
OpenShift Container Platform 4.10

Specialized hardware and driver enablement

Learn about hardware enablement on OpenShift Container Platform

Last Updated: 2023-09-21





OpenShift Container Platform 4.10 Specialized hardware and driver
enablement

Learn about hardware enablement on OpenShift Container Platform



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides an overview of hardware enablement in OpenShift Container Platform.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT

CHAPTER 2. DRIVER TOOLKIT
2.1. ABOUT THE DRIVER TOOLKIT

Background
Purpose

2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE
2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io
2.2.2. Finding the Driver Toolkit image URL in the payload

2.3. USING THE DRIVER TOOLKIT
2.3.1. Build and run the simple-kmod driver container on a cluster

2.4. ADDITIONAL RESOURCES

CHAPTER 3. SPECIAL RESOURCE OPERATOR
3.1. ABOUT THE SPECIAL RESOURCE OPERATOR
3.2. INSTALLING THE SPECIAL RESOURCE OPERATOR

3.2.1. Installing the Special Resource Operator by using the CLI
3.2.2. Installing the Special Resource Operator by using the web console

3.3. USING THE SPECIAL RESOURCE OPERATOR
3.3.1. Building and running the simple-kmod SpecialResource by using a config map

3.4. PROMETHEUS SPECIAL RESOURCE OPERATOR METRICS
3.5. ADDITIONAL RESOURCES

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR
4.1. ABOUT THE NODE FEATURE DISCOVERY OPERATOR
4.2. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR

4.2.1. Installing the NFD Operator using the CLI
4.2.2. Installing the NFD Operator using the web console

4.3. USING THE NODE FEATURE DISCOVERY OPERATOR
4.3.1. Create a NodeFeatureDiscovery instance using the CLI
4.3.2. Create a NodeFeatureDiscovery CR using the web console

4.4. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR
4.4.1. core

core.sleepInterval
core.sources
core.labelWhiteList
core.noPublish
core.klog

core.klog.addDirHeader
core.klog.alsologtostderr
core.klog.logBacktraceAt
core.klog.logDir
core.klog.logFile
core.klog.logFileMaxSize
core.klog.logtostderr
core.klog.skipHeaders
core.klog.skipLogHeaders
core.klog.stderrthreshold
core.klog.v
core.klog.vmodule

4.4.2. sources
sources.cpu.cpuid.attributeBlacklist

4

5
5
5
6
6
6
6
7
7
11

12
12
12
12
13
14
14

20
21

22
22
22
22
23
24
24
27
27
27
27
27
28
28
28
28
28
28
29
29
29
29
29
29
29
29
30
30
30

Table of Contents

1



sources.cpu.cpuid.attributeWhitelist
sources.kernel.kconfigFile
sources.kernel.configOpts
sources.pci.deviceClassWhitelist
sources.pci.deviceLabelFields
sources.usb.deviceClassWhitelist
sources.usb.deviceLabelFields
sources.custom

4.5. USING THE NFD TOPOLOGY UPDATER
4.5.1. NodeResourceTopology CR
4.5.2. NFD Topology Updater command line flags

-ca-file
-cert-file
-h, -help
-key-file
-kubelet-config-file
-no-publish
4.5.2.1. -oneshot

-podresources-socket
-server
-server-name-override
-sleep-interval
-version
-watch-namespace

30
30
31
31
31
31
31
32
32
32
33
33
34
34
34
34
34
35
35
35
35
35
36
36

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

2



Table of Contents

3



CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER
ENABLEMENT

Many applications require specialized hardware or software that depends on kernel modules or drivers.
You can use driver containers to load out-of-tree kernel modules on Red Hat Enterprise Linux CoreOS
(RHCOS) nodes. To deploy out-of-tree drivers during cluster installation, use the kmods-via-
containers framework. To load drivers or kernel modules on an existing OpenShift Container Platform
cluster, OpenShift Container Platform offers several tools:

The Driver Toolkit is a container image that is a part of every OpenShift Container Platform
release. It contains the kernel packages and other common dependencies that are needed to
build a driver or kernel module. The Driver Toolkit can be used as a base image for driver
container image builds on OpenShift Container Platform.

The Special Resource Operator (SRO) orchestrates the building and management of driver
containers to load kernel modules and drivers on an existing OpenShift or Kubernetes cluster.

The Node Feature Discovery (NFD) Operator adds node labels for CPU capabilities, kernel
version, PCIe device vendor IDs, and more.

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

4



CHAPTER 2. DRIVER TOOLKIT
Learn about the Driver Toolkit and how you can use it as a base image for driver containers for enabling
special software and hardware devices on Kubernetes.

IMPORTANT

The Driver Toolkit is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

2.1. ABOUT THE DRIVER TOOLKIT

Background
The Driver Toolkit is a container image in the OpenShift Container Platform payload used as a base
image on which you can build driver containers. The Driver Toolkit image contains the kernel packages
commonly required as dependencies to build or install kernel modules, as well as a few tools needed in
driver containers. The version of these packages will match the kernel version running on the Red Hat
Enterprise Linux CoreOS (RHCOS) nodes in the corresponding OpenShift Container Platform release.

Driver containers are container images used for building and deploying out-of-tree kernel modules and
drivers on container operating systems like RHCOS. Kernel modules and drivers are software libraries
running with a high level of privilege in the operating system kernel. They extend the kernel
functionalities or provide the hardware-specific code required to control new devices. Examples include
hardware devices like Field Programmable Gate Arrays (FPGA) or GPUs, and software-defined storage
(SDS) solutions, such as Lustre parallel file systems, which require kernel modules on client machines.
Driver containers are the first layer of the software stack used to enable these technologies on
Kubernetes.

The list of kernel packages in the Driver Toolkit includes the following and their dependencies:

kernel-core

kernel-devel

kernel-headers

kernel-modules

kernel-modules-extra

In addition, the Driver Toolkit also includes the corresponding real-time kernel packages:

kernel-rt-core

kernel-rt-devel

kernel-rt-modules

kernel-rt-modules-extra

CHAPTER 2. DRIVER TOOLKIT

5

https://access.redhat.com/support/offerings/techpreview/


The Driver Toolkit also has several tools which are commonly needed to build and install kernel modules,
including:

elfutils-libelf-devel

kmod

binutilskabi-dw

kernel-abi-whitelists

dependencies for the above

Purpose
Prior to the Driver Toolkit’s existence, you could install kernel packages in a pod or build config on
OpenShift Container Platform using entitled builds or by installing from the kernel RPMs in the hosts 
machine-os-content. The Driver Toolkit simplifies the process by removing the entitlement step, and
avoids the privileged operation of accessing the machine-os-content in a pod. The Driver Toolkit can
also be used by partners who have access to pre-released OpenShift Container Platform versions to
prebuild driver-containers for their hardware devices for future OpenShift Container Platform releases.

The Driver Toolkit is also used by the Special Resource Operator (SRO), which is currently available as a
community Operator on OperatorHub. SRO supports out-of-tree and third-party kernel drivers and the
support software for the underlying operating system. Users can create recipes for SRO to build and
deploy a driver container, as well as support software like a device plugin, or metrics. Recipes can include
a build config to build a driver container based on the Driver Toolkit, or SRO can deploy a prebuilt driver
container.

2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE

The driver-toolkit image is available from the Container images section of the Red Hat Ecosystem
Catalog and in the OpenShift Container Platform release payload. The image corresponding to the
most recent minor release of OpenShift Container Platform will be tagged with the version number in
the catalog. The image URL for a specific release can be found using the oc adm CLI command.

2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io

Instructions for pulling the driver-toolkit image from registry.redhat.io with podman or in OpenShift
Container Platform can be found on the Red Hat Ecosystem Catalog . The driver-toolkit image for the
latest minor release will be tagged with the minor release version on registry.redhat.io for example 
registry.redhat.io/openshift4/driver-toolkit-rhel8:v4.10.

2.2.2. Finding the Driver Toolkit image URL in the payload

Prerequisites

You obtained the image pull secret from the Red Hat OpenShift Cluster Manager .

You installed the OpenShift CLI (oc).

Procedure

1. The image URL of the driver-toolkit corresponding to a certain release can be extracted from
the release image using the oc adm command:

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

6

https://www.openshift.com/blog/how-to-use-entitled-image-builds-to-build-drivercontainers-with-ubi-on-openshift
https://registry.redhat.io/
https://catalog.redhat.com/software/containers/openshift4/driver-toolkit-rhel8/604009d6122bd89307e00865?container-tabs=gti
https://console.redhat.com/openshift/install/pull-secret


Example output

2. This image can be pulled using a valid pull secret, such as the pull secret required to install
OpenShift Container Platform.

2.3. USING THE DRIVER TOOLKIT

As an example, the Driver Toolkit can be used as the base image for building a very simple kernel module
called simple-kmod.

NOTE

The Driver Toolkit contains the necessary dependencies, openssl, mokutil, and keyutils,
needed to sign a kernel module. However, in this example, the simple-kmod kernel
module is not signed and therefore cannot be loaded on systems with Secure Boot
enabled.

2.3.1. Build and run the simple-kmod driver container on a cluster

Prerequisites

You have a running OpenShift Container Platform cluster.

You set the Image Registry Operator state to Managed for your cluster.

You installed the OpenShift CLI (oc).

You are logged into the OpenShift CLI as a user with cluster-admin privileges.

Procedure

Create a namespace. For example:

1. The YAML defines an ImageStream for storing the simple-kmod driver container image, and a 
BuildConfig for building the container. Save this YAML as 0000-buildconfig.yaml.template.

$ oc adm release info 4.10.0 --image-for=driver-toolkit

quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:0fd84aee79606178b6561ac71f8540f404d518ae5deff45f6d6ac8f02636c7f4

$ podman pull --authfile=path/to/pullsecret.json quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:<SHA>

$ oc new-project simple-kmod-demo

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
  labels:
    app: simple-kmod-driver-container
  name: simple-kmod-driver-container
  namespace: simple-kmod-demo

CHAPTER 2. DRIVER TOOLKIT

7



spec: {}
---
apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  labels:
    app: simple-kmod-driver-build
  name: simple-kmod-driver-build
  namespace: simple-kmod-demo
spec:
  nodeSelector:
    node-role.kubernetes.io/worker: ""
  runPolicy: "Serial"
  triggers:
    - type: "ConfigChange"
    - type: "ImageChange"
  source:
    git:
      ref: "master"
      uri: "https://github.com/openshift-psap/kvc-simple-kmod.git"
    type: Git
    dockerfile: |
      FROM DRIVER_TOOLKIT_IMAGE

      WORKDIR /build/

      # Expecting kmod software version as an input to the build
      ARG KMODVER

      # Grab the software from upstream
      RUN git clone https://github.com/openshift-psap/simple-kmod.git
      WORKDIR simple-kmod

      # Build and install the module
      RUN make all       KVER=$(rpm -q --qf "%{VERSION}-%{RELEASE}.%{ARCH}"  kernel-
core) KMODVER=${KMODVER} \
      && make install   KVER=$(rpm -q --qf "%{VERSION}-%{RELEASE}.%{ARCH}"  kernel-
core) KMODVER=${KMODVER}

      # Add the helper tools
      WORKDIR /root/kvc-simple-kmod
      ADD Makefile .
      ADD simple-kmod-lib.sh .
      ADD simple-kmod-wrapper.sh .
      ADD simple-kmod.conf .
      RUN mkdir -p /usr/lib/kvc/ \
      && mkdir -p /etc/kvc/ \
      && make install

      RUN systemctl enable kmods-via-containers@simple-kmod
  strategy:
    dockerStrategy:
      buildArgs:
        - name: KMODVER
          value: DEMO
  output:

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

8



2. Substitute the correct driver toolkit image for the OpenShift Container Platform version you are
running in place of “DRIVER_TOOLKIT_IMAGE” with the following commands.

3. Create the image stream and build config with

4. After the builder pod completes successfully, deploy the driver container image as a 
DaemonSet.

a. The driver container must run with the privileged security context in order to load the kernel
modules on the host. The following YAML file contains the RBAC rules and the DaemonSet
for running the driver container. Save this YAML as 1000-drivercontainer.yaml.

    to:
      kind: ImageStreamTag
      name: simple-kmod-driver-container:demo

$ OCP_VERSION=$(oc get clusterversion/version -ojsonpath={.status.desired.version})

$ DRIVER_TOOLKIT_IMAGE=$(oc adm release info $OCP_VERSION --image-for=driver-
toolkit)

$ sed "s#DRIVER_TOOLKIT_IMAGE#${DRIVER_TOOLKIT_IMAGE}#" 0000-
buildconfig.yaml.template > 0000-buildconfig.yaml

$ oc create -f 0000-buildconfig.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
  name: simple-kmod-driver-container
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: simple-kmod-driver-container
rules:
- apiGroups:
  - security.openshift.io
  resources:
  - securitycontextconstraints
  verbs:
  - use
  resourceNames:
  - privileged
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: simple-kmod-driver-container
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: simple-kmod-driver-container
subjects:

CHAPTER 2. DRIVER TOOLKIT

9



b. Create the RBAC rules and daemon set:

5. After the pods are running on the worker nodes, verify that the simple_kmod kernel module is
loaded successfully on the host machines with lsmod.

a. Verify that the pods are running:

Example output

b. Execute the lsmod command in the driver container pod:

- kind: ServiceAccount
  name: simple-kmod-driver-container
userNames:
- system:serviceaccount:simple-kmod-demo:simple-kmod-driver-container
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: simple-kmod-driver-container
spec:
  selector:
    matchLabels:
      app: simple-kmod-driver-container
  template:
    metadata:
      labels:
        app: simple-kmod-driver-container
    spec:
      serviceAccount: simple-kmod-driver-container
      serviceAccountName: simple-kmod-driver-container
      containers:
      - image: image-registry.openshift-image-registry.svc:5000/simple-kmod-
demo/simple-kmod-driver-container:demo
        name: simple-kmod-driver-container
        imagePullPolicy: Always
        command: ["/sbin/init"]
        lifecycle:
          preStop:
            exec:
              command: ["/bin/sh", "-c", "systemctl stop kmods-via-containers@simple-kmod"]
        securityContext:
          privileged: true
      nodeSelector:
        node-role.kubernetes.io/worker: ""

$ oc create -f 1000-drivercontainer.yaml

$ oc get pod -n simple-kmod-demo

NAME                                 READY   STATUS      RESTARTS   AGE
simple-kmod-driver-build-1-build     0/1     Completed   0          6m
simple-kmod-driver-container-b22fd   1/1     Running     0          40s
simple-kmod-driver-container-jz9vn   1/1     Running     0          40s
simple-kmod-driver-container-p45cc   1/1     Running     0          40s

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

10



Example output

2.4. ADDITIONAL RESOURCES

For more information about configuring registry storage for your cluster, see Image Registry
Operator in OpenShift Container Platform.

$ oc exec -it pod/simple-kmod-driver-container-p45cc -- lsmod | grep simple

simple_procfs_kmod     16384  0
simple_kmod            16384  0

CHAPTER 2. DRIVER TOOLKIT

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/registry/#registry-removed_configuring-registry-operator


CHAPTER 3. SPECIAL RESOURCE OPERATOR
Learn about the Special Resource Operator (SRO) and how you can use it to build and manage driver
containers for loading kernel modules and device drivers on nodes in an OpenShift Container Platform
cluster.

IMPORTANT

The Special Resource Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

3.1. ABOUT THE SPECIAL RESOURCE OPERATOR

The Special Resource Operator (SRO) helps you manage the deployment of kernel modules and drivers
on an existing OpenShift Container Platform cluster. The SRO can be used for a case as simple as
building and loading a single kernel module, or as complex as deploying the driver, device plugin, and
monitoring stack for a hardware accelerator.

For loading kernel modules, the SRO is designed around the use of driver containers. Driver containers
are increasingly being used in cloud-native environments, especially when run on pure container
operating systems, to deliver hardware drivers to the host. Driver containers extend the kernel stack
beyond the out-of-the-box software and hardware features of a specific kernel. Driver containers work
on various container-capable Linux distributions. With driver containers, the host operating system stays
clean and there is no clash between different library versions or binaries on the host.

3.2. INSTALLING THE SPECIAL RESOURCE OPERATOR

As a cluster administrator, you can install the Special Resource Operator (SRO) by using the OpenShift
CLI or the web console.

3.2.1. Installing the Special Resource Operator by using the CLI

As a cluster administrator, you can install the Special Resource Operator (SRO) by using the OpenShift
CLI.

Prerequisites

You have a running OpenShift Container Platform cluster.

You installed the OpenShift CLI (oc).

You are logged into the OpenShift CLI as a user with cluster-admin privileges.

You installed the Node Feature Discovery (NFD) Operator.

Procedure

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

12

https://access.redhat.com/support/offerings/techpreview/


1. Install the SRO in the openshift-operators namespace:

a. Create the following Subscription CR and save the YAML in the sro-sub.yaml file:

Example Subscription CR

b. Create the subscription object by running the following command:

c. Switch to the openshift-operators project:

Verification

To verify that the Operator deployment is successful, run:

Example output

A successful deployment shows a Running status.

3.2.2. Installing the Special Resource Operator by using the web console

As a cluster administrator, you can install the Special Resource Operator (SRO) by using the OpenShift
Container Platform web console.

Prerequisites

You installed the Node Feature Discovery (NFD) Operator.

Procedure

1. Log in to the OpenShift Container Platform web console.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: openshift-special-resource-operator
  namespace: openshift-operators
spec:
  channel: "stable"
  installPlanApproval: Automatic
  name: openshift-special-resource-operator
  source: redhat-operators
  sourceNamespace: openshift-marketplace

$ oc create -f sro-sub.yaml

$ oc project openshift-operators

$ oc get pods

NAME                                                   READY   STATUS    RESTARTS   AGE
nfd-controller-manager-7f4c5f5778-4lvvk                2/2     Running   0          89s
special-resource-controller-manager-6dbf7d4f6f-9kl8h   2/2     Running   0          81s

CHAPTER 3. SPECIAL RESOURCE OPERATOR

13



2. Install the Special Resource Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose Special Resource Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, select a specific namespace on the cluster, select the
namespace created in the previous section, and then click Install.

Verification

To verify that the Special Resource Operator installed successfully:

1. Navigate to the Operators → Installed Operators page.

2. Ensure that Special Resource Operator is listed in the openshift-operators  project with a
Status of InstallSucceeded.

NOTE

During installation, an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

3. If the Operator does not appear as installed, to troubleshoot further:

a. Navigate to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

b. Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
operators project.

NOTE

The Node Feature Discovery (NFD) Operator is a dependency of the Special
Resource Operator (SRO). If the NFD Operator is not installed before installing
the SRO, the Operator Lifecycle Manager will automatically install the NFD
Operator. However, the required Node Feature Discovery operand will not be
deployed automatically. The Node Feature Discovery Operator documentation
provides details about how to deploy NFD by using the NFD Operator.

3.3. USING THE SPECIAL RESOURCE OPERATOR

The Special Resource Operator (SRO) is used to manage the build and deployment of a driver container.
The objects required to build and deploy the container can be defined in a Helm chart.

The example in this section uses the simple-kmod SpecialResource object to point to a ConfigMap
object that is created to store the Helm charts.

3.3.1. Building and running the simple-kmod SpecialResource by using a config map

In this example, the simple-kmod kernel module shows how the Special Resource Operator (SRO)
manages a driver container. The container is defined in the Helm chart templates that are stored in a
config map.

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

14



Prerequisites

You have a running OpenShift Container Platform cluster.

You set the Image Registry Operator state to Managed for your cluster.

You installed the OpenShift CLI (oc).

You are logged into the OpenShift CLI as a user with cluster-admin privileges.

You installed the Node Feature Discovery (NFD) Operator.

You installed the SRO.

You installed the Helm CLI (helm).

Procedure

1. To create a simple-kmod SpecialResource object, define an image stream and build config to
build the image, and a service account, role, role binding, and daemon set to run the container.
The service account, role, and role binding are required to run the daemon set with the
privileged security context so that the kernel module can be loaded.

a. Create a templates directory, and change into it:

b. Save this YAML template for the image stream and build config in the templates directory
as 0000-buildconfig.yaml:

$ mkdir -p chart/simple-kmod-0.0.1/templates

$ cd chart/simple-kmod-0.0.1/templates

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
  labels:
    app: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}} 1
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}} 2
spec: {}
---
apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  labels:
    app: {{.Values.specialresource.metadata.name}}-{{.Values.groupName.driverBuild}}  
3

  name: {{.Values.specialresource.metadata.name}}-{{.Values.groupName.driverBuild}} 
4

  annotations:
    specialresource.openshift.io/wait: "true"
    specialresource.openshift.io/driver-container-vendor: simple-kmod
    specialresource.openshift.io/kernel-affine: "true"
spec:

CHAPTER 3. SPECIAL RESOURCE OPERATOR

15



1 2 3 4 5 The templates such as {{.Values.specialresource.metadata.name}} are
filled in by the SRO, based on fields in the SpecialResource CR and

variables known to the Operator such as {{.Values.KernelFullVersion}}.

c. Save the following YAML template for the RBAC resources and daemon set in the 
templates directory as 1000-driver-container.yaml:

  nodeSelector:
    node-role.kubernetes.io/worker: ""
  runPolicy: "Serial"
  triggers:
    - type: "ConfigChange"
    - type: "ImageChange"
  source:
    git:
      ref: {{.Values.specialresource.spec.driverContainer.source.git.ref}}
      uri: {{.Values.specialresource.spec.driverContainer.source.git.uri}}
    type: Git
  strategy:
    dockerStrategy:
      dockerfilePath: Dockerfile.SRO
      buildArgs:
        - name: "IMAGE"
          value: {{ .Values.driverToolkitImage  }}
        {{- range $arg := .Values.buildArgs }}
        - name: {{ $arg.name }}
          value: {{ $arg.value }}
        {{- end }}
        - name: KVER
          value: {{ .Values.kernelFullVersion }}
  output:
    to:
      kind: ImageStreamTag
      name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}:v{{.Values.kernelFullVersion}} 5

apiVersion: v1
kind: ServiceAccount
metadata:
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
rules:
- apiGroups:
  - security.openshift.io
  resources:
  - securitycontextconstraints
  verbs:
  - use
  resourceNames:

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

16



  - privileged
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
subjects:
- kind: ServiceAccount
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
  namespace: {{.Values.specialresource.spec.namespace}}
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
  labels:
    app: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
  name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
  annotations:
    specialresource.openshift.io/wait: "true"
    specialresource.openshift.io/state: "driver-container"
    specialresource.openshift.io/driver-container-vendor: simple-kmod
    specialresource.openshift.io/kernel-affine: "true"
    specialresource.openshift.io/from-configmap: "true"
spec:
  updateStrategy:
    type: OnDelete
  selector:
    matchLabels:
      app: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
  template:
    metadata:
      labels:
        app: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
    spec:
      priorityClassName: system-node-critical
      serviceAccount: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
      serviceAccountName: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}
      containers:
      - image: image-registry.openshift-image-
registry.svc:5000/{{.Values.specialresource.spec.namespace}}/{{.Values.specialresource.m
etadata.name}}-{{.Values.groupName.driverContainer}}:v{{.Values.kernelFullVersion}}
        name: {{.Values.specialresource.metadata.name}}-
{{.Values.groupName.driverContainer}}

CHAPTER 3. SPECIAL RESOURCE OPERATOR

17



d. Change into the chart/simple-kmod-0.0.1 directory:

e. Save the following YAML for the chart as Chart.yaml in the chart/simple-kmod-0.0.1
directory:

2. From the chart directory, create the chart using the helm package command:

Example output

3. Create a config map to store the chart files:

a. Create a directory for the config map files:

b. Copy the Helm chart into the cm directory:

c. Create an index file specifying the Helm repo that contains the Helm chart:

d. Create a namespace for the objects defined in the Helm chart:

        imagePullPolicy: Always
        command: ["/sbin/init"]
        lifecycle:
          preStop:
            exec:
              command: ["/bin/sh", "-c", "systemctl stop kmods-via-
containers@{{.Values.specialresource.metadata.name}}"]
        securityContext:
          privileged: true
      nodeSelector:
        node-role.kubernetes.io/worker: ""
        feature.node.kubernetes.io/kernel-version.full: "{{.Values.KernelFullVersion}}"

$ cd ..

apiVersion: v2
name: simple-kmod
description: Simple kmod will deploy a simple kmod driver-container
icon: https://avatars.githubusercontent.com/u/55542927
type: application
version: 0.0.1
appVersion: 1.0.0

$ helm package simple-kmod-0.0.1/

Successfully packaged chart and saved it to: 
/data/<username>/git/<github_username>/special-resource-operator/yaml-for-
docs/chart/simple-kmod-0.0.1/simple-kmod-0.0.1.tgz

$ mkdir cm

$ cp simple-kmod-0.0.1.tgz cm/simple-kmod-0.0.1.tgz

$ helm repo index cm --url=cm://simple-kmod/simple-kmod-chart

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

18



1

2

e. Create the config map object:

4. Use the following SpecialResource manifest to deploy the simple-kmod object using the Helm
chart that you created in the config map. Save this YAML as simple-kmod-configmap.yaml:

Optional: Uncomment the #debug: true line to have the YAML files in the chart printed in
full in the Operator logs and to verify that the logs are created and templated properly.

The spec.chart.repository.url field tells the SRO to look for the chart in a config map.

5. From a command line, create the SpecialResource file:

NOTE

To remove the simple-kmod kernel module from the node, delete the simple-kmod 
SpecialResource API object using the oc delete command. The kernel module is
unloaded when the driver container pod is deleted.

Verification

$ oc create namespace simple-kmod

$ oc create cm simple-kmod-chart --from-file=cm/index.yaml --from-file=cm/simple-
kmod-0.0.1.tgz -n simple-kmod

apiVersion: sro.openshift.io/v1beta1
kind: SpecialResource
metadata:
  name: simple-kmod
spec:
  #debug: true 1
  namespace: simple-kmod
  chart:
    name: simple-kmod
    version: 0.0.1
    repository:
      name: example
      url: cm://simple-kmod/simple-kmod-chart 2
  set:
    kind: Values
    apiVersion: sro.openshift.io/v1beta1
    kmodNames: ["simple-kmod", "simple-procfs-kmod"]
    buildArgs:
    - name: "KMODVER"
      value: "SRO"
  driverContainer:
    source:
      git:
        ref: "master"
        uri: "https://github.com/openshift-psap/kvc-simple-kmod.git"

$ oc create -f simple-kmod-configmap.yaml

CHAPTER 3. SPECIAL RESOURCE OPERATOR

19



The simple-kmod resources are deployed in the simple-kmod namespace as specified in the object
manifest. After a short time, the build pod for the simple-kmod driver container starts running. The build
completes after a few minutes, and then the driver container pods start running.

1. Use oc get pods command to display the status of the build pods:

Example output

2. Use the oc logs command, along with the build pod name obtained from the oc get pods
command above, to display the logs of the simple-kmod driver container image build:

3. To verify that the simple-kmod kernel modules are loaded, execute the lsmod command in one
of the driver container pods that was returned from the oc get pods command above:

Example output

TIP

The sro_kind_completed_info SRO Prometheus metric provides information about the status of the
different objects being deployed, which can be useful to troubleshoot SRO CR installations. The SRO
also provides other types of metrics that you can use to watch the health of your environment.

3.4. PROMETHEUS SPECIAL RESOURCE OPERATOR METRICS

The Special Resource Operator (SRO) exposes the following Prometheus metrics through the metrics
service:

Metric Name Description

sro_used_nodes Returns the nodes that are running pods created by
a SRO custom resource (CR). This metric is available
for DaemonSet and Deployment objects only.

$ oc get pods -n simple-kmod

NAME                                                  READY   STATUS      RESTARTS   AGE
simple-kmod-driver-build-12813789169ac0ee-1-build     0/1     Completed   0          7m12s
simple-kmod-driver-container-12813789169ac0ee-mjsnh   1/1     Running     0          8m2s
simple-kmod-driver-container-12813789169ac0ee-qtkff   1/1     Running     0          8m2s

$ oc logs pod/simple-kmod-driver-build-12813789169ac0ee-1-build -n simple-kmod

$ oc exec -n simple-kmod -it pod/simple-kmod-driver-container-12813789169ac0ee-mjsnh -- 
lsmod | grep simple

simple_procfs_kmod     16384  0
simple_kmod            16384  0

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

20



sro_kind_completed_info Represents whether a kind of an object defined by
the Helm Charts in a SRO CR has been successfully
uploaded in the cluster (value 1) or not (value 0).
Examples of objects are DaemonSet, Deployment
or BuildConfig.

sro_states_completed_info Represents whether the SRO has finished processing
a CR successfully (value 1) or the SRO has not
processed the CR yet (value 0).

sro_managed_resources_total Returns the number of SRO CRs in the cluster,
regardless of their state.

Metric Name Description

3.5. ADDITIONAL RESOURCES

For information about restoring the Image Registry Operator state before using the Special
Resource Operator, see Image registry removed during installation .

For details about installing the NFD Operator see Node Feature Discovery (NFD) Operator .

CHAPTER 3. SPECIAL RESOURCE OPERATOR

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/registry/#registry-removed_configuring-registry-operator


CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR
Learn about the Node Feature Discovery (NFD) Operator and how you can use it to expose node-level
information by orchestrating Node Feature Discovery, a Kubernetes add-on for detecting hardware
features and system configuration.

4.1. ABOUT THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery Operator (NFD) manages the detection of hardware features and
configuration in an OpenShift Container Platform cluster by labeling the nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCI cards, kernel, operating
system version, and so on.

The NFD Operator can be found on the Operator Hub by searching for “Node Feature Discovery”.

4.2. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery (NFD) Operator orchestrates all resources needed to run the NFD
daemon set. As a cluster administrator, you can install the NFD Operator by using the OpenShift
Container Platform CLI or the web console.

4.2.1. Installing the NFD Operator using the CLI

As a cluster administrator, you can install the NFD Operator using the CLI.

Prerequisites

An OpenShift Container Platform cluster

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the NFD Operator.

a. Create the following Namespace custom resource (CR) that defines the openshift-nfd
namespace, and then save the YAML in the nfd-namespace.yaml file:

b. Create the namespace by running the following command:

2. Install the NFD Operator in the namespace you created in the previous step by creating the
following objects:

a. Create the following OperatorGroup CR and save the YAML in the nfd-
operatorgroup.yaml file:

apiVersion: v1
kind: Namespace
metadata:
  name: openshift-nfd

$ oc create -f nfd-namespace.yaml

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

22



b. Create the OperatorGroup CR by running the following command:

c. Create the following Subscription CR and save the YAML in the nfd-sub.yaml file:

Example Subscription

d. Create the subscription object by running the following command:

e. Change to the openshift-nfd project:

Verification

To verify that the Operator deployment is successful, run:

Example output

A successful deployment shows a Running status.

4.2.2. Installing the NFD Operator using the web console

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  generateName: openshift-nfd-
  name: openshift-nfd
  namespace: openshift-nfd
spec:
  targetNamespaces:
  - openshift-nfd

$ oc create -f nfd-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: nfd
  namespace: openshift-nfd
spec:
  channel: "stable"
  installPlanApproval: Automatic
  name: nfd
  source: redhat-operators
  sourceNamespace: openshift-marketplace

$ oc create -f nfd-sub.yaml

$ oc project openshift-nfd

$ oc get pods

NAME                                      READY   STATUS    RESTARTS   AGE
nfd-controller-manager-7f86ccfb58-vgr4x   2/2     Running   0          10m

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

23



As a cluster administrator, you can install the NFD Operator using the web console.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Node Feature Discovery from the list of available Operators, and then click Install.

3. On the Install Operator page, select A specific namespace on the cluster, and then click
Install. You do not need to create a namespace because it is created for you.

Verification

To verify that the NFD Operator installed successfully:

1. Navigate to the Operators → Installed Operators page.

2. Ensure that Node Feature Discovery is listed in the openshift-nfd  project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the installation
later succeeds with an InstallSucceeded message, you can ignore the Failed
message.

Troubleshooting

If the Operator does not appear as installed, troubleshoot further:

1. Navigate to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

2. Navigate to the Workloads → Pods page and check the logs for pods in the openshift-nfd
project.

4.3. USING THE NODE FEATURE DISCOVERY OPERATOR

The Node Feature Discovery (NFD) Operator orchestrates all resources needed to run the Node-
Feature-Discovery daemon set by watching for a NodeFeatureDiscovery CR. Based on the 
NodeFeatureDiscovery CR, the Operator will create the operand (NFD) components in the desired
namespace. You can edit the CR to choose another namespace, image, imagePullPolicy, and nfd-
worker-conf, among other options.

As a cluster administrator, you can create a NodeFeatureDiscovery instance using the OpenShift
Container Platform CLI or the web console.

4.3.1. Create a NodeFeatureDiscovery instance using the CLI

As a cluster administrator, you can create a NodeFeatureDiscovery CR instance using the CLI.

Prerequisites

An OpenShift Container Platform cluster

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

24



Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the NFD Operator.

Procedure

1. Create the following NodeFeatureDiscovery Custom Resource (CR), and then save the YAML
in the NodeFeatureDiscovery.yaml file:

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
  name: nfd-instance
  namespace: openshift-nfd
spec:
  instance: "" # instance is empty by default
  topologyupdater: false # False by default
  operand:
    image: registry.redhat.io/openshift4/ose-node-feature-discovery:v4.10
    imagePullPolicy: Always
  workerConfig:
    configData: |
      core:
      #  labelWhiteList:
      #  noPublish: false
        sleepInterval: 60s
      #  sources: [all]
      #  klog:
      #    addDirHeader: false
      #    alsologtostderr: false
      #    logBacktraceAt:
      #    logtostderr: true
      #    skipHeaders: false
      #    stderrthreshold: 2
      #    v: 0
      #    vmodule:
      ##   NOTE: the following options are not dynamically run-time configurable
      ##         and require a nfd-worker restart to take effect after being changed
      #    logDir:
      #    logFile:
      #    logFileMaxSize: 1800
      #    skipLogHeaders: false
      sources:
        cpu:
          cpuid:
      #     NOTE: whitelist has priority over blacklist
            attributeBlacklist:
              - "BMI1"
              - "BMI2"
              - "CLMUL"
              - "CMOV"
              - "CX16"
              - "ERMS"
              - "F16C"

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

25



For more details on how to customize NFD workers, refer to the Configuration file reference of nfd-
worker.

1. Create the NodeFeatureDiscovery CR instance by running the following command:

Verification

To verify that the instance is created, run:

Example output

              - "HTT"
              - "LZCNT"
              - "MMX"
              - "MMXEXT"
              - "NX"
              - "POPCNT"
              - "RDRAND"
              - "RDSEED"
              - "RDTSCP"
              - "SGX"
              - "SSE"
              - "SSE2"
              - "SSE3"
              - "SSE4.1"
              - "SSE4.2"
              - "SSSE3"
            attributeWhitelist:
        kernel:
          kconfigFile: "/path/to/kconfig"
          configOpts:
            - "NO_HZ"
            - "X86"
            - "DMI"
        pci:
          deviceClassWhitelist:
            - "0200"
            - "03"
            - "12"
          deviceLabelFields:
            - "class"
  customConfig:
    configData: |
          - name: "more.kernel.features"
            matchOn:
            - loadedKMod: ["example_kmod3"]

$ oc create -f NodeFeatureDiscovery.yaml

$ oc get pods

NAME                                      READY   STATUS    RESTARTS   AGE
nfd-controller-manager-7f86ccfb58-vgr4x   2/2     Running   0          11m
nfd-master-hcn64                          1/1     Running   0          60s

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

26

https://kubernetes-sigs.github.io/node-feature-discovery/v0.10/advanced/worker-configuration-reference.html


A successful deployment shows a Running status.

4.3.2. Create a NodeFeatureDiscovery CR using the web console

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Find Node Feature Discovery and see a box under Provided APIs.

3. Click Create instance.

4. Edit the values of the NodeFeatureDiscovery CR.

5. Click Create.

4.4. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR

4.4.1. core

The core section contains common configuration settings that are not specific to any particular feature
source.

core.sleepInterval
core.sleepInterval specifies the interval between consecutive passes of feature detection or re-
detection, and thus also the interval between node re-labeling. A non-positive value implies infinite
sleep interval; no re-detection or re-labeling is done.

This value is overridden by the deprecated --sleep-interval command line flag, if specified.

Example usage

The default value is 60s.

core.sources
core.sources specifies the list of enabled feature sources. A special value all enables all feature
sources.

This value is overridden by the deprecated --sources command line flag, if specified.

Default: [all]

Example usage

nfd-master-lnnxx                          1/1     Running   0          60s
nfd-master-mp6hr                          1/1     Running   0          60s
nfd-worker-vgcz9                          1/1     Running   0          60s
nfd-worker-xqbws                          1/1     Running   0          60s

core:
  sleepInterval: 60s 1

core:
  sources:

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

27



core.labelWhiteList
core.labelWhiteList specifies a regular expression for filtering feature labels based on the label name.
Non-matching labels are not published.

The regular expression is only matched against the basename part of the label, the part of the name
after '/'. The label prefix, or namespace, is omitted.

This value is overridden by the deprecated --label-whitelist command line flag, if specified.

Default: null

Example usage

core.noPublish
Setting core.noPublish to true disables all communication with the nfd-master. It is effectively a dry
run flag; nfd-worker runs feature detection normally, but no labeling requests are sent to nfd-master.

This value is overridden by the --no-publish command line flag, if specified.

Example:

Example usage

The default value is false.

core.klog
The following options specify the logger configuration, most of which can be dynamically adjusted at
run-time.

The logger options can also be specified using command line flags, which take precedence over any
corresponding config file options.

core.klog.addDirHeader
If set to true, core.klog.addDirHeader adds the file directory to the header of the log messages.

Default: false

Run-time configurable: yes

core.klog.alsologtostderr
Log to standard error as well as files.

Default: false

Run-time configurable: yes

core.klog.logBacktraceAt

    - system
    - custom

core:
  labelWhiteList: '^cpu-cpuid'

core:
  noPublish: true 1

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

28



When logging hits line file:N, emit a stack trace.

Default: empty

Run-time configurable: yes

core.klog.logDir
If non-empty, write log files in this directory.

Default: empty

Run-time configurable: no

core.klog.logFile
If not empty, use this log file.

Default: empty

Run-time configurable: no

core.klog.logFileMaxSize
core.klog.logFileMaxSize defines the maximum size a log file can grow to. Unit is megabytes. If the
value is 0, the maximum file size is unlimited.

Default: 1800

Run-time configurable: no

core.klog.logtostderr
Log to standard error instead of files

Default: true

Run-time configurable: yes

core.klog.skipHeaders
If core.klog.skipHeaders is set to true, avoid header prefixes in the log messages.

Default: false

Run-time configurable: yes

core.klog.skipLogHeaders
If core.klog.skipLogHeaders is set to true, avoid headers when opening log files.

Default: false

Run-time configurable: no

core.klog.stderrthreshold
Logs at or above this threshold go to stderr.

Default: 2

Run-time configurable: yes

core.klog.v
core.klog.v is the number for the log level verbosity.

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

29



Default: 0

Run-time configurable: yes

core.klog.vmodule
core.klog.vmodule is a comma-separated list of pattern=N settings for file-filtered logging.

Default: empty

Run-time configurable: yes

4.4.2. sources

The sources section contains feature source specific configuration parameters.

sources.cpu.cpuid.attributeBlacklist
Prevent publishing cpuid features listed in this option.

This value is overridden by sources.cpu.cpuid.attributeWhitelist, if specified.

Default: [BMI1, BMI2, CLMUL, CMOV, CX16, ERMS, F16C, HTT, LZCNT, MMX, MMXEXT, NX, 
POPCNT, RDRAND, RDSEED, RDTSCP, SGX, SGXLC, SSE, SSE2, SSE3, SSE4.1, SSE4.2, SSSE3]

Example usage

sources.cpu.cpuid.attributeWhitelist
Only publish the cpuid features listed in this option.

sources.cpu.cpuid.attributeWhitelist takes precedence over sources.cpu.cpuid.attributeBlacklist.

Default: empty

Example usage

sources.kernel.kconfigFile
sources.kernel.kconfigFile is the path of the kernel config file. If empty, NFD runs a search in the well-
known standard locations.

Default: empty

Example usage

sources:
  cpu:
    cpuid:
      attributeBlacklist: [MMX, MMXEXT]

sources:
  cpu:
    cpuid:
      attributeWhitelist: [AVX512BW, AVX512CD, AVX512DQ, AVX512F, AVX512VL]

sources:
  kernel:
    kconfigFile: "/path/to/kconfig"

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

30



sources.kernel.configOpts
sources.kernel.configOpts represents kernel configuration options to publish as feature labels.

Default: [NO_HZ, NO_HZ_IDLE, NO_HZ_FULL, PREEMPT]

Example usage

sources.pci.deviceClassWhitelist
sources.pci.deviceClassWhitelist is a list of PCI device class IDs  for which to publish a label. It can be
specified as a main class only (for example, 03) or full class-subclass combination (for example 0300).
The former implies that all subclasses are accepted. The format of the labels can be further configured
with deviceLabelFields.

Default: ["03", "0b40", "12"]

Example usage

sources.pci.deviceLabelFields
sources.pci.deviceLabelFields is the set of PCI ID fields to use when constructing the name of the
feature label. Valid fields are class, vendor, device, subsystem_vendor and subsystem_device.

Default: [class, vendor]

Example usage

With the example config above, NFD would publish labels such as feature.node.kubernetes.io/pci-
<class-id>_<vendor-id>_<device-id>.present=true

sources.usb.deviceClassWhitelist
sources.usb.deviceClassWhitelist is a list of USB device class IDs for which to publish a feature label.
The format of the labels can be further configured with deviceLabelFields.

Default: ["0e", "ef", "fe", "ff"]

Example usage

sources.usb.deviceLabelFields

sources.usb.deviceLabelFields is the set of USB ID fields from which to compose the name of the

sources:
  kernel:
    configOpts: [NO_HZ, X86, DMI]

sources:
  pci:
    deviceClassWhitelist: ["0200", "03"]

sources:
  pci:
    deviceLabelFields: [class, vendor, device]

sources:
  usb:
    deviceClassWhitelist: ["ef", "ff"]

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

31

https://pci-ids.ucw.cz/read/PD
https://www.usb.org/defined-class-codes


sources.usb.deviceLabelFields is the set of USB ID fields from which to compose the name of the
feature label. Valid fields are class, vendor, and device.

Default: [class, vendor, device]

Example usage

With the example config above, NFD would publish labels like: feature.node.kubernetes.io/usb-<class-
id>_<vendor-id>.present=true.

sources.custom
sources.custom is the list of rules to process in the custom feature source to create user-specific
labels.

Default: empty

Example usage

4.5. USING THE NFD TOPOLOGY UPDATER

The Node Feature Discovery (NFD) Topology Updater is a daemon responsible for examining allocated
resources on a worker node. It accounts for resources that are available to be allocated to new pod on a
per-zone basis, where a zone can be a Non-Uniform Memory Access (NUMA) node. The NFD Topology
Updater communicates the information to nfd-master, which creates a NodeResourceTopology
custom resource (CR) corresponding to all of the worker nodes in the cluster. One instance of the NFD
Topology Updater runs on each node of the cluster.

To enable the Topology Updater workers in NFD, set the topologyupdater variable to true in the 
NodeFeatureDiscovery CR, as described in the section Using the Node Feature Discovery Operator.

4.5.1. NodeResourceTopology CR

When run with NFD Topology Updater, NFD creates custom resource instances corresponding to the
node resource hardware topology, such as:

sources:
  pci:
    deviceLabelFields: [class, vendor]

source:
  custom:
  - name: "my.custom.feature"
    matchOn:
    - loadedKMod: ["e1000e"]
    - pciId:
        class: ["0200"]
        vendor: ["8086"]

apiVersion: topology.node.k8s.io/v1alpha1
kind: NodeResourceTopology
metadata:
  name: node1
topologyPolicies: ["SingleNUMANodeContainerLevel"]
zones:

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

32



4.5.2. NFD Topology Updater command line flags

To view available command line flags, run the nfd-topology-updater -help command. For example, in a
podman container, run the following command:

-ca-file
The -ca-file flag is one of the three flags, together with the -cert-file and `-key-file`flags, that controls
the mutual TLS authentication on the NFD Topology Updater. This flag specifies the TLS root
certificate that is used for verifying the authenticity of nfd-master.

Default: empty

IMPORTANT

The -ca-file flag must be specified together with the -cert-file and -key-file flags.

Example

  - name: node-0
    type: Node
    resources:
      - name: cpu
        capacity: 20
        allocatable: 16
        available: 10
      - name: vendor/nic1
        capacity: 3
        allocatable: 3
        available: 3
  - name: node-1
    type: Node
    resources:
      - name: cpu
        capacity: 30
        allocatable: 30
        available: 15
      - name: vendor/nic2
        capacity: 6
        allocatable: 6
        available: 6
  - name: node-2
    type: Node
    resources:
      - name: cpu
        capacity: 30
        allocatable: 30
        available: 15
      - name: vendor/nic1
        capacity: 3
        allocatable: 3
        available: 3

$ podman run gcr.io/k8s-staging-nfd/node-feature-discovery:master nfd-topology-updater -help

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

33



-cert-file
The -cert-file flag is one of the three flags, together with the -ca-file and -key-file flags, that controls
mutual TLS authentication on the NFD Topology Updater. This flag specifies the TLS certificate
presented for authenticating outgoing requests.

Default: empty

IMPORTANT

The -cert-file flag must be specified together with the -ca-file and -key-file flags.

Example

-h, -help
Print usage and exit.

-key-file
The -key-file flag is one of the three flags, together with the -ca-file and -cert-file flags, that controls
the mutual TLS authentication on the NFD Topology Updater. This flag specifies the private key
corresponding the given certificate file, or -cert-file, that is used for authenticating outgoing requests.

Default: empty

IMPORTANT

The -key-file flag must be specified together with the -ca-file and -cert-file flags.

Example

-kubelet-config-file
The -kubelet-config-file specifies the path to the Kubelet’s configuration file.

Default: /host-var/lib/kubelet/config.yaml

Example

-no-publish
The -no-publish flag disables all communication with the nfd-master, making it a dry run flag for nfd-
topology-updater. NFD Topology Updater runs resource hardware topology detection normally, but no
CR requests are sent to nfd-master.

$ nfd-topology-updater -ca-file=/opt/nfd/ca.crt -cert-file=/opt/nfd/updater.crt -key-
file=/opt/nfd/updater.key

$ nfd-topology-updater -cert-file=/opt/nfd/updater.crt -key-file=/opt/nfd/updater.key -ca-
file=/opt/nfd/ca.crt

$ nfd-topology-updater -key-file=/opt/nfd/updater.key -cert-file=/opt/nfd/updater.crt -ca-
file=/opt/nfd/ca.crt

$ nfd-topology-updater -kubelet-config-file=/var/lib/kubelet/config.yaml

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

34



Default: false

Example

4.5.2.1. -oneshot

The -oneshot flag causes the NFD Topology Updater to exit after one pass of resource hardware
topology detection.

Default: false

Example

-podresources-socket
The -podresources-socket flag specifies the path to the Unix socket where kubelet exports a gRPC
service to enable discovery of in-use CPUs and devices, and to provide metadata for them.

Default: /host-var/liblib/kubelet/pod-resources/kubelet.sock

Example

-server
The -server flag specifies the address of the nfd-master endpoint to connect to.

Default: localhost:8080

Example

-server-name-override
The -server-name-override flag specifies the common name (CN) which to expect from the nfd-master
TLS certificate. This flag is mostly intended for development and debugging purposes.

Default: empty

Example

-sleep-interval
The -sleep-interval flag specifies the interval between resource hardware topology re-examination and
custom resource updates. A non-positive value implies infinite sleep interval and no re-detection is
done.

Default: 60s

$ nfd-topology-updater -no-publish

$ nfd-topology-updater -oneshot -no-publish

$ nfd-topology-updater -podresources-socket=/var/lib/kubelet/pod-resources/kubelet.sock

$ nfd-topology-updater -server=nfd-master.nfd.svc.cluster.local:443

$ nfd-topology-updater -server-name-override=localhost

CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR

35



Example

-version
Print version and exit.

-watch-namespace
The -watch-namespace flag specifies the namespace to ensure that resource hardware topology
examination only happens for the pods running in the specified namespace. Pods that are not running in
the specified namespace are not considered during resource accounting. This is particularly useful for
testing and debugging purposes. A * value means that all of the pods across all namespaces are
considered during the accounting process.

Default: *

Example

$ nfd-topology-updater -sleep-interval=1h

$ nfd-topology-updater -watch-namespace=rte

OpenShift Container Platform 4.10 Specialized hardware and driver enablement

36


	Table of Contents
	CHAPTER 1. ABOUT SPECIALIZED HARDWARE AND DRIVER ENABLEMENT
	CHAPTER 2. DRIVER TOOLKIT
	2.1. ABOUT THE DRIVER TOOLKIT
	Background
	Purpose

	2.2. PULLING THE DRIVER TOOLKIT CONTAINER IMAGE
	2.2.1. Pulling the Driver Toolkit container image from registry.redhat.io
	2.2.2. Finding the Driver Toolkit image URL in the payload

	2.3. USING THE DRIVER TOOLKIT
	2.3.1. Build and run the simple-kmod driver container on a cluster

	2.4. ADDITIONAL RESOURCES

	CHAPTER 3. SPECIAL RESOURCE OPERATOR
	3.1. ABOUT THE SPECIAL RESOURCE OPERATOR
	3.2. INSTALLING THE SPECIAL RESOURCE OPERATOR
	3.2.1. Installing the Special Resource Operator by using the CLI
	3.2.2. Installing the Special Resource Operator by using the web console

	3.3. USING THE SPECIAL RESOURCE OPERATOR
	3.3.1. Building and running the simple-kmod SpecialResource by using a config map

	3.4. PROMETHEUS SPECIAL RESOURCE OPERATOR METRICS
	3.5. ADDITIONAL RESOURCES

	CHAPTER 4. NODE FEATURE DISCOVERY OPERATOR
	4.1. ABOUT THE NODE FEATURE DISCOVERY OPERATOR
	4.2. INSTALLING THE NODE FEATURE DISCOVERY OPERATOR
	4.2.1. Installing the NFD Operator using the CLI
	4.2.2. Installing the NFD Operator using the web console

	4.3. USING THE NODE FEATURE DISCOVERY OPERATOR
	4.3.1. Create a NodeFeatureDiscovery instance using the CLI
	4.3.2. Create a NodeFeatureDiscovery CR using the web console

	4.4. CONFIGURING THE NODE FEATURE DISCOVERY OPERATOR
	4.4.1. core
	core.sleepInterval
	core.sources
	core.labelWhiteList
	core.noPublish
	core.klog

	4.4.2. sources
	sources.cpu.cpuid.attributeBlacklist
	sources.cpu.cpuid.attributeWhitelist
	sources.kernel.kconfigFile
	sources.kernel.configOpts
	sources.pci.deviceClassWhitelist
	sources.pci.deviceLabelFields
	sources.usb.deviceClassWhitelist
	sources.usb.deviceLabelFields
	sources.custom


	4.5. USING THE NFD TOPOLOGY UPDATER
	4.5.1. NodeResourceTopology CR
	4.5.2. NFD Topology Updater command line flags
	-ca-file
	-cert-file
	-h, -help
	-key-file
	-kubelet-config-file
	-no-publish
	4.5.2.1. -oneshot




