
OpenShift Container Platform 4.10

Getting started

Getting started in OpenShift Container Platform

Last Updated: 2023-09-21

OpenShift Container Platform 4.10 Getting started

Getting started in OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information to help you get started in OpenShift Container Platform. This
includes definitions for common terms found in Kubernetes and OpenShift Container Platform. This
also contains a walkthrough of the OpenShift Container Platform web console, as well as creating
and building applications by using the command-line interface.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. KUBERNETES OVERVIEW
1.1. KUBERNETES COMPONENTS
1.2. KUBERNETES RESOURCES
1.3. KUBERNETES CONCEPTUAL GUIDELINES

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM OVERVIEW
2.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM
2.2. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM
2.3. INSTALLING OPENSHIFT CONTAINER PLATFORM

2.3.1. OpenShift Local overview
2.4. NEXT STEPS

2.4.1. For developers
2.4.2. For administrators

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE
3.1. BEFORE YOU BEGIN
3.2. LOGGING IN TO THE WEB CONSOLE
3.3. CREATING A NEW PROJECT
3.4. GRANTING VIEW PERMISSIONS
3.5. DEPLOYING YOUR FIRST IMAGE

3.5.1. Examining the pod
3.5.2. Scaling the application

3.6. DEPLOYING A PYTHON APPLICATION
3.7. CONNECTING TO A DATABASE

3.7.1. Creating a secret
3.7.2. Loading data and displaying the national parks map

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI
4.1. BEFORE YOU BEGIN
4.2. LOGGING IN TO THE CLI
4.3. CREATING A NEW PROJECT
4.4. GRANTING VIEW PERMISSIONS
4.5. DEPLOYING YOUR FIRST IMAGE

4.5.1. Creating a route
4.5.2. Examining the pod
4.5.3. Scaling the application

4.6. DEPLOYING A PYTHON APPLICATION
4.7. CONNECTING TO A DATABASE

4.7.1. Creating a secret
4.7.2. Loading data and displaying the national parks map

3
4
4
6

8
8

10
11
11

12
12
13

15
15
15
15
16
17
18

20
21
22
23
24

26
26
26
26
27
28
28
29
32
33
34
35
36

Table of Contents

1

OpenShift Container Platform 4.10 Getting started

2

CHAPTER 1. KUBERNETES OVERVIEW
Kubernetes is an open source container orchestration tool developed by Google. You can run and
manage container-based workloads by using Kubernetes. The most common Kubernetes use case is to
deploy an array of interconnected microservices, building an application in a cloud native way. You can
create Kubernetes clusters that can span hosts across on-premise, public, private, or hybrid clouds.

Traditionally, applications were deployed on top of a single operating system. With virtualization, you can
split the physical host into several virtual hosts. Working on virtual instances on shared resources is not
optimal for efficiency and scalability. Because a virtual machine (VM) consumes as many resources as a
physical machine, providing resources to a VM such as CPU, RAM, and storage can be expensive. Also,
you might see your application degrading in performance due to virtual instance usage on shared
resources.

Figure 1.1. Evolution of container technologies for classical deployments

To solve this problem, you can use containerization technologies that segregate applications in a
containerized environment. Similar to a VM, a container has its own filesystem, vCPU, memory, process
space, dependencies, and more. Containers are decoupled from the underlying infrastructure, and are
portable across clouds and OS distributions. Containers are inherently much lighter than a fully-featured
OS, and are lightweight isolated processes that run on the operating system kernel. VMs are slower to
boot, and are an abstraction of physical hardware. VMs run on a single machine with the help of a
hypervisor.

You can perform the following actions by using Kubernetes:

Sharing resources

Orchestrating containers across multiple hosts

Installing new hardware configurations

Running health checks and self-healing applications

CHAPTER 1. KUBERNETES OVERVIEW

3

Scaling containerized applications

1.1. KUBERNETES COMPONENTS

Table 1.1. Kubernetes components

Component Purpose

kube-proxy Runs on every node in the cluster and maintains the network traffic
between the Kubernetes resources.

kube-controller-manager Governs the state of the cluster.

kube-scheduler Allocates pods to nodes.

etcd Stores cluster data.

kube-apiserver Validates and configures data for the API objects.

kubelet Runs on nodes and reads the container manifests. Ensures that the
defined containers have started and are running.

kubectl Allows you to define how you want to run workloads. Use the kubectl
command to interact with the kube-apiserver.

Node Node is a physical machine or a VM in a Kubernetes cluster. The control
plane manages every node and schedules pods across the nodes in the
Kubernetes cluster.

container runtime container runtime runs containers on a host operating system. You must
install a container runtime on each node so that pods can run on the
node.

Persistent storage Stores the data even after the device is shut down. Kubernetes uses
persistent volumes to store the application data.

container-registry Stores and accesses the container images.

Pod The pod is the smallest logical unit in Kubernetes. A pod contains one or
more containers to run in a worker node.

1.2. KUBERNETES RESOURCES

A custom resource is an extension of the Kubernetes API. You can customize Kubernetes clusters by
using custom resources. Operators are software extensions which manage applications and their
components with the help of custom resources. Kubernetes uses a declarative model when you want a
fixed desired result while dealing with cluster resources. By using Operators, Kubernetes defines its
states in a declarative way. You can modify the Kubernetes cluster resources by using imperative

OpenShift Container Platform 4.10 Getting started

4

commands. An Operator acts as a control loop which continuously compares the desired state of
resources with the actual state of resources and puts actions in place to bring reality in line with the
desired state.

Figure 1.2. Kubernetes cluster overview

Table 1.2. Kubernetes Resources

Resource Purpose

Service Kubernetes uses services to expose a running application on a set of
pods.

ReplicaSets Kubernetes uses the ReplicaSets to maintain the constant pod
number.

Deployment A resource object that maintains the life cycle of an application.

Kubernetes is a core component of an OpenShift Container Platform. You can use OpenShift Container
Platform for developing and running containerized applications. With its foundation in Kubernetes, the
OpenShift Container Platform incorporates the same technology that serves as the engine for massive
telecommunications, streaming video, gaming, banking, and other applications. You can extend your
containerized applications beyond a single cloud to on-premise and multi-cloud environments by using
the OpenShift Container Platform.

Figure 1.3. Architecture of Kubernetes

CHAPTER 1. KUBERNETES OVERVIEW

5

Figure 1.3. Architecture of Kubernetes

A cluster is a single computational unit consisting of multiple nodes in a cloud environment. A
Kubernetes cluster includes a control plane and worker nodes. You can run Kubernetes containers
across various machines and environments. The control plane node controls and maintains the state of a
cluster. You can run the Kubernetes application by using worker nodes. You can use the Kubernetes
namespace to differentiate cluster resources in a cluster. Namespace scoping is applicable for resource
objects, such as deployment, service, and pods. You cannot use namespace for cluster-wide resource
objects such as storage class, nodes, and persistent volumes.

1.3. KUBERNETES CONCEPTUAL GUIDELINES

Before getting started with the OpenShift Container Platform, consider these conceptual guidelines of
Kubernetes:

Start with one or more worker nodes to run the container workloads.

Manage the deployment of those workloads from one or more control plane nodes.

Wrap containers in a deployment unit called a pod. By using pods provides extra metadata with
the container and offers the ability to group several containers in a single deployment entity.

Create special kinds of assets. For example, services are represented by a set of pods and a
policy that defines how they are accessed. This policy allows containers to connect to the
services that they need even if they do not have the specific IP addresses for the services.
Replication controllers are another special asset that indicates how many pod replicas are
required to run at a time. You can use this capability to automatically scale your application to
adapt to its current demand.

The API to OpenShift Container Platform cluster is 100% Kubernetes. Nothing changes between a

OpenShift Container Platform 4.10 Getting started

6

The API to OpenShift Container Platform cluster is 100% Kubernetes. Nothing changes between a
container running on any other Kubernetes and running on OpenShift Container Platform. No changes
to the application. OpenShift Container Platform brings added-value features to provide enterprise-
ready enhancements to Kubernetes. OpenShift Container Platform CLI tool (oc) is compatible with
kubectl. While the Kubernetes API is 100% accessible within OpenShift Container Platform, the kubectl
command-line lacks many features that could make it more user-friendly. OpenShift Container Platform
offers a set of features and command-line tool like oc. Although Kubernetes excels at managing your
applications, it does not specify or manage platform-level requirements or deployment processes.
Powerful and flexible platform management tools and processes are important benefits that OpenShift
Container Platform offers. You must add authentication, networking, security, monitoring, and logs
management to your containerization platform.

CHAPTER 1. KUBERNETES OVERVIEW

7

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM OVERVIEW
OpenShift Container Platform is a cloud-based Kubernetes container platform. The foundation of
OpenShift Container Platform is based on Kubernetes and therefore shares the same technology. It is
designed to allow applications and the data centers that support them to expand from just a few
machines and applications to thousands of machines that serve millions of clients.

OpenShift Container Platform enables you to do the following:

Provide developers and IT organizations with cloud application platforms that can be used for
deploying applications on secure and scalable resources.

Require minimal configuration and management overhead.

Bring the Kubernetes platform to customer data centers and cloud.

Meet security, privacy, compliance, and governance requirements.

With its foundation in Kubernetes, OpenShift Container Platform incorporates the same technology
that serves as the engine for massive telecommunications, streaming video, gaming, banking, and other
applications. Its implementation in open Red Hat technologies lets you extend your containerized
applications beyond a single cloud to on-premise and multi-cloud environments.

2.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM

This glossary defines common Kubernetes and OpenShift Container Platform terms. These terms help
you orient yourself with the content and other parts of the documentation.

Kubernetes

Kubernetes is an open source container orchestration engine for automating deployment, scaling,
and management of containerized applications.

Containers

Containers are application instances and components that run in OCI-compliant containers on the
worker nodes. A container is the runtime of an Open Container Initiative (OCI)-compliant image. An
image is a binary application. A worker node can run many containers. A node capacity is related to
memory and CPU capabilities of the underlying resources whether they are cloud, hardware, or
virtualized.

Pod

A pod is one or more containers deployed together on one host. It consists of a colocated group of
containers with shared resources such as volumes and IP addresses. A pod is also the smallest
compute unit defined, deployed, and managed.
In OpenShift Container Platform, pods replace individual application containers as the smallest
deployable unit.

Pods are the orchestrated unit in OpenShift Container Platform. OpenShift Container Platform
schedules and runs all containers in a pod on the same node. Complex applications are made up of
many pods, each with their own containers. They interact externally and also with another inside the
OpenShift Container Platform environment.

Replica set and replication controller

The Kubernetes replica set and the OpenShift Container Platform replication controller are both
available. The job of this component is to ensure the specified number of pod replicas are running at

OpenShift Container Platform 4.10 Getting started

8

all times. If pods exit or are deleted, the replica set or replication controller starts more. If more pods
are running than needed, the replica set deletes as many as necessary to match the specified number
of replicas.

Deployment and DeploymentConfig

OpenShift Container Platform implements both Kubernetes Deployment objects and OpenShift
Container Platform DeploymentConfigs objects. Users may select either.
Deployment objects control how an application is rolled out as pods. They identify the name of the
container image to be taken from the registry and deployed as a pod on a node. They set the number
of replicas of the pod to deploy, creating a replica set to manage the process. The labels indicated
instruct the scheduler onto which nodes to deploy the pod. The set of labels is included in the pod
definition that the replica set instantiates.

Deployment objects are able to update the pods deployed onto the worker nodes based on the
version of the Deployment objects and the various rollout strategies for managing acceptable
application availability. OpenShift Container Platform DeploymentConfig objects add the additional
features of change triggers, which are able to automatically create new versions of the Deployment
objects as new versions of the container image are available, or other changes.

Service

A service defines a logical set of pods and access policies. It provides permanent internal IP
addresses and hostnames for other applications to use as pods are created and destroyed.
Service layers connect application components together. For example, a front-end web service
connects to a database instance by communicating with its service. Services allow for simple internal
load balancing across application components. OpenShift Container Platform automatically injects
service information into running containers for ease of discovery.

Route

A route is a way to expose a service by giving it an externally reachable hostname, such as
www.example.com. Each route consists of a route name, a service selector, and optionally a security
configuration. A router can consume a defined route and the endpoints identified by its service to
provide a name that lets external clients reach your applications. While it is easy to deploy a complete
multi-tier application, traffic from anywhere outside the OpenShift Container Platform environment
cannot reach the application without the routing layer.

Build

A build is the process of transforming input parameters into a resulting object. Most often, the
process is used to transform input parameters or source code into a runnable image. A BuildConfig
object is the definition of the entire build process. OpenShift Container Platform leverages
Kubernetes by creating containers from build images and pushing them to the integrated registry.

Project

OpenShift Container Platform uses projects to allow groups of users or developers to work together,
serving as the unit of isolation and collaboration. It defines the scope of resources, allows project
administrators and collaborators to manage resources, and restricts and tracks the user’s resources
with quotas and limits.
A project is a Kubernetes namespace with additional annotations. It is the central vehicle for
managing access to resources for regular users. A project lets a community of users organize and
manage their content in isolation from other communities. Users must receive access to projects
from administrators. But cluster administrators can allow developers to create their own projects, in
which case users automatically have access to their own projects.

Each project has its own set of objects, policies, constraints, and service accounts.

Projects are also known as namespaces.

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM OVERVIEW

9

Operators

An Operator is a Kubernetes-native application. The goal of an Operator is to put operational
knowledge into software. Previously this knowledge only resided in the minds of administrators,
various combinations or shell scripts or automation software such as Ansible. It was outside your
Kubernetes cluster and hard to integrate. With Operators, all of this changes.
Operators are purpose-built for your applications. They implement and automate common Day 1
activities such as installation and configuration as well as Day 2 activities such as scaling up and down,
reconfiguration, updates, backups, fail overs, and restores in a piece of software running inside your
Kubernetes cluster by integrating natively with Kubernetes concepts and APIs. This is called a
Kubernetes-native application.

With Operators, applications must not be treated as a collection of primitives, such as pods,
deployments, services, or config maps. Instead, Operators should be treated as a single object that
exposes the options that make sense for the application.

2.2. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM

OpenShift Container Platform is a Kubernetes environment for managing the lifecycle of container-
based applications and their dependencies on various computing platforms, such as bare metal,
virtualized, on-premise, and in cloud. OpenShift Container Platform deploys, configures and manages
containers. OpenShift Container Platform offers usability, stability, and customization of its
components.

OpenShift Container Platform utilises a number of computing resources, known as nodes. A node has a
lightweight, secure operating system based on Red Hat Enterprise Linux (RHEL), known as Red Hat
Enterprise Linux CoreOS (RHCOS).

After a node is booted and configured, it obtains a container runtime, such as CRI-O or Docker, for
managing and running the images of container workloads scheduled to it. The Kubernetes agent, or
kubelet schedules container workloads on the node. The kubelet is responsible for registering the node
with the cluster and receiving the details of container workloads.

OpenShift Container Platform configures and manages the networking, load balancing and routing of
the cluster. OpenShift Container Platform adds cluster services for monitoring the cluster health and
performance, logging, and for managing upgrades.

The container image registry and OperatorHub provide Red Hat certified products and community built
softwares for providing various application services within the cluster. These applications and services
manage the applications deployed in the cluster, databases, frontends and user interfaces, application
runtimes and business automation, and developer services for development and testing of container
applications.

You can manage applications within the cluster either manually by configuring deployments of
containers running from pre-built images or through resources known as Operators. You can build
custom images from pre-build images and source code, and store these custom images locally in an
internal, private or public registry.

The Multicluster Management layer can manage multiple clusters including their deployment,
configuration, compliance and distribution of workloads in a single console.

OpenShift Container Platform 4.10 Getting started

10

2.3. INSTALLING OPENSHIFT CONTAINER PLATFORM

The OpenShift Container Platform installation program offers you flexibility. You can use the installation
program to deploy a cluster on infrastructure that the installation program provisions and the cluster
maintains or deploy a cluster on infrastructure that you prepare and maintain.

For more information about the installation process, the supported platforms, and choosing a method of
installing and preparing your cluster, see the following:

OpenShift Container Platform installation overview

Installation process

Supported platforms for OpenShift Container Platform clusters

Selecting a cluster installation type

2.3.1. OpenShift Local overview

OpenShift Local supports rapid application development to get started building OpenShift Container
Platform clusters. OpenShift Local is designed to run on a local computer to simplify setup and testing,
and to emulate the cloud development environment locally with all of the tools needed to develop

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM OVERVIEW

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installation-overview_ocp-installation-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installation-process_ocp-installation-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#supported-platforms-for-openshift-clusters_ocp-installation-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-preparing-selecting-cluster-type

container-based applications.

Regardless of the programming language you use, OpenShift Local hosts your application and brings a
minimal, preconfigured Red Hat OpenShift Container Platform cluster to your local PC without the need
for a server-based infrastructure.

On a hosted environment, OpenShift Local can create microservices, convert them into images, and run
them in Kubernetes-hosted containers directly on your laptop or desktop running Linux, macOS, or
Windows 10 or later.

For more information about OpenShift Local, see Red Hat OpenShift Local Overview .

2.4. NEXT STEPS

2.4.1. For developers

Develop and deploy containerized applications with OpenShift Container Platform. OpenShift Container
Platform is a platform for developing and deploying containerized applications. OpenShift Container
Platform documentation helps you:

Understand OpenShift Container Platform development: Learn the different types of
containerized applications, from simple containers to advanced Kubernetes deployments and
Operators.

Work with projects: Create projects from the OpenShift Container Platform web console or
OpenShift CLI (oc) to organize and share the software you develop.

Work with applications:

Use the Developer perspective in the OpenShift Container Platform web console to create and deploy
applications.

Use the Topology view to see your applications, monitor status, connect and group components, and
modify your code base.

Use the developer CLI tool (odo): The odo CLI tool lets developers create single or multi-
component applications and automates deployment, build, and service route configurations. It
abstracts complex Kubernetes and OpenShift Container Platform concepts, allowing you to
focus on developing your applications.

Create CI/CD Pipelines: Pipelines are serverless, cloud-native, continuous integration, and
continuous deployment systems that run in isolated containers. They use standard Tekton
custom resources to automate deployments and are designed for decentralized teams working
on microservices-based architecture.

Deploy Helm charts: Helm 3 is a package manager that helps developers define, install, and
update application packages on Kubernetes. A Helm chart is a packaging format that describes
an application that can be deployed using the Helm CLI.

Understand image builds: Choose from different build strategies (Docker, S2I, custom, and
pipeline) that can include different kinds of source materials (Git repositories, local binary
inputs, and external artifacts). Then, follow examples of build types from basic builds to
advanced builds.

Create container images: A container image is the most basic building block in OpenShift
Container Platform (and Kubernetes) applications. Defining image streams lets you gather

OpenShift Container Platform 4.10 Getting started

12

https://developers.redhat.com/products/openshift-local/overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/architecture/#understanding-development
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#working-with-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/web_console/#about-developer-perspective_web-console-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#odo-important_update
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cicd/#op-key-features
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#understanding-helm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cicd/#understanding-image-builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/images/#create-images

multiple versions of an image in one place as you continue its development. S2I containers let
you insert your source code into a base container that is set up to run code of a particular type,
such as Ruby, Node.js, or Python.

Create deployments: Use Deployment and DeploymentConfig objects to exert fine-grained
management over applications. Manage deployments using the Workloads page or OpenShift
CLI (oc). Learn rolling, recreate, and custom deployment strategies.

Create templates: Use existing templates or create your own templates that describe how an
application is built or deployed. A template can combine images with descriptions, parameters,
replicas, exposed ports and other content that defines how an application can be run or built.

Understand Operators: Operators are the preferred method for creating on-cluster
applications for OpenShift Container Platform 4.10. Learn about the Operator Framework and
how to deploy applications using installed Operators into your projects.

Develop Operators: Operators are the preferred method for creating on-cluster applications
for OpenShift Container Platform 4.10. Learn the workflow for building, testing, and deploying
Operators. Then, create your own Operators based on Ansible or Helm, or configure built-in
Prometheus monitoring using the Operator SDK.

REST API reference: Learn about OpenShift Container Platform application programming
interface endpoints.

2.4.2. For administrators

Understand OpenShift Container Platform management: Learn about components of the
OpenShift Container Platform 4.10 control plane. See how OpenShift Container Platform
control plane and worker nodes are managed and updated through the Machine API and
Operators.

Manage users and groups: Add users and groups with different levels of permissions to use or
modify clusters.

Manage authentication: Learn how user, group, and API authentication works in OpenShift
Container Platform. OpenShift Container Platform supports multiple identity providers.

Manage networking: The cluster network in OpenShift Container Platform is managed by the
Cluster Network Operator (CNO). The CNO uses iptables rules in kube-proxy to direct traffic
between nodes and pods running on those nodes. The Multus Container Network Interface
adds the capability to attach multiple network interfaces to a pod. Using network policy
features, you can isolate your pods or permit selected traffic.

Manage storage: OpenShift Container Platform allows cluster administrators to configure
persistent storage.

Manage Operators: Lists of Red Hat, ISV, and community Operators can be reviewed by cluster
administrators and installed on their clusters . After you install them, you can run, upgrade, back
up, or otherwise manage the Operator on your cluster.

Use custom resource definitions (CRDs) to modify the cluster: Cluster features implemented
with Operators can be modified with CRDs. Learn to create a CRD and manage resources from
CRDs.

Set resource quotas: Choose from CPU, memory, and other system resources to set quotas.

Prune and reclaim resources: Reclaim space by pruning unneeded Operators, groups,

CHAPTER 2. OPENSHIFT CONTAINER PLATFORM OVERVIEW

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#what-deployments-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#deployment-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#deployment-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/images/#using-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-what-operators-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#osdk-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#osdk-ansible-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#osdk-helm-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#osdk-monitoring-prometheus
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#api-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/architecture/#architecture-overview-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/machine_management/#machine-api-overview_creating-machineset-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/architecture/#operators-overview_control-plane
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#understanding-networking
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-kube-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/storage/#understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-understanding-operatorhub
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-adding-operators-to-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-creating-apps-from-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#crd-extending-api-with-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#crd-creating-custom-resources-definition_crd-extending-api-with-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#crd-managing-resources-from-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#quotas-setting-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#quotas-setting-per-project

Prune and reclaim resources: Reclaim space by pruning unneeded Operators, groups,
deployments, builds, images, registries, and cron jobs.

Scale and tune clusters: Set cluster limits, tune nodes, scale cluster monitoring, and optimize
networking, storage, and routes for your environment.

Understanding the OpenShift Update Service: Learn about installing and managing a local
OpenShift Update Service for recommending OpenShift Container Platform updates in
disconnected environments.

Monitor clusters: Learn to configure the monitoring stack. After configuring monitoring, use the
web console to access monitoring dashboards. In addition to infrastructure metrics, you can also
scrape and view metrics for your own services.

Remote health monitoring: OpenShift Container Platform collects anonymized aggregated
information about your cluster. Using Telemetry and the Insights Operator, this data is received
by Red Hat and used to improve OpenShift Container Platform. You can view the data collected
by remote health monitoring.

OpenShift Container Platform 4.10 Getting started

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#pruning-objects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#scaling-cluster-monitoring-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#using-node-tuning-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/updating_clusters/#update-service-overview_updating-restricted-network-cluster-osus
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#monitoring-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/support/#about-remote-health-monitoring_about-remote-health-monitoring
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/support/#showing-data-collected-by-remote-health-monitoring_showing-data-collected-by-remote-health-monitoring

CHAPTER 3. CREATING AND BUILDING AN APPLICATION
USING THE WEB CONSOLE

3.1. BEFORE YOU BEGIN

Review Accessing the web console.

You must be able to access a running instance of OpenShift Container Platform. If you do not
have access, contact your cluster administrator.

3.2. LOGGING IN TO THE WEB CONSOLE

You can log in to the OpenShift Container Platform web console to access and manage your cluster.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

Procedure

Log in to the OpenShift Container Platform web console using your login credentials.

You are redirected to the Projects page. For non-administrative users, the default view is the
Developer perspective. For cluster administrators, the default view is the Administrator perspective. If
you do not have cluster-admin privileges, you will not see the Administrator perspective in your web
console.

The web console provides two perspectives: the Administrator perspective and Developer
perspective. The Developer perspective provides workflows specific to the developer use cases.

Figure 3.1. Perspective switcher

Use the perspective switcher to switch to the Developer perspective. The Topology view with options
to create an application is displayed.

3.3. CREATING A NEW PROJECT

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/web_console/#web-console-overview

A project enables a community of users to organize and manage their content in isolation. Projects are
OpenShift Container Platform extensions to Kubernetes namespaces. Projects have additional features
that enable user self-provisioning.

Users must receive access to projects from administrators. Cluster administrators can allow developers
to create their own projects. In most cases, users automatically have access to their own projects.

Each project has its own set of objects, policies, constraints, and service accounts.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Container Platform.

Procedure

1. In the +Add view, select Project → Create Project.

2. In the Name field, enter user-getting-started.

3. Optional: In the Display name field, enter Getting Started with OpenShift.

NOTE

Display name and Description fields are optional.

4. Click Create.

You have created your first project on OpenShift Container Platform.

Additional resources

Default cluster roles

Viewing a project using the web console

Providing access permissions to your project using the Developer perspective

Deleting a project using the web console

3.4. GRANTING VIEW PERMISSIONS

OpenShift Container Platform automatically creates a few special service accounts in every project. The
default service account takes responsibility for running the pods. OpenShift Container Platform uses
and injects this service account into every pod that launches.

The following procedure creates a RoleBinding object for the default ServiceAccount object. The
service account communicates with the OpenShift Container Platform API to learn about pods, services,
and resources within the project.

OpenShift Container Platform 4.10 Getting started

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#default-roles_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#viewing-a-project-using-the-web-console_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-providing-project-permissions-using-developer-perspective_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#deleting-a-project-using-the-web-console_projects

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You have a deployed image.

You are in the Administrator perspective.

Procedure

1. Navigate to User Management and then click RoleBindings.

2. Click Create binding.

3. Select Namespace role binding (RoleBinding).

4. In the Name field, enter sa-user-account.

5. In the Namespace field, search for and select user-getting-started.

6. In the Role name field, search for view and select view.

7. In the Subject field, select ServiceAccount.

8. In the Subject namespace field, search for and select user-getting-started.

9. In the Subject name field, enter default.

10. Click Create.

Additional resources

Understanding authentication

RBAC overview

3.5. DEPLOYING YOUR FIRST IMAGE

The simplest way to deploy an application in OpenShift Container Platform is to run an existing container
image. The following procedure deploys a front end component of an application called national-parks-
app. The web application displays an interactive map. The map displays the location of major national
parks across the world.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Container Platform.

Procedure

1. From the +Add view in the Developer perspective, click Container images to open a dialog.

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#rbac-users_understanding-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#authorization-overview_using-rbac

2. In the Image Name field, enter the following: quay.io/openshiftroadshow/parksmap:latest

3. Ensure that you have the current values for the following:

a. Application: national-parks-app

b. Name: parksmap

4. Select Deployment as the Resource.

5. Select Create route to the application.

6. In the Advanced Options section, click Labels and add labels to better identify this deployment
later. Labels help identify and filter components in the web console and in the command line.
Add the following labels:

app=national-parks-app

component=parksmap

role=frontend

7. Click Create.

You are redirected to the Topology page where you can see the parksmap deployment in the national-
parks-app application.

Additional resources

Creating applications using the Developer perspective

Viewing a project using the web console

Viewing the topology of your application

Deleting a project using the web console

3.5.1. Examining the pod

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed. Pods are the rough equivalent of a machine instance, physical or virtual, to a
container.

The Overview panel enables you to access many features of the parksmap deployment. The Details
and Resources tabs enable you to scale application pods, check build status, services, and routes.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have a deployed image.

Procedure

OpenShift Container Platform 4.10 Getting started

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#creating-applications-using-the-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#viewing-a-project-using-the-web-console_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-viewing-application-topology_viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#deleting-a-project-using-the-web-console_projects

Click D parksmap in the Topology view to open the Overview panel.

Figure 3.2. Parksmap deployment

The Overview panel includes tabs for Details, Resources, and Observe. The Details tab might
be displayed by default.

Table 3.1. Overview panel tab definitions

Tab Defintion

Details Enables you to scale your application and view pod
configuration such as labels, annotations, and the status of
the application.

Resources Displays the resources that are associated with the
deployment.

Pods are the basic units of OpenShift Container Platform
applications. You can see how many pods are being used,
what their status is, and you can view the logs.

Services that are created for your pod and assigned ports
are listed under the Services heading.

Routes enable external access to the pods and a URL is
used to access them.

Observe View various Events and Metrics information as it relates
to your pod.

Additional resources

Interacting with applications and components

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-interacting-with-applications-and-components_viewing-application-composition-using-topology-view

Scaling application pods and checking builds and routes

Labels and annotations used for the Topology view

3.5.2. Scaling the application

In Kubernetes, a Deployment object defines how an application deploys. In most cases, users use Pod,
Service, ReplicaSets, and Deployment resources together. In most cases, OpenShift Container
Platform creates the resources for you.

When you deploy the national-parks-app image, a deployment resource is created. In this example, only
one Pod is deployed.

The following procedure scales the national-parks-image to use two instances.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have a deployed image.

Procedure

1. In the Topology view, click the national-parks-app application.

2. Click the Details tab.

3. Use the up arrow to scale the pod to two instances.

Figure 3.3. Scaling application

NOTE

Application scaling can happen quickly because OpenShift Container Platform is
launching a new instance of an existing image.

OpenShift Container Platform 4.10 Getting started

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-scaling-application-pods-and-checking-builds-and-routes_viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-labels-and-annotations-used-for-topology-view_viewing-application-composition-using-topology-view

4. Use the down arrow to scale the pod down to one instance.

Additional resources

Recommended practices for scaling the cluster

Understanding horizontal pod autoscalers

About the Vertical Pod Autoscaler Operator

3.6. DEPLOYING A PYTHON APPLICATION

The following procedure deploys a back-end service for the parksmap application. The Python
application performs 2D geo-spatial queries against a MongoDB database to locate and return map
coordinates of all national parks in the world.

The deployed back-end service that is nationalparks.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have a deployed image.

Procedure

1. From the +Add view in the Developer perspective, click Import from Git to open a dialog.

2. Enter the following URL in the Git Repo URL field: https://github.com/openshift-
roadshow/nationalparks-py.git
A builder image is automatically detected.

NOTE

If the detected builder image is Dockerfile, select Edit Import Strategy. Select
Builder Image and then click Python.

3. Scroll to the General section.

4. Ensure that you have the current values for the following:

a. Application: national-parks-app

b. Name: nationalparks

5. Select Deployment as the Resource.

6. Select Create route to the application.

7. In the Advanced Options section, click Labels and add labels to better identify this deployment
later. Labels help identify and filter components in the web console and in the command line.
Add the following labels:

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#recommended-scale-practices_cluster-scaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-pods-autoscaling-about_nodes-pods-autoscaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-pods-vertical-autoscaler-about_nodes-pods-vertical-autoscaler

a. app=national-parks-app

b. component=nationalparks

c. role=backend

d. type=parksmap-backend

8. Click Create.

9. From the Topology view, select the nationalparks application.

NOTE

Click the Resources tab. In the Builds section, you can see your build running.

Additional resources

Adding services to your application

Importing a codebase from Git to create an application

Viewing the topology of your application

Providing access permissions to your project using the Developer perspective

Deleting a project using the web console

3.7. CONNECTING TO A DATABASE

Deploy and connect a MongoDB database where the national-parks-app application stores location
information. Once you mark the national-parks-app application as a backend for the map visualization
tool, parksmap deployment uses the OpenShift Container Platform discover mechanism to display the
map automatically.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have a deployed image.

Procedure

1. From the +Add view in the Developer perspective, click Container images to open a dialog.

2. In the Image Name field, enter quay.io/centos7/mongodb-36-centos7.

3. In the Runtime icon field, search for mongodb.

4. Scroll down to the General section.

5. Ensure that you have the current values for the following:

a. Application: national-parks-app

OpenShift Container Platform 4.10 Getting started

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-adding-services-to-your-application_viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-viewing-application-topology_viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-providing-project-permissions-using-developer-perspective_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#deleting-a-project-using-the-web-console_projects

b. Name: mongodb-nationalparks

6. Select Deployment as the Resource.

7. Unselect the checkbox next to Create route to the application.

8. In the Advanced Options section, click Deployment to add environment variables to add the
following environment variables:

Table 3.2. Environment variable names and values

Name Value

MONGODB_USER mongodb

MONGODB_PASSWORD mongodb

MONGODB_DATABASE mongodb

MONGODB_ADMIN_PASSWORD mongodb

9. Click Create.

Additional resources

Adding services to your application

Viewing a project using the web console

Viewing the topology of your application

Providing access permissions to your project using the Developer perspective

Deleting a project using the web console

3.7.1. Creating a secret

The Secret object provides a mechanism to hold sensitive information such as passwords, OpenShift
Container Platform client configuration files, private source repository credentials, and so on. Secrets
decouple sensitive content from the pods. You can mount secrets into containers using a volume plugin
or the system can use secrets to perform actions on behalf of a pod. The following procedure adds the
secret nationalparks-mongodb-parameters and mounts it to the nationalparks workload.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have a deployed image.

Procedure

1. From the Developer perspective, navigate to Secrets on the left hand navigation and click

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-adding-services-to-your-application_viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#viewing-a-project-using-the-web-console_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-viewing-application-topology_viewing-application-composition-using-topology-view
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-providing-project-permissions-using-developer-perspective_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#deleting-a-project-using-the-web-console_projects

1. From the Developer perspective, navigate to Secrets on the left hand navigation and click
Secrets.

2. Click Create → Key/value secret.

a. In the Secret name field, enter nationalparks-mongodb-parameters.

b. Enter the following values for Key and Value:

Table 3.3. Secret keys and values

Key Value

MONGODB_USER mongodb

DATABASE_SERVICE_NAME mongodb-nationalparks

MONGODB_PASSWORD mongodb

MONGODB_DATABASE mongodb

MONGODB_ADMIN_PASSWORD mongodb

c. Click Create.

3. Click Add Secret to workload.

a. From the drop down menu, select nationalparks as the workload to add.

b. Click Save.

This change in configuration triggers a new rollout of the nationalparks deployment with the
environment variables properly injected.

Additional resources

Understanding secrets

3.7.2. Loading data and displaying the national parks map

You deployed the parksmap and nationalparks applications and then deployed the mongodb-
nationalparks database. However, no data has been loaded into the database. Before loading the data,
add the proper labels to the mongodb-nationalparks and nationalparks deployment.

Prerequisites

You are logged in to the OpenShift Container Platform web console.

You are in the Developer perspective.

You have a deployed image.

Procedure

OpenShift Container Platform 4.10 Getting started

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

1. From the Topology view, navigate to nationalparks deployment and click Resources and
retrieve your route information.

2. Copy and paste the URL into your web browser and add the following at the end of the URL:

Example output

3. From the Topology view, navigate to parksmap deployment and click Resources and retrieve
your route information.

4. Copy and paste the URL into your web browser to view your national parks across the world
map.

Figure 3.4. National parks across the world

Additional resources

Providing access permissions to your project using the Developer perspective

Labels and annotations used for the Topology view

/ws/data/load

Items inserted in database: 2893

CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-providing-project-permissions-using-developer-perspective_projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/building_applications/#odc-labels-and-annotations-used-for-topology-view_viewing-application-composition-using-topology-view

CHAPTER 4. CREATING AND BUILDING AN APPLICATION
USING THE CLI

4.1. BEFORE YOU BEGIN

Review About the OpenShift CLI.

You must be able to access a running instance of OpenShift Container Platform. If you do not
have access, contact your cluster administrator.

You must have the OpenShift CLI (oc) downloaded and installed.

4.2. LOGGING IN TO THE CLI

You can log in to the OpenShift CLI (oc) to access and manage your cluster.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

Procedure

Log into OpenShift Container Platform from the CLI using your username and password or with
an OAuth token:

With username and password:

With an OAuth token:

You can now create a project or issue other commands for managing your cluster.

Additional resources

oc login

oc logout

4.3. CREATING A NEW PROJECT

A project enables a community of users to organize and manage their content in isolation. Projects are
OpenShift Container Platform extensions to Kubernetes namespaces. Projects have additional features
that enable user self-provisioning.

Users must receive access to projects from administrators. Cluster administrators can allow developers
to create their own projects. In most cases, users automatically have access to their own projects.

$ oc login -u=<username> -p=<password> --server=<your-openshift-server> --insecure-
skip-tls-verify

$ oc login <https://api.your-openshift-server.com> --token=<tokenID>

OpenShift Container Platform 4.10 Getting started

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#cli-about-cli_cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#installing-openshift-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-login
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-logout

Each project has its own set of objects, policies, constraints, and service accounts.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

Procedure

To create a new project, enter the following command:

Example output

Additional resources

oc new-project

4.4. GRANTING VIEW PERMISSIONS

OpenShift Container Platform automatically creates a few special service accounts in every project. The
default service account takes responsibility for running the pods. OpenShift Container Platform uses
and injects this service account into every pod that launches.

The following procedure creates a RoleBinding object for the default ServiceAccount object. The
service account communicates with the OpenShift Container Platform API to learn about pods, services,
and resources within the project.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

You have a deployed image.

You must have cluster-admin or project-admin privileges.

Procedure

To add the view role to the default service account in the user-getting-started project, enter
the following command:

Additional resources

Understanding authentication

$ oc new-project user-getting-started --display-name="Getting Started with OpenShift"

Now using project "user-getting-started" on server "https://openshift.example.com:6443".

$ oc adm policy add-role-to-user view -z default -n user-getting-started

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-new-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#understanding-authentication

RBAC overview

oc policy add-role-to-user

4.5. DEPLOYING YOUR FIRST IMAGE

The simplest way to deploy an application in OpenShift Container Platform is to run an existing container
image. The following procedure deploys a front-end component of an application called national-parks-
app. The web application displays an interactive map. The map displays the location of major national
parks across the world.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Procedure

To deploy an application, enter the following command:

Example output

Additional resources

oc new-app

4.5.1. Creating a route

External clients can access applications running on OpenShift Container Platform through the routing
layer and the data object behind that is a route. The default OpenShift Container Platform router
(HAProxy) uses the HTTP header of the incoming request to determine where to proxy the connection.

Optionally, you can define security, such as TLS, for the route.

Prerequisites

$ oc new-app quay.io/openshiftroadshow/parksmap:latest --name=parksmap -l
'app=national-parks-app,component=parksmap,role=frontend,app.kubernetes.io/part-
of=national-parks-app'

--> Found container image 0c2f55f (12 months old) from quay.io for
"quay.io/openshiftroadshow/parksmap:latest"

 * An image stream tag will be created as "parksmap:latest" that will track this image

--> Creating resources with label app=national-parks-app,app.kubernetes.io/part-of=national-
parks-app,component=parksmap,role=frontend ...
 imagestream.image.openshift.io "parksmap" created
 deployment.apps "parksmap" created
 service "parksmap" created
--> Success

OpenShift Container Platform 4.10 Getting started

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#authorization-overview_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-policy-add-role-to-user
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-new-app

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

You have a deployed image.

You must have cluster-admin or project-admin privileges.

Procedure

1. To retrieve the created application service, enter the following command:

Example output

2. To create a route, enter the following command:

Example output

3. To retrieve the created application route, enter the following command:

Example output

Additional resources

oc create route edge

oc get

4.5.2. Examining the pod

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed. Pods are the rough equivalent of a machine instance, physical or virtual, to a
container.

You can view the pods in your cluster and to determine the health of those pods and the cluster as a

$ oc get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
parksmap ClusterIP <your-cluster-IP> <123.456.789> 8080/TCP 8m29s

$ oc create route edge parksmap --service=parksmap

route.route.openshift.io/parksmap created

$ oc get route

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
parksmap parksmap-user-getting-started.apps.cluster.example.com parksmap
8080-tcp edge None

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-create-route-edge
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-get

You can view the pods in your cluster and to determine the health of those pods and the cluster as a
whole.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

You have a deployed image.

Procedure

1. To list all pods with node names, enter the following command:

Example output

2. To list all pod details, enter the following command:

Example output

$ oc get pods

NAME READY STATUS RESTARTS AGE
parksmap-5f9579955-6sng8 1/1 Running 0 77s

$ oc describe pods

Name: parksmap-848bd4954b-5pvcc
Namespace: user-getting-started
Priority: 0
Node: ci-ln-fr1rt92-72292-4fzf9-worker-a-g9g7c/10.0.128.4
Start Time: Sun, 13 Feb 2022 14:14:14 -0500
Labels: app=national-parks-app
 app.kubernetes.io/part-of=national-parks-app
 component=parksmap
 deployment=parksmap
 pod-template-hash=848bd4954b
 role=frontend
Annotations: k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.131.0.14"
],
 "default": true,
 "dns": {}
 }]
 k8s.v1.cni.cncf.io/networks-status:
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [

OpenShift Container Platform 4.10 Getting started

30

 "10.131.0.14"
],
 "default": true,
 "dns": {}
 }]
 openshift.io/generated-by: OpenShiftNewApp
 openshift.io/scc: restricted
Status: Running
IP: 10.131.0.14
IPs:
 IP: 10.131.0.14
Controlled By: ReplicaSet/parksmap-848bd4954b
Containers:
 parksmap:
 Container ID: cri-
o://4b2625d4f61861e33cc95ad6d455915ea8ff6b75e17650538cc33c1e3e26aeb8
 Image:
quay.io/openshiftroadshow/parksmap@sha256:89d1e324846cb431df9039e1a7fd0ed2ba0c51a
afbae73f2abd70a83d5fa173b
 Image ID:
quay.io/openshiftroadshow/parksmap@sha256:89d1e324846cb431df9039e1a7fd0ed2ba0c51a
afbae73f2abd70a83d5fa173b
 Port: 8080/TCP
 Host Port: 0/TCP
 State: Running
 Started: Sun, 13 Feb 2022 14:14:25 -0500
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-6f844 (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 kube-api-access-6f844:
 Type: Projected (a volume that contains injected data from multiple sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>
 DownwardAPI: true
 ConfigMapName: openshift-service-ca.crt
 ConfigMapOptional: <nil>
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 46s default-scheduler Successfully assigned user-getting-
started/parksmap-848bd4954b-5pvcc to ci-ln-fr1rt92-72292-4fzf9-worker-a-g9g7c
 Normal AddedInterface 44s multus Add eth0 [10.131.0.14/23] from openshift-sdn

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI

31

Additional resources

oc describe

oc get

oc label

Viewing pods

Viewing pod logs

4.5.3. Scaling the application

In Kubernetes, a Deployment object defines how an application deploys. In most cases, users use Pod,
Service, ReplicaSets, and Deployment resources together. In most cases, OpenShift Container
Platform creates the resources for you.

When you deploy the national-parks-app image, a deployment resource is created. In this example, only
one Pod is deployed.

The following procedure scales the national-parks-image to use two instances.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

You have a deployed image.

Procedure

To scale your application from one pod instance to two pod instances, enter the following
command:

Example output

Verification

1. To ensure that your application scaled properly, enter the following command:

 Normal Pulling 44s kubelet Pulling image
"quay.io/openshiftroadshow/parksmap@sha256:89d1e324846cb431df9039e1a7fd0ed2ba0c51
aafbae73f2abd70a83d5fa173b"
 Normal Pulled 35s kubelet Successfully pulled image
"quay.io/openshiftroadshow/parksmap@sha256:89d1e324846cb431df9039e1a7fd0ed2ba0c51
aafbae73f2abd70a83d5fa173b" in 9.49243308s
 Normal Created 35s kubelet Created container parksmap
 Normal Started 35s kubelet Started container parksmap

$ oc scale --current-replicas=1 --replicas=2 deployment/parksmap

deployment.apps/parksmap scaled

OpenShift Container Platform 4.10 Getting started

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-describe
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-get
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-label
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#viewing-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#viewing-pod-logs

Example output

2. To scale your application back down to one pod instance, enter the following command:

Additional resources

oc scale

4.6. DEPLOYING A PYTHON APPLICATION

The following procedure deploys a back-end service for the parksmap application. The Python
application performs 2D geo-spatial queries against a MongoDB database to locate and return map
coordinates of all national parks in the world.

The deployed back-end service is nationalparks.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

You have a deployed image.

Procedure

1. To create a new Python application, enter the following command:

Example output

$ oc get pods

NAME READY STATUS RESTARTS AGE
parksmap-5f9579955-6sng8 1/1 Running 0 7m39s
parksmap-5f9579955-8tgft 1/1 Running 0 24s

$ oc scale --current-replicas=2 --replicas=1 deployment/parksmap

$ oc new-app python~https://github.com/openshift-roadshow/nationalparks-py.git --name
nationalparks -l 'app=national-parks-
app,component=nationalparks,role=backend,app.kubernetes.io/part-of=national-parks-
app,app.kubernetes.io/name=python' --allow-missing-images=true

--> Found image 0406f6c (13 days old) in image stream "openshift/python" under tag "3.9-
ubi8" for "python"

 Python 3.9

 Python 3.9 available as container is a base platform for building and running various
Python 3.9 applications and frameworks. Python is an easy to learn, powerful programming
language. It has efficient high-level data structures and a simple but effective approach to
object-oriented programming. Python's elegant syntax and dynamic typing, together with its
interpreted nature, make it an ideal language for scripting and rapid application development

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-scale

2. To create a route to expose your application, nationalparks, enter the following command:

Example output

3. To retrieve the created application route, enter the following command:

Example output

Additional resources

oc new-app

4.7. CONNECTING TO A DATABASE

Deploy and connect a MongoDB database where the national-parks-app application stores location
information. Once you mark the national-parks-app application as a backend for the map visualization
tool, parksmap deployment uses the OpenShift Container Platform discover mechanism to display the
map automatically.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

in many areas on most platforms.

 Tags: builder, python, python39, python-39, rh-python39

 * A source build using source code from https://github.com/openshift-
roadshow/nationalparks-py.git will be created
 * The resulting image will be pushed to image stream tag "nationalparks:latest"
 * Use 'oc start-build' to trigger a new build

--> Creating resources with label app=national-parks-
app,app.kubernetes.io/name=python,app.kubernetes.io/part-of=national-parks-
app,component=nationalparks,role=backend ...
 imagestream.image.openshift.io "nationalparks" created
 buildconfig.build.openshift.io "nationalparks" created
 deployment.apps "nationalparks" created
 service "nationalparks" created
--> Success

$ oc create route edge nationalparks --service=nationalparks

route.route.openshift.io/parksmap created

$ oc get route

NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD
nationalparks nationalparks-user-getting-started.apps.cluster.example.com
nationalparks 8080-tcp edge None
parksmap parksmap-user-getting-started.apps.cluster.example.com
parksmap 8080-tcp edge None

OpenShift Container Platform 4.10 Getting started

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-new-app

You must have installed the OpenShift CLI (oc).

You have a deployed image.

Procedure

To connect to a database, enter the following command:

Example output

Additional resources

oc new-project

4.7.1. Creating a secret

The Secret object provides a mechanism to hold sensitive information such as passwords, OpenShift
Container Platform client configuration files, private source repository credentials, and so on. Secrets
decouple sensitive content from the pods. You can mount secrets into containers using a volume plugin
or the system can use secrets to perform actions on behalf of a pod. The following procedure adds the
secret nationalparks-mongodb-parameters and mounts it to the nationalparks workload.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

$ oc new-app quay.io/centos7/mongodb-36-centos7 --name mongodb-nationalparks -e
MONGODB_USER=mongodb -e MONGODB_PASSWORD=mongodb -e
MONGODB_DATABASE=mongodb -e MONGODB_ADMIN_PASSWORD=mongodb -l
'app.kubernetes.io/part-of=national-parks-app,app.kubernetes.io/name=mongodb'

--> Found container image dc18f52 (8 months old) from quay.io for
"quay.io/centos7/mongodb-36-centos7"

 MongoDB 3.6

 MongoDB (from humongous) is a free and open-source cross-platform document-oriented
database program. Classified as a NoSQL database program, MongoDB uses JSON-like
documents with schemas. This container image contains programs to run mongod server.

 Tags: database, mongodb, rh-mongodb36

 * An image stream tag will be created as "mongodb-nationalparks:latest" that will track this
image

--> Creating resources with label app.kubernetes.io/name=mongodb,app.kubernetes.io/part-
of=national-parks-app ...
 imagestream.image.openshift.io "mongodb-nationalparks" created
 deployment.apps "mongodb-nationalparks" created
 service "mongodb-nationalparks" created
--> Success

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-new-project

You have a deployed image.

Procedure

1. To create a secret, enter the following command:

Example output

2. To update the environment variable to attach the mongodb secret to the nationalpartks
workload, enter the following command:

Example output

3. To show the status of the nationalparks deployment, enter the following command:

Example output

4. To show the status of the mongodb-nationalparks deployment, enter the following command:

Example output

Additional resources

oc create secret generic

oc set env

oc rollout status

4.7.2. Loading data and displaying the national parks map

$ oc create secret generic nationalparks-mongodb-parameters --from-
literal=DATABASE_SERVICE_NAME=mongodb-nationalparks --from-
literal=MONGODB_USER=mongodb --from-literal=MONGODB_PASSWORD=mongodb --
from-literal=MONGODB_DATABASE=mongodb --from-
literal=MONGODB_ADMIN_PASSWORD=mongodb

secret/nationalparks-mongodb-parameters created

$ oc set env --from=secret/nationalparks-mongodb-parameters deploy/nationalparks

deployment.apps/nationalparks updated

$ oc rollout status deployment nationalparks

deployment "nationalparks" successfully rolled out

$ oc rollout status deployment mongodb-nationalparks

deployment "nationalparks" successfully rolled out
deployment "mongodb-nationalparks" successfully rolled out

OpenShift Container Platform 4.10 Getting started

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-create-secret-generic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-set-env
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-rollout-status

You deployed the parksmap and nationalparks applications and then deployed the mongodb-
nationalparks database. However, no data has been loaded into the database.

Prerequisites

You must have access to an OpenShift Container Platform cluster.

You must have installed the OpenShift CLI (oc).

You have a deployed image.

Procedure

1. To load national parks data, enter the following command:

Example output

2. To verify that your data is loaded properly, enter the following command:

Example output (trimmed)

3. To add labels to the route, enter the following command:

Example output

4. To retrieve your routes to view your map, enter the following command:

Example output

$ oc exec $(oc get pods -l component=nationalparks | tail -n 1 | awk '{print $1;}') -- curl -s
http://localhost:8080/ws/data/load

"Items inserted in database: 2893"

$ oc exec $(oc get pods -l component=nationalparks | tail -n 1 | awk '{print $1;}') -- curl -s
http://localhost:8080/ws/data/all

, {"id": "Great Zimbabwe", "latitude": "-20.2674635", "longitude": "30.9337986", "name":
"Great Zimbabwe"}]

$ oc label route nationalparks type=parksmap-backend

route.route.openshift.io/nationalparks labeled

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
nationalparks nationalparks-user-getting-started.apps.cluster.example.com
nationalparks 8080-tcp edge None
parksmap parksmap-user-getting-started.apps.cluster.example.com parksmap
8080-tcp edge None

CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI

37

5. Copy and paste the HOST/PORT path you retrieved above into your web browser. Your browser
should display a map of the national parks across the world.

Figure 4.1. National parks across the world

Additional resources

oc exec

oc label

oc get

OpenShift Container Platform 4.10 Getting started

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-exec
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-label
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/cli_tools/#oc-get

	Table of Contents
	CHAPTER 1. KUBERNETES OVERVIEW
	1.1. KUBERNETES COMPONENTS
	1.2. KUBERNETES RESOURCES
	1.3. KUBERNETES CONCEPTUAL GUIDELINES

	CHAPTER 2. OPENSHIFT CONTAINER PLATFORM OVERVIEW
	2.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM
	2.2. UNDERSTANDING OPENSHIFT CONTAINER PLATFORM
	2.3. INSTALLING OPENSHIFT CONTAINER PLATFORM
	2.3.1. OpenShift Local overview

	2.4. NEXT STEPS
	2.4.1. For developers
	2.4.2. For administrators

	CHAPTER 3. CREATING AND BUILDING AN APPLICATION USING THE WEB CONSOLE
	3.1. BEFORE YOU BEGIN
	3.2. LOGGING IN TO THE WEB CONSOLE
	3.3. CREATING A NEW PROJECT
	3.4. GRANTING VIEW PERMISSIONS
	3.5. DEPLOYING YOUR FIRST IMAGE
	3.5.1. Examining the pod
	3.5.2. Scaling the application

	3.6. DEPLOYING A PYTHON APPLICATION
	3.7. CONNECTING TO A DATABASE
	3.7.1. Creating a secret
	3.7.2. Loading data and displaying the national parks map

	CHAPTER 4. CREATING AND BUILDING AN APPLICATION USING THE CLI
	4.1. BEFORE YOU BEGIN
	4.2. LOGGING IN TO THE CLI
	4.3. CREATING A NEW PROJECT
	4.4. GRANTING VIEW PERMISSIONS
	4.5. DEPLOYING YOUR FIRST IMAGE
	4.5.1. Creating a route
	4.5.2. Examining the pod
	4.5.3. Scaling the application

	4.6. DEPLOYING A PYTHON APPLICATION
	4.7. CONNECTING TO A DATABASE
	4.7.1. Creating a secret
	4.7.2. Loading data and displaying the national parks map

