
OpenShift Container Platform 4.10

Distributed tracing

Distributed tracing installation, usage, and release notes

Last Updated: 2023-09-21

OpenShift Container Platform 4.10 Distributed tracing

Distributed tracing installation, usage, and release notes

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use distributed tracing in OpenShift Container
Platform.

. .

. .

. .

Table of Contents

CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES
1.1. DISTRIBUTED TRACING OVERVIEW
1.2. MAKING OPEN SOURCE MORE INCLUSIVE
1.3. GETTING SUPPORT
1.4. NEW FEATURES AND ENHANCEMENTS

1.4.1. New features and enhancements Red Hat OpenShift distributed tracing 2.8
1.4.1.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.8

1.4.2. New features and enhancements Red Hat OpenShift distributed tracing 2.7
1.4.2.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.7

1.4.3. New features and enhancements Red Hat OpenShift distributed tracing 2.6
1.4.3.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.6

1.4.4. New features and enhancements Red Hat OpenShift distributed tracing 2.5
1.4.4.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.5

1.4.5. New features and enhancements Red Hat OpenShift distributed tracing 2.4
1.4.5.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.4

1.4.6. New features and enhancements Red Hat OpenShift distributed tracing 2.3.1
1.4.6.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.3.1

1.4.7. New features and enhancements Red Hat OpenShift distributed tracing 2.3.0
1.4.7.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.3.0

1.4.8. New features and enhancements Red Hat OpenShift distributed tracing 2.2.0
1.4.8.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.2.0

1.4.9. New features and enhancements Red Hat OpenShift distributed tracing 2.1.0
1.4.9.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.1.0

1.4.10. New features and enhancements Red Hat OpenShift distributed tracing 2.0.0
1.4.10.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.0.0

1.5. RED HAT OPENSHIFT DISTRIBUTED TRACING TECHNOLOGY PREVIEW
1.5.1. Red Hat OpenShift distributed tracing 2.8.0 Technology Preview
1.5.2. Red Hat OpenShift distributed tracing 2.4.0 Technology Preview
1.5.3. Red Hat OpenShift distributed tracing 2.2.0 Technology Preview
1.5.4. Red Hat OpenShift distributed tracing 2.1.0 Technology Preview
1.5.5. Red Hat OpenShift distributed tracing 2.0.0 Technology Preview

1.6. RED HAT OPENSHIFT DISTRIBUTED TRACING KNOWN ISSUES
1.7. RED HAT OPENSHIFT DISTRIBUTED TRACING FIXED ISSUES

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE
2.1. DISTRIBUTED TRACING ARCHITECTURE

2.1.1. Distributed tracing overview
2.1.2. Red Hat OpenShift distributed tracing features
2.1.3. Red Hat OpenShift distributed tracing architecture

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION
3.1. INSTALLING DISTRIBUTED TRACING

3.1.1. Prerequisites
3.1.2. Red Hat OpenShift distributed tracing installation overview
3.1.3. Installing the OpenShift Elasticsearch Operator
3.1.4. Installing the Red Hat OpenShift distributed tracing platform Operator
3.1.5. Installing the Red Hat OpenShift distributed tracing data collection Operator

3.2. CONFIGURING AND DEPLOYING DISTRIBUTED TRACING
3.2.1. Deploying the distributed tracing default strategy from the web console

3.2.1.1. Deploying the distributed tracing default strategy from the CLI
3.2.2. Deploying the distributed tracing production strategy from the web console

4
4
4
4
5
5
5
5
5
5
5
6
6
6
7
7
7
7
7
8
8
8
8
8
9
9
9

10
10
10
11
11
11

13
13
13
13
14

16
16
16
16
17
18
19
21
22
23
24

Table of Contents

1

3.2.2.1. Deploying the distributed tracing production strategy from the CLI
3.2.3. Deploying the distributed tracing streaming strategy from the web console

3.2.3.1. Deploying the distributed tracing streaming strategy from the CLI
3.2.4. Validating your deployment

3.2.4.1. Accessing the Jaeger console
3.2.5. Customizing your deployment

3.2.5.1. Deployment best practices
3.2.5.2. Distributed tracing default configuration options
3.2.5.3. Jaeger Collector configuration options
3.2.5.4. Distributed tracing sampling configuration options
3.2.5.5. Distributed tracing storage configuration options

3.2.5.5.1. Auto-provisioning an Elasticsearch instance
3.2.5.5.2. Connecting to an existing Elasticsearch instance

3.2.5.6. Managing certificates with Elasticsearch
3.2.5.7. Query configuration options
3.2.5.8. Ingester configuration options

3.2.6. Injecting sidecars
3.2.6.1. Automatically injecting sidecars
3.2.6.2. Manually injecting sidecars

3.3. CONFIGURING AND DEPLOYING DISTRIBUTED TRACING DATA COLLECTION
3.3.1. OpenTelemetry Collector configuration options

3.4. UPGRADING DISTRIBUTED TRACING
3.4.1. Changing the Operator channel for 2.0

3.5. REMOVING DISTRIBUTED TRACING
3.5.1. Removing a Red Hat OpenShift distributed tracing platform instance using the web console
3.5.2. Removing a Red Hat OpenShift distributed tracing platform instance from the CLI
3.5.3. Removing the Red Hat OpenShift distributed tracing Operators

25
26
28
29
29
30
30
31

33
34
36
38
41

50
52
53
55
55
56
56
57
60
60
61
61

62
63

OpenShift Container Platform 4.10 Distributed tracing

2

Table of Contents

3

CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES

1.1. DISTRIBUTED TRACING OVERVIEW

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use distributed tracing for monitoring, network profiling, and
troubleshooting the interaction between components in modern, cloud-native, microservices-based
applications.

With distributed tracing you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Red Hat OpenShift distributed tracing consists of two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

IMPORTANT

Jaeger does not use FIPS validated cryptographic modules.

1.2. MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

1.3. GETTING SUPPORT

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides
details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

OpenShift Container Platform 4.10 Distributed tracing

4

https://www.jaegertracing.io/
https://opentelemetry.io/
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385625

1.4. NEW FEATURES AND ENHANCEMENTS

This release adds improvements related to the following components and concepts.

1.4.1. New features and enhancements Red Hat OpenShift distributed tracing 2.8

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.4.1.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.8

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.42

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.74.0

Tempo Operator Tempo 0.1.0

1.4.2. New features and enhancements Red Hat OpenShift distributed tracing 2.7

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.4.2.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.7

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.39

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.63.1

1.4.3. New features and enhancements Red Hat OpenShift distributed tracing 2.6

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.4.3.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.6

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.38

CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES

5

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.60

Operator Component Version

1.4.4. New features and enhancements Red Hat OpenShift distributed tracing 2.5

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release introduces support for ingesting OpenTelemetry protocol (OTLP) to the Red Hat
OpenShift distributed tracing platform Operator. The Operator now automatically enables the OTLP
ports:

Port 4317 is used for OTLP gRPC protocol.

Port 4318 is used for OTLP HTTP protocol.

This release also adds support for collecting Kubernetes resource attributes to the Red Hat OpenShift
distributed tracing data collection Operator.

1.4.4.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.5

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.36

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.56

1.4.5. New features and enhancements Red Hat OpenShift distributed tracing 2.4

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release also adds support for auto-provisioning certificates using the Red Hat Elasticsearch
Operator.

Self-provisioning, which means using the Red Hat OpenShift distributed tracing platform
Operator to call the Red Hat Elasticsearch Operator during installation. Self provisioning is fully
supported with this release.

Creating the Elasticsearch instance and certificates first and then configuring the distributed
tracing platform to use the certificate is a Technology Preview for this release.

NOTE

OpenShift Container Platform 4.10 Distributed tracing

6

NOTE

When upgrading to Red Hat OpenShift distributed tracing 2.4, the Operator recreates
the Elasticsearch instance, which might take five to ten minutes. Distributed tracing will
be down and unavailable for that period.

1.4.5.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.4

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.34.1

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.49

1.4.6. New features and enhancements Red Hat OpenShift distributed tracing 2.3.1

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.4.6.1. Component versions supported in Red Hat OpenShift distributed tracing version
2.3.1

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.30.2

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.44.1-1

1.4.7. New features and enhancements Red Hat OpenShift distributed tracing 2.3.0

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

With this release, the Red Hat OpenShift distributed tracing platform Operator is now installed to the
openshift-distributed-tracing namespace by default. Before this update, the default installation had
been in the openshift-operators namespace.

1.4.7.1. Component versions supported in Red Hat OpenShift distributed tracing version
2.3.0

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.30.1

CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES

7

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.44.0

Operator Component Version

1.4.8. New features and enhancements Red Hat OpenShift distributed tracing 2.2.0

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.4.8.1. Component versions supported in Red Hat OpenShift distributed tracing version
2.2.0

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.30.0

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.42.0

1.4.9. New features and enhancements Red Hat OpenShift distributed tracing 2.1.0

This release of Red Hat OpenShift distributed tracing addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.4.9.1. Component versions supported in Red Hat OpenShift distributed tracing version
2.1.0

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.29.1

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.41.1

1.4.10. New features and enhancements Red Hat OpenShift distributed tracing 2.0.0

This release marks the rebranding of Red Hat OpenShift Jaeger to Red Hat OpenShift distributed
tracing. This release consists of the following changes, additions, and improvements:

Red Hat OpenShift distributed tracing now consists of the following two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the

OpenShift Container Platform 4.10 Distributed tracing

8

https://www.jaegertracing.io/

Red Hat OpenShift distributed tracing data collection - This component is based on the
open source OpenTelemetry project.

Updates Red Hat OpenShift distributed tracing platform Operator to Jaeger 1.28. Going
forward, Red Hat OpenShift distributed tracing will only support the stable Operator channel.
Channels for individual releases are no longer supported.

Introduces a new Red Hat OpenShift distributed tracing data collection Operator based on
OpenTelemetry 0.33. Note that this Operator is a Technology Preview feature.

Adds support for OpenTelemetry protocol (OTLP) to the Query service.

Introduces a new distributed tracing icon that appears in the OpenShift OperatorHub.

Includes rolling updates to the documentation to support the name change and new features.

This release also addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.4.10.1. Component versions supported in Red Hat OpenShift distributed tracing version
2.0.0

Operator Component Version

Red Hat OpenShift distributed
tracing platform

Jaeger 1.28.0

Red Hat OpenShift distributed
tracing data collection

OpenTelemetry 0.33.0

1.5. RED HAT OPENSHIFT DISTRIBUTED TRACING TECHNOLOGY
PREVIEW

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.5.1. Red Hat OpenShift distributed tracing 2.8.0 Technology Preview

This release introduces support for Tempo Operator as a Technology Preview feature for Red Hat
OpenShift distributed tracing. The feature uses version 0.1.0 of Tempo Operator and version 2.0.1 of the
upstream Tempo components.

You can use Tempo Operator to replace Jaeger so that you can use S3-compatible storage instead of
ElasticSearch. Most users who use Tempo Operator instead of Jaeger will not notice any difference in
functionality because Tempo supports the same ingestion and query protocols as Jaeger and uses the

CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES

9

https://opentelemetry.io/
https://access.redhat.com/support/offerings/techpreview/

same user interface.

If you enable this Technology Preview feature, note the following limitations of the current
implementation:

Tempo Operator currently does not support disconnected installations. (TRACING-3145)

When you use the Jaeger user interface (UI) with Tempo Operator, the Jaeger UI lists only
services that have sent traces within the last 15 minutes. For services that have not sent traces
within the last 15 minutes, those traces are still stored even though they are not visible in the
Jaeger UI. (TRACING-3139)

Expanded support for the Tempo Operator is planned for future releases of Red Hat OpenShift
distributed tracing. Possible additional features might include support for TLS authentication,
multitenancy, and multiple clusters. For more information about the Tempo Operator, see the
documentation for the Community Tempo Operator.

1.5.2. Red Hat OpenShift distributed tracing 2.4.0 Technology Preview

This release also adds support for auto-provisioning certificates using the Red Hat Elasticsearch
Operator.

Self-provisioning, which means using the Red Hat OpenShift distributed tracing platform
Operator to call the Red Hat Elasticsearch Operator during installation. Self provisioning is fully
supported with this release.

Creating the Elasticsearch instance and certificates first and then configuring the distributed
tracing platform to use the certificate is a Technology Preview for this release.

1.5.3. Red Hat OpenShift distributed tracing 2.2.0 Technology Preview

Unsupported OpenTelemetry Collector components included in the 2.1 release have been removed.

1.5.4. Red Hat OpenShift distributed tracing 2.1.0 Technology Preview

This release introduces a breaking change to how to configure certificates in the OpenTelemetry
custom resource file. In the new version, the ca_file moves under tls in the custom resource, as shown in
the following examples.

CA file configuration for OpenTelemetry version 0.33

CA file configuration for OpenTelemetry version 0.41.1

spec:
 mode: deployment
 config: |
 exporters:
 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"

spec:
 mode: deployment
 config: |
 exporters:

OpenShift Container Platform 4.10 Distributed tracing

10

https://issues.redhat.com/browse/TRACING-3145
https://issues.redhat.com/browse/TRACING-3139
https://grafana.com/docs/tempo/latest/setup/operator/

1.5.5. Red Hat OpenShift distributed tracing 2.0.0 Technology Preview

This release includes the addition of the Red Hat OpenShift distributed tracing data collection, which
you install using the Red Hat OpenShift distributed tracing data collection Operator. Red Hat OpenShift
distributed tracing data collection is based on the OpenTelemetry APIs and instrumentation.

Red Hat OpenShift distributed tracing data collection includes the OpenTelemetry Operator and
Collector. The Collector can be used to receive traces in either the OpenTelemetry or Jaeger protocol
and send the trace data to Red Hat OpenShift distributed tracing. Other capabilities of the Collector are
not supported at this time.

The OpenTelemetry Collector allows developers to instrument their code with vendor agnostic APIs,
avoiding vendor lock-in and enabling a growing ecosystem of observability tooling.

1.6. RED HAT OPENSHIFT DISTRIBUTED TRACING KNOWN ISSUES

These limitations exist in Red Hat OpenShift distributed tracing:

Apache Spark is not supported.

The streaming deployment via AMQ/Kafka is unsupported on IBM Z and IBM Power Systems.

These are the known issues for Red Hat OpenShift distributed tracing:

OBSDA-220 In some cases, if you try to pull an image using distributed tracing data collection,
the image pull fails and a Failed to pull image error message appears. There is no workaround
for this issue.

TRACING-2057 The Kafka API has been updated to v1beta2 to support the Strimzi Kafka
Operator 0.23.0. However, this API version is not supported by AMQ Streams 1.6.3. If you have
the following environment, your Jaeger services will not be upgraded, and you cannot create
new Jaeger services or modify existing Jaeger services:

Jaeger Operator channel: 1.17.x stable or 1.20.x stable

AMQ Streams Operator channel: amq-streams-1.6.x
To resolve this issue, switch the subscription channel for your AMQ Streams Operator to
either amq-streams-1.7.x or stable.

1.7. RED HAT OPENSHIFT DISTRIBUTED TRACING FIXED ISSUES

OSSM-1910 Because of an issue introduced in version 2.6, TLS connections could not be
established with OpenShift Container Platform Service Mesh. This update resolves the issue by
changing the service port names to match conventions used by OpenShift Container Platform
Service Mesh and Istio.

OBSDA-208 Before this update, the default 200m CPU and 256Mi memory resource limits
could cause distributed tracing data collection to restart continuously on large clusters. This
update resolves the issue by removing these resource limits.

OBSDA-222 Before this update, spans could be dropped in the OpenShift Container Platform

 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"

CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES

11

https://opentelemetry.io/
https://issues.redhat.com/browse/OBSDA-220
https://issues.redhat.com/browse/TRACING-2057
https://issues.redhat.com/browse/OSSM-1910
https://issues.redhat.com/browse/OBSDA-208

OBSDA-222 Before this update, spans could be dropped in the OpenShift Container Platform
distributed tracing platform. To help prevent this issue from occurring, this release updates
version dependencies.

TRACING-2337 Jaeger is logging a repetitive warning message in the Jaeger logs similar to the
following:

This issue was resolved by exposing only the HTTP(S) port of the query service, and not the
gRPC port.

TRACING-2009 The Jaeger Operator has been updated to include support for the Strimzi
Kafka Operator 0.23.0.

TRACING-1907 The Jaeger agent sidecar injection was failing due to missing config maps in the
application namespace. The config maps were getting automatically deleted due to an incorrect
OwnerReference field setting and as a result, the application pods were not moving past the
"ContainerCreating" stage. The incorrect settings have been removed.

TRACING-1725 Follow-up to TRACING-1631. Additional fix to ensure that Elasticsearch
certificates are properly reconciled when there are multiple Jaeger production instances, using
same name but within different namespaces. See also BZ-1918920.

TRACING-1631 Multiple Jaeger production instances, using same name but within different
namespaces, causing Elasticsearch certificate issue. When multiple service meshes were
installed, all of the Jaeger Elasticsearch instances had the same Elasticsearch secret instead of
individual secrets, which prevented the OpenShift Elasticsearch Operator from communicating
with all of the Elasticsearch clusters.

TRACING-1300 Failed connection between Agent and Collector when using Istio sidecar. An
update of the Jaeger Operator enabled TLS communication by default between a Jaeger
sidecar agent and the Jaeger Collector.

TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to
authenticate to the UI using OAuth, I get a 500 error because oauth-proxy sidecar doesn’t trust
the custom CA bundle defined at installation time with the additionalTrustBundle.

TRACING-1166 It is not currently possible to use the Jaeger streaming strategy within a
disconnected environment. When a Kafka cluster is being provisioned, it results in a error: Failed
to pull image registry.redhat.io/amq7/amq-streams-kafka-24-
rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076.

TRACING-809 Jaeger Ingester is incompatible with Kafka 2.3. When there are two or more
instances of the Jaeger Ingester and enough traffic it will continuously generate rebalancing
messages in the logs. This is due to a regression in Kafka 2.3 that was fixed in Kafka 2.3.1. For
more information, see Jaegertracing-1819.

BZ-1918920/LOG-1619 The Elasticsearch pods does not get restarted automatically after an
update.
Workaround: Restart the pods manually.

{"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc:
Server.Serve failed to create ServerTransport: connection error: desc = \"transport:
http2Server.HandleStreams received bogus greeting from client:
\\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\x
daCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

OpenShift Container Platform 4.10 Distributed tracing

12

https://issues.redhat.com/browse/OBSDA-222
https://issues.redhat.com/browse/TRACING-2337
https://issues.redhat.com/browse/TRACING-2009
https://issues.redhat.com/browse/TRACING-1907
https://issues.redhat.com/browse/TRACING-1725
https://bugzilla.redhat.com/show_bug.cgi?id=1918920
https://issues.jboss.org/browse/TRACING-1631
https://issues.redhat.com/browse/TRACING-1300
https://issues.redhat.com/browse/TRACING-1208
https://issues.redhat.com/browse/TRACING-1166
https://issues.redhat.com/browse/TRACING-809
https://github.com/jaegertracing/jaeger/issues/1819
https://bugzilla.redhat.com/show_bug.cgi?id=1918920
https://issues.redhat.com/browse/LOG-1619

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE

2.1. DISTRIBUTED TRACING ARCHITECTURE

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate to produce a response. Red Hat OpenShift
distributed tracing lets you perform distributed tracing, which records the path of a request through
various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together — usually executed in different processes or hosts — to understand a whole chain of events in a
distributed transaction. Developers can visualize call flows in large microservice architectures with
distributed tracing. It is valuable for understanding serialization, parallelism, and sources of latency.

Red Hat OpenShift distributed tracing records the execution of individual requests across the whole
stack of microservices, and presents them as traces. A trace is a data/execution path through the
system. An end-to-end trace is comprised of one or more spans.

A span represents a logical unit of work in Red Hat OpenShift distributed tracing that has an operation
name, the start time of the operation, and the duration, as well as potentially tags and logs. Spans may
be nested and ordered to model causal relationships.

2.1.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use distributed tracing for monitoring, network profiling, and
troubleshooting the interaction between components in modern, cloud-native, microservices-based
applications.

With distributed tracing you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Red Hat OpenShift distributed tracing consists of two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

IMPORTANT

Jaeger does not use FIPS validated cryptographic modules.

2.1.2. Red Hat OpenShift distributed tracing features

Red Hat OpenShift distributed tracing provides the following capabilities:

Integration with Kiali – When properly configured, you can view distributed tracing data from the
Kiali console.

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE

13

https://www.jaegertracing.io/
https://opentelemetry.io/

High scalability – The distributed tracing back end is designed to have no single points of failure
and to scale with the business needs.

Distributed Context Propagation – Enables you to connect data from different components
together to create a complete end-to-end trace.

Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing has APIs that
enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting Zipkin
compatibility in this release.

2.1.3. Red Hat OpenShift distributed tracing architecture

Red Hat OpenShift distributed tracing is made up of several components that work together to collect,
store, and display tracing data.

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The
distributed tracing platform clients are language-specific implementations of the
OpenTracing API. They can be used to instrument applications for distributed tracing either
manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring
Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are
already integrated with OpenTracing.

Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform
agent is a network daemon that listens for spans sent over User Datagram Protocol (UDP),
which it batches and sends to the Collector. The agent is meant to be placed on the same
host as the instrumented application. This is typically accomplished by having a sidecar in
container environments such as Kubernetes.

Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger
Collector receives spans and places them in an internal queue for processing. This allows the
Jaeger Collector to return immediately to the client/agent instead of waiting for the span
to make its way to the storage.

Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift
distributed tracing platform has a pluggable mechanism for span storage. Note that for this
release, the only supported storage is Elasticsearch.

Query (Query Service) - Query is a service that retrieves traces from storage.

Ingester (Ingester Service) - Red Hat OpenShift distributed tracing can use Apache Kafka
as a buffer between the Collector and the actual Elasticsearch backing storage. Ingester is a
service that reads data from Kafka and writes to the Elasticsearch storage backend.

Jaeger Console – With the Red Hat OpenShift distributed tracing platform user interface,
you can visualize your distributed tracing data. On the Search page, you can find traces and
explore details of the spans that make up an individual trace.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to
receive, process, and export telemetry data. The OpenTelemetry Collector supports open-
source observability data formats, for example, Jaeger and Prometheus, sending to one or

OpenShift Container Platform 4.10 Distributed tracing

14

https://www.jaegertracing.io/
https://opentelemetry.io/

more open-source or commercial back-ends. The Collector is the default location
instrumentation libraries export their telemetry data.

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE

15

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

3.1. INSTALLING DISTRIBUTED TRACING

You can install Red Hat OpenShift distributed tracing on OpenShift Container Platform in either of two
ways:

You can install Red Hat OpenShift distributed tracing as part of Red Hat OpenShift Service
Mesh. Distributed tracing is included by default in the Service Mesh installation. To install Red
Hat OpenShift distributed tracing as part of a service mesh, follow the Red Hat Service Mesh
Installation instructions. You must install Red Hat OpenShift distributed tracing in the same
namespace as your service mesh, that is, the ServiceMeshControlPlane and the Red Hat
OpenShift distributed tracing resources must be in the same namespace.

If you do not want to install a service mesh, you can use the Red Hat OpenShift distributed
tracing Operators to install distributed tracing by itself. To install Red Hat OpenShift distributed
tracing without a service mesh, use the following instructions.

3.1.1. Prerequisites

Before you can install Red Hat OpenShift distributed tracing, review the installation activities, and
ensure that you meet the prerequisites:

Possess an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.10 overview .

Install OpenShift Container Platform 4.10.

Install OpenShift Container Platform 4.10 on AWS

Install OpenShift Container Platform 4.10 on user-provisioned AWS

Install OpenShift Container Platform 4.10 on bare metal

Install OpenShift Container Platform 4.10 on vSphere

Install the version of the OpenShift CLI (oc) that matches your OpenShift Container Platform
version and add it to your path.

An account with the cluster-admin role.

3.1.2. Red Hat OpenShift distributed tracing installation overview

The steps for installing Red Hat OpenShift distributed tracing are as follows:

Review the documentation and determine your deployment strategy.

If your deployment strategy requires persistent storage, install the OpenShift Elasticsearch
Operator via the OperatorHub.

Install the Red Hat OpenShift distributed tracing platform Operator via the OperatorHub.

Modify the custom resource YAML file to support your deployment strategy.

Deploy one or more instances of Red Hat OpenShift distributed tracing platform to your

OpenShift Container Platform 4.10 Distributed tracing

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/service_mesh/#preparing-ossm-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-vsphere

Deploy one or more instances of Red Hat OpenShift distributed tracing platform to your
OpenShift Container Platform environment.

3.1.3. Installing the OpenShift Elasticsearch Operator

The default Red Hat OpenShift distributed tracing platform deployment uses in-memory storage
because it is designed to be installed quickly for those evaluating Red Hat OpenShift distributed tracing,
giving demonstrations, or using Red Hat OpenShift distributed tracing platform in a test environment. If
you plan to use Red Hat OpenShift distributed tracing platform in production, you must install and
configure a persistent storage option, in this case, Elasticsearch.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform Operator creates the Elasticsearch instance
using the installed OpenShift Elasticsearch Operator.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Operators → OperatorHub.

3. Type Elasticsearch into the filter box to locate the OpenShift Elasticsearch Operator.

4. Click the OpenShift Elasticsearch Operator provided by Red Hat to display information about
the Operator.

5. Click Install.

6. On the Install Operator page, select the stable Update Channel. This automatically updates
your Operator as new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators-redhat project and makes the Operator available to all projects in
the cluster.



CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

17

NOTE

The Elasticsearch installation requires the openshift-operators-redhat
namespace for the OpenShift Elasticsearch Operator. The other Red Hat
OpenShift distributed tracing Operators are installed in the openshift-operators
namespace.

Accept the default Automatic approval strategy. By accepting the default, when a new
version of this Operator is available, Operator Lifecycle Manager (OLM) automatically
upgrades the running instance of your Operator without human intervention. If you select
Manual updates, when a newer version of an Operator is available, OLM creates an update
request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

8. Click Install.

9. On the Installed Operators page, select the openshift-operators-redhat project. Wait until
you see that the OpenShift Elasticsearch Operator shows a status of "InstallSucceeded" before
continuing.

3.1.4. Installing the Red Hat OpenShift distributed tracing platform Operator

To install Red Hat OpenShift distributed tracing platform, you use the OperatorHub to install the Red
Hat OpenShift distributed tracing platform Operator.

By default, the Operator is installed in the openshift-operators project.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

If you require persistent storage, you must also install the OpenShift Elasticsearch Operator
before installing the Red Hat OpenShift distributed tracing platform Operator.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.



OpenShift Container Platform 4.10 Distributed tracing

18

https://operatorhub.io/

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Operators → OperatorHub.

3. Type distributed tracing platform into the filter to locate the Red Hat OpenShift distributed
tracing platform Operator.

4. Click the Red Hat OpenShift distributed tracing platform Operator provided by Red Hat to
display information about the Operator.

5. Click Install.

6. On the Install Operator page, select the stable Update Channel. This automatically updates
your Operator as new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators project and makes the Operator available to all projects in the
cluster.

Accept the default Automatic approval strategy. By accepting the default, when a new
version of this Operator is available, Operator Lifecycle Manager (OLM) automatically
upgrades the running instance of your Operator without human intervention. If you select
Manual updates, when a newer version of an Operator is available, OLM creates an update
request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

8. Click Install.

9. Navigate to Operators → Installed Operators.

10. On the Installed Operators page, select the openshift-operators project. Wait until you see
that the Red Hat OpenShift distributed tracing platform Operator shows a status of
"Succeeded" before continuing.

3.1.5. Installing the Red Hat OpenShift distributed tracing data collection Operator

IMPORTANT

The Red Hat OpenShift distributed tracing data collection Operator is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

To install Red Hat OpenShift distributed tracing data collection, you use the OperatorHub to install the

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

19

https://access.redhat.com/support/offerings/techpreview/

To install Red Hat OpenShift distributed tracing data collection, you use the OperatorHub to install the
Red Hat OpenShift distributed tracing data collection Operator.

By default, the Operator is installed in the openshift-operators project.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Operators → OperatorHub.

3. Type distributed tracing data collection into the filter to locate the Red Hat OpenShift
distributed tracing data collection Operator.

4. Click the Red Hat OpenShift distributed tracing data collection Operator provided by Red
Hat to display information about the Operator.

5. Click Install.

6. On the Install Operator page, accept the default stable Update channel. This automatically
updates your Operator as new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators project and makes the Operator available to all projects in the
cluster.

8. Accept the default Automatic approval strategy. By accepting the default, when a new version
of this Operator is available, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention. If you select Manual updates,
when a newer version of an Operator is available, OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to have the Operator
updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.



OpenShift Container Platform 4.10 Distributed tracing

20

https://operatorhub.io/

1

9. Click Install.

10. Navigate to Operators → Installed Operators.

11. On the Installed Operators page, select the openshift-operators project. Wait until you see
that the Red Hat OpenShift distributed tracing data collection Operator shows a status of
"Succeeded" before continuing.

3.2. CONFIGURING AND DEPLOYING DISTRIBUTED TRACING

The Red Hat OpenShift distributed tracing platform Operator uses a custom resource definition (CRD)
file that defines the architecture and configuration settings to be used when creating and deploying the
distributed tracing platform resources. You can either install the default configuration or modify the file
to better suit your business requirements.

Red Hat OpenShift distributed tracing platform has predefined deployment strategies. You specify a
deployment strategy in the custom resource file. When you create a distributed tracing platform
instance the Operator uses this configuration file to create the objects necessary for the deployment.

Jaeger custom resource file showing deployment strategy

The Red Hat OpenShift distributed tracing platform Operator currently supports the following
deployment strategies:

allInOne (Default) - This strategy is intended for development, testing, and demo
purposes; it is not intended for production use. The main backend components, Agent,
Collector, and Query service, are all packaged into a single executable which is configured,
by default. to use in-memory storage.

NOTE

In-memory storage is not persistent, which means that if the distributed
tracing platform instance shuts down, restarts, or is replaced, that your trace
data will be lost. And in-memory storage cannot be scaled, since each pod
has its own memory. For persistent storage, you must use the production
or streaming strategies, which use Elasticsearch as the default storage.

production - The production strategy is intended for production environments, where long
term storage of trace data is important, as well as a more scalable and highly available
architecture is required. Each of the backend components is therefore deployed
separately. The Agent can be injected as a sidecar on the instrumented application. The
Query and Collector services are configured with a supported storage type - currently
Elasticsearch. Multiple instances of each of these components can be provisioned as
required for performance and resilience purposes.

streaming - The streaming strategy is designed to augment the production strategy by
providing a streaming capability that effectively sits between the Collector and the

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: MyConfigFile
spec:
 strategy: production 1

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

21

Elasticsearch backend storage. This provides the benefit of reducing the pressure on the
backend storage, under high load situations, and enables other trace post-processing
capabilities to tap into the real time span data directly from the streaming platform (AMQ
Streams/ Kafka).

NOTE

The streaming strategy requires an additional Red Hat subscription for AMQ
Streams.

NOTE

The streaming deployment strategy is currently unsupported on IBM Z.

NOTE

There are two ways to install and use Red Hat OpenShift distributed tracing, as part of a
service mesh or as a stand alone component. If you have installed distributed tracing as
part of Red Hat OpenShift Service Mesh, you can perform basic configuration as part of
the ServiceMeshControlPlane but for completely control you should configure a Jaeger
CR and then reference your distributed tracing configuration file in the
ServiceMeshControlPlane.

3.2.1. Deploying the distributed tracing default strategy from the web console

The custom resource definition (CRD) defines the configuration used when you deploy an instance of
Red Hat OpenShift distributed tracing. The default CR is named jaeger-all-in-one-inmemory and it is
configured with minimal resources to ensure that you can successfully install it on a default OpenShift
Container Platform installation. You can use this default configuration to create a Red Hat OpenShift
distributed tracing platform instance that uses the AllInOne deployment strategy, or you can define
your own custom resource file.

NOTE

In-memory storage is not persistent. If the Jaeger pod shuts down, restarts, or is
replaced, your trace data will be lost. For persistent storage, you must use the
production or streaming strategies, which use Elasticsearch as the default storage.

Prerequisites

The Red Hat OpenShift distributed tracing platform Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a new project, for example tracing-system.

NOTE

OpenShift Container Platform 4.10 Distributed tracing

22

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/using_amq_streams_on_openshift/index
https://kafka.apache.org/documentation/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/service_mesh/#installing-ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/service_mesh/#ossm-config-external-jaeger_observability

NOTE

If you are installing as part of Service Mesh, the distributed tracing resources
must be installed in the same namespace as the ServiceMeshControlPlane
resource, for example istio-system.

a. Navigate to Home → Projects.

b. Click Create Project.

c. Enter tracing-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select tracing-system from the Project menu. You may have to wait a few
moments for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift distributed tracing platform Operator. On the Details tab, under
Provided APIs, the Operator provides a single link.

6. Under Jaeger, click Create Instance.

7. On the Create Jaeger page, to install using the defaults, click Create to create the distributed
tracing platform instance.

8. On the Jaegers page, click the name of the distributed tracing platform instance, for example,
jaeger-all-in-one-inmemory.

9. On the Jaeger Details page, click the Resources tab. Wait until the pod has a status of
"Running" before continuing.

3.2.1.1. Deploying the distributed tracing default strategy from the CLI

Follow this procedure to create an instance of distributed tracing platform from the command line.

Prerequisites

The Red Hat OpenShift distributed tracing platform Operator has been installed and verified.

You have reviewed the instructions for how to customize the deployment.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

2. Create a new project named tracing-system.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:8443

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

23

3. Create a custom resource file named jaeger.yaml that contains the following text:

Example jaeger-all-in-one.yaml

4. Run the following command to deploy distributed tracing platform:

5. Run the following command to watch the progress of the pods during the installation process:

After the installation process has completed, you should see output similar to the following
example:

3.2.2. Deploying the distributed tracing production strategy from the web console

The production deployment strategy is intended for production environments that require a more
scalable and highly available architecture, and where long-term storage of trace data is important.

Prerequisites

The OpenShift Elasticsearch Operator has been installed.

The Red Hat OpenShift distributed tracing platform Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a new project, for example tracing-system.

NOTE

If you are installing as part of Service Mesh, the distributed tracing resources
must be installed in the same namespace as the ServiceMeshControlPlane
resource, for example istio-system.

a. Navigate to Home → Projects.

$ oc new-project tracing-system

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

$ oc create -n tracing-system -f jaeger.yaml

$ oc get pods -n tracing-system -w

NAME READY STATUS RESTARTS AGE
jaeger-all-in-one-inmemory-cdff7897b-qhfdx 2/2 Running 0 24s

OpenShift Container Platform 4.10 Distributed tracing

24

b. Click Create Project.

c. Enter tracing-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select tracing-system from the Project menu. You may have to wait a few
moments for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift distributed tracing platform Operator. On the Overview tab, under
Provided APIs, the Operator provides a single link.

6. Under Jaeger, click Create Instance.

7. On the Create Jaeger page, replace the default all-in-one YAML text with your production
YAML configuration, for example:

Example jaeger-production.yaml file with Elasticsearch

8. Click Create to create the distributed tracing platform instance.

9. On the Jaegers page, click the name of the distributed tracing platform instance, for example,
jaeger-prod-elasticsearch.

10. On the Jaeger Details page, click the Resources tab. Wait until all the pods have a status of
"Running" before continuing.

3.2.2.1. Deploying the distributed tracing production strategy from the CLI

Follow this procedure to create an instance of distributed tracing platform from the command line.

Prerequisites

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-production
 namespace:
spec:
 strategy: production
 ingress:
 security: oauth-proxy
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy: SingleRedundancy
 esIndexCleaner:
 enabled: true
 numberOfDays: 7
 schedule: 55 23 * * *
 esRollover:
 schedule: '*/30 * * * *'

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

25

The OpenShift Elasticsearch Operator has been installed.

The Red Hat OpenShift distributed tracing platform Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

2. Create a new project named tracing-system.

3. Create a custom resource file named jaeger-production.yaml that contains the text of the
example file in the previous procedure.

4. Run the following command to deploy distributed tracing platform:

5. Run the following command to watch the progress of the pods during the installation process:

After the installation process has completed, you should see output similar to the following
example:

3.2.3. Deploying the distributed tracing streaming strategy from the web console

The streaming deployment strategy is intended for production environments that require a more
scalable and highly available architecture, and where long-term storage of trace data is important.

The streaming strategy provides a streaming capability that sits between the Collector and the
Elasticsearch storage. This reduces the pressure on the storage under high load situations, and enables
other trace post-processing capabilities to tap into the real-time span data directly from the Kafka
streaming platform.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:8443

$ oc new-project tracing-system

$ oc create -n tracing-system -f jaeger-production.yaml

$ oc get pods -n tracing-system -w

NAME READY STATUS RESTARTS AGE
elasticsearch-cdm-jaegersystemjaegerproduction-1-6676cf568gwhlw 2/2 Running 0
10m
elasticsearch-cdm-jaegersystemjaegerproduction-2-bcd4c8bf5l6g6w 2/2 Running 0
10m
elasticsearch-cdm-jaegersystemjaegerproduction-3-844d6d9694hhst 2/2 Running 0
10m
jaeger-production-collector-94cd847d-jwjlj 1/1 Running 3 8m32s
jaeger-production-query-5cbfbd499d-tv8zf 3/3 Running 3 8m32s

OpenShift Container Platform 4.10 Distributed tracing

26

NOTE

The streaming strategy requires an additional Red Hat subscription for AMQ Streams. If
you do not have an AMQ Streams subscription, contact your sales representative for
more information.

NOTE

The streaming deployment strategy is currently unsupported on IBM Z.

Prerequisites

The AMQ Streams Operator has been installed. If using version 1.4.0 or higher you can use self-
provisioning. Otherwise you must create the Kafka instance.

The Red Hat OpenShift distributed tracing platform Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a new project, for example tracing-system.

NOTE

If you are installing as part of Service Mesh, the distributed tracing resources
must be installed in the same namespace as the ServiceMeshControlPlane
resource, for example istio-system.

a. Navigate to Home → Projects.

b. Click Create Project.

c. Enter tracing-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select tracing-system from the Project menu. You may have to wait a few
moments for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift distributed tracing platform Operator. On the Overview tab, under
Provided APIs, the Operator provides a single link.

6. Under Jaeger, click Create Instance.

7. On the Create Jaeger page, replace the default all-in-one YAML text with your streaming
YAML configuration, for example:

Example jaeger-streaming.yaml file

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

27

1. Click Create to create the distributed tracing platform instance.

2. On the Jaegers page, click the name of the distributed tracing platform instance, for example,
jaeger-streaming.

3. On the Jaeger Details page, click the Resources tab. Wait until all the pods have a status of
"Running" before continuing.

3.2.3.1. Deploying the distributed tracing streaming strategy from the CLI

Follow this procedure to create an instance of distributed tracing platform from the command line.

Prerequisites

The AMQ Streams Operator has been installed. If using version 1.4.0 or higher you can use self-
provisioning. Otherwise you must create the Kafka instance.

The Red Hat OpenShift distributed tracing platform Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

2. Create a new project named tracing-system.

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 #Note: If brokers are not defined,AMQStreams 1.4.0+ will self-provision Kafka.
 brokers: my-cluster-kafka-brokers.kafka:9092
 storage:
 type: elasticsearch
 ingester:
 options:
 kafka:
 consumer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:8443

OpenShift Container Platform 4.10 Distributed tracing

28

3. Create a custom resource file named jaeger-streaming.yaml that contains the text of the
example file in the previous procedure.

4. Run the following command to deploy Jaeger:

5. Run the following command to watch the progress of the pods during the installation process:

After the installation process has completed, you should see output similar to the following
example:

3.2.4. Validating your deployment

3.2.4.1. Accessing the Jaeger console

To access the Jaeger console you must have either Red Hat OpenShift Service Mesh or Red Hat
OpenShift distributed tracing installed, and Red Hat OpenShift distributed tracing platform installed,
configured, and deployed.

The installation process creates a route to access the Jaeger console.

If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use
the following directions.

Procedure from OpenShift console

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Networking → Routes.

3. On the Routes page, select the control plane project, for example tracing-system, from the

$ oc new-project tracing-system

$ oc create -n tracing-system -f jaeger-streaming.yaml

$ oc get pods -n tracing-system -w

NAME READY STATUS RESTARTS AGE
elasticsearch-cdm-jaegersystemjaegerstreaming-1-697b66d6fcztcnn 2/2 Running 0
5m40s
elasticsearch-cdm-jaegersystemjaegerstreaming-2-5f4b95c78b9gckz 2/2 Running 0
5m37s
elasticsearch-cdm-jaegersystemjaegerstreaming-3-7b6d964576nnz97 2/2 Running 0
5m5s
jaeger-streaming-collector-6f6db7f99f-rtcfm 1/1 Running 0 80s
jaeger-streaming-entity-operator-6b6d67cc99-4lm9q 3/3 Running 2
2m18s
jaeger-streaming-ingester-7d479847f8-5h8kc 1/1 Running 0 80s
jaeger-streaming-kafka-0 2/2 Running 0 3m1s
jaeger-streaming-query-65bf5bb854-ncnc7 3/3 Running 0 80s
jaeger-streaming-zookeeper-0 2/2 Running 0 3m39s

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

29

3. On the Routes page, select the control plane project, for example tracing-system, from the
Namespace menu.
The Location column displays the linked address for each route.

4. If necessary, use the filter to find the jaeger route. Click the route Location to launch the
console.

5. Click Log In With OpenShift.

Procedure from the CLI

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. To query for details of the route using the command line, enter the following command. In this
example, tracing-system is the control plane namespace.

3. Launch a browser and navigate to https://<JAEGER_URL>, where <JAEGER_URL> is the
route that you discovered in the previous step.

4. Log in using the same user name and password that you use to access the OpenShift Container
Platform console.

5. If you have added services to the service mesh and have generated traces, you can use the
filters and Find Traces button to search your trace data.
If you are validating the console installation, there is no trace data to display.

3.2.5. Customizing your deployment

3.2.5.1. Deployment best practices

Red Hat OpenShift distributed tracing instance names must be unique. If you want to have
multiple Red Hat OpenShift distributed tracing platform instances and are using sidecar
injected agents, then the Red Hat OpenShift distributed tracing platform instances should have
unique names, and the injection annotation should explicitly specify the Red Hat OpenShift
distributed tracing platform instance name the tracing data should be reported to.

If you have a multitenant implementation and tenants are separated by namespaces, deploy a
Red Hat OpenShift distributed tracing platform instance to each tenant namespace.

Agent as a daemonset is not supported for multitenant installations or Red Hat OpenShift
Dedicated. Agent as a sidecar is the only supported configuration for these use cases.

If you are installing distributed tracing as part of Red Hat OpenShift Service Mesh, the
distributed tracing resources must be installed in the same namespace as the
ServiceMeshControlPlane resource.

For information about configuring persistent storage, see Understanding persistent storage and the
appropriate configuration topic for your chosen storage option.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ export JAEGER_URL=$(oc get route -n tracing-system jaeger -o jsonpath='{.spec.host}')

OpenShift Container Platform 4.10 Distributed tracing

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/storage/#understanding-persistent-storage-1

3.2.5.2. Distributed tracing default configuration options

The Jaeger custom resource (CR) defines the architecture and settings to be used when creating the
distributed tracing platform resources. You can modify these parameters to customize your distributed
tracing platform implementation to your business needs.

Jaeger generic YAML example

Table 3.1. Jaeger parameters

Parameter Description Values Default value

apiVersion: API version to use when
creating the object.

jaegertracing.io/v1

jaegertracing.io/v1 kind: Defines the kind of
Kubernetes object to
create.

jaeger

 metadata: Data that helps uniquely
identify the object,
including a name string,
UID, and optional
namespace.

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: name
spec:
 strategy: <deployment_strategy>
 allInOne:
 options: {}
 resources: {}
 agent:
 options: {}
 resources: {}
 collector:
 options: {}
 resources: {}
 sampling:
 options: {}
 storage:
 type:
 options: {}
 query:
 options: {}
 resources: {}
 ingester:
 options: {}
 resources: {}
 options: {}

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

31

OpenShift Container
Platform automatically
generates the UID and
completes the
namespace with the
name of the project
where the object is
created.

name: Name for the object. The name of your
distributed tracing
platform instance.

jaeger-all-in-one-
inmemory

spec: Specification for the
object to be created.

Contains all of the
configuration
parameters for your
distributed tracing
platform instance. When
a common definition for
all Jaeger components
is required, it is defined
under the spec node.
When the definition
relates to an individual
component, it is placed
under the
spec/<component>
node.

N/A strategy: Jaeger deployment
strategy

allInOne, production,
or streaming

allInOne allInOne: Because the allInOne
image deploys the
Agent, Collector, Query,
Ingester, and Jaeger UI
in a single pod,
configuration for this
deployment must nest
component
configuration under the
allInOne parameter.

 agent: Configuration options
that define the Agent.

 collector: Configuration options
that define the Jaeger
Collector.

 sampling: Configuration options
that define the sampling
strategies for tracing.

Parameter Description Values Default value

OpenShift Container Platform 4.10 Distributed tracing

32

 storage: Configuration options
that define the storage.
All storage-related
options must be placed
under storage, rather
than under the allInOne
or other component
options.

 query: Configuration options
that define the Query
service.

 ingester: Configuration options
that define the Ingester
service.

Parameter Description Values Default value

The following example YAML is the minimum required to create a Red Hat OpenShift distributed tracing
platform deployment using the default settings.

Example minimum required dist-tracing-all-in-one.yaml

3.2.5.3. Jaeger Collector configuration options

The Jaeger Collector is the component responsible for receiving the spans that were captured by the
tracer and writing them to persistent Elasticsearch storage when using the production strategy, or to
AMQ Streams when using the streaming strategy.

The Collectors are stateless and thus many instances of Jaeger Collector can be run in parallel.
Collectors require almost no configuration, except for the location of the Elasticsearch cluster.

Table 3.2. Parameters used by the Operator to define the Jaeger Collector

Parameter Description Values

collector:
 replicas:

Specifies the number of Collector
replicas to create.

Integer, for example, 5

Table 3.3. Configuration parameters passed to the Collector

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

33

Parameter Description Values

spec:
 collector:
 options: {}

Configuration options that define
the Jaeger Collector.

options:
 collector:
 num-workers:

The number of workers pulling
from the queue.

Integer, for example, 50

options:
 collector:
 queue-size:

The size of the Collector queue. Integer, for example, 2000

options:
 kafka:
 producer:
 topic: jaeger-spans

The topic parameter identifies
the Kafka configuration used by
the Collector to produce the
messages, and the Ingester to
consume the messages.

Label for the producer.

options:
 kafka:
 producer:
 brokers: my-cluster-
kafka-brokers.kafka:9092

Identifies the Kafka configuration
used by the Collector to produce
the messages. If brokers are not
specified, and you have AMQ
Streams 1.4.0+ installed, the Red
Hat OpenShift distributed tracing
platform Operator will self-
provision Kafka.

options:
 log-level:

Logging level for the Collector. Possible values: debug, info,
warn, error, fatal, panic.

3.2.5.4. Distributed tracing sampling configuration options

The Red Hat OpenShift distributed tracing platform Operator can be used to define sampling strategies
that will be supplied to tracers that have been configured to use a remote sampler.

While all traces are generated, only a few are sampled. Sampling a trace marks the trace for further
processing and storage.

NOTE

This is not relevant if a trace was started by the Envoy proxy, as the sampling decision is
made there. The Jaeger sampling decision is only relevant when the trace is started by an
application using the client.

OpenShift Container Platform 4.10 Distributed tracing

34

When a service receives a request that contains no trace context, the client starts a new trace, assigns it
a random trace ID, and makes a sampling decision based on the currently installed sampling strategy.
The sampling decision propagates to all subsequent requests in the trace so that other services are not
making the sampling decision again.

distributed tracing platform libraries support the following samplers:

Probabilistic - The sampler makes a random sampling decision with the probability of sampling
equal to the value of the sampling.param property. For example, using sampling.param=0.1
samples approximately 1 in 10 traces.

Rate Limiting - The sampler uses a leaky bucket rate limiter to ensure that traces are sampled
with a certain constant rate. For example, using sampling.param=2.0 samples requests with the
rate of 2 traces per second.

Table 3.4. Jaeger sampling options

Parameter Description Values Default value

spec:
 sampling:
 options: {}
 default_strategy:

service_strategy:

Configuration options
that define the sampling
strategies for tracing.

 If you do not provide
configuration, the
Collectors will return the
default probabilistic
sampling policy with
0.001 (0.1%) probability
for all services.

default_strategy:
 type:
service_strategy:
 type:

Sampling strategy to
use. See descriptions
above.

Valid values are
probabilistic, and
ratelimiting.

probabilistic

default_strategy:
 param:
service_strategy:
 param:

Parameters for the
selected sampling
strategy.

Decimal and integer
values (0, .1, 1, 10)

1

This example defines a default sampling strategy that is probabilistic, with a 50% chance of the trace
instances being sampled.

Probabilistic sampling example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: with-sampling
spec:
 sampling:
 options:
 default_strategy:

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

35

If there are no user-supplied configurations, the distributed tracing platform uses the following settings:

Default sampling

3.2.5.5. Distributed tracing storage configuration options

You configure storage for the Collector, Ingester, and Query services under spec.storage. Multiple
instances of each of these components can be provisioned as required for performance and resilience
purposes.

Table 3.5. General storage parameters used by the Red Hat OpenShift distributed tracing platform
Operator to define distributed tracing storage

Parameter Description Values Default value

 type: probabilistic
 param: 0.5
 service_strategies:
 - service: alpha
 type: probabilistic
 param: 0.8
 operation_strategies:
 - operation: op1
 type: probabilistic
 param: 0.2
 - operation: op2
 type: probabilistic
 param: 0.4
 - service: beta
 type: ratelimiting
 param: 5

spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 1

OpenShift Container Platform 4.10 Distributed tracing

36

spec:
 storage:
 type:

Type of storage to use
for the deployment.

memory or
elasticsearch.
Memory storage is only
appropriate for
development, testing,
demonstrations, and
proof of concept
environments as the
data does not persist if
the pod is shut down.
For production
environments
distributed tracing
platform supports
Elasticsearch for
persistent storage.

memory

storage:
 secretname:

Name of the secret, for
example tracing-
secret.

 N/A

storage:
 options: {}

Configuration options
that define the storage.

Parameter Description Values Default value

Table 3.6. Elasticsearch index cleaner parameters

Parameter Description Values Default value

storage:
 esIndexCleaner:
 enabled:

When using
Elasticsearch storage,
by default a job is
created to clean old
traces from the index.
This parameter enables
or disables the index
cleaner job.

true/ false true

storage:
 esIndexCleaner:
 numberOfDays:

Number of days to wait
before deleting an index.

Integer value 7

storage:
 esIndexCleaner:
 schedule:

Defines the schedule for
how often to clean the
Elasticsearch index.

Cron expression "55 23 * * *"

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

37

3.2.5.5.1. Auto-provisioning an Elasticsearch instance

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform
Operator uses the OpenShift Elasticsearch Operator to create an Elasticsearch cluster based on the
configuration provided in the storage section of the custom resource file. The Red Hat OpenShift
distributed tracing platform Operator will provision Elasticsearch if the following configurations are set:

spec.storage:type is set to elasticsearch

spec.storage.elasticsearch.doNotProvision set to false

spec.storage.options.es.server-urls is not defined, that is, there is no connection to an
Elasticsearch instance that was not provisioned by the Red Hat Elasticsearch Operator.

When provisioning Elasticsearch, the Red Hat OpenShift distributed tracing platform Operator sets the
Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from the
Jaeger custom resource. If you do not specify a value for spec.storage.elasticsearch.name, the
Operator uses elasticsearch.

Restrictions

You can have only one distributed tracing platform with self-provisioned Elasticsearch instance
per namespace. The Elasticsearch cluster is meant to be dedicated for a single distributed
tracing platform instance.

There can be only one Elasticsearch per namespace.

NOTE

If you already have installed Elasticsearch as part of OpenShift Logging, the Red Hat
OpenShift distributed tracing platform Operator can use the installed OpenShift
Elasticsearch Operator to provision storage.

The following configuration parameters are for a self-provisioned Elasticsearch instance, that is an
instance created by the Red Hat OpenShift distributed tracing platform Operator using the OpenShift
Elasticsearch Operator. You specify configuration options for self-provisioned Elasticsearch under
spec:storage:elasticsearch in your configuration file.

Table 3.7. Elasticsearch resource configuration parameters

Parameter Description Values Default value

elasticsearch:
 properties:
 doNotProvision:

Use to specify whether
or not an Elasticsearch
instance should be
provisioned by the Red
Hat OpenShift
distributed tracing
platform Operator.

true/false true

OpenShift Container Platform 4.10 Distributed tracing

38

elasticsearch:
 properties:
 name:

Name of the
Elasticsearch instance.
The Red Hat OpenShift
distributed tracing
platform Operator uses
the Elasticsearch
instance specified in this
parameter to connect to
Elasticsearch.

string elasticsearch

elasticsearch:
 nodeCount:

Number of Elasticsearch
nodes. For high
availability use at least 3
nodes. Do not use 2
nodes as “split brain”
problem can happen.

Integer value. For
example, Proof of
concept = 1, Minimum
deployment =3

3

elasticsearch:
 resources:
 requests:
 cpu:

Number of central
processing units for
requests, based on your
environment’s
configuration.

Specified in cores or
millicores, for example,
200m, 0.5, 1. For
example, Proof of
concept = 500m,
Minimum deployment =1

1

elasticsearch:
 resources:
 requests:
 memory:

Available memory for
requests, based on your
environment’s
configuration.

Specified in bytes, for
example, 200Ki, 50Mi,
5Gi. For example, Proof
of concept = 1Gi,
Minimum deployment =
16Gi*

16Gi

elasticsearch:
 resources:
 limits:
 cpu:

Limit on number of
central processing units,
based on your
environment’s
configuration.

Specified in cores or
millicores, for example,
200m, 0.5, 1. For
example, Proof of
concept = 500m,
Minimum deployment =1

elasticsearch:
 resources:
 limits:
 memory:

Available memory limit
based on your
environment’s
configuration.

Specified in bytes, for
example, 200Ki, 50Mi,
5Gi. For example, Proof
of concept = 1Gi,
Minimum deployment =
16Gi*

Parameter Description Values Default value

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

39

elasticsearch:

redundancyPolicy:

Data replication policy
defines how
Elasticsearch shards are
replicated across data
nodes in the cluster. If
not specified, the Red
Hat OpenShift
distributed tracing
platform Operator
automatically
determines the most
appropriate replication
based on number of
nodes.

ZeroRedundancy(no
replica shards),
SingleRedundancy(o
ne replica shard),
MultipleRedundancy
(each index is spread
over half of the Data
nodes),
FullRedundancy
(each index is fully
replicated on every Data
node in the cluster).

elasticsearch:

useCertManageme
nt:

Use to specify whether
or not distributed tracing
platform should use the
certificate management
feature of the Red Hat
Elasticsearch Operator.
This feature was added
to logging subsystem
for Red Hat OpenShift
5.2 in OpenShift
Container Platform 4.7
and is the preferred
setting for new Jaeger
deployments.

true/false true

*Each Elasticsearch node can operate with a lower memory setting though this is
NOT recommended for production deployments. For production use, you should
have no less than 16Gi allocated to each pod by default, but preferably allocate as
much as you can, up to 64Gi per pod.

Parameter Description Values Default value

Production storage example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 resources:
 requests:
 cpu: 1

OpenShift Container Platform 4.10 Distributed tracing

40

1

Storage example with persistent storage:

Persistent storage configuration. In this case AWS gp2 with 5Gi size. When no value is specified,
distributed tracing platform uses emptyDir. The OpenShift Elasticsearch Operator provisions
PersistentVolumeClaim and PersistentVolume which are not removed with distributed tracing
platform instance. You can mount the same volumes if you create a distributed tracing platform
instance with the same name and namespace.

3.2.5.5.2. Connecting to an existing Elasticsearch instance

You can use an existing Elasticsearch cluster for storage with distributed tracing. An existing
Elasticsearch cluster, also known as an external Elasticsearch instance, is an instance that was not
installed by the Red Hat OpenShift distributed tracing platform Operator or by the Red Hat
Elasticsearch Operator.

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform
Operator will not provision Elasticsearch if the following configurations are set:

spec.storage.elasticsearch.doNotProvision set to true

spec.storage.options.es.server-urls has a value

spec.storage.elasticsearch.name has a value, or if the Elasticsearch instance name is
elasticsearch.

The Red Hat OpenShift distributed tracing platform Operator uses the Elasticsearch instance specified
in spec.storage.elasticsearch.name to connect to Elasticsearch.

Restrictions

 memory: 16Gi
 limits:
 memory: 16Gi

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 1
 storage: 1
 storageClassName: gp2
 size: 5Gi
 resources:
 requests:
 cpu: 200m
 memory: 4Gi
 limits:
 memory: 4Gi
 redundancyPolicy: ZeroRedundancy

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

41

You cannot share or reuse a OpenShift Container Platform logging Elasticsearch instance with
distributed tracing platform. The Elasticsearch cluster is meant to be dedicated for a single
distributed tracing platform instance.

NOTE

Red Hat does not provide support for your external Elasticsearch instance. You can
review the tested integrations matrix on the Customer Portal.

The following configuration parameters are for an already existing Elasticsearch instance, also known as
an external Elasticsearch instance. In this case, you specify configuration options for Elasticsearch under
spec:storage:options:es in your custom resource file.

Table 3.8. General ES configuration parameters

Parameter Description Values Default value

es:
 server-urls:

URL of the Elasticsearch
instance.

The fully-qualified
domain name of the
Elasticsearch server.

http://elasticsearch.
<namespace>.svc:92
00

es:
 max-doc-count:

The maximum document
count to return from an
Elasticsearch query. This
will also apply to
aggregations. If you set
both es.max-doc-
count and es.max-
num-spans,
Elasticsearch will use the
smaller value of the two.

 10000

es:
 max-num-spans:

[Deprecated - Will be
removed in a future
release, use es.max-
doc-count instead.]
The maximum number
of spans to fetch at a
time, per query, in
Elasticsearch. If you set
both es.max-num-
spans and es.max-
doc-count,
Elasticsearch will use the
smaller value of the two.

 10000

es:
 max-span-age:

The maximum lookback
for spans in
Elasticsearch.

 72h0m0s

OpenShift Container Platform 4.10 Distributed tracing

42

https://access.redhat.com/articles/5381021
http://:9200

es:
 sniffer:

The sniffer configuration
for Elasticsearch. The
client uses the sniffing
process to find all nodes
automatically. Disabled
by default.

true/ false false

es:
 sniffer-tls-
enabled:

Option to enable TLS
when sniffing an
Elasticsearch Cluster.
The client uses the
sniffing process to find
all nodes automatically.
Disabled by default

true/ false false

es:
 timeout:

Timeout used for
queries. When set to
zero there is no timeout.

 0s

es:
 username:

The username required
by Elasticsearch. The
basic authentication also
loads CA if it is specified.
See also es.password.

es:
 password:

The password required
by Elasticsearch. See
also, es.username.

es:
 version:

The major Elasticsearch
version. If not specified,
the value will be auto-
detected from
Elasticsearch.

 0

Parameter Description Values Default value

Table 3.9. ES data replication parameters

Parameter Description Values Default value

es:
 num-replicas:

The number of replicas
per index in
Elasticsearch.

 1

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

43

es:
 num-shards:

The number of shards
per index in
Elasticsearch.

 5

Parameter Description Values Default value

Table 3.10. ES index configuration parameters

Parameter Description Values Default value

es:
 create-index-
templates:

Automatically create
index templates at
application startup when
set to true. When
templates are installed
manually, set to false.

true/ false true

es:
 index-prefix:

Optional prefix for
distributed tracing
platform indices. For
example, setting this to
"production" creates
indices named
"production-tracing-*".

Table 3.11. ES bulk processor configuration parameters

Parameter Description Values Default value

es:
 bulk:
 actions:

The number of requests
that can be added to the
queue before the bulk
processor decides to
commit updates to disk.

 1000

es:
 bulk:
 flush-interval:

A time.Duration after
which bulk requests are
committed, regardless
of other thresholds. To
disable the bulk
processor flush interval,
set this to zero.

 200ms

OpenShift Container Platform 4.10 Distributed tracing

44

es:
 bulk:
 size:

The number of bytes
that the bulk requests
can take up before the
bulk processor decides
to commit updates to
disk.

 5000000

es:
 bulk:
 workers:

The number of workers
that are able to receive
and commit bulk
requests to
Elasticsearch.

 1

Parameter Description Values Default value

Table 3.12. ES TLS configuration parameters

Parameter Description Values Default value

es:
 tls:
 ca:

Path to a TLS
Certification Authority
(CA) file used to verify
the remote servers.

 Will use the system
truststore by default.

es:
 tls:
 cert:

Path to a TLS
Certificate file, used to
identify this process to
the remote servers.

es:
 tls:
 enabled:

Enable transport layer
security (TLS) when
talking to the remote
servers. Disabled by
default.

true/ false false

es:
 tls:
 key:

Path to a TLS Private
Key file, used to identify
this process to the
remote servers.

es:
 tls:
 server-name:

Override the expected
TLS server name in the
certificate of the remote
servers.

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

45

es:
 token-file:

Path to a file containing
the bearer token. This
flag also loads the
Certification Authority
(CA) file if it is specified.

Parameter Description Values Default value

Table 3.13. ES archive configuration parameters

Parameter Description Values Default value

es-archive:
 bulk:
 actions:

The number of requests
that can be added to the
queue before the bulk
processor decides to
commit updates to disk.

 0

es-archive:
 bulk:
 flush-interval:

A time.Duration after
which bulk requests are
committed, regardless
of other thresholds. To
disable the bulk
processor flush interval,
set this to zero.

 0s

es-archive:
 bulk:
 size:

The number of bytes
that the bulk requests
can take up before the
bulk processor decides
to commit updates to
disk.

 0

es-archive:
 bulk:
 workers:

The number of workers
that are able to receive
and commit bulk
requests to
Elasticsearch.

 0

es-archive:
 create-index-
templates:

Automatically create
index templates at
application startup when
set to true. When
templates are installed
manually, set to false.

true/ false false

es-archive:
 enabled:

Enable extra storage. true/ false false

OpenShift Container Platform 4.10 Distributed tracing

46

es-archive:
 index-prefix:

Optional prefix for
distributed tracing
platform indices. For
example, setting this to
"production" creates
indices named
"production-tracing-*".

es-archive:
 max-doc-count:

The maximum document
count to return from an
Elasticsearch query. This
will also apply to
aggregations.

 0

es-archive:
 max-num-spans:

[Deprecated - Will be
removed in a future
release, use es-
archive.max-doc-
count instead.] The
maximum number of
spans to fetch at a time,
per query, in
Elasticsearch.

 0

es-archive:
 max-span-age:

The maximum lookback
for spans in
Elasticsearch.

 0s

es-archive:
 num-replicas:

The number of replicas
per index in
Elasticsearch.

 0

es-archive:
 num-shards:

The number of shards
per index in
Elasticsearch.

 0

es-archive:
 password:

The password required
by Elasticsearch. See
also, es.username.

es-archive:
 server-urls:

The comma-separated
list of Elasticsearch
servers. Must be
specified as fully
qualified URLs, for
example,
http://localhost:9200.

Parameter Description Values Default value

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

47

es-archive:
 sniffer:

The sniffer configuration
for Elasticsearch. The
client uses the sniffing
process to find all nodes
automatically. Disabled
by default.

true/ false false

es-archive:
 sniffer-tls-
enabled:

Option to enable TLS
when sniffing an
Elasticsearch Cluster.
The client uses the
sniffing process to find
all nodes automatically.
Disabled by default.

true/ false false

es-archive:
 timeout:

Timeout used for
queries. When set to
zero there is no timeout.

 0s

es-archive:
 tls:
 ca:

Path to a TLS
Certification Authority
(CA) file used to verify
the remote servers.

 Will use the system
truststore by default.

es-archive:
 tls:
 cert:

Path to a TLS
Certificate file, used to
identify this process to
the remote servers.

es-archive:
 tls:
 enabled:

Enable transport layer
security (TLS) when
talking to the remote
servers. Disabled by
default.

true/ false false

Parameter Description Values Default value

OpenShift Container Platform 4.10 Distributed tracing

48

es-archive:
 tls:
 key:

Path to a TLS Private
Key file, used to identify
this process to the
remote servers.

es-archive:
 tls:
 server-name:

Override the expected
TLS server name in the
certificate of the remote
servers.

es-archive:
 token-file:

Path to a file containing
the bearer token. This
flag also loads the
Certification Authority
(CA) file if it is specified.

es-archive:
 username:

The username required
by Elasticsearch. The
basic authentication also
loads CA if it is specified.
See also es-
archive.password.

es-archive:
 version:

The major Elasticsearch
version. If not specified,
the value will be auto-
detected from
Elasticsearch.

 0

Parameter Description Values Default value

Storage example with volume mounts

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200
 index-prefix: my-prefix
 tls:
 ca: /es/certificates/ca.crt
 secretName: tracing-secret
 volumeMounts:

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

49

1

2

3

4

The following example shows a Jaeger CR using an external Elasticsearch cluster with TLS CA
certificate mounted from a volume and user/password stored in a secret.

External Elasticsearch example:

URL to Elasticsearch service running in default namespace.

TLS configuration. In this case only CA certificate, but it can also contain es.tls.key and es.tls.cert
when using mutual TLS.

Secret which defines environment variables ES_PASSWORD and ES_USERNAME. Created by
kubectl create secret generic tracing-secret --from-literal=ES_PASSWORD=changeme --from-
literal=ES_USERNAME=elastic

Volume mounts and volumes which are mounted into all storage components.

3.2.5.6. Managing certificates with Elasticsearch

You can create and manage certificates using the Red Hat Elasticsearch Operator. Managing
certificates using the Red Hat Elasticsearch Operator also lets you use a single Elasticsearch cluster with
multiple Jaeger Collectors.

IMPORTANT

 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200 1
 index-prefix: my-prefix
 tls: 2
 ca: /es/certificates/ca.crt
 secretName: tracing-secret 3
 volumeMounts: 4
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

OpenShift Container Platform 4.10 Distributed tracing

50

IMPORTANT

Managing certificates with Elasticsearch is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Starting with version 2.4, the Red Hat OpenShift distributed tracing platform Operator delegates
certificate creation to the Red Hat Elasticsearch Operator by using the following annotations in the
Elasticsearch custom resource:

logging.openshift.io/elasticsearch-cert-management: "true"

logging.openshift.io/elasticsearch-cert.jaeger-<shared-es-node-name>: "user.jaeger"

logging.openshift.io/elasticsearch-cert.curator-<shared-es-node-name>:
"system.logging.curator"

Where the <shared-es-node-name> is the name of the Elasticsearch node. For example, if you create
an Elasticsearch node named custom-es, your custom resource might look like the following example.

Example Elasticsearch CR showing annotations

apiVersion: logging.openshift.io/v1
kind: Elasticsearch
metadata:
 annotations:
 logging.openshift.io/elasticsearch-cert-management: "true"
 logging.openshift.io/elasticsearch-cert.jaeger-custom-es: "user.jaeger"
 logging.openshift.io/elasticsearch-cert.curator-custom-es: "system.logging.curator"
 name: custom-es
spec:
 managementState: Managed
 nodeSpec:
 resources:
 limits:
 memory: 16Gi
 requests:
 cpu: 1
 memory: 16Gi
 nodes:
 - nodeCount: 3
 proxyResources: {}
 resources: {}
 roles:
 - master
 - client
 - data
 storage: {}
 redundancyPolicy: ZeroRedundancy

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

51

https://access.redhat.com/support/offerings/techpreview/

Prerequisites

OpenShift Container Platform 4.7

logging subsystem for Red Hat OpenShift 5.2

The Elasticsearch node and the Jaeger instances must be deployed in the same namespace.
For example, tracing-system.

You enable certificate management by setting spec.storage.elasticsearch.useCertManagement to
true in the Jaeger custom resource.

Example showing useCertManagement

The Red Hat OpenShift distributed tracing platform Operator sets the Elasticsearch custom resource
name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource when
provisioning Elasticsearch.

The certificates are provisioned by the Red Hat Elasticsearch Operator and the Red Hat OpenShift
distributed tracing platform Operator injects the certificates.

3.2.5.7. Query configuration options

Query is a service that retrieves traces from storage and hosts the user interface to display them.

Table 3.14. Parameters used by the Red Hat OpenShift distributed tracing platform Operator to
define Query

Parameter Description Values Default value

spec:
 query:
 replicas:

Specifies the number of
Query replicas to create.

Integer, for example, 2

Table 3.15. Configuration parameters passed to Query

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 name: custom-es
 doNotProvision: true
 useCertManagement: true

OpenShift Container Platform 4.10 Distributed tracing

52

Parameter Description Values Default value

spec:
 query:
 options: {}

Configuration options
that define the Query
service.

options:
 log-level:

Logging level for Query. Possible values: debug,
info, warn, error, fatal,
panic.

options:
 query:
 base-path:

The base path for all
jaeger-query HTTP
routes can be set to a
non-root value, for
example, /jaeger would
cause all UI URLs to
start with /jaeger. This
can be useful when
running jaeger-query
behind a reverse proxy.

/<path>

Sample Query configuration

3.2.5.8. Ingester configuration options

Ingester is a service that reads from a Kafka topic and writes to the Elasticsearch storage backend. If you
are using the allInOne or production deployment strategies, you do not need to configure the Ingester
service.

Table 3.16. Jaeger parameters passed to the Ingester

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "my-jaeger"
spec:
 strategy: allInOne
 allInOne:
 options:
 log-level: debug
 query:
 base-path: /jaeger

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

53

Parameter Description Values

spec:
 ingester:
 options: {}

Configuration options that define
the Ingester service.

options:
 deadlockInterval:

Specifies the interval, in seconds
or minutes, that the Ingester must
wait for a message before
terminating. The deadlock interval
is disabled by default (set to 0), to
avoid terminating the Ingester
when no messages arrive during
system initialization.

Minutes and seconds, for
example, 1m0s. Default value is
0.

options:
 kafka:
 consumer:
 topic:

The topic parameter identifies
the Kafka configuration used by
the collector to produce the
messages, and the Ingester to
consume the messages.

Label for the consumer. For
example, jaeger-spans.

options:
 kafka:
 consumer:
 brokers:

Identifies the Kafka configuration
used by the Ingester to consume
the messages.

Label for the broker, for example,
my-cluster-kafka-
brokers.kafka:9092.

options:
 log-level:

Logging level for the Ingester. Possible values: debug, info,
warn, error, fatal, dpanic,
panic.

Streaming Collector and Ingester example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 options:
 kafka:
 consumer:

OpenShift Container Platform 4.10 Distributed tracing

54

1

3.2.6. Injecting sidecars

Red Hat OpenShift distributed tracing platform relies on a proxy sidecar within the application’s pod to
provide the agent. The Red Hat OpenShift distributed tracing platform Operator can inject Agent
sidecars into Deployment workloads. You can enable automatic sidecar injection or manage it manually.

3.2.6.1. Automatically injecting sidecars

The Red Hat OpenShift distributed tracing platform Operator can inject Jaeger Agent sidecars into
Deployment workloads. To enable automatic injection of sidecars, add the
sidecar.jaegertracing.io/inject annotation set to either the string true or to the distributed tracing
platform instance name that is returned by running $ oc get jaegers. When you specify true, there
should be only a single distributed tracing platform instance for the same namespace as the
deployment, otherwise, the Operator cannot determine which distributed tracing platform instance to
use. A specific distributed tracing platform instance name on a deployment has a higher precedence
than true applied on its namespace.

The following snippet shows a simple application that will inject a sidecar, with the agent pointing to the
single distributed tracing platform instance available in the same namespace:

Automatic sidecar injection example

Set to either the string true or to the Jaeger instance name.

When the sidecar is injected, the agent can then be accessed at its default location on localhost.

 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 deadlockInterval: 5
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: http://elasticsearch:9200

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp
 annotations:
 "sidecar.jaegertracing.io/inject": "true" 1
spec:
 selector:
 matchLabels:
 app: myapp
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp
 image: acme/myapp:myversion

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

55

3.2.6.2. Manually injecting sidecars

The Red Hat OpenShift distributed tracing platform Operator can only automatically inject Jaeger
Agent sidecars into Deployment workloads. For controller types other than Deployments, such as
StatefulSets`and `DaemonSets, you can manually define the Jaeger agent sidecar in your specification.

The following snippet shows the manual definition you can include in your containers section for a
Jaeger agent sidecar:

Sidecar definition example for a StatefulSet

The agent can then be accessed at its default location on localhost.

3.3. CONFIGURING AND DEPLOYING DISTRIBUTED TRACING DATA
COLLECTION

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: example-statefulset
 namespace: example-ns
 labels:
 app: example-app
spec:

 spec:
 containers:
 - name: example-app
 image: acme/myapp:myversion
 ports:
 - containerPort: 8080
 protocol: TCP
 - name: jaeger-agent
 image: registry.redhat.io/distributed-tracing/jaeger-agent-rhel7:<version>
 # The agent version must match the Operator version
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 5775
 name: zk-compact-trft
 protocol: UDP
 - containerPort: 5778
 name: config-rest
 protocol: TCP
 - containerPort: 6831
 name: jg-compact-trft
 protocol: UDP
 - containerPort: 6832
 name: jg-binary-trft
 protocol: UDP
 - containerPort: 14271
 name: admin-http
 protocol: TCP
 args:
 - --reporter.grpc.host-port=dns:///jaeger-collector-headless.example-ns:14250
 - --reporter.type=grpc

OpenShift Container Platform 4.10 Distributed tracing

56

The Red Hat OpenShift distributed tracing data collection Operator uses a custom resource definition
(CRD) file that defines the architecture and configuration settings to be used when creating and
deploying the Red Hat OpenShift distributed tracing data collection resources. You can either install the
default configuration or modify the file to better suit your business requirements.

3.3.1. OpenTelemetry Collector configuration options

IMPORTANT

The Red Hat OpenShift distributed tracing data collection Operator is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The OpenTelemetry Collector consists of three components that access telemetry data:

Receivers - A receiver, which can be push or pull based, is how data gets into the Collector.
Generally, a receiver accepts data in a specified format, translates it into the internal format and
passes it to processors and exporters defined in the applicable pipelines. By default, no receivers
are configured. One or more receivers must be configured. Receivers may support one or more
data sources.

Processors - (Optional) Processors are run on data between being received and being
exported. By default, no processors are enabled. Processors must be enabled for every data
source. Not all processors support all data sources. Depending on the data source, it may be
recommended that multiple processors be enabled. In addition, it is important to note that the
order of processors matters.

Exporters - An exporter, which can be push or pull based, is how you send data to one or more
backends/destinations. By default, no exporters are configured. One or more exporters must be
configured. Exporters may support one or more data sources. Exporters may come with default
settings, but many require configuration to specify at least the destination and security settings.

You can define multiple instances of components in a custom resource YAML file. Once configured,
these components must be enabled through pipelines defined in the spec.config.service section of the
YAML file. As a best practice you should only enable the components that you need.

sample OpenTelemetry collector custom resource file

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: tracing-system
spec:
 mode: deployment
 config: |
 receivers:
 otlp:
 protocols:

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

57

https://access.redhat.com/support/offerings/techpreview/

NOTE

If a component is configured, but not defined within the service section then it is not
enabled.

Table 3.17. Parameters used by the Operator to define the OpenTelemetry Collector

Parameter Description Values Default

receivers:
A receiver is how data
gets into the Collector.
By default, no receivers
are configured. There
must be at least one
enabled receiver for a
configuration to be
considered valid.
Receivers are enabled
by being added to a
pipeline.

otlp, jaeger None

receivers:
 otlp:

The oltp and jaeger
receivers come with
default settings,
specifying the name of
the receiver is enough to
configure it.

processors:
Processors run on data
between being received
and being exported. By
default, no processors
are enabled.

 None

 grpc:
 http:
 processors:
 exporters:
 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 service:
 pipelines:
 traces:
 receivers: [otlp]
 processors: []
 exporters: [jaeger]

OpenShift Container Platform 4.10 Distributed tracing

58

exporters:
An exporter sends data
to one or more
backends/destinations.
By default, no exporters
are configured. There
must be at least one
enabled exporter for a
configuration to be
considered valid.
Exporters are enabled
by being added to a
pipeline. Exporters may
come with default
settings, but many
require configuration to
specify at least the
destination and security
settings.

logging, jaeger None

exporters:
 jaeger:
 endpoint:

The jaeger exporter’s
endpoint must be of the
form <name>-
collector-headless.
<namespace>.svc,
with the name and
namespace of the
Jaeger deployment, for
a secure connection to
be established.

exporters:
 jaeger:
 tls:
 ca_file:

Path to the CA
certificate. For a client
this verifies the server
certificate. For a server
this verifies client
certificates. If empty
uses system root CA.

service:
 pipelines:

Components are
enabled by adding them
to a pipeline under
services.pipeline.

service:
 pipelines:
 traces:
 receivers:

You enable receivers for
tracing by adding them
under
service.pipelines.tra
ces.

 None

Parameter Description Values Default

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

59

service:
 pipelines:
 traces:
 processors:

You enable processors
for tracing by adding
them under
service.pipelines.tra
ces.

 None

service:
 pipelines:
 traces:
 exporters:

You enable exporters for
tracing by adding them
under
service.pipelines.tra
ces.

 None

Parameter Description Values Default

3.4. UPGRADING DISTRIBUTED TRACING

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. The OLM runs by default in OpenShift Container Platform. OLM
queries for available Operators as well as upgrades for installed Operators. For more information about
how OpenShift Container Platform handles upgrades, see the Operator Lifecycle Manager
documentation.

During an update, the Red Hat OpenShift distributed tracing Operators upgrade the managed
distributed tracing instances to the version associated with the Operator. Whenever a new version of the
Red Hat OpenShift distributed tracing platform Operator is installed, all the distributed tracing platform
application instances managed by the Operator are upgraded to the Operator’s version. For example,
after upgrading the Operator from 1.10 installed to 1.11, the Operator scans for running distributed tracing
platform instances and upgrades them to 1.11 as well.

For specific instructions on how to update the OpenShift Elasticsearch Operator, see Updating
OpenShift Logging.

3.4.1. Changing the Operator channel for 2.0

Red Hat OpenShift distributed tracing 2.0.0 made the following changes:

Renamed the Red Hat OpenShift Jaeger Operator to the Red Hat OpenShift distributed
tracing platform Operator.

Stopped support for individual release channels. Going forward, the Red Hat OpenShift
distributed tracing platform Operator will only support the stable Operator channel.
Maintenance channels, for example 1.24-stable, will no longer be supported by future
Operators.

As part of the update to version 2.0, you must update your OpenShift Elasticsearch and Red Hat
OpenShift distributed tracing platform Operator subscriptions.

Prerequisites

The OpenShift Container Platform version is 4.6 or later.

OpenShift Container Platform 4.10 Distributed tracing

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/logging/#cluster-logging-upgrading_cluster-logging-upgrading

You have updated the OpenShift Elasticsearch Operator.

You have backed up the Jaeger custom resource file.

An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must
have an account with the dedicated-admin role.

IMPORTANT

If you have not already updated your OpenShift Elasticsearch Operator as described in
Updating OpenShift Logging complete that update before updating your Red Hat
OpenShift distributed tracing platform Operator.

For instructions on how to update the Operator channel, see Updating installed Operators.

3.5. REMOVING DISTRIBUTED TRACING

The steps for removing Red Hat OpenShift distributed tracing from an OpenShift Container Platform
cluster are as follows:

1. Shut down any Red Hat OpenShift distributed tracing pods.

2. Remove any Red Hat OpenShift distributed tracing instances.

3. Remove the Red Hat OpenShift distributed tracing platform Operator.

4. Remove the Red Hat OpenShift distributed tracing data collection Operator.

3.5.1. Removing a Red Hat OpenShift distributed tracing platform instance using the
web console

NOTE

When deleting an instance that uses the in-memory storage, all data is permanently lost.
Data stored in a persistent storage such as Elasticsearch is not be deleted when a Red Hat
OpenShift distributed tracing platform instance is removed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Select the name of the project where the Operators are installed from the Project menu, for
example, openshift-operators.

4. Click the Red Hat OpenShift distributed tracing platform Operator.

5. Click the Jaeger tab.

6. Click the Options menu next to the instance you want to delete and select Delete
Jaeger.

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/logging/#updating-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#updating-installed-operators

7. In the confirmation message, click Delete.

3.5.2. Removing a Red Hat OpenShift distributed tracing platform instance from the
CLI

1. Log in to the OpenShift Container Platform CLI.

2. To display the distributed tracing platform instances run the command:

For example,

The names of Operators have the suffix -operator. The following example shows two Red Hat
OpenShift distributed tracing platform Operators and four distributed tracing platform
instances:

You should see output similar to the following:

3. To remove an instance of distributed tracing platform, run the following command:

For example:

4. To verify the deletion, run the oc get deployments command again:

For example:

You should see generated output that is similar to the following example:

$ oc login --username=<NAMEOFUSER>

$ oc get deployments -n <jaeger-project>

$ oc get deployments -n openshift-operators

$ oc get deployments -n openshift-operators

NAME READY UP-TO-DATE AVAILABLE AGE
elasticsearch-operator 1/1 1 1 93m
jaeger-operator 1/1 1 1 49m
jaeger-test 1/1 1 1 7m23s
jaeger-test2 1/1 1 1 6m48s
tracing1 1/1 1 1 7m8s
tracing2 1/1 1 1 35m

$ oc delete jaeger <deployment-name> -n <jaeger-project>

$ oc delete jaeger tracing2 -n openshift-operators

$ oc get deployments -n <jaeger-project>

$ oc get deployments -n openshift-operators

NAME READY UP-TO-DATE AVAILABLE AGE

OpenShift Container Platform 4.10 Distributed tracing

62

3.5.3. Removing the Red Hat OpenShift distributed tracing Operators

Procedure

1. Follow the instructions for Deleting Operators from a cluster .

Remove the Red Hat OpenShift distributed tracing platform Operator.

After the Red Hat OpenShift distributed tracing platform Operator has been removed, if
appropriate, remove the OpenShift Elasticsearch Operator.

elasticsearch-operator 1/1 1 1 94m
jaeger-operator 1/1 1 1 50m
jaeger-test 1/1 1 1 8m14s
jaeger-test2 1/1 1 1 7m39s
tracing1 1/1 1 1 7m59s

CHAPTER 3. DISTRIBUTED TRACING INSTALLATION

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-deleting-operators-from-a-cluster

	Table of Contents
	CHAPTER 1. DISTRIBUTED TRACING RELEASE NOTES
	1.1. DISTRIBUTED TRACING OVERVIEW
	1.2. MAKING OPEN SOURCE MORE INCLUSIVE
	1.3. GETTING SUPPORT
	1.4. NEW FEATURES AND ENHANCEMENTS
	1.4.1. New features and enhancements Red Hat OpenShift distributed tracing 2.8
	1.4.1.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.8

	1.4.2. New features and enhancements Red Hat OpenShift distributed tracing 2.7
	1.4.2.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.7

	1.4.3. New features and enhancements Red Hat OpenShift distributed tracing 2.6
	1.4.3.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.6

	1.4.4. New features and enhancements Red Hat OpenShift distributed tracing 2.5
	1.4.4.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.5

	1.4.5. New features and enhancements Red Hat OpenShift distributed tracing 2.4
	1.4.5.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.4

	1.4.6. New features and enhancements Red Hat OpenShift distributed tracing 2.3.1
	1.4.6.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.3.1

	1.4.7. New features and enhancements Red Hat OpenShift distributed tracing 2.3.0
	1.4.7.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.3.0

	1.4.8. New features and enhancements Red Hat OpenShift distributed tracing 2.2.0
	1.4.8.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.2.0

	1.4.9. New features and enhancements Red Hat OpenShift distributed tracing 2.1.0
	1.4.9.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.1.0

	1.4.10. New features and enhancements Red Hat OpenShift distributed tracing 2.0.0
	1.4.10.1. Component versions supported in Red Hat OpenShift distributed tracing version 2.0.0

	1.5. RED HAT OPENSHIFT DISTRIBUTED TRACING TECHNOLOGY PREVIEW
	1.5.1. Red Hat OpenShift distributed tracing 2.8.0 Technology Preview
	1.5.2. Red Hat OpenShift distributed tracing 2.4.0 Technology Preview
	1.5.3. Red Hat OpenShift distributed tracing 2.2.0 Technology Preview
	1.5.4. Red Hat OpenShift distributed tracing 2.1.0 Technology Preview
	1.5.5. Red Hat OpenShift distributed tracing 2.0.0 Technology Preview

	1.6. RED HAT OPENSHIFT DISTRIBUTED TRACING KNOWN ISSUES
	1.7. RED HAT OPENSHIFT DISTRIBUTED TRACING FIXED ISSUES

	CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE
	2.1. DISTRIBUTED TRACING ARCHITECTURE
	2.1.1. Distributed tracing overview
	2.1.2. Red Hat OpenShift distributed tracing features
	2.1.3. Red Hat OpenShift distributed tracing architecture

	CHAPTER 3. DISTRIBUTED TRACING INSTALLATION
	3.1. INSTALLING DISTRIBUTED TRACING
	3.1.1. Prerequisites
	3.1.2. Red Hat OpenShift distributed tracing installation overview
	3.1.3. Installing the OpenShift Elasticsearch Operator
	3.1.4. Installing the Red Hat OpenShift distributed tracing platform Operator
	3.1.5. Installing the Red Hat OpenShift distributed tracing data collection Operator

	3.2. CONFIGURING AND DEPLOYING DISTRIBUTED TRACING
	3.2.1. Deploying the distributed tracing default strategy from the web console
	3.2.1.1. Deploying the distributed tracing default strategy from the CLI

	3.2.2. Deploying the distributed tracing production strategy from the web console
	3.2.2.1. Deploying the distributed tracing production strategy from the CLI

	3.2.3. Deploying the distributed tracing streaming strategy from the web console
	3.2.3.1. Deploying the distributed tracing streaming strategy from the CLI

	3.2.4. Validating your deployment
	3.2.4.1. Accessing the Jaeger console

	3.2.5. Customizing your deployment
	3.2.5.1. Deployment best practices
	3.2.5.2. Distributed tracing default configuration options
	3.2.5.3. Jaeger Collector configuration options
	3.2.5.4. Distributed tracing sampling configuration options
	3.2.5.5. Distributed tracing storage configuration options
	3.2.5.6. Managing certificates with Elasticsearch
	3.2.5.7. Query configuration options
	3.2.5.8. Ingester configuration options

	3.2.6. Injecting sidecars
	3.2.6.1. Automatically injecting sidecars
	3.2.6.2. Manually injecting sidecars

	3.3. CONFIGURING AND DEPLOYING DISTRIBUTED TRACING DATA COLLECTION
	3.3.1. OpenTelemetry Collector configuration options

	3.4. UPGRADING DISTRIBUTED TRACING
	3.4.1. Changing the Operator channel for 2.0

	3.5. REMOVING DISTRIBUTED TRACING
	3.5.1. Removing a Red Hat OpenShift distributed tracing platform instance using the web console
	3.5.2. Removing a Red Hat OpenShift distributed tracing platform instance from the CLI
	3.5.3. Removing the Red Hat OpenShift distributed tracing Operators

