

The last line matches traffic for any ports not specified in the previous rules.

Example configuration

26.10.3. Deploying an egress router pod in redirect mode

In redirect mode , an egress router pod sets up iptables rules to redirect traffic from its own IP address to
one or more destination IP addresses. Client pods that need to use the reserved source IP address
must be configured to access the service for the egress router rather than connecting directly to the

 privileged: true
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99/24
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: |
 80 tcp 203.0.113.25
 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443
 203.0.113.27
 - name: EGRESS_ROUTER_MODE
 value: init
 containers:
 - name: egress-router-wait
 image: registry.redhat.io/openshift4/ose-pod

80 tcp 203.0.113.25
8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443
203.0.113.27

OpenShift Container Platform 4.12 Networking

524

destination IP. You can access the destination service and port from the application pod by using the
curl command. For example:

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Your pods can now connect to this service. Their connections are redirected to the
corresponding ports on the external server, using the reserved egress IP address.

26.10.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

26.11. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
HTTP and HTTPS-based services.

26.11.1. Egress router pod specification for HTTP mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in HTTP mode:

$ curl <router_service_IP> <port>

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

apiVersion: v1
kind: Pod
metadata:
 name: egress-1

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

525

1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

A string or YAML multi-line string specifying how to configure the proxy. Note that this is specified
as an environment variable in the HTTP proxy container, not with the other environment variables
in the init container.

26.11.2. Egress destination configuration format

When an egress router pod is deployed in HTTP proxy mode, you can specify redirection rules by using
one or more of the following formats. Each line in the configuration specifies one group of connections
to allow or deny:

An IP address allows connections to that IP address, such as 192.168.1.1.

A CIDR range allows connections to that CIDR range, such as 192.168.1.0/24.

A hostname allows proxying to that host, such as www.example.com.

A domain name preceded by *. allows proxying to that domain and all of its subdomains, such as

 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2
 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: http-proxy
 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-http-proxy
 env:
 - name: EGRESS_HTTP_PROXY_DESTINATION 4
 value: |-
 ...
 ...

OpenShift Container Platform 4.12 Networking

526

1

A domain name preceded by *. allows proxying to that domain and all of its subdomains, such as
*.example.com.

A ! followed by any of the previous match expressions denies the connection instead.

If the last line is *, then anything that is not explicitly denied is allowed. Otherwise, anything that
is not allowed is denied.

You can also use * to allow connections to all remote destinations.

Example configuration

26.11.3. Deploying an egress router pod in HTTP proxy mode

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Ensure the http port is set to 8080.

3. To configure the client pod (not the egress proxy pod) to use the HTTP proxy, set the
http_proxy or https_proxy variables:

!*.example.com
!192.168.1.0/24
192.168.2.1
*

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http-proxy
 port: 8080 1
 type: ClusterIP
 selector:
 name: egress-1

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

527

1 The service created in the previous step.

NOTE

Using the http_proxy and https_proxy environment variables is not necessary
for all setups. If the above does not create a working setup, then consult the
documentation for the tool or software you are running in the pod.

26.11.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

26.12. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
DNS names and IP addresses.

26.12.1. Egress router pod specification for DNS mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in DNS mode:

apiVersion: v1
kind: Pod
metadata:
 name: app-1
 labels:
 name: app-1
spec:
 containers:
 env:
 - name: http_proxy
 value: http://egress-1:8080/ 1
 - name: https_proxy
 value: http://egress-1:8080/
 ...

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:
 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 initContainers:
 - name: egress-router
 image: registry.redhat.io/openshift4/ose-egress-router
 securityContext:
 privileged: true
 env:
 - name: EGRESS_SOURCE 2

OpenShift Container Platform 4.12 Networking

528

1

2

3

4

5

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

Specify a list of one or more proxy destinations.

Optional: Specify to output the DNS proxy log output to stdout.

26.12.2. Egress destination configuration format

When the router is deployed in DNS proxy mode, you specify a list of port and destination mappings. A
destination may be either an IP address or a DNS name.

An egress router pod supports the following formats for specifying port and destination mappings:

Port and remote address

You can specify a source port and a destination host by using the two field format: <port>
<remote_address>.

The host can be an IP address or a DNS name. If a DNS name is provided, DNS resolution occurs at
runtime. For a given host, the proxy connects to the specified source port on the destination host when
connecting to the destination host IP address.

Port and remote address pair example

 value: <egress-router>
 - name: EGRESS_GATEWAY 3
 value: <egress-gateway>
 - name: EGRESS_ROUTER_MODE
 value: dns-proxy
 containers:
 - name: egress-router-pod
 image: registry.redhat.io/openshift4/ose-egress-dns-proxy
 securityContext:
 privileged: true
 env:
 - name: EGRESS_DNS_PROXY_DESTINATION 4
 value: |-
 ...
 - name: EGRESS_DNS_PROXY_DEBUG 5
 value: "1"
 ...

80 172.16.12.11
100 example.com

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

529

Port, remote address, and remote port

You can specify a source port, a destination host, and a destination port by using the three field
format: <port> <remote_address> <remote_port>.

The three field format behaves identically to the two field version, with the exception that the
destination port can be different than the source port.

Port, remote address, and remote port example

26.12.3. Deploying an egress router pod in DNS proxy mode

In DNS proxy mode , an egress router pod acts as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. Create a service for the egress router pod:

a. Create a file named egress-router-service.yaml that contains the following YAML. Set
spec.ports to the list of ports that you defined previously for the
EGRESS_DNS_PROXY_DESTINATION environment variable.

For example:

8080 192.168.60.252 80
8443 web.example.com 443

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 ...
 type: ClusterIP
 selector:
 name: egress-dns-proxy

apiVersion: v1
kind: Service
metadata:
 name: egress-dns-svc
spec:
 ports:
 - name: con1

OpenShift Container Platform 4.12 Networking

530

b. To create the service, enter the following command:

Pods can now connect to this service. The connections are proxied to the corresponding
ports on the external server, using the reserved egress IP address.

26.12.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

26.13. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST
FROM A CONFIG MAP

As a cluster administrator, you can define a ConfigMap object that specifies destination mappings for
an egress router pod. The specific format of the configuration depends on the type of egress router
pod. For details on the format, refer to the documentation for the specific egress router pod.

26.13.1. Configuring an egress router destination mappings with a config map

For a large or frequently-changing set of destination mappings, you can use a config map to externally
maintain the list. An advantage of this approach is that permission to edit the config map can be
delegated to users without cluster-admin privileges. Because the egress router pod requires a
privileged container, it is not possible for users without cluster-admin privileges to edit the pod
definition directly.

NOTE

The egress router pod does not automatically update when the config map changes. You
must restart the egress router pod to get updates.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file containing the mapping data for the egress router pod, as in the following example:

Egress routes for Project "Test", version 3

 protocol: TCP
 port: 80
 targetPort: 80
 - name: con2
 protocol: TCP
 port: 100
 targetPort: 100
 type: ClusterIP
 selector:
 name: egress-dns-proxy

$ oc create -f egress-router-service.yaml

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

531

80 tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

Fallback
203.0.113.27

You can put blank lines and comments into this file.

2. Create a ConfigMap object from the file:

In the previous command, the egress-routes value is the name of the ConfigMap object to
create and my-egress-destination.txt is the name of the file that the data is read from.

TIP

You can alternatively apply the following YAML to create the config map:

3. Create an egress router pod definition and specify the configMapKeyRef stanza for the
EGRESS_DESTINATION field in the environment stanza:

$ oc delete configmap egress-routes --ignore-not-found

$ oc create configmap egress-routes \
 --from-file=destination=my-egress-destination.txt

apiVersion: v1
kind: ConfigMap
metadata:
 name: egress-routes
data:
 destination: |
 # Egress routes for Project "Test", version 3

 80 tcp 203.0.113.25

 8080 tcp 203.0.113.26 80
 8443 tcp 203.0.113.26 443

 # Fallback
 203.0.113.27

...
env:
- name: EGRESS_DESTINATION
 valueFrom:
 configMapKeyRef:
 name: egress-routes
 key: destination
...

OpenShift Container Platform 4.12 Networking

532

26.13.2. Additional resources

Redirect mode

HTTP proxy mode

DNS proxy mode

26.14. ENABLING MULTICAST FOR A PROJECT

26.14.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service
discovery and not a high-bandwidth solution.

By default, network policies affect all connections in a namespace. However,
multicast is unaffected by network policies. If multicast is enabled in the same
namespace as your network policies, it is always allowed, even if there is a deny-
all network policy. Cluster administrators should consider the implications to the
exemption of multicast from network policies before enabling it.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OpenShift SDN network plugin, you can enable multicast on a per-project basis.

When using the OpenShift SDN network plugin in networkpolicy isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a pod in one project will never be delivered to pods in any other
project, even if there are NetworkPolicy objects that allow communication between the
projects.

When using the OpenShift SDN network plugin in multitenant isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project.

Multicast packets sent by a pod in one project will be delivered to pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

26.14.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

533

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

$ oc annotate netnamespace <namespace> \
 netnamespace.network.openshift.io/multicast-enabled=true

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: mlistener
 labels:
 app: multicast-verify
spec:
 containers:
 - name: mlistener
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]
 args:
 ["dnf -y install socat hostname && sleep inf"]
 ports:
 - containerPort: 30102
 name: mlistener
 protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
 name: msender
 labels:
 app: multicast-verify
spec:
 containers:
 - name: msender
 image: registry.access.redhat.com/ubi8
 command: ["/bin/sh", "-c"]

OpenShift Container Platform 4.12 Networking

534

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

26.15. DISABLING MULTICAST FOR A PROJECT

26.15.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

 args:
 ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
 socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
 -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
 /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled-

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

535

1 The namespace for the project you want to disable multicast for.

26.16. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN

When your cluster is configured to use the multitenant isolation mode for the OpenShift SDN network
plugin, each project is isolated by default. Network traffic is not allowed between pods or services in
different projects in multitenant isolation mode.

You can change the behavior of multitenant isolation for a project in two ways:

You can join one or more projects, allowing network traffic between pods and services in
different projects.

You can disable network isolation for a project. It will be globally accessible, accepting network
traffic from pods and services in all other projects. A globally accessible project can access pods
and services in all other projects.

26.16.1. Prerequisites

You must have a cluster configured to use the OpenShift SDN network plugin in multitenant
isolation mode.

26.16.2. Joining projects

You can join two or more projects to allow network traffic between pods and services in different
projects.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Use the following command to join projects to an existing project network:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

2. Optional: Run the following command to view the pod networks that you have joined together:

Projects in the same pod-network have the same network ID in the NETID column.

26.16.3. Isolating a project

You can isolate a project so that pods and services in other projects cannot access its pods and
services.

Prerequisites

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc get netnamespaces

OpenShift Container Platform 4.12 Networking

536

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

To isolate the projects in the cluster, run the following command:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

26.16.4. Disabling network isolation for a project

You can disable network isolation for a project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command for the project:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

26.17. CONFIGURING KUBE-PROXY

The Kubernetes network proxy (kube-proxy) runs on each node and is managed by the Cluster Network
Operator (CNO). kube-proxy maintains network rules for forwarding connections for endpoints
associated with services.

26.17.1. About iptables rules synchronization

The synchronization period determines how frequently the Kubernetes network proxy (kube-proxy)
syncs the iptables rules on a node.

A sync begins when either of the following events occurs:

An event occurs, such as service or endpoint is added to or removed from the cluster.

The time since the last sync exceeds the sync period defined for kube-proxy.

26.17.2. kube-proxy configuration parameters

You can modify the following kubeProxyConfig parameters.

$ oc adm pod-network isolate-projects <project1> <project2>

$ oc adm pod-network make-projects-global <project1> <project2>

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

537

NOTE

Because of performance improvements introduced in OpenShift Container Platform 4.3
and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.

Table 26.3. Parameters

Parameter Description Values Defaul
t

iptablesSyncPeriod The refresh period for
iptables rules.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package
documentation.

30s

proxyArguments.iptables-
min-sync-period

The minimum duration before
refreshing iptables rules. This
parameter ensures that the
refresh does not happen too
frequently. By default, a
refresh starts as soon as a
change that affects iptables
rules occurs.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package

0s

26.17.3. Modifying the kube-proxy configuration

You can modify the Kubernetes network proxy configuration for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to a running cluster with the cluster-admin role.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the kubeProxyConfig parameter in the CR with your changes to the kube-proxy
configuration, such as in the following example CR:

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 kubeProxyConfig:

OpenShift Container Platform 4.12 Networking

538

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

3. Save the file and exit the text editor.
The syntax is validated by the oc command when you save the file and exit the editor. If your
modifications contain a syntax error, the editor opens the file and displays an error message.

4. Enter the following command to confirm the configuration update:

Example output

5. Optional: Enter the following command to confirm that the Cluster Network Operator accepted
the configuration change:

Example output

The AVAILABLE field is True when the configuration update is applied successfully.

 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period: ["30s"]

$ oc get networks.operator.openshift.io -o yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: Network
 metadata:
 name: cluster
 spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OpenShiftSDN
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 30s
 serviceNetwork:
 - 172.30.0.0/16
 status: {}
kind: List

$ oc get clusteroperator network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0-0.9 True False False 1m

CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN

539

1

CHAPTER 27. CONFIGURING ROUTES

27.1. ROUTE CONFIGURATION

27.1.1. Creating an HTTP-based route

A route allows you to host your application at a public URL. It can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

Verification

To verify that the route resource that you created, run the following command:

In this example, the route is named hello-openshift.

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

$ oc get routes -o yaml <name of resource> 1

OpenShift Container Platform 4.12 Networking

540

1

2

Sample YAML definition of the created unsecured route:

<Ingress_Domain> is the default ingress domain name. The ingresses.config/cluster object is
created during the installation and cannot be changed. If you want to specify a different domain,
you can specify an alternative cluster domain using the appsDomain option.

targetPort is the target port on pods that is selected by the service that this route points to.

NOTE

To display your default ingress domain, run the following command:

27.1.2. Creating a route for Ingress Controller sharding

A route allows you to host your application at a URL. In this case, the hostname is not set and the route
uses a subdomain instead. When you specify a subdomain, you automatically use the domain of the
Ingress Controller that exposes the route. For situations where a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLs.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

You have configured the Ingress Controller for sharding.

Procedure

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello-openshift
spec:
 host: hello-openshift-hello-openshift.<Ingress_Domain> 1
 port:
 targetPort: 8080 2
 to:
 kind: Service
 name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

CHAPTER 27. CONFIGURING ROUTES

541

1

2

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding:

Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

Verification

Get the status of the route with the following command:

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded 1
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift 2
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift

$ oc -n hello-openshift create -f hello-openshift-route.yaml

$ oc -n hello-openshift get routes/hello-openshift-edge -o yaml

OpenShift Container Platform 4.12 Networking

542

1

2

3

1

The resulting Route resource should look similar to the following:

Example output

The hostname the Ingress Controller, or router, uses to expose the route. The value of the
host field is automatically determined by the Ingress Controller, and uses its domain. In this
example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

The hostname of the Ingress Controller.

The name of the Ingress Controller. In this example, the Ingress Controller has the name
sharded.

27.1.3. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift
status:
 ingress:
 - host: hello-openshift.<apps-sharded.basedomain.example.net> 1
 routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> 2
 routerName: sharded 3

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

CHAPTER 27. CONFIGURING ROUTES

543

1

The following example sets a timeout of two seconds on a route named myroute:

27.1.4. HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which signals to the browser
client that only HTTPS traffic is allowed on the route host. HSTS also optimizes web traffic by signaling
HTTPS transport is required, without using HTTP redirects. HSTS is useful for speeding up interactions
with websites.

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS
responses from the site. You can use the insecureEdgeTerminationPolicy value in a route to redirect
HTTP to HTTPS. When HSTS is enforced, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect.

Cluster administrators can configure HSTS to do the following:

Enable HSTS per-route

Disable HSTS per-route

Enforce HSTS per-domain, for a set of domains, or use namespace labels in combination with
domains

IMPORTANT

HSTS works only with secure routes, either edge-terminated or re-encrypt. The
configuration is ineffective on HTTP or passthrough routes.

27.1.4.1. Enabling HTTP Strict Transport Security per-route

HTTP strict transport security (HSTS) is implemented in the HAProxy template and applied to edge and
re-encrypt routes that have the haproxy.router.openshift.io/hsts_header annotation.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge-terminated or re-encrypt route. You can use the oc annotate tool to do this by running
the following command:

In this example, the maximum age is set to 31536000 ms, which is approximately eight and
a half hours.

NOTE

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000;\ 1
includeSubDomains;preload"

OpenShift Container Platform 4.12 Networking

544

1

2

3

NOTE

In this example, the equal sign (=) is in quotes. This is required to properly
execute the annotate command.

Example route configured with an annotation

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. If set to 0, it negates the policy.

Optional. When included, includeSubDomains tells the client that all subdomains of the
host must have the same HSTS policy as the host.

Optional. When max-age is greater than 0, you can add preload in
haproxy.router.openshift.io/hsts_header to allow external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, even before they have interacted with the site. Without
preload set, browsers must have interacted with the site over HTTPS, at least once, to get
the header.

27.1.4.2. Disabling HTTP Strict Transport Security per-route

To disable HTTP strict transport security (HSTS) per-route, you can set the max-age value in the route
annotation to 0.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To disable HSTS, set the max-age value in the route annotation to 0, by entering the following
command:

TIP

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

...
spec:
 host: def.abc.com
 tls:
 termination: "reencrypt"
 ...
 wildcardPolicy: "Subdomain"

$ oc annotate route <route_name> -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

CHAPTER 27. CONFIGURING ROUTES

545

TIP

You can alternatively apply the following YAML to create the config map:

Example of disabling HSTS per-route

To disable HSTS for every route in a namespace, enter the following command:

Verification

1. To query the annotation for all routes, enter the following command:

Example output

27.1.4.3. Enforcing HTTP Strict Transport Security per-domain

To enforce HTTP Strict Transport Security (HSTS) per-domain for secure routes, add a
requiredHSTSPolicies record to the Ingress spec to capture the configuration of the HSTS policy.

If you configure a requiredHSTSPolicy to enforce HSTS, then any newly created route must be
configured with a compliant HSTS policy annotation.

NOTE

To handle upgraded clusters with non-compliant HSTS routes, you can update the
manifests at the source and apply the updates.

NOTE

You cannot use oc expose route or oc create route commands to add a route in a
domain that enforces HSTS, because the API for these commands does not accept
annotations.

IMPORTANT

HSTS cannot be applied to insecure, or non-TLS routes, even if HSTS is requested for all
routes globally.

metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=0

$ oc annotate route --all -n <namespace> --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=0"

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: routename HSTS: max-age=0

OpenShift Container Platform 4.12 Networking

546

1

2 7

3

4

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

1. Edit the Ingress config file:

Example HSTS policy

Required. requiredHSTSPolicies are validated in order, and the first matching
domainPatterns applies.

Required. You must specify at least one domainPatterns hostname. Any number of
domains can be listed. You can include multiple sections of enforcing options for different
domainPatterns.

Optional. If you include namespaceSelector, it must match the labels of the project where
the routes reside, to enforce the set HSTS policy on the routes. Routes that only match the
namespaceSelector and not the domainPatterns are not validated.

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. This policy setting allows for a smallest and largest max-age to be enforced.

$ oc edit ingresses.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: 'hello-openshift-default.apps.username.devcluster.openshift.com'
 requiredHSTSPolicies: 1
 - domainPatterns: 2
 - '*hello-openshift-default.apps.username.devcluster.openshift.com'
 - '*hello-openshift-default2.apps.username.devcluster.openshift.com'
 namespaceSelector: 3
 matchLabels:
 myPolicy: strict
 maxAge: 4
 smallestMaxAge: 1
 largestMaxAge: 31536000
 preloadPolicy: RequirePreload 5
 includeSubDomainsPolicy: RequireIncludeSubDomains 6
 - domainPatterns: 7
 - 'abc.example.com'
 - '*xyz.example.com'
 namespaceSelector:
 matchLabels: {}
 maxAge: {}
 preloadPolicy: NoOpinion
 includeSubDomainsPolicy: RequireNoIncludeSubDomains

CHAPTER 27. CONFIGURING ROUTES

547

5

6

The largestMaxAge value must be between 0 and 2147483647. It can be left
unspecified, which means no upper limit is enforced.

The smallestMaxAge value must be between 0 and 2147483647. Enter 0 to disable
HSTS for troubleshooting, otherwise enter 1 if you never want HSTS to be disabled. It
can be left unspecified, which means no lower limit is enforced.

Optional. Including preload in haproxy.router.openshift.io/hsts_header allows external
services to include this site in their HSTS preload lists. Browsers can then use these lists to
determine which sites they can communicate with over HTTPS, before they have
interacted with the site. Without preload set, browsers need to interact at least once with
the site to get the header. preload can be set with one of the following:

RequirePreload: preload is required by the RequiredHSTSPolicy.

RequireNoPreload: preload is forbidden by the RequiredHSTSPolicy.

NoOpinion: preload does not matter to the RequiredHSTSPolicy.

Optional. includeSubDomainsPolicy can be set with one of the following:

RequireIncludeSubDomains: includeSubDomains is required by the
RequiredHSTSPolicy.

RequireNoIncludeSubDomains: includeSubDomains is forbidden by the
RequiredHSTSPolicy.

NoOpinion: includeSubDomains does not matter to the RequiredHSTSPolicy.

2. You can apply HSTS to all routes in the cluster or in a particular namespace by entering the oc
annotate command.

To apply HSTS to all routes in the cluster, enter the oc annotate command. For example:

To apply HSTS to all routes in a particular namespace, enter the oc annotate command.
For example:

Verification

You can review the HSTS policy you configured. For example:

To review the maxAge set for required HSTS policies, enter the following command:

To review the HSTS annotations on all routes, enter the following command:

$ oc annotate route --all --all-namespaces --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc annotate route --all -n my-namespace --overwrite=true
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc get clusteroperator/ingress -n openshift-ingress-operator -o jsonpath='{range
.spec.requiredHSTSPolicies[*]}{.spec.requiredHSTSPolicies.maxAgePolicy.largestMaxAge}
{"\n"}{end}'

OpenShift Container Platform 4.12 Networking

548

1

Example output

27.1.5. Throughput issue troubleshooting methods

Sometimes applications deployed by using OpenShift Container Platform can cause network throughput
issues, such as unusually high latency between specific services.

If pod logs do not reveal any cause of the problem, use the following methods to analyze performance
issues:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

podip is the IP address for the pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a pod.

The tcpdump command generates a file at /tmp/dump.pcap containing all traffic between
these two pods. You can run the analyzer shortly before the issue is reproduced and stop the
analyzer shortly after the issue is finished reproducing to minimize the size of the file. You can
also run a packet analyzer between the nodes (eliminating the SDN from the equation) with:

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Locate any bottlenecks by running the tool from the pods first, and then running it
from the nodes.

For information on installing and using iperf, see this Red Hat Solution .

In some cases, the cluster may mark the node with the router pod as unhealthy due to latency
issues. Use worker latency profiles to adjust the frequency that the cluster waits for a status
update from the node before taking action.

If your cluster has designated lower-latency and higher-latency nodes, configure the
spec.nodePlacement field in the Ingress Controller to control the placement of the router pod.

Additional resources

Latency spikes or temporary reduction in throughput to remote workers

Ingress Controller configuration parameters

$ oc get route --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n :=
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: <_routename_> HSTS: max-age=31536000;preload;includeSubDomains

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

CHAPTER 27. CONFIGURING ROUTES

549

https://access.redhat.com/solutions/4569211
https://access.redhat.com/solutions/5074041
https://access.redhat.com/solutions/6129701
https://access.redhat.com/solutions/33103
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-edge-remote-workers-latency

27.1.6. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The Ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the Ingress Controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

27.1.6.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the specified cookie name:

where:

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

2. Capture the route hostname in a variable:

where:

<route_name>

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

OpenShift Container Platform 4.12 Networking

550

1

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

27.1.7. Path-based routes

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.

The following table shows example routes and their accessibility:

Table 27.1. Route availability

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

An unsecured route with a path

The path is the only added attribute for a path-based route.

NOTE

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-unsecured
spec:
 host: www.example.com
 path: "/test" 1
 to:
 kind: Service
 name: service-name

CHAPTER 27. CONFIGURING ROUTES

551

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

27.1.8. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations. Red Hat does not
support adding a route annotation to an operator-managed route.

IMPORTANT

To create a whitelist with multiple source IPs or subnets, use a space-delimited list. Any
other delimiter type causes the list to be ignored without a warning or error message.

Table 27.2. Route annotations

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
random, source, roundrobin,
and leastconn. The default value
is source for TLS passthrough
routes. For all other routes, the
default is random.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
'true' or 'TRUE', the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

OpenShift Container Platform 4.12 Networking

552

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router.
Note: If there are multiple pods,
each can have this many
connections. If you have multiple
routers, there is no coordination
among them, each may connect
this many times. If not set, or set
to 0, there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting 'true' or 'TRUE' enables
rate limiting functionality which is
implemented through stick-tables
on the specific backend per route.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections made through
the same source IP address. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which a client
with the same source IP address
can make HTTP requests. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which a client
with the same source IP address
can make TCP connections. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
denial-of-service attacks.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

Variable Description Environment variable used as
default

CHAPTER 27. CONFIGURING ROUTES

553

haproxy.router.openshift.io/ti
meout-tunnel

This timeout applies to a tunnel
connection, for example,
WebSocket over cleartext, edge,
reencrypt, or passthrough routes.
With cleartext, edge, or reencrypt
route types, this annotation is
applied as a timeout tunnel with
the existing timeout value. For the
passthrough route types, the
annotation takes precedence over
any existing timeout value set.

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

ingresses.config/cluster
ingress.operator.openshift.io
/hard-stop-after

You can set either an
IngressController or the ingress
config . This annotation redeploys
the router and configures the HA
proxy to emit the haproxy hard-
stop-after global option, which
defines the maximum time
allowed to perform a clean soft-
stop.

ROUTER_HARD_STOP_AFT
ER

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

haproxy.router.openshift.io/i
p_whitelist

Sets an allowlist for the route. The
allowlist is a space-separated list
of IP addresses and CIDR ranges
for the approved source
addresses. Requests from IP
addresses that are not in the
allowlist are dropped.

The maximum number of IP
addresses and CIDR ranges
directly visible in the

haproxy.config file is 61. [1]

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

haproxy.router.openshift.io/r
ewrite-target

Sets the rewrite path of the
request on the backend.

Variable Description Environment variable used as
default

OpenShift Container Platform 4.12 Networking

554

router.openshift.io/cookie-
same-site

Sets a value to restrict cookies.
The values are:

Lax: the browser does not send
cookies on cross-site requests,
but does send cookies when users
navigate to the origin site from an
external site. This is the default
browser behavior when the
SameSite value is not specified.

Strict: the browser sends cookies
only for same-site requests.

None: the browser sends cookies
for both cross-site and same-site
requests.

This value is applicable to re-
encrypt and edge routes only. For
more information, see the
SameSite cookies documentation.

haproxy.router.openshift.io/s
et-forwarded-headers

Sets the policy for handling the
Forwarded and X-Forwarded-
For HTTP headers per route. The
values are:

append: appends the header,
preserving any existing header.
This is the default value.

replace: sets the header,
removing any existing header.

never: never sets the header, but
preserves any existing header.

if-none: sets the header if it is not
already set.

ROUTER_SET_FORWARDE
D_HEADERS

Variable Description Environment variable used as
default

1. If the number of IP addresses and CIDR ranges in an allowlist exceeds 61, they are written into a
separate file that is then referenced from haproxy.config. This file is stored in the
var/lib/haproxy/router/whitelists folder.

NOTE

CHAPTER 27. CONFIGURING ROUTES

555

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

NOTE

To ensure that the addresses are written to the allowlist, check that the full list of
CIDR ranges are listed in the Ingress Controller configuration file. The etcd
object size limit restricts how large a route annotation can be. Because of this, it
creates a threshold for the maximum number of IP addresses and CIDR ranges
that you can include in an allowlist.

NOTE

Environment variables cannot be edited.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d).

Variable Default Description

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms Length of time between subsequent
liveness checks on back ends.

ROUTER_CLIENT_FIN_TIMEOUT 1s Controls the TCP FIN timeout period for
the client connecting to the route. If the
FIN sent to close the connection does not
answer within the given time, HAProxy
closes the connection. This is harmless if
set to a low value and uses fewer
resources on the router.

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s Length of time that a client has to
acknowledge or send data.

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s The maximum connection time.

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s Controls the TCP FIN timeout from the
router to the pod backing the route.

ROUTER_DEFAULT_SERVER_TIME
OUT

30s Length of time that a server has to
acknowledge or send data.

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h Length of time for TCP or WebSocket
connections to remain open. This timeout
period resets whenever HAProxy reloads.

OpenShift Container Platform 4.12 Networking

556

1

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s Set the maximum time to wait for a new
HTTP request to appear. If this is set too
low, it can cause problems with browsers
and applications not expecting a small
keepalive value.

Some effective timeout values can be the
sum of certain variables, rather than the
specific expected timeout. For example,
ROUTER_SLOWLORIS_HTTP_KEE
PALIVE adjusts timeout http-keep-
alive. It is set to 300s by default, but
HAProxy also waits on tcp-request
inspect-delay, which is set to 5s. In this
case, the overall timeout would be 300s
plus 5s.

ROUTER_SLOWLORIS_TIMEOUT 10s Length of time the transmission of an
HTTP request can take.

RELOAD_INTERVAL 5s Allows the minimum frequency for the
router to reload and accept new changes.

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s Timeout for the gathering of HAProxy
metrics.

Variable Default Description

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

A route that allows only one specific IP address

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

CHAPTER 27. CONFIGURING ROUTES

557

1

A route that allows several IP addresses

A route that allows an IP address CIDR network

A route that allows both IP an address and IP address CIDR networks

A route specifying a rewrite target

Sets / as rewrite path of the request on the backend.

Setting the haproxy.router.openshift.io/rewrite-target annotation on a route specifies that the Ingress
Controller should rewrite paths in HTTP requests using this route before forwarding the requests to the
backend application. The part of the request path that matches the path specified in spec.path is
replaced with the rewrite target specified in the annotation.

The following table provides examples of the path rewriting behavior for various combinations of
spec.path, request path, and rewrite target.

Table 27.3. rewrite-target examples:

Route.spec.path Request path Rewrite target Forwarded request
path

/foo /foo / /

/foo /foo/ / /

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

metadata:
 annotations:
 haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/rewrite-target: / 1
...

OpenShift Container Platform 4.12 Networking

558

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / N/A (request path does
not match route path)

/foo/ /foo/ / /

/foo/ /foo/bar / /bar

Route.spec.path Request path Rewrite target Forwarded request
path

27.1.9. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

CHAPTER 27. CONFIGURING ROUTES

559

Sample Ingress Controller configuration

TIP

You can alternatively apply the following YAML to configure the route admission policy:

27.1.10. Creating a route through an Ingress object

Some ecosystem components have an integration with Ingress resources but not with route resources.
To cover this case, OpenShift Container Platform automatically creates managed route objects when an
Ingress object is created. These route objects are deleted when the corresponding Ingress objects are
deleted.

Procedure

1. Define an Ingress object in the OpenShift Container Platform console or by entering the oc
create command:

YAML Definition of an Ingress

spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: default
 namespace: openshift-ingress-operator
spec:
 routeAdmission:
 namespaceOwnership: InterNamespaceAllowed

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt" 1
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 2
spec:
 rules:
 - host: www.example.com 3
 http:
 paths:
 - backend:
 service:
 name: frontend
 port:
 number: 443

OpenShift Container Platform 4.12 Networking

560

1

3

2

The route.openshift.io/termination annotation can be used to configure the
spec.tls.termination field of the Route as Ingress has no field for this. The accepted
values are edge, passthrough and reencrypt. All other values are silently ignored. When
the annotation value is unset, edge is the default route. The TLS certificate details must
be defined in the template file to implement the default edge route.

When working with an Ingress object, you must specify an explicit hostname, unlike when
working with routes. You can use the <host_name>.<cluster_ingress_domain> syntax,
for example apps.openshiftdemos.com, to take advantage of the *.
<cluster_ingress_domain> wildcard DNS record and serving certificate for the cluster.
Otherwise, you must ensure that there is a DNS record for the chosen hostname.

a. If you specify the passthrough value in the route.openshift.io/termination
annotation, set path to '' and pathType to ImplementationSpecific in the spec:

The route.openshift.io/destination-ca-certificate-secret can be used on an Ingress
object to define a route with a custom destination certificate (CA). The annotation
references a kubernetes secret, secret-ca-cert that will be inserted into the generated
route.

a. To specify a route object with a destination CA from an ingress object, you must create
a kubernetes.io/tls or Opaque type secret with a certificate in PEM-encoded format
in the data.tls.crt specifier of the secret.

2. List your routes:

The result includes an autogenerated route whose name starts with frontend-:

 path: /
 pathType: Prefix
 tls:
 - hosts:
 - www.example.com
 secretName: example-com-tls-certificate

 spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: ''
 pathType: ImplementationSpecific
 backend:
 service:
 name: frontend
 port:
 number: 443

$ oc apply -f ingress.yaml

$ oc get routes

CHAPTER 27. CONFIGURING ROUTES

561

If you inspect this route, it looks this:

YAML Definition of an autogenerated route

27.1.11. Creating a route using the default certificate through an Ingress object

If you create an Ingress object without specifying any TLS configuration, OpenShift Container Platform
generates an insecure route. To create an Ingress object that generates a secure, edge-terminated
route using the default ingress certificate, you can specify an empty TLS configuration as follows.

Prerequisites

You have a service that you want to expose.

You have access to the OpenShift CLI (oc).

Procedure

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
frontend-gnztq www.example.com frontend 443 reencrypt/Redirect None

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend-gnztq
 ownerReferences:
 - apiVersion: networking.k8s.io/v1
 controller: true
 kind: Ingress
 name: frontend
 uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
 host: www.example.com
 path: /
 port:
 targetPort: https
 tls:
 certificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 insecureEdgeTerminationPolicy: Redirect
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 [...]
 -----END RSA PRIVATE KEY-----
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 to:
 kind: Service
 name: frontend

OpenShift Container Platform 4.12 Networking

562

1

1

2

3

Procedure

1. Create a YAML file for the Ingress object. In this example, the file is called example-
ingress.yaml:

YAML definition of an Ingress object

Use this exact syntax to specify TLS without specifying a custom certificate.

2. Create the Ingress object by running the following command:

Verification

Verify that OpenShift Container Platform has created the expected route for the Ingress object
by running the following command:

Example output

The name of the route includes the name of the Ingress object followed by a random suffix.

In order to use the default certificate, the route should not specify spec.certificate.

The route should specify the edge termination policy.

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 ...
spec:
 rules:
 ...
 tls:
 - {} 1

$ oc create -f example-ingress.yaml

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
 kind: Route
 metadata:
 name: frontend-j9sdd 1
 ...
 spec:
 ...
 tls: 2
 insecureEdgeTerminationPolicy: Redirect
 termination: edge 3
 ...

CHAPTER 27. CONFIGURING ROUTES

563

1

27.1.12. Creating a route using the destination CA certificate in the Ingress
annotation

The route.openshift.io/destination-ca-certificate-secret annotation can be used on an Ingress object
to define a route with a custom destination CA certificate.

Prerequisites

You may have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

Procedure

1. Add the route.openshift.io/destination-ca-certificate-secret to the Ingress annotations:

The annotation references a kubernetes secret.

2. The secret referenced in this annotation will be inserted into the generated route.

Example output

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: "reencrypt"
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert 1
...

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
 annotations:
 route.openshift.io/termination: reencrypt
 route.openshift.io/destination-ca-certificate-secret: secret-ca-cert
spec:
...
 tls:
 insecureEdgeTerminationPolicy: Redirect
 termination: reencrypt
 destinationCACertificate: |
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
...

OpenShift Container Platform 4.12 Networking

564

27.1.13. Configuring the OpenShift Container Platform Ingress Controller for dual-
stack networking

If your OpenShift Container Platform cluster is configured for IPv4 and IPv6 dual-stack networking,
your cluster is externally reachable by OpenShift Container Platform routes.

The Ingress Controller automatically serves services that have both IPv4 and IPv6 endpoints, but you
can configure the Ingress Controller for single-stack or dual-stack services.

Prerequisites

You deployed an OpenShift Container Platform cluster on bare metal.

You installed the OpenShift CLI (oc).

Procedure

1. To have the Ingress Controller serve traffic over IPv4/IPv6 to a workload, you can create a
service YAML file or modify an existing service YAML file by setting the ipFamilies and
ipFamilyPolicy fields. For example:

Sample service YAML file

apiVersion: v1
kind: Service
metadata:
 creationTimestamp: yyyy-mm-ddT00:00:00Z
 labels:
 name: <service_name>
 manager: kubectl-create
 operation: Update
 time: yyyy-mm-ddT00:00:00Z
 name: <service_name>
 namespace: <namespace_name>
 resourceVersion: "<resource_version_number>"
 selfLink: "/api/v1/namespaces/<namespace_name>/services/<service_name>"
 uid: <uid_number>
spec:
 clusterIP: 172.30.0.0/16
 clusterIPs: 1
 - 172.30.0.0/16
 - <second_IP_address>
 ipFamilies: 2
 - IPv4
 - IPv6
 ipFamilyPolicy: RequireDualStack 3
 ports:
 - port: 8080
 protocol: TCP
 targetport: 8080
 selector:
 name: <namespace_name>
 sessionAffinity: None

CHAPTER 27. CONFIGURING ROUTES

565

1

2

3

In a dual-stack instance, there are two different clusterIPs provided.

For a single-stack instance, enter IPv4 or IPv6. For a dual-stack instance, enter both IPv4
and IPv6.

For a single-stack instance, enter SingleStack. For a dual-stack instance, enter
RequireDualStack.

These resources generate corresponding endpoints. The Ingress Controller now watches
endpointslices.

2. To view endpoints, enter the following command:

3. To view endpointslices, enter the following command:

Additional resources

Specifying an alternative cluster domain using the appsDomain option

27.2. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following sections describe how to create re-encrypt, edge, and passthrough routes with
custom certificates.

IMPORTANT

If you create routes in Microsoft Azure through public endpoints, the resource names are
subject to restriction. You cannot create resources that use certain terms. For a list of
terms that Azure restricts, see Resolve reserved resource name errors in the Azure
documentation.

27.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

 type: ClusterIP
status:
 loadbalancer: {}

$ oc get endpoints

$ oc get endpointslices

OpenShift Container Platform 4.12 Networking

566

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate
hostname for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-

CHAPTER 27. CONFIGURING ROUTES

567

See oc create route reencrypt --help for more options.

27.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the service that
you want to expose for frontend. Substitute the appropriate hostname for www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com

OpenShift Container Platform 4.12 Networking

568

See oc create route edge --help for more options.

27.2.3. Creating a passthrough route

You can configure a secure route using passthrough termination by using the oc create route
command. With passthrough termination, encrypted traffic is sent straight to the destination without
the router providing TLS termination. Therefore no key or certificate is required on the route.

Prerequisites

You must have a service that you want to expose.

Procedure

Create a Route resource:

If you examine the resulting Route resource, it should look similar to the following:

A Secured Route Using Passthrough Termination

 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: www.example.com
 port:
 targetPort: 8080
 tls:
 termination: passthrough 2
 insecureEdgeTerminationPolicy: None 3
 to:
 kind: Service
 name: frontend

CHAPTER 27. CONFIGURING ROUTES

569

1

2

3

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. This is the only required tls field.

Optional insecureEdgeTerminationPolicy. The only valid values are None, Redirect, or
empty for disabled.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates, also known as two-way
authentication.

OpenShift Container Platform 4.12 Networking

570

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

28.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool. Most cloud platforms
offer a method to start a service with a load-balancer
IP address.

About MetalLB and the MetalLB Operator Allows traffic to a specific IP address or address from
a pool on the machine network. For bare-metal
installations or platforms that are like bare metal,
MetalLB provides a way to start a service with a
load-balancer IP address.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

28.1.1. Comparision: Fault tolerant access to external IP addresses

For the communication methods that provide access to an external IP address, fault tolerant access to
the IP address is another consideration. The following features provide fault tolerant access to an
external IP address.

IP failover

IP failover manages a pool of virtual IP address for a set of nodes. It is implemented with Keepalived
and Virtual Router Redundancy Protocol (VRRP). IP failover is a layer 2 mechanism only and relies on
multicast. Multicast can have disadvantages for some networks.

MetalLB

MetalLB has a layer 2 mode, but it does not use multicast. Layer 2 mode has a disadvantage that it
transfers all traffic for an external IP address through one node.

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

571

Manually assigning external IP addresses

You can configure your cluster with an IP address block that is used to assign external IP addresses
to services. By default, this feature is disabled. This feature is flexible, but places the largest burden
on the cluster or network administrator. The cluster is prepared to receive traffic that is destined for
the external IP, but each customer has to decide how they want to route traffic to nodes.

28.2. CONFIGURING EXTERNALIPS FOR SERVICES

As a cluster administrator, you can designate an IP address block that is external to the cluster that can
send traffic to services in the cluster.

This functionality is generally most useful for clusters installed on bare-metal hardware.

28.2.1. Prerequisites

Your network infrastructure must route traffic for the external IP addresses to your cluster.

28.2.2. About ExternalIP

For non-cloud environments, OpenShift Container Platform supports the assignment of external IP
addresses to a Service object spec.externalIPs[] field through the ExternalIP facility. By setting this
field, OpenShift Container Platform assigns an additional virtual IP address to the service. The IP
address can be outside the service network defined for the cluster. A service configured with an
ExternalIP functions similarly to a service with type=NodePort, allowing you to direct traffic to a local
node for load balancing.

You must configure your networking infrastructure to ensure that the external IP address blocks that
you define are routed to the cluster.

OpenShift Container Platform extends the ExternalIP functionality in Kubernetes by adding the
following capabilities:

Restrictions on the use of external IP addresses by users through a configurable policy

Allocation of an external IP address automatically to a service upon request

WARNING

Disabled by default, use of ExternalIP functionality can be a security risk, because
in-cluster traffic to an external IP address is directed to that service. This could
allow cluster users to intercept sensitive traffic destined for external resources.

IMPORTANT

This feature is supported only in non-cloud deployments. For cloud deployments, use the
load balancer services for automatic deployment of a cloud load balancer to target the
endpoints of a service.

You can assign an external IP address in the following ways:

OpenShift Container Platform 4.12 Networking

572

Automatic assignment of an external IP

OpenShift Container Platform automatically assigns an IP address from the autoAssignCIDRs CIDR
block to the spec.externalIPs[] array when you create a Service object with
spec.type=LoadBalancer set. In this case, OpenShift Container Platform implements a non-cloud
version of the load balancer service type and assigns IP addresses to the services. Automatic
assignment is disabled by default and must be configured by a cluster administrator as described in
the following section.

Manual assignment of an external IP

OpenShift Container Platform uses the IP addresses assigned to the spec.externalIPs[] array when
you create a Service object. You cannot specify an IP address that is already in use by another
service.

28.2.2.1. Configuration for ExternalIP

Use of an external IP address in OpenShift Container Platform is governed by the following fields in the
Network.config.openshift.io CR named cluster:

spec.externalIP.autoAssignCIDRs defines an IP address block used by the load balancer when
choosing an external IP address for the service. OpenShift Container Platform supports only a
single IP address block for automatic assignment. This can be simpler than having to manage
the port space of a limited number of shared IP addresses when manually assigning ExternalIPs
to services. If automatic assignment is enabled, a Service object with
spec.type=LoadBalancer is allocated an external IP address.

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an
IP address. OpenShift Container Platform does not apply policy rules to IP address blocks
defined by spec.externalIP.autoAssignCIDRs.

If routed correctly, external traffic from the configured external IP address block can reach service
endpoints through any TCP or UDP port that the service exposes.

IMPORTANT

As a cluster administrator, you must configure routing to externalIPs on both
OpenShiftSDN and OVN-Kubernetes network types. You must also ensure that the IP
address block you assign terminates at one or more nodes in your cluster. For more
information, see Kubernetes External IPs.

OpenShift Container Platform supports both the automatic and manual assignment of IP addresses,
and each address is guaranteed to be assigned to a maximum of one service. This ensures that each
service can expose its chosen ports regardless of the ports exposed by other services.

NOTE

To use IP address blocks defined by autoAssignCIDRs in OpenShift Container Platform,
you must configure the necessary IP address assignment and routing for your host
network.

The following YAML describes a service with an external IP address configured:

Example Service object with spec.externalIPs[] set

apiVersion: v1

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

573

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

28.2.2.2. Restrictions on the assignment of an external IP address

As a cluster administrator, you can specify IP address blocks to allow and to reject.

Restrictions apply only to users without cluster-admin privileges. A cluster administrator can always set
the service spec.externalIPs[] field to any IP address.

You configure IP address policy with a policy object defined by specifying the spec.ExternalIP.policy
field. The policy object has the following shape:

When configuring policy restrictions, the following rules apply:

If policy={} is set, then creating a Service object with spec.ExternalIPs[] set will fail. This is the
default for OpenShift Container Platform. The behavior when policy=null is set is identical.

If policy is set and either policy.allowedCIDRs[] or policy.rejectedCIDRs[] is set, the following
rules apply:

If allowedCIDRs[] and rejectedCIDRs[] are both set, then rejectedCIDRs[] has
precedence over allowedCIDRs[].

If allowedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are allowed.

If rejectedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are not rejected.

kind: Service
metadata:
 name: http-service
spec:
 clusterIP: 172.30.163.110
 externalIPs:
 - 192.168.132.253
 externalTrafficPolicy: Cluster
 ports:
 - name: highport
 nodePort: 31903
 port: 30102
 protocol: TCP
 targetPort: 30102
 selector:
 app: web
 sessionAffinity: None
 type: LoadBalancer
status:
 loadBalancer:
 ingress:
 - ip: 192.168.132.253

{
 "policy": {
 "allowedCIDRs": [],
 "rejectedCIDRs": []
 }
}

OpenShift Container Platform 4.12 Networking

574

28.2.2.3. Example policy objects

The examples that follow demonstrate several different policy configurations.

In the following example, the policy prevents OpenShift Container Platform from creating any
service with an external IP address specified:

Example policy to reject any value specified for Service object spec.externalIPs[]

In the following example, both the allowedCIDRs and rejectedCIDRs fields are set.

Example policy that includes both allowed and rejected CIDR blocks

In the following example, policy is set to null. If set to null, when inspecting the configuration
object by entering oc get networks.config.openshift.io -o yaml, the policy field will not
appear in the output.

Example policy to allow any value specified for Service object spec.externalIPs[]

28.2.3. ExternalIP address block configuration

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: {}
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy:
 allowedCIDRs:
 - 172.16.66.10/23
 rejectedCIDRs:
 - 172.16.66.10/24
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: null
 ...

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

575

1

2

1

2

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named
cluster. The Network CR is part of the config.openshift.io API group.

IMPORTANT

During cluster installation, the Cluster Version Operator (CVO) automatically creates a
Network CR named cluster. Creating any other CR objects of this type is not supported.

The following YAML describes the ExternalIP configuration:

Network.config.openshift.io CR named cluster

Defines the IP address block in CIDR format that is available for automatic assignment of external
IP addresses to a service. Only a single IP address range is allowed.

Defines restrictions on manual assignment of an IP address to a service. If no restrictions are
defined, specifying the spec.externalIP field in a Service object is not allowed. By default, no
restrictions are defined.

The following YAML describes the fields for the policy stanza:

Network.config.openshift.io policy stanza

A list of allowed IP address ranges in CIDR format.

A list of rejected IP address ranges in CIDR format.

Example external IP configurations
Several possible configurations for external IP address pools are displayed in the following examples:

The following YAML describes a configuration that enables automatically assigned external IP
addresses:

Example configuration with spec.externalIP.autoAssignCIDRs set

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 autoAssignCIDRs: [] 1
 policy: 2
 ...

policy:
 allowedCIDRs: [] 1
 rejectedCIDRs: [] 2

apiVersion: config.openshift.io/v1
kind: Network

OpenShift Container Platform 4.12 Networking

576

The following YAML configures policy rules for the allowed and rejected CIDR ranges:

Example configuration with spec.externalIP.policy set

28.2.4. Configure external IP address blocks for your cluster

As a cluster administrator, you can configure the following ExternalIP settings:

An ExternalIP address block used by OpenShift Container Platform to automatically populate
the spec.clusterIP field for a Service object.

A policy object to restrict what IP addresses may be manually assigned to the spec.clusterIP
array of a Service object.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To display the current external IP configuration, enter the following command:

2. To edit the configuration, enter the following command:

3. Modify the ExternalIP configuration, as in the following example:

metadata:
 name: cluster
spec:
 ...
 externalIP:
 autoAssignCIDRs:
 - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 policy:
 allowedCIDRs:
 - 192.168.132.0/29
 - 192.168.132.8/29
 rejectedCIDRs:
 - 192.168.132.7/32

$ oc describe networks.config cluster

$ oc edit networks.config cluster

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

577

1 Specify the configuration for the externalIP stanza.

4. To confirm the updated ExternalIP configuration, enter the following command:

28.2.5. Next steps

Configuring ingress cluster traffic for a service external IP

28.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

28.3.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

By default, every Ingress Controller in the cluster can admit any route created in any project in the
cluster.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP: 1
 ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

OpenShift Container Platform 4.12 Networking

578

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

28.3.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

28.3.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

579

28.3.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

b. Use cURL to check that the host responds to a GET request:

Example output

28.3.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Figure 28.1. Ingress sharding using route labels

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

OpenShift Container Platform 4.12 Networking

580

1

Figure 28.1. Ingress sharding using route labels

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

cat router-internal.yaml
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: sharded
 namespace: openshift-ingress-operator
spec:
 domain: <apps-sharded.basedomain.example.net> 1
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

581

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

28.3.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Figure 28.2. Ingress sharding using namespace labels

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Example output

oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

cat router-internal.yaml

OpenShift Container Platform 4.12 Networking

582

1 Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

28.3.7. Creating a route for Ingress Controller sharding

A route allows you to host your application at a URL. In this case, the hostname is not set and the route
uses a subdomain instead. When you specify a subdomain, you automatically use the domain of the
Ingress Controller that exposes the route. For situations where a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLs.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as a project administrator.

You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

You have configured the Ingress Controller for sharding.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 name: sharded
 namespace: openshift-ingress-operator
spec:
 domain: <apps-sharded.basedomain.example.net> 1
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded

oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

583

1

2

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding:

Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

Verification

Get the status of the route with the following command:

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded 1
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift 2
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift

$ oc -n hello-openshift create -f hello-openshift-route.yaml

OpenShift Container Platform 4.12 Networking

584

1

2

3

The resulting Route resource should look similar to the following:

Example output

The hostname the Ingress Controller, or router, uses to expose the route. The value of the
host field is automatically determined by the Ingress Controller, and uses its domain. In this
example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

The hostname of the Ingress Controller.

The name of the Ingress Controller. In this example, the Ingress Controller has the name
sharded.

28.3.8. Additional resources

The Ingress Operator manages wildcard DNS. For more information, see the following:

Ingress Operator in OpenShift Container Platform .

Installing a cluster on bare metal .

Installing a cluster on vSphere .

About network policy .

28.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with

$ oc -n hello-openshift get routes/hello-openshift-edge -o yaml

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 labels:
 type: sharded
 name: hello-openshift-edge
 namespace: hello-openshift
spec:
 subdomain: hello-openshift
 tls:
 termination: edge
 to:
 kind: Service
 name: hello-openshift
status:
 ingress:
 - host: hello-openshift.<apps-sharded.basedomain.example.net> 1
 routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> 2
 routerName: sharded 3

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

585

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-vsphere

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

28.4.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

28.4.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

28.4.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

$ oc new-project myproject

OpenShift Container Platform 4.12 Networking

586

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

28.4.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

b. Use cURL to check that the host responds to a GET request:

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
nodejs-ex nodejs-ex-myproject.example.com nodejs-ex 8080-tcp None

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

587

1

2

Example output

28.4.5. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Your cloud provider supports load balancers.

Procedure

To create a load balancer service:

1. Log in to OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

3. Open a text file on the control plane node and paste the following text, editing the file as
needed:

Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 loadBalancerSourceRanges: 3
 - 10.0.0.0/8
 - 192.168.0.0/16
 type: LoadBalancer 4
 selector:
 name: mysql 5

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

$ oc project project1

OpenShift Container Platform 4.12 Networking

588

3

4

5

Enter a list of specific IP addresses to restrict traffic through the load balancer. This field is
ignored if the cloud-provider does not support the feature.

Enter Loadbalancer as the type.

Enter the name of the service.

NOTE

To restrict the traffic through the load balancer to specific IP addresses, it is
recommended to use the Ingress Controller field
spec.endpointPublishingStrategy.loadBalancer.allowedSourceRanges. Do
not set the loadBalancerSourceRanges field.

4. Save and exit the file.

5. Run the following command to create the service:

For example:

6. Execute the following command to view the new service:

Example output

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

If you have a MySQL client, log in with the standard CLI command:

$ oc create -f <file-name>

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

589

Example output

28.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses load balancers on AWS, specifically a Network Load
Balancer (NLB) or a Classic Load Balancer (CLB). Both types of load balancers can forward the client’s
IP address to the node, but a CLB requires proxy protocol support, which OpenShift Container Platform
automatically enables.

There are two ways to configure an Ingress Controller to use an NLB:

1. By force replacing the Ingress Controller that is currently using a CLB. This deletes the
IngressController object and an outage will occur while the new DNS records propagate and
the NLB is being provisioned.

2. By editing an existing Ingress Controller that uses a CLB to use an NLB. This changes the load
balancer without having to delete and recreate the IngressController object.

Both methods can be used to switch from an NLB to a CLB.

You can configure these load balancers on a new or existing AWS cluster.

28.5.1. Configuring Classic Load Balancer timeouts on AWS

OpenShift Container Platform provides a method for setting a custom timeout period for a specific
route or Ingress Controller. Additionally, an AWS Classic Load Balancer (CLB) has its own timeout
period with a default time of 60 seconds.

If the timeout period of the CLB is shorter than the route timeout or Ingress Controller timeout, the
load balancer can prematurely terminate the connection. You can prevent this problem by increasing
both the timeout period of the route and CLB.

28.5.1.1. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

OpenShift Container Platform 4.12 Networking

590

1 Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

28.5.1.2. Configuring Classic Load Balancer timeouts

You can configure the default timeouts for a Classic Load Balancer (CLB) to extend idle connections.

Prerequisites

You must have a deployed Ingress Controller on a running cluster.

Procedure

1. Set an AWS connection idle timeout of five minutes for the default ingresscontroller by
running the following command:

2. Optional: Restore the default value of the timeout by running the following command:

NOTE

You must specify the scope field when you change the connection timeout value unless
the current scope is already set. When you set the scope field, you do not need to do so
again if you restore the default timeout value.

28.5.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer

OpenShift Container Platform provides methods for communicating from outside the cluster with
services that run in the cluster. One such method uses a Network Load Balancer (NLB). You can
configure an NLB on a new or existing AWS cluster.

28.5.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network
Load Balancer

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"type":"LoadBalancerService", "loadBalancer": \
 {"scope":"External", "providerParameters":{"type":"AWS", "aws": \
 {"type":"Classic", "classicLoadBalancer": \
 {"connectionIdleTimeout":"5m"}}}}}}}'

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"loadBalancer":{"providerParameters":{"aws":{"classicLoadBalancer": \
 {"connectionIdleTimeout":null}}}}}}}'

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

591

You can switch the Ingress Controller that is using a Classic Load Balancer (CLB) to one that uses a
Network Load Balancer (NLB) on AWS.

Switching between these load balancers will not delete the IngressController object.

WARNING

This procedure might cause the following issues:

An outage that can last several minutes due to new DNS records
propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer
might change after applying this procedure.

Leaked load balancer resources due to a change in the annotation of the
service.

Procedure

1. Modify the existing Ingress Controller that you want to switch to using an NLB. This example
assumes that your default Ingress Controller has an External scope and no other
customizations:

Example ingresscontroller.yaml file

NOTE

If you do not specify a value for the
spec.endpointPublishingStrategy.loadBalancer.providerParameters.aws.typ
e field, the Ingress Controller uses the spec.loadBalancer.platform.aws.type
value from the cluster Ingress configuration that was set during installation.

TIP

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

OpenShift Container Platform 4.12 Networking

592

TIP

If your Ingress Controller has other customizations that you want to update, such as changing
the domain, consider force replacing the Ingress Controller definition file instead.

2. Apply the changes to the Ingress Controller YAML file by running the command:

Expect several minutes of outages while the Ingress Controller updates.

28.5.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic
Load Balancer

You can switch the Ingress Controller that is using a Network Load Balancer (NLB) to one that uses a
Classic Load Balancer (CLB) on AWS.

Switching between these load balancers will not delete the IngressController object.

WARNING

This procedure might cause an outage that can last several minutes due to new DNS
records propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer might
change after applying this procedure.

Procedure

1. Modify the existing Ingress Controller that you want to switch to using a CLB. This example
assumes that your default Ingress Controller has an External scope and no other
customizations:

Example ingresscontroller.yaml file

$ oc apply -f ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: Classic
 type: LoadBalancerService

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

593

NOTE

If you do not specify a value for the
spec.endpointPublishingStrategy.loadBalancer.providerParameters.aws.typ
e field, the Ingress Controller uses the spec.loadBalancer.platform.aws.type
value from the cluster Ingress configuration that was set during installation.

TIP

If your Ingress Controller has other customizations that you want to update, such as changing
the domain, consider force replacing the Ingress Controller definition file instead.

2. Apply the changes to the Ingress Controller YAML file by running the command:

Expect several minutes of outages while the Ingress Controller updates.

28.5.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer

You can replace an Ingress Controller that is using a Classic Load Balancer (CLB) with one that uses a
Network Load Balancer (NLB) on AWS.

WARNING

This procedure might cause the following issues:

An outage that can last several minutes due to new DNS records
propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer
might change after applying this procedure.

Leaked load balancer resources due to a change in the annotation of the
service.

Procedure

1. Create a file with a new default Ingress Controller. The following example assumes that your
default Ingress Controller has an External scope and no other customizations:

Example ingresscontroller.yml file

$ oc apply -f ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:

OpenShift Container Platform 4.12 Networking

594

If your default Ingress Controller has other customizations, ensure that you modify the file
accordingly.

TIP

If your Ingress Controller has no other customizations and you are only updating the load
balancer type, consider following the procedure detailed in "Switching the Ingress Controller
from using a Classic Load Balancer to a Network Load Balancer".

2. Force replace the Ingress Controller YAML file:

Wait until the Ingress Controller is replaced. Expect several of minutes of outages.

28.5.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on an existing
cluster.

Prerequisites

You must have an installed AWS cluster.

PlatformStatus of the infrastructure resource must be AWS.

To verify that the PlatformStatus is AWS, run:

Procedure

Create an Ingress Controller backed by an AWS NLB on an existing cluster.

1. Create the Ingress Controller manifest:

Example output

 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

$ oc replace --force --wait -f ingresscontroller.yml

$ oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.type}'
AWS

 $ cat ingresscontroller-aws-nlb.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

595

1

2

3

1

Replace $my_ingress_controller with a unique name for the Ingress Controller.

Replace $my_unique_ingress_domain with a domain name that is unique among all
Ingress Controllers in the cluster. This variable must be a subdomain of the DNS name
<clustername>.<domain>.

You can replace External with Internal to use an internal NLB.

2. Create the resource in the cluster:

IMPORTANT

Before you can configure an Ingress Controller NLB on a new AWS cluster, you must
complete the Creating the installation configuration file procedure.

28.5.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on a new cluster.

Prerequisites

Create the install-config.yaml file and complete any modifications to it.

Procedure

Create an Ingress Controller backed by an AWS NLB on a new cluster.

1. Change to the directory that contains the installation program and create the manifests:

For <installation_directory>, specify the name of the directory that contains the install-
config.yaml file for your cluster.

2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the
<installation_directory>/manifests/ directory:

metadata:
 name: $my_ingress_controller 1
 namespace: openshift-ingress-operator
spec:
 domain: $my_unique_ingress_domain 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: External 3
 providerParameters:
 type: AWS
 aws:
 type: NLB

$ oc create -f ingresscontroller-aws-nlb.yaml

$./openshift-install create manifests --dir <installation_directory> 1

OpenShift Container Platform 4.12 Networking

596

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installation-initializing_installing-aws-network-customizations

1 For <installation_directory>, specify the directory name that contains the manifests/
directory for your cluster.

After creating the file, several network configuration files are in the manifests/ directory, as
shown:

Example output

3. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom
resource (CR) that describes the Operator configuration you want:

4. Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.

5. Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file. The
installation program deletes the manifests/ directory when creating the cluster.

28.5.3. Additional resources

Installing a cluster on AWS with network customizations .

For more information on support for NLBs, see Network Load Balancer support on AWS .

For more information on proxy protocol support for CLBs, see Configure proxy protocol
support for your Classic Load Balancer

28.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE
EXTERNAL IP

You can attach an external IP address to a service so that it is available to traffic outside the cluster. This

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: null
 name: default
 namespace: openshift-ingress-operator
spec:
 endpointPublishingStrategy:
 loadBalancer:
 scope: External
 providerParameters:
 type: AWS
 aws:
 type: NLB
 type: LoadBalancerService

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

597

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-aws-network-customizations
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-proxy-protocol.html

You can attach an external IP address to a service so that it is available to traffic outside the cluster. This
is generally useful only for a cluster installed on bare metal hardware. The external network
infrastructure must be configured correctly to route traffic to the service.

28.6.1. Prerequisites

Your cluster is configured with ExternalIPs enabled. For more information, read Configuring
ExternalIPs for services.

NOTE

Do not use the same ExternalIP for the egress IP.

28.6.2. Attaching an ExternalIP to a service

You can attach an ExternalIP to a service. If your cluster is configured to allocate an ExternalIP
automatically, you might not need to manually attach an ExternalIP to the service.

Procedure

1. Optional: To confirm what IP address ranges are configured for use with ExternalIP, enter the
following command:

If autoAssignCIDRs is set, OpenShift Container Platform automatically assigns an ExternalIP
to a new Service object if the spec.externalIPs field is not specified.

2. Attach an ExternalIP to the service.

a. If you are creating a new service, specify the spec.externalIPs field and provide an array of
one or more valid IP addresses. For example:

b. If you are attaching an ExternalIP to an existing service, enter the following command.
Replace <name> with the service name. Replace <ip_address> with a valid ExternalIP
address. You can provide multiple IP addresses separated by commas.

For example:

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

apiVersion: v1
kind: Service
metadata:
 name: svc-with-externalip
spec:
 ...
 externalIPs:
 - 192.174.120.10

$ oc patch svc <name> -p \
 '{
 "spec": {
 "externalIPs": ["<ip_address>"]
 }
 }'

OpenShift Container Platform 4.12 Networking

598

Example output

3. To confirm that an ExternalIP address is attached to the service, enter the following command.
If you specified an ExternalIP for a new service, you must create the service first.

Example output

28.6.3. Additional resources

Configuring ExternalIPs for services

28.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A
NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

28.7.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

Using a node port requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

28.7.2. Prerequisites

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

$ oc get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

599

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

28.7.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

28.7.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.197.157 <none> 8080/TCP 70s

OpenShift Container Platform 4.12 Networking

600

1

2

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. To expose a node port for the application, modify the custom resource definition (CRD) of a
service by entering the following command:

Example output

Optional: Specify the node port range for the application. By default, OpenShift Container
Platform selects an available port in the 30000-32767 range.

Define the service type.

4. Optional: To confirm the service is available with a node port exposed, enter the following
command:

Example output

5. Optional: To remove the service created automatically by the oc new-app command, enter the
following command:

Verification

To check that the service node port is updated with a port in the 30000-32767 range, enter the
following command:

$ oc project myproject

$ oc edit svc <service_name>

spec:
 ports:
 - name: 8443-tcp
 nodePort: 30327 1
 port: 8443
 protocol: TCP
 targetPort: 8443
 sessionAffinity: None
 type: NodePort 2

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nodejs-ex ClusterIP 172.30.217.127 <none> 3306/TCP 9m44s
nodejs-ex-ingress NodePort 172.30.107.72 <none> 3306:31345/TCP 39s

$ oc delete svc nodejs-ex

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

601

1

In the following example output, the updated port is 30327:

Example output

28.7.5. Additional resources

Configuring the node port service range

28.8. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD
BALANCER ALLOWED SOURCE RANGES

You can specify a list of IP address ranges for the IngressController. This restricts access to the load
balancer service when the endpointPublishingStrategy is LoadBalancerService.

28.8.1. Configuring load balancer allowed source ranges

You can enable and configure the
spec.endpointPublishingStrategy.loadBalancer.allowedSourceRanges field. By configuring load
balancer allowed source ranges, you can limit the access to the load balancer for the Ingress Controller
to a specified list of IP address ranges. The Ingress Operator reconciles the load balancer Service and
sets the spec.loadBalancerSourceRanges field based on AllowedSourceRanges.

NOTE

If you have already set the spec.loadBalancerSourceRanges field or the load balancer
service anotation service.beta.kubernetes.io/load-balancer-source-ranges in a
previous version of OpenShift Container Platform, Ingress Controller starts reporting
Progressing=True after an upgrade. To fix this, set AllowedSourceRanges that
overwrites the spec.loadBalancerSourceRanges field and clears the
service.beta.kubernetes.io/load-balancer-source-ranges annotation. Ingress
Controller starts reporting Progressing=False again.

Prerequisites

You have a deployed Ingress Controller on a running cluster.

Procedure

Set the allowed source ranges API for the Ingress Controller by running the following command:

The example value 0.0.0.0/0 specifies the allowed source range.

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
httpd NodePort 172.xx.xx.xx <none> 8443:30327/TCP 109s

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"loadBalancer":{"allowedSourceRanges":["0.0.0.0/0"]}}}}' 1

OpenShift Container Platform 4.12 Networking

602

28.8.2. Migrating to load balancer allowed source ranges

If you have already set the annotation service.beta.kubernetes.io/load-balancer-source-ranges, you
can migrate to load balancer allowed source ranges. When you set the AllowedSourceRanges, the
Ingress Controller sets the spec.loadBalancerSourceRanges field based on the
AllowedSourceRanges value and unsets the service.beta.kubernetes.io/load-balancer-source-
ranges annotation.

NOTE

If you have already set the spec.loadBalancerSourceRanges field or the load balancer
service anotation service.beta.kubernetes.io/load-balancer-source-ranges in a
previous version of OpenShift Container Platform, the Ingress Controller starts reporting
Progressing=True after an upgrade. To fix this, set AllowedSourceRanges that
overwrites the spec.loadBalancerSourceRanges field and clears the
service.beta.kubernetes.io/load-balancer-source-ranges annotation. The Ingress
Controller starts reporting Progressing=False again.

Prerequisites

You have set the service.beta.kubernetes.io/load-balancer-source-ranges annotation.

Procedure

1. Ensure that the service.beta.kubernetes.io/load-balancer-source-ranges is set:

Example output

2. Ensure that the spec.loadBalancerSourceRanges field is unset:

Example output

3. Update your cluster to OpenShift Container Platform 4.12.

4. Set the allowed source ranges API for the ingresscontroller by running the following
command:

$ oc get svc router-default -n openshift-ingress -o yaml

apiVersion: v1
kind: Service
metadata:
 annotations:
 service.beta.kubernetes.io/load-balancer-source-ranges: 192.168.0.1/32

$ oc get svc router-default -n openshift-ingress -o yaml

...
spec:
 loadBalancerSourceRanges:
 - 0.0.0.0/0
...

CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC

603

1 The example value 0.0.0.0/0 specifies the allowed source range.

28.8.3. Additional resources

Updating your cluster

$ oc -n openshift-ingress-operator patch ingresscontroller/default \
 --type=merge --patch='{"spec":{"endpointPublishingStrategy": \
 {"loadBalancer":{"allowedSourceRanges":["0.0.0.0/0"]}}}}' 1

OpenShift Container Platform 4.12 Networking

604

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/updating_clusters/#index

CHAPTER 29. KUBERNETES NMSTATE

29.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState. The Kubernetes
NMState Operator provides users with functionality to configure various network interface types, DNS,
and routing on cluster nodes. Additionally, the daemons on the cluster nodes periodically report on the
state of each node’s network interfaces to the API server.

IMPORTANT

Red Hat supports the Kubernetes NMState Operator in production environments on
bare-metal, IBM Power, IBM Z, IBM® LinuxONE, VMware vSphere, and OpenStack
installations.

Before you can use NMState with OpenShift Container Platform, you must install the Kubernetes
NMState Operator.

NOTE

The Kubernetes NMState Operator updates the network configuration of a secondary
NIC. It cannot update the network configuration of the primary NIC or the br-ex bridge.

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify the network policy configuration, such as by creating a Linux bridge on
all nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

29.1.1. Installing the Kubernetes NMState Operator

You can install the Kubernetes NMState Operator by using the web console or the CLI.

29.1.1.1. Installing the Kubernetes NMState Operator using the web console

You can install the Kubernetes NMState Operator by using the web console. After it is installed, the
Operator can deploy the NMState State Controller as a daemon set across all of the cluster nodes.

Prerequisites

You are logged in as a user with cluster-admin privileges.

Procedure

CHAPTER 29. KUBERNETES NMSTATE

605

https://nmstate.github.io/

Procedure

1. Select Operators → OperatorHub.

2. In the search field below All Items, enter nmstate and click Enter to search for the Kubernetes
NMState Operator.

3. Click on the Kubernetes NMState Operator search result.

4. Click on Install to open the Install Operator window.

5. Click Install to install the Operator.

6. After the Operator finishes installing, click View Operator.

7. Under Provided APIs, click Create Instance to open the dialog box for creating an instance of
kubernetes-nmstate.

8. In the Name field of the dialog box, ensure the name of the instance is nmstate.

NOTE

The name restriction is a known issue. The instance is a singleton for the entire
cluster.

9. Accept the default settings and click Create to create the instance.

Summary

Once complete, the Operator has deployed the NMState State Controller as a daemon set across all of
the cluster nodes.

29.1.1.2. Installing the Kubernetes NMState Operator using the CLI

You can install the Kubernetes NMState Operator by using the OpenShift CLI (oc). After it is installed,
the Operator can deploy the NMState State Controller as a daemon set across all of the cluster nodes.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

Procedure

1. Create the nmstate Operator namespace:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
 labels:
 kubernetes.io/metadata.name: openshift-nmstate
 name: openshift-nmstate
 name: openshift-nmstate

OpenShift Container Platform 4.12 Networking

606

2. Create the OperatorGroup:

3. Subscribe to the nmstate Operator:

4. Create instance of the nmstate operator:

Verification

Confirm that the deployment for the nmstate operator is running:

spec:
 finalizers:
 - kubernetes
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: NMState.v1.nmstate.io
 name: openshift-nmstate
 namespace: openshift-nmstate
spec:
 targetNamespaces:
 - openshift-nmstate
EOF

$ cat << EOF| oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 labels:
 operators.coreos.com/kubernetes-nmstate-operator.openshift-nmstate: ""
 name: kubernetes-nmstate-operator
 namespace: openshift-nmstate
spec:
 channel: stable
 installPlanApproval: Automatic
 name: kubernetes-nmstate-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ cat << EOF | oc apply -f -
apiVersion: nmstate.io/v1
kind: NMState
metadata:
 name: nmstate
EOF

oc get clusterserviceversion -n openshift-nmstate \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

CHAPTER 29. KUBERNETES NMSTATE

607

1

2

3

Example output

29.2. OBSERVING AND UPDATING THE NODE NETWORK STATE AND
CONFIGURATION

29.2.1. Viewing the network state of a node

Node network state is the network configuration for all nodes in the cluster. A NodeNetworkState
object exists on every node in the cluster. This object is periodically updated and captures the state of
the network for that node.

Procedure

1. List all the NodeNetworkState objects in the cluster:

2. Inspect a NodeNetworkState object to view the network on that node. The output in this
example has been redacted for clarity:

Example output

The name of the NodeNetworkState object is taken from the node.

The currentState contains the complete network configuration for the node, including
DNS, interfaces, and routes.

Timestamp of the last successful update. This is updated periodically as long as the node is
reachable and can be used to evalute the freshness of the report.

Name Phase
kubernetes-nmstate-operator.4.12.0-202210210157 Succeeded

$ oc get nns

$ oc get nns node01 -o yaml

apiVersion: nmstate.io/v1
kind: NodeNetworkState
metadata:
 name: node01 1
status:
 currentState: 2
 dns-resolver:
...
 interfaces:
...
 route-rules:
...
 routes:
...
 lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3

OpenShift Container Platform 4.12 Networking

608

1

29.2.2. Managing policy by using the CLI

29.2.2.1. Creating an interface on nodes

Create an interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy manifest
to the cluster. The manifest details the requested configuration for the interface.

By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add
the spec: nodeSelector parameter and the appropriate <key>:<value> for your node selector.

You can configure multiple nmstate-enabled nodes concurrently. The configuration applies to 50% of
the nodes in parallel. This strategy prevents the entire cluster from being unavailable if the network
connection fails. To apply the policy configuration in parallel to a specific portion of the cluster, use the
maxUnavailable field.

Procedure

1. Create the NodeNetworkConfigurationPolicy manifest. The following example configures a
Linux bridge on all worker nodes and configures the DNS resolver:

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 maxUnavailable: 3 4
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with eth1 as a port 5
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 auto-dns: false
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: eth1
 dns-resolver: 6
 config:
 search:
 - example.com
 - example.org
 server:
 - 8.8.8.8

CHAPTER 29. KUBERNETES NMSTATE

609

2

3

4

5

6

1

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Optional: Specifies the maximum number of nmstate-enabled nodes that the policy
configuration can be applied to concurrently. This parameter can be set to either a
percentage value (string), for example, "10%", or an absolute value (number), such as 3.

Optional: Human-readable description for the interface.

Optional: Specifies the search and server settings for the DNS server.

2. Create the node network policy:

File name of the node network configuration policy manifest.

Additional resources

Example for creating multiple interfaces in the same policy

Examples of different IP management methods in policies

29.2.3. Confirming node network policy updates on nodes

A NodeNetworkConfigurationPolicy manifest describes your requested network configuration for
nodes in the cluster. The node network policy includes your requested network configuration and the
status of execution of the policy on the cluster as a whole.

When you apply a node network policy, a NodeNetworkConfigurationEnactment object is created for
every node in the cluster. The node network configuration enactment is a read-only object that
represents the status of execution of the policy on that node. If the policy fails to be applied on the
node, the enactment for that node includes a traceback for troubleshooting.

Procedure

1. To confirm that a policy has been applied to the cluster, list the policies and their status:

2. Optional: If a policy is taking longer than expected to successfully configure, you can inspect the
requested state and status conditions of a particular policy:

3. Optional: If a policy is taking longer than expected to successfully configure on all nodes, you
can list the status of the enactments on the cluster:

4. Optional: To view the configuration of a particular enactment, including any error reporting for a

$ oc apply -f br1-eth1-policy.yaml 1

$ oc get nncp

$ oc get nncp <policy> -o yaml

$ oc get nnce

OpenShift Container Platform 4.12 Networking

610

1

4. Optional: To view the configuration of a particular enactment, including any error reporting for a
failed configuration:

29.2.4. Removing an interface from nodes

You can remove an interface from one or more nodes in the cluster by editing the
NodeNetworkConfigurationPolicy object and setting the state of the interface to absent.

Removing an interface from a node does not automatically restore the node network configuration to a
previous state. If you want to restore the previous state, you will need to define that node network
configuration in the policy.

If you remove a bridge or bonding interface, any node NICs in the cluster that were previously attached
or subordinate to that bridge or bonding interface are placed in a down state and become unreachable.
To avoid losing connectivity, configure the node NIC in the same policy so that it has a status of up and
either DHCP or a static IP address.

NOTE

Deleting the node network policy that added an interface does not change the
configuration of the policy on the node. Although a NodeNetworkConfigurationPolicy is
an object in the cluster, it only represents the requested configuration.
Similarly, removing an interface does not delete the policy.

Procedure

1. Update the NodeNetworkConfigurationPolicy manifest used to create the interface. The
following example removes a Linux bridge and configures the eth1 NIC with DHCP to avoid
losing connectivity:

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes

$ oc get nnce <node>.<policy> -o yaml

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 type: linux-bridge
 state: absent 4
 - name: eth1 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

CHAPTER 29. KUBERNETES NMSTATE

611

2

3

4

5

6

7

8

9

1

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Changing the state to absent removes the interface.

The name of the interface that is to be unattached from the bridge interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface
without an IP address.

Enables ipv4 in this example.

2. Update the policy on the node and remove the interface:

File name of the policy manifest.

29.2.5. Example policy configurations for different interfaces

The following examples show different NodeNetworkConfigurationPolicy manifest configurations.

For best performance, consider the following factors when applying a policy:

When you need to apply a policy to more than one node, create a
NodeNetworkConfigurationPolicy manifest for each target node. Scoping a policy to a single
node reduces the overall length of time for the Kubernetes NMState Operator to apply the
policies.
In contrast, if a single policy includes configurations for several nodes, the Kubernetes NMState
Operator applies the policy to each node in sequence, which increases the overall length of time
for policy application.

All related network configurations should be specified in a single policy.
When a node restarts, the Kubernetes NMState Operator cannot control the order in which
policies are applied. Therefore, the Kubernetes NMState Operator might apply interdependent
policies in a sequence that results in a degraded network object.

29.2.5.1. Example: Linux bridge interface node network configuration policy

Create a Linux bridge interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for a Linux bridge interface. It includes samples
values that you must replace with your own information.

$ oc apply -f <br1-eth1-policy.yaml> 1

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy

OpenShift Container Platform 4.12 Networking

612

1

2

3

4

5

6

7

8

9

10

11

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

Disables stp in this example.

The node NIC to which the bridge attaches.

29.2.5.2. Example: VLAN interface node network configuration policy

Create a VLAN interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

NOTE

metadata:
 name: br1-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: br1 4
 description: Linux bridge with eth1 as a port 5
 type: linux-bridge 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 bridge:
 options:
 stp:
 enabled: false 10
 port:
 - name: eth1 11

CHAPTER 29. KUBERNETES NMSTATE

613

1

2

3

4

5

6

7

8

9

NOTE

Define all related configurations for the VLAN interface of a node in a single
NodeNetworkConfigurationPolicy manifest. For example, define the VLAN interface
for a node and the related routes for the VLAN interface in the same
NodeNetworkConfigurationPolicy manifest.

When a node restarts, the Kubernetes NMState Operator cannot control the order in
which policies are applied. Therefore, if you use separate policies for related network
configurations, the Kubernetes NMState Operator might apply these policies in a
sequence that results in a degraded network object.

The following YAML file is an example of a manifest for a VLAN interface. It includes samples values that
you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface. When deploying on bare metal, only the <interface_name>.
<vlan_number> VLAN format is supported.

Optional: Human-readable description of the interface.

The type of interface. This example creates a VLAN.

The requested state for the interface after creation.

The node NIC to which the VLAN is attached.

The VLAN tag.

29.2.5.3. Example: Bond interface node network configuration policy

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: vlan-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1.102 4
 description: VLAN using eth1 5
 type: vlan 6
 state: up 7
 vlan:
 base-iface: eth1 8
 id: 102 9

OpenShift Container Platform 4.12 Networking

614

1

2

3

4

Create a bond interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

NOTE

OpenShift Container Platform only supports the following bond modes:

mode=1 active-backup

mode=2 balance-xor

mode=4 802.3ad

mode=5 balance-tlb

mode=6 balance-alb

The following YAML file is an example of a manifest for a bond interface. It includes samples values that
you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: bond0-eth1-eth2-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: bond0 4
 description: Bond with ports eth1 and eth2 5
 type: bond 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 link-aggregation:
 mode: active-backup 10
 options:
 miimon: '140' 11
 port: 12
 - eth1
 - eth2
 mtu: 1450 13

CHAPTER 29. KUBERNETES NMSTATE

615

5

6

7

8

9

10

11

12

13

1

2

3

4

Optional: Human-readable description of the interface.

The type of interface. This example creates a bond.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

The driver mode for the bond. This example uses an active backup mode.

Optional: This example uses miimon to inspect the bond link every 140ms.

The subordinate node NICs in the bond.

Optional: The maximum transmission unit (MTU) for the bond. If not specified, this value is set to
1500 by default.

29.2.5.4. Example: Ethernet interface node network configuration policy

Configure an Ethernet interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for an Ethernet interface. It includes sample values
that you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1 4
 description: Configuring eth1 on node01 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

OpenShift Container Platform 4.12 Networking

616

5

6

7

8

9

1

Optional: Human-readable description of the interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

29.2.5.5. Example: Multiple interfaces in the same node network configuration policy

You can create multiple interfaces in the same node network configuration policy. These interfaces can
reference each other, allowing you to build and deploy a network configuration by using a single policy
manifest.

The following example YAML file creates a bond that is named bond10 across two NICs and VLAN that
is named bond10.103 that connects to the bond.

Name of the policy.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: bond-vlan 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: bond10 4
 description: Bonding eth2 and eth3 5
 type: bond 6
 state: up 7
 link-aggregation:
 mode: balance-rr 8
 options:
 miimon: '140' 9
 port: 10
 - eth2
 - eth3
 - name: bond10.103 11
 description: vlan using bond10 12
 type: vlan 13
 state: up 14
 vlan:
 base-iface: bond10 15
 id: 103 16
 ipv4:
 dhcp: true 17
 enabled: true 18

CHAPTER 29. KUBERNETES NMSTATE

617

2

3

4 11

5 12

6 13

7 14

8

9

10

15

16

17

18

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface.

The requested state for the interface after creation.

The driver mode for the bond.

Optional: This example uses miimon to inspect the bond link every 140ms.

The subordinate node NICs in the bond.

The node NIC to which the VLAN is attached.

The VLAN tag.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

29.2.6. Capturing the static IP of a NIC attached to a bridge

IMPORTANT

Capturing the static IP of a NIC is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

29.2.6.1. Example: Linux bridge interface node network configuration policy to inherit static
IP address from the NIC attached to the bridge

Create a Linux bridge interface on nodes in the cluster and transfer the static IP configuration of the
NIC to the bridge by applying a single NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for a Linux bridge interface. It includes sample
values that you must replace with your own information.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-copy-ipv4-policy 1

OpenShift Container Platform 4.12 Networking

618

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

The name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster. This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

The reference to the node NIC to which the bridge attaches.

The type of interface. This example creates a bridge.

The IP address of the bridge interface. This value matches the IP address of the NIC which is
referenced by the spec.capture.eth1-nic entry.

The node NIC to which the bridge attaches.

Additional resources

The NMPolicy project - Policy syntax

29.2.7. Examples: IP management

The following example configuration snippets demonstrate different methods of IP management.

These examples use the ethernet interface type to simplify the example while showing the related
context in the policy configuration. These IP management examples can be used with the other
interface types.

29.2.7.1. Static

The following snippet statically configures an IP address on the Ethernet interface:

spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: ""
 capture:
 eth1-nic: interfaces.name=="eth1" 3
 eth1-routes: routes.running.next-hop-interface=="eth1"
 br1-routes: capture.eth1-routes | routes.running.next-hop-interface := "br1"
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with eth1 as a port
 type: linux-bridge 4
 state: up
 ipv4: "{{ capture.eth1-nic.interfaces.0.ipv4 }}" 5
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: eth1 6
 routes:
 config: "{{ capture.br1-routes.routes.running }}"

CHAPTER 29. KUBERNETES NMSTATE

619

https://nmstate.io/nmpolicy/user-guide/102-policy-syntax.html

1 Replace this value with the static IP address for the interface.

29.2.7.2. No IP address

The following snippet ensures that the interface has no IP address:

29.2.7.3. Dynamic host configuration

The following snippet configures an Ethernet interface that uses a dynamic IP address, gateway
address, and DNS:

The following snippet configures an Ethernet interface that uses a dynamic IP address but does not use
a dynamic gateway address or DNS:

...
 interfaces:
 - name: eth1
 description: static IP on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: false
 address:
 - ip: 192.168.122.250 1
 prefix-length: 24
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: No IP on eth1
 type: ethernet
 state: up
 ipv4:
 enabled: false
...

...
 interfaces:
 - name: eth1
 description: DHCP on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: DHCP without gateway or DNS on eth1

OpenShift Container Platform 4.12 Networking

620

1

29.2.7.4. DNS

Setting the DNS configuration is analagous to modifying the /etc/resolv.conf file. The following snippet
sets the DNS configuration on the host.

You must configure an interface with auto-dns: false or you must use static IP configuration on an
interface in order for Kubernetes NMState to store custom DNS settings.

IMPORTANT

You cannot use br-ex, an OVNKubernetes-managed Open vSwitch bridge, as the
interface when configuring DNS resolvers.

29.2.7.5. Static routing

The following snippet configures a static route and a static IP on interface eth1.

 type: ethernet
 state: up
 ipv4:
 dhcp: true
 auto-gateway: false
 auto-dns: false
 enabled: true
...

...
 interfaces: 1
 ...
 ipv4:
 ...
 auto-dns: false
 ...
 dns-resolver:
 config:
 search:
 - example.com
 - example.org
 server:
 - 8.8.8.8
...

...
 interfaces:
 - name: eth1
 description: Static routing on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: false
 address:
 - ip: 192.0.2.251 1
 prefix-length: 24

CHAPTER 29. KUBERNETES NMSTATE

621

1

2

The static IP address for the Ethernet interface.

Next hop address for the node traffic. This must be in the same subnet as the IP address set for
the Ethernet interface.

29.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION

If the node network configuration encounters an issue, the policy is automatically rolled back and the
enactments report failure. This includes issues such as:

The configuration fails to be applied on the host.

The host loses connection to the default gateway.

The host loses connection to the API server.

29.3.1. Troubleshooting an incorrect node network configuration policy
configuration

You can apply changes to the node network configuration across your entire cluster by applying a node
network configuration policy. If you apply an incorrect configuration, you can use the following example
to troubleshoot and correct the failed node network policy.

In this example, a Linux bridge policy is applied to an example cluster that has three control plane nodes
and three compute nodes. The policy fails to be applied because it references an incorrect interface. To
find the error, investigate the available NMState resources. You can then update the policy with the
correct configuration.

Procedure

1. Create a policy and apply it to your cluster. The following example creates a simple bridge on the
ens01 interface:

 enabled: true
 routes:
 config:
 - destination: 198.51.100.0/24
 metric: 150
 next-hop-address: 192.0.2.1 2
 next-hop-interface: eth1
 table-id: 254
...

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: ens01-bridge-testfail
spec:
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with the wrong port
 type: linux-bridge
 state: up

OpenShift Container Platform 4.12 Networking

622

Example output

2. Verify the status of the policy by running the following command:

The output shows that the policy failed:

Example output

However, the policy status alone does not indicate if it failed on all nodes or a subset of nodes.

3. List the node network configuration enactments to see if the policy was successful on any of the
nodes. If the policy failed for only a subset of nodes, it suggests that the problem is with a
specific node configuration. If the policy failed on all nodes, it suggests that the problem is with
the policy.

The output shows that the policy failed on all nodes:

Example output

4. View one of the failed enactments and look at the traceback. The following command uses the
output tool jsonpath to filter the output:

 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: ens01

$ oc apply -f ens01-bridge-testfail.yaml

nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

$ oc get nncp

NAME STATUS
ens01-bridge-testfail FailedToConfigure

$ oc get nnce

NAME STATUS
control-plane-1.ens01-bridge-testfail FailedToConfigure
control-plane-2.ens01-bridge-testfail FailedToConfigure
control-plane-3.ens01-bridge-testfail FailedToConfigure
compute-1.ens01-bridge-testfail FailedToConfigure
compute-2.ens01-bridge-testfail FailedToConfigure
compute-3.ens01-bridge-testfail FailedToConfigure

CHAPTER 29. KUBERNETES NMSTATE

623

This command returns a large traceback that has been edited for brevity:

Example output

$ oc get nnce compute-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?
(@.type=="Failing")].message}'

error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute
nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
...
libnmstate.error.NmstateVerificationError:
desired
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: ens01
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

current
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:

OpenShift Container Platform 4.12 Networking

624

The NmstateVerificationError lists the desired policy configuration, the current configuration
of the policy on the node, and the difference highlighting the parameters that do not match. In
this example, the port is included in the difference, which suggests that the problem is the port
configuration in the policy.

5. To ensure that the policy is configured properly, view the network configuration for one or all of
the nodes by requesting the NodeNetworkState object. The following command returns the
network configuration for the control-plane-1 node:

$ oc get nns control-plane-1 -o yaml

The output shows that the interface name on the nodes is ens1 but the failed policy incorrectly
uses ens01:

Example output

 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port: []
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

difference
==========
--- desired
+++ current
@@ -13,8 +13,7 @@
 hello-time: 2
 max-age: 20
 priority: 32768
- port:
- - name: ens01
+ port: []
 description: Linux bridge with the wrong port
 ipv4:
 address: []
 line 651, in _assert_interfaces_equal\n
current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

 - ipv4:
...
 name: ens1

CHAPTER 29. KUBERNETES NMSTATE

625

6. Correct the error by editing the existing policy:

Save the policy to apply the correction.

7. Check the status of the policy to ensure it updated successfully:

Example output

The updated policy is successfully configured on all nodes in the cluster.

 state: up
 type: ethernet

$ oc edit nncp ens01-bridge-testfail

...
 port:
 - name: ens1

$ oc get nncp

NAME STATUS
ens01-bridge-testfail SuccessfullyConfigured

OpenShift Container Platform 4.12 Networking

626

CHAPTER 30. CONFIGURING THE CLUSTER-WIDE PROXY
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure OpenShift Container Platform to use a proxy by modifying the Proxy
object for existing clusters or by configuring the proxy settings in the install-config.yaml file for new
clusters.

30.1. PREREQUISITES

Review the sites that your cluster requires access to and determine whether any of them must
bypass the proxy. By default, all cluster system egress traffic is proxied, including calls to the
cloud provider API for the cloud that hosts your cluster. System-wide proxy affects system
components only, not user workloads. Add sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration with
most installation types.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

IMPORTANT

If your installation type does not include setting the
networking.machineNetwork[].cidr field, you must include the machine IP
addresses manually in the .status.noProxy field to make sure that the traffic
between nodes can bypass the proxy.

30.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

CHAPTER 30. CONFIGURING THE CLUSTER-WIDE PROXY

627

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#configuring-firewall

1

2

3

4

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1

OpenShift Container Platform 4.12 Networking

628

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.
For example, most proxies will report an error if they are configured to use https but they
only support http. This failure message may not propagate to the logs and can appear to
be a network connection failure instead. If using a proxy that listens for https connections
from the cluster, you may need to configure the cluster to accept the CAs and certificates
that the proxy uses.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

30.3. REMOVING THE CLUSTER-WIDE PROXY

The cluster Proxy object cannot be deleted. To remove the proxy from a cluster, remove all spec fields
from the Proxy object.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

CHAPTER 30. CONFIGURING THE CLUSTER-WIDE PROXY

629

Procedure

1. Use the oc edit command to modify the proxy:

2. Remove all spec fields from the Proxy object. For example:

3. Save the file to apply the changes.

Additional resources

Replacing the CA Bundle certificate

Proxy certificate customization

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec: {}

OpenShift Container Platform 4.12 Networking

630

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/security_and_compliance/#ca-bundle-understanding_updating-ca-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/security_and_compliance/#customization

CHAPTER 31. CONFIGURING A CUSTOM PKI
Some platform components, such as the web console, use Routes for communication and must trust
other components' certificates to interact with them. If you are using a custom public key infrastructure
(PKI), you must configure it so its privately signed CA certificates are recognized across the cluster.

You can leverage the Proxy API to add cluster-wide trusted CA certificates. You must do this either
during installation or at runtime.

During installation, configure the cluster-wide proxy. You must define your privately signed CA
certificates in the install-config.yaml file’s additionalTrustBundle setting.
The installation program generates a ConfigMap that is named user-ca-bundle that contains
the additional CA certificates you defined. The Cluster Network Operator then creates a
trusted-ca-bundle ConfigMap that merges these CA certificates with the Red Hat Enterprise
Linux CoreOS (RHCOS) trust bundle; this ConfigMap is referenced in the Proxy object’s
trustedCA field.

At runtime, modify the default Proxy object to include your privately signed CA certificates
(part of cluster’s proxy enablement workflow). This involves creating a ConfigMap that contains
the privately signed CA certificates that should be trusted by the cluster, and then modifying
the proxy resource with the trustedCA referencing the privately signed certificates' ConfigMap.

NOTE

The installer configuration’s additionalTrustBundle field and the proxy resource’s
trustedCA field are used to manage the cluster-wide trust bundle;
additionalTrustBundle is used at install time and the proxy’s trustedCA is used at
runtime.

The trustedCA field is a reference to a ConfigMap containing the custom certificate and
key pair used by the cluster component.

31.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING
INSTALLATION

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

CHAPTER 31. CONFIGURING A CUSTOM PKI

631

1

2

3

4

5

NOTE

The Proxy object status.noProxy field is populated with the values of the
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC
endpoints to your VPC, you must add these endpoints to the noProxy field.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

Optional: The policy to determine the configuration of the Proxy object to reference the
user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and
Always. Use Proxyonly to reference the user-ca-bundle config map only when
http/https proxy is configured. Use Always to always reference the user-ca-bundle
config map. The default value is Proxyonly.

NOTE

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.
<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5

OpenShift Container Platform 4.12 Networking

632

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

If the installer times out, restart and then complete the deployment by using the
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

31.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

$./openshift-install wait-for install-complete --log-level debug

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

CHAPTER 31. CONFIGURING A CUSTOM PKI

633

1

2

3

4

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

OpenShift Container Platform 4.12 Networking

634

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.
For example, most proxies will report an error if they are configured to use https but they
only support http. This failure message may not propagate to the logs and can appear to
be a network connection failure instead. If using a proxy that listens for https connections
from the cluster, you may need to configure the cluster to accept the CAs and certificates
that the proxy uses.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

31.3. CERTIFICATE INJECTION USING OPERATORS

Once your custom CA certificate is added to the cluster via ConfigMap, the Cluster Network Operator
merges the user-provided and system CA certificates into a single bundle and injects the merged
bundle into the Operator requesting the trust bundle injection.

IMPORTANT

After adding a config.openshift.io/inject-trusted-cabundle="true" label to the config
map, existing data in it is deleted. The Cluster Network Operator takes ownership of a
config map and only accepts ca-bundle as data. You must use a separate config map to
store service-ca.crt by using the service.beta.openshift.io/inject-cabundle=true
annotation or a similar configuration. Adding a config.openshift.io/inject-trusted-
cabundle="true" label and service.beta.openshift.io/inject-cabundle=true annotation
on the same config map can cause issues.

Operators request this injection by creating an empty ConfigMap with the following label:

An example of the empty ConfigMap:

config.openshift.io/inject-trusted-cabundle="true"

apiVersion: v1

CHAPTER 31. CONFIGURING A CUSTOM PKI

635

1

1

2

Specifies the empty ConfigMap name.

The Operator mounts this ConfigMap into the container’s local trust store.

NOTE

Adding a trusted CA certificate is only needed if the certificate is not included in the Red
Hat Enterprise Linux CoreOS (RHCOS) trust bundle.

Certificate injection is not limited to Operators. The Cluster Network Operator injects certificates across
any namespace when an empty ConfigMap is created with the config.openshift.io/inject-trusted-
cabundle=true label.

The ConfigMap can reside in any namespace, but the ConfigMap must be mounted as a volume to each
container within a pod that requires a custom CA. For example:

ca-bundle.crt is required as the ConfigMap key.

tls-ca-bundle.pem is required as the ConfigMap path.

data: {}
kind: ConfigMap
metadata:
 labels:
 config.openshift.io/inject-trusted-cabundle: "true"
 name: ca-inject 1
 namespace: apache

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-example-custom-ca-deployment
 namespace: my-example-custom-ca-ns
spec:
 ...
 spec:
 ...
 containers:
 - name: my-container-that-needs-custom-ca
 volumeMounts:
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true
 volumes:
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 1
 path: tls-ca-bundle.pem 2

OpenShift Container Platform 4.12 Networking

636

CHAPTER 32. LOAD BALANCING ON RHOSP

32.1. LIMITATIONS OF LOAD BALANCER SERVICES

OpenShift Container Platform clusters on Red Hat OpenStack Platform (RHOSP) use Octavia to handle
load balancer services. As a result of this choice, such clusters have a number of functional limitations.

RHOSP Octavia has two supported providers: Amphora and OVN. These providers differ in terms of
available features as well as implementation details. These distinctions affect load balancer services that
are created on your cluster.

32.1.1. Local external traffic policies

You can set the external traffic policy (ETP) parameter, .spec.externalTrafficPolicy, on a load balancer
service to preserve the source IP address of incoming traffic when it reaches service endpoint pods.
However, if your cluster uses the Amphora Octavia provider, the source IP of the traffic is replaced with
the IP address of the Amphora VM. This behavior does not occur if your cluster uses the OVN Octavia
provider.

Having the ETP option set to Local requires that health monitors be created for the load balancer.
Without health monitors, traffic can be routed to a node that doesn’t have a functional endpoint, which
causes the connection to drop. To force Cloud Provider OpenStack to create health monitors, you must
set the value of the create-monitor option in the cloud provider configuration to true.

In RHOSP 16.2, the OVN Octavia provider does not support health monitors. Therefore, setting the ETP
to local is unsupported.

In RHOSP 16.2, the Amphora Octavia provider does not support HTTP monitors on UDP pools. As a
result, UDP load balancer services have UDP-CONNECT monitors created instead. Due to
implementation details, this configuration only functions properly with the OVN-Kubernetes CNI plugin.
When the OpenShift SDN CNI plugin is used, the UDP services alive nodes are detected unreliably.

32.1.2. Load balancer source ranges

Use the .spec.loadBalancerSourceRanges property to restrict the traffic that can pass through the
load balancer according to source IP. This property is supported for use with the Amphora Octavia
provider only. If your cluster uses the OVN Octavia provider, the option is ignored and traffic is
unrestricted.

32.2. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER
WITH KURYR SDN

IMPORTANT

Kuryr is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

If your OpenShift Container Platform cluster uses Kuryr and was installed on a Red Hat OpenStack

CHAPTER 32. LOAD BALANCING ON RHOSP

637

1

If your OpenShift Container Platform cluster uses Kuryr and was installed on a Red Hat OpenStack
Platform (RHOSP) 13 cloud that was later upgraded to RHOSP 16, you can configure it to use the
Octavia OVN provider driver.

IMPORTANT

Kuryr replaces existing load balancers after you change provider drivers. This process
results in some downtime.

Prerequisites

Install the RHOSP CLI, openstack.

Install the OpenShift Container Platform CLI, oc.

Verify that the Octavia OVN driver on RHOSP is enabled.

TIP

To view a list of available Octavia drivers, on a command line, enter openstack loadbalancer
provider list.

The ovn driver is displayed in the command’s output.

Procedure

To change from the Octavia Amphora provider driver to Octavia OVN:

1. Open the kuryr-config ConfigMap. On a command line, enter:

2. In the ConfigMap, delete the line that contains kuryr-octavia-provider: default. For example:

Delete this line. The cluster will regenerate it with ovn as the value.

Wait for the Cluster Network Operator to detect the modification and to redeploy the kuryr-
controller and kuryr-cni pods. This process might take several minutes.

3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a
command line, enter:

The ovn provider value is displayed in the output:

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: default 1
...

$ oc -n openshift-kuryr edit cm kuryr-config

OpenShift Container Platform 4.12 Networking

638

4. Verify that RHOSP recreated its load balancers.

a. On a command line, enter:

A single Amphora load balancer is displayed. For example:

b. Search for ovn load balancers by entering:

The remaining load balancers of the ovn type are displayed. For example:

32.3. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING
OCTAVIA

OpenShift Container Platform clusters that run on Red Hat OpenStack Platform (RHOSP) can use the
Octavia load balancing service to distribute traffic across multiple virtual machines (VMs) or floating IP
addresses. This feature mitigates the bottleneck that single machines or addresses create.

If your cluster uses Kuryr, the Cluster Network Operator created an internal Octavia load balancer at
deployment. You can use this load balancer for application network scaling.

If your cluster does not use Kuryr, you must create your own Octavia load balancer to use it for
application network scaling.

32.3.1. Scaling clusters by using Octavia

If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia
load balancer and then configure your cluster to use it.

Prerequisites

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

...
kind: ConfigMap
metadata:
 annotations:
 networkoperator.openshift.io/kuryr-octavia-provider: ovn
...

$ openstack loadbalancer list | grep amphora

a4db683b-2b7b-4988-a582-c39daaad7981 | ostest-7mbj6-kuryr-api-loadbalancer |
84c99c906edd475ba19478a9a6690efd | 172.30.0.1 | ACTIVE | amphora

$ openstack loadbalancer list | grep ovn

2dffe783-98ae-4048-98d0-32aa684664cc | openshift-apiserver-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.167.119 | ACTIVE | ovn
0b1b2193-251f-4243-af39-2f99b29d18c5 | openshift-etcd/etcd |
84c99c906edd475ba19478a9a6690efd | 172.30.143.226 | ACTIVE | ovn
f05b07fc-01b7-4673-bd4d-adaa4391458e | openshift-dns-operator/metrics |
84c99c906edd475ba19478a9a6690efd | 172.30.152.27 | ACTIVE | ovn

CHAPTER 32. LOAD BALANCING ON RHOSP

639

Procedure

1. From a command line, create an Octavia load balancer that uses the Amphora driver:

You can use a name of your choice instead of API_OCP_CLUSTER.

2. After the load balancer becomes active, create listeners:

NOTE

To view the status of the load balancer, enter openstack loadbalancer list.

3. Create a pool that uses the round robin algorithm and has session persistence enabled:

4. To ensure that control plane machines are available, create a health monitor:

5. Add the control plane machines as members of the load balancer pool:

6. Optional: To reuse the cluster API floating IP address, unset it:

7. Add either the unset API_FIP or a new address to the created load balancer VIP:

Your cluster now uses Octavia for load balancing.

NOTE

$ openstack loadbalancer create --name API_OCP_CLUSTER --vip-subnet-id
<id_of_worker_vms_subnet>

$ openstack loadbalancer listener create --name API_OCP_CLUSTER_6443 --protocol
HTTPS--protocol-port 6443 API_OCP_CLUSTER

$ openstack loadbalancer pool create --name API_OCP_CLUSTER_pool_6443 --lb-
algorithm ROUND_ROBIN --session-persistence type=<source_IP_address> --listener
API_OCP_CLUSTER_6443 --protocol HTTPS

$ openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type
TCP API_OCP_CLUSTER_pool_6443

$ for SERVER in $(MASTER-0-IP MASTER-1-IP MASTER-2-IP)
do
 openstack loadbalancer member create --address $SERVER --protocol-port 6443
API_OCP_CLUSTER_pool_6443
done

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
API_OCP_CLUSTER) $API_FIP

OpenShift Container Platform 4.12 Networking

640

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

32.3.2. Scaling clusters that use Kuryr by using Octavia

IMPORTANT

Kuryr is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

If your cluster uses Kuryr, associate the API floating IP address of your cluster with the pre-existing
Octavia load balancer.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. Optional: From a command line, to reuse the cluster API floating IP address, unset it:

2. Add either the unset API_FIP or a new address to the created load balancer VIP:

Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

32.4. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA

IMPORTANT

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value
${OCP_CLUSTER}-kuryr-api-loadbalancer) $API_FIP

CHAPTER 32. LOAD BALANCING ON RHOSP

641

IMPORTANT

Kuryr is a deprecated feature. Deprecated functionality is still included in OpenShift
Container Platform and continues to be supported; however, it will be removed in a future
release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

You can use Octavia load balancers to scale Ingress controllers on clusters that use Kuryr.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your RHOSP deployment.

Procedure

1. To copy the current internal router service, on a command line, enter:

2. In the file external_router.yaml, change the values of metadata.name and spec.type to
LoadBalancer.

Example router file

$ oc -n openshift-ingress get svc router-internal-default -o yaml > external_router.yaml

apiVersion: v1
kind: Service
metadata:
 labels:
 ingresscontroller.operator.openshift.io/owning-ingresscontroller: default
 name: router-external-default 1
 namespace: openshift-ingress
spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: http
 - name: https
 port: 443
 protocol: TCP
 targetPort: https
 - name: metrics
 port: 1936
 protocol: TCP
 targetPort: 1936
 selector:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 sessionAffinity: None
 type: LoadBalancer 2

OpenShift Container Platform 4.12 Networking

642

1

2

Ensure that this value is descriptive, like router-external-default.

Ensure that this value is LoadBalancer.

NOTE

You can delete timestamps and other information that is irrelevant to load balancing.

1. From a command line, create a service from the external_router.yaml file:

2. Verify that the external IP address of the service is the same as the one that is associated with
the load balancer:

a. On a command line, retrieve the external IP address of the service:

Example output

b. Retrieve the IP address of the load balancer:

Example output

c. Verify that the addresses you retrieved in the previous steps are associated with each other
in the floating IP list:

Example output

You can now use the value of EXTERNAL-IP as the new Ingress address.

$ oc apply -f external_router.yaml

$ oc -n openshift-ingress get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-external-default LoadBalancer 172.30.235.33 10.46.22.161
80:30112/TCP,443:32359/TCP,1936:30317/TCP 3m38s
router-internal-default ClusterIP 172.30.115.123 <none>
80/TCP,443/TCP,1936/TCP 22h

$ openstack loadbalancer list | grep router-external

| 21bf6afe-b498-4a16-a958-3229e83c002c | openshift-ingress/router-external-default |
66f3816acf1b431691b8d132cc9d793c | 172.30.235.33 | ACTIVE | octavia |

$ openstack floating ip list | grep 172.30.235.33

| e2f80e97-8266-4b69-8636-e58bacf1879e | 10.46.22.161 | 172.30.235.33 | 655e7122-
806a-4e0a-a104-220c6e17bda6 | a565e55a-99e7-4d15-b4df-f9d7ee8c9deb |
66f3816acf1b431691b8d132cc9d793c |

CHAPTER 32. LOAD BALANCING ON RHOSP

643

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

32.5. SERVICES FOR AN EXTERNAL LOAD BALANCER

You can configure an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP)
to use an external load balancer in place of the default load balancer.

IMPORTANT

Configuring an external load balancer depends on your vendor’s load balancer.

The information and examples in this section are for guideline purposes only. Consult the
vendor documentation for more specific information about the vendor’s load balancer.

Red Hat supports the following services for an external load balancer:

Ingress Controller

OpenShift API

OpenShift MachineConfig API

You can choose whether you want to configure one or all of these services for an external load balancer.
Configuring only the Ingress Controller service is a common configuration option. To better understand
each service, view the following diagrams:

Figure 32.1. Example network workflow that shows an Ingress Controller operating in an OpenShift

OpenShift Container Platform 4.12 Networking

644

Figure 32.1. Example network workflow that shows an Ingress Controller operating in an OpenShift
Container Platform environment

Figure 32.2. Example network workflow that shows an OpenShift API operating in an OpenShift
Container Platform environment

Figure 32.3. Example network workflow that shows an OpenShift MachineConfig API operating in

CHAPTER 32. LOAD BALANCING ON RHOSP

645

Figure 32.3. Example network workflow that shows an OpenShift MachineConfig API operating in
an OpenShift Container Platform environment

The following configuration options are supported for external load balancers:

Use a node selector to map the Ingress Controller to a specific set of nodes. You must assign a
static IP address to each node in this set, or configure each node to receive the same IP address
from the Dynamic Host Configuration Protocol (DHCP). Infrastructure nodes commonly receive
this type of configuration.

Target all IP addresses on a subnet. This configuration can reduce maintenance overhead,
because you can create and destroy nodes within those networks without reconfiguring the load
balancer targets. If you deploy your ingress pods by using a machine set on a smaller network,
such as a /27 or /28, you can simplify your load balancer targets.

TIP

You can list all IP addresses that exist in a network by checking the machine config pool’s
resources.

Before you configure an external load balancer for your OpenShift Container Platform cluster, consider
the following information:

For a front-end IP address, you can use the same IP address for the front-end IP address, the
Ingress Controller’s load balancer, and API load balancer. Check the vendor’s documentation for
this capability.

For a back-end IP address, ensure that an IP address for an OpenShift Container Platform
control plane node does not change during the lifetime of the external load balancer. You can
achieve this by completing one of the following actions:

Assign a static IP address to each control plane node.

Configure each node to receive the same IP address from the DHCP every time the node

OpenShift Container Platform 4.12 Networking

646

Configure each node to receive the same IP address from the DHCP every time the node
requests a DHCP lease. Depending on the vendor, the DHCP lease might be in the form of
an IP reservation or a static DHCP assignment.

Manually define each node that runs the Ingress Controller in the external load balancer for the
Ingress Controller back-end service. For example, if the Ingress Controller moves to an
undefined node, a connection outage can occur.

32.5.1. Configuring an external load balancer

You can configure an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP)
to use an external load balancer in place of the default load balancer.

IMPORTANT

Before you configure an external load balancer, ensure that you read the "Services for an
external load balancer" section.

Read the following prerequisites that apply to the service that you want to configure for your external
load balancer.

NOTE

MetalLB, that runs on a cluster, functions as an external load balancer.

OpenShift API prerequisites

You defined a front-end IP address.

TCP ports 6443 and 22623 are exposed on the front-end IP address of your load balancer.
Check the following items:

Port 6443 provides access to the OpenShift API service.

Port 22623 can provide ignition startup configurations to nodes.

The front-end IP address and port 6443 are reachable by all users of your system with a
location external to your OpenShift Container Platform cluster.

The front-end IP address and port 22623 are reachable only by OpenShift Container Platform
nodes.

The load balancer backend can communicate with OpenShift Container Platform control plane
nodes on port 6443 and 22623.

Ingress Controller prerequisites

You defined a front-end IP address.

TCP ports 443 and 80 are exposed on the front-end IP address of your load balancer.

The front-end IP address, port 80 and port 443 are be reachable by all users of your system
with a location external to your OpenShift Container Platform cluster.

The front-end IP address, port 80 and port 443 are reachable to all nodes that operate in your

CHAPTER 32. LOAD BALANCING ON RHOSP

647

The front-end IP address, port 80 and port 443 are reachable to all nodes that operate in your
OpenShift Container Platform cluster.

The load balancer backend can communicate with OpenShift Container Platform nodes that
run the Ingress Controller on ports 80, 443, and 1936.

Prerequisite for health check URL specifications

You can configure most load balancers by setting health check URLs that determine if a service is
available or unavailable. OpenShift Container Platform provides these health checks for the OpenShift
API, Machine Configuration API, and Ingress Controller backend services.

The following examples demonstrate health check specifications for the previously listed backend
services:

Example of a Kubernetes API health check specification

Example of a Machine Config API health check specification

Example of an Ingress Controller health check specification

Procedure

1. Configure the HAProxy Ingress Controller, so that you can enable access to the cluster from
your load balancer on ports 6443, 443, and 80:

Example HAProxy configuration

Path: HTTPS:6443/readyz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10

Path: HTTPS:22623/healthz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10

Path: HTTP:1936/healthz/ready
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 5
Interval: 10

#...
listen my-cluster-api-6443
 bind 192.168.1.100:6443
 mode tcp
 balance roundrobin
 option httpchk

OpenShift Container Platform 4.12 Networking

648

2. Use the curl CLI command to verify that the external load balancer and its resources are
operational:

a. Verify that the cluster machine configuration API is accessible to the Kubernetes API server
resource, by running the following command and observing the response:

If the configuration is correct, you receive a JSON object in response:

 http-check connect
 http-check send meth GET uri /readyz
 http-check expect status 200
 server my-cluster-master-2 192.168.1.101:6443 check inter 10s rise 2 fall 2
 server my-cluster-master-0 192.168.1.102:6443 check inter 10s rise 2 fall 2
 server my-cluster-master-1 192.168.1.103:6443 check inter 10s rise 2 fall 2

listen my-cluster-machine-config-api-22623
 bind 192.168.1.100:22623
 mode tcp
 balance roundrobin
 option httpchk
 http-check connect
 http-check send meth GET uri /healthz
 http-check expect status 200
 server my-cluster-master-2 192.168.1.101:22623 check inter 10s rise 2 fall 2
 server my-cluster-master-0 192.168.1.102:22623 check inter 10s rise 2 fall 2
 server my-cluster-master-1 192.168.1.103:22623 check inter 10s rise 2 fall 2

listen my-cluster-apps-443
 bind 192.168.1.100:443
 mode tcp
 balance roundrobin
 option httpchk
 http-check connect
 http-check send meth GET uri /healthz/ready
 http-check expect status 200
 server my-cluster-worker-0 192.168.1.111:443 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-1 192.168.1.112:443 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-2 192.168.1.113:443 check port 1936 inter 10s rise 2 fall 2

listen my-cluster-apps-80
 bind 192.168.1.100:80
 mode tcp
 balance roundrobin
 option httpchk
 http-check connect
 http-check send meth GET uri /healthz/ready
 http-check expect status 200
 server my-cluster-worker-0 192.168.1.111:80 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-1 192.168.1.112:80 check port 1936 inter 10s rise 2 fall 2
 server my-cluster-worker-2 192.168.1.113:80 check port 1936 inter 10s rise 2 fall 2
...

$ curl https://<loadbalancer_ip_address>:6443/version --insecure

{
 "major": "1",

CHAPTER 32. LOAD BALANCING ON RHOSP

649

b. Verify that the cluster machine configuration API is accessible to the Machine config server
resource, by running the following command and observing the output:

If the configuration is correct, the output from the command shows the following response:

c. Verify that the controller is accessible to the Ingress Controller resource on port 80, by
running the following command and observing the output:

If the configuration is correct, the output from the command shows the following response:

d. Verify that the controller is accessible to the Ingress Controller resource on port 443, by
running the following command and observing the output:

If the configuration is correct, the output from the command shows the following response:

 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
}

$ curl -v https://<loadbalancer_ip_address>:22623/healthz --insecure

HTTP/1.1 200 OK
Content-Length: 0

$ curl -I -L -H "Host: console-openshift-console.apps.<cluster_name>.<base_domain>"
http://<load_balancer_front_end_IP_address>

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.ocp4.private.opequon.net/
cache-control: no-cache

$ curl -I -L --insecure --resolve console-openshift-console.apps.<cluster_name>.
<base_domain>:443:<Load Balancer Front End IP Address> https://console-openshift-
console.apps.<cluster_name>.<base_domain>

HTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dG
LgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Wed, 04 Oct 2023 16:29:38 GMT
content-type: text/html; charset=utf-8
set-cookie:

OpenShift Container Platform 4.12 Networking

650

3. Configure the DNS records for your cluster to target the front-end IP addresses of the external
load balancer. You must update records to your DNS server for the cluster API and applications
over the load balancer.

Examples of modified DNS records

IMPORTANT

DNS propagation might take some time for each DNS record to become
available. Ensure that each DNS record propagates before validating each
record.

4. Use the curl CLI command to verify that the external load balancer and DNS record
configuration are operational:

a. Verify that you can access the cluster API, by running the following command and observing
the output:

If the configuration is correct, you receive a JSON object in response:

b. Verify that you can access the cluster machine configuration, by running the following
command and observing the output:

If the configuration is correct, the output from the command shows the following response:

1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

<load_balancer_ip_address> A api.<cluster_name>.<base_domain>
A record pointing to Load Balancer Front End

<load_balancer_ip_address> A apps.<cluster_name>.<base_domain>
A record pointing to Load Balancer Front End

$ curl https://api.<cluster_name>.<base_domain>:6443/version --insecure

{
 "major": "1",
 "minor": "11+",
 "gitVersion": "v1.11.0+ad103ed",
 "gitCommit": "ad103ed",
 "gitTreeState": "clean",
 "buildDate": "2019-01-09T06:44:10Z",
 "goVersion": "go1.10.3",
 "compiler": "gc",
 "platform": "linux/amd64"
 }

$ curl -v https://api.<cluster_name>.<base_domain>:22623/healthz --insecure

CHAPTER 32. LOAD BALANCING ON RHOSP

651

c. Verify that you can access each cluster application on port, by running the following
command and observing the output:

If the configuration is correct, the output from the command shows the following response:

d. Verify that you can access each cluster application on port 443, by running the following
command and observing the output:

If the configuration is correct, the output from the command shows the following response:

HTTP/1.1 200 OK
Content-Length: 0

$ curl http://console-openshift-console.apps.<cluster_name>.<base_domain -I -L --
insecure

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
cache-control: no-cacheHTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQ
Wzon4Dor9GWGfopaTEQ==; Path=/; Secure
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Tue, 17 Nov 2020 08:42:10 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

$ curl https://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

HTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dG
LgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Wed, 04 Oct 2023 16:29:38 GMT
content-type: text/html; charset=utf-8
set-cookie:
1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/;
HttpOnly; Secure; SameSite=None
cache-control: private

OpenShift Container Platform 4.12 Networking

652

CHAPTER 33. LOAD BALANCING WITH METALLB

33.1. ABOUT METALLB AND THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service of
type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the service. The
external IP address is added to the host network for your cluster.

33.1.1. When to use MetalLB

Using MetalLB is valuable when you have a bare-metal cluster, or an infrastructure that is like bare
metal, and you want fault-tolerant access to an application through an external IP address.

You must configure your networking infrastructure to ensure that network traffic for the external IP
address is routed from clients to the host network for the cluster.

After deploying MetalLB with the MetalLB Operator, when you add a service of type LoadBalancer,
MetalLB provides a platform-native load balancer.

MetalLB operating in layer2 mode provides support for failover by utilizing a mechanism similar to IP
failover. However, instead of relying on the virtual router redundancy protocol (VRRP) and keepalived,
MetalLB leverages a gossip-based protocol to identify instances of node failure. When a failover is
detected, another node assumes the role of the leader node, and a gratuitous ARP message is
dispatched to broadcast this change.

MetalLB operating in layer3 or border gateway protocol (BGP) mode delegates failure detection to the
network. The BGP router or routers that the OpenShift Container Platform nodes have established a
connection with will identify any node failure and terminate the routes to that node.

Using MetalLB instead of IP failover is preferable for ensuring high availability of pods and services.

33.1.2. MetalLB Operator custom resources

The MetalLB Operator monitors its own namespace for the following custom resources:

MetalLB

When you add a MetalLB custom resource to the cluster, the MetalLB Operator deploys MetalLB on
the cluster. The Operator only supports a single instance of the custom resource. If the instance is
deleted, the Operator removes MetalLB from the cluster.

IPAddressPool

MetalLB requires one or more pools of IP addresses that it can assign to a service when you add a
service of type LoadBalancer. An IPAddressPool includes a list of IP addresses. The list can be a
single IP address that is set using a range, such as 1.1.1.1-1.1.1.1, a range specified in CIDR notation, a
range specified as a starting and ending address separated by a hyphen, or a combination of the
three. An IPAddressPool requires a name. The documentation uses names like doc-example, doc-
example-reserved, and doc-example-ipv6. An IPAddressPool assigns IP addresses from the pool.
L2Advertisement and BGPAdvertisement custom resources enable the advertisement of a given
IP from a given pool.

NOTE

A single IPAddressPool can be referenced by a L2 advertisement and a BGP
advertisement.

CHAPTER 33. LOAD BALANCING WITH METALLB

653

BGPPeer

The BGP peer custom resource identifies the BGP router for MetalLB to communicate with, the AS
number of the router, the AS number for MetalLB, and customizations for route advertisement.
MetalLB advertises the routes for service load-balancer IP addresses to one or more BGP peers.

BFDProfile

The BFD profile custom resource configures Bidirectional Forwarding Detection (BFD) for a BGP
peer. BFD provides faster path failure detection than BGP alone provides.

L2Advertisement

The L2Advertisement custom resource advertises an IP coming from an IPAddressPool using the
L2 protocol.

BGPAdvertisement

The BGPAdvertisement custom resource advertises an IP coming from an IPAddressPool using the
BGP protocol.

After you add the MetalLB custom resource to the cluster and the Operator deploys MetalLB, the
controller and speaker MetalLB software components begin running.

MetalLB validates all relevant custom resources.

33.1.3. MetalLB software components

When you install the MetalLB Operator, the metallb-operator-controller-manager deployment starts a
pod. The pod is the implementation of the Operator. The pod monitors for changes to all the relevant
resources.

When the Operator starts an instance of MetalLB, it starts a controller deployment and a speaker
daemon set.

NOTE

You can configure deployment specifications in the MetalLB custom resource to manage
how controller and speaker pods deploy and run in your cluster. For more information
about these deployment specifications, see the Additional Resources section.

controller

The Operator starts the deployment and a single pod. When you add a service of type
LoadBalancer, Kubernetes uses the controller to allocate an IP address from an address pool. In
case of a service failure, verify you have the following entry in your controller pod logs:

Example output

speaker

The Operator starts a daemon set for speaker pods. By default, a pod is started on each node in
your cluster. You can limit the pods to specific nodes by specifying a node selector in the MetalLB
custom resource when you start MetalLB. If the controller allocated the IP address to the service
and service is still unavailable, read the speaker pod logs. If the speaker pod is unavailable, run the
oc describe pod -n command.
For layer 2 mode, after the controller allocates an IP address for the service, the speaker pods use
an algorithm to determine which speaker pod on which node will announce the load balancer IP

"event":"ipAllocated","ip":"172.22.0.201","msg":"IP address assigned by controller

OpenShift Container Platform 4.12 Networking

654

address. The algorithm involves hashing the node name and the load balancer IP address. For more
information, see "MetalLB and external traffic policy". The speaker uses Address Resolution
Protocol (ARP) to announce IPv4 addresses and Neighbor Discovery Protocol (NDP) to announce
IPv6 addresses.

For Border Gateway Protocol (BGP) mode, after the controller allocates an IP address for the service,
each speaker pod advertises the load balancer IP address with its BGP peers. You can configure which
nodes start BGP sessions with BGP peers.

Requests for the load balancer IP address are routed to the node with the speaker that announces the
IP address. After the node receives the packets, the service proxy routes the packets to an endpoint for
the service. The endpoint can be on the same node in the optimal case, or it can be on another node.
The service proxy chooses an endpoint each time a connection is established.

33.1.4. MetalLB and external traffic policy

With layer 2 mode, one node in your cluster receives all the traffic for the service IP address. With BGP
mode, a router on the host network opens a connection to one of the nodes in the cluster for a new
client connection. How your cluster handles the traffic after it enters the node is affected by the
external traffic policy.

cluster

This is the default value for spec.externalTrafficPolicy.
With the cluster traffic policy, after the node receives the traffic, the service proxy distributes the
traffic to all the pods in your service. This policy provides uniform traffic distribution across the pods,
but it obscures the client IP address and it can appear to the application in your pods that the traffic
originates from the node rather than the client.

local

With the local traffic policy, after the node receives the traffic, the service proxy only sends traffic
to the pods on the same node. For example, if the speaker pod on node A announces the external
service IP, then all traffic is sent to node A. After the traffic enters node A, the service proxy only
sends traffic to pods for the service that are also on node A. Pods for the service that are on
additional nodes do not receive any traffic from node A. Pods for the service on additional nodes act
as replicas in case failover is needed.
This policy does not affect the client IP address. Application pods can determine the client IP address
from the incoming connections.

NOTE

CHAPTER 33. LOAD BALANCING WITH METALLB

655

NOTE

The following information is important when configuring the external traffic policy in BGP
mode.

Although MetalLB advertises the load balancer IP address from all the eligible nodes, the
number of nodes loadbalancing the service can be limited by the capacity of the router to
establish equal-cost multipath (ECMP) routes. If the number of nodes advertising the IP
is greater than the ECMP group limit of the router, the router will use less nodes than the
ones advertising the IP.

For example, if the external traffic policy is set to local and the router has an ECMP
group limit set to 16 and the pods implementing a LoadBalancer service are deployed on
30 nodes, this would result in pods deployed on 14 nodes not receiving any traffic. In this
situation, it would be preferable to set the external traffic policy for the service to
cluster.

33.1.5. MetalLB concepts for layer 2 mode

In layer 2 mode, the speaker pod on one node announces the external IP address for a service to the
host network. From a network perspective, the node appears to have multiple IP addresses assigned to
a network interface.

NOTE

In layer 2 mode, MetalLB relies on ARP and NDP. These protocols implement local
address resolution within a specific subnet. In this context, the client must be able to reach
the VIP assigned by MetalLB that exists on the same subnet as the nodes announcing the
service in order for MetalLB to work.

The speaker pod responds to ARP requests for IPv4 services and NDP requests for IPv6.

In layer 2 mode, all traffic for a service IP address is routed through one node. After traffic enters the
node, the service proxy for the CNI network provider distributes the traffic to all the pods for the
service.

Because all traffic for a service enters through a single node in layer 2 mode, in a strict sense, MetalLB
does not implement a load balancer for layer 2. Rather, MetalLB implements a failover mechanism for
layer 2 so that when a speaker pod becomes unavailable, a speaker pod on a different node can
announce the service IP address.

When a node becomes unavailable, failover is automatic. The speaker pods on the other nodes detect
that a node is unavailable and a new speaker pod and node take ownership of the service IP address
from the failed node.

OpenShift Container Platform 4.12 Networking

656

The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has a cluster IP on the 172.130.0.0/16 subnet.
That IP address is accessible from inside the cluster. The service also has an external IP address
that MetalLB assigned to the service, 192.168.100.200.

Nodes 1 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

The speaker pod on node 1 uses ARP to announce the external IP address for the service,
192.168.100.200. The speaker pod that announces the external IP address must be on the
same node as an endpoint for the service and the endpoint must be in the Ready condition.

Client traffic is routed to the host network and connects to the 192.168.100.200 IP address.
After traffic enters the node, the service proxy sends the traffic to the application pod on the
same node or another node according to the external traffic policy that you set for the service.

If the external traffic policy for the service is set to cluster, the node that advertises the
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running. Only that node can receive traffic for the service.

If the external traffic policy for the service is set to local, the node that advertises the
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running and at least an endpoint of the service. Only that node can receive traffic for the
service. In the preceding graphic, either node 1 or 3 would advertise 192.168.100.200.

If node 1 becomes unavailable, the external IP address fails over to another node. On another

CHAPTER 33. LOAD BALANCING WITH METALLB

657

node that has an instance of the application pod and service endpoint, the speaker pod begins
to announce the external IP address, 192.168.100.200 and the new node receives the client
traffic. In the diagram, the only candidate is node 3.

33.1.6. MetalLB concepts for BGP mode

In BGP mode, by default each speaker pod advertises the load balancer IP address for a service to each
BGP peer. It is also possible to advertise the IPs coming from a given pool to a specific set of peers by
adding an optional list of BGP peers. BGP peers are commonly network routers that are configured to
use the BGP protocol. When a router receives traffic for the load balancer IP address, the router picks
one of the nodes with a speaker pod that advertised the IP address. The router sends the traffic to that
node. After traffic enters the node, the service proxy for the CNI network plugin distributes the traffic to
all the pods for the service.

The directly-connected router on the same layer 2 network segment as the cluster nodes can be
configured as a BGP peer. If the directly-connected router is not configured as a BGP peer, you need to
configure your network so that packets for load balancer IP addresses are routed between the BGP
peers and the cluster nodes that run the speaker pods.

Each time a router receives new traffic for the load balancer IP address, it creates a new connection to a
node. Each router manufacturer has an implementation-specific algorithm for choosing which node to
initiate the connection with. However, the algorithms commonly are designed to distribute traffic across
the available nodes for the purpose of balancing the network load.

If a node becomes unavailable, the router initiates a new connection with another node that has a
speaker pod that advertises the load balancer IP address.

Figure 33.1. MetalLB topology diagram for BGP mode

OpenShift Container Platform 4.12 Networking

658

The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has an IPv4 cluster IP on the 172.130.0.0/16
subnet. That IP address is accessible from inside the cluster. The service also has an external IP
address that MetalLB assigned to the service, 203.0.113.200.

Nodes 2 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.
You can configure MetalLB to specify which nodes run the speaker pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

Each speaker pod starts a BGP session with all BGP peers and advertises the load balancer IP
addresses or aggregated routes to the BGP peers. The speaker pods advertise that they are
part of Autonomous System 65010. The diagram shows a router, R1, as a BGP peer within the
same Autonomous System. However, you can configure MetalLB to start BGP sessions with
peers that belong to other Autonomous Systems.

All the nodes with a speaker pod that advertises the load balancer IP address can receive
traffic for the service.

If the external traffic policy for the service is set to cluster, all the nodes where a speaker
pod is running advertise the 203.0.113.200 load balancer IP address and all the nodes with a
speaker pod can receive traffic for the service. The host prefix is advertised to the router
peer only if the external traffic policy is set to cluster.

If the external traffic policy for the service is set to local, then all the nodes where a
speaker pod is running and at least an endpoint of the service is running can advertise the
203.0.113.200 load balancer IP address. Only those nodes can receive traffic for the
service. In the preceding graphic, nodes 2 and 3 would advertise 203.0.113.200.

You can configure MetalLB to control which speaker pods start BGP sessions with specific
BGP peers by specifying a node selector when you add a BGP peer custom resource.

Any routers, such as R1, that are configured to use BGP can be set as BGP peers.

Client traffic is routed to one of the nodes on the host network. After traffic enters the node,
the service proxy sends the traffic to the application pod on the same node or another node
according to the external traffic policy that you set for the service.

If a node becomes unavailable, the router detects the failure and initiates a new connection with
another node. You can configure MetalLB to use a Bidirectional Forwarding Detection (BFD)
profile for BGP peers. BFD provides faster link failure detection so that routers can initiate new
connections earlier than without BFD.

33.1.7. Limitations and restrictions

33.1.7.1. Infrastructure considerations for MetalLB

MetalLB is primarily useful for on-premise, bare metal installations because these installations do not
include a native load-balancer capability. In addition to bare metal installations, installations of
OpenShift Container Platform on some infrastructures might not include a native load-balancer
capability. For example, the following infrastructures can benefit from adding the MetalLB Operator:

CHAPTER 33. LOAD BALANCING WITH METALLB

659

Bare metal

VMware vSphere

MetalLB Operator and MetalLB are supported with the OpenShift SDN and OVN-Kubernetes network
providers.

33.1.7.2. Limitations for layer 2 mode

33.1.7.2.1. Single-node bottleneck

MetalLB routes all traffic for a service through a single node, the node can become a bottleneck and
limit performance.

Layer 2 mode limits the ingress bandwidth for your service to the bandwidth of a single node. This is a
fundamental limitation of using ARP and NDP to direct traffic.

33.1.7.2.2. Slow failover performance

Failover between nodes depends on cooperation from the clients. When a failover occurs, MetalLB
sends gratuitous ARP packets to notify clients that the MAC address associated with the service IP has
changed.

Most client operating systems handle gratuitous ARP packets correctly and update their neighbor
caches promptly. When clients update their caches quickly, failover completes within a few seconds.
Clients typically fail over to a new node within 10 seconds. However, some client operating systems either
do not handle gratuitous ARP packets at all or have outdated implementations that delay the cache
update.

Recent versions of common operating systems such as Windows, macOS, and Linux implement layer 2
failover correctly. Issues with slow failover are not expected except for older and less common client
operating systems.

To minimize the impact from a planned failover on outdated clients, keep the old node running for a few
minutes after flipping leadership. The old node can continue to forward traffic for outdated clients until
their caches refresh.

During an unplanned failover, the service IPs are unreachable until the outdated clients refresh their
cache entries.

33.1.7.2.3. Additional Network and MetalLB cannot use same network

Using the same VLAN for both MetalLB and an additional network interface set up on a source pod
might result in a connection failure. This occurs when both the MetalLB IP and the source pod reside on
the same node.

To avoid connection failures, place the MetalLB IP in a different subnet from the one where the source
pod resides. This configuration ensures that traffic from the source pod will take the default gateway.
Consequently, the traffic can effectively reach its destination by using the OVN overlay network,
ensuring that the connection functions as intended.

33.1.7.3. Limitations for BGP mode

33.1.7.3.1. Node failure can break all active connections

OpenShift Container Platform 4.12 Networking

660

MetalLB shares a limitation that is common to BGP-based load balancing. When a BGP session
terminates, such as when a node fails or when a speaker pod restarts, the session termination might
result in resetting all active connections. End users can experience a Connection reset by peer
message.

The consequence of a terminated BGP session is implementation-specific for each router
manufacturer. However, you can anticipate that a change in the number of speaker pods affects the
number of BGP sessions and that active connections with BGP peers will break.

To avoid or reduce the likelihood of a service interruption, you can specify a node selector when you add
a BGP peer. By limiting the number of nodes that start BGP sessions, a fault on a node that does not
have a BGP session has no affect on connections to the service.

33.1.7.3.2. Support for a single ASN and a single router ID only

When you add a BGP peer custom resource, you specify the spec.myASN field to identify the
Autonomous System Number (ASN) that MetalLB belongs to. OpenShift Container Platform uses an
implementation of BGP with MetalLB that requires MetalLB to belong to a single ASN. If you attempt to
add a BGP peer and specify a different value for spec.myASN than an existing BGP peer custom
resource, you receive an error.

Similarly, when you add a BGP peer custom resource, the spec.routerID field is optional. If you specify a
value for this field, you must specify the same value for all other BGP peer custom resources that you
add.

The limitation to support a single ASN and single router ID is a difference with the community-supported
implementation of MetalLB.

33.1.8. Additional resources

Comparison: Fault tolerant access to external IP addresses

Removing IP failover

Deployment specifications for MetalLB

33.2. INSTALLING THE METALLB OPERATOR

As a cluster administrator, you can add the MetallB Operator so that the Operator can manage the
lifecycle for an instance of MetalLB on your cluster.

MetalLB and IP failover are incompatible. If you configured IP failover for your cluster, perform the steps
to remove IP failover before you install the Operator.

33.2.1. Installing the MetalLB Operator from the OperatorHub using the web console

As a cluster administrator, you can install the MetalLB Operator by using the OpenShift Container
Platform web console.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

CHAPTER 33. LOAD BALANCING WITH METALLB

661

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Type a keyword into the Filter by keyword box or scroll to find the Operator you want. For
example, type metallb to find the MetalLB Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. On the Install Operator page, accept the defaults and click Install.

Verification

1. To confirm that the installation is successful:

a. Navigate to the Operators → Installed Operators page.

b. Check that the Operator is installed in the openshift-operators namespace and that its
status is Succeeded.

2. If the Operator is not installed successfully, check the status of the Operator and review the
logs:

a. Navigate to the Operators → Installed Operators page and inspect the Status column for
any errors or failures.

b. Navigate to the Workloads → Pods page and check the logs in any pods in the openshift-
operators project that are reporting issues.

33.2.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. You can use the OpenShift CLI (oc) to install the MetalLB Operator.

It is recommended that when using the CLI you install the Operator in the metallb-system namespace.

Prerequisites

A cluster installed on bare-metal hardware.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the MetalLB Operator by entering the following command:

2. Create an Operator group custom resource (CR) in the namespace:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
 name: metallb-system
EOF

OpenShift Container Platform 4.12 Networking

662

1

3. Confirm the Operator group is installed in the namespace:

Example output

4. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, metallb-sub.yaml:

You must specify the redhat-operators value.

b. To create the Subscription CR, run the following command:

5. Optional: To ensure BGP and BFD metrics appear in Prometheus, you can label the namespace
as in the following command:

Verification

The verification steps assume the MetalLB Operator is installed in the metallb-system namespace.

1. Confirm the install plan is in the namespace:

Example output

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: metallb-operator
 namespace: metallb-system
EOF

$ oc get operatorgroup -n metallb-system

NAME AGE
metallb-operator 14m

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: metallb-operator-sub
 namespace: metallb-system
spec:
 channel: stable
 name: metallb-operator
 source: redhat-operators 1
 sourceNamespace: openshift-marketplace

$ oc create -f metallb-sub.yaml

$ oc label ns metallb-system "openshift.io/cluster-monitoring=true"

$ oc get installplan -n metallb-system

CHAPTER 33. LOAD BALANCING WITH METALLB

663

Example output

NOTE

Installation of the Operator might take a few seconds.

2. To verify that the Operator is installed, enter the following command:

Example output

33.2.3. Starting MetalLB on your cluster

After you install the Operator, you need to configure a single instance of a MetalLB custom resource.
After you configure the custom resource, the Operator starts MetalLB on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the MetalLB Operator.

Procedure

This procedure assumes the MetalLB Operator is installed in the metallb-system namespace. If you
installed using the web console substitute openshift-operators for the namespace.

1. Create a single instance of a MetalLB custom resource:

Verification

Confirm that the deployment for the MetalLB controller and the daemon set for the MetalLB speaker
are running.

NAME CSV APPROVAL APPROVED
install-wzg94 metallb-operator.4.12.0-nnnnnnnnnnnn Automatic true

$ oc get clusterserviceversion -n metallb-system \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
metallb-operator.4.12.0-nnnnnnnnnnnn Succeeded

$ cat << EOF | oc apply -f -
apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
EOF

OpenShift Container Platform 4.12 Networking

664

1. Verify that the deployment for the controller is running:

Example output

2. Verify that the daemon set for the speaker is running:

Example output

The example output indicates 6 speaker pods. The number of speaker pods in your cluster
might differ from the example output. Make sure the output indicates one pod for each node in
your cluster.

33.2.4. Deployment specifications for MetalLB

When you start an instance of MetalLB using the MetalLB custom resource, you can configure
deployment specifications in the MetalLB custom resource to manage how the controller or speaker
pods deploy and run in your cluster. Use these deployment specifications to manage the following tasks:

Select nodes for MetalLB pod deployment.

Manage scheduling by using pod priority and pod affinity.

Assign CPU limits for MetalLB pods.

Assign a container RuntimeClass for MetalLB pods.

Assign metadata for MetalLB pods.

33.2.4.1. Limit speaker pods to specific nodes

By default, when you start MetalLB with the MetalLB Operator, the Operator starts an instance of a
speaker pod on each node in the cluster. Only the nodes with a speaker pod can advertise a load
balancer IP address. You can configure the MetalLB custom resource with a node selector to specify
which nodes run the speaker pods.

The most common reason to limit the speaker pods to specific nodes is to ensure that only nodes with
network interfaces on specific networks advertise load balancer IP addresses. Only the nodes with a
running speaker pod are advertised as destinations of the load balancer IP address.

If you limit the speaker pods to specific nodes and specify local for the external traffic policy of a
service, then you must ensure that the application pods for the service are deployed to the same nodes.

$ oc get deployment -n metallb-system controller

NAME READY UP-TO-DATE AVAILABLE AGE
controller 1/1 1 1 11m

$ oc get daemonset -n metallb-system speaker

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
speaker 6 6 6 6 6 kubernetes.io/os=linux 18m

CHAPTER 33. LOAD BALANCING WITH METALLB

665

Example configuration to limit speaker pods to worker nodes

<.> The example configuration specifies to assign the speaker pods to worker nodes, but you can specify
labels that you assigned to nodes or any valid node selector. <.> In this example configuration, the pod
that this toleration is attached to tolerates any taint that matches the key value and effect value using
the operator.

After you apply a manifest with the spec.nodeSelector field, you can check the number of pods that the
Operator deployed with the oc get daemonset -n metallb-system speaker command. Similarly, you
can display the nodes that match your labels with a command like oc get nodes -l node-
role.kubernetes.io/worker=.

You can optionally allow the node to control which speaker pods should, or should not, be scheduled on
them by using affinity rules. You can also limit these pods by applying a list of tolerations. For more
information about affinity rules, taints, and tolerations, see the additional resources.

33.2.4.2. Configuring a container runtime class in a MetalLB deployment

You can optionally assign a container runtime class to controller and speaker pods by configuring the
MetalLB custom resource. For example, for Windows workloads, you can assign a Windows runtime class
to the pod, which uses this runtime class for all containers in the pod.

Prerequisites

You are logged in as a user with cluster-admin privileges.

You have installed the MetalLB Operator.

Procedure

1. Create a RuntimeClass custom resource, such as myRuntimeClass.yaml, to define your
runtime class:

2. Apply the RuntimeClass custom resource configuration:

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 nodeSelector: <.>
 node-role.kubernetes.io/worker: ""
 speakerTolerations: <.>
 - key: "Example"
 operator: "Exists"
 effect: "NoExecute"

apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: myclass
handler: myconfiguration

OpenShift Container Platform 4.12 Networking

666

1 2

3. Create a MetalLB custom resource, such as MetalLBRuntime.yaml, to specify the
runtimeClassName value:

This example uses annotations to add metadata such as build release information or
GitHub pull request information. You can populate annotations with characters that are
not permitted in labels. However, you cannot use annotations to identify or select objects.

4. Apply the MetalLB custom resource configuration:

Verification

To view the container runtime for a pod, run the following command:

33.2.4.3. Configuring pod priority and pod affinity in a MetalLB deployment

You can optionally assign pod priority and pod affinity rules to controller and speaker pods by
configuring the MetalLB custom resource. The pod priority indicates the relative importance of a pod
on a node and schedules the pod based on this priority. Set a high priority on your controller or speaker
pod to ensure scheduling priority over other pods on the node.

Pod affinity manages relationships among pods. Assign pod affinity to the controller or speaker pods
to control on what node the scheduler places the pod in the context of pod relationships. For example,
you can use pod affinity rules to ensure that certain pods are located on the same node or nodes, which
can help improve network communication and reduce latency between those components.

Prerequisites

You are logged in as a user with cluster-admin privileges.

$ oc apply -f myRuntimeClass.yaml

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 logLevel: debug
 controllerConfig:
 runtimeClassName: myclass
 annotations: 1
 controller: demo
 speakerConfig:
 runtimeClassName: myclass
 annotations: 2
 speaker: demo

$ oc apply -f MetalLBRuntime.yaml

$ oc get pod -o custom-
columns=NAME:metadata.name,STATUS:.status.phase,RUNTIME_CLASS:.spec.runtimeClass
Name

CHAPTER 33. LOAD BALANCING WITH METALLB

667

1

2

You have installed the MetalLB Operator.

You have started the MetalLB Operator on your cluster.

Procedure

1. Create a PriorityClass custom resource, such as myPriorityClass.yaml, to configure the
priority level. This example defines a PriorityClass named high-priority with a value of
1000000. Pods that are assigned this priority class are considered higher priority during
scheduling compared to pods with lower priority classes:

2. Apply the PriorityClass custom resource configuration:

3. Create a MetalLB custom resource, such as MetalLBPodConfig.yaml, to specify the
priorityClassName and podAffinity values:

Specifies the priority class for the MetalLB controller pods. In this case, it is set to high-
priority.

Specifies that you are configuring pod affinity rules. These rules dictate how pods are

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000000

$ oc apply -f myPriorityClass.yaml

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 logLevel: debug
 controllerConfig:
 priorityClassName: high-priority 1
 affinity:
 podAffinity: 2
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 app: metallb
 topologyKey: kubernetes.io/hostname
 speakerConfig:
 priorityClassName: high-priority
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 app: metallb
 topologyKey: kubernetes.io/hostname

OpenShift Container Platform 4.12 Networking

668

Specifies that you are configuring pod affinity rules. These rules dictate how pods are
scheduled in relation to other pods or nodes. This configuration instructs the scheduler to

4. Apply the MetalLB custom resource configuration:

Verification

To view the priority class that you assigned to pods in the metallb-system namespace, run the
following command:

Example output

To verify that the scheduler placed pods according to pod affinity rules, view the metadata for
the pod’s node or nodes by running the following command:

33.2.4.4. Configuring pod CPU limits in a MetalLB deployment

You can optionally assign pod CPU limits to controller and speaker pods by configuring the MetalLB
custom resource. Defining CPU limits for the controller or speaker pods helps you to manage compute
resources on the node. This ensures all pods on the node have the necessary compute resources to
manage workloads and cluster housekeeping.

Prerequisites

You are logged in as a user with cluster-admin privileges.

You have installed the MetalLB Operator.

Procedure

1. Create a MetalLB custom resource file, such as CPULimits.yaml, to specify the cpu value for
the controller and speaker pods:

$ oc apply -f MetalLBPodConfig.yaml

$ oc get pods -n metallb-system -o custom-
columns=NAME:.metadata.name,PRIORITY:.spec.priorityClassName

NAME PRIORITY
controller-584f5c8cd8-5zbvg high-priority
metallb-operator-controller-manager-9c8d9985-szkqg <none>
metallb-operator-webhook-server-c895594d4-shjgx <none>
speaker-dddf7 high-priority

$ oc get pod -o=custom-columns=NODE:.spec.nodeName,NAME:.metadata.name -n
metallb-system

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system

CHAPTER 33. LOAD BALANCING WITH METALLB

669

2. Apply the MetalLB custom resource configuration:

Verification

To view compute resources for a pod, run the following command, replacing <pod_name> with
your target pod:

33.2.5. Additional resources

Placing pods on specific nodes using node selectors

Understanding taints and tolerations

Understanding pod priority

Understanding pod affinity

33.2.6. Next steps

Configuring MetalLB address pools

33.3. UPGRADING THE METALLB

If you are currently running version 4.10 or an earlier version of the MetalLB Operator, please note that
automatic updates to any version later than 4.10 do not work. Upgrading to a newer version from any
version of the MetalLB Operator that is 4.11 or later is successful. For example, upgrading from version
4.12 to version 4.13 will occur smoothly.

A summary of the upgrade procedure for the MetalLB Operator from 4.10 and earlier is as follows:

1. Delete the installed MetalLB Operator version for example 4.10. Ensure that the namespace
and the metallb custom resource are not removed.

2. Using the CLI, install the MetalLB Operator 4.12 in the same namespace where the previous
version of the MetalLB Operator was installed.

NOTE

spec:
 logLevel: debug
 controllerConfig:
 resources:
 limits:
 cpu: "200m"
 speakerConfig:
 resources:
 limits:
 cpu: "300m"

$ oc apply -f CPULimits.yaml

$ oc describe pod <pod_name>

OpenShift Container Platform 4.12 Networking

670

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-scheduler-taints-tolerations-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-pods-priority-about_nodes-pods-priority
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity

NOTE

This procedure does not apply to automatic z-stream updates of the MetalLB Operator,
which follow the standard straightforward method.

For detailed steps to upgrade the MetalLB Operator from 4.10 and earlier, see the guidance that
follows. As a cluster administrator, start the upgrade process by deleting the MetalLB Operator by using
the OpenShift CLI (oc) or the web console.

33.3.1. Deleting the MetalLB Operator from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

Access to an OpenShift Container Platform cluster web console using an account with cluster-
admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Search for the MetalLB Operator. Then, click on it.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions
drop-down menu.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

33.3.2. Deleting MetalLB Operator from a cluster using the CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

oc command installed on workstation.

Procedure

1. Check the current version of the subscribed MetalLB Operator in the currentCSV field:

CHAPTER 33. LOAD BALANCING WITH METALLB

671

Example output

2. Delete the subscription:

Example output

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

Example output

33.3.3. Editing the MetalLB Operator Operator group

When upgrading from any MetalLB Operator version up to and including 4.10 to 4.11 and later, remove
spec.targetNamespaces from the Operator group custom resource (CR). You must remove the spec
regardless of whether you used the web console or the CLI to delete the MetalLB Operator.

NOTE

The MetalLB Operator version 4.11 or later only supports the AllNamespaces install
mode, whereas 4.10 or earlier versions support OwnNamespace or SingleNamespace
modes.

Prerequisites

You have access to an OpenShift Container Platform cluster with cluster-admin permissions.

You have installed the OpenShift CLI (oc).

Procedure

1. List the Operator groups in the metallb-system namespace by running the following command:

Example output

$ oc get subscription metallb-operator -n metallb-system -o yaml | grep currentCSV

 currentCSV: metallb-operator.4.10.0-202207051316

$ oc delete subscription metallb-operator -n metallb-system

subscription.operators.coreos.com "metallb-operator" deleted

$ oc delete clusterserviceversion metallb-operator.4.10.0-202207051316 -n metallb-system

clusterserviceversion.operators.coreos.com "metallb-operator.4.10.0-202207051316" deleted

$ oc get operatorgroup -n metallb-system

OpenShift Container Platform 4.12 Networking

672

2. Verify that the spec.targetNamespaces is present in the Operator group CR associated with
the metallb-system namespace by running the following command:

Example output

3. Edit the Operator group and remove the targetNamespaces and metallb-system present
under the spec section by running the following command:

Example output

4. Verify the spec.targetNamespaces is removed from the Operator group custom resource
associated with the metallb-system namespace by running the following command:

Example output

NAME AGE
metallb-system-7jc66 85m

$ oc get operatorgroup metallb-system-7jc66 -n metallb-system -o yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: ""
 creationTimestamp: "2023-10-25T09:42:49Z"
 generateName: metallb-system-
 generation: 1
 name: metallb-system-7jc66
 namespace: metallb-system
 resourceVersion: "25027"
 uid: f5f644a0-eef8-4e31-a306-e2bbcfaffab3
spec:
 targetNamespaces:
 - metallb-system
 upgradeStrategy: Default
status:
 lastUpdated: "2023-10-25T09:42:49Z"
 namespaces:
 - metallb-system

$ oc edit n metallb-system

operatorgroup.operators.coreos.com/metallb-system-7jc66 edited

$ oc get operatorgroup metallb-system-7jc66 -n metallb-system -o yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:

CHAPTER 33. LOAD BALANCING WITH METALLB

673

33.3.4. Upgrading the MetalLB Operator

Prerequisites

Access the cluster as a user with the cluster-admin role.

Procedure

1. Verify that the metallb-system namespace still exists:

Example output

2. Verify the metallb custom resource still exists:

Example output

3. Follow the guidance in "Installing from OperatorHub using the CLI" to install the latest 4.12
version of the MetalLB Operator.

NOTE

When installing the latest 4.12 version of the MetalLB Operator, you must install
the Operator to the same namespace it was previously installed to.

4. Verify the upgraded version of the Operator is now the 4.12 version.

 olm.providedAPIs: ""
 creationTimestamp: "2023-10-25T09:42:49Z"
 generateName: metallb-system-
 generation: 2
 name: metallb-system-7jc66
 namespace: metallb-system
 resourceVersion: "61658"
 uid: f5f644a0-eef8-4e31-a306-e2bbcfaffab3
spec:
 upgradeStrategy: Default
status:
 lastUpdated: "2023-10-25T14:31:30Z"
 namespaces:
 - ""

$ oc get namespaces | grep metallb-system

metallb-system Active 31m

$ oc get metallb -n metallb-system

NAME AGE
metallb 33m

$ oc get csv -n metallb-system

OpenShift Container Platform 4.12 Networking

674

Example output

33.3.5. Additional resources

Deleting Operators from a cluster

Installing the MetalLB Operator

33.4. CONFIGURING METALLB ADDRESS POOLS

As a cluster administrator, you can add, modify, and delete address pools. The MetalLB Operator uses
the address pool custom resources to set the IP addresses that MetalLB can assign to services. The
namespace used in the examples assume the namespace is metallb-system.

33.4.1. About the IPAddressPool custom resource

NOTE

The address pool custom resource definition (CRD) and API documented in "Load
balancing with MetalLB" in OpenShift Container Platform 4.10 can still be used in 4.12.
However, the enhanced functionality associated with advertising the IPAddressPools
with layer 2 or the BGP protocol is not supported when using the address pool CRD.

The fields for the IPAddressPool custom resource are described in the following table.

Table 33.1. MetalLB IPAddressPool pool custom resource

Field Type Description

metadata.name string Specifies the name for the address pool. When you add a
service, you can specify this pool name in the
metallb.universe.tf/address-pool annotation to select an IP
address from a specific pool. The names doc-example, silver,
and gold are used throughout the documentation.

metadata.name
space

string Specifies the namespace for the address pool. Specify the same
namespace that the MetalLB Operator uses.

metadata.label string Optional: Specifies the key value pair assigned to the
IPAddressPool. This can be referenced by the
ipAddressPoolSelectors in the BGPAdvertisement and
L2Advertisement CRD to associate the IPAddressPool with
the advertisement

NAME DISPLAY VERSION REPLACES PHASE
metallb-operator.4.12.0-202207051316 MetalLB Operator 4.12.0-202207051316
Succeeded

CHAPTER 33. LOAD BALANCING WITH METALLB

675

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-deleting-operators-from-a-cluster

1

spec.addresses string Specifies a list of IP addresses for MetalLB Operator to assign to
services. You can specify multiple ranges in a single pool; they
will all share the same settings. Specify each range in CIDR
notation or as starting and ending IP addresses separated with a
hyphen.

spec.autoAssig
n

boolean Optional: Specifies whether MetalLB automatically assigns IP
addresses from this pool. Specify false if you want explicitly
request an IP address from this pool with the
metallb.universe.tf/address-pool annotation. The default
value is true.

spec.avoidBugg
yIPs

boolean Optional: This ensures when enabled that IP addresses ending .0
and .255 are not allocated from the pool. The default value is
false. Some older consumer network equipment mistakenly
block IP addresses ending in .0 and .255.

Field Type Description

33.4.2. Configuring an address pool

As a cluster administrator, you can add address pools to your cluster to control the IP addresses that
MetalLB can assign to load-balancer services.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as ipaddresspool.yaml, with content like the following example:

This label assigned to the IPAddressPool can be referenced by the
ipAddressPoolSelectors in the BGPAdvertisement CRD to associate the
IPAddressPool with the advertisement.

2. Apply the configuration for the IP address pool:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example
 labels: 1
 zone: east
spec:
 addresses:
 - 203.0.113.1-203.0.113.10
 - 203.0.113.65-203.0.113.75

OpenShift Container Platform 4.12 Networking

676

Verification

View the address pool:

Example output

Confirm that the address pool name, such as doc-example, and the IP address ranges appear in the
output.

33.4.3. Example address pool configurations

33.4.3.1. Example: IPv4 and CIDR ranges

You can specify a range of IP addresses in CIDR notation. You can combine CIDR notation with the
notation that uses a hyphen to separate lower and upper bounds.

33.4.3.2. Example: Reserve IP addresses

You can set the autoAssign field to false to prevent MetalLB from automatically assigning the IP
addresses from the pool. When you add a service, you can request a specific IP address from the pool or
you can specify the pool name in an annotation to request any IP address from the pool.

$ oc apply -f ipaddresspool.yaml

$ oc describe -n metallb-system IPAddressPool doc-example

Name: doc-example
Namespace: metallb-system
Labels: zone=east
Annotations: <none>
API Version: metallb.io/v1beta1
Kind: IPAddressPool
Metadata:
 ...
Spec:
 Addresses:
 203.0.113.1-203.0.113.10
 203.0.113.65-203.0.113.75
 Auto Assign: true
Events: <none>

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-cidr
 namespace: metallb-system
spec:
 addresses:
 - 192.168.100.0/24
 - 192.168.200.0/24
 - 192.168.255.1-192.168.255.5

CHAPTER 33. LOAD BALANCING WITH METALLB

677

33.4.3.3. Example: IPv4 and IPv6 addresses

You can add address pools that use IPv4 and IPv6. You can specify multiple ranges in the addresses
list, just like several IPv4 examples.

Whether the service is assigned a single IPv4 address, a single IPv6 address, or both is determined by
how you add the service. The spec.ipFamilies and spec.ipFamilyPolicy fields control how IP
addresses are assigned to the service.

33.4.4. Additional resources

Configuring MetalLB with an L2 advertisement and label .

33.4.5. Next steps

For BGP mode, see Configuring MetalLB BGP peers.

Configuring services to use MetalLB .

33.5. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS

You can configure MetalLB so that the IP address is advertised with layer 2 protocols, the BGP
protocol, or both. With layer 2, MetalLB provides a fault-tolerant external IP address. With BGP,
MetalLB provides fault-tolerance for the external IP address and load balancing.

MetalLB supports advertising using L2 and BGP for the same set of IP addresses.

MetalLB provides the flexibility to assign address pools to specific BGP peers effectively to a subset of
nodes on the network. This allows for more complex configurations, for example facilitating the isolation
of nodes or the segmentation of the network.

33.5.1. About the BGPAdvertisement custom resource

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-reserved
 namespace: metallb-system
spec:
 addresses:
 - 10.0.100.0/28
 autoAssign: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: doc-example-combined
 namespace: metallb-system
spec:
 addresses:
 - 10.0.100.0/28
 - 2002:2:2::1-2002:2:2::100

OpenShift Container Platform 4.12 Networking

678

The fields for the BGPAdvertisements object are defined in the following table:

Table 33.2. BGPAdvertisements configuration

Field Type Description

metadata.name string Specifies the name for the BGP advertisement.

metadata.name
space

string Specifies the namespace for the BGP advertisement. Specify
the same namespace that the MetalLB Operator uses.

spec.aggregatio
nLength

integer Optional: Specifies the number of bits to include in a 32-bit
CIDR mask. To aggregate the routes that the speaker advertises
to BGP peers, the mask is applied to the routes for several
service IP addresses and the speaker advertises the aggregated
route. For example, with an aggregation length of 24, the
speaker can aggregate several 10.0.1.x/32 service IP addresses
and advertise a single 10.0.1.0/24 route.

spec.aggregatio
nLengthV6

integer Optional: Specifies the number of bits to include in a 128-bit
CIDR mask. For example, with an aggregation length of 124, the
speaker can aggregate several fc00:f853:0ccd:e799::x/128
service IP addresses and advertise a single
fc00:f853:0ccd:e799::0/124 route.

spec.communiti
es

string Optional: Specifies one or more BGP communities. Each
community is specified as two 16-bit values separated by the
colon character. Well-known communities must be specified as
16-bit values:

NO_EXPORT: 65535:65281

NO_ADVERTISE: 65535:65282

NO_EXPORT_SUBCONFED: 65535:65283

NOTE

You can also use community objects
that are created along with the strings.

spec.localPref integer Optional: Specifies the local preference for this advertisement.
This BGP attribute applies to BGP sessions within the
Autonomous System.

spec.ipAddress
Pools

string Optional: The list of IPAddressPools to advertise with this
advertisement, selected by name.

CHAPTER 33. LOAD BALANCING WITH METALLB

679

spec.ipAddress
PoolSelectors

string Optional: A selector for the IPAddressPools that gets
advertised with this advertisement. This is for associating the
IPAddressPool to the advertisement based on the label
assigned to the IPAddressPool instead of the name itself. If
no IPAddressPool is selected by this or by the list, the
advertisement is applied to all the IPAddressPools.

spec.nodeSelec
tors

string Optional: NodeSelectors allows to limit the nodes to announce
as next hops for the load balancer IP. When empty, all the nodes
are announced as next hops.

spec.peers string Optional: Peers limits the BGP peer to advertise the IPs of the
selected pools to. When empty, the load balancer IP is
announced to all the BGP peers configured.

Field Type Description

33.5.2. Configuring MetalLB with a BGP advertisement and a basic use case

Configure MetalLB as follows so that the peer BGP routers receive one 203.0.113.200/32 route and one
fc00:f853:ccd:e799::1/128 route for each load-balancer IP address that MetalLB assigns to a service.
Because the localPref and communities fields are not specified, the routes are advertised with
localPref set to zero and no BGP communities.

33.5.2.1. Example: Advertise a basic address pool configuration with BGP

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-bgp-basic
spec:
 addresses:
 - 203.0.113.200/30
 - fc00:f853:ccd:e799::/124

OpenShift Container Platform 4.12 Networking

680

2. Create a BGP advertisement.

a. Create a file, such as bgpadvertisement.yaml, with content like the following example:

b. Apply the configuration:

33.5.3. Configuring MetalLB with a BGP advertisement and an advanced use case

Configure MetalLB as follows so that MetalLB assigns IP addresses to load-balancer services in the
ranges between 203.0.113.200 and 203.0.113.203 and between fc00:f853:ccd:e799::0 and
fc00:f853:ccd:e799::f.

To explain the two BGP advertisements, consider an instance when MetalLB assigns the IP address of
203.0.113.200 to a service. With that IP address as an example, the speaker advertises two routes to
BGP peers:

203.0.113.200/32, with localPref set to 100 and the community set to the numeric value of the
NO_ADVERTISE community. This specification indicates to the peer routers that they can use
this route but they should not propagate information about this route to BGP peers.

203.0.113.200/30, aggregates the load-balancer IP addresses assigned by MetalLB into a single
route. MetalLB advertises the aggregated route to BGP peers with the community attribute set
to 8000:800. BGP peers propagate the 203.0.113.200/30 route to other BGP peers. When
traffic is routed to a node with a speaker, the 203.0.113.200/32 route is used to forward the
traffic into the cluster and to a pod that is associated with the service.

As you add more services and MetalLB assigns more load-balancer IP addresses from the pool, peer
routers receive one local route, 203.0.113.20x/32, for each service, as well as the 203.0.113.200/30
aggregate route. Each service that you add generates the /30 route, but MetalLB deduplicates the
routes to one BGP advertisement before communicating with peer routers.

33.5.3.1. Example: Advertise an advanced address pool configuration with BGP

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-basic
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-bgp-basic

$ oc apply -f bgpadvertisement.yaml

CHAPTER 33. LOAD BALANCING WITH METALLB

681

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a BGP advertisement.

a. Create a file, such as bgpadvertisement1.yaml, with content like the following example:

b. Apply the configuration:

c. Create a file, such as bgpadvertisement2.yaml, with content like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-bgp-adv
 labels:
 zone: east
spec:
 addresses:
 - 203.0.113.200/30
 - fc00:f853:ccd:e799::/124
 autoAssign: false

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-adv-1
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-bgp-adv
 communities:
 - 65535:65282
 aggregationLength: 32
 localPref: 100

$ oc apply -f bgpadvertisement1.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-adv-2
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-bgp-adv
 communities:

OpenShift Container Platform 4.12 Networking

682

d. Apply the configuration:

33.5.4. Advertising an IP address pool from a subset of nodes

To advertise an IP address from an IP addresses pool, from a specific set of nodes only, use the
.spec.nodeSelector specification in the BGPAdvertisement custom resource. This specification
associates a pool of IP addresses with a set of nodes in the cluster. This is useful when you have nodes
on different subnets in a cluster and you want to advertise an IP addresses from an address pool from a
specific subnet, for example a public-facing subnet only.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IP address pool by using a custom resource:

2. Control which nodes in the cluster the IP address from pool1 advertises from by defining the
.spec.nodeSelector value in the BGPAdvertisement custom resource:

In this example, the IP address from pool1 advertises from NodeA and NodeB only.

 - 8000:800
 aggregationLength: 30
 aggregationLengthV6: 124

$ oc apply -f bgpadvertisement2.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: pool1
spec:
 addresses:
 - 4.4.4.100-4.4.4.200
 - 2001:100:4::200-2001:100:4::400

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: example
spec:
 ipAddressPools:
 - pool1
 nodeSelector:
 - matchLabels:
 kubernetes.io/hostname: NodeA
 - matchLabels:
 kubernetes.io/hostname: NodeB

CHAPTER 33. LOAD BALANCING WITH METALLB

683

33.5.5. About the L2Advertisement custom resource

The fields for the l2Advertisements object are defined in the following table:

Table 33.3. L2 advertisements configuration

Field Type Description

metadata.name string Specifies the name for the L2 advertisement.

metadata.name
space

string Specifies the namespace for the L2 advertisement. Specify the
same namespace that the MetalLB Operator uses.

spec.ipAddress
Pools

string Optional: The list of IPAddressPools to advertise with this
advertisement, selected by name.

spec.ipAddress
PoolSelectors

string Optional: A selector for the IPAddressPools that gets
advertised with this advertisement. This is for associating the
IPAddressPool to the advertisement based on the label
assigned to the IPAddressPool instead of the name itself. If
no IPAddressPool is selected by this or by the list, the
advertisement is applied to all the IPAddressPools.

spec.nodeSelec
tors

string Optional: NodeSelectors limits the nodes to announce as next
hops for the load balancer IP. When empty, all the nodes are
announced as next hops.

IMPORTANT

Limiting the nodes to announce as next hops is
a Technology Preview feature only. Technology
Preview features are not supported with Red
Hat production service level agreements (SLAs)
and might not be functionally complete. Red
Hat does not recommend using them in
production. These features provide early access
to upcoming product features, enabling
customers to test functionality and provide
feedback during the development process.

For more information about the support scope
of Red Hat Technology Preview features, see
Technology Preview Features Support Scope.

33.5.6. Configuring MetalLB with an L2 advertisement

Configure MetalLB as follows so that the IPAddressPool is advertised with the L2 protocol.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

OpenShift Container Platform 4.12 Networking

684

https://access.redhat.com/support/offerings/techpreview/

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a L2 advertisement.

a. Create a file, such as l2advertisement.yaml, with content like the following example:

b. Apply the configuration:

33.5.7. Configuring MetalLB with a L2 advertisement and label

The ipAddressPoolSelectors field in the BGPAdvertisement and L2Advertisement custom resource
definitions is used to associate the IPAddressPool to the advertisement based on the label assigned to
the IPAddressPool instead of the name itself.

This example shows how to configure MetalLB so that the IPAddressPool is advertised with the L2
protocol by configuring the ipAddressPoolSelectors field.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-l2
spec:
 addresses:
 - 4.4.4.0/24
 autoAssign: false

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: l2advertisement
 namespace: metallb-system
spec:
 ipAddressPools:
 - doc-example-l2

$ oc apply -f l2advertisement.yaml

CHAPTER 33. LOAD BALANCING WITH METALLB

685

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a L2 advertisement advertising the IP using ipAddressPoolSelectors.

a. Create a file, such as l2advertisement.yaml, with content like the following example:

b. Apply the configuration:

33.5.8. Additional resources

Configuring a community alias .

33.6. CONFIGURING METALLB BGP PEERS

As a cluster administrator, you can add, modify, and delete Border Gateway Protocol (BGP) peers. The
MetalLB Operator uses the BGP peer custom resources to identify which peers that MetalLB speaker
pods contact to start BGP sessions. The peers receive the route advertisements for the load-balancer
IP addresses that MetalLB assigns to services.

33.6.1. About the BGP peer custom resource

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-l2-label
 labels:
 zone: east
spec:
 addresses:
 - 172.31.249.87/32

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: l2advertisement-label
 namespace: metallb-system
spec:
 ipAddressPoolSelectors:
 - matchExpressions:
 - key: zone
 operator: In
 values:
 - east

$ oc apply -f l2advertisement.yaml

OpenShift Container Platform 4.12 Networking

686

The fields for the BGP peer custom resource are described in the following table.

Table 33.4. MetalLB BGP peer custom resource

Field Type Description

metadata.name string Specifies the name for the BGP peer custom resource.

metadata.name
space

string Specifies the namespace for the BGP peer custom resource.

spec.myASN integer Specifies the Autonomous System number for the local end of
the BGP session. Specify the same value in all BGP peer custom
resources that you add. The range is 0 to 4294967295.

spec.peerASN integer Specifies the Autonomous System number for the remote end
of the BGP session. The range is 0 to 4294967295.

spec.peerAddre
ss

string Specifies the IP address of the peer to contact for establishing
the BGP session.

spec.sourceAd
dress

string Optional: Specifies the IP address to use when establishing the
BGP session. The value must be an IPv4 address.

spec.peerPort integer Optional: Specifies the network port of the peer to contact for
establishing the BGP session. The range is 0 to 16384.

spec.holdTime string Optional: Specifies the duration for the hold time to propose to
the BGP peer. The minimum value is 3 seconds (3s). The
common units are seconds and minutes, such as 3s, 1m, and
5m30s. To detect path failures more quickly, also configure
BFD.

spec.keepaliveT
ime

string Optional: Specifies the maximum interval between sending
keep-alive messages to the BGP peer. If you specify this field,
you must also specify a value for the holdTime field. The
specified value must be less than the value for the holdTime
field.

spec.routerID string Optional: Specifies the router ID to advertise to the BGP peer. If
you specify this field, you must specify the same value in every
BGP peer custom resource that you add.

spec.password string Optional: Specifies the MD5 password to send to the peer for
routers that enforce TCP MD5 authenticated BGP sessions.

spec.password
Secret

string Optional: Specifies name of the authentication secret for the
BGP Peer. The secret must live in the metallb namespace and
be of type basic-auth.

spec.bfdProfile string Optional: Specifies the name of a BFD profile.

CHAPTER 33. LOAD BALANCING WITH METALLB

687

spec.nodeSelec
tors

object[] Optional: Specifies a selector, using match expressions and
match labels, to control which nodes can connect to the BGP
peer.

spec.ebgpMulti
Hop

boolean Optional: Specifies that the BGP peer is multiple network hops
away. If the BGP peer is not directly connected to the same
network, the speaker cannot establish a BGP session unless this
field is set to true. This field applies to external BGP. External
BGP is the term that is used to describe when a BGP peer
belongs to a different Autonomous System.

Field Type Description

NOTE

The passwordSecret field is mutually exclusive with the password field, and contains a
reference to a secret containing the password to use. Setting both fields results in a
failure of the parsing.

33.6.2. Configuring a BGP peer

As a cluster administrator, you can add a BGP peer custom resource to exchange routing information
with network routers and advertise the IP addresses for services.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Configure MetalLB with a BGP advertisement.

Procedure

1. Create a file, such as bgppeer.yaml, with content like the following example:

2. Apply the configuration for the BGP peer:

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: doc-example-peer
spec:
 peerAddress: 10.0.0.1
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer.yaml

OpenShift Container Platform 4.12 Networking

688

33.6.3. Configure a specific set of BGP peers for a given address pool

This procedure illustrates how to:

Configure a set of address pools (pool1 and pool2).

Configure a set of BGP peers (peer1 and peer2).

Configure BGP advertisement to assign pool1 to peer1 and pool2 to peer2.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create address pool pool1.

a. Create a file, such as ipaddresspool1.yaml, with content like the following example:

b. Apply the configuration for the IP address pool pool1:

2. Create address pool pool2.

a. Create a file, such as ipaddresspool2.yaml, with content like the following example:

b. Apply the configuration for the IP address pool pool2:

3. Create BGP peer1.

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: pool1
spec:
 addresses:
 - 4.4.4.100-4.4.4.200
 - 2001:100:4::200-2001:100:4::400

$ oc apply -f ipaddresspool1.yaml

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: pool2
spec:
 addresses:
 - 5.5.5.100-5.5.5.200
 - 2001:100:5::200-2001:100:5::400

$ oc apply -f ipaddresspool2.yaml

CHAPTER 33. LOAD BALANCING WITH METALLB

689

a. Create a file, such as bgppeer1.yaml, with content like the following example:

b. Apply the configuration for the BGP peer:

4. Create BGP peer2.

a. Create a file, such as bgppeer2.yaml, with content like the following example:

b. Apply the configuration for the BGP peer2:

5. Create BGP advertisement 1.

a. Create a file, such as bgpadvertisement1.yaml, with content like the following example:

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: peer1
spec:
 peerAddress: 10.0.0.1
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer1.yaml

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: peer2
spec:
 peerAddress: 10.0.0.2
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer2.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-1
 namespace: metallb-system
spec:
 ipAddressPools:
 - pool1
 peers:
 - peer1
 communities:
 - 65535:65282
 aggregationLength: 32
 aggregationLengthV6: 128
 localPref: 100

OpenShift Container Platform 4.12 Networking

690

b. Apply the configuration:

6. Create BGP advertisement 2.

a. Create a file, such as bgpadvertisement2.yaml, with content like the following example:

b. Apply the configuration:

33.6.4. Example BGP peer configurations

33.6.4.1. Example: Limit which nodes connect to a BGP peer

You can specify the node selectors field to control which nodes can connect to a BGP peer.

33.6.4.2. Example: Specify a BFD profile for a BGP peer

You can specify a BFD profile to associate with BGP peers. BFD compliments BGP by providing more

$ oc apply -f bgpadvertisement1.yaml

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgpadvertisement-2
 namespace: metallb-system
spec:
 ipAddressPools:
 - pool2
 peers:
 - peer2
 communities:
 - 65535:65282
 aggregationLength: 32
 aggregationLengthV6: 128
 localPref: 100

$ oc apply -f bgpadvertisement2.yaml

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-nodesel
 namespace: metallb-system
spec:
 peerAddress: 10.0.20.1
 peerASN: 64501
 myASN: 64500
 nodeSelectors:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values: [compute-1.example.com, compute-2.example.com]

CHAPTER 33. LOAD BALANCING WITH METALLB

691

You can specify a BFD profile to associate with BGP peers. BFD compliments BGP by providing more
rapid detection of communication failures between peers than BGP alone.

NOTE

Deleting the bidirectional forwarding detection (BFD) profile and removing the
bfdProfile added to the border gateway protocol (BGP) peer resource does not disable
the BFD. Instead, the BGP peer starts using the default BFD profile. To disable BFD from
a BGP peer resource, delete the BGP peer configuration and recreate it without a BFD
profile. For more information, see BZ#2050824.

33.6.4.3. Example: Specify BGP peers for dual-stack networking

To support dual-stack networking, add one BGP peer custom resource for IPv4 and one BGP peer
custom resource for IPv6.

33.6.5. Next steps

Configuring services to use MetalLB

33.7. CONFIGURING COMMUNITY ALIAS

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-peer-bfd
 namespace: metallb-system
spec:
 peerAddress: 10.0.20.1
 peerASN: 64501
 myASN: 64500
 holdTime: "10s"
 bfdProfile: doc-example-bfd-profile-full

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-dual-stack-ipv4
 namespace: metallb-system
spec:
 peerAddress: 10.0.20.1
 peerASN: 64500
 myASN: 64500

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 name: doc-example-dual-stack-ipv6
 namespace: metallb-system
spec:
 peerAddress: 2620:52:0:88::104
 peerASN: 64500
 myASN: 64500

OpenShift Container Platform 4.12 Networking

692

https://bugzilla.redhat.com/show_bug.cgi?id=2050824

As a cluster administrator, you can configure a community alias and use it across different
advertisements.

33.7.1. About the community custom resource

The community custom resource is a collection of aliases for communities. Users can define named
aliases to be used when advertising ipAddressPools using the BGPAdvertisement. The fields for the
community custom resource are described in the following table.

NOTE

The community CRD applies only to BGPAdvertisement.

Table 33.5. MetalLB community custom resource

Field Type Description

metadata.name string Specifies the name for the community.

metadata.name
space

string Specifies the namespace for the community. Specify the same
namespace that the MetalLB Operator uses.

spec.communiti
es

string Specifies a list of BGP community aliases that can be used in
BGPAdvertisements. A community alias consists of a pair of
name (alias) and value (number:number). Link the
BGPAdvertisement to a community alias by referring to the alias
name in its spec.communities field.

Table 33.6. CommunityAlias

Field Type Description

name string The name of the alias for the community.

value string The BGP community value corresponding to the given name.

33.7.2. Configuring MetalLB with a BGP advertisement and community alias

Configure MetalLB as follows so that the IPAddressPool is advertised with the BGP protocol and the
community alias set to the numeric value of the NO_ADVERTISE community.

In the following example, the peer BGP router doc-example-peer-community receives one
203.0.113.200/32 route and one fc00:f853:ccd:e799::1/128 route for each load-balancer IP address
that MetalLB assigns to a service. A community alias is configured with the NO_ADVERTISE
community.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

CHAPTER 33. LOAD BALANCING WITH METALLB

693

Procedure

1. Create an IP address pool.

a. Create a file, such as ipaddresspool.yaml, with content like the following example:

b. Apply the configuration for the IP address pool:

2. Create a community alias named community1.

3. Create a BGP peer named doc-example-bgp-peer.

a. Create a file, such as bgppeer.yaml, with content like the following example:

b. Apply the configuration for the BGP peer:

4. Create a BGP advertisement with the community alias.

a. Create a file, such as bgpadvertisement.yaml, with content like the following example:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: doc-example-bgp-community
spec:
 addresses:
 - 203.0.113.200/30
 - fc00:f853:ccd:e799::/124

$ oc apply -f ipaddresspool.yaml

apiVersion: metallb.io/v1beta1
kind: Community
metadata:
 name: community1
 namespace: metallb-system
spec:
 communities:
 - name: NO_ADVERTISE
 value: '65535:65282'

apiVersion: metallb.io/v1beta2
kind: BGPPeer
metadata:
 namespace: metallb-system
 name: doc-example-bgp-peer
spec:
 peerAddress: 10.0.0.1
 peerASN: 64501
 myASN: 64500
 routerID: 10.10.10.10

$ oc apply -f bgppeer.yaml

OpenShift Container Platform 4.12 Networking

694

1 Specify the CommunityAlias.name here and not the community custom resource
(CR) name.

b. Apply the configuration:

33.8. CONFIGURING METALLB BFD PROFILES

As a cluster administrator, you can add, modify, and delete Bidirectional Forwarding Detection (BFD)
profiles. The MetalLB Operator uses the BFD profile custom resources to identify which BGP sessions
use BFD to provide faster path failure detection than BGP alone provides.

33.8.1. About the BFD profile custom resource

The fields for the BFD profile custom resource are described in the following table.

Table 33.7. BFD profile custom resource

Field Type Description

metadata.name string Specifies the name for the BFD profile custom resource.

metadata.name
space

string Specifies the namespace for the BFD profile custom resource.

spec.detectMult
iplier

integer Specifies the detection multiplier to determine packet loss. The
remote transmission interval is multiplied by this value to
determine the connection loss detection timer.

For example, when the local system has the detect multiplier set
to 3 and the remote system has the transmission interval set to
300, the local system detects failures only after 900 ms without
receiving packets.

The range is 2 to 255. The default value is 3.

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:
 name: bgp-community-sample
 namespace: metallb-system
spec:
 aggregationLength: 32
 aggregationLengthV6: 128
 communities:
 - NO_ADVERTISE 1
 ipAddressPools:
 - doc-example-bgp-community
 peers:
 - doc-example-peer

$ oc apply -f bgpadvertisement.yaml

CHAPTER 33. LOAD BALANCING WITH METALLB

695

spec.echoMode boolean Specifies the echo transmission mode. If you are not using
distributed BFD, echo transmission mode works only when the
peer is also FRR. The default value is false and echo
transmission mode is disabled.

When echo transmission mode is enabled, consider increasing
the transmission interval of control packets to reduce bandwidth
usage. For example, consider increasing the transmit interval to
2000 ms.

spec.echoInterv
al

integer Specifies the minimum transmission interval, less jitter, that this
system uses to send and receive echo packets. The range is 10
to 60000. The default value is 50 ms.

spec.minimumT
tl

integer Specifies the minimum expected TTL for an incoming control
packet. This field applies to multi-hop sessions only.

The purpose of setting a minimum TTL is to make the packet
validation requirements more stringent and avoid receiving
control packets from other sessions.

The default value is 254 and indicates that the system expects
only one hop between this system and the peer.

spec.passiveMo
de

boolean Specifies whether a session is marked as active or passive. A
passive session does not attempt to start the connection.
Instead, a passive session waits for control packets from a peer
before it begins to reply.

Marking a session as passive is useful when you have a router
that acts as the central node of a star network and you want to
avoid sending control packets that you do not need the system
to send.

The default value is false and marks the session as active.

spec.receiveInte
rval

integer Specifies the minimum interval that this system is capable of
receiving control packets. The range is 10 to 60000. The default
value is 300 ms.

spec.transmitInt
erval

integer Specifies the minimum transmission interval, less jitter, that this
system uses to send control packets. The range is 10 to 60000.
The default value is 300 ms.

Field Type Description

33.8.2. Configuring a BFD profile

As a cluster administrator, you can add a BFD profile and configure a BGP peer to use the profile. BFD
provides faster path failure detection than BGP alone.

Prerequisites

OpenShift Container Platform 4.12 Networking

696

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as bfdprofile.yaml, with content like the following example:

2. Apply the configuration for the BFD profile:

33.8.3. Next steps

Configure a BGP peer to use the BFD profile.

33.9. CONFIGURING SERVICES TO USE METALLB

As a cluster administrator, when you add a service of type LoadBalancer, you can control how MetalLB
assigns an IP address.

33.9.1. Request a specific IP address

Like some other load-balancer implementations, MetalLB accepts the spec.loadBalancerIP field in the
service specification.

If the requested IP address is within a range from any address pool, MetalLB assigns the requested IP
address. If the requested IP address is not within any range, MetalLB reports a warning.

Example service YAML for a specific IP address

apiVersion: metallb.io/v1beta1
kind: BFDProfile
metadata:
 name: doc-example-bfd-profile-full
 namespace: metallb-system
spec:
 receiveInterval: 300
 transmitInterval: 300
 detectMultiplier: 3
 echoMode: false
 passiveMode: true
 minimumTtl: 254

$ oc apply -f bfdprofile.yaml

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
 annotations:
 metallb.universe.tf/address-pool: <address_pool_name>
spec:
 selector:

CHAPTER 33. LOAD BALANCING WITH METALLB

697

If MetalLB cannot assign the requested IP address, the EXTERNAL-IP for the service reports
<pending> and running oc describe service <service_name> includes an event like the following
example.

Example event when MetalLB cannot assign a requested IP address

33.9.2. Request an IP address from a specific pool

To assign an IP address from a specific range, but you are not concerned with the specific IP address,
then you can use the metallb.universe.tf/address-pool annotation to request an IP address from the
specified address pool.

Example service YAML for an IP address from a specific pool

If the address pool that you specify for <address_pool_name> does not exist, MetalLB attempts to
assign an IP address from any pool that permits automatic assignment.

33.9.3. Accept any IP address

By default, address pools are configured to permit automatic assignment. MetalLB assigns an IP address
from these address pools.

To accept any IP address from any pool that is configured for automatic assignment, no special

 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer
 loadBalancerIP: <ip_address>

 ...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning AllocationFailed 3m16s metallb-controller Failed to allocate IP for "default/invalid-
request": "4.3.2.1" is not allowed in config

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
 annotations:
 metallb.universe.tf/address-pool: <address_pool_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

OpenShift Container Platform 4.12 Networking

698

To accept any IP address from any pool that is configured for automatic assignment, no special
annotation or configuration is required.

Example service YAML for accepting any IP address

33.9.4. Share a specific IP address

By default, services do not share IP addresses. However, if you need to colocate services on a single IP
address, you can enable selective IP sharing by adding the metallb.universe.tf/allow-shared-ip
annotation to the services.

apiVersion: v1
kind: Service
metadata:
 name: <service_name>
spec:
 selector:
 <label_key>: <label_value>
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer

apiVersion: v1
kind: Service
metadata:
 name: service-http
 annotations:
 metallb.universe.tf/address-pool: doc-example
 metallb.universe.tf/allow-shared-ip: "web-server-svc" 1
spec:
 ports:
 - name: http
 port: 80 2
 protocol: TCP
 targetPort: 8080
 selector:
 <label_key>: <label_value> 3
 type: LoadBalancer
 loadBalancerIP: 172.31.249.7 4

apiVersion: v1
kind: Service
metadata:
 name: service-https
 annotations:
 metallb.universe.tf/address-pool: doc-example
 metallb.universe.tf/allow-shared-ip: "web-server-svc" 5
spec:
 ports:
 - name: https
 port: 443 6
 protocol: TCP

CHAPTER 33. LOAD BALANCING WITH METALLB

699

1 5

2 6

3 7

4 8

Specify the same value for the metallb.universe.tf/allow-shared-ip annotation. This value is
referred to as the sharing key .

Specify different port numbers for the services.

Specify identical pod selectors if you must specify externalTrafficPolicy: local so the services
send traffic to the same set of pods. If you use the cluster external traffic policy, then the pod
selectors do not need to be identical.

Optional: If you specify the three preceding items, MetalLB might colocate the services on the
same IP address. To ensure that services share an IP address, specify the IP address to share.

By default, Kubernetes does not allow multiprotocol load balancer services. This limitation would
normally make it impossible to run a service like DNS that needs to listen on both TCP and UDP. To
work around this limitation of Kubernetes with MetalLB, create two services:

For one service, specify TCP and for the second service, specify UDP.

In both services, specify the same pod selector.

Specify the same sharing key and spec.loadBalancerIP value to colocate the TCP and UDP
services on the same IP address.

33.9.5. Configuring a service with MetalLB

You can configure a load-balancing service to use an external IP address from an address pool.

Prerequisites

Install the OpenShift CLI (oc).

Install the MetalLB Operator and start MetalLB.

Configure at least one address pool.

Configure your network to route traffic from the clients to the host network for the cluster.

Procedure

1. Create a <service_name>.yaml file. In the file, ensure that the spec.type field is set to
LoadBalancer.
Refer to the examples for information about how to request the external IP address that
MetalLB assigns to the service.

2. Create the service:

 targetPort: 8080
 selector:
 <label_key>: <label_value> 7
 type: LoadBalancer
 loadBalancerIP: 172.31.249.7 8

$ oc apply -f <service_name>.yaml

OpenShift Container Platform 4.12 Networking

700

Example output

Verification

Describe the service:

Example output

Name: <service_name>
Namespace: default
Labels: <none>
Annotations: metallb.universe.tf/address-pool: doc-example <.>
Selector: app=service_name
Type: LoadBalancer <.>
IP Family Policy: SingleStack
IP Families: IPv4
IP: 10.105.237.254
IPs: 10.105.237.254
LoadBalancer Ingress: 192.168.100.5 <.>
Port: <unset> 80/TCP
TargetPort: 8080/TCP
NodePort: <unset> 30550/TCP
Endpoints: 10.244.0.50:8080
Session Affinity: None
External Traffic Policy: Cluster
Events: <.>
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal nodeAssigned 32m (x2 over 32m) metallb-speaker announcing from node "
<node_name>"

<.> The annotation is present if you request an IP address from a specific pool. <.> The service
type must indicate LoadBalancer. <.> The load-balancer ingress field indicates the external IP
address if the service is assigned correctly. <.> The events field indicates the node name that is
assigned to announce the external IP address. If you experience an error, the events field
indicates the reason for the error.

33.10. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT

If you need to troubleshoot MetalLB configuration, see the following sections for commonly used
commands.

33.10.1. Setting the MetalLB logging levels

MetalLB uses FRRouting (FRR) in a container with the default setting of info generates a lot of logging.
You can control the verbosity of the logs generated by setting the logLevel as illustrated in this
example.

Gain a deeper insight into MetalLB by setting the logLevel to debug as follows:

service/<service_name> created

$ oc describe service <service_name>

CHAPTER 33. LOAD BALANCING WITH METALLB

701

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a file, such as setdebugloglevel.yaml, with content like the following example:

2. Apply the configuration:

NOTE

Use oc replace as the understanding is the metallb CR is already created and
here you are changing the log level.

3. Display the names of the speaker pods:

Example output

NOTE

Speaker and controller pods are recreated to ensure the updated logging level is
applied. The logging level is modified for all the components of MetalLB.

4. View the speaker logs:

Example output

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
 name: metallb
 namespace: metallb-system
spec:
 logLevel: debug
 nodeSelector:
 node-role.kubernetes.io/worker: ""

$ oc replace -f setdebugloglevel.yaml

$ oc get -n metallb-system pods -l component=speaker

NAME READY STATUS RESTARTS AGE
speaker-2m9pm 4/4 Running 0 9m19s
speaker-7m4qw 3/4 Running 0 19s
speaker-szlmx 4/4 Running 0 9m19s

$ oc logs -n metallb-system speaker-7m4qw -c speaker

OpenShift Container Platform 4.12 Networking

702

{"branch":"main","caller":"main.go:92","commit":"3d052535","goversion":"gc / go1.17.1 /
amd64","level":"info","msg":"MetalLB speaker starting (commit 3d052535, branch
main)","ts":"2022-05-17T09:55:05Z","version":""}
{"caller":"announcer.go:110","event":"createARPResponder","interface":"ens4","level":"info","m
sg":"created ARP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:119","event":"createNDPResponder","interface":"ens4","level":"info","m
sg":"created NDP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:110","event":"createARPResponder","interface":"tun0","level":"info","ms
g":"created ARP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:119","event":"createNDPResponder","interface":"tun0","level":"info","m
sg":"created NDP responder for interface","ts":"2022-05-17T09:55:05Z"}
I0517 09:55:06.515686 95 request.go:665] Waited for 1.026500832s due to client-side
throttling, not priority and fairness, request:
GET:https://172.30.0.1:443/apis/operators.coreos.com/v1alpha1?timeout=32s
{"Starting Manager":"(MISSING)","caller":"k8s.go:389","level":"info","ts":"2022-05-
17T09:55:08Z"}
{"caller":"speakerlist.go:310","level":"info","msg":"node event - forcing sync","node
addr":"10.0.128.4","node event":"NodeJoin","node name":"ci-ln-qb8t3mb-72292-7s7rh-
worker-a-vvznj","ts":"2022-05-17T09:55:08Z"}
{"caller":"service_controller.go:113","controller":"ServiceReconciler","enqueueing":"openshift-
kube-controller-manager-operator/metrics","epslice":"{\"metadata\":{\"name\":\"metrics-
xtsxr\",\"generateName\":\"metrics-\",\"namespace\":\"openshift-kube-controller-manager-
operator\",\"uid\":\"ac6766d7-8504-492c-9d1e-
4ae8897990ad\",\"resourceVersion\":\"9041\",\"generation\":4,\"creationTimestamp\":\"2022-
05-17T07:16:53Z\",\"labels\":{\"app\":\"kube-controller-manager-
operator\",\"endpointslice.kubernetes.io/managed-by\":\"endpointslice-
controller.k8s.io\",\"kubernetes.io/service-name\":\"metrics\"},\"annotations\":
{\"endpoints.kubernetes.io/last-change-trigger-time\":\"2022-05-
17T07:21:34Z\"},\"ownerReferences\":
[{\"apiVersion\":\"v1\",\"kind\":\"Service\",\"name\":\"metrics\",\"uid\":\"0518eed3-6152-42be-
b566-0bd00a60faf8\",\"controller\":true,\"blockOwnerDeletion\":true}],\"managedFields\":
[{\"manager\":\"kube-controller-
manager\",\"operation\":\"Update\",\"apiVersion\":\"discovery.k8s.io/v1\",\"time\":\"2022-05-
17T07:20:02Z\",\"fieldsType\":\"FieldsV1\",\"fieldsV1\":{\"f:addressType\":{},\"f:endpoints\":
{},\"f:metadata\":{\"f:annotations\":{\".\":{},\"f:endpoints.kubernetes.io/last-change-trigger-
time\":{}},\"f:generateName\":{},\"f:labels\":{\".\":{},\"f:app\":
{},\"f:endpointslice.kubernetes.io/managed-by\":{},\"f:kubernetes.io/service-name\":
{}},\"f:ownerReferences\":{\".\":{},\"k:{\\\"uid\\\":\\\"0518eed3-6152-42be-b566-
0bd00a60faf8\\\"}\":{}}},\"f:ports\":{}}}]},\"addressType\":\"IPv4\",\"endpoints\":[{\"addresses\":
[\"10.129.0.7\"],\"conditions\":{\"ready\":true,\"serving\":true,\"terminating\":false},\"targetRef\":
{\"kind\":\"Pod\",\"namespace\":\"openshift-kube-controller-manager-
operator\",\"name\":\"kube-controller-manager-operator-6b98b89ddd-
8d4nf\",\"uid\":\"dd5139b8-e41c-4946-a31b-
1a629314e844\",\"resourceVersion\":\"9038\"},\"nodeName\":\"ci-ln-qb8t3mb-72292-7s7rh-
master-0\",\"zone\":\"us-central1-a\"}],\"ports\":
[{\"name\":\"https\",\"protocol\":\"TCP\",\"port\":8443}]}","level":"debug","ts":"2022-05-
17T09:55:08Z"}

5. View the FRR logs:

Example output

$ oc logs -n metallb-system speaker-7m4qw -c frr

CHAPTER 33. LOAD BALANCING WITH METALLB

703

Started watchfrr
2022/05/17 09:55:05 ZEBRA: client 16 says hello and bids fair to announce only bgp routes
vrf=0
2022/05/17 09:55:05 ZEBRA: client 31 says hello and bids fair to announce only vnc routes
vrf=0
2022/05/17 09:55:05 ZEBRA: client 38 says hello and bids fair to announce only static routes
vrf=0
2022/05/17 09:55:05 ZEBRA: client 43 says hello and bids fair to announce only bfd routes
vrf=0
2022/05/17 09:57:25.089 BGP: Creating Default VRF, AS 64500
2022/05/17 09:57:25.090 BGP: dup addr detect enable max_moves 5 time 180 freeze
disable freeze_time 0
2022/05/17 09:57:25.090 BGP: bgp_get: Registering BGP instance (null) to zebra
2022/05/17 09:57:25.090 BGP: Registering VRF 0
2022/05/17 09:57:25.091 BGP: Rx Router Id update VRF 0 Id 10.131.0.1/32
2022/05/17 09:57:25.091 BGP: RID change : vrf VRF default(0), RTR ID 10.131.0.1
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF br0
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF ens4
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF ens4 addr 10.0.128.4/32
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF ens4 addr
fe80::c9d:84da:4d86:5618/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF lo
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF ovs-system
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF tun0
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF tun0 addr 10.131.0.1/23
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF tun0 addr
fe80::40f1:d1ff:feb6:5322/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth2da49fed
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth2da49fed addr
fe80::24bd:d1ff:fec1:d88/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth2fa08c8c
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth2fa08c8c addr
fe80::6870:ff:fe96:efc8/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth41e356b7
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth41e356b7 addr
fe80::48ff:37ff:fede:eb4b/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth1295c6e2
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth1295c6e2 addr
fe80::b827:a2ff:feed:637/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth9733c6dc
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth9733c6dc addr
fe80::3cf4:15ff:fe11:e541/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth336680ea
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth336680ea addr
fe80::94b1:8bff:fe7e:488c/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vetha0a907b7
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vetha0a907b7 addr
fe80::3855:a6ff:fe73:46c3/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vethf35a4398
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vethf35a4398 addr
fe80::40ef:2fff:fe57:4c4d/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vethf831b7f4
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vethf831b7f4 addr
fe80::f0d9:89ff:fe7c:1d32/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vxlan_sys_4789
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vxlan_sys_4789 addr

OpenShift Container Platform 4.12 Networking

704

fe80::80c1:82ff:fe4b:f078/64
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] Timer (start timer expire).
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] BGP_Start (Idle->Connect), fd -1
2022/05/17 09:57:26.094 BGP: Allocated bnc 10.0.0.1/32(0)(VRF default) peer
0x7f807f7631a0
2022/05/17 09:57:26.094 BGP: sendmsg_zebra_rnh: sending cmd
ZEBRA_NEXTHOP_REGISTER for 10.0.0.1/32 (vrf VRF default)
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] Waiting for NHT
2022/05/17 09:57:26.094 BGP: bgp_fsm_change_status : vrf default(0), Status: Connect
established_peers 0
2022/05/17 09:57:26.094 BGP: 10.0.0.1 went from Idle to Connect
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] TCP_connection_open_failed (Connect-
>Active), fd -1
2022/05/17 09:57:26.094 BGP: bgp_fsm_change_status : vrf default(0), Status: Active
established_peers 0
2022/05/17 09:57:26.094 BGP: 10.0.0.1 went from Connect to Active
2022/05/17 09:57:26.094 ZEBRA: rnh_register msg from client bgp: hdr->length=8,
type=nexthop vrf=0
2022/05/17 09:57:26.094 ZEBRA: 0: Add RNH 10.0.0.1/32 type Nexthop
2022/05/17 09:57:26.094 ZEBRA: 0:10.0.0.1/32: Evaluate RNH, type Nexthop (force)
2022/05/17 09:57:26.094 ZEBRA: 0:10.0.0.1/32: NH has become unresolved
2022/05/17 09:57:26.094 ZEBRA: 0: Client bgp registers for RNH 10.0.0.1/32 type Nexthop
2022/05/17 09:57:26.094 BGP: VRF default(0): Rcvd NH update 10.0.0.1/32(0) - metric 0/0
#nhops 0/0 flags 0x6
2022/05/17 09:57:26.094 BGP: NH update for 10.0.0.1/32(0)(VRF default) - flags 0x6
chgflags 0x0 - evaluate paths
2022/05/17 09:57:26.094 BGP: evaluate_paths: Updating peer (10.0.0.1(VRF default)) status
with NHT
2022/05/17 09:57:30.081 ZEBRA: Event driven route-map update triggered
2022/05/17 09:57:30.081 ZEBRA: Event handler for route-map: 10.0.0.1-out
2022/05/17 09:57:30.081 ZEBRA: Event handler for route-map: 10.0.0.1-in
2022/05/17 09:57:31.104 ZEBRA: netlink_parse_info: netlink-listen (NS 0) type
RTM_NEWNEIGH(28), len=76, seq=0, pid=0
2022/05/17 09:57:31.104 ZEBRA: Neighbor Entry received is not on a VLAN or a BRIDGE,
ignoring
2022/05/17 09:57:31.105 ZEBRA: netlink_parse_info: netlink-listen (NS 0) type
RTM_NEWNEIGH(28), len=76, seq=0, pid=0
2022/05/17 09:57:31.105 ZEBRA: Neighbor Entry received is not on a VLAN or a BRIDGE,
ignoring

33.10.1.1. FRRouting (FRR) log levels

The following table describes the FRR logging levels.

Table 33.8. Log levels

Log level Description

all Supplies all logging information for all logging levels.

debug Information that is diagnostically helpful to people. Set to debug to give
detailed troubleshooting information.

CHAPTER 33. LOAD BALANCING WITH METALLB

705

info Provides information that always should be logged but under normal
circumstances does not require user intervention. This is the default logging
level.

warn Anything that can potentially cause inconsistent MetalLB behaviour.
Usually MetalLB automatically recovers from this type of error.

error Any error that is fatal to the functioning of MetalLB. These errors usually
require administrator intervention to fix.

none Turn off all logging.

Log level Description

33.10.2. Troubleshooting BGP issues

The BGP implementation that Red Hat supports uses FRRouting (FRR) in a container in the speaker
pods. As a cluster administrator, if you need to troubleshoot BGP configuration issues, you need to run
commands in the FRR container.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Display the names of the speaker pods:

Example output

2. Display the running configuration for FRR:

Example output

Building configuration...

Current configuration:
!
frr version 7.5.1_git

$ oc get -n metallb-system pods -l component=speaker

NAME READY STATUS RESTARTS AGE
speaker-66bth 4/4 Running 0 56m
speaker-gvfnf 4/4 Running 0 56m
...

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show running-config"

OpenShift Container Platform 4.12 Networking

706

frr defaults traditional
hostname some-hostname
log file /etc/frr/frr.log informational
log timestamp precision 3
service integrated-vtysh-config
!
router bgp 64500 1
 bgp router-id 10.0.1.2
 no bgp ebgp-requires-policy
 no bgp default ipv4-unicast
 no bgp network import-check
 neighbor 10.0.2.3 remote-as 64500 2
 neighbor 10.0.2.3 bfd profile doc-example-bfd-profile-full 3
 neighbor 10.0.2.3 timers 5 15
 neighbor 10.0.2.4 remote-as 64500 4
 neighbor 10.0.2.4 bfd profile doc-example-bfd-profile-full 5
 neighbor 10.0.2.4 timers 5 15
 !
 address-family ipv4 unicast
 network 203.0.113.200/30 6
 neighbor 10.0.2.3 activate
 neighbor 10.0.2.3 route-map 10.0.2.3-in in
 neighbor 10.0.2.4 activate
 neighbor 10.0.2.4 route-map 10.0.2.4-in in
 exit-address-family
 !
 address-family ipv6 unicast
 network fc00:f853:ccd:e799::/124 7
 neighbor 10.0.2.3 activate
 neighbor 10.0.2.3 route-map 10.0.2.3-in in
 neighbor 10.0.2.4 activate
 neighbor 10.0.2.4 route-map 10.0.2.4-in in
 exit-address-family
!
route-map 10.0.2.3-in deny 20
!
route-map 10.0.2.4-in deny 20
!
ip nht resolve-via-default
!
ipv6 nht resolve-via-default
!
line vty
!
bfd
 profile doc-example-bfd-profile-full 8
 transmit-interval 35
 receive-interval 35
 passive-mode
 echo-mode
 echo-interval 35
 minimum-ttl 10
 !
!
end

CHAPTER 33. LOAD BALANCING WITH METALLB

707

1 1 3

2 4 2 4

<.> The router bgp section indicates the ASN for MetalLB. <.> Confirm that a neighbor <ip-
address> remote-as <peer-ASN> line exists for each BGP peer custom resource that you
added. <.> If you configured BFD, confirm that the BFD profile is associated with the correct
BGP peer and that the BFD profile appears in the command output. <.> Confirm that the
network <ip-address-range> lines match the IP address ranges that you specified in address
pool custom resources that you added.

3. Display the BGP summary:

Example output

IPv4 Unicast Summary:
BGP router identifier 10.0.1.2, local AS number 64500 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 29 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
PfxSnt
10.0.2.3 4 64500 387 389 0 0 0 00:32:02 0 1 1
10.0.2.4 4 64500 0 0 0 0 0 never Active 0 2

Total number of neighbors 2

IPv6 Unicast Summary:
BGP router identifier 10.0.1.2, local AS number 64500 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 29 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
PfxSnt
10.0.2.3 4 64500 387 389 0 0 0 00:32:02 NoNeg 3
10.0.2.4 4 64500 0 0 0 0 0 never Active 0 4

Total number of neighbors 2

Confirm that the output includes a line for each BGP peer custom resource that you
added.

Output that shows 0 messages received and messages sent indicates a BGP peer
that does not have a BGP session. Check network connectivity and the BGP

configuration of the BGP peer.

4. Display the BGP peers that received an address pool:

Replace ipv4 with ipv6 to display the BGP peers that received an IPv6 address pool. Replace
203.0.113.200/30 with an IPv4 or IPv6 IP address range from an address pool.

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bgp summary"

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bgp ipv4 unicast
203.0.113.200/30"

OpenShift Container Platform 4.12 Networking

708

Example output

BGP routing table entry for 203.0.113.200/30
Paths: (1 available, best #1, table default)
 Advertised to non peer-group peers:
 10.0.2.3 <.>
 Local
 0.0.0.0 from 0.0.0.0 (10.0.1.2)
 Origin IGP, metric 0, weight 32768, valid, sourced, local, best (First path received)
 Last update: Mon Jan 10 19:49:07 2022

<.> Confirm that the output includes an IP address for a BGP peer.

33.10.3. Troubleshooting BFD issues

The Bidirectional Forwarding Detection (BFD) implementation that Red Hat supports uses FRRouting
(FRR) in a container in the speaker pods. The BFD implementation relies on BFD peers also being
configured as BGP peers with an established BGP session. As a cluster administrator, if you need to
troubleshoot BFD configuration issues, you need to run commands in the FRR container.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Display the names of the speaker pods:

Example output

2. Display the BFD peers:

Example output

Session count: 2
SessionId LocalAddress PeerAddress Status
========= ============ =========== ======
3909139637 10.0.1.2 10.0.2.3 up <.>

<.> Confirm that the PeerAddress column includes each BFD peer. If the output does not list a
BFD peer IP address that you expected the output to include, troubleshoot BGP connectivity

$ oc get -n metallb-system pods -l component=speaker

NAME READY STATUS RESTARTS AGE
speaker-66bth 4/4 Running 0 26m
speaker-gvfnf 4/4 Running 0 26m
...

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bfd peers brief"

CHAPTER 33. LOAD BALANCING WITH METALLB

709

with the peer. If the status field indicates down, check for connectivity on the links and
equipment between the node and the peer. You can determine the node name for the speaker
pod with a command like oc get pods -n metallb-system speaker-66bth -o
jsonpath='{.spec.nodeName}'.

33.10.4. MetalLB metrics for BGP and BFD

OpenShift Container Platform captures the following metrics that are related to MetalLB and BGP
peers and BFD profiles:

metallb_bfd_control_packet_input counts the number of BFD control packets received from
each BFD peer.

metallb_bfd_control_packet_output counts the number of BFD control packets sent to each
BFD peer.

metallb_bfd_echo_packet_input counts the number of BFD echo packets received from each
BFD peer.

metallb_bfd_echo_packet_output counts the number of BFD echo packets sent to each BFD
peer.

metallb_bfd_session_down_events counts the number of times the BFD session with a peer
entered the down state.

metallb_bfd_session_up indicates the connection state with a BFD peer. 1 indicates the
session is up and 0 indicates the session is down.

metallb_bfd_session_up_events counts the number of times the BFD session with a peer
entered the up state.

metallb_bfd_zebra_notifications counts the number of BFD Zebra notifications for each BFD
peer.

metallb_bgp_announced_prefixes_total counts the number of load balancer IP address
prefixes that are advertised to BGP peers. The terms prefix and aggregated route have the
same meaning.

metallb_bgp_session_up indicates the connection state with a BGP peer. 1 indicates the
session is up and 0 indicates the session is down.

metallb_bgp_updates_total counts the number of BGP update messages that were sent to a
BGP peer.

Additional resources

See Querying metrics for information about using the monitoring dashboard.

33.10.5. About collecting MetalLB data

You can use the oc adm must-gather CLI command to collect information about your cluster, your
MetalLB configuration, and the MetalLB Operator. The following features and objects are associated
with MetalLB and the MetalLB Operator:

The namespace and child objects that the MetalLB Operator is deployed in

OpenShift Container Platform 4.12 Networking

710

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/monitoring/#querying-metrics

All MetalLB Operator custom resource definitions (CRDs)

The oc adm must-gather CLI command collects the following information from FRRouting (FRR) that
Red Hat uses to implement BGP and BFD:

/etc/frr/frr.conf

/etc/frr/frr.log

/etc/frr/daemons configuration file

/etc/frr/vtysh.conf

The log and configuration files in the preceding list are collected from the frr container in each speaker
pod.

In addition to the log and configuration files, the oc adm must-gather CLI command collects the
output from the following vtysh commands:

show running-config

show bgp ipv4

show bgp ipv6

show bgp neighbor

show bfd peer

No additional configuration is required when you run the oc adm must-gather CLI command.

Additional resources

Gathering data about your cluster

CHAPTER 33. LOAD BALANCING WITH METALLB

711

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/support/#gathering-cluster-data

CHAPTER 34. ASSOCIATING SECONDARY INTERFACES
METRICS TO NETWORK ATTACHMENTS

34.1. EXTENDING SECONDARY NETWORK METRICS FOR
MONITORING

Secondary devices, or interfaces, are used for different purposes. It is important to have a way to classify
them to be able to aggregate the metrics for secondary devices with the same classification.

Exposed metrics contain the interface but do not specify where the interface originates. This is workable
when there are no additional interfaces. However, if secondary interfaces are added, it can be difficult to
use the metrics since it is hard to identify interfaces using only interface names.

When adding secondary interfaces, their names depend on the order in which they are added, and
different secondary interfaces might belong to different networks and can be used for different
purposes.

With pod_network_name_info it is possible to extend the current metrics with additional information
that identifies the interface type. In this way, it is possible to aggregate the metrics and to add specific
alarms to specific interface types.

The network type is generated using the name of the related NetworkAttachmentDefinition, that in
turn is used to differentiate different classes of secondary networks. For example, different interfaces
belonging to different networks or using different CNIs use different network attachment definition
names.

34.1.1. Network Metrics Daemon

The Network Metrics Daemon is a daemon component that collects and publishes network related
metrics.

The kubelet is already publishing network related metrics you can observe. These metrics are:

container_network_receive_bytes_total

container_network_receive_errors_total

container_network_receive_packets_total

container_network_receive_packets_dropped_total

container_network_transmit_bytes_total

container_network_transmit_errors_total

container_network_transmit_packets_total

container_network_transmit_packets_dropped_total

The labels in these metrics contain, among others:

Pod name

Pod namespace

OpenShift Container Platform 4.12 Networking

712

Interface name (such as eth0)

These metrics work well until new interfaces are added to the pod, for example via Multus, as it is not
clear what the interface names refer to.

The interface label refers to the interface name, but it is not clear what that interface is meant for. In
case of many different interfaces, it would be impossible to understand what network the metrics you are
monitoring refer to.

This is addressed by introducing the new pod_network_name_info described in the following section.

34.1.2. Metrics with network name

This daemonset publishes a pod_network_name_info gauge metric, with a fixed value of 0:

The network name label is produced using the annotation added by Multus. It is the concatenation of the
namespace the network attachment definition belongs to, plus the name of the network attachment
definition.

The new metric alone does not provide much value, but combined with the network related
container_network_* metrics, it offers better support for monitoring secondary networks.

Using a promql query like the following ones, it is possible to get a new metric containing the value and
the network name retrieved from the k8s.v1.cni.cncf.io/networks-status annotation:

pod_network_name_info{interface="net0",namespace="namespacename",network_name="nadname
space/firstNAD",pod="podname"} 0

(container_network_receive_bytes_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_errors_total) + on(namespace,pod,interface) group_left(network_name) (
pod_network_name_info)
(container_network_receive_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_receive_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_bytes_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_errors_total) + on(namespace,pod,interface) group_left(network_name)
(pod_network_name_info)
(container_network_transmit_packets_total) + on(namespace,pod,interface)
group_left(network_name) (pod_network_name_info)
(container_network_transmit_packets_dropped_total) + on(namespace,pod,interface)
group_left(network_name)

CHAPTER 34. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS

713

https://github.com/intel/multus-cni

	Table of Contents
	CHAPTER 1. ABOUT NETWORKING
	CHAPTER 2. UNDERSTANDING NETWORKING
	2.1. OPENSHIFT CONTAINER PLATFORM DNS
	2.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	2.2.1. Comparing routes and Ingress

	2.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING

	CHAPTER 3. ACCESSING HOSTS
	3.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

	CHAPTER 4. NETWORKING OPERATORS OVERVIEW
	4.1. CLUSTER NETWORK OPERATOR
	4.2. DNS OPERATOR
	4.3. INGRESS OPERATOR
	4.4. EXTERNAL DNS OPERATOR
	4.5. INGRESS NODE FIREWALL OPERATOR
	4.6. NETWORK OBSERVABILITY OPERATOR

	CHAPTER 5. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. CLUSTER NETWORK OPERATOR
	5.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	5.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	5.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
	5.5. CLUSTER NETWORK OPERATOR CONFIGURATION
	5.5.1. Cluster Network Operator configuration object
	defaultNetwork object configuration
	kubeProxyConfig object configuration

	5.5.2. Cluster Network Operator example configuration

	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. DNS OPERATOR
	6.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE
	6.3. CONTROLLING DNS POD PLACEMENT
	6.4. VIEW THE DEFAULT DNS
	6.5. USING DNS FORWARDING
	6.6. DNS OPERATOR STATUS
	6.7. DNS OPERATOR LOGS
	6.8. SETTING THE COREDNS LOG LEVEL
	6.9. SETTING THE COREDNS OPERATOR LOG LEVEL
	6.10. TUNING THE COREDNS CACHE

	CHAPTER 7. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	7.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	7.2. THE INGRESS CONFIGURATION ASSET
	7.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	7.3.1. Ingress Controller TLS security profiles
	7.3.1.1. Understanding TLS security profiles
	7.3.1.2. Configuring the TLS security profile for the Ingress Controller
	7.3.1.3. Configuring mutual TLS authentication

	7.4. VIEW THE DEFAULT INGRESS CONTROLLER
	7.5. VIEW INGRESS OPERATOR STATUS
	7.6. VIEW INGRESS CONTROLLER LOGS
	7.7. VIEW INGRESS CONTROLLER STATUS
	7.8. CONFIGURING THE INGRESS CONTROLLER
	7.8.1. Setting a custom default certificate
	7.8.2. Removing a custom default certificate
	7.8.3. Autoscaling an Ingress Controller
	7.8.4. Scaling an Ingress Controller
	7.8.5. Configuring Ingress access logging
	7.8.6. Setting Ingress Controller thread count
	7.8.7. Configuring an Ingress Controller to use an internal load balancer
	7.8.8. Configuring global access for an Ingress Controller on GCP
	7.8.9. Setting the Ingress Controller health check interval
	7.8.10. Configuring the default Ingress Controller for your cluster to be internal
	7.8.11. Configuring the route admission policy
	7.8.12. Using wildcard routes
	7.8.13. Using X-Forwarded headers
	Example use cases

	7.8.14. Enabling HTTP/2 Ingress connectivity
	7.8.15. Configuring the PROXY protocol for an Ingress Controller
	7.8.16. Specifying an alternative cluster domain using the appsDomain option
	7.8.17. Converting HTTP header case
	7.8.18. Using router compression
	7.8.19. Exposing router metrics
	7.8.20. Customizing HAProxy error code response pages
	7.8.21. Setting the Ingress Controller maximum connections

	7.9. ADDITIONAL RESOURCES

	CHAPTER 8. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORM
	8.1. INGRESS CONTROLLER SHARDING
	8.1.1. Traditional sharding example
	8.1.2. Overlapped sharding example
	8.1.3. Sharding the default Ingress Controller
	8.1.4. Ingress sharding and DNS
	8.1.5. Configuring Ingress Controller sharding by using route labels
	8.1.6. Configuring Ingress Controller sharding by using namespace labels

	8.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING
	Additional Resources

	CHAPTER 9. INGRESS NODE FIREWALL OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	9.1. INGRESS NODE FIREWALL OPERATOR
	9.2. INSTALLING THE INGRESS NODE FIREWALL OPERATOR
	9.2.1. Installing the Ingress Node Firewall Operator using the CLI
	9.2.2. Installing the Ingress Node Firewall Operator using the web console

	9.3. DEPLOYING INGRESS NODE FIREWALL OPERATOR
	9.3.1. Ingress Node Firewall configuration object
	Ingress Node Firewall Operator example configuration

	9.3.2. Ingress Node Firewall rules object
	Ingress object configuration
	Ingress Node Firewall rules object example
	Zero trust Ingress Node Firewall rules object example

	9.4. VIEWING INGRESS NODE FIREWALL OPERATOR RULES
	9.5. TROUBLESHOOTING THE INGRESS NODE FIREWALL OPERATOR

	CHAPTER 10. CONFIGURING AN INGRESS CONTROLLER FOR MANUAL DNS MANAGEMENT
	10.1. MANAGED DNS MANAGEMENT POLICY
	10.2. UNMANAGED DNS MANAGEMENT POLICY
	10.3. CREATING A CUSTOM INGRESS CONTROLLER WITH THE UNMANAGED DNS MANAGEMENT POLICY
	10.4. MODIFYING AN EXISTING INGRESS CONTROLLER
	10.5. ADDITIONAL RESOURCES

	CHAPTER 11. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
	11.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
	11.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal
	11.1.2. Configuring the Ingress Controller endpoint publishing scope to External

	11.2. ADDITIONAL RESOURCES

	CHAPTER 12. VERIFYING CONNECTIVITY TO AN ENDPOINT
	12.1. CONNECTION HEALTH CHECKS PERFORMED
	12.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
	12.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS
	Connection log fields

	12.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

	CHAPTER 13. CHANGING THE MTU FOR THE CLUSTER NETWORK
	13.1. ABOUT THE CLUSTER MTU
	13.1.1. Service interruption considerations
	13.1.2. MTU value selection
	13.1.3. How the migration process works

	13.2. CHANGING THE CLUSTER MTU
	13.3. ADDITIONAL RESOURCES

	CHAPTER 14. CONFIGURING THE NODE PORT SERVICE RANGE
	14.1. PREREQUISITES
	14.2. EXPANDING THE NODE PORT RANGE
	14.3. ADDITIONAL RESOURCES

	CHAPTER 15. CONFIGURING IP FAILOVER
	15.1. IP FAILOVER ENVIRONMENT VARIABLES
	15.2. CONFIGURING IP FAILOVER
	15.3. ABOUT VIRTUAL IP ADDRESSES
	15.4. CONFIGURING CHECK AND NOTIFY SCRIPTS
	15.5. CONFIGURING VRRP PREEMPTION
	15.6. ABOUT VRRP ID OFFSET
	15.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES
	15.8. HIGH AVAILABILITY FOR INGRESSIP
	15.9. REMOVING IP FAILOVER

	CHAPTER 16. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTLS
	16.1. CONFIGURING THE TUNING CNI
	16.2. ADDITIONAL RESOURCES

	CHAPTER 17. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER
	17.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER PLATFORM
	17.1.1. Example configurations using SCTP protocol

	17.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
	17.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

	CHAPTER 18. USING PTP HARDWARE
	18.1. ABOUT PTP HARDWARE
	18.2. ABOUT PTP
	18.2.1. Elements of a PTP domain
	18.2.2. Advantages of PTP over NTP
	18.2.3. Using PTP with dual NIC hardware

	18.3. INSTALLING THE PTP OPERATOR USING THE CLI
	18.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE
	18.5. CONFIGURING PTP DEVICES
	18.5.1. Discovering PTP capable network devices in your cluster
	18.5.2. Configuring linuxptp services as a grandmaster clock
	18.5.3. Configuring linuxptp services as an ordinary clock
	18.5.4. Configuring linuxptp services as a boundary clock
	18.5.5. Configuring linuxptp services as boundary clocks for dual NIC hardware
	18.5.6. Intel Columbiaville E800 series NIC as PTP ordinary clock reference
	18.5.7. Configuring FIFO priority scheduling for PTP hardware
	18.5.8. Configuring log filtering for linuxptp services

	18.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES
	18.6.1. Collecting Precision Time Protocol (PTP) Operator data

	18.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK
	18.7.1. About PTP and clock synchronization error events
	18.7.2. About the PTP fast event notifications framework
	18.7.3. Configuring the PTP fast event notifications publisher
	18.7.4. Migrating consumer applications to use HTTP transport for PTP or bare-metal events
	18.7.5. Installing the AMQ messaging bus
	18.7.6. Subscribing DU applications to PTP events REST API reference
	18.7.6.1. api/ocloudNotifications/v1/subscriptions
	18.7.6.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>
	18.7.6.3. api/ocloudNotifications/v1/health/
	18.7.6.4. api/ocloudNotifications/v1/publishers
	18.7.6.5. /api/ocloudnotifications/v1/<resource_address>/CurrentState

	18.7.7. Monitoring PTP fast event metrics

	CHAPTER 19. EXTERNAL DNS OPERATOR
	19.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	19.1.1. External DNS Operator
	19.1.2. External DNS Operator logs
	19.1.2.1. External DNS Operator domain name limitations

	19.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS
	19.2.1. Installing the External DNS Operator

	19.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
	19.3.1. External DNS Operator configuration parameters

	19.4. CREATING DNS RECORDS ON AWS
	19.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator

	19.5. CREATING DNS RECORDS ON AZURE
	19.5.1. Creating DNS records on an Azure public DNS zone

	19.6. CREATING DNS RECORDS ON GCP
	19.6.1. Creating DNS records on a public managed zone for GCP

	19.7. CREATING DNS RECORDS ON INFOBLOX
	19.7.1. Creating DNS records on a public DNS zone on Infoblox

	19.8. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
	19.8.1. Trusting the certificate authority of the cluster-wide proxy

	CHAPTER 20. NETWORK POLICY
	20.1. ABOUT NETWORK POLICY
	20.1.1. About network policy
	20.1.1.1. Using the allow-from-router network policy
	20.1.1.2. Using the allow-from-hostnetwork network policy

	20.1.2. Optimizations for network policy with OpenShift SDN
	20.1.3. Optimizations for network policy with OVN-Kubernetes network plugin
	20.1.4. Next steps
	20.1.5. Additional resources

	20.2. CREATING A NETWORK POLICY
	20.2.1. Example NetworkPolicy object
	20.2.2. Creating a network policy using the CLI
	20.2.3. Creating a default deny all network policy
	20.2.4. Creating a network policy to allow traffic from external clients
	20.2.5. Creating a network policy allowing traffic to an application from all namespaces
	20.2.6. Creating a network policy allowing traffic to an application from a namespace
	20.2.7. Additional resources

	20.3. VIEWING A NETWORK POLICY
	20.3.1. Example NetworkPolicy object
	20.3.2. Viewing network policies using the CLI

	20.4. EDITING A NETWORK POLICY
	20.4.1. Editing a network policy
	20.4.2. Example NetworkPolicy object
	20.4.3. Additional resources

	20.5. DELETING A NETWORK POLICY
	20.5.1. Deleting a network policy using the CLI

	20.6. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
	20.6.1. Modifying the template for new projects
	20.6.2. Adding network policies to the new project template

	20.7. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
	20.7.1. Configuring multitenant isolation by using network policy
	20.7.2. Next steps
	20.7.3. Additional resources

	CHAPTER 21. CIDR RANGE DEFINITIONS
	21.1. MACHINE CIDR
	21.2. SERVICE CIDR
	21.3. POD CIDR
	21.4. HOST PREFIX

	CHAPTER 22. AWS LOAD BALANCER OPERATOR
	22.1. AWS LOAD BALANCER OPERATOR RELEASE NOTES
	22.1.1. AWS Load Balancer Operator 1.0.0
	22.1.1.1. Notable changes
	22.1.1.2. Bug fixes

	22.1.2. Earlier versions

	22.2. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	22.2.1. AWS Load Balancer Operator considerations
	22.2.2. AWS Load Balancer Operator
	22.2.3. AWS Load Balancer Operator logs

	22.3. UNDERSTANDING AWS LOAD BALANCER OPERATOR
	22.3.1. Installing the AWS Load Balancer Operator

	22.4. INSTALLING THE AWS LOAD BALANCER OPERATOR ON A CLUSTER USING THE AWS SECURITY TOKEN SERVICE
	22.4.1. Bootstrapping AWS Load Balancer Operator on Security Token Service cluster
	22.4.2. Configuring AWS Load Balancer Operator on Security Token Service cluster by using managed CredentialsRequest objects
	22.4.3. Configuring the AWS Load Balancer Operator on Security Token Service cluster by using specific credentials
	22.4.4. Additional resources

	22.5. CREATING AN INSTANCE OF THE AWS LOAD BALANCER CONTROLLER
	22.5.1. Creating the AWS Load Balancer Controller

	22.6. SERVING MULTIPLE INGRESS RESOURCES THROUGH A SINGLE AWS LOAD BALANCER
	22.6.1. Creating multiple ingress resources through a single AWS Load Balancer

	22.7. ADDING TLS TERMINATION
	22.7.1. Adding TLS termination on the AWS Load Balancer

	22.8. CONFIGURING CLUSTER-WIDE PROXY
	22.8.1. Trusting the certificate authority of the cluster-wide proxy
	22.8.2. Additional resources

	CHAPTER 23. MULTIPLE NETWORKS
	23.1. UNDERSTANDING MULTIPLE NETWORKS
	23.1.1. Usage scenarios for an additional network
	23.1.2. Additional networks in OpenShift Container Platform

	23.2. CONFIGURING AN ADDITIONAL NETWORK
	23.2.1. Approaches to managing an additional network
	23.2.2. Configuration for an additional network attachment
	23.2.2.1. Configuration of an additional network through the Cluster Network Operator
	23.2.2.2. Configuration of an additional network from a YAML manifest

	23.2.3. Configurations for additional network types
	23.2.3.1. Configuration for a bridge additional network
	23.2.3.2. Configuration for a host device additional network
	23.2.3.3. Configuration for an IPVLAN additional network
	23.2.3.4. Configuration for a MACVLAN additional network

	23.2.4. Configuration of IP address assignment for an additional network
	23.2.4.1. Static IP address assignment configuration
	23.2.4.2. Dynamic IP address (DHCP) assignment configuration
	23.2.4.3. Dynamic IP address assignment configuration with Whereabouts
	23.2.4.4. Creating a Whereabouts reconciler daemon set

	23.2.5. Creating an additional network attachment with the Cluster Network Operator
	23.2.6. Creating an additional network attachment by applying a YAML manifest

	23.3. ABOUT VIRTUAL ROUTING AND FORWARDING
	23.3.1. About virtual routing and forwarding
	23.3.1.1. Benefits of secondary networks for pods for telecommunications operators

	23.4. CONFIGURING MULTI-NETWORK POLICY
	23.4.1. Differences between multi-network policy and network policy
	23.4.2. Enabling multi-network policy for the cluster
	23.4.3. Working with multi-network policy
	23.4.3.1. Prerequisites
	23.4.3.2. Creating a multi-network policy using the CLI
	23.4.3.3. Editing a multi-network policy
	23.4.3.4. Viewing multi-network policies using the CLI
	23.4.3.5. Deleting a multi-network policy using the CLI
	23.4.3.6. Creating a default deny all multi-network policy
	23.4.3.7. Creating a multi-network policy to allow traffic from external clients
	23.4.3.8. Creating a multi-network policy allowing traffic to an application from all namespaces
	23.4.3.9. Creating a multi-network policy allowing traffic to an application from a namespace

	23.4.4. Additional resources

	23.5. ATTACHING A POD TO AN ADDITIONAL NETWORK
	23.5.1. Adding a pod to an additional network
	23.5.1.1. Specifying pod-specific addressing and routing options

	23.6. REMOVING A POD FROM AN ADDITIONAL NETWORK
	23.6.1. Removing a pod from an additional network

	23.7. EDITING AN ADDITIONAL NETWORK
	23.7.1. Modifying an additional network attachment definition

	23.8. REMOVING AN ADDITIONAL NETWORK
	23.8.1. Removing an additional network attachment definition

	23.9. ASSIGNING A SECONDARY NETWORK TO A VRF
	23.9.1. Creating an additional network attachment with the CNI VRF plugin

	CHAPTER 24. HARDWARE NETWORKS
	24.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
	24.1.1. Components that manage SR-IOV network devices
	24.1.1.1. Supported platforms
	24.1.1.2. Supported devices
	24.1.1.3. Automated discovery of SR-IOV network devices
	24.1.1.4. Example use of a virtual function in a pod
	24.1.1.5. DPDK library for use with container applications
	24.1.1.6. Huge pages resource injection for Downward API

	24.1.2. Additional resources
	24.1.3. Next steps

	24.2. INSTALLING THE SR-IOV NETWORK OPERATOR
	24.2.1. Installing SR-IOV Network Operator
	24.2.1.1. CLI: Installing the SR-IOV Network Operator
	24.2.1.2. Web console: Installing the SR-IOV Network Operator

	24.2.2. Next steps

	24.3. CONFIGURING THE SR-IOV NETWORK OPERATOR
	24.3.1. Configuring the SR-IOV Network Operator
	24.3.1.1. SR-IOV Network Operator config custom resource
	24.3.1.2. About the Network Resources Injector
	24.3.1.3. About the SR-IOV Network Operator admission controller webhook
	24.3.1.4. About custom node selectors
	24.3.1.5. Disabling or enabling the Network Resources Injector
	24.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook
	24.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
	24.3.1.8. Configuring the SR-IOV Network Operator for single node installations
	24.3.1.9. Deploying the SR-IOV Operator for hosted control planes

	24.3.2. Next steps

	24.4. CONFIGURING AN SR-IOV NETWORK DEVICE
	24.4.1. SR-IOV network node configuration object
	24.4.1.1. SR-IOV network node configuration examples
	24.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

	24.4.2. Configuring SR-IOV network devices
	24.4.3. Troubleshooting SR-IOV configuration
	24.4.4. Assigning an SR-IOV network to a VRF
	24.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin

	24.4.5. Next steps

	24.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
	24.5.1. Ethernet device configuration object
	24.5.1.1. Configuration of IP address assignment for an additional network

	24.5.2. Configuring SR-IOV additional network
	24.5.3. Next steps
	24.5.4. Additional resources

	24.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
	24.6.1. InfiniBand device configuration object
	24.6.1.1. Configuration of IP address assignment for an additional network

	24.6.2. Configuring SR-IOV additional network
	24.6.3. Next steps
	24.6.4. Additional resources

	24.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
	24.7.1. Runtime configuration for a network attachment
	24.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
	24.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

	24.7.2. Adding a pod to an additional network
	24.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
	24.7.4. A test pod template for clusters that use SR-IOV on OpenStack
	24.7.5. Additional resources

	24.8. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTL SETTINGS FOR SR-IOV NETWORKS
	24.8.1. Labeling nodes with an SR-IOV enabled NIC
	24.8.2. Setting one sysctl flag
	24.8.2.1. Setting one sysctl flag on nodes with SR-IOV network devices
	24.8.2.2. Configuring sysctl on a SR-IOV network

	24.8.3. Configuring sysctl settings for pods associated with bonded SR-IOV interface flag
	24.8.3.1. Setting all sysctl flag on nodes with bonded SR-IOV network devices
	24.8.3.2. Configuring sysctl on a bonded SR-IOV network

	24.9. USING HIGH PERFORMANCE MULTICAST
	24.9.1. High performance multicast
	24.9.2. Configuring an SR-IOV interface for multicast

	24.10. USING DPDK AND RDMA
	24.10.1. Using a virtual function in DPDK mode with an Intel NIC
	24.10.2. Using a virtual function in DPDK mode with a Mellanox NIC
	24.10.3. Overview of achieving a specific DPDK line rate
	24.10.4. Using SR-IOV and the Node Tuning Operator to achieve a DPDK line rate
	24.10.4.1. Example SR-IOV Network Operator for virtual functions
	24.10.4.2. Example SR-IOV network operator
	24.10.4.3. Example DPDK base workload
	24.10.4.4. Example testpmd script

	24.10.5. Using a virtual function in RDMA mode with a Mellanox NIC
	24.10.6. A test pod template for clusters that use OVS-DPDK on OpenStack
	24.10.7. A test pod template for clusters that use OVS hardware offloading on OpenStack
	24.10.8. Additional resources

	24.11. USING POD-LEVEL BONDING
	24.11.1. Configuring a bond interface from two SR-IOV interfaces
	24.11.1.1. Creating a bond network attachment definition
	24.11.1.2. Creating a pod using a bond interface

	24.12. CONFIGURING HARDWARE OFFLOADING
	24.12.1. About hardware offloading
	24.12.2. Supported devices
	24.12.3. Prerequisites
	24.12.4. Configuring a machine config pool for hardware offloading
	24.12.5. Configuring the SR-IOV network node policy
	24.12.5.1. An example SR-IOV network node policy for OpenStack

	24.12.6. Creating a network attachment definition
	24.12.7. Adding the network attachment definition to your pods

	24.13. SWITCHING BLUEFIELD-2 FROM DPU TO NIC
	24.13.1. Switching Bluefield-2 from DPU mode to NIC mode

	24.14. UNINSTALLING THE SR-IOV NETWORK OPERATOR
	24.14.1. Uninstalling the SR-IOV Network Operator

	CHAPTER 25. OVN-KUBERNETES NETWORK PLUGIN
	25.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
	25.1.1. OVN-Kubernetes purpose
	25.1.2. Supported network plugin feature matrix
	25.1.3. OVN-Kubernetes IPv6 and dual-stack limitations
	25.1.4. Session affinity
	Stickiness timeout for session affinity

	25.2. OVN-KUBERNETES ARCHITECTURE
	25.2.1. Introduction to OVN-Kubernetes architecture
	25.2.2. Listing all resources in the OVN-Kubernetes project
	25.2.3. Listing the OVN-Kubernetes northbound database contents
	25.2.4. Command line arguments for ovn-nbctl to examine northbound database contents
	25.2.5. Listing the OVN-Kubernetes southbound database contents
	25.2.6. Command line arguments for ovn-sbctl to examine southbound database contents
	25.2.7. OVN-Kubernetes logical architecture
	25.2.7.1. Installing network-tools on local host
	25.2.7.2. Running network-tools

	25.2.8. Additional resources

	25.3. TROUBLESHOOTING OVN-KUBERNETES
	25.3.1. Monitoring OVN-Kubernetes health by using readiness probes
	25.3.2. Viewing OVN-Kubernetes alerts in the console
	25.3.3. Viewing OVN-Kubernetes alerts in the CLI
	25.3.4. Viewing the OVN-Kubernetes logs using the CLI
	25.3.5. Viewing the OVN-Kubernetes logs using the web console
	25.3.5.1. Changing the OVN-Kubernetes log levels

	25.3.6. Checking the OVN-Kubernetes pod network connectivity
	25.3.7. Additional resources

	25.4. TRACING OPENFLOW WITH OVNKUBE-TRACE
	25.4.1. Installing the ovnkube-trace on local host
	25.4.2. Running ovnkube-trace
	25.4.3. Additional resources

	25.5. MIGRATING FROM THE OPENSHIFT SDN NETWORK PLUGIN
	25.5.1. Migration to the OVN-Kubernetes network plugin
	25.5.1.1. Considerations for migrating to the OVN-Kubernetes network plugin
	25.5.1.2. How the migration process works

	25.5.2. Migrating to the OVN-Kubernetes network plugin
	25.5.3. Additional resources

	25.6. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
	25.6.1. Migrating to the OpenShift SDN network plugin

	25.7. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
	25.7.1. Converting to a dual-stack cluster network
	25.7.2. Converting to a single-stack cluster network

	25.8. LOGGING FOR EGRESS FIREWALL AND NETWORK POLICY RULES
	25.8.1. Audit logging
	25.8.2. Audit configuration
	25.8.3. Configuring egress firewall and network policy auditing for a cluster
	25.8.4. Enabling egress firewall and network policy audit logging for a namespace
	25.8.5. Disabling egress firewall and network policy audit logging for a namespace
	25.8.6. Additional resources

	25.9. CONFIGURING IPSEC ENCRYPTION
	25.9.1. Prerequisites
	25.9.2. Types of network traffic flows encrypted by IPsec
	25.9.2.1. Network connectivity requirements when IPsec is enabled

	25.9.3. Encryption protocol and IPsec mode
	25.9.4. Security certificate generation and rotation
	25.9.5. Enabling IPsec encryption
	25.9.6. Disabling IPsec encryption
	25.9.7. Additional resources

	25.10. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	25.10.1. How an egress firewall works in a project
	25.10.1.1. Limitations of an egress firewall
	25.10.1.2. Matching order for egress firewall policy rules
	25.10.1.3. How Domain Name Server (DNS) resolution works

	25.10.2. EgressFirewall custom resource (CR) object
	25.10.2.1. EgressFirewall rules
	25.10.2.2. Example EgressFirewall CR objects

	25.10.3. Creating an egress firewall policy object

	25.11. VIEWING AN EGRESS FIREWALL FOR A PROJECT
	25.11.1. Viewing an EgressFirewall object

	25.12. EDITING AN EGRESS FIREWALL FOR A PROJECT
	25.12.1. Editing an EgressFirewall object

	25.13. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	25.13.1. Removing an EgressFirewall object

	25.14. CONFIGURING AN EGRESS IP ADDRESS
	25.14.1. Egress IP address architectural design and implementation
	25.14.1.1. Platform support
	25.14.1.2. Public cloud platform considerations
	25.14.1.3. Assignment of egress IPs to pods
	25.14.1.4. Assignment of egress IPs to nodes
	25.14.1.5. Architectural diagram of an egress IP address configuration

	25.14.2. EgressIP object
	25.14.3. EgressIPconfig object
	25.14.4. Labeling a node to host egress IP addresses
	25.14.5. Next steps
	25.14.6. Additional resources

	25.15. ASSIGNING AN EGRESS IP ADDRESS
	25.15.1. Assigning an egress IP address to a namespace
	25.15.2. Additional resources

	25.16. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	25.16.1. About an egress router pod
	25.16.1.1. Egress router modes
	25.16.1.2. Egress router pod implementation
	25.16.1.3. Deployment considerations
	25.16.1.4. Failover configuration

	25.16.2. Additional resources

	25.17. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	25.17.1. Egress router custom resource
	25.17.2. Deploying an egress router in redirect mode

	25.18. ENABLING MULTICAST FOR A PROJECT
	25.18.1. About multicast
	25.18.2. Enabling multicast between pods

	25.19. DISABLING MULTICAST FOR A PROJECT
	25.19.1. Disabling multicast between pods

	25.20. TRACKING NETWORK FLOWS
	25.20.1. Network object configuration for tracking network flows
	25.20.2. Adding destinations for network flows collectors
	25.20.3. Deleting all destinations for network flows collectors
	25.20.4. Additional resources

	25.21. CONFIGURING HYBRID NETWORKING
	25.21.1. Configuring hybrid networking with OVN-Kubernetes
	25.21.2. Additional resources

	CHAPTER 26. OPENSHIFT SDN NETWORK PLUGIN
	26.1. ABOUT THE OPENSHIFT SDN NETWORK PLUGIN
	26.1.1. OpenShift SDN network isolation modes
	26.1.2. Supported network plugin feature matrix

	26.2. MIGRATING TO THE OPENSHIFT SDN NETWORK PLUGIN
	26.2.1. How the migration process works
	26.2.2. Migrating to the OpenShift SDN network plugin
	26.2.3. Additional resources

	26.3. ROLLING BACK TO THE OVN-KUBERNETES NETWORK PLUGIN
	26.3.1. Migrating to the OVN-Kubernetes network plugin

	26.4. CONFIGURING EGRESS IPS FOR A PROJECT
	26.4.1. Egress IP address architectural design and implementation
	26.4.1.1. Platform support
	26.4.1.2. Public cloud platform considerations
	26.4.1.3. Limitations
	26.4.1.4. IP address assignment approaches

	26.4.2. Configuring automatically assigned egress IP addresses for a namespace
	26.4.3. Configuring manually assigned egress IP addresses for a namespace
	26.4.4. Additional resources

	26.5. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	26.5.1. How an egress firewall works in a project
	26.5.1.1. Limitations of an egress firewall
	26.5.1.2. Matching order for egress firewall policy rules
	26.5.1.3. How Domain Name Server (DNS) resolution works

	26.5.2. EgressNetworkPolicy custom resource (CR) object
	26.5.2.1. EgressNetworkPolicy rules
	26.5.2.2. Example EgressNetworkPolicy CR objects

	26.5.3. Creating an egress firewall policy object

	26.6. EDITING AN EGRESS FIREWALL FOR A PROJECT
	26.6.1. Viewing an EgressNetworkPolicy object

	26.7. EDITING AN EGRESS FIREWALL FOR A PROJECT
	26.7.1. Editing an EgressNetworkPolicy object

	26.8. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	26.8.1. Removing an EgressNetworkPolicy object

	26.9. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	26.9.1. About an egress router pod
	26.9.1.1. Egress router modes
	26.9.1.2. Egress router pod implementation
	26.9.1.3. Deployment considerations
	26.9.1.4. Failover configuration

	26.9.2. Additional resources

	26.10. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	26.10.1. Egress router pod specification for redirect mode
	26.10.2. Egress destination configuration format
	26.10.3. Deploying an egress router pod in redirect mode
	26.10.4. Additional resources

	26.11. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
	26.11.1. Egress router pod specification for HTTP mode
	26.11.2. Egress destination configuration format
	26.11.3. Deploying an egress router pod in HTTP proxy mode
	26.11.4. Additional resources

	26.12. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
	26.12.1. Egress router pod specification for DNS mode
	26.12.2. Egress destination configuration format
	26.12.3. Deploying an egress router pod in DNS proxy mode
	26.12.4. Additional resources

	26.13. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
	26.13.1. Configuring an egress router destination mappings with a config map
	26.13.2. Additional resources

	26.14. ENABLING MULTICAST FOR A PROJECT
	26.14.1. About multicast
	26.14.2. Enabling multicast between pods

	26.15. DISABLING MULTICAST FOR A PROJECT
	26.15.1. Disabling multicast between pods

	26.16. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
	26.16.1. Prerequisites
	26.16.2. Joining projects
	26.16.3. Isolating a project
	26.16.4. Disabling network isolation for a project

	26.17. CONFIGURING KUBE-PROXY
	26.17.1. About iptables rules synchronization
	26.17.2. kube-proxy configuration parameters
	26.17.3. Modifying the kube-proxy configuration

	CHAPTER 27. CONFIGURING ROUTES
	27.1. ROUTE CONFIGURATION
	27.1.1. Creating an HTTP-based route
	27.1.2. Creating a route for Ingress Controller sharding
	27.1.3. Configuring route timeouts
	27.1.4. HTTP Strict Transport Security
	27.1.4.1. Enabling HTTP Strict Transport Security per-route
	27.1.4.2. Disabling HTTP Strict Transport Security per-route
	27.1.4.3. Enforcing HTTP Strict Transport Security per-domain

	27.1.5. Throughput issue troubleshooting methods
	27.1.6. Using cookies to keep route statefulness
	27.1.6.1. Annotating a route with a cookie

	27.1.7. Path-based routes
	27.1.8. Route-specific annotations
	27.1.9. Configuring the route admission policy
	27.1.10. Creating a route through an Ingress object
	27.1.11. Creating a route using the default certificate through an Ingress object
	27.1.12. Creating a route using the destination CA certificate in the Ingress annotation
	27.1.13. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

	27.2. SECURED ROUTES
	27.2.1. Creating a re-encrypt route with a custom certificate
	27.2.2. Creating an edge route with a custom certificate
	27.2.3. Creating a passthrough route

	CHAPTER 28. CONFIGURING INGRESS CLUSTER TRAFFIC
	28.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	28.1.1. Comparision: Fault tolerant access to external IP addresses

	28.2. CONFIGURING EXTERNALIPS FOR SERVICES
	28.2.1. Prerequisites
	28.2.2. About ExternalIP
	28.2.2.1. Configuration for ExternalIP
	28.2.2.2. Restrictions on the assignment of an external IP address
	28.2.2.3. Example policy objects

	28.2.3. ExternalIP address block configuration
	Example external IP configurations

	28.2.4. Configure external IP address blocks for your cluster
	28.2.5. Next steps

	28.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	28.3.1. Using Ingress Controllers and routes
	28.3.2. Prerequisites
	28.3.3. Creating a project and service
	28.3.4. Exposing the service by creating a route
	28.3.5. Configuring Ingress Controller sharding by using route labels
	28.3.6. Configuring Ingress Controller sharding by using namespace labels
	28.3.7. Creating a route for Ingress Controller sharding
	28.3.8. Additional resources

	28.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	28.4.1. Using a load balancer to get traffic into the cluster
	28.4.2. Prerequisites
	28.4.3. Creating a project and service
	28.4.4. Exposing the service by creating a route
	28.4.5. Creating a load balancer service

	28.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS
	28.5.1. Configuring Classic Load Balancer timeouts on AWS
	28.5.1.1. Configuring route timeouts
	28.5.1.2. Configuring Classic Load Balancer timeouts

	28.5.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer
	28.5.2.1. Switching the Ingress Controller from using a Classic Load Balancer to a Network Load Balancer
	28.5.2.2. Switching the Ingress Controller from using a Network Load Balancer to a Classic Load Balancer
	28.5.2.3. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
	28.5.2.4. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
	28.5.2.5. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster

	28.5.3. Additional resources

	28.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
	28.6.1. Prerequisites
	28.6.2. Attaching an ExternalIP to a service
	28.6.3. Additional resources

	28.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
	28.7.1. Using a NodePort to get traffic into the cluster
	28.7.2. Prerequisites
	28.7.3. Creating a project and service
	28.7.4. Exposing the service by creating a route
	28.7.5. Additional resources

	28.8. CONFIGURING INGRESS CLUSTER TRAFFIC USING LOAD BALANCER ALLOWED SOURCE RANGES
	28.8.1. Configuring load balancer allowed source ranges
	28.8.2. Migrating to load balancer allowed source ranges
	28.8.3. Additional resources

	CHAPTER 29. KUBERNETES NMSTATE
	29.1. ABOUT THE KUBERNETES NMSTATE OPERATOR
	29.1.1. Installing the Kubernetes NMState Operator
	29.1.1.1. Installing the Kubernetes NMState Operator using the web console
	29.1.1.2. Installing the Kubernetes NMState Operator using the CLI

	29.2. OBSERVING AND UPDATING THE NODE NETWORK STATE AND CONFIGURATION
	29.2.1. Viewing the network state of a node
	29.2.2. Managing policy by using the CLI
	29.2.2.1. Creating an interface on nodes
	Additional resources

	29.2.3. Confirming node network policy updates on nodes
	29.2.4. Removing an interface from nodes
	29.2.5. Example policy configurations for different interfaces
	29.2.5.1. Example: Linux bridge interface node network configuration policy
	29.2.5.2. Example: VLAN interface node network configuration policy
	29.2.5.3. Example: Bond interface node network configuration policy
	29.2.5.4. Example: Ethernet interface node network configuration policy
	29.2.5.5. Example: Multiple interfaces in the same node network configuration policy

	29.2.6. Capturing the static IP of a NIC attached to a bridge
	29.2.6.1. Example: Linux bridge interface node network configuration policy to inherit static IP address from the NIC attached to the bridge

	29.2.7. Examples: IP management
	29.2.7.1. Static
	29.2.7.2. No IP address
	29.2.7.3. Dynamic host configuration
	29.2.7.4. DNS
	29.2.7.5. Static routing

	29.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION
	29.3.1. Troubleshooting an incorrect node network configuration policy configuration

	CHAPTER 30. CONFIGURING THE CLUSTER-WIDE PROXY
	30.1. PREREQUISITES
	30.2. ENABLING THE CLUSTER-WIDE PROXY
	30.3. REMOVING THE CLUSTER-WIDE PROXY
	Additional resources

	CHAPTER 31. CONFIGURING A CUSTOM PKI
	31.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
	31.2. ENABLING THE CLUSTER-WIDE PROXY
	31.3. CERTIFICATE INJECTION USING OPERATORS

	CHAPTER 32. LOAD BALANCING ON RHOSP
	32.1. LIMITATIONS OF LOAD BALANCER SERVICES
	32.1.1. Local external traffic policies
	32.1.2. Load balancer source ranges

	32.2. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
	32.3. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
	32.3.1. Scaling clusters by using Octavia
	32.3.2. Scaling clusters that use Kuryr by using Octavia

	32.4. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
	32.5. SERVICES FOR AN EXTERNAL LOAD BALANCER
	32.5.1. Configuring an external load balancer

	CHAPTER 33. LOAD BALANCING WITH METALLB
	33.1. ABOUT METALLB AND THE METALLB OPERATOR
	33.1.1. When to use MetalLB
	33.1.2. MetalLB Operator custom resources
	33.1.3. MetalLB software components
	33.1.4. MetalLB and external traffic policy
	33.1.5. MetalLB concepts for layer 2 mode
	33.1.6. MetalLB concepts for BGP mode
	33.1.7. Limitations and restrictions
	33.1.7.1. Infrastructure considerations for MetalLB
	33.1.7.2. Limitations for layer 2 mode
	33.1.7.3. Limitations for BGP mode

	33.1.8. Additional resources

	33.2. INSTALLING THE METALLB OPERATOR
	33.2.1. Installing the MetalLB Operator from the OperatorHub using the web console
	33.2.2. Installing from OperatorHub using the CLI
	33.2.3. Starting MetalLB on your cluster
	33.2.4. Deployment specifications for MetalLB
	33.2.4.1. Limit speaker pods to specific nodes
	33.2.4.2. Configuring a container runtime class in a MetalLB deployment
	33.2.4.3. Configuring pod priority and pod affinity in a MetalLB deployment
	33.2.4.4. Configuring pod CPU limits in a MetalLB deployment

	33.2.5. Additional resources
	33.2.6. Next steps

	33.3. UPGRADING THE METALLB
	33.3.1. Deleting the MetalLB Operator from a cluster using the web console
	33.3.2. Deleting MetalLB Operator from a cluster using the CLI
	33.3.3. Editing the MetalLB Operator Operator group
	33.3.4. Upgrading the MetalLB Operator
	33.3.5. Additional resources

	33.4. CONFIGURING METALLB ADDRESS POOLS
	33.4.1. About the IPAddressPool custom resource
	33.4.2. Configuring an address pool
	33.4.3. Example address pool configurations
	33.4.3.1. Example: IPv4 and CIDR ranges
	33.4.3.2. Example: Reserve IP addresses
	33.4.3.3. Example: IPv4 and IPv6 addresses

	33.4.4. Additional resources
	33.4.5. Next steps

	33.5. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS
	33.5.1. About the BGPAdvertisement custom resource
	33.5.2. Configuring MetalLB with a BGP advertisement and a basic use case
	33.5.2.1. Example: Advertise a basic address pool configuration with BGP

	33.5.3. Configuring MetalLB with a BGP advertisement and an advanced use case
	33.5.3.1. Example: Advertise an advanced address pool configuration with BGP

	33.5.4. Advertising an IP address pool from a subset of nodes
	33.5.5. About the L2Advertisement custom resource
	33.5.6. Configuring MetalLB with an L2 advertisement
	33.5.7. Configuring MetalLB with a L2 advertisement and label
	33.5.8. Additional resources

	33.6. CONFIGURING METALLB BGP PEERS
	33.6.1. About the BGP peer custom resource
	33.6.2. Configuring a BGP peer
	33.6.3. Configure a specific set of BGP peers for a given address pool
	33.6.4. Example BGP peer configurations
	33.6.4.1. Example: Limit which nodes connect to a BGP peer
	33.6.4.2. Example: Specify a BFD profile for a BGP peer
	33.6.4.3. Example: Specify BGP peers for dual-stack networking

	33.6.5. Next steps

	33.7. CONFIGURING COMMUNITY ALIAS
	33.7.1. About the community custom resource
	33.7.2. Configuring MetalLB with a BGP advertisement and community alias

	33.8. CONFIGURING METALLB BFD PROFILES
	33.8.1. About the BFD profile custom resource
	33.8.2. Configuring a BFD profile
	33.8.3. Next steps

	33.9. CONFIGURING SERVICES TO USE METALLB
	33.9.1. Request a specific IP address
	33.9.2. Request an IP address from a specific pool
	33.9.3. Accept any IP address
	33.9.4. Share a specific IP address
	33.9.5. Configuring a service with MetalLB

	33.10. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
	33.10.1. Setting the MetalLB logging levels
	33.10.1.1. FRRouting (FRR) log levels

	33.10.2. Troubleshooting BGP issues
	33.10.3. Troubleshooting BFD issues
	33.10.4. MetalLB metrics for BGP and BFD
	33.10.5. About collecting MetalLB data

	CHAPTER 34. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
	34.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING
	34.1.1. Network Metrics Daemon
	34.1.2. Metrics with network name

