
OpenShift Container Platform 3.3

Cluster Administration

OpenShift Container Platform 3.3 Cluster Administration

Last Updated: 2019-02-24

OpenShift Container Platform 3.3 Cluster Administration

OpenShift Container Platform 3.3 Cluster Administration

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Cluster Administration topics cover the day to day tasks for managing your OpenShift
cluster and other advanced configuration topics.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. MANAGING NODES
2.1. OVERVIEW
2.2. LISTING NODES
2.3. ADDING NODES
2.4. DELETING NODES
2.5. UPDATING LABELS ON NODES
2.6. LISTING PODS ON NODES
2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
2.8. EVACUATING PODS ON NODES
2.9. REBOOTING NODES

2.9.1. Infrastructure Nodes
2.9.2. Using Pod Anti-Affinity for the Docker Registry Pod
2.9.3. Handling Nodes Running Routers

2.10. CONFIGURING NODE RESOURCES
2.10.1. Setting Maximum Pods Per Node

2.11. CHANGING NODE TRAFFIC INTERFACE

CHAPTER 3. MANAGING USERS
3.1. OVERVIEW
3.2. ADDING A USER
3.3. VIEWING USER AND IDENTITY LISTS
3.4. MANAGING USER AND GROUP LABELS
3.5. DELETING A USER

CHAPTER 4. MANAGING PROJECTS
4.1. OVERVIEW
4.2. SELF-PROVISIONING PROJECTS

4.2.1. Modifying the Template for New Projects
4.2.2. Disabling Self-provisioning

4.3. USING NODE SELECTORS
4.3.1. Setting the Cluster-wide Default Node Selector
4.3.2. Setting the Project-wide Node Selector
4.3.3. Developer-specified Node Selectors

4.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

CHAPTER 5. MANAGING PODS
5.1. OVERVIEW
5.2. MANAGING POD NETWORKS

5.2.1. Joining Project Networks
5.3. ISOLATING PROJECT NETWORKS

5.3.1. Making Project Networks Global
5.4. LIMITING RUN-ONCE POD DURATION

5.4.1. Configuring the RunOnceDuration Plug-in
5.4.2. Specifying a Custom Duration per Project

5.5. CONTROLLING EGRESS TRAFFIC
5.5.1. Using an Egress Firewall to Limit Access to External Resources
5.5.2. Using an Egress Router to Allow External Resources to Recognize Pod Traffic

5.5.2.1. Important Deployment Considerations
5.5.2.2. Deploying an Egress Router Pod
5.5.2.3. Enabling Failover for Egress Router Pods

9

10
10
10
11
11
12
12
12
13
13
13
14
15
15
15
16

17
17
17
17
17
18

19
19
19
19
20
21
21
21
22
22

24
24
24
24
24
24
24
25
25
25
26
27
27
28
30

Table of Contents

1

. .

. .

. .

. .

. .

. .

5.6. LIMITING THE BANDWIDTH AVAILABLE TO PODS

CHAPTER 6. CONFIGURING SERVICE ACCOUNTS
6.1. OVERVIEW
6.2. USER NAMES AND GROUPS
6.3. MANAGING SERVICE ACCOUNTS
6.4. ENABLING SERVICE ACCOUNT AUTHENTICATION
6.5. MANAGED SERVICE ACCOUNTS
6.6. INFRASTRUCTURE SERVICE ACCOUNTS
6.7. SERVICE ACCOUNTS AND SECRETS

CHAPTER 7. MANAGING AUTHORIZATION POLICIES
7.1. OVERVIEW
7.2. VIEWING ROLES AND BINDINGS

7.2.1. Viewing Cluster Policy
7.2.2. Viewing Local Policy

7.3. MANAGING ROLE BINDINGS
7.4. GRANTING USERS DAEMONSET PERMISSIONS
7.5. CREATING A LOCAL ROLE

CHAPTER 8. IMAGE POLICY
8.1. OVERVIEW
8.2. CONFIGURING THE IMAGEPOLICY ADMISSION PLUG-IN
8.3. TESTING THE IMAGEPOLICY ADMISSION PLUG-IN

CHAPTER 9. SCOPED TOKENS
9.1. OVERVIEW
9.2. EVALUATION
9.3. USER SCOPES
9.4. ROLE SCOPE

CHAPTER 10. MONITORING IMAGES
10.1. OVERVIEW
10.2. VIEWING IMAGES STATISTICS
10.3. VIEWING IMAGESTREAMS STATISTICS
10.4. PRUNING IMAGES

CHAPTER 11. MANAGING SECURITY CONTEXT CONSTRAINTS
11.1. OVERVIEW
11.2. LISTING SECURITY CONTEXT CONSTRAINTS
11.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT
11.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS
11.5. DELETING SECURITY CONTEXT CONSTRAINTS
11.6. UPDATING SECURITY CONTEXT CONSTRAINTS
11.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS
11.8. HOW DO I?

11.8.1. Grant Access to the Privileged SCC
11.8.2. Grant a Service Account Access to the Privileged SCC
11.8.3. Enable Images to Run with USER in the Dockerfile
11.8.4. Enable Container Images that Require Root
11.8.5. Use --mount-host on the Registry
11.8.6. Provide Additional Capabilities
11.8.7. Modify Cluster Default Behavior
11.8.8. Use the hostPath Volume Plug-in
11.8.9. Ensure That Admission Attempts to Use a Specific SCC First

31

32
32
32
33
33
34
35
35

36
36
36
36
44
45
46
47

49
49
49
50

52
52
52
52
52

53
53
53
53
54

55
55
55
55
56
57
57
58
58
58
59
59
59
60
60
60
61
61

OpenShift Container Platform 3.3 Cluster Administration

2

. .

. .

. .

. .

. .

. .

11.8.10. Add an SCC to a User, Group, or Project

CHAPTER 12. SETTING QUOTAS
12.1. OVERVIEW
12.2. RESOURCES MANAGED BY QUOTA
12.3. QUOTA SCOPES
12.4. QUOTA ENFORCEMENT
12.5. REQUESTS VS LIMITS
12.6. SAMPLE RESOURCE QUOTA DEFINITIONS
12.7. CREATING A QUOTA
12.8. VIEWING A QUOTA
12.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD
12.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS

CHAPTER 13. SETTING MULTI-PROJECT QUOTAS
13.1. OVERVIEW
13.2. SELECTING PROJECTS
13.3. VIEWING APPLICABLE CLUSTERRESOURCEQUOTAS
13.4. SELECTION GRANULARITY

CHAPTER 14. SETTING LIMIT RANGES
14.1. OVERVIEW

14.1.1. Container Limits
14.1.2. Pod Limits
14.1.3. Image Limits
14.1.4. Image Stream Limits

14.1.4.1. Counting of Image References
14.2. CREATING A LIMIT RANGE
14.3. VIEWING LIMITS
14.4. DELETING LIMITS

CHAPTER 15. PRUNING OBJECTS
15.1. OVERVIEW
15.2. BASIC PRUNE OPERATIONS
15.3. PRUNING DEPLOYMENTS
15.4. PRUNING BUILDS
15.5. PRUNING IMAGES

CHAPTER 16. GARBAGE COLLECTION
16.1. OVERVIEW
16.2. CONTAINER GARBAGE COLLECTION

16.2.1. Detecting Containers for Deletion
16.3. IMAGE GARBAGE COLLECTION

16.3.1. Detecting Images for Deletion

CHAPTER 17. SCHEDULER
17.1. OVERVIEW
17.2. GENERIC SCHEDULER

17.2.1. Filter the Nodes
17.2.2. Prioritize the Filtered List of Nodes
17.2.3. Select the Best Fit Node

17.3. AVAILABLE PREDICATES
17.3.1. Static Predicates
17.3.2. Configurable Predicates

17.4. AVAILABLE PRIORITY FUNCTIONS

61

63
63
63
64
65
65
65
68
68
69
69

70
70
70
71
71

72
72
73
74
75
76
76
77
77
77

79
79
79
79
80
80

83
83
83
84
84
85

86
86
86
86
86
86
86
86
87
88

Table of Contents

3

. .

. .

. .

. .

17.4.1. Static Priority Functions
17.4.2. Configurable Priority Functions

17.5. SCHEDULER POLICY
17.5.1. Default Scheduler Policy
17.5.2. Modifying Scheduler Policy

17.6. USE CASES
17.6.1. Infrastructure Topological Levels
17.6.2. Affinity
17.6.3. Anti Affinity

17.7. SAMPLE POLICY CONFIGURATIONS
17.8. SCHEDULER EXTENSIBILITY

17.8.1. Enhancements
17.8.2. Replacement

17.9. CONTROLLING POD PLACEMENT
17.9.1. Constraining Pod Placement Using Node Name
17.9.2. Constraining Pod Placement Using a Node Selector

CHAPTER 18. ALLOCATING NODE RESOURCES
18.1. OVERVIEW
18.2. CONFIGURING NODES FOR ALLOCATED RESOURCES
18.3. COMPUTING ALLOCATED RESOURCES
18.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY
18.5. SYSTEM RESOURCES REPORTED BY NODE
18.6. NODE ENFORCEMENT
18.7. EVICTION THRESHOLDS
18.8. SCHEDULER

CHAPTER 19. OVERCOMMITTING
19.1. OVERVIEW
19.2. REQUESTS AND LIMITS
19.3. COMPUTE RESOURCES

19.3.1. CPU
19.3.2. Memory

19.4. QUALITY OF SERVICE CLASSES
19.5. CONFIGURING MASTERS FOR OVERCOMMITMENT
19.6. CONFIGURING NODES FOR OVERCOMMITMENT

19.6.1. Enforcing CPU Limits
19.6.2. Reserving Resources for System Processes
19.6.3. Kernel Tunable Flags
19.6.4. Disabling Swap Memory

CHAPTER 20. ASSIGNING UNIQUE EXTERNAL IPS FOR INGRESS TRAFFIC
20.1. OVERVIEW
20.2. RESTRICTIONS
20.3. CONFIGURING THE CLUSTER TO USE UNIQUE EXTERNAL IPS
20.4. CONFIGURING AN INGRESS IP FOR A SERVICE
20.5. ROUTING THE INGRESS CIDR FOR DEVELOPMENT OR TESTING

CHAPTER 21. HANDLING OUT OF RESOURCE ERRORS
21.1. OVERVIEW
21.2. EVICTION POLICY

21.2.1. Eviction Signals
21.2.2. Eviction Thresholds

21.2.2.1. Soft Eviction Thresholds

88
88
89
89
89
89
90
90
90
90
92
93
93
93
94
94

96
96
96
96
97
97
98
99
99

100
100
100
100
100
100
101
101
102
103
103
104
104

106
106
106
107
107
108

109
109
109
109
110
110

OpenShift Container Platform 3.3 Cluster Administration

4

. .

. .

. .

. .

. .

. .

. .

21.2.2.2. Hard Eviction Thresholds
21.2.3. Oscillation of Node Conditions
21.2.4. Eviction Monitoring Interval
21.2.5. Mapping Eviction Signals to Node Conditions
21.2.6. Eviction of Pods
21.2.7. Scheduler
21.2.8. Example Scenario

21.3. OUT OF RESOURCE AND OUT OF MEMORY
21.4. RECOMMENDED PRACTICES

21.4.1. DaemonSets and Out of Resource Handling

CHAPTER 22. MONITORING ROUTERS
22.1. OVERVIEW
22.2. VIEWING STATISTICS
22.3. DISABLING STATISTICS VIEW
22.4. VIEWING LOGS
22.5. VIEWING THE ROUTER INTERNALS

CHAPTER 23. HIGH AVAILABILITY
23.1. OVERVIEW
23.2. CONFIGURING IP FAILOVER

23.2.1. Virtual IP Addresses
23.2.2. Configuring a Highly-available Routing Service
23.2.3. Configuring a Highly-available Network Service
23.2.4. Dynamically Updating Virtual IPs for a Highly-available Service
23.2.5. Multiple Highly Available Services In a Network

CHAPTER 24. IPTABLES
24.1. OVERVIEW
24.2. IPTABLES
24.3. IPTABLES.SERVICE

CHAPTER 25. SECURING BUILDS BY STRATEGY
25.1. OVERVIEW
25.2. DISABLING A BUILD STRATEGY GLOBALLY
25.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY
25.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

CHAPTER 26. RESTRICTING APPLICATION CAPABILITIES USING SECCOMP
26.1. OVERVIEW
26.2. ENABLING SECCOMP
26.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR SECCOMP
26.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR A CUSTOM SECCOMP PROFILE

CHAPTER 27. SYSCTLS
27.1. OVERVIEW
27.2. UNDERSTANDING SYSCTLS
27.3. NAMESPACED VS NODE-LEVEL SYSCTLS
27.4. SAFE VS UNSAFE SYSCTLS
27.5. ENABLING UNSAFE SYSCTLS
27.6. SETTING SYSCTLS FOR A POD

CHAPTER 28. ENCRYPTING HOSTS WITH IPSEC
28.1. OVERVIEW
28.2. ENCRYPTING HOSTS

110
111
111
111
111
112
112
114
114
114

115
115
115
115
115
116

117
117
117
118
118
120
121
122

123
123
123
123

125
125
125
126
126

128
128
128
128
129

130
130
130
130
131
131
132

133
133
133

Table of Contents

5

. .

. .

. .

28.2.1. Step 1: Prerequisites
28.2.2. Step 2: Certificates
28.2.3. Step 3: libreswan IPsec Policy

28.2.3.1. Opportunistic Group Configuration
28.2.3.2. Explicit Connection Configuration

28.3. IPSEC FIREWALL CONFIGURATION
28.4. STARTING AND ENABLING IPSEC
28.5. TROUBLESHOOTING

CHAPTER 29. BUILDING DEPENDENCY TREES
29.1. OVERVIEW
29.2. USAGE

CHAPTER 30. BACKUP AND RESTORE
30.1. OVERVIEW
30.2. PREREQUISITES
30.3. CLUSTER BACKUP

30.3.1. Master Backup
30.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS
30.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS

30.5.1. Embedded etcd
30.5.2. Separate etcd

30.5.2.1. Adding Additional etcd Members
30.6. ADDING NEW ETCD HOSTS
30.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
30.8. PROJECT BACKUP

30.8.1. Role Bindings
30.8.2. Service Accounts
30.8.3. Secrets
30.8.4. Persistent Volume Claims

30.9. PROJECT RESTORE
30.10. APPLICATION DATA BACKUP
30.11. APPLICATION DATA RESTORE

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN
31.1. OVERVIEW
31.2. NOMENCLATURE
31.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE
31.4. DEBUGGING THE ROUTER
31.5. DEBUGGING A SERVICE
31.6. DEBUGGING NODE TO NODE NETWORKING
31.7. DEBUGGING LOCAL NETWORKING

31.7.1. The Interfaces on a Node
31.7.2. SDN Flows Inside a Node
31.7.3. Debugging Steps

31.7.3.1. Is IP Forwarding Enabled?
31.7.3.2. Are your routes correct?

31.7.4. Is the Open vSwitch configured correctly?
31.7.4.1. Is the iptables configuration correct?
31.7.4.2. Is your external network correct?

31.8. DEBUGGING VIRTUAL NETWORKING
31.8.1. Builds on a Virtual Network are Failing

31.9. DEBUGGING POD EGRESS
31.10. READING THE LOGS

133
133
134
134
135
136
136
136

137
137
137

138
138
138
139
139
140
141
141
142
143
145
149
150
150
150
150
150
151
151
152

153
153
153
154
155
156
157
158
159
159
160
160
160
160
162
162
162
162
163
163

OpenShift Container Platform 3.3 Cluster Administration

6

. .

. .

. .

31.11. DEBUGGING KUBERNETES
31.12. FURTHER HELP
31.13. MISCELLANEOUS NOTES

31.13.1. Other clarifications on ingress
31.13.2. TLS Handshake Timeout
31.13.3. Other debugging notes

CHAPTER 32. DIAGNOSTICS TOOL
32.1. OVERVIEW
32.2. USING THE DIAGNOSTICS TOOL
32.3. RUNNING DIAGNOSTICS IN A SERVER ENVIRONMENT
32.4. RUNNING DIAGNOSTICS IN A CLIENT ENVIRONMENT

CHAPTER 33. IDLING APPLICATIONS
33.1. OVERVIEW
33.2. IDLING APPLICATIONS

33.2.1. Idling Single Services
33.2.2. Idling Multiple Services

33.3. UNIDLING APPLICATIONS

CHAPTER 34. REVISION HISTORY: CLUSTER ADMINISTRATION
34.1. THU JUL 27 2017
34.2. TUE JUL 18 2017
34.3. THU MAY 25 2017
34.4. MON MAY 15 2017
34.5. TUE MAY 02 2017
34.6. WED APR 12 2017
34.7. MON MAR 27 2017
34.8. MON MAR 20 2017
34.9. TUE MAR 14 2017
34.10. TUE MAR 07 2017
34.11. THU FEB 16 2017
34.12. MON FEB 06 2017
34.13. WED JAN 25 2017
34.14. MON JAN 09 2017
34.15. TUE DEC 20 2016
34.16. TUE DEC 13 2016
34.17. MON DEC 05 2016
34.18. MON NOV 21 2016
34.19. MON NOV 14 2016
34.20. TUE NOV 01 2016
34.21. MON OCT 24 2016
34.22. MON OCT 17 2016
34.23. TUE OCT 11 2016
34.24. TUE OCT 04 2016
34.25. TUE SEP 27 2016

163
164
164
164
164
164

165
165
165
166
166

167
167
167
167
167
167

169
169
169
169
169
169
170
170
170
170
171
171
171
171
172
172
172
172
172
172
173
173
173
174
174
174

Table of Contents

7

OpenShift Container Platform 3.3 Cluster Administration

8

CHAPTER 1. OVERVIEW

These Cluster Administration topics cover the day-to-day tasks for managing your OpenShift Container
Platform cluster and other advanced configuration topics.

CHAPTER 1. OVERVIEW

9

CHAPTER 2. MANAGING NODES

2.1. OVERVIEW

You can manage nodes in your instance using the CLI.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

2.2. LISTING NODES

To list all nodes that are known to the master:

$ oc get nodes
NAME STATUS AGE
master.example.com Ready,SchedulingDisabled 165d
node1.example.com Ready 165d
node2.example.com Ready 165d

To only list information about a single node, replace <node> with the full node name:

$ oc get node <node>

The STATUS column in the output of these commands can show nodes with the following conditions:

Table 2.1. Node Conditions

Condition Description

Ready The node is passing the health checks performed from the master by returning
StatusOK.

NotReady The node is not passing the health checks performed from the master.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

NOTE

The STATUS column can also show Unknown for a node if the CLI cannot find any node
condition.

To get more detailed information about a specific node, including the reason for the current condition:

$ oc describe node <node>

For example:

$ oc describe node node1.example.com
Name: node1.example.com

OpenShift Container Platform 3.3 Cluster Administration

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#node-object-definition
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#node

Labels: kubernetes.io/hostname=node1.example.com
CreationTimestamp: Wed, 10 Jun 2015 17:22:34 +0000
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime Reason Message
 Ready True Wed, 10 Jun 2015 19:56:16 +0000 Wed, 10 Jun 2015 17:22:34
+0000 kubelet is posting ready status
Addresses: 127.0.0.1
Capacity:
 memory: 1017552Ki
 pods: 100
 cpu: 2
Version:
 Kernel Version: 3.17.4-301.fc21.x86_64
 OS Image: Fedora 21 (Twenty One)
 Container Runtime Version: docker://1.6.0
 Kubelet Version: v0.17.1-804-g496be63
 Kube-Proxy Version: v0.17.1-804-g496be63
ExternalID: node1.example.com
Pods: (2 in total)
 docker-registry-1-9yyw5
 router-1-maytv
No events.

2.3. ADDING NODES

To add nodes to your existing OpenShift Container Platform cluster, you can run an Ansible playbook
that handles installing the node components, generating the required certificates, and other important
steps. See the advanced installation method for instructions on running the playbook directly.

Alternatively, if you used the quick installation method, you can re-run the installer to add nodes, which
performs the same steps.

2.4. DELETING NODES

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node itself are not deleted. Any bare pods not backed by a replication controller would be
inaccessible to OpenShift Container Platform, pods backed by replication controllers would be
rescheduled to other available nodes, and local manifest pods would need to be manually deleted.

To delete a node from the OpenShift Container Platform cluster:

1. Evacuate pods from the node you are preparing to delete.

2. Delete the node object:

$ oc delete node <node>

3. Check that the node has been removed from the node list:

$ oc get nodes

Pods should now be only scheduled for the remaining nodes that are in Ready state.

4. If you want to uninstall all OpenShift Container Platform content from the node host, including all

CHAPTER 2. MANAGING NODES

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#adding-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#adding-nodes-or-reinstalling-quick
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#node-configuration-files

pods and containers, continue to Uninstalling Nodes and follow the procedure using the
uninstall.yml playbook. The procedure assumes general understanding of the advanced
installation method using Ansible.

2.5. UPDATING LABELS ON NODES

To add or update labels on a node:

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

To see more detailed usage:

$ oc label -h

2.6. LISTING PODS ON NODES

To list all or selected pods on one or more nodes:

$ oadm manage-node <node1> <node2> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

To list all or selected pods on selected nodes:

$ oadm manage-node --selector=<node_selector> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE

By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are
allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods
from being scheduled on the node. Existing pods on the node are not affected.

To mark a node or nodes as unschedulable:

$ oadm manage-node <node1> <node2> --schedulable=false

For example:

$ oadm manage-node node1.example.com --schedulable=false
NAME LABELS
STATUS
node1.example.com kubernetes.io/hostname=node1.example.com
Ready,SchedulingDisabled

To mark a currently unschedulable node or nodes as schedulable:

$ oadm manage-node <node1> <node2> --schedulable

Alternatively, instead of specifying specific node names (e.g., <node1> <node2>), you can use the --
selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

OpenShift Container Platform 3.3 Cluster Administration

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#uninstalling-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#labels

2.8. EVACUATING PODS ON NODES

Evacuating pods allows you to migrate all or selected pods from a given node or nodes. Nodes must first
be marked unschedulable to perform pod evacuation.

Only pods backed by a replication controller can be evacuated; the replication controllers create new
pods on other nodes and remove the existing pods from the specified node(s). Bare pods, meaning those
not backed by a replication controller, are unaffected by default. You can evacuate a subset of pods by
specifying a pod-selector. Pod selector is based on labels, so all the pods with the specified label will be
evacuated.

To list pods that will be migrated without actually performing the evacuation, use the --dry-run option:

$ oadm manage-node <node1> <node2> \
 --evacuate --dry-run [--pod-selector=<pod_selector>]

To actually evacuate all or selected pods on one or more nodes:

$ oadm manage-node <node1> <node2> \
 --evacuate [--pod-selector=<pod_selector>]

You can force deletion of bare pods by using the --force option:

$ oadm manage-node <node1> <node2> \
 --evacuate --force [--pod-selector=<pod_selector>]

Alternatively, instead of specifying specific node names (e.g., <node1> <node2>), you can use the --
selector=<node_selector> option to evacuate pods on selected nodes.

2.9. REBOOTING NODES

To reboot a node without causing an outage for applications running on the platform, it is important to
first evacuate the pods. For pods that are made highly available by the routing tier, nothing else needs to
be done. For other pods needing storage, typically databases, it is critical to ensure that they can remain
in operation with one pod temporarily going offline. While implementing resiliency for stateful pods is
different for each application, in all cases it is important to configure the scheduler to use node anti-
affinity to ensure that the pods are properly spread across available nodes.

Another challenge is how to handle nodes that are running critical infrastructure such as the router or the
registry. The same node evacuation process applies, though it is important to understand certain edge
cases.

2.9.1. Infrastructure Nodes

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. Currently, the easiest way to manage node reboots is to ensure that there are at least three
nodes available to run infrastructure. The scenario below demonstrates a common mistake that can lead
to service interruptions for the applications running on OpenShift Container Platform when only two
nodes are available.

Node A is marked unschedulable and all pods are evacuated.

The registry pod running on that node is now redeployed on node B. This means node B is now
running both registry pods.

CHAPTER 2. MANAGING NODES

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#replication-controllers

Node B is now marked unschedulable and is evacuated.

The service exposing the two pod endpoints on node B, for a brief period of time, loses all
endpoints until they are redeployed to node A.

The same process using three infrastructure nodes does not result in a service disruption. However, due
to pod scheduling, the last node that is evacuated and brought back in to rotation is left running zero
registries. The other two nodes will run two and one registries respectively. The best solution is to rely on
pod anti-affinity. This is an alpha feature in Kubernetes that is available for testing now, but is not yet
supported for production workloads.

2.9.2. Using Pod Anti-Affinity for the Docker Registry Pod

Pod anti-affinity is slightly different than node anti-affinity. Node anti-affinity can be violated if there are
no other suitable locations to deploy a pod. Pod anti-affinity can be set to either required or preferred.

Using the docker-registry pod as an example, the first step in enabling this feature is to set the
scheduler.alpha.kubernetes.io/affinity on the pod. Since this pod uses a deployment
configuration, the most appropriate place to add the annotation is to the pod template’s metadata.

$ oc edit dc/docker-registry -o yaml

...
 template:
 metadata:
 annotations:
 scheduler.alpha.kubernetes.io/affinity: |
 {
 "podAntiAffinity": {
 "requiredDuringSchedulingIgnoredDuringExecution": [{
 "labelSelector": {
 "matchExpressions": [{
 "key": "docker-registry",
 "operator": "In",
 "values":["default"]
 }]
 },
 "topologyKey": "kubernetes.io/hostname"
 }]
 }
 }

IMPORTANT

scheduler.alpha.kubernetes.io/affinity is internally stored as a string even
though the contents are JSON. The above example shows how this string can be added
as an annotation to a YAML deployment configuration.

This example assumes the Docker registry pod has a label of docker-registry=default. Pod anti-
affinity can use any Kubernetes match expression.

The last required step is to enable the MatchInterPodAffinity scheduler predicate in
/etc/origin/master/scheduler.json. With this in place, if only two infrastructure nodes are available and
one is rebooted, the Docker registry pod is prevented from running on the other node. oc get pods

OpenShift Container Platform 3.3 Cluster Administration

14

1

2

3

4

reports the pod as unready until a suitable node is available. Once a node is available and all pods are
back in ready state, the next node can be restarted.

2.9.3. Handling Nodes Running Routers

In most cases, a pod running an OpenShift Container Platform router will expose a host port. The
PodFitsPorts scheduler predicate ensures that no router pods using the same port can run on the
same node, and pod anti-affinity is achieved. If the routers are relying on IP failover for high availability,
there is nothing else that is needed. For router pods relying on an external service such as AWS Elastic
Load Balancing for high availability, it is that service’s responsibility to react to router pod restarts.

In rare cases, a router pod might not have a host port configured. In those cases, it is important to follow
the recommended restart process for infrastructure nodes.

2.10. CONFIGURING NODE RESOURCES

You can configure node resources by adding kubelet arguments to the node configuration file
(/etc/origin/node/node-config.yaml). Add the kubeletArguments section and include any desired
options:

kubeletArguments:

 max-pods: 1
 - "40"

 resolv-conf: 2
 - "/etc/resolv.conf"

 image-gc-high-threshold: 3
 - "90"

 image-gc-low-threshold: 4
 - "80"

Maximum number of pods that can run on this kubelet.

Resolver configuration file used as the basis for the container DNS resolution configuration.

The percent of disk usage after which image garbage collection is always run. Default: 90%

The percent of disk usage before which image garbage collection is never run. Lowest disk usage
to garbage collect to. Default: 80%

To view all available kubelet options:

$ kubelet -h

This can also be set during an advanced installation using the openshift_node_kubelet_args
variable. For example:

openshift_node_kubelet_args={'max-pods': ['40'], 'resolv-conf':
['/etc/resolv.conf'], 'image-gc-high-threshold': ['90'], 'image-gc-low-
threshold': ['80']}

2.10.1. Setting Maximum Pods Per Node

CHAPTER 2. MANAGING NODES

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#configuring-ansible

In the /etc/origin/node/node-config.yaml file, two parameters control the maximum number of pods
that can be scheduled to a node: pods-per-core and max-pods. When both options are in use, the
lower of the two limits the number of pods on a node.

pods-per-core sets the number of pods the node can run based on the number of processor cores on
the node. For example, if pods-per-core is set to 10 on a node with 4 processor cores, the
maxiumum number of pods allowed on the node will be 40.

kubeletArguments:
 pods-per-core:
 - "10"

max-pods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node.

kubeletArguments:
 max-pods:
 - "250"

Using the above example, the default value for pods-per-core is 10 and the default value for max-
pods is 250. This means that unless the node has 25 cores or more, by default, pods-per-core will be
the limiting factor.

2.11. CHANGING NODE TRAFFIC INTERFACE

By default, DNS routes all node traffic. During node registration, the master receives the node IP
addresses from the DNS configuration, and therefore accessing nodes via DNS is the most flexible
solution for most deployments.

If your deployment is using a cloud provider, then the node gets the IP information from the cloud
provider. However, openshift-sdn attempts to determine the IP through a variety of methods, including a
DNS lookup on the nodeName (if set), or on the system hostname (if nodeName is not set).

However, you may need to change the node traffic interface. For example, where:

OpenShift Container Platform is installed in a cloud provider where internal hostnames are not
configured/resolvable by all hosts.

The node’s IP from the master’s perspective is not the same as the node’s IP from its own
perspective.

Configuring the openshift_set_node_ip Ansible variable forces node traffic through an interface
other than the default network interface.

To change the node traffic interface:

1. Set the openshift_set_node_ip Ansible variable to true.

2. Set the openshift_ip to the IP address for the node you want to configure.

Although openshift_set_node_ip can be useful as a workaround for the cases stated in this section,
it is generally not suited for production environments. This is because the node will no longer function
properly if it receives a new IP address.

OpenShift Container Platform 3.3 Cluster Administration

16

CHAPTER 3. MANAGING USERS

3.1. OVERVIEW

This topic describes the management of user accounts, including how new user accounts are created in
OpenShift Container Platform and how they can be deleted.

3.2. ADDING A USER

After new users log in to OpenShift Container Platform, an account is created for that user per the
identity provider configured on the master. The cluster administrator can manage the access level of
each user.

3.3. VIEWING USER AND IDENTITY LISTS

OpenShift Container Platform user configuration is stored in several locations within OpenShift Container
Platform. Regardless of the identity provider, OpenShift Container Platform internally stores details like
role-based access control (RBAC) information and group membership. To completely remove user
information, this data must be removed in addition to the user account.

In OpenShift Container Platform, two object types contain user data outside the identification provider:
user and identity.

To get the current list of users:

$ oc get user
NAME UID FULL NAME IDENTITIES
demo 75e4b80c-dbf1-11e5-8dc6-0e81e52cc949
htpasswd_auth:demo

To get the current list of identities:

$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME USER
UID
htpasswd_auth:demo htpasswd_auth demo demo
75e4b80c-dbf1-11e5-8dc6-0e81e52cc949

Note the matching UID between the two object types. If you attempt to change the authentication
provider after starting to use OpenShift Container Platform, the user names that overlap will not work
because of the entries in the identity list, which will still point to the old authentication method.

3.4. MANAGING USER AND GROUP LABELS

To add a label to a user or group:

$ oc label user/<user_name> <label_name>

For example, if the user name is theuser and the label is level=gold:

$ oc label user/theuser level=gold

CHAPTER 3. MANAGING USERS

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#identity-providers_parameters

To remove the label:

$ oc label user/<user_name> <label_name>-

To show labels for a user or group:

$ oc describe user/<user_name>

3.5. DELETING A USER

To delete a user:

1. Delete the user record:

$ oc delete user demo
user "demo" deleted

2. Delete the user identity.
The identity of the user is related to the identification provider you use. Get the provider name
from the user record in oc get user.

In this example, the identity provider name is htpasswd_auth. The command is:

oc delete identity htpasswd_auth:demo
identity "htpasswd_auth:demo" deleted

If you skip this step, the user will not be able to log in again.

After you complete these steps, a new account will be created in OpenShift Container Platform when the
user logs in again.

If your intention is to prevent the user from being able to log in again (for example, if an employee has
left the company and you want to permanently delete the account), you can also remove the user from
your authentication back end (like htpasswd, kerberos, or others) for the configured identity provider.

For example, if you are using htpasswd, delete the entry in the htpasswd file that is configured for
OpenShift Container Platform with the user name and password.

For external identification management like Lightweight Directory Access Protocol (LDAP) or Red Hat
Identity Management (IdM), use the user management tools to remove the user entry.

OpenShift Container Platform 3.3 Cluster Administration

18

CHAPTER 4. MANAGING PROJECTS

4.1. OVERVIEW

In OpenShift Container Platform, projects are used to group and isolate related objects. As an
administrator, you can give developers access to certain projects, allow them to create their own, and
give them administrative rights within individual projects.

4.2. SELF-PROVISIONING PROJECTS

You can allow developers to create their own projects. There is an endpoint that will provision a project
according to a template. The web console and oc new-project command use this endpoint when a
developer creates a new project.

4.2.1. Modifying the Template for New Projects

The API server automatically provisions projects based on the template that is identified by the
projectRequestTemplate parameter of the master-config.yaml file. If the parameter is not defined,
the API server creates a default template that creates a project with the requested name, and assigns
the requesting user to the "admin" role for that project.

To create your own custom project template:

1. Start with the current default project template:

$ oadm create-bootstrap-project-template -o yaml > template.yaml

2. Use a text editor to modify the template.yaml file by adding objects or modifying existing
objects.

3. Load the template:

$ oc create -f template.yaml -n default

4. Modify the master-config.yaml file to reference the loaded template:

...
projectConfig:
 projectRequestTemplate: "default/project-request"
 ...

When a project request is submitted, the API substitutes the following parameters into the template:

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.

PROJECT_DESCRIPTION The description of the project. May be empty.

CHAPTER 4. MANAGING PROJECTS

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-projects

PROJECT_ADMIN_USER The username of the administrating user.

PROJECT_REQUESTING_USE
R

The username of the requesting user.

Parameter Description

Access to the API is granted to developers with the self-provisioner role and the self-
provisioners cluster role binding. This role is available to all authenticated developers by default.

4.2.2. Disabling Self-provisioning

You can prevent an authenticated user group from self-provisioning new projects.

1. Log in as a user with cluster-admin privileges.

2. Remove the self-provisionerscluster role from the group.

$ oadm policy remove-cluster-role-from-group self-provisioner
system:authenticated system:authenticated:oauth

3. Set the projectRequestMessage parameter value in the master-config.yaml file to instruct
developers how to request a new project. This parameter value is a string that will be presented
to a user in the web console and command line when the user attempts to self-provision a
project. You might use one of the following messages:

To request a project, contact your system administrator at projectname@example.com.

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request .

Example YAML file

4. Edit the self-provisioners cluster role to prevent automatic updates to the role. Automatic
updates reset the cluster roles to the default state.

To update the role from the command line:

i. Run the following command:

$ oc edit clusterrole self-provisioner

ii. In the displayed role, set the openshift.io/reconcile-protect parameter value
to true, as shown in the following example:

...
projectConfig:
 ProjectRequestMessage: "message"
 ...

apiVersion: authorization.openshift.io/v1
kind: ClusterRole

OpenShift Container Platform 3.3 Cluster Administration

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
mailto:projectname@example.com
https://internal.example.com/openshift-project-request
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#updating-policy-definitions

To update the role by using automation, use the following command:

$ oc patch clusterrole self-provisioner -p '{ "metadata": {
"annotations": { "openshift.io/reconcile-protect": "true" } } }'

4.3. USING NODE SELECTORS

Node selectors are used in conjunction with labeled nodes to control pod placement.

NOTE

Labels can be assigned during an advanced installation, or added to a node after
installation.

4.3.1. Setting the Cluster-wide Default Node Selector

As a cluster administrator, you can set the cluster-wide default node selector to restrict pod placement to
specific nodes.

Edit the master configuration file at /etc/origin/master/master-config.yaml and add a value for a default
node selector. This is applied to the pods created in all projects without a specified nodeSelector
value:

...
projectConfig:
 defaultNodeSelector: "type=user-node,region=east"
...

Restart the OpenShift service for the changes to take effect:

systemctl restart atomic-openshift-master

4.3.2. Setting the Project-wide Node Selector

To create an individual project with a node selector, use the --node-selector option when creating a
project. For example, if you have an OpenShift Container Platform topology with multiple regions, you
can use a node selector to restrict specific OpenShift Container Platform projects to only deploy pods
onto nodes in a specific region.

The following creates a new project named myproject and dictates that pods be deployed onto nodes
labeled user-node and east:

$ oadm new-project myproject \
 --node-selector='type=user-node,region=east'

metadata:
 annotations:
 authorization.openshift.io/system-only: "true"
 openshift.io/description: A user that can request project.
 openshift.io/reconcile-protect: "true"
...

CHAPTER 4. MANAGING PROJECTS

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#configuring-node-host-labels

Once this command is run, this becomes the adminstrator-set node selector for all pods contained in the
specified project.

NOTE

While the new-project subcommand is available for both oadm and oc, the cluster
administrator and developer commands respectively, creating a new project with a node
selector is only available with the oadm command. The new-project subcommand is not
available to project developers when self-provisioning projects.

Using the oadm new-project command adds an annotation section to the project. You can edit a
project, and change the openshift.io/node-selector value to override the default:

...
metadata:
 annotations:
 openshift.io/node-selector: type=user-node,region=east
...

If openshift.io/node-selector is set to an empty string (oadm new-project --node-
selector=""), the project will not have an adminstrator-set node selector, even if the cluster-wide
default has been set. This means that, as a cluster administrator, you can set a default to restrict
developer projects to a subset of nodes and still enable infrastructure or other projects to schedule the
entire cluster.

4.3.3. Developer-specified Node Selectors

OpenShift Container Platform developers can set a node selector on their pod configuration if they wish
to restrict nodes even further. This will be in addition to the project node selector, meaning that you can
still dictate node selector values for all projects that have a node selector value.

For example, if a project has been created with the above annotation (openshift.io/node-
selector: type=user-node,region=east) and a developer sets another node selector on a pod
in that project, for example clearance=classified, the pod will only ever be scheduled on nodes that
have all three labels (type=user-node, region=east, and clearance=classified). If they set
region=west on a pod, their pods would be demanding nodes with labels region=east and
region=west, which cannot work. The pods will never be scheduled, because labels can only be set to
one value.

4.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

The number of self-provisioned projects requested by a given user can be limited with the
ProjectRequestLimitadmission control plug-in.

IMPORTANT

If your project request template was created in OpenShift Container Platform 3.1 or
earlier using the process described in Modifying the Template for New Projects, then the
generated template does not include the annotation openshift.io/requester:
${PROJECT_REQUESTING_USER}, which is used for the
ProjectRequestLimitConfig. You must add the annotation.

OpenShift Container Platform 3.3 Cluster Administration

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#assigning-pods-to-specific-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-admission-controllers

1

2

3

In order to specify limits for users, a configuration must be specified for the plug-in within the master
configuration file (/etc/origin/master/master-config.yaml). The plug-in configuration takes a list of user
label selectors and the associated maximum project requests.

Selectors are evaluated in order. The first one matching the current user will be used to determine the
maximum number of projects. If a selector is not specified, a limit applies to all users. If a maximum
number of projects is not specified, then an unlimited number of projects are allowed for a specific
selector.

The following configuration sets a global limit of 2 projects per user while allowing 10 projects for users
with a label of level=advanced and unlimited projects for users with a label of level=admin.

For selector level=admin, no maxProjects is specified. This means that users with this label
will not have a maximum of project requests.

For selector level=advanced, a maximum number of 10 projects will be allowed.

For the third entry, no selector is specified. This means that it will be applied to any user that doesn’t
satisfy the previous two rules. Because rules are evaluated in order, this rule should be specified
last.

NOTE

Managing User and Group Labels provides further guidance on how to add, remove, or
show labels for users and groups.

Once your changes are made, restart OpenShift Container Platform for the changes to take effect.

systemctl restart atomic-openshift-master

admissionConfig:
 pluginConfig:
 ProjectRequestLimit:
 configuration:
 apiVersion: v1
 kind: ProjectRequestLimitConfig
 limits:
 - selector:

 level: admin 1
 - selector:

 level: advanced 2
 maxProjects: 10

 - maxProjects: 2 3

CHAPTER 4. MANAGING PROJECTS

23

CHAPTER 5. MANAGING PODS

5.1. OVERVIEW

This topic describes the management of pods, including managing their networks, limiting their run-once
duration, and limiting what they can access, and how much bandwidth they can use.

5.2. MANAGING POD NETWORKS

When your cluster is configured to use the ovs-multitenant SDN plug-in, you can manage the separate
pod overlay networks for projects using the administrator CLI. See the Configuring the SDN section for
plug-in configuration steps, if necessary.

5.2.1. Joining Project Networks

To join projects to an existing project network:

$ oadm pod-network join-projects --to=<project1> <project2> <project3>

In the above example, all the pods and services in <project2> and <project3> can now access any
pods and services in <project1> and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

5.3. ISOLATING PROJECT NETWORKS

To isolate the project network in the cluster and vice versa, run:

$ oadm pod-network isolate-projects <project1> <project2>

In the above example, all of the pods and services in <project1> and <project2> can not access
any pods and services from other non-global projects in the cluster and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

5.3.1. Making Project Networks Global

To allow projects to access all pods and services in the cluster and vice versa:

$ oadm pod-network make-projects-global <project1> <project2>

In the above example, all the pods and services in <project1> and <project2> can now access any
pods and services in the cluster and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

5.4. LIMITING RUN-ONCE POD DURATION

OpenShift Container Platform 3.3 Cluster Administration

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-configuring-sdn

1

1

OpenShift Container Platform relies on run-once pods to perform tasks such as deploying a pod or
performing a build. Run-once pods are pods that have a RestartPolicy of Never or OnFailure.

The cluster administrator can use the RunOnceDuration admission control plug-in to force a limit on the
time that those run-once pods can be active. Once the time limit expires, the cluster will try to actively
terminate those pods. The main reason to have such a limit is to prevent tasks such as builds to run for
an excessive amount of time.

5.4.1. Configuring the RunOnceDuration Plug-in

The plug-in configuration should include the default active deadline for run-once pods. This deadline is
enforced globally, but can be superseded on a per-project basis.

Specify the global default for run-once pods in seconds.

5.4.2. Specifying a Custom Duration per Project

In addition to specifying a global maximum duration for run-once pods, an administrator can add an
annotation (openshift.io/active-deadline-seconds-override) to a specific project to
override the global default.

Overrides the default active deadline seconds for run-once pods to 1000 seconds. Note that the
value of the override must be specified in string form.

5.5. CONTROLLING EGRESS TRAFFIC

As an OpenShift Container Platform cluster administrator, you can control egress traffic in two ways:

Firewall

Using an egress firewall allows you to enforce the acceptable outbound traffic policies, so that
specific endpoints or IP ranges (subnets) are the only acceptable targets for the dynamic endpoints
(pods within OpenShift Container Platform) to talk to.

Router

Using an egress router allows you to create identifiable services to send traffic to a specific
destination, ensuring an external destination treats traffic as though it were coming from a known
source. This helps with security, because it allows you to secure an external database so that only

kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 RunOnceDuration:
 configuration:
 apiVersion: v1
 kind: RunOnceDurationConfig

 activeDeadlineSecondsOverride: 3600 1

apiVersion: v1
kind: Project
metadata:
 annotations:

 openshift.io/active-deadline-seconds-override: "1000" 1

CHAPTER 5. MANAGING PODS

25

specific pods in a namespace can talk to a service (the egress router), which proxies the traffic to
your database.

5.5.1. Using an Egress Firewall to Limit Access to External Resources

As an OpenShift Container Platform cluster administrator, you can use egress firewall policy to limit the
external addresses that some or all pods can access from within the cluster, so that:

A pod can only talk to internal hosts, and cannot initiate connections to the public Internet.
Or,

A pod can only talk to the public Internet, and cannot initiate connections to internal hosts
(outside the cluster).
Or,

A pod cannot reach specified internal subnets/hosts that it should have no reason to contact.

You can configure projects to have different egress policies. For example, allowing <project A>
access to a specified IP range, but denying the same access to <project B>. Or restrict application
developers from updating from (Python) pip mirrors, and forcing updates to only come from desired
sources.

CAUTION

You must have the ovs-multitenant plug-in enabled in order to limit pod access via egress policy.

Project administrators can neither create EgressNetworkPolicy objects, nor edit the ones you create
in their project. There are also several other restrictions on where EgressNetworkPolicy can be
created:

The default project (and any other project that has been made global via oadm pod-
network make-projects-global) cannot have egress policy.

If you merge two projects together (via oadm pod-network join-projects), then you
cannot use egress policy in any of the joined projects.

No project may have more than one egress policy object.

Violating any of these restrictions results in broken egress policy for the project, and may cause all
external network traffic to be dropped.

Use the oc command or the REST API to configure egress policy. You can use oc
[create|replace|delete] to manipulate EgressNetworkPolicy objects. The api/swagger-
spec/oapi-v1.json file has API-level details on how the objects actually work.

To configure egress policy:

1. Navigate to the project you want to affect.

2. Create a JSON file with the desired policy details. For example:

{
 "kind": "EgressNetworkPolicy",
 "apiVersion": "v1",
 "metadata": {

OpenShift Container Platform 3.3 Cluster Administration

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-configuring-sdn

1

 "name": "default"
 },
 "spec": {
 "egress": [
 {
 "type": "Allow",
 "to": {
 "cidrSelector": "1.2.3.0/24"
 }
 },
 {
 "type": "Deny",
 "to": {

 "cidrSelector": "0.0.0.0/0" 1
 }
 }
]
 }
}

In earlier versions of {product-name}, a bug required you to specify "0.0.0.0/32" rather
than "0.0.0.0/0" for a "match all" rule. This is fixed as of 3.3.1.25.

When the example above is added in a project, it allows traffic to 1.2.3.0/24, but denies
access to all other external IP addresses. (Traffic to other pods is not affected because the policy
only applies to external traffic.)

The rules in an EgressNetworkPolicy are checked in order, and the first one that matches
takes effect. If the two rules in the above example were swapped, then traffic would not be
allowed to 1.2.3.0/24 because the 0.0.0.0/0 rule would be checked first, and it would
match and deny all traffic.

3. Use the JSON file to create an EgressNetworkPolicy object:

oc create -f <policy>.json

5.5.2. Using an Egress Router to Allow External Resources to Recognize Pod
Traffic

The OpenShift Container Platform egress router runs a service that redirects traffic to a specified remote
server, using a private source IP address that is not used for anything else. The service allows pods to
talk to servers that are set up to only allow access from whitelisted IP addresses.

IMPORTANT

The egress router is not intended for every outgoing connection. Creating large numbers
of egress routers can push the limits of your network hardware. For example, creating an
egress router for every project or application could exceed the number of local MAC
addresses that the network interface can handle before falling back to filtering MAC
addresses in software.

5.5.2.1. Important Deployment Considerations

CHAPTER 5. MANAGING PODS

27

The Egress router adds a second IP address and MAC address to the node’s primary network interface.
If you are not running OpenShift Container Platform on bare metal, you may need to configure your
hypervisor or cloud provider to allow the additional address.

Red Hat OpenStack Platform

If you are deploying OpenShift Container Platform on Red Hat OpenStack Platform, you need to whitelist
the IP and MAC addresses on your Openstack environment, otherwise communication will fail:

neutron port-update $neutron_port_uuid \
 --allowed_address_pairs list=true \
 type=dict mac_address=<mac_address>,ip_address=<ip_address>

Red Hat Enterprise Virtualization

If you are using Red Hat Enterprise Virtualization, you should set
EnableMACAntiSpoofingFilterRules to false.

VMware vSphere

If you are using VMware vSphere, follow VMware’s Securing Virtual Switch Ports and Forged
Transmissions guidance.

5.5.2.2. Deploying an Egress Router Pod

1. Create a pod configuration using the following:

Example 5.1. Example Pod Definition for an Egress Router

apiVersion: v1
kind: Pod
metadata:
 name: egress-1
 labels:
 name: egress-1
 annotations:

 pod.network.openshift.io/assign-macvlan: "true" 1
spec:
 containers:
 - name: egress-router
 image: registry.access.redhat.com/openshift3/ose-egress-router
 securityContext:
 privileged: true
 env:

 - name: EGRESS_SOURCE 2
 value: 192.168.12.99

 - name: EGRESS_GATEWAY 3
 value: 192.168.12.1

 - name: EGRESS_DESTINATION 4
 value: 203.0.113.25
 nodeSelector:

 site: springfield-1 5

OpenShift Container Platform 3.3 Cluster Administration

28

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.2/html/Administration_Guide/Red_Hat_Enterprise_Virtualization_Manager_configuration_options_explanations_limitations_and_best_practices.html
http://pubs.vmware.com/vsphere-4-esxi-installable-vcenter/index.jsp?topic=/com.vmware.vsphere.esxi_server_config.doc_40_u1/esx_server_config/securing_an_esx_configuration/c_securing_virtual_switch_ports.html
http://pubs.vmware.com/vsphere-4-esxi-installable-vcenter/index.jsp?topic=/com.vmware.vsphere.esxi_server_config.doc_40_u1/esx_server_config/securing_an_esx_configuration/c_forged_transmissions.html

1

2

3

4

5

The pod.network.openshift.io/assign-macvlan annotation creates a
Macvlan network interface on the primary network interface, and then moves it into the
pod’s network name space before starting the egress-router container. Preserve the
the quotation marks around "true". Omitting them will result in errors.

An IP address from the physical network that the node itself is on and is reserved by the
cluster administrator for use by this pod.

Same value as the default gateway used by the node itself.

The external server that to direct traffic to. Using this example, connections to the pod
are redirected to 203.0.113.25, with a source IP address of 192.168.12.99.

The pod will only be deployed to nodes with the label site=springfield-1.

2. Create the pod using the above definition:

$ oc create -f <pod_name>.json

To check to see if the pod has been created:

oc get pod <pod_name>

3. Ensure other pods can find the pod’s IP address by creating a service to point to the egress
router:

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: http
 port: 80
 - name: https
 port: 443
 type: ClusterIP
 selector:
 name: egress-1

Your pods can now connect to this service. Their connections are redirected to the
corresponding ports on the external server, using the reserved egress IP address.

The pod contains a single container, using the openshift3/ose-egress-router image, and that container
is run privileged so that it can configure the Macvlan interface and set up iptables rules.

The environment variables tell the egress-router image what addresses to use; it will configure the
Macvlan interface to use EGRESS_SOURCE as its IP address, with EGRESS_GATEWAY as its gateway.

NAT rules are set up so that connections to any TCP or UDP port on the pod’s cluster IP address are
redirected to the same port on EGRESS_DESTINATION.

CHAPTER 5. MANAGING PODS

29

1

If only some of the nodes in your cluster are capable of claiming the specified source IP address and
using the specified gateway, you can specify a nodeName or nodeSelector indicating which nodes are
acceptable.

5.5.2.3. Enabling Failover for Egress Router Pods

Using a replication controller, you can ensure that there is always one copy of the egress router pod in
order to prevent downtime.

1. Create a replication controller configuration file using the following:

apiVersion: v1
kind: ReplicationController
metadata:
 name: egress-demo-controller
spec:

 replicas: 1 1
 selector:
 name: egress-demo
 template:
 metadata:
 name: egress-demo
 labels:
 name: egress-demo
 annotations:
 pod.network.openshift.io/assign-macvlan: "true"
 spec:
 containers:
 - name: egress-demo-container
 image: openshift/origin-egress-router
 env:
 - name: EGRESS_SOURCE
 value: 192.168.12.99
 - name: EGRESS_GATEWAY
 value: 192.168.12.1
 - name: EGRESS_DESTINATION
 value: 203.0.113.25
 securityContext:
 privileged: true
 nodeSelector:
 site: springfield-1

Ensure replicas is set to 1, because only one pod can be using a given
EGRESS_SOURCE value at any time. This means that only a single copy of the router will be
running, on a node with the label site=springfield-1.

2. Create the pod using the definition:

$ oc create -f <replication_controller>.json

3. To verify, check to see if the replication controller pod has been created:

oc describe rc <replication_controller>

OpenShift Container Platform 3.3 Cluster Administration

30

5.6. LIMITING THE BANDWIDTH AVAILABLE TO PODS

You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth.
Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the
configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle
data. The limits you place on a pod do not affect the bandwidth of other pods.

To limit the bandwidth on a pod:

1. Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth
annotations. For example, to limit both pod egress and ingress bandwidth to 10M/s:

Example 5.2. Limited Pod Object Definition

{
 "kind": "Pod",
 "spec": {
 "containers": [
 {
 "image": "hello-openshift",
 "name": "hello-openshift"
 }
]
 },
 "apiVersion": "v1",
 "metadata": {
 "name": "iperf-slow",
 "annotations": {
 "kubernetes.io/ingress-bandwidth": "10M",
 "kubernetes.io/egress-bandwidth": "10M"
 }
 }
}

2. Create the pod using the object definition:

oc create -f <file_or_dir_path>

CHAPTER 5. MANAGING PODS

31

CHAPTER 6. CONFIGURING SERVICE ACCOUNTS

6.1. OVERVIEW

When a person uses the OpenShift Container Platform CLI or web console, their API token authenticates
them to the OpenShift Container Platform API. However, when a regular user’s credentials are not
available, it is common for components to make API calls independently. For example:

Replication controllers make API calls to create or delete pods.

Applications inside containers can make API calls for discovery purposes.

External applications can make API calls for monitoring or integration purposes.

Service accounts provide a flexible way to control API access without sharing a regular user’s
credentials.

6.2. USER NAMES AND GROUPS

Every service account has an associated user name that can be granted roles, just like a regular user.
The user name is derived from its project and name:

system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

IMPORTANT

If you want to grant access to a specific service account in a project, you can use the -z
flag. From the project to which the service account belongs, use the -z flag and specify
the <serviceaccount_name>. This is highly recommended, as it helps prevent typos
and ensures that access is granted only to the specified service account. For example:

 $ oc policy add-role-to-user <role_name> -z
<serviceaccount_name>

If not in the project, use the -n option to indicate the project namespace it applies to, as
shown in the examples below.

Every service account is also a member of two groups:

system:serviceaccounts

Includes all service accounts in the system.

system:serviceaccounts:<project>

Includes all service accounts in the specified project.

For example, to allow all service accounts in all projects to view resources in the top-secret project:

$ oc policy add-role-to-group view system:serviceaccounts -n top-secret

OpenShift Container Platform 3.3 Cluster Administration

32

To allow all service accounts in the managers project to edit resources in the top-secret project:

$ oc policy add-role-to-group edit system:serviceaccounts:managers -n top-
secret

6.3. MANAGING SERVICE ACCOUNTS

Service accounts are API objects that exist within each project. To manage service accounts, you can
use the oc command with the sa or serviceaccount object type or use the web console.

To get a list of existing service accounts in the current project:

$ oc get sa
NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

To create a new service account:

$ oc create sa robot
serviceaccount "robot" created

As soon as a service account is created, two secrets are automatically added to it:

an API token

credentials for the OpenShift Container Registry

These can be seen by describing the service account:

$ oc describe sa robot
Name: robot
Namespace: project1
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

The system ensures that service accounts always have an API token and registry credentials.

The generated API token and registry credentials do not expire, but they can be revoked by deleting the
secret. When the secret is deleted, a new one is automatically generated to take its place.

6.4. ENABLING SERVICE ACCOUNT AUTHENTICATION

CHAPTER 6. CONFIGURING SERVICE ACCOUNTS

33

1

2

3

1

2

3

4

Service accounts authenticate to the API using tokens signed by a private RSA key. The authentication
layer verifies the signature using a matching public RSA key.

To enable service account token generation, update the serviceAccountConfig stanza in the
/etc/origin/master/master-config.yml file on the master to specify a privateKeyFile (for signing),
and a matching public key file in the publicKeyFiles list:

serviceAccountConfig:
 ...

 masterCA: ca.crt 1

 privateKeyFile: serviceaccounts.private.key 2
 publicKeyFiles:

 - serviceaccounts.public.key 3
 - ...

CA file used to validate the API server’s serving certificate.

Private RSA key file (for token signing).

Public RSA key files (for token verification). If private key files are provided, then the public key
component is used. Multiple public key files can be specified, and a token will be accepted if it can
be validated by one of the public keys. This allows rotation of the signing key, while still accepting
tokens generated by the previous signer.

6.5. MANAGED SERVICE ACCOUNTS

Service accounts are required in each project to run builds, deployments, and other pods. The
managedNames setting in the /etc/origin/master/master-config.yml file on the master controls which
service accounts are automatically created in every project:

serviceAccountConfig:
 ...

 managedNames: 1

 - builder 2

 - deployer 3

 - default 4
 - ...

List of service accounts to automatically create in every project.

A builder service account in each project is required by build pods, and is given the
system:image-builder role, which allows pushing images to any image stream in the project using
the internal container registry.

A deployer service account in each project is required by deployment pods, and is given the
system:deployer role, which allows viewing and modifying replication controllers and pods in the
project.

A default service account is used by all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal container registry.

OpenShift Container Platform 3.3 Cluster Administration

34

6.6. INFRASTRUCTURE SERVICE ACCOUNTS

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server start,
and given the following roles cluster-wide:

Service Account Description

replication-controller Assigned the system:replication-controller role

deployment-controller Assigned the system:deployment-controller role

build-controller Assigned the system:build-controller role. Additionally, the build-controller
service account is included in the privileged security context constraint in order to
create privileged build pods.

To configure the project where those service accounts are created, set the
openshiftInfrastructureNamespace field in in the /etc/origin/master/master-config.yml file on
the master:

policyConfig:
 ...
 openshiftInfrastructureNamespace: openshift-infra

6.7. SERVICE ACCOUNTS AND SECRETS

Set the limitSecretReferences field in the /etc/origin/master/master-config.yml file on the master
to true to require pod secret references to be whitelisted by their service accounts. Set its value to
false to allow pods to reference any secret in the project.

serviceAccountConfig:
 ...
 limitSecretReferences: false

CHAPTER 6. CONFIGURING SERVICE ACCOUNTS

35

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

7.1. OVERVIEW

You can use the CLI to view authorization policies and the administrator CLI to manage the roles and
bindings within a policy.

7.2. VIEWING ROLES AND BINDINGS

Roles grant various levels of access in the system-wide cluster policy as well as project-scoped local
policies. Users and groups can be associated with, or bound to, multiple roles at the same time. You can
view details about the roles and their bindings using the oc describe command.

Users with the cluster-admin default role in the cluster policy can view cluster policy and all local
policies. Users with the admin default role in a given local policy can view that project-scoped policy.

NOTE

Review a full list of verbs in the Evaluating Authorization section.

7.2.1. Viewing Cluster Policy

To view the cluster roles and their associated rule sets in the cluster policy:

$ oc describe clusterPolicy default

Example 7.1. Viewing Cluster Roles

$ oc describe clusterPolicy default
Name: default
Created: 5 days ago
Labels: <none>
Annotations: <none>
Last Modified: 2016-03-17 13:25:27 -0400 EDT
admin Verbs Non-Resource URLs Extension Resource Names
API Groups Resources
 [create delete deletecollection get list patch update watch] []
[] [] [configmaps endpoints persistentvolumeclaims pods pods/attach
pods/exec pods/log pods/portforward pods/proxy replicationcontrollers
replicationcontrollers/scale secrets serviceaccounts services
services/proxy]
 [create delete deletecollection get list patch update watch] []
[] [] [buildconfigs buildconfigs/instantiate
buildconfigs/instantiatebinary buildconfigs/webhooks buildlogs builds
builds/clone builds/custom builds/docker builds/log builds/source
deploymentconfigrollbacks deploymentconfigs deploymentconfigs/log
deploymentconfigs/scale deployments generatedeploymentconfigs
imagestreamimages imagestreamimports imagestreammappings imagestreams
imagestreams/secrets imagestreamtags localresourceaccessreviews
localsubjectaccessreviews processedtemplates projects
resourceaccessreviews rolebindings roles routes subjectaccessreviews
templateconfigs templates]
 [create delete deletecollection get list patch update watch] []

OpenShift Container Platform 3.3 Cluster Administration

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#users-and-groups
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#evaluating-authorization

[] [autoscaling] [horizontalpodautoscalers]
 [create delete deletecollection get list patch update watch] []
[] [batch] [jobs]
 [create delete deletecollection get list patch update watch] []
[] [extensions] [daemonsets horizontalpodautoscalers jobs
replicationcontrollers/scale]
 [get list watch] [] [] [] [bindings configmaps
endpoints events imagestreams/status limitranges minions namespaces
namespaces/status nodes persistentvolumeclaims persistentvolumes pods
pods/log pods/status policies policybindings replicationcontrollers
replicationcontrollers/status resourcequotas resourcequotas/status
resourcequotausages routes/status securitycontextconstraints
serviceaccounts services]
 [get update] [] [] [] [imagestreams/layers]
 [update] [] [] [] [routes/status]
basic-user Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [] [~] [] [users]
 [list] [] [] [] [projectrequests]
 [get list] [] [] [] [clusterroles]
 [list] [] [] [] [projects]
 [create] [] IsPersonalSubjectAccessReview [] []
[localsubjectaccessreviews subjectaccessreviews]
cluster-admin Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [*] [] [] [*] [*]
 [*] [*] [] [] []
cluster-reader Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get list watch] [] [] [] [bindings buildconfigs
buildconfigs/instantiate buildconfigs/instantiatebinary
buildconfigs/webhooks buildlogs builds builds/clone builds/details
builds/log clusternetworks clusterpolicies clusterpolicybindings
clusterrolebindings clusterroles configmaps deploymentconfigrollbacks
deploymentconfigs deploymentconfigs/log deploymentconfigs/scale
deployments endpoints events generatedeploymentconfigs groups
hostsubnets identities images imagestreamimages imagestreamimports
imagestreammappings imagestreams imagestreams/status imagestreamtags
limitranges localresourceaccessreviews localsubjectaccessreviews minions
namespaces netnamespaces nodes oauthclientauthorizations oauthclients
persistentvolumeclaims persistentvolumes pods pods/log policies
policybindings processedtemplates projectrequests projects
replicationcontrollers resourceaccessreviews resourcequotas
resourcequotausages rolebindings roles routes routes/status
securitycontextconstraints serviceaccounts services subjectaccessreviews
templateconfigs templates useridentitymappings users]
 [get list watch] [] [] [autoscaling]
[horizontalpodautoscalers]
 [get list watch] [] [] [batch] [jobs]
 [get list watch] [] [] [extensions] [daemonsets
horizontalpodautoscalers jobs replicationcontrollers/scale]
 [create] [] [] [] [resourceaccessreviews
subjectaccessreviews]
 [get] [] [] [] [nodes/metrics]
 [create get] [] [] [] [nodes/stats]
 [get] [*] [] [] []

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

37

cluster-status Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [/api /api/* /apis /apis/* /healthz /healthz/* /oapi
/oapi/* /osapi /osapi/ /version] [] [] []
edit Verbs Non-Resource URLs Extension Resource Names
API Groups Resources
 [create delete deletecollection get list patch update watch] []
[] [] [configmaps endpoints persistentvolumeclaims pods pods/attach
pods/exec pods/log pods/portforward pods/proxy replicationcontrollers
replicationcontrollers/scale secrets serviceaccounts services
services/proxy]
 [create delete deletecollection get list patch update watch] []
[] [] [buildconfigs buildconfigs/instantiate
buildconfigs/instantiatebinary buildconfigs/webhooks buildlogs builds
builds/clone builds/custom builds/docker builds/log builds/source
deploymentconfigrollbacks deploymentconfigs deploymentconfigs/log
deploymentconfigs/scale deployments generatedeploymentconfigs
imagestreamimages imagestreamimports imagestreammappings imagestreams
imagestreams/secrets imagestreamtags processedtemplates routes
templateconfigs templates]
 [create delete deletecollection get list patch update watch] []
[] [autoscaling] [horizontalpodautoscalers]
 [create delete deletecollection get list patch update watch] []
[] [batch] [jobs]
 [create delete deletecollection get list patch update watch] []
[] [extensions] [daemonsets horizontalpodautoscalers jobs
replicationcontrollers/scale]
 [get list watch] [] [] [] [bindings configmaps
endpoints events imagestreams/status limitranges minions namespaces
namespaces/status nodes persistentvolumeclaims persistentvolumes pods
pods/log pods/status projects replicationcontrollers
replicationcontrollers/status resourcequotas resourcequotas/status
resourcequotausages routes/status securitycontextconstraints
serviceaccounts services]
 [get update] [] [] [] [imagestreams/layers]
registry-admin Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create delete deletecollection get list patch update watch] []
[] [] [imagestreamimages imagestreamimports imagestreammappings
imagestreams imagestreams/secrets imagestreamtags]
 [create delete deletecollection get list patch update watch] []
[] [] [localresourceaccessreviews localsubjectaccessreviews
resourceaccessreviews rolebindings roles subjectaccessreviews]
 [get update] [] [] [] [imagestreams/layers]
 [get list watch] [] [] [] [policies policybindings]
 [get] [] [] [] [namespaces projects]
registry-editor Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [] [] [] [namespaces projects]
 [create delete deletecollection get list patch update watch] []
[] [] [imagestreamimages imagestreamimports imagestreammappings
imagestreams imagestreams/secrets imagestreamtags]
 [get update] [] [] [] [imagestreams/layers]
registry-viewer Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get list watch] [] [] [] [imagestreamimages

OpenShift Container Platform 3.3 Cluster Administration

38

imagestreamimports imagestreammappings imagestreams imagestreamtags]
 [get] [] [] [] [imagestreams/layers namespaces
projects]
self-provisioner Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create] [] [] [] [projectrequests]
system:build-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [builds]
 [update] [] [] [] [builds]
 [create] [] [] [] [builds/custom builds/docker
builds/source]
 [get] [] [] [] [imagestreams]
 [create delete get list] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:daemonset-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [extensions] [daemonsets]
 [list watch] [] [] [] [pods]
 [list watch] [] [] [] [nodes]
 [update] [] [] [extensions] [daemonsets/status]
 [create delete] [] [] [] [pods]
 [create] [] [] [] [pods/binding]
 [create patch update] [] [] [] [events]
system:deployer Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get list] [] [] [] [replicationcontrollers]
 [get update] [] [] [] [replicationcontrollers]
 [create get list watch] [] [] [] [pods]
 [get] [] [] [] [pods/log]
 [update] [] [] [] [imagestreamtags]
system:deployment-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [] [replicationcontrollers]
 [get update] [] [] [] [replicationcontrollers]
 [create delete get list update] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:discovery Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [/api /api/* /apis /apis/* /oapi /oapi/* /osapi
/osapi/ /version] [] [] []
system:hpa-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [extensions autoscaling]
[horizontalpodautoscalers]
 [update] [] [] [extensions autoscaling]
[horizontalpodautoscalers/status]
 [get update] [] [] [extensions]
[replicationcontrollers/scale]
 [get update] [] [] [] [deploymentconfigs/scale]
 [create patch update] [] [] [] [events]
 [list] [] [] [] [pods]
 [proxy] [] [https:heapster:] [] [services]
system:image-builder Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get update] [] [] [] [imagestreams/layers]

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

39

 [update] [] [] [] [builds/details]
system:image-pruner Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [delete] [] [] [] [images]
 [get list] [] [] [] [buildconfigs builds
deploymentconfigs images imagestreams pods replicationcontrollers]
 [update] [] [] [] [imagestreams/status]
system:image-puller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get] [] [] [] [imagestreams/layers]
system:image-pusher Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get update] [] [] [] [imagestreams/layers]
system:job-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [extensions batch] [jobs]
 [update] [] [] [extensions batch] [jobs/status]
 [list watch] [] [] [] [pods]
 [create delete] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:master Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [*] [] [] [*] [*]
system:namespace-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [delete get list watch] [] [] [] [namespaces]
 [update] [] [] [] [namespaces/finalize
namespaces/status]
 [delete deletecollection get list] [] [] [*] [*]
system:node Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create] [] [] [] [localsubjectaccessreviews
subjectaccessreviews]
 [get list watch] [] [] [] [services]
 [create get list watch] [] [] [] [nodes]
 [update] [] [] [] [nodes/status]
 [create patch update] [] [] [] [events]
 [get list watch] [] [] [] [pods]
 [create delete get] [] [] [] [pods]
 [update] [] [] [] [pods/status]
 [get] [] [] [] [configmaps secrets]
 [get] [] [] [] [persistentvolumeclaims
persistentvolumes]
 [get] [] [] [] [endpoints]
system:node-admin Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [nodes]
 [proxy] [] [] [] [nodes]
 [*] [] [] [] [nodes/log nodes/metrics nodes/proxy
nodes/stats]
system:node-proxier Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [] [endpoints services]
system:node-reader Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [nodes]

OpenShift Container Platform 3.3 Cluster Administration

40

 [get] [] [] [] [nodes/metrics]
 [create get] [] [] [] [nodes/stats]
system:oauth-token-deleter Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [delete] [] [] [] [oauthaccesstokens
oauthauthorizetokens]
system:pv-binder-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [] [persistentvolumes]
 [create delete get update] [] [] []
[persistentvolumes]
 [update] [] [] [] [persistentvolumes/status]
 [list watch] [] [] [] [persistentvolumeclaims]
 [get update] [] [] [] [persistentvolumeclaims]
 [update] [] [] [] [persistentvolumeclaims/status]
system:pv-provisioner-controller Verbs Non-Resource URLs
Extension Resource Names API Groups Resources
 [list watch] [] [] [] [persistentvolumes]
 [create delete get update] [] [] []
[persistentvolumes]
 [update] [] [] [] [persistentvolumes/status]
 [list watch] [] [] [] [persistentvolumeclaims]
 [get update] [] [] [] [persistentvolumeclaims]
 [update] [] [] [] [persistentvolumeclaims/status]
system:pv-recycler-controller Verbs Non-Resource URLs
Extension Resource Names API Groups Resources
 [list watch] [] [] [] [persistentvolumes]
 [create delete get update] [] [] []
[persistentvolumes]
 [update] [] [] [] [persistentvolumes/status]
 [list watch] [] [] [] [persistentvolumeclaims]
 [get update] [] [] [] [persistentvolumeclaims]
 [update] [] [] [] [persistentvolumeclaims/status]
 [list watch] [] [] [] [pods]
 [create delete get] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:registry Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [delete get] [] [] [] [images]
 [get] [] [] [] [imagestreamimages imagestreams
imagestreams/secrets imagestreamtags]
 [update] [] [] [] [imagestreams]
 [create] [] [] [] [imagestreammappings]
 [list] [] [] [] [resourcequotas]
system:replication-controller Verbs Non-Resource URLs
Extension Resource Names API Groups Resources
 [list watch] [] [] [] [replicationcontrollers]
 [get update] [] [] [] [replicationcontrollers]
 [update] [] [] [] [replicationcontrollers/status]
 [list watch] [] [] [] [pods]
 [create delete] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:router Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [list watch] [] [] [] [endpoints routes]
 [update] [] [] [] [routes/status]

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

41

system:sdn-manager Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [create delete get list watch] [] [] [] [hostsubnets]
 [create delete get list watch] [] [] []
[netnamespaces]
 [get list watch] [] [] [] [nodes]
 [create get] [] [] [] [clusternetworks]
system:sdn-reader Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [hostsubnets]
 [get list watch] [] [] [] [netnamespaces]
 [get list watch] [] [] [] [nodes]
 [get] [] [] [] [clusternetworks]
 [get list watch] [] [] [] [namespaces]
system:webhook Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create get] [] [] [] [buildconfigs/webhooks]
view Verbs Non-Resource URLs Extension Resource Names
API Groups Resources
 [get list watch] [] [] [] [bindings buildconfigs
buildconfigs/instantiate buildconfigs/instantiatebinary
buildconfigs/webhooks buildlogs builds builds/clone builds/log
configmaps deploymentconfigrollbacks deploymentconfigs
deploymentconfigs/log deploymentconfigs/scale deployments endpoints
events generatedeploymentconfigs imagestreamimages imagestreamimports
imagestreammappings imagestreams imagestreams/status imagestreamtags
limitranges minions namespaces namespaces/status nodes
persistentvolumeclaims persistentvolumes pods pods/log pods/status
processedtemplates projects replicationcontrollers
replicationcontrollers/status resourcequotas resourcequotas/status
resourcequotausages routes routes/status securitycontextconstraints
serviceaccounts services templateconfigs templates]
 [get list watch] [] [] [autoscaling]
[horizontalpodautoscalers]
 [get list watch] [] [] [batch] [jobs]
 [get list watch] [] [] [extensions] [daemonsets
horizontalpodautoscalers jobs]

To view the current set of cluster bindings, which shows the users and groups that are bound to various
roles:

$ oc describe clusterPolicyBindings :default

Example 7.2. Viewing Cluster Bindings

$ oc describe clusterPolicyBindings :default
Name: :default
Created: 4 hours ago
Labels: <none>
Last Modified: 2015-06-10 17:22:26 +0000 UTC
Policy: <none>
RoleBinding[basic-users]:
 Role: basic-user
 Users: []

OpenShift Container Platform 3.3 Cluster Administration

42

 Groups: [system:authenticated]
RoleBinding[cluster-admins]:
 Role: cluster-admin
 Users: []
 Groups: [system:cluster-admins]
RoleBinding[cluster-readers]:
 Role: cluster-reader
 Users: []
 Groups: [system:cluster-readers]
RoleBinding[cluster-status-binding]:
 Role: cluster-status
 Users: []
 Groups: [system:authenticated system:unauthenticated]
RoleBinding[self-provisioners]:
 Role: self-provisioner
 Users: []
 Groups: [system:authenticated]
RoleBinding[system:build-controller]:
 Role: system:build-controller
 Users: [system:serviceaccount:openshift-infra:build-controller]
 Groups: []
RoleBinding[system:deployment-controller]:
 Role: system:deployment-controller
 Users: [system:serviceaccount:openshift-infra:deployment-
controller]
 Groups: []
RoleBinding[system:masters]:
 Role: system:master
 Users: []
 Groups: [system:masters]
RoleBinding[system:node-proxiers]:
 Role: system:node-proxier
 Users: []
 Groups: [system:nodes]
RoleBinding[system:nodes]:
 Role: system:node
 Users: []
 Groups: [system:nodes]
RoleBinding[system:oauth-token-deleters]:
 Role: system:oauth-token-deleter
 Users: []
 Groups: [system:authenticated system:unauthenticated]
RoleBinding[system:registrys]:
 Role: system:registry
 Users: []
 Groups: [system:registries]
RoleBinding[system:replication-controller]:
 Role: system:replication-controller
 Users: [system:serviceaccount:openshift-infra:replication-
controller]
 Groups: []
RoleBinding[system:routers]:
 Role: system:router
 Users: []
 Groups: [system:routers]
RoleBinding[system:sdn-readers]:

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

43

 Role: system:sdn-reader
 Users: []
 Groups: [system:nodes]
RoleBinding[system:webhooks]:
 Role: system:webhook
 Users: []
 Groups: [system:authenticated system:unauthenticated]

7.2.2. Viewing Local Policy

While the list of local roles and their associated rule sets are not viewable within a local policy, all of the
default roles are still applicable and can be added to users or groups, other than the cluster-admin
default role. The local bindings, however, are viewable.

To view the current set of local bindings, which shows the users and groups that are bound to various
roles:

$ oc describe policyBindings :default

By default, the current project is used when viewing local policy. Alternatively, a project can be specified
with the -n flag. This is useful for viewing the local policy of another project, if the user already has the
admindefault role in it.

Example 7.3. Viewing Local Bindings

$ oc describe policyBindings :default -n joe-project
Name: :default
Created: About a minute ago
Labels: <none>
Last Modified: 2015-06-10 21:55:06 +0000 UTC
Policy: <none>
RoleBinding[admins]:
 Role: admin
 Users: [joe]
 Groups: []
RoleBinding[system:deployers]:
 Role: system:deployer
 Users: [system:serviceaccount:joe-project:deployer]
 Groups: []
RoleBinding[system:image-builders]:
 Role: system:image-builder
 Users: [system:serviceaccount:joe-project:builder]
 Groups: []
RoleBinding[system:image-pullers]:
 Role: system:image-puller
 Users: []
 Groups: [system:serviceaccounts:joe-project]

By default in a local policy, only the binding for the admin role is immediately listed. However, if other
default roles are added to users and groups within a local policy, they become listed as well.

OpenShift Container Platform 3.3 Cluster Administration

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles

7.3. MANAGING ROLE BINDINGS

Adding, or binding, a role to users or groups gives the user or group the relevant access granted by the
role. You can add and remove roles to and from users and groups using oadm policy commands.

When managing a user or group’s associated roles for a local policy using the following operations, a
project may be specified with the -n flag. If it is not specified, then the current project is used.

Table 7.1. Local Policy Operations

Command Description

$ oadm policy who-can <verb>
<resource>

Indicates which users can perform an action on a
resource.

$ oadm policy add-role-to-user
<role> <username>

Binds a given role to specified users in the current
project.

$ oadm policy remove-role-from-user
<role> <username>

Removes a given role from specified users in the
current project.

$ oadm policy remove-user
<username>

Removes specified users and all of their roles in the
current project.

$ oadm policy add-role-to-group
<role> <groupname>

Binds a given role to specified groups in the current
project.

$ oadm policy remove-role-from-
group <role> <groupname>

Removes a given role from specified groups in the
current project.

$ oadm policy remove-group
<groupname>

Removes specified groups and all of their roles in the
current project.

You can also manage role bindings for the cluster policy using the following operations. The -n flag is
not used for these operations because the cluster policy uses non-namespaced resources.

Table 7.2. Cluster Policy Operations

Command Description

$ oadm policy add-cluster-role-to-
user <role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oadm policy remove-cluster-role-
from-user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oadm policy add-cluster-role-to-
group <role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#users-and-groups

1

$ oadm policy remove-cluster-role-
from-group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

Command Description

For example, you can add the admin role to the alice user in joe-project by running:

$ oadm policy add-role-to-user admin alice -n joe-project

You can then view the local bindings and verify the addition in the output:

$ oc describe policyBindings :default -n joe-project
Name: :default
Created: 5 minutes ago
Labels: <none>
Last Modified: 2015-06-10 22:00:44 +0000 UTC
Policy: <none>
RoleBinding[admins]:
 Role: admin

 Users: [alice joe] 1
 Groups: []
RoleBinding[system:deployers]:
 Role: system:deployer
 Users: [system:serviceaccount:joe-project:deployer]
 Groups: []
RoleBinding[system:image-builders]:
 Role: system:image-builder
 Users: [system:serviceaccount:joe-project:builder]
 Groups: []
RoleBinding[system:image-pullers]:
 Role: system:image-puller
 Users: []
 Groups: [system:serviceaccounts:joe-project]

The alice user has been added to the admins RoleBinding.

7.4. GRANTING USERS DAEMONSET PERMISSIONS

By default, project developers do not have the permission to create daemonsets. As a cluster
administrator, you can grant them the abilities.

1. Define a ClusterRole file:

apiVersion: v1
kind: ClusterRole
metadata:
 name: daemonset-admin
rules:
 - resources:
 - daemonsets
 apiGroups:
 - extensions

OpenShift Container Platform 3.3 Cluster Administration

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-daemonsets

 verbs:
 - create
 - get
 - list
 - watch
 - delete
 - update

2. Create the role:

$ oadm policy add-role-to-user daemonset-admin <user>

7.5. CREATING A LOCAL ROLE

To create a local role for a project, you can either copy and modify an existing role or build a new role
from scratch. It is recommended that you build it from scratch so that you understand each of the
permissions assigned.

To copy the cluster role view to use as a local role, run:

$ oc get clusterrole view -o yaml > clusterrole_view.yaml
$ cp clusterrole_view.yaml localrole_exampleview.yaml
$ vim localrole_exampleview.yaml
1. Update kind: ClusterRole to kind: Role
2. Update name: view to name: exampleview
3. Remove resourceVersion, selfLink, uid, and creationTimestamp
$ oc create -f path/to/localrole_exampleview.yaml -n
<project_you_want_to_add_the_local_role_exampleview_to>

To create a new role from scratch, save this snippet into the file role_exampleview.yaml:

Example Role Named exampleview

apiVersion: v1
kind: Role
metadata:
 name: exampleview
rules:
- apiGroups: null
 attributeRestrictions: null
 resources:
 - pods
 - builds
 verbs:
 - get
 - list
 - watch

Then, to use the current project, run:

$ oc project <project_you_want_to_add_the_local_role_exampleview_to>

Optionally, annotate it with a description.

CHAPTER 7. MANAGING AUTHORIZATION POLICIES

47

To use the new role, run:

$ oadm policy add-role-to-user exampleview user2

NOTE

A clusterrolebinding is a role binding that exists at the cluster level. A
rolebinding exists at the project level. This can be confusing. The
clusterrolebinding view must be assigned to a user within a project for that user to
view the project. Local roles are only created if a cluster role does not provide the set of
permissions needed for a particular situation, which is unlikely.

Some cluster role names are initially confusing. The clusterroleclusteradmin can
be assigned to a user within a project, making it appear that this user has the privileges of
a cluster administrator. This is not the case. The clusteradmin cluster role bound to a
certain project is more like a super administrator for that project, granting the permissions
of the cluster role admin, plus a few additional permissions like the ability to edit rate
limits. This can appear especially confusing via the web console UI, which does not list
cluster policy (where cluster administrators exist). However, it does list local policy (where
a locally bound clusteradmin may exist).

Within a project, project administrators should be able to see rolebindings, not
clusterrolebindings.

OpenShift Container Platform 3.3 Cluster Administration

48

CHAPTER 8. IMAGE POLICY

8.1. OVERVIEW

You can control which images are allowed to run on your cluster using the ImagePolicy admission plug-in
(currently considered beta). It allows you to control:

The source of images: which registries can be used to pull images

Image resolution: force pods to run with immutable digests to ensure the image does not
change due to a re-tag

Container image label restrictions: force an image to have or not have particular labels

Image annotation restrictions: force an image in the integrated container registry to have or
not have particular annotations

8.2. CONFIGURING THE IMAGEPOLICY ADMISSION PLUG-IN

To enable this feature, configure the plug-in in master-config.yaml:

Example 8.1. Annotated Example File

admissionConfig:
 pluginConfig:
 openshift.io/ImagePolicy:
 configuration:
 kind: ImagePolicyConfig
 apiVersion: v1

 resolveImages: AttemptRewrite 1

 executionRules: 2
 - name: execution-denied
 # Reject all images that have the annotation
images.openshift.io/deny-execution set to true.
 # This annotation may be set by infrastructure that wishes to
flag particular images as dangerous

 onResources: 3
 - resource: pods
 - resource: builds

 reject: true 4

 matchImageAnnotations: 5
 - key: images.openshift.io/deny-execution
 value: "true"

 skipOnResolutionFailure: true 6
 - name: allow-images-from-internal-registry
 # allows images from the internal registry and tries to
resolve them
 onResources:
 - resource: pods
 - resource: builds
 matchIntegratedRegistry: true
 - name: allow-images-from-dockerhub
 onResources:
 - resource: pods

CHAPTER 8. IMAGE POLICY

49

1

2

3

4

5

6

Try to resolve images to an immutable image digest and update the image pull specification in
the pod.

Array of rules to evaluate against incoming resources. If you only have reject==true rules, the
default is allow all. If you have any accept rule, the default is deny all.

Indicates which resources to enforce rules upon. If nothing is specified, the default is pods.

Indicates that if this rule matches, the pod should be rejected.

List of annotations to match on the image object’s metadata.

If you are not able to resolve the image, do not fail the pod.

8.3. TESTING THE IMAGEPOLICY ADMISSION PLUG-IN

1. Use the openshift/image-policy-check to test your configuration.
For example, use the information above, then test like this:

oc import-image openshift/image-policy-check:latest --confirm

2. Create a pod using this YAML. The pod should be created.

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: docker.io/openshift/image-policy-check:latest
 name: first

3. Create another pod pointing to a different registry. The pod should be rejected.

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: different-registry/openshift/image-policy-check:latest
 name: first

4. Create a pod pointing to the internal registry using the imported image. The pod should be
created and if you look at the image specification, you should see a digest in place of the tag.

apiVersion: v1
kind: Pod

 - resource: builds
 matchRegistries:
 - docker.io

OpenShift Container Platform 3.3 Cluster Administration

50

metadata:
 generateName: test-pod
spec:
 containers:
 - image: <internal registry IP>:5000/<namespace>/image-policy-
check:latest
 name: first

5. Create a pod pointing to the internal registry using the imported image. The pod should be
created and if you look at the image specification, you should see the tag unmodified.

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: <internal registry IP>:5000/<namespace>/image-policy-
check:v1
 name: first

6. Get the digest from oc get istag/image-policy-check:latest and use it for oc
annotate images/<digest> images.openshift.io/deny-execution=true. For
example:

$ oc annotate
images/sha256:09ce3d8b5b63595ffca6636c7daefb1a615a7c0e3f8ea68e5db044
a9340d6ba8 images.openshift.io/deny-execution=true

7. Create this pod again, and you should see the pod rejected:

apiVersion: v1
kind: Pod
metadata:
 generateName: test-pod
spec:
 containers:
 - image: <internal registry IP>:5000/<namespace>/image-policy-
check:latest
 name: first

CHAPTER 8. IMAGE POLICY

51

CHAPTER 9. SCOPED TOKENS

9.1. OVERVIEW

A user may want to give another entity the power to act as they have, but only in a limited way. For
example, a project administrator may want to delegate the power to create pods. One way to do this is to
create a scoped token.

A scoped token is a token that identifies as a given user, but is limited to certain actions by its scope.
Right now, only a cluster-admin can create scoped tokens.

9.2. EVALUATION

Scopes are evaluated by converting the set of scopes for a token into a set of PolicyRules. Then, the
request is matched against those rules. The request attributes must match at least one of the scope rules
to be passed to the "normal" authorizer for further authorization checks.

9.3. USER SCOPES

User scopes are focused on getting information about a given user. They are intent-based, so the rules
are automatically created for you:

user:full - Allows full read/write access to the API with all of the user’s permissions.

user:info - Allows read-only access to information about the user: name, groups, and so on.

user:check-access - Allows access to self-localsubjectaccessreviews and self-
subjectaccessreviews. These are the variables where you pass an empty user and groups in
your request object.

user:list-projects - Allows read-only access to list the projects the user has access to.

9.4. ROLE SCOPE

The role scope allows you to have the same level of access as a given role filtered by namespace.

role:<cluster-role name>:<namespace or * for all> - Limits the scope to the rules
specified by the cluster-role, but only in the specified namespace .

NOTE

Caveat: This prevents escalating access. Even if the role allows access to
resources like secrets, rolebindings, and roles, this scope will deny access to
those resources. This helps prevent unexpected escalations. Many people do not
think of a role like edit as being an escalating role, but with access to a secret it
is.

role:<cluster-role name>:<namespace or * for all>:! - This is similar to the
example above, except that including the bang causes this scope to allow escalating access.

OpenShift Container Platform 3.3 Cluster Administration

52

CHAPTER 10. MONITORING IMAGES

10.1. OVERVIEW

You can monitor images in your instance using the CLI.

10.2. VIEWING IMAGES STATISTICS

OpenShift Container Platform can display several usage statistics about all the images it manages. In
other words, all the images pushed to the internal registry either directly or through a build.

To view the usage statistics:

$ oadm top images
NAME IMAGESTREAMTAG PARENTS
USAGE METADATA STORAGE
sha256:80c985739a78b openshift/python (3.5)
yes 303.12MiB
sha256:64461b5111fc7 openshift/ruby (2.2)
yes 234.33MiB
sha256:0e19a0290ddc1 test/ruby-ex (latest) sha256:64461b5111fc71ec
Deployment: ruby-ex-1/test yes 150.65MiB
sha256:a968c61adad58 test/django-ex (latest) sha256:80c985739a78b760
Deployment: django-ex-1/test yes 186.07MiB

The command displays the following information:

image ID

project, name, and tag of the accompanying ImageStreamTag

potential parents of the image, using their ID

information about where the image is being used

flag informing whether the image contains proper Docker metadata information

size of the image

10.3. VIEWING IMAGESTREAMS STATISTICS

OpenShift Container Platform can display several usage statistics about all the ImageStreams.

To view the usage statistics:

$ oadm top imagestreams
NAME STORAGE IMAGES LAYERS
openshift/python 1.21GiB 4 36
openshift/ruby 717.76MiB 3 27
test/ruby-ex 150.65MiB 1 10
test/django-ex 186.07MiB 1 10

The command displays the following information:

CHAPTER 10. MONITORING IMAGES

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#access-pushing-and-pulling-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-builds

project and name of the ImageStream

size of the entire ImageStream stored in the internal Red Hat Container Registry

number of images this particular ImageStream is pointing to

number of layers ImageStream consists of

10.4. PRUNING IMAGES

The information returned from the above commands is helpful when performing image pruning.

OpenShift Container Platform 3.3 Cluster Administration

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-registry-overview

CHAPTER 11. MANAGING SECURITY CONTEXT
CONSTRAINTS

11.1. OVERVIEW

Security context constraints allow administrators to control permissions for pods. To learn more about
this API type, see the security context constraints (SCCs) architecture documentation. You can manage
SCCs in your instance as normal API objects using the CLI.

NOTE

You must have cluster-admin privileges to manage SCCs.

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
upgrading. Instead, create new SCCs.

11.2. LISTING SECURITY CONTEXT CONSTRAINTS

To get a current list of SCCs:

$ oc get scc

NAME PRIV CAPS SELINUX RUNASUSER
FSGROUP SUPGROUP PRIORITY READONLYROOTFS VOLUMES
anyuid false [] MustRunAs RunAsAny
RunAsAny RunAsAny 10 false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
hostaccess false [] MustRunAs MustRunAsRange
MustRunAs RunAsAny <none> false [configMap
downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostmount-anyuid false [] MustRunAs RunAsAny
RunAsAny RunAsAny <none> false [configMap
downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostnetwork false [] MustRunAs MustRunAsRange
MustRunAs MustRunAs <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
nonroot false [] MustRunAs MustRunAsNonRoot
RunAsAny RunAsAny <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
privileged true [] RunAsAny RunAsAny
RunAsAny RunAsAny <none> false [*]
restricted false [] MustRunAs MustRunAsRange
MustRunAs RunAsAny <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]

11.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT

To examine a particular SCC, use oc get, oc describe, oc export, or oc edit. For example, to
examine the restricted SCC:

CHAPTER 11. MANAGING SECURITY CONTEXT CONSTRAINTS

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles

$ oc describe scc restricted

Name: restricted
Priority: <none>
Access:
 Users: <none>
 Groups: system:authenticated
Settings:
 Allow Privileged: false
 Default Add Capabilities: <none>
 Required Drop Capabilities: <none>
 Allowed Capabilities: <none>
 Allowed Volume Types:
awsElasticBlockStore,azureFile,cephFS,cinder,configMap,downwardAPI,emptyDi
r,fc,flexVolume,flocker,gcePersistentDisk,gitRepo,glusterfs,iscsi,nfs,pers
istentVolumeClaim,rbd,secret
 Allow Host Network: false
 Allow Host Ports: false
 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange
 UID: <none>
 UID Range Min: <none>
 UID Range Max: <none>
 SELinux Context Strategy: MustRunAs
 User: <none>
 Role: <none>
 Type: <none>
 Level: <none>
 FSGroup Strategy: RunAsAny
 Ranges: <none>
 Supplemental Groups Strategy: RunAsAny
 Ranges: <none>

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the default
SCCs other than priority, users, groups, labels, and annotations.

11.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS

To create a new SCC:

1. Define the SCC in a JSON or YAML file:

Example 11.1. Security Context Constraint Object Definition

kind: SecurityContextConstraints
apiVersion: v1
metadata:
 name: scc-admin
allowPrivilegedContainer: true
runAsUser:
 type: RunAsAny

OpenShift Container Platform 3.3 Cluster Administration

56

seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- my-admin-user
groups:
- my-admin-group

Optionally, you can add drop capabilities to an SCC by setting the
requiredDropCapabilities field with the desired values. Any specified capabilities will be
dropped from the container. For example, to create an SCC with the KILL, MKNOD, and
SYS_CHROOT required drop capabilities, add the following to the SCC object:

requiredDropCapabilities:
- KILL
- MKNOD
- SYS_CHROOT

You can see the list of possible values in the Docker documentation.

2. Then, run oc create passing the file to create it:

$ oc create -f scc_admin.yaml
securitycontextconstraints/scc-admin

3. Verify that the SCC was created:

$ oc get scc
NAME PRIV CAPS HOSTDIR SELINUX RUNASUSER
privileged true [] true RunAsAny RunAsAny
restricted false [] false MustRunAs
MustRunAsRange
scc-admin true [] false RunAsAny RunAsAny

11.5. DELETING SECURITY CONTEXT CONSTRAINTS

To delete an SCC:

$ oc delete scc <scc_name>

NOTE

If you delete a default SCC, it will be regenerated upon restart.

11.6. UPDATING SECURITY CONTEXT CONSTRAINTS

To update an existing SCC:

CHAPTER 11. MANAGING SECURITY CONTEXT CONSTRAINTS

57

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

$ oc edit scc <scc_name>

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the default
SCCs other than priority, users, and groups.

11.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS

Default SCCs will be created when the master is started if they are missing. To reset SCCs to defaults,
or update existing SCCs to new default definitions after an upgrade you may:

1. Delete any SCC you would like to be reset and let it be recreated by restarting the master

2. Use the oadm policy reconcile-sccs command

The oadm policy reconcile-sccs command will set all SCC policies to the default values but
retain any additional users, groups, labels, and annotations as well as priorities you may have already
set. To view which SCCs will be changed you may run the command with no options or by specifying
your preferred output with the -o <format> option.

After reviewing it is recommended that you back up your existing SCCs and then use the --confirm
option to persist the data.

NOTE

If you would like to reset priorities and grants, use the --additive-only=false
option.

NOTE

If you have customized settings other than priority, users, groups, labels, or annotations
in an SCC, you will lose those settings when you reconcile.

11.8. HOW DO I?

The following describe common scenarios and procedures using SCCs.

11.8.1. Grant Access to the Privileged SCC

In some cases, an administrator might want to allow users or groups outside the administrator group
access to create more privileged pods. To do so, you can:

1. Determine the user or group you would like to have access to the SCC.

2. Run:

$ oadm policy add-scc-to-user <scc_name> <user_name>
$ oadm policy add-scc-to-group <scc_name> <group_name>

For example, to allow the e2e-user access to the privileged SCC, run:

$ oadm policy add-scc-to-user privileged e2e-user

OpenShift Container Platform 3.3 Cluster Administration

58

WARNING

Granting access to a user only works when the user directly creates a pod. For pods
created on behalf of a user, in most cases by the system itself, access should be
given to a service account under which related controller is operated upon.
Examples of resources that create pods on behalf of a user are Deployments,
StatefulSets, DaemonSets, etc.

11.8.2. Grant a Service Account Access to the Privileged SCC

First, create a service account. For example, to create service account mysvcacct in project
myproject:

$ oc create serviceaccount mysvcacct -n myproject

Then, add the service account to the privileged SCC.

$ oadm policy add-scc-to-user privileged
system:serviceaccount:myproject:mysvcacct

Then, ensure that the resource is being created on behalf of the service account. To do so, set the
spec.serviceAccountName field to a service account name. Leaving the service account name
blank will result in the default service account being used.

11.8.3. Enable Images to Run with USER in the Dockerfile

To relax the security in your cluster so that images are not forced to run as a pre-allocated UID, without
granting everyone access to the privileged SCC:

1. Grant all authenticated users access to the anyuid SCC:

$ oadm policy add-scc-to-group anyuid system:authenticated

WARNING

This allows images to run as the root UID if no USER is specified in the Dockerfile.

11.8.4. Enable Container Images that Require Root

Some container images (examples: postgres and redis) require root access and have certain
expectations about how volumes are owned. For these images, add the service account to the anyuid
SCC.

CHAPTER 11. MANAGING SECURITY CONTEXT CONSTRAINTS

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-service-accounts

$ oadm policy add-scc-to-user anyuid
system:serviceaccount:myproject:mysvcacct

11.8.5. Use --mount-host on the Registry

It is recommended that persistent storage using PersistentVolume and PersistentVolumeClaim
objects be used for registry deployments. If you are testing and would like to instead use the oadm
registry command with the --mount-host option, you must first create a new service account for
the registry and add it to the privileged SCC. See the Administrator Guide for full instructions.

11.8.6. Provide Additional Capabilities

In some cases, an image may require capabilities that Docker does not provide out of the box. You can
provide the ability to request additional capabilities in the pod specification which will be validated against
an SCC.

IMPORTANT

This allows images to run with elevated capabilities and should be used only if necessary.
You should not edit the default restricted SCC to enable additional capabilities.

When used in conjunction with a non-root user, you must also ensure that the file that requires the
additional capability is granted the capabilities using the setcap command. For example, in the
Dockerfile of the image:

setcap cap_net_raw,cap_net_admin+p /usr/bin/ping

Further, if a capability is provided by default in Docker, you do not need to modify the pod specification to
request it. For example, NET_RAW is provided by default and capabilities should already be set on ping,
therefore no special steps should be required to run ping.

To provide additional capabilities:

1. Create a new SCC

2. Add the allowed capability using the allowedCapabilities field.

3. When creating the pod, request the capability in the securityContext.capabilities.add
field.

11.8.7. Modify Cluster Default Behavior

When you grant access to the anyuid SCC for everyone, your cluster:

Does not pre-allocate UIDs

Allows containers to run as any user

Prevents privileged containers

 $ oc adm policy add-scc-to-group anyuid system:authenticated

OpenShift Container Platform 3.3 Cluster Administration

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-registry-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#storage-for-the-registry

To modify your cluster so that it does not pre-allocate UIDs and does not allow containers to run as root,
grant access to the nonroot SCC for everyone:

 $ oc adm policy add-scc-to-group nonroot system:authenticated

WARNING

Be very careful with any modifications that have a cluster-wide impact. When you
grant an SCC to all authenticated users, as in the previous example, or modify an
SCC that applies to all users, such as the restricted SCC, it also affects Kubernetes
and OpenShift Container Platform components, including the web console and
integrated docker registry. Changes made with these SCCs can cause these
components to stop functioning.

Instead, create a custom SCC and target it to only specific users or groups. This
way potential issues are confined to the affected users or groups and do not impact
critical cluster components.

11.8.8. Use the hostPath Volume Plug-in

To relax the security in your cluster so that pods are allowed to use the hostPath volume plug-in
without granting everyone access to more privileged SCCs such as privileged, hostaccess, or
hostmount-anyuid, perform the following actions:

1. Create a new SCC named hostpath

2. Set the allowHostDirVolumePlugin parameter to true for the new SCC:

$ oc patch scc hostpath -p '{"allowHostDirVolumePlugin": true}'

3. Grant access to this SCC to all users:

$ oc adm policy add-scc-to-group hostpath system:authenticated

Now, all the pods that request hostPath volumes are admitted by the hostpath SCC.

11.8.9. Ensure That Admission Attempts to Use a Specific SCC First

You may control the sort ordering of SCCs in admission by setting the Priority field of the SCCs.
Please see the SCC Prioritization section for more information on sorting.

11.8.10. Add an SCC to a User, Group, or Project

Before adding an SCC to a user or group, you can first use the scc-review option to check if the user
or group can create a pod.

SCCs are not granted directly to a project. Instead, you add a service account to an SCC and either
specify the service account name on your pod or, when unspecified, run as the default service
account.

CHAPTER 11. MANAGING SECURITY CONTEXT CONSTRAINTS

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#scc-prioritization

To add an SCC to a user:

$ oadm policy add-scc-to-user <scc_name> <user_name>

To add an SCC to a service account:

$ oc adm policy add-scc-to-user <scc_name> \
 system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>

If you are currently in the project to which the service account belongs, you can use the -z flag and just
specify the <serviceaccount_name>.

$ oc adm policy add-scc-to-user <scc_name> -z <serviceaccount_name>

IMPORTANT

Usage of the -z flag as described above is highly recommended, as it helps prevent
typos and ensures that access is granted only to the specified service account. If not in the
project, use the -n option to indicate the project namespace it applies to.

To add an SCC to a group:

$ oadm policy add-scc-to-group <scc_name> <group_name>

To add an SCC to all service accounts in a namespace:

$ oc adm policy add-scc-to-group <scc_name> \
 system:serviceaccounts:<serviceaccount_namespace>

OpenShift Container Platform 3.3 Cluster Administration

62

CHAPTER 12. SETTING QUOTAS

12.1. OVERVIEW

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources that may be consumed by resources in that
project.

NOTE

See the Developer Guide for more on compute resources.

12.2. RESOURCES MANAGED BY QUOTA

The following describes the set of compute resources and object types that may be managed by a quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 12.1. Compute Resources Managed by Quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot
exceed this value.

Table 12.2. Object Counts Managed by Quota

CHAPTER 12. SETTING QUOTAS

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-compute-resources

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrol
lers

The total number of replication controllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumecl
aims

The total number of persistent volume claims that can exist in the project.

openshift.io/image
streams

The total number of image streams that can exist in the project.

12.3. QUOTA SCOPES

Each quota can have an associated set of scopes. A quota will only measure usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds >= 0.

NotTerminating Match pods where spec.activeDeadlineSeconds is nil.

BestEffort Match pods that have best effort quality of service for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A Terminating, NotTerminating, or NotBestEffort scope restricts a quota to tracking the following
resources:

pods

memory

OpenShift Container Platform 3.3 Cluster Administration

64

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

12.4. QUOTA ENFORCEMENT

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate error
message is returned to the user explaining the quota constraint violated, and what their currently
observed usage stats are in the system.

12.5. REQUESTS VS LIMITS

When allocating compute resources, each container may specify a request and a limit value each for
CPU and memory. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit
for those resources.

12.6. SAMPLE RESOURCE QUOTA DEFINITIONS

Example 12.1. object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:

 configmaps: "10" 1

 persistentvolumeclaims: "4" 2

 replicationcontrollers: "20" 3

 secrets: "10" 4

 services: "10" 5

CHAPTER 12. SETTING QUOTAS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-compute-resources

1

2

3

4

5

1

1

2

3

4

5

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

Example 12.2. openshift-object-counts.yaml

The total number of image streams that can exist in the project.

Example 12.3. compute-resources.yaml

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

Example 12.4. besteffort.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:

 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:

 pods: "4" 1

 requests.cpu: "1" 2

 requests.memory: 1Gi 3

 limits.cpu: "2" 4

 limits.memory: 2Gi 5

OpenShift Container Platform 3.3 Cluster Administration

66

1

2

1

2

3

4

The total number of pods in a non-terminal state with BestEffort quality of service that can exist
in the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

Example 12.5. compute-resources-long-running.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:

 pods: "4" 1

 limits.cpu: "4" 2

 limits.memory: "2Gi" 3
 scopes:

 - NotTerminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is nil.
For example, this quota would not charge for build or deployer pods.

Example 12.6. compute-resources-time-bound.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:

 pods: "2" 1

 limits.cpu: "1" 2

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:

 pods: "1" 1
 scopes:

 - BestEffort 2

CHAPTER 12. SETTING QUOTAS

67

1

2

3

4

 limits.memory: "1Gi" 3
 scopes:

 - Terminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For
example, this quota would charge for build or deployer pods, but not long running pods like a
web server or database.

12.7. CREATING A QUOTA

To create a quota, first define the quota to your specifications in a file, for example as seen in Sample
Resource Quota Definitions. Then, create using that file to apply it to a project:

$ oc create -f <resource_quota_definition> [-n <project_name>]

For example:

$ oc create -f resource-quota.json -n demoproject

12.8. VIEWING A QUOTA

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details:

1. First, get the list of quotas defined in the project. For example, for a project called demoproject:

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

2. Then, describe the quota you are interested in, for example the core-object-counts quota:

$ oc describe quota core-object-counts -n demoproject
Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4

OpenShift Container Platform 3.3 Cluster Administration

68

replicationcontrollers 3 20
secrets 9 10
services 2 10

12.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD

When a set of resources are deleted, the synchronization time frame of resources is determined by the
resource-quota-sync-period setting in the /etc/origin/master/master-config.yaml file.

Before quota usage is restored, a user may encounter problems when attempting to reuse the resources.
You can change the resource-quota-sync-period setting to have the set of resources regenerate
at the desired amount of time (in seconds) and for the resources to be available again:

After making any changes, restart the master service to apply them.

Adjusting the regeneration time can be helpful for creating resources and determining resource usage
when automation is used.

NOTE

The resource-quota-sync-period setting is designed to balance system
performance. Reducing the sync period can result in a heavy load on the master.

12.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS

If a quota has been defined for your project, see Deployment Resources for considerations on any
deployment configurations.

kubernetesMasterConfig:
 apiLevels:
 - v1beta3
 - v1
 apiServerArguments: null
 controllerArguments:
 resource-quota-sync-period:
 - "10s"

CHAPTER 12. SETTING QUOTAS

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#deployment-resources

1

2

CHAPTER 13. SETTING MULTI-PROJECT QUOTAS

13.1. OVERVIEW

A multi-project quota, defined by a ClusterResourceQuota object, allows quotas to be shared across
multiple projects. Resources used in each selected project will be aggregated and that aggregate will be
used to limit resources across all the selected projects.

13.2. SELECTING PROJECTS

Projects can be selected based on either annotation selection, label selection, or both. For example:

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user-name> \
 --hard pods=10 \
 --hard secrets=20

creates:

The ResourceQuotaSpec object that will be enforced over the selected projects.

A simple key/value selector for annotations.

apiVersion: v1
kind: ClusterResourceQuota
metadata:
 name: for-user
spec:

 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:

 annotations: 2
 openshift.io/requester: <user-name>

 labels: null 3
status:

 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

 total: 5
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

OpenShift Container Platform 3.3 Cluster Administration

70

3

4

5

A label selector that can be used to select projects.

A per-namespace map that describes current quota usage in each selected project.

The aggregate usage across all selected projects.

This multi-project quota document controls all projects requested by <user-name> using the default
project request endpoint. You are limited to 10 pods and 20 secrets.

13.3. VIEWING APPLICABLE CLUSTERRESOURCEQUOTAS

A project administrator is not allowed to create or modify the multi-project quota that limits his or her
project, but the administrator is allowed to view the multi-project quota documents that are applied to his
or her project. The project administrator can do this via the AppliedClusterResourceQuota
resource.

$ oc describe AppliedClusterResourceQuota

produces:

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

13.4. SELECTION GRANULARITY

Due to the locking consideration when claiming quota allocations, the number of active projects selected
by a multi-project quota is an important consideration. Selecting more than 100 projects under a single
multi-project quota may have detrimental effects on API server responsiveness in those projects.

CHAPTER 13. SETTING MULTI-PROJECT QUOTAS

71

1

2

3

4

5

CHAPTER 14. SETTING LIMIT RANGES

14.1. OVERVIEW

A limit range, defined by a LimitRange object, enumerates compute resource constraints in a project at
the pod, container, image and image stream level, and specifies the amount of resources that a pod,
container, image or image stream can consume.

All resource create and modification requests are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, then the resource is rejected. If the
resource does not set an explicit value, and if the constraint supports a default value, then the default
value is applied to the resource.

Example 14.1. Limit Range Object Definition

The name of the limit range object.

The maximum amount of CPU that a pod can request on a node across all containers.

The maximum amount of memory that a pod can request on a node across all containers.

The minimum amount of CPU that a pod can request on a node across all containers.

The minimum amount of memory that a pod can request on a node across all containers.

apiVersion: "v1"
kind: "LimitRange"
metadata:

 name: "core-resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:

 cpu: "2" 2

 memory: "1Gi" 3
 min:

 cpu: "200m" 4

 memory: "6Mi" 5
 - type: "Container"
 max:

 cpu: "2" 6

 memory: "1Gi" 7
 min:

 cpu: "100m" 8

 memory: "4Mi" 9
 default:

 cpu: "300m" 10

 memory: "200Mi" 11
 defaultRequest:

 cpu: "200m" 12

 memory: "100Mi" 13
 maxLimitRequestRatio:

 cpu: "10" 14

OpenShift Container Platform 3.3 Cluster Administration

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-projects

6

7

8

9

10

11

12

13

14

1

2

3

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over request.

Example 14.2. OpenShift Container Platform Limit Range Object Definition

The maximum size of an image that can be pushed to an internal registry.

The maximum number of unique image tags per image stream’s spec.

The maximum number of unique image references per image stream’s status.

Both core and OpenShift Container Platform resources can be specified in just one limit range object.
They are separated here into two examples for clarity.

14.1.1. Container Limits

Supported Resources:

CPU

Memory

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "openshift-resource-limits"
spec:
 limits:
 - type: openshift.io/Image
 max:

 storage: 1Gi 1
 - type: openshift.io/ImageStream
 max:

 openshift.io/image-tags: 20 2

 openshift.io/images: 30 3

CHAPTER 14. SETTING LIMIT RANGES

73

Supported Constraints:

Per container, the following must hold true if specified:

Table 14.1. Container

Constraint Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or
equal to container/resources.limits[resource] (optional)

If the configuration defines a min CPU, then the request value must be greater
than the CPU value. A limit value does not need to be specified.

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

If the configuration defines a max CPU, then you do not need to define a
request value, but a limit value does need to be set that satisfies the maximum
CPU constraint.

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

If a configuration defines a maxLimitRequestRatio value, then any new
containers must have both a request and limit value. Additionally, OpenShift
Container Platform calculates a limit to request ratio by dividing the limit by the
request. This value should be a non-negative integer greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu:
100 in the request value, then its limit to request ratio for cpu is 5. This
ratio must be less than or equal to the maxLimitRequestRatio.

Supported Defaults:

Default[resource]

Defaults container.resources.limit[resource] to specified value if none.

Default Requests[resource]

Defaults container.resources.requests[resource] to specified value if none.

14.1.2. Pod Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Across all containers in a pod, the following must hold true:

OpenShift Container Platform 3.3 Cluster Administration

74

Table 14.2. Pod

Constraint Enforced Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or
equal to container.resources.limits[resource] (optional)

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

14.1.3. Image Limits

Supported Resources:

Storage

Resource type name:

openshift.io/Image

Per image, the following must hold true if specified:

Table 14.3. Image

Constraint Behavior

Max image.dockerimagemetadata.size less than or equal to
Max[resource]

NOTE

To prevent blobs exceeding the limit from being uploaded to the registry, the registry must
be configured to enforce quota. An environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA must be set to
true which is done by default for new deployments. To update older deployment
configuration, refer to Enforcing quota in the Registry.

CHAPTER 14. SETTING LIMIT RANGES

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#enforcing-quota-in-the-registry

WARNING

The image size is not always available in the manifest of an uploaded image. This is
especially the case for images built with Docker 1.10 or higher and pushed to a v2
registry. If such an image is pulled with an older Docker daemon, the image manifest
will be converted by the registry to schema 1 lacking all the size information. No
storage limit set on images will prevent it from being uploaded.

The issue is being addressed.

14.1.4. Image Stream Limits

Supported Resources:

openshift.io/image-tags

openshift.io/images

Resource type name:

openshift.io/ImageStream

Per image stream, the following must hold true if specified:

Table 14.4. ImageStream

Constraint Behavior

Max[openshift.io/i
mage-tags]

length(uniqueimagetags(imagestream.spec.tags)) less
than or equal to Max[openshift.io/image-tags]

uniqueimagetags returns unique references to images of given spec tags.

Max[openshift.io/i
mages]

length(uniqueimages(imagestream.status.tags)) less
than or equal to Max[openshift.io/images]

uniqueimages returns unique image names found in status tags. The name
equals image’s digest.

14.1.4.1. Counting of Image References

Resource openshift.io/image-tags represents unique image references. Possible references are
an ImageStreamTag, an ImageStreamImage and a DockerImage. They may be created using
commands oc tag and oc import-image or by using tag tracking. No distinction is made between
internal and external references. However, each unique reference tagged in the image stream’s
specification is counted just once. It does not restrict pushes to an internal container registry in any way,
but is useful for tag restriction.

OpenShift Container Platform 3.3 Cluster Administration

76

https://github.com/openshift/origin/issues/7706
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#referencing-images-in-image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#adding-tag

Resource openshift.io/images represents unique image names recorded in image stream status. It
allows for restriction of a number of images that can be pushed to the internal registry. Internal and
external references are not distinguished.

14.2. CREATING A LIMIT RANGE

To apply a limit range to a project, create a limit range object definition on your file system to your
desired specifications, then run:

$ oc create -f <limit_range_file> -n <project>

14.3. VIEWING LIMITS

You can view any limit ranges defined in a project by navigating in the web console to the project’s
Quota page.

You can also use the CLI to view limit range details:

1. First, get the list of limit ranges defined in the project. For example, for a project called
demoproject:

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. Then, describe the limit range you are interested in, for example the resource-limits limit range:

$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min
Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- -
-- --------------- ------------- -----------------------
Pod cpu 200m 2
- - -
Pod memory 6Mi
1Gi - - -
Container cpu 100m 2
200m 300m 10
Container memory 4Mi
1Gi 100Mi 200Mi -
openshift.io/Image storage -
1Gi - - -
openshift.io/ImageStream openshift.io/image - 12
- - -
openshift.io/ImageStream openshift.io/image-tags - 10
- - -

14.4. DELETING LIMITS

Remove any active limit range to no longer enforce the limits of a project:

CHAPTER 14. SETTING LIMIT RANGES

77

$ oc delete limits <limit_name>

OpenShift Container Platform 3.3 Cluster Administration

78

CHAPTER 15. PRUNING OBJECTS

15.1. OVERVIEW

Over time, API objects created in OpenShift Container Platform can accumulate in the etcd data store
through normal user operations, such as when building and deploying applications.

As an administrator, you can periodically prune older versions of objects from your OpenShift Container
Platform instance that are no longer needed. For example, by pruning images you can delete older
images and layers that are no longer in use, but are still taking up disk space.

15.2. BASIC PRUNE OPERATIONS

The CLI groups prune operations under a common parent command.

$ oadm prune <object_type> <options>

This specifies:

The <object_type> to perform the action on, such as builds, deployments, or images.

The <options> supported to prune that object type.

15.3. PRUNING DEPLOYMENTS

In order to prune deployments that are no longer required by the system due to age and status,
administrators may run the following command:

$ oadm prune deployments [<options>]

Table 15.1. Prune Deployments CLI Configuration Options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all deployments whose deployment config no longer exists, status
is complete or failed, and replica count is zero.

--keep-complete=<N> Per deployment config, keep the last N deployments whose status is
complete and replica count is zero. (default 5)

--keep-failed=<N> Per deployment config, keep the last N deployments whose status is
failed and replica count is zero. (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to
the current time. (default 60m)

To see what a pruning operation would delete:

CHAPTER 15. PRUNING OBJECTS

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#master

$ oadm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

15.4. PRUNING BUILDS

In order to prune builds that are no longer required by the system due to age and status, administrators
may run the following command:

$ oadm prune builds [<options>]

Table 15.2. Prune Builds CLI Configuration Options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all builds whose build config no longer exists, status is complete,
failed, error, or canceled.

--keep-complete=<N> Per build config, keep the last N builds whose status is complete. (default
5)

--keep-failed=<N> Per build config, keep the last N builds whose status is failed, error, or
canceled (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to
the current time. (default 60m)

To see what a pruning operation would delete:

$ oadm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

15.5. PRUNING IMAGES

In order to prune images that are no longer required by the system due to age, status, or exceed limits,
administrators may run the following command:

$ oadm prune images [<options>]

OpenShift Container Platform 3.3 Cluster Administration

80

NOTE

Currently, to prune images you must first log in to the CLI as a user with an access token.
The user must also have the cluster rolesystem:image-pruner or greater (for example,
cluster-admin).

NOTE

Pruning images removes data from the integrated registry. For this operation to work
properly, ensure your registry is configured with storage:delete:enabled set to true.

Table 15.3. Prune Images CLI Configuration Options

Option Description

--certificate-
authority

The path to a certificate authority file to use when communicating with
the OpenShift Container Platform-managed registries. Defaults to the
certificate authority data from the current user’s config file.

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--keep-tag-revisions=
<N>

For each image stream, keep up to at most N image revisions per tag.
(default 3)

--keep-younger-than=
<duration>

Do not prune any image that is younger than <duration> relative to
the current time. Do not prune any image that is referenced by any other
object that is younger than <duration> relative to the current time.
(default 60m)

--prune-over-size-
limit

Prune each image that exceeds the smallest limit defined in the same
project. This flag cannot be combined with --keep-tag-revisions
nor --keep-younger-than.

OpenShift Container Platform uses the following logic to determine which images and layers to prune:

Remove any image "managed by OpenShift Container Platform" (images with the annotation
openshift.io/image.managed) that was created at least --keep-younger-than minutes
ago and is not currently referenced by:

any pod created less than --keep-younger-than minutes ago.

any image stream created less than --keep-younger-than minutes ago.

any running pods.

any pending pods.

any replication controllers.

any deployment configurations.

any build configurations.

CHAPTER 15. PRUNING OBJECTS

81

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#basic-setup-and-login
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#docker-registry-configuration-reference-storage

any builds.

the --keep-tag-revisions most recent items in stream.status.tags[].items.

Remove any image "managed by OpenShift Container Platform" (images with the annotation
openshift.io/image.managed) that is exceeding the smallest limit defined in the same
project and is not currently referenced by:

any running pods.

any pending pods.

any replication controllers.

any deployment configurations.

any build configurations.

any builds.

There is no support for pruning from external registries.

When an image is pruned, all references to the image are removed from all image streams that
have a reference to the image in status.tags.

Image layers that are no longer referenced by any images are removed as well.

NOTE

--prune-over-size-limit cannot be combined with --keep-tag-revisions nor
--keep-younger-than flags. Doing so will return an information that this operation is
not allowed.

To see what a pruning operation would delete:

1. Keeping up to three tag revisions, and keeping resources (images, image streams and pods)
younger than sixty minutes:

$ oadm prune images --keep-tag-revisions=3 --keep-younger-than=60m

2. Pruning every image that exceeds defined limits:

$ oadm prune images --prune-over-size-limit

To actually perform the prune operation for the previously mentioned options accordingly:

$ oadm prune images --keep-tag-revisions=3 --keep-younger-than=60m --
confirm

$ oadm prune images --prune-over-size-limit --confirm

OpenShift Container Platform 3.3 Cluster Administration

82

CHAPTER 16. GARBAGE COLLECTION

16.1. OVERVIEW

The OpenShift Container Platform node performs two types of garbage collection:

Container garbage collection: Removes terminated containers.

Image garbage collection: Removes images not referenced by any running pods.

16.2. CONTAINER GARBAGE COLLECTION

Container garbage collection is enabled by default and happens automatically in response to eviction
thresholds being reached. The node tries to keep any container for any pod accessible from the API. If
the pod has been deleted, the containers will be as well. Containers are preserved as long the pod is not
deleted and the eviction threshold is not reached. If the node is under disk pressure, it will remove
containers and their logs will no longer be accessible via oc logs.

The policy for container garbage collection is based on three node settings:

Setting Description

minimum-
container-ttl-
duration

The minimum age that a container is eligible for garbage collection. The default is
0. Use 0 for no limit. Values for this setting can be specified using unit suffixes
such as h for hour, m for minutes, s for seconds.

maximum-dead-
containers-per-
container

The number of instances to retain per pod container. The default is 1.

maximum-dead-
containers

The maximum number of total dead containers in the node. The default is -1,
which means unlimited.

The maximum-dead-containers setting takes precedence over the maximum-dead-containers-
per-container setting when there is a conflict. For example, if retaining the number of maximum-
dead-containers-per-container would result in a total number of containers that is greater than
maximum-dead-containers, the oldest containers will be removed to satisfy the maximum-dead-
containers limit.

When the node removes the dead containers, all files inside those containers are removed as well. Only
containers created by the node will be garbage collected.

You can specify values for these settings in the kubeletArguments section of the
/etc/origin/node/node-config.yaml file on node hosts. Add the section if it does not already exist:

Container Garbage Collection Settings

kubeletArguments:
 minimum-container-ttl-duration:
 - "10s"
 maximum-dead-containers-per-container:
 - "2"

CHAPTER 16. GARBAGE COLLECTION

83

16.2.1. Detecting Containers for Deletion

Each spin of the garbage collector loop goes through the following steps:

1. Retrieve a list of available containers.

2. Filter out all containers that are running or are not alive longer than the minimum-container-
ttl-duration parameter.

3. Classify all remaining containers into equivalence classes based on pod and image name
membership.

4. Remove all unidentified containers (containers that are managed by kubelet but their name is
malformed).

5. For each class that contains more containers than the maximum-dead-containers-per-
container parameter, sort containers in the class by creation time.

6. Start removing containers from the oldest first until the maximum-dead-containers-per-
container parameter is met.

7. If there are still more containers in the list than the maximum-dead-containers parameter,
the collector starts removing containers from each class so the number of containers in each
one is not greater than the average number of containers per class, or
<all_remaining_containers>/<number_of_classes>.

8. If this is still not enough, sort all containers in the list and start removing containers from the
oldest first until the maximum-dead-containers criterion is met.

IMPORTANT

Update the default settings to meet your needs.

Garbage collection only removes the containers that do not have a pod associated with it.

16.3. IMAGE GARBAGE COLLECTION

Image garbage collection relies on disk usage as reported by cAdvisor on the node to decide which
images to remove from the node. It takes the following settings into consideration:

Setting Description

image-gc-high-
threshold

The percent of disk usage (expressed as an integer) which triggers image garbage
collection. The default is 90.

image-gc-low-
threshold

The percent of disk usage (expressed as an integer) to which image garbage
collection attempts to free. Default is 80.

 maximum-dead-containers:
 - "100"

OpenShift Container Platform 3.3 Cluster Administration

84

You can specify values for these settings in the kubeletArguments section of the
/etc/origin/node/node-config.yaml file on node hosts. Add the section if it does not already exist:

Image Garbage Collection Settings

16.3.1. Detecting Images for Deletion

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod

2. A list of images available on a host

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

kubeletArguments:
 image-gc-high-threshold:
 - "90"
 image-gc-low-threshold:
 - "80"

CHAPTER 16. GARBAGE COLLECTION

85

CHAPTER 17. SCHEDULER

17.1. OVERVIEW

The Kubernetes pod scheduler is responsible for determining placement of new pods onto nodes within
the cluster. It reads data from the pod and tries to find a node that is a good fit based on configured
policies. It is completely independent and exists as a standalone/pluggable solution. It does not modify
the pod and just creates a binding for the pod that ties the pod to the particular node.

17.2. GENERIC SCHEDULER

The existing generic scheduler is the default platform-provided scheduler "engine" that selects a node to
host the pod in a 3-step operation:

1. Filter the nodes

2. Prioritize the filtered list of nodes

3. Select the best fit node

17.2.1. Filter the Nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each of the nodes through the list of filter functions called 'predicates'.

17.2.2. Prioritize the Filtered List of Nodes

This is achieved by passing each node through a series of 'priority' functions that assign it a score
between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler
configuration can also take in a simple "weight" (positive numeric value) for each priority function. The
node score provided by each priority function is multiplied by the "weight" (default weight is 1) and then
combined by just adding the scores for each node provided by all the priority functions. This weight
attribute can be used by administrators to give higher importance to some priority functions.

17.2.3. Select the Best Fit Node

The nodes are sorted based on their scores and the node with the highest score is selected to host the
pod. If multiple nodes have the same high score, then one of them is selected at random.

17.3. AVAILABLE PREDICATES

There are several predicates provided out of the box in Kubernetes. Some of these predicates can be
customized by providing certain parameters. Multiple predicates can be combined to provide additional
filtering of nodes.

17.3.1. Static Predicates

These predicates do not take any configuration parameters or inputs from the user. These are specified
in the scheduler configuration using their exact name.

PodFitsPorts deems a node to be fit for hosting a pod based on the absence of port conflicts.

{"name" : "PodFitsPorts"}

OpenShift Container Platform 3.3 Cluster Administration

86

PodFitsResources determines a fit based on resource availability. The nodes can declare their
resource capacities and then pods can specify what resources they require. Fit is based on requested,
rather than used resources.

{"name" : "PodFitsResources"}

NoDiskConflict determines fit based on non-conflicting disk volumes. It evaluates if a pod can fit due to
the volumes it requests, and those that are already mounted. It is GCE PD, Amazon EBS, and Ceph
RBD specific. Only Persistent Volume Claims for those supported types are checked. Persistent
Volumes added directly to pods are not evaluated and are not constrained by this policy.

{"name" : "NoDiskConflict"}

MatchNodeSelector determines fit based on node selector query that is defined in the pod.

{"name" : "MatchNodeSelector"}

HostName determines fit based on the presence of the Host parameter and a string match with the
name of the host.

{"name" : "HostName"}

17.3.2. Configurable Predicates

These predicates can be configured by the user to tweak their functioning. They can be given any user-
defined name. The type of the predicate is identified by the argument that they take. Since these are
configurable, multiple predicates of the same type (but different configuration parameters) can be
combined as long as their user-defined names are different.

ServiceAffinity filters out nodes that do not belong to the specified topological level defined by the
provided labels. This predicate takes in a list of labels and ensures affinity within the nodes (that have the
same label values) for pods belonging to the same service. If the pod specifies a value for the labels in
its NodeSelector, then the nodes matching those labels are the ones where the pod is scheduled. If the
pod does not specify the labels in its NodeSelector, then the first pod can be placed on any node based
on availability and all subsequent pods of the service will be scheduled on nodes that have the same
label values.

{"name" : "Zone", "argument" : {"serviceAffinity" : {"labels" :
["zone"]}}}

LabelsPresence checks whether a particular node has a certain label defined or not, regardless of its
value. Matching by label can be useful, for example, where nodes have their physical location or status
defined by labels.

{"name" : "RequireRegion", "argument" : {"labelsPresence" : {"labels" :
["region"], "presence" : true}}}

If "presence" is false, and any of the requested labels match any of the nodes’s labels, it returns
false. Otherwise, it returns true.

If "presence" is true, and any of the requested labels do not match any of the node’s labels, it
returns false. Otherwise, it returns true.

CHAPTER 17. SCHEDULER

87

17.4. AVAILABLE PRIORITY FUNCTIONS

A custom set of priority functions can be specified to configure the scheduler. There are several priority
functions provided out-of-the-box in Kubernetes. Some of these priority functions can be customized by
providing certain parameters. Multiple priority functions can be combined and different weights can be
given to each in order to impact the prioritization. A weight is required to be specified and cannot be 0 or
negative.

17.4.1. Static Priority Functions

These priority functions do not take any configuration parameters or inputs from the user. These are
specified in the scheduler configuration using their exact name as well as the weight.

LeastRequestedPriority favors nodes with fewer requested resources. It calculates the percentage of
memory and CPU requested by pods scheduled on the node, and prioritizes nodes that have the highest
available/remaining capacity.

{"name" : "LeastRequestedPriority", "weight" : 1}

BalancedResourceAllocation favors nodes with balanced resource usage rate. It calculates the
difference between the consumed CPU and memory as a fraction of capacity, and prioritizes the nodes
based on how close the two metrics are to each other. This should always be used together with
LeastRequestedPriority.

{"name" : "BalancedResourceAllocation", "weight" : 1}

ServiceSpreadingPriority spreads pods by minimizing the number of pods belonging to the same
service onto the same machine.

{"name" : "ServiceSpreadingPriority", "weight" : 1}

EqualPriority gives an equal weight of one to all nodes, if no priority configs are provided. It is not
required/recommended outside of testing.

{"name" : "EqualPriority", "weight" : 1}

17.4.2. Configurable Priority Functions

These priority functions can be configured by the user by providing certain parameters. They can be
given any user-defined name. The type of the priority function is identified by the argument that they
take. Since these are configurable, multiple priority functions of the same type (but different configuration
parameters) can be combined as long as their user-defined names are different.

ServiceAntiAffinity takes a label and ensures a good spread of the pods belonging to the same service
across the group of nodes based on the label values. It gives the same score to all nodes that have the
same value for the specified label. It gives a higher score to nodes within a group with the least
concentration of pods.

{"name" : "RackSpread", "weight" : 1, "argument" : {"serviceAntiAffinity"
: {"label" : "rack"}}}

LabelPreference prefers nodes that have a particular label defined or not, regardless of its value.

OpenShift Container Platform 3.3 Cluster Administration

88

{"name" : "RackPreferred", "weight" : 1, "argument" : {"labelPreference" :
{"label" : "rack"}}}

17.5. SCHEDULER POLICY

The selection of the predicate and priority functions defines the policy for the scheduler. Administrators
can provide a JSON file that specifies the predicates and priority functions to configure the scheduler.
The path to the scheduler policy file can be specified in the master configuration file. In the absence of
the scheduler policy file, the default configuration gets applied.

It is important to note that the predicates and priority functions defined in the scheduler configuration file
will completely override the default scheduler policy. If any of the default predicates and priority functions
are required, they have to be explicitly specified in the scheduler configuration file.

17.5.1. Default Scheduler Policy

The default scheduler policy includes the following predicates:

1. PodFitsPorts

2. PodFitsResources

3. NoDiskConflict

4. MatchNodeSelector

5. HostName

The default scheduler policy includes the following priority functions. Each of the priority function has a
weight of '1' applied to it:

1. LeastRequestedPriority

2. BalancedResourceAllocation

3. ServiceSpreadingPriority

17.5.2. Modifying Scheduler Policy

The scheduler policy is defined in a file on the master, named /etc/origin/master/scheduler.json by
default, unless overridden by the kubernetesMasterConfig.schedulerConfigFile field in the
master configuration file.

To modify the scheduler policy:

1. Edit the scheduler configuration file to set the desired predicates and priority functions. You can
create a custom configuration, or modify one of the sample policy configurations.

2. Restart the OpenShift Container Platform master services for the changes to take effect.

17.6. USE CASES

One of the important use cases for scheduling within OpenShift Container Platform is to support flexible
affinity and anti-affinity policies.

CHAPTER 17. SCHEDULER

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#master-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#launching-servers-using-configuration-files

17.6.1. Infrastructure Topological Levels

Administrators can define multiple topological levels for their infrastructure (nodes). This is done by
specifying labels on nodes (e.g., region=r1, zone=z1, rack=s1). These label names have no
particular meaning and administrators are free to name their infrastructure levels anything (eg,
city/building/room). Also, administrators can define any number of levels for their infrastructure topology,
with three levels usually being adequate (eg. regions → zones → racks). Lastly, administrators can
specify affinity and anti-affinity rules at each of these levels in any combination.

17.6.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same service
will be scheduled onto nodes that belong to the same level. This handles any latency requirements of
applications by allowing administrators to ensure that peer pods do not end up being too geographically
separated. If no node is available within the same affinity group to host the pod, then the pod will not get
scheduled.

17.6.3. Anti Affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level, or
even at multiple levels. Anti-Affinity (or 'spread') at a particular level indicates that all pods that belong to
the same service will be spread across nodes that belong to that level. This ensures that the application
is well spread for high availability purposes. The scheduler will try to balance the service pods across all
applicable nodes as evenly as possible.

17.7. SAMPLE POLICY CONFIGURATIONS

The configuration below specifies the default scheduler configuration, if it were to be specified via the
scheduler policy file.

kind: "Policy"
version: "v1"
predicates:
 - name: "PodFitsPorts"
 - name: "PodFitsResources"
 - name: "NoDiskConflict"
 - name: "MatchNodeSelector"
 - name: "HostName"
priorities:
 - name: "LeastRequestedPriority"
 weight: 1
 - name: "BalancedResourceAllocation"
 weight: 1
 - name: "ServiceSpreadingPriority"
 weight: 1

IMPORTANT

In all of the sample configurations below, the list of predicates and priority functions is
truncated to include only the ones that pertain to the use case specified. In practice, a
complete/meaningful scheduler policy should include most, if not all, of the default
predicates and priority functions listed above.

OpenShift Container Platform 3.3 Cluster Administration

90

Three topological levels defined as region (affinity) -→ zone (affinity) -→ rack (anti-affinity)

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionZoneAffinity"
 argument:
 serviceAffinity:
 labels:
 - "region"
 - "zone"
priorities:
...
 - name: "RackSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "rack"

Three topological levels defined as city (affinity) → building (anti-affinity) → room (anti-affinity):

kind: "Policy"
version: "v1"
predicates:
...
 - name: "CityAffinity"
 argument:
 serviceAffinity:
 labels:
 - "city"
priorities:
...
 - name: "BuildingSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "building"
 - name: "RoomSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "room"

Only use nodes with the 'region' label defined and prefer nodes with the 'zone' label defined:

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RequireRegion"
 argument:
 labelsPresence:
 labels:
 - "region"

CHAPTER 17. SCHEDULER

91

 presence: true
priorities:
...
 - name: "ZonePreferred"
 weight: 1
 argument:
 labelPreference:
 label: "zone"
 presence: true

Configuration example combining static and configurable predicates and priority functions:

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionAffinity"
 argument:
 serviceAffinity:
 labels:
 - "region"
 - name: "RequireRegion"
 argument:
 labelsPresence:
 labels:
 - "region"
 presence: true
 - name: "BuildingNodesAvoid"
 argument:
 labelsPresence:
 labels:
 - "building"
 presence: false
 - name: "PodFitsPorts"
 - name: "MatchNodeSelector"
priorities:
...
 - name: "ZoneSpread"
 weight: 2
 argument:
 serviceAntiAffinity:
 label: "zone"
 - name: "ZonePreferred"
 weight: 1
 argument:
 labelPreference:
 label: "zone"
 presence: true
 - name: "ServiceSpreadingPriority"
 weight: 1

17.8. SCHEDULER EXTENSIBILITY

OpenShift Container Platform 3.3 Cluster Administration

92

As is the case with almost everything else in Kubernetes/OpenShift Container Platform, the scheduler is
built using a plug-in model and the current implementation itself is a plug-in. There are two ways to
extend the scheduler functionality:

Enhancements

Replacement

17.8.1. Enhancements

The scheduler functionality can be enhanced by adding new predicates and priority functions. They can
either be contributed upstream or maintained separately. These predicates and priority functions would
need to be registered with the scheduler factory and then specified in the scheduler policy file.

17.8.2. Replacement

Since the scheduler is a plug-in, it can be replaced in favor of an alternate implementation. The
scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

17.9. CONTROLLING POD PLACEMENT

As a cluster administrator, you can set a policy to prevent application developers with certain roles from
targeting specific nodes when scheduling pods.

IMPORTANT

This process involves the pods/binding permission role, which is needed to target
particular nodes. The constraint on the use of the nodeSelector field of a pod
configuration is based on the pods/binding permission and the
nodeSelectorLabelBlacklist configuration option.

The nodeSelectorLabelBlacklist field of a master configuration file gives you control over the
labels that certain roles can specify in a pod configuration’s nodeSelector field. Users, service
accounts, and groups that have the pods/binding permission can specify any node selector. Those
without the pods/binding permission are prohibited from setting a nodeSelector for any label that
appears in nodeSelectorLabelBlacklist.

As a hypothetical example, an OpenShift Container Platform cluster might consist of five data centers
spread across two regions. In the U.S., us-east, us-central, and us-west; and in the Asia-Pacific region
(APAC), apac-east and apac-west. Each node in each geographical region is labeled accordingly. For
example, region: us-east.

NOTE

See Updating Labels on Nodes for details on assigning labels.

As a cluster administrator, you can create an infrastructure where application developers should be
deploying pods only onto the nodes closest to their geographical location. You can create a node
selector, grouping the U.S. data centers into superregion: us and the APAC data centers into
superregion: apac.

CHAPTER 17. SCHEDULER

93

To maintain an even loading of resources per data center, you can add the desired region to the
nodeSelectorLabelBlacklist section of a master configuration. Then, whenever a developer
located in the U.S. creates a pod, it is deployed onto a node in one of the regions with the
superregion: us label. If the developer tries to target a specific region for their pod (for example,
region: us-east), they will receive an error. If they try again, without the node selector on their pod, it
can still be deployed onto the region they tried to target, because superregion: us is set as the
project-level node selector, and nodes labeled region: us-east are also labeled superregion:
us.

17.9.1. Constraining Pod Placement Using Node Name

Ensure a pod is deployed onto only a specified node host by assigning it a label and specifying this in the
nodeName setting in a pod configuration.

1. Ensure you have the desired labels and node selector set up in your environment.
For example, make sure that your pod configuration features the nodeName value indicating the
desired label:

apiVersion: v1
kind: Pod
spec:
 nodeName: <key: value>

2. Modify the master configuration file, /etc/origin/master/master-config.yaml, to add
nodeSelectorLabelBlacklist to the admissionConfig section:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
...

3. Restart OpenShift Container Platform for the changes to take effect.

systemctl restart atomic-openshift-master

17.9.2. Constraining Pod Placement Using a Node Selector

Using nodeSelector in a pod configuration, you can ensure that pods are only placed onto nodes with
specific labels.

1. Ensure you have the desired labels (see Updating Labels on Nodes for details) and node
selector set up in your environment.
For example, make sure that your pod configuration features the nodeSelector value
indicating the desired label:

apiVersion: v1
kind: Pod
spec:

OpenShift Container Platform 3.3 Cluster Administration

94

 nodeSelector:
 <key>: <value>
...

2. Modify the master configuration file, /etc/origin/master/master-config.yaml, to add
nodeSelectorLabelBlacklist to the admissionConfig section with the labels that are
assigned to the node hosts you want to deny pod placement:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
 nodeSelectorLabelBlacklist:
 - kubernetes.io/hostname
 - <label>
...

3. Restart OpenShift Container Platform for the changes to take effect.

systemctl restart atomic-openshift-master

CHAPTER 17. SCHEDULER

95

CHAPTER 18. ALLOCATING NODE RESOURCES

18.1. OVERVIEW

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by all underlying node components (e.g., kubelet, kube-proxy,
Docker) and the remaining system components (e.g., sshd, NetworkManager) on the host. Once
specified, the scheduler has more information about the resources (e.g., memory, CPU) a node has
allocated for pods.

18.2. CONFIGURING NODES FOR ALLOCATED RESOURCES

Resources reserved for node components are based on two node settings:

Setting Description

kube-reserved Resources reserved for node components. Default is none.

system-reserved Resources reserved for the remaining system components. Default is
none.

You can set these in the kubeletArguments section of the node configuration file (the
/etc/origin/node/node-config.yaml file by default) using a set of <resource_type>=
<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi). Add the section if it does not already
exist:

Example 18.1. Node Allocatable Resources Settings

Currently, the cpu and memory resource types are supported. For cpu, the resource quantity is
specified in units of cores (e.g., 200m, 0.5, 1). For memory, it is specified in units of bytes (e.g., 200Ki,
50Mi, 5Gi).

See Compute Resources for more details.

If a flag is not set, it defaults to 0. If none of the flags are set, the allocated resource is set to the node’s
capacity as it was before the introduction of allocatable resources.

18.3. COMPUTING ALLOCATED RESOURCES

An allocated amount of a resource is computed based on the following formula:

[Allocatable] = [Node Capacity] - [kube-reserved] - [system-reserved]

kubeletArguments:
 kube-reserved:
 - "cpu=200m,memory=512Mi"
 system-reserved:
 - "cpu=200m,memory=512Mi"

OpenShift Container Platform 3.3 Cluster Administration

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#node-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-compute-resources

If [Allocatable] is negative, it is set to 0.

18.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY

To see a node’s current capacity and allocatable resources, you can run:

$ oc get node/<node_name> -o yaml
...
status:
...
 allocatable:
 cpu: "4"
 memory: 8010948Ki
 pods: "110"
 capacity:
 cpu: "4"
 memory: 8010948Ki
 pods: "110"
...

18.5. SYSTEM RESOURCES REPORTED BY NODE

Starting with OpenShift Container Platform 3.3, each node reports system resources utilized by the
container runtime and kubelet. To better aid your ability to configure --system-reserved and --
kube-reserved, you can introspect corresponding node’s resource usage using the node summary
API, which is accessible at <master>/api/v1/nodes/<node>/proxy/stats/summary.

For instance, to access the resources from cluster.node22 node, you can run:

$ curl <certificate details>
https://<master>/api/v1/nodes/cluster.node22/proxy/stats/summary
{
 "node": {
 "nodeName": "cluster.node22",
 "systemContainers": [
 {
 "cpu": {
 "usageCoreNanoSeconds": 929684480915,
 "usageNanoCores": 190998084
 },
 "memory": {
 "rssBytes": 176726016,
 "usageBytes": 1397895168,
 "workingSetBytes": 1050509312
 },
 "name": "kubelet"
 },
 {
 "cpu": {
 "usageCoreNanoSeconds": 128521955903,
 "usageNanoCores": 5928600
 },
 "memory": {
 "rssBytes": 35958784,

CHAPTER 18. ALLOCATING NODE RESOURCES

97

1

2

3

 "usageBytes": 129671168,
 "workingSetBytes": 102416384
 },
 "name": "runtime"
 }
]
 }
}

See REST API Overview for more details about certificate details.

18.6. NODE ENFORCEMENT

The node is able to limit the total amount of resources that pods may consume based on the configured
allocatable value. This feature significantly improves the reliability of the node by preventing pods from
starving system services (for example: container runtime, node agent, etc.) for resources. It is strongly
encouraged that administrators reserve resources based on the desired node utilization target in order to
improve node reliability.

The node enforces resource constraints using a new cgroup hierarchy that enforces quality of service. All
pods are launched in a dedicated cgroup hierarchy separate from system daemons.

To configure this ability, the following kubelet arguments are provided.

Example 18.2. Node Cgroup Settings

Enable or disable the new cgroup hierarchy managed by the node. Any change of this setting
requires a full drain of the node. This flag must be true to allow the node to enforce node
allocatable. We do not recommend users change this value.

The cgroup driver used by the node when managing cgroup hierarchies. This value must match
the driver associated with the container runtime. Valid values are systemd and cgroupfs. The
default is systemd.

A comma-delimited list of scopes for where the node should enforce node resource constraints.
Valid values are pods, system-reserved, and kube-reserved. The default is pods. We do
not recommend users change this value.

Optionally, the node can be made to enforce kube-reserved and system-reserved by specifying those
tokens in the enforce-node-allocatable flag. If specified, the corresponding --kube-reserved-cgroup
or --system-reserved-cgroup needs to be provided. In future releases, the node and container
runtime will be packaged in a common cgroup separate from system.slice. Until that time, we do not
recommend users change the default value of enforce-node-allocatable flag.

kubeletArguments:
 cgroups-per-qos:

 - "true" 1
 cgroup-driver:

 - "systemd" 2
 enforce-node-allocatable:

 - "pods" 3

OpenShift Container Platform 3.3 Cluster Administration

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/rest_api_reference/#rest-api-index

Administrators should treat system daemons similar to Guaranteed pods. System daemons can burst
within their bounding control groups and this behavior needs to be managed as part of cluster
deployments. Enforcing system-reserved limits can lead to critical system services being CPU starved or
OOM killed on the node. The recommendation is to enforce system-reserved only if operators have
profiled their nodes exhaustively to determine precise estimates and are confident in their ability to
recover if any process in that group is OOM killed.

As a result, we strongly recommended that users only enforce node allocatable for pods by default, and
set aside appropriate reservations for system daemons to maintain overall node reliability.

18.7. EVICTION THRESHOLDS

If a node is under memory pressure, it can impact the entire node and all pods running on it. If a system
daemon is using more than its reserved amount of memory, an OOM event may occur that can impact
the entire node and all pods running on it. To avoid (or reduce the probability of) system OOMs the node
provides Out Of Resource Handling.

By reserving some memory via the --eviction-hard flag, the node attempts to evict pods whenever
memory availability on the node drops below the absolute value or percentage. If system daemons did
not exist on a node, pods are limited to the memory capacity - eviction-hard. For this reason,
resources set aside as a buffer for eviction before reaching out of memory conditions are not available for
pods.

Here is an example to illustrate the impact of node allocatable for memory:

Node capacity is 32Gi

--kube-reserved is 2Gi

--system-reserved is 1Gi

--eviction-hard is set to <100Mi.

For this node, the effective node allocatable value is 28.9Gi. If the node and system components use
up all their reservation, the memory available for pods is 28.9Gi, and kubelet will evict pods when it
exceeds this usage.

If we enforce node allocatable (28.9Gi) via top level cgroups, then pods can never exceed 28.9Gi.
Evictions would not be performed unless system daemons are consuming more than 3.1Gi of memory.

If system daemons do not use up all their reservation, with the above example, pods would face memcg
OOM kills from their bounding cgroup before node evictions kick in. To better enforce QoS under this
situation, the node applies the hard eviction thresholds to the top-level cgroup for all pods to be Node
Allocatable + Eviction Hard Thresholds.

If system daemons do not use up all their reservation, the node will evict pods whenever they consume
more than 28.9Gi of memory. If eviction does not occur in time, a pod will be OOM killed if pods
consume 29Gi of memory.

18.8. SCHEDULER

The scheduler now uses the value of node.Status.Allocatable instead of
node.Status.Capacity to decide if a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

CHAPTER 18. ALLOCATING NODE RESOURCES

99

CHAPTER 19. OVERCOMMITTING

19.1. OVERVIEW

Containers can specify compute resource requests and limits. Requests are used for scheduling your
container and provide a minimum service guarantee. Limits constrain the amount of compute resource
that may be consumed on your node.

The scheduler attempts to optimize the compute resource use across all nodes in your cluster. It places
pods onto specific nodes, taking the pods' compute resource requests and nodes' available capacity into
consideration.

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node, which may be desirable in development environments where a tradeoff of guaranteed
performance for capacity is acceptable.

19.2. REQUESTS AND LIMITS

For each compute resource, a container may specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no request
or limit, the container is scheduled to a node with no resource guarantees. In practice, the container is
able to consume as much of the specified resource as is available with the lowest local priority. In low
resource situations, containers that specify no resource requests are given the lowest quality of service.

19.3. COMPUTE RESOURCES

The node-enforced behavior for compute resources is specific to the resource type.

19.3.1. CPU

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1
ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit.

CPU requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are
enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this
can be disabled.

19.3.2. Memory

A container is guaranteed the amount of memory it requests. A container may use more memory than
requested, but once it exceeds its requested amount, it could be killed in a low memory situation on the
node.

OpenShift Container Platform 3.3 Cluster Administration

100

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#dev-guide-compute-resources

If a container uses less memory than requested, it will not be killed unless system tasks or daemons
need more memory than was accounted for in the node’s resource reservation. If a container specifies a
limit on memory, it is immediately killed if it exceeds the limit amount.

19.4. QUALITY OF SERVICE CLASSES

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

In an overcommitted environment, it is possible that the pods on the node will attempt to use more
compute resource than is available at any given point in time. When this occurs, the node must give
priority to one pod over another. The facility used to make this decision is referred to as a Quality of
Service (QoS) Class.

For each compute resource, a container is divided into one of three QoS classes with decreasing order
of priority:

Table 19.1. Quality of Service Classes

Priority Class
Name

Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the container is classified as Guaranteed.

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the container is classified as Burstable.

3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the container is
classified as BestEffort.

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are killed first:

Guaranteed containers are considered top priority, and are guaranteed to only be killed if they
exceed their limits, or if the system is under memory pressure and there are no lower priority
containers that can be evicted.

Burstable containers under system memory pressure are more likely to be killed once they
exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are first
to be killed if the system runs out of memory.

19.5. CONFIGURING MASTERS FOR OVERCOMMITMENT

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between request and limit determines the
level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of
2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it
is 200% overcommitted.

If OpenShift Container Platform administrators would like to control the level of overcommit and manage

CHAPTER 19. OVERCOMMITTING

101

1

2

3

4

container density on nodes, masters can be configured to override the ratio between request and limit
set on developer containers. In conjunction with a per-project LimitRange specifying limits and defaults,
this adjusts the container limit and request to achieve the desired level of overcommit.

This requires configuring the ClusterResourceOverride admission controller in the master-
config.yaml as in the following example (reuse the existing configuration tree if it exists, or introduce
absent elements as needed):

 admissionConfig:
 pluginConfig:

 ClusterResourceOverride: 1
 configuration:
 apiVersion: v1
 kind: ClusterResourceOverrideConfig

 memoryRequestToLimitPercent: 25 2

 cpuRequestToLimitPercent: 25 3

 limitCPUToMemoryPercent: 200 4

This is the plug-in name; case matters and anything but an exact match for a plug-in name is
ignored.

(optional, 1-100) If a container memory limit has been specified or defaulted, the memory request is
overridden to this percentage of the limit.

(optional, 1-100) If a container CPU limit has been specified or defaulted, the CPU request is
overridden to this percentage of the limit.

(optional, positive integer) If a container memory limit has been specified or defaulted, the CPU limit
is overridden to a percentage of the memory limit, with a 100 percentage scaling 1Gi of RAM to
equal 1 CPU core. This is processed prior to overriding CPU request (if configured).

After changing the master configuration, a master restart is required.

Note that these overrides have no effect if no limits have been set on containers. Create a LimitRange
object with default limits (per individual project, or in the project template) in order to ensure that the
overrides apply.

Note also that after overrides, the container limits and requests must still be validated by any LimitRange
objects in the project. It is possible, for example, for developers to specify a limit close to the minimum
limit, and have the request then be overridden below the minimum limit, causing the pod to be forbidden.
This unfortunate user experience should be addressed with future work, but for now, configure this
capability and LimitRanges with caution.

When configured, overrides can be disabled per-project (for example, to allow infrastructure components
to be configured independently of overrides) by editing the project and adding the following annotation:

quota.openshift.io/cluster-resource-override-enabled: "false"

19.6. CONFIGURING NODES FOR OVERCOMMITMENT

In an overcommitted environment, it is important to properly configure your node to provide best system
behavior.

OpenShift Container Platform 3.3 Cluster Administration

102

19.6.1. Enforcing CPU Limits

Nodes by default enforce specified CPU limits using the CPU CFS quota support in the Linux kernel. If
you do not want to enforce CPU limits on the node, you can disable its enforcement by modifying the
node configuration file (the node-config.yaml file) to include the following:

kubeletArguments:
 cpu-cfs-quota:
 - "false"

If CPU limit enforcement is disabled, it is important to understand the impact that will have on your node:

If a container makes a request for CPU, it will continue to be enforced by CFS shares in the
Linux kernel.

If a container makes no explicit request for CPU, but it does specify a limit, the request will
default to the specified limit, and be enforced by CFS shares in the Linux kernel.

If a container specifies both a request and a limit for CPU, the request will be enforced by CFS
shares in the Linux kernel, and the limit will have no impact on the node.

19.6.2. Reserving Resources for System Processes

The scheduler ensures that there are enough resources for all pods on a node based on the pod
requests. It verifies that the sum of requests of containers on the node is no greater than the node
capacity. It includes all containers started by the node, but not containers or processes started outside
the knowledge of the cluster.

It is recommended that you reserve some portion of the node capacity to allow for the system daemons
that are required to run on your node for your cluster to function (sshd, docker, etc.). In particular, it is
recommended that you reserve resources for incompressible resources such as memory.

If you want to explicitly reserve resources for non-pod processes, there are two ways to do so:

The preferred method is to allocate node resources by specifying resources available for
scheduling. See Allocating Node Resources for more details.

Alternatively, you can create a resource-reserver pod that does nothing but reserve capacity
from being scheduled on the node by the cluster. For example:

Example 19.1. resource-reserver Pod Definition

apiVersion: v1
kind: Pod
metadata:
 name: resource-reserver
spec:
 containers:
 - name: sleep-forever
 image: gcr.io/google_containers/pause:0.8.0
 resources:
 limits:

 cpu: 100m 1

 memory: 150Mi 2

CHAPTER 19. OVERCOMMITTING

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-master-node-configuration

1

2

1

The amount of CPU to reserve on a node for host-level daemons unknown to the
cluster.

The amount of memory to reserve on a node for host-level daemons unknown to the
cluster.

You can save your definition to a file, for example resource-reserver.yaml, then place the file in
the node configuration directory, for example /etc/origin/node/ or the --config=<dir>
location if otherwise specified.

Additionally, the node server needs to be configured to read the definition from the node
configuration directory, by naming the directory in the kubeletArguments.config field of the
node configuration file (usually named node-config.yaml):

kubeletArguments:
 config:

 - "/etc/origin/node" 1

If --config=<dir> is specified, use <dir> here.

With the resource-reserver.yaml file in place, starting the node server also launches the sleep-
forever container. The scheduler takes into account the remaining capacity of the node,
adjusting where to place cluster pods accordingly.

To remove the resource-reserver pod, you can delete or move the resource-reserver.yaml file
from the node configuration directory.

19.6.3. Kernel Tunable Flags

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, the node instructs the kernel to always overcommit memory:

$ sysctl -w vm.overcommit_memory=1

The node also instructs the kernel not to panic when it runs out of memory. Instead, the kernel OOM killer
should kill processes based on priority:

$ sysctl -w vm.panic_on_oom=0

NOTE

The above flags should already be set on nodes, and no further action is required.

19.6.4. Disabling Swap Memory

You can disable swap by default on your nodes in order to preserve quality of service guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

OpenShift Container Platform 3.3 Cluster Administration

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-master-node-configuration

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

To disable swap:

$ swapoff -a

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure,
resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

IMPORTANT

If swap is enabled, any out of resource handling eviction thresholds for available memory
will not work as expected. Take advantage of out of resource handling to allow pods to be
evicted from a node when it is under memory pressure, and rescheduled on an alternative
node that has no such pressure.

CHAPTER 19. OVERCOMMITTING

105

CHAPTER 20. ASSIGNING UNIQUE EXTERNAL IPS FOR
INGRESS TRAFFIC

20.1. OVERVIEW

NOTE

This feature is only supported in non-cloud deployments. For cloud (GCE, AWS, and
OpenStack) deployments, load Balancer services can be used to automatically deploy a
cloud load balancer to target the service’s endpoints.

Cluster administrators can assign a unique external IP address to a service. If routed correctly, external
traffic can reach that service’s endpoints via any TCP/UDP port the service exposes. This can be simpler
than having to manage the port space of a limited number of shared IP addresses when manually
assigning external IPs to services.

There is support for both automatic and manual assignment of IP addresses, and each address is
guaranteed to be assigned to a maximum of one service. This ensures that each service can simply
expose its chosen ports regardless of the ports exposed by other services.

20.2. RESTRICTIONS

To use an ExternalIP, you can:

Select an IP address from the ExternalIPNetworkCIDRs range.

Have an IP address assigned from a pool. In this case, OpenShift Container Platform
implements a non-cloud version of the LoadBalancer service type and assigns IP addresses to
the services.

CAUTION

You must ensure that the IP address pool you assign terminates at one or more nodes in your
cluster. You can use the existing oadm ipfailover to ensure that the external IPs are highly
available.

For manually-configured external IPs, potential port clashes are handled on a first-come, first-served
basis. If you request a port, it is only available if it has not yet been assigned for that IP address. For
example:

Example 20.1. Port clash example for manually-configured external IPs

Two services have been manually configured with the same external IP address of 172.7.7.7.

MongoDB service A requests port 27017, and then MongoDB service B requests the same
port; the first request gets the port.

However, port clashes are not an issue for external IPs assigned by the ingress controller, because the
controller assigns each service a unique address.

OpenShift Container Platform 3.3 Cluster Administration

106

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#using-the-loadbalancer

NOTE

Ingress IPs can only be assigned if the cluster is not running in the cloud. In cloud
environments, LoadBalancer-type services configure cloud-specific load balancers.

20.3. CONFIGURING THE CLUSTER TO USE UNIQUE EXTERNAL IPS

In non-cloud clusters, ingressIPNetworkCIDR is set by default to 172.29.0.0/16. If your cluster
environment is not already using this private range, you can use the default. However, if you want to use
a different range, then you must set ingressIPNetworkCIDR in the /etc/origin/master/master-
config.yaml file before you assign an ingress IP. Then, restart the master service.

CAUTION

External IPs assigned to services of type LoadBalancer will always be in the range of
ingressIPNetworkCIDR. If ingressIPNetworkCIDR is changed such that the assigned external IPs
are no longer in range, the affected services will be assigned new external IPs compatible with the new
range.

Example 20.2. Sample /etc/origin/master/master-config.yaml

networkConfig:
 ingressIPNetworkCIDR: 172.29.0.0/16

20.4. CONFIGURING AN INGRESS IP FOR A SERVICE

To assign an ingress IP:

1. Create a YAML file for a LoadBalancer service that requests a specific IP via the
loadBalancerIP setting:

Example 20.3. Sample LoadBalancer Configuration

apiVersion: v1
kind: Service
metadata:
 name: egress-1
spec:
 ports:
 - name: db
 port: 3306
 loadBalancerIP: 172.29.0.1
 type: LoadBalancer
 selector:
 name: my-db-selector

2. Create a LoadBalancer service on your pod:

$ oc create -f loadbalancer.yaml

CHAPTER 20. ASSIGNING UNIQUE EXTERNAL IPS FOR INGRESS TRAFFIC

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#master-node-config-network-config

3. Check the service for an external IP. For example, for a service named myservice:

$ oc get svc myservice

When your LoadBalancer-type service has an external IP assigned, the output displays the IP:

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
myservice 172.30.74.106 172.29.0.1 3306/TCP 30s

20.5. ROUTING THE INGRESS CIDR FOR DEVELOPMENT OR TESTING

Add a static route directing traffic for the ingress CIDR to a node in the cluster. For example:

route add -net 172.29.0.0/16 gw 10.66.140.17 eth0

In the example above, 172.29.0.0/16 is the ingressIPNetworkCIDR, and 10.66.140.17 is the
node IP.

OpenShift Container Platform 3.3 Cluster Administration

108

CHAPTER 21. HANDLING OUT OF RESOURCE ERRORS

21.1. OVERVIEW

The node must preserve node stability when available compute resources are low. This is especially
important when dealing with incompressible resources such as memory or disk. If either resource is
exhausted, the node becomes unstable.

WARNING

Failure to disable swap memory makes the node not recognize it is under
MemoryPressure.

To take advantage of memory based evictions, operators must disable swap.

21.2. EVICTION POLICY

Using eviction policies, a node can proactively monitor for and prevent against total starvation of a
compute resource.

In cases where a node is running low on available resources, it can proactively fail one or more pods in
order to reclaim the starved resource using an eviction policy. When the node fails a pod, it terminates all
containers in the pod, and the PodPhase is transitioned to Failed.

Platform administrators can configure eviction settings within the node-config.yaml file.

21.2.1. Eviction Signals

The node can be configured to trigger eviction decisions on the signals described in the table below. The
value of each signal is described in the description column based on the node summary API.

To view the signals:

curl <certificate details> \
 https://<master>/api/v1/nodes/<node>/proxy/stats/summary

Table 21.1. Supported Eviction Signals

Eviction
Signal

Description

memory.ava
ilable

memory.available = node.status.capacity[memory] -
node.stats.memory.workingSet

CHAPTER 21. HANDLING OUT OF RESOURCE ERRORS

109

NOTE

In future releases, the node will support the ability to trigger eviction decisions based on
disk pressure. Until then, use container and image garbage collection.

21.2.2. Eviction Thresholds

You can configure a node to specify eviction thresholds, which trigger the node to reclaim resources.

Eviction thresholds can be soft, for when you allow a grace period before reclaiming resources, and
hard, for when the node takes immediate action when a threshold is met.

Thresholds are configured in the following form:

<eviction_signal><operator><quantity>

Valid eviction-signal tokens as defined by eviction signals.

Valid operator tokens are <.

Valid quantity tokens must match the quantity representation used by Kubernetes.

For example, using the memory.available signal, in order to construct a threshold for when the
memory available drops below 500Mi, the form would be:

memory.available<500Mi

21.2.2.1. Soft Eviction Thresholds

A soft eviction threshold pairs an eviction threshold with a required administrator-specified grace period.
The node does not reclaim resources associated with the eviction signal until that grace period is
exceeded. If no grace period is provided, the node errors on startup.

In addition, if a soft eviction threshold is met, an operator can specify a maximum allowed pod
termination grace period to use when evicting pods from the node. If specified, the node uses the lesser
value among the pod.Spec.TerminationGracePeriodSeconds and the maximum-allowed grace
period. If not specified, the node kills pods immediately with no graceful termination.

To configure soft eviction thresholds, the following flags are supported:

eviction-soft: a set of eviction thresholds (for example, memory.available<1.5Gi) that,
if met over a corresponding grace period, triggers a pod eviction.

eviction-soft-grace-period: a set of eviction grace periods (for example,
memory.available=1m30s) that correspond to how long a soft eviction threshold must hold
before triggering a pod eviction.

eviction-max-pod-grace-period: the maximum-allowed grace period (in seconds) to use
when terminating pods in response to a soft eviction threshold being met.

21.2.2.2. Hard Eviction Thresholds

OpenShift Container Platform 3.3 Cluster Administration

110

https://github.com/kubernetes/kubernetes/blob/master/docs/design/resources.md#resource-quantities

A hard eviction threshold has no grace period and, if observed, the node takes immediate action to
reclaim the associated starved resource. If a hard eviction threshold is met, the node kills the pod
immediately with no graceful termination.

To configure hard eviction thresholds, the following flag is supported:

eviction-hard: a set of eviction thresholds (for example, memory.available<1Gi) that, if
met, triggers a pod eviction.

21.2.3. Oscillation of Node Conditions

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node condition oscillates between true and false, which can confuse the
scheduler.

To protect this, set the following flag to control how long the node must wait before transitioning out of a
pressure condition:

eviction-pressure-transition-period: the duration that the node has to wait before
transitioning out of an eviction pressure condition.

Before toggling the condition back to false, the node ensures that it has not observed a met eviction
threshold for the specified pressure condition for the period specified.

21.2.4. Eviction Monitoring Interval

The node evaluates and monitors eviction thresholds every 10 seconds and the value can not be
modified. This is the housekeeping interval.

21.2.5. Mapping Eviction Signals to Node Conditions

The node can map one or more eviction signals to a corresponding node condition.

If an eviction threshold is met, independent of its associated grace period, the node reports a condition
indicating that the node is under pressure.

The following node conditions are defined that correspond to the specified eviction signal.

Table 21.2. Node Conditions Related to Low Resources

Node
Condition

Eviction
Signal

Description

MemoryPres
sure

memory.ava
ilable

Available memory on the node has satisfied an eviction threshold.

When the above is set the node continues to report node status updates at the frequency specified by the
node-status-update-frequency argument, which defaults to 10s.

21.2.6. Eviction of Pods

If an eviction threshold is met and the grace period is passed, the node initiates the process of evicting
pods until it observes the signal going below its defined threshold.

CHAPTER 21. HANDLING OUT OF RESOURCE ERRORS

111

The node ranks pods for eviction by their quality of service, and, among those with the same quality of
service, by the consumption of the starved compute resource relative to the pod’s scheduling request.

BestEffort: pods that consume the most of the starved resource are failed first.

Burstable: pods that consume the most of the starved resource relative to their request for that
resource are failed first. If no pod has exceeded its request, the strategy targets the largest
consumer of the starved resource.

Guaranteed: pods that consume the most of the starved resource relative to their request are
failed first. If no pod has exceeded its request, the strategy targets the largest consumer of the
starved resource.

A Guaranteed pod will never be evicted because of another pod’s resource consumption unless a
system daemon (node, docker, journald, etc) is consuming more resources than were reserved via
system-reserved, or kube-reserved allocations or if the node has only Guaranteed pods remaining.

If the latter, the node evicts a Guaranteed pod that least impacts node stability and limits the impact of
the unexpected consumption to other Guaranteed pods.

21.2.7. Scheduler

The scheduler views node conditions when placing additional pods on the node. For example, if the
node has an eviction threshold like the following:

eviction-hard is "memory.available<500Mi"

and available memory falls below 500Mi, the node reports a value in Node.Status.Conditions as
MemoryPressure as true.

Table 21.3. Node Conditions and Scheduler Behavior

Node Condition Scheduler Behavior

MemoryPressure BestEffort pods are not scheduled to the node.

This means that if the scheduler sees the node reporting MemoryPressure it will not place
BestEffort pods on that node.

21.2.8. Example Scenario

Consider the following scenario:

Node memory capacity of 10Gi.

The operator wants to reserve 10% of memory capacity for system daemons (kernel, node,
etc.).

The operator wants to evict pods at 95% memory utilization to reduce thrashing and incidence of
system OOM.

A node reports two values:

OpenShift Container Platform 3.3 Cluster Administration

112

1

Capacity: How much resource is on the machine

Allocatable: How much resource is made available for scheduling.

The goal is to allow the scheduler to fully allocate a node and to not have evictions occur.

Evictions should only occur if pods use more than their requested amount of resource.

To facilitate this scenario, the node configuration file (the node-config.yaml file) is modified as follows:

kubeletArguments:

 eviction-hard: 1
 - "memory.available<500Mi"
 system-reserved:
 - "memory=1.5Gi"

This threshold can either be eviction-hard or eviction-soft.

NOTE

Soft eviction usage is more common when you are targeting a certain level of utilization,
but can tolerate temporary spikes. It is recommended that the soft eviction threshold is
always less than the hard eviction threshold, but the time period is operator specific. The
system reservation should also cover the soft eviction threshold.

Implicit in this configuration is the understanding that system-reserved should include the amount of
memory covered by the eviction threshold.

To reach that capacity, either some pod is using more than its request, or the system is using more than
1Gi.

If a node has 10 Gi of capacity, and you want to reserve 10% of that capacity for the system daemons, do
the following:

capacity = 10 Gi
system-reserved = 10 Gi * .1 = 1 Gi

The node allocatable value in this setting becomes:

allocatable = capacity - system-reserved = 9 Gi

This means by default, the scheduler will schedule pods that request 9 Gi of memory to that node.

If you want to turn on eviction so that eviction is triggered when the node observes that available memory
falls below 10% of capacity for 30 seconds, or immediately when it falls below 5% of capacity, you need
the scheduler to see allocatable as 8Gi. Therefore, ensure your system reservation covers the greater of
your eviction thresholds.

capacity = 10 Gi
eviction-threshold = 10 Gi * .1 = 1 Gi
system-reserved = (10Gi * .1) + eviction-threshold = 2 Gi
allocatable = capacity - system-reserved = 8 Gi

CHAPTER 21. HANDLING OUT OF RESOURCE ERRORS

113

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-master-node-configuration

You must set system-reserved equal to the amount of resource you want to reserve for system-
daemons, plus the amount of resource you want to reserve before triggering evictions.

This configuration ensures that the scheduler does not place pods on a node that immediately induce
memory pressure and trigger eviction assuming those pods use less than their configured request.

21.3. OUT OF RESOURCE AND OUT OF MEMORY

If the node experiences a system out of memory (OOM) event before it is able to reclaim memory, the
node depends on the OOM killer to respond.

The node sets a oom_score_adj value for each container based on the quality of service for the pod.

Table 21.4. Quality of Service OOM Scores

Quality of Service oom_score_adj Value

Guaranteed -998

BestEffort 1000

Burstable min(max(2, 1000 - (1000 * memoryRequestBytes) /
machineMemoryCapacityBytes), 999)

If the node is unable to reclaim memory prior to experiencing a system OOM event, the oom_killer
calculates an oom_score:

% of node memory a container is using + `oom_score_adj` = `oom_score`

The node then kills the container with the highest score.

Containers with the lowest quality of service that are consuming the largest amount of memory relative to
the scheduling request are failed first.

Unlike pod eviction, if a pod container is OOM failed, it can be restarted by the node based on its
RestartPolicy.

21.4. RECOMMENDED PRACTICES

21.4.1. DaemonSets and Out of Resource Handling

If a node evicts a pod that was created by a DaemonSet, the pod will immediately be recreated and
rescheduled back to the same node, because the node has no ability to distinguish a pod created from a
DaemonSet versus any other object.

In general, DaemonSets should not create BestEffort pods to avoid being identified as a candidate
pod for eviction. Instead DaemonSets should ideally launch Guaranteed pods.

OpenShift Container Platform 3.3 Cluster Administration

114

CHAPTER 22. MONITORING ROUTERS

22.1. OVERVIEW

Depending on the underlying implementation, you can monitor a running router in multiple ways. This
topic discusses the HAProxy template router and the components to check to ensure its health.

22.2. VIEWING STATISTICS

The HAProxy router exposes a web listener for the HAProxy statistics. Enter the router’s public IP
address and the correctly configured port (1936 by default) to view the statistics page, and enter the
administrator password when prompted. This password and port are configured during the router
installation, but they can be found by viewing the haproxy.config file on the container.

22.3. DISABLING STATISTICS VIEW

By default the HAProxy statistics are exposed on port 1936 (with a password protected account). To
disable exposing the HAProxy statistics, specify 0 as the stats port number.

$ oadm router hap --service-account=router --stats-port=0

Note: HAProxy will still collect and store statistics, it would just not expose them via a web listener. You
can still get access to the statistics by sending a request to the HAProxy AF_UNIX socket inside the
HAProxy Router container.

$ cmd="echo 'show stat' | socat - UNIX-
CONNECT:/var/lib/haproxy/run/haproxy.sock"
$ routerPod=$(oc get pods --selector="router=router" \
 --template="{{with index .items 0}}{{.metadata.name}}{{end}}")
$ oc exec $routerPod -- bash -c "$cmd"

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers. Instead, you can SSH into a node host, then use the docker exec
command on the desired container.

22.4. VIEWING LOGS

To view a router log, run the oc logs command on the pod. Since the router is running as a plug-in
process that manages the underlying implementation, the log is for the plug-in, not the actual HAProxy
log.

To view the logs generated by HAProxy, start a syslog server and pass the location to a router pod using
the following environment variables.

Table 22.1. Router Syslog Variables

CHAPTER 22. MONITORING ROUTERS

115

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/errata/RHSA-2015:1650

Environment Variable Description

ROUTER_SYSLOG_ADDR
ESS

The IP address of the syslog server. Port 514 is the default if no port is
specified.

ROUTER_LOG_LEVEL Optional. Set to change the HAProxy log level. If not set, the default log level is
warning. This can be changed to any log level that HAProxy supports.

To set a running router pod to send messages to a syslog server:

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=<dest_ip:dest_port>
ROUTER_LOG_LEVEL=<level>

For example, the following sets HAProxy to send logs to 127.0.0.1 with the default port 514 and changes
the log level to debug.

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=127.0.0.1
ROUTER_LOG_LEVEL=debug

22.5. VIEWING THE ROUTER INTERNALS

routes.json

Routes are processed by the HAProxy router, and are stored both in memory, on disk, and in the
HAProxy configuration file. The internal route representation, which is passed to the template to generate
the HAProxy configuration file, is found in the /var/lib/haproxy/router/routes.json file. When
troubleshooting a routing issue, view this file to see the data being used to drive configuration.

HAProxy configuration

You can find the HAProxy configuration and the backends that have been created for specific routes in
the /var/lib/haproxy/conf/haproxy.config file. The mapping files are found in the same directory. The
helper frontend and backends use mapping files when mapping incoming requests to a backend.

Certificates

Certificates are stored in two places:

Certificates for edge terminated and re-encrypt terminated routes are stored in the
/var/lib/haproxy/router/certs directory.

Certificates that are used for connecting to backends for re-encrypt terminated routes are stored
in the /var/lib/haproxy/router/cacerts directory.

The files are keyed by the namespace and name of the route. The key, certificate, and CA certificate are
concatenated into a single file. You can use OpenSSL to view the contents of these files.

OpenShift Container Platform 3.3 Cluster Administration

116

https://www.openssl.org/

CHAPTER 23. HIGH AVAILABILITY

23.1. OVERVIEW

This topic describes how to set up highly-available services on your OpenShift Container Platform
cluster.

The Kubernetes replication controller ensures that the deployment requirements, in particular the number
of replicas, are satisfied when the appropriate resources are available. When run with two or more
replicas, the router can be resilient to failures, providing a highly-available service. Depending on how the
router instances are discovered (via a service, DNS entry, or IP addresses), this could impose
operational requirements to handle failure cases when one or more router instances are "unreachable".

For some IP-based traffic services, virtual IP addresses (VIPs) should always be serviced for as long as
a single instance is available. This simplifies the operational overhead and handles failure cases
gracefully.

IMPORTANT

Setting up a nodePort is a privileged operation.

IMPORTANT

Even though a service VIP is highly available, performance can still be affected.
keepalived makes sure that each of the VIPs is serviced by some node in the
configuration, and several VIPs may end up on the same node even when other nodes
have none. Strategies that externally load balance across a set of VIPs may be thwarted
when ipfailover puts multiple VIPs on the same node.

Use cases for high-availability include:

I want my cluster to be assigned a resource set and I want the cluster to automatically manage
those resources.

I want my cluster to be assigned a set of VIPs that the cluster manages and migrates (with zero
or minimal downtime) on failure conditions, and I should not be required to perform any manual
interactions to update the upstream "discovery" sources (e.g., DNS). The cluster should service
all the assigned VIPs when at least a single node is available, despite the current available
resources not being sufficient to reach the desired state.

You can configure a highly-available router or network setup by running multiple instances of the pod
and fronting them with a balancing tier. This can be something as simple as DNS round robin, or as
complex as multiple load-balancing layers.

23.2. CONFIGURING IP FAILOVER

Using IP failover involves switching IP addresses to a redundant or stand-by set of nodes on failure
conditions.

CHAPTER 23. HIGH AVAILABILITY

117

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#routers

IMPORTANT

At this time of writing, ipfailover is not compatible with cloud infrastructures. In the case of
AWS, an Elastic Load Balancer (ELB) can be used to make OpenShift Container Platform
highly available, using the AWS console.

The oadm ipfailover command helps set up the VIP failover configuration. As an administrator, you
can configure IP failover on an entire cluster, or on a subset of nodes, as defined by the labeled selector.
If you are running in production, match the labeled selector with at least two nodes to ensure you have
failover protection and provide a --replicas=<n> value that matches the number of nodes for the
given labeled selector:

$ oadm ipfailover [<Ip_failover_config_name>] <options> --replicas=<n>

The oadm ipfailover command ensures that a failover pod runs on each of the nodes matching the
constraints or label used. This pod uses VRRP (Virtual Router Redundancy Protocol) with Keepalived to
ensure that the service on the watched port is available, and, if needed, Keepalived will automatically
float the VIPs if the service is not available.

23.2.1. Virtual IP Addresses

Keepalived manages a set of virtual IP addresses. The administrator must make sure that all these
addresses:

Are accessible on the configured hosts from outside the cluster.

Are not used for any other purpose within the cluster.

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node will serve the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

Option Variable Name Notes

--
virtual
-ips

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. (For example, 1.2.3.4-6,1.2.3.9.)

23.2.2. Configuring a Highly-available Routing Service

The following steps describe how to set up a highly-available router environment with IP failover:

1. Label the nodes for the service. This step can be optional if you run the service on any of the
nodes in your Kubernetes cluster and use VIPs that can float within those nodes. This process
may already exist within a complex cluster, in that nodes may be filtered by any constraints or
requirements specified (e.g., nodes with SSD drives, or higher CPU, memory, or disk
requirements, etc.).

OpenShift Container Platform 3.3 Cluster Administration

118

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-getting-started.html
http://www.keepalived.org/

The following example defines a label as router instances that are servicing traffic in the US west
geography ha-router=geo-us-west:

$ oc label nodes openshift-node-{5,6,7,8,9} "ha-router=geo-us-west"

2. OpenShift Container Platform’s ipfailover internally uses keepalived, so ensure that multicast is
enabled on the nodes labeled above and that the nodes can accept network traffic for 224.0.0.18
(the VRRP multicast IP address). Depending on your environment’s multicast configuration, you
may need to add an iptables rule to each of the above labeled nodes. If you do need to add
the iptables rules, please also ensure that the rules persist after a system restart:

$ for node in openshift-node-{5,6,7,8,9}; do ssh $node <<EOF

export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ip addr show $interface | grep -i MULTICAST

echo "Check multicast groups ... "
ip maddr show $interface | grep 224.0.0 | grep $interface

echo "Optionally, add accept rule and persist it ... "
sudo /sbin/iptables -I INPUT -i $interface -d 224.0.0.18/32 -j
ACCEPT

echo "Please ensure the above rule is added on system restarts."

EOF
done;

3. Add the ipfailover service account in the default namespace to the privileged SCC:

$ oadm policy add-scc-to-user privileged
system:serviceaccount:default:ipfailover

4. Start the router with at least two replicas on nodes matching the labels used in the first step. The
following example runs three instances using the ipfailover service account:

$ oadm router ha-router-us-west --replicas=3 \
 --selector="ha-router=geo-us-west" \
 --labels="ha-router=geo-us-west" \
 --service-account=ipfailover

NOTE

The above command runs fewer router replicas than available nodes, so that, in
the chance of node failures, Kubernetes can still ensure three available instances
until the number of available nodes labeled ha-router=geo-us-west is below
three. Additionally, the router uses the host network as well as ports 80 and 443,
so fewer number of replicas are running to ensure a higher Service Level
Availability (SLA). If there are no constraints on the service being setup for
failover, it is possible to target the service to run on one or more, or even all, of
the labeled nodes.

CHAPTER 23. HIGH AVAILABILITY

119

5. Finally, configure the VIPs and failover for the nodes labeled with ha-router=geo-us-west in the
first step. Ensure the number of replicas match the number of nodes and that they satisfy the
label setup in the first step. The name of the ipfailover configuration (ipf-ha-router-us-west in
the example below) should be different from the name of the router configuration (ha-router-us-
west) as both the router and ipfailover create deployment configuration with those names.
Specify the VIPs addresses and the port number that ipfailover should monitor on the desired
instances:

$ oadm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-router=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --service-account=ipfailover --create

For details on how to dynamically update the virtual IP addresses for high availability, see Dynamically
Updating Virtual IPs for a Highly-available Service.

23.2.3. Configuring a Highly-available Network Service

The following steps describe how to set up a highly-available IP-based network service with IP failover:

1. Label the nodes for the service. This step can be optional if you run the service on any of the
nodes in your Kubernetes cluster and use VIPs that can float within those nodes. This process
may already exist within a complex cluster, in that the nodes may be filtered by any constraints
or requirements specified (e.g., nodes with SSD drives, or higher CPU, memory, or disk
requirements, etc.).
The following example labels a highly-available cache service that is listening on port 9736 as
ha-cache=geo:

$ oc label nodes openshift-node-{6,3,7,9} "ha-cache=geo"

2. OpenShift Container Platform’s ipfailover internally uses keepalived, so ensure that multicast is
enabled on the nodes labeled above and that the nodes can accept network traffic for 224.0.0.18
(the VRRP multicast IP address). Depending on your environment’s multicast configuration, you
may need to add an iptables rule to each of the above labeled nodes. If you do need to add
the iptables rules, please also ensure that the rules persist after a system restart:

$ for node in openshift-node-{6,3,7,9}; do ssh $node <<EOF
export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ip addr show $interface | grep -i MULTICAST

echo "Check multicast groups ... "
ip maddr show $interface | grep 224.0.0 | grep $interface

echo "Optionally, add accept rule and persist it ... "
sudo /sbin/iptables -I INPUT -i $interface -d 224.0.0.18/32 -j
ACCEPT

echo "Please ensure the above rule is added on system restarts."

EOF
done;

OpenShift Container Platform 3.3 Cluster Administration

120

3. Create a new ipfailover service account in the default namespace:

$ oc create serviceaccount ipfailover -n default

4. Add the ipfailover service account in the default namespace to the privileged SCC:

$ oadm policy add-scc-to-user privileged
system:serviceaccount:default:ipfailover

5. Run a geo-cache service with two or more replicas. An example configuration for running a
geo-cache service is provided here.

IMPORTANT

Be sure to replace the myimages/geo-cache container image referenced in the
file with your intended image. Also, change the number of replicas to the desired
amount and ensure the label matches the one used in the first step.

$ oc create -n <namespace> -f ./examples/geo-cache.json

6. Finally, configure the VIPs and failover for the nodes labeled with ha-cache=geo in the first step.
Ensure the number of replicas match the number of nodes and that they satisfy the label setup in
first step. Specify the VIP addresses and the port number that ipfailover should monitor for the
desired instances:

$ oadm ipfailover ipf-ha-geo-cache \
 --replicas=4 --selector="ha-cache=geo" \
 --virtual-ips=10.245.2.101-104 --watch-port=9736 \
 --service-account=ipfailover --create

Using the above example, you can now use the VIPs 10.245.2.101 through 10.245.2.104 to send traffic
to the geo-cache service. If a particular geo-cache instance is "unreachable", perhaps due to a node
failure, Keepalived ensures that the VIPs automatically float amongst the group of nodes labeled "ha-
cache=geo" and the service is still reachable via the virtual IP addresses.

23.2.4. Dynamically Updating Virtual IPs for a Highly-available Service

The default deployment strategy for the IP failover service is to recreate the deployment. In order to
dynamically update the virtual IPs for a highly available routing service with minimal or no downtime, you
must:

update the IP failover service deployment configuration to use a rolling update strategy, and

update the OPENSHIFT_HA_VIRTUAL_IPS environment variable with the updated list or sets of
virtual IP addresses.

The following example shows how to dynamically update the deployment strategy and the virtual IP
addresses:

1. Consider an IP failover configuration that was created using the following:

$ oadm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \

CHAPTER 23. HIGH AVAILABILITY

121

https://raw.githubusercontent.com/openshift/openshift-docs/master/admin_guide/examples/geo-cache.json

1

1

 --selector="ha-router=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --service-account=ipfailover --create

2. Edit the deployment configuration:

$ oc edit dc/ipf-ha-router-us-west

3. Update the spec.strategy.type field from Recreate to Rolling:

spec:
 replicas: 5
 selector:
 ha-router: geo-us-west
 strategy:
 recreateParams:
 timeoutSeconds: 600
 resources: {}

 type: Rolling 1

Set to Rolling.

4. Update the OPENSHIFT_HA_VIRTUAL_IPS environment variable to contain the additional virtual
IP addresses:

- name: OPENSHIFT_HA_VIRTUAL_IPS

 value: 10.245.2.101-105,10.245.2.110,10.245.2.201-205 1

10.245.2.110,10.245.2.201-205 have been added to the list.

23.2.5. Multiple Highly Available Services In a Network

The IPFailover service uses VRRP (Virtual Router Redundancy Protocol) to communicate with its peers.
By default, the generated Keepalived configuration uses a VRRP ID offset starting from 0 (and
sequentially increasing) to denote the peers in a network. If you wish to run multiple highly available
services in the same network (have multiple IP Failover deployments), you need to ensure that there is
no overlap of the VRRP IDs by using a different starting offset for your IPFailover deployment using the -
-vrrp-id-offset=<n> parameter.

$ oadm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-router=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --service-account=ipfailover --create

$ # Second IPFailover service with VRRP ids starting at 10.
$ oadm ipfailover ipf-service-redux \
 --replicas=2 --watch-port=6379 --vrrp-id-offset=10 \
 --selector="ha-service=redux" \
 --virtual-ips="10.245.2.199" \
 --service-account=ipfailover --create

OpenShift Container Platform 3.3 Cluster Administration

122

CHAPTER 24. IPTABLES

24.1. OVERVIEW

There are many system components including OpenShift Container Platform, containers, and software
that manage local firewall policies that rely on the kernel iptables configuration for proper network
operation. In addition, the iptables configuration of all nodes in the cluster must be correct for networking
to work.

All components independently work with iptables without knowledge of how other components are using
them. This makes it very easy for one component to break another component’s configuration. Further,
OpenShift Container Platform and the Docker service assume that iptables remains set up exactly as
they have set it up. They may not detect changes introduced by other components and if they do there
may be some lag in implementing the fix. In particular, OpenShift Container Platform does monitor and
fix problems. However, the Docker service does not.

IMPORTANT

You must ensure that changes you make to the iptables configuration on a node do not
impact the operation of OpenShift Container Platform and the Docker service. Also,
changes will often need to be made on all nodes in the cluster. Use caution, as iptables is
not designed to have multiple concurrent users and it is very easy to break OpenShift
Container Platform and Docker networking.

The chains, order of the chains, and rules in the kernel iptables must be properly set up on each node in
the cluster for OpenShift Container Platform and Docker networking to work properly. There are several
tools and services that are commonly used in the system that interact with the kernel iptables and can
accidentally impact OpenShift Container Platform and the Docker service.

24.2. IPTABLES

The iptables tool can be used to set up, maintain, and inspect the tables of IPv4 packet filter rules in the
Linux kernel.

Independent of other use, such as a firewall, OpenShift Container Platform and the the Docker service
manage chains in some of the tables. The chains are inserted in specific order and the rules are specific
to their needs.

CAUTION

iptables --flush [chain] can remove key required configuration. Do not execute this command.

24.3. IPTABLES.SERVICE

The iptables service supports a local network firewall. It assumes total control of the iptables
configuration. When it starts, it flushes and restores the complete iptables configuration. The restored
rules are from its configuration file, /etc/sysconfig/iptables. The configuration file is not kept up to date
during operation, so the dynamically added rules are lost during every restart.

CHAPTER 24. IPTABLES

123

WARNING

Stopping and starting iptables.service will destroy configuration that is required by
OpenShift Container Platform and Docker. OpenShift Container Platform and
Docker are not notified of the change.

systemctl disable iptables.service
systemctl mask iptables.service

If you need to run iptables.service, keep a limited configuration in the configuration file and rely on
OpenShift Container Platform and Docker to install their needed rules.

The iptables.service configuration is loaded from:

/etc/sysconfig/iptables

To make permanent rules changes, edit the changes into this file. Do not include Docker or OpenShift
Container Platform rules.

After iptables.service is started or restarted on a node, the Docker service and atomic-openshift-
node.service must be restarted to reconstruct the needed iptables configuration.

IMPORTANT

Restarting the Docker service will cause all containers running on the node to be stopped
and restarted.

systemctl restart iptables.service
systemctl restart docker
systemctl restart atomic-openshift-node.service

OpenShift Container Platform 3.3 Cluster Administration

124

CHAPTER 25. SECURING BUILDS BY STRATEGY

25.1. OVERVIEW

Builds in OpenShift Container Platform are run in privileged containers that have access to the Docker
daemon socket. As a security measure, it is recommended to limit who can run builds and the strategy
that is used for those builds. Custom builds are inherently less safe than Source builds, given that they
can execute any code in the build with potentially full access to the node’s Docker socket, and as such
are disabled by default. Docker build permission should also be granted with caution as a vulnerability in
the Docker build logic could result in a privileges being granted on the host node.

By default, all users that can create builds are granted permission to use the Docker and Source-to-
Image build strategies. Users with cluster-admin privileges can enable the Custom build strategy, as
referenced in the Restricting Build Strategies to a User Globally section of this page.

You can control who can build with what build strategy using an authorization policy. Each build strategy
has a corresponding build subresource. A user must have permission to create a build and permission to
create on the build strategy subresource in order to create builds using that strategy. Default roles are
provided which grant the create permission on the build strategy subresource.

Table 25.1. Build Strategy Subresources and Roles

Strategy Subresource Role

Docker builds/docker system:build-strategy-docker

Source-to-Image builds/source system:build-strategy-source

Custom builds/custom system:build-strategy-custom

JenkinsPipeline builds/jenkinspipeline system:build-strategy-
jenkinspipeline

25.2. DISABLING A BUILD STRATEGY GLOBALLY

To prevent access to a particular build strategy globally, log in as a user with cluster-admin privileges
and remove the corresponding role from the system:authenticated group:

$ oadm policy remove-cluster-role-from-group system:build-strategy-custom
system:authenticated
$ oadm policy remove-cluster-role-from-group system:build-strategy-docker
system:authenticated
$ oadm policy remove-cluster-role-from-group system:build-strategy-source
system:authenticated
$ oadm policy remove-cluster-role-from-group system:build-strategy-
jenkinspipeline system:authenticated

In versions prior to 3.2, the build strategy subresources were included in the admin and edit roles.
Ensure the build strategy subresources are also removed from these roles:

$ oc edit clusterrole admin
$ oc edit clusterrole edit

CHAPTER 25. SECURING BUILDS BY STRATEGY

125

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#security-warning
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#custom-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#roles

1

For each role, remove the line that corresponds to the resource of the strategy to disable.

Example 25.1. Disable the Docker Build Strategy for admin

kind: ClusterRole
metadata:
 name: admin
...
rules:
- resources:
 - builds/custom

 - builds/docker 1
 - builds/source
 ...
...

Delete this line to disable Docker builds globally for users with the admin role.

25.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY

To allow only a set of specific users to create builds with a particular strategy:

1. Disable global access to the build strategy.

2. Assign the role corresponding to the build strategy to a specific user. For example, to add the
system:build-strategy-docker cluster role to the user devuser:

$ oadm policy add-cluster-role-to-user system:build-strategy-docker
devuser

WARNING

Granting a user access at the cluster level to the builds/docker subresource means
that the user will be able to create builds with the Docker strategy in any project in
which they can create builds.

25.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A
PROJECT

Similar to granting the build strategy role to a user globally, to allow only a set of specific users within a
project to create builds with a particular strategy:

1. Disable global access to the build strategy.

OpenShift Container Platform 3.3 Cluster Administration

126

2. Assign the role corresponding to the build strategy to a specific user within a project. For
example, to add the system:build-strategy-docker role within the project devproject to the
user devuser:

$ oadm policy add-role-to-user system:build-strategy-docker devuser
-n devproject

CHAPTER 25. SECURING BUILDS BY STRATEGY

127

CHAPTER 26. RESTRICTING APPLICATION CAPABILITIES
USING SECCOMP

26.1. OVERVIEW

Seccomp (secure computing mode) is used to restrict the set of system calls applications can make,
allowing cluster administrators greater control over the security of workloads running in OpenShift
Container Platform.

Seccomp support is achieved via two annotations in the pod configuration:

seccomp.security.alpha.kubernetes.io/pod: profile applies to all containers in the pod that do
not override

container.seccomp.security.alpha.kubernetes.io/<container_name>: container-specific
profile override

IMPORTANT

Containers are run with unconfined seccomp settings by default.

For detailed design information, refer to the seccomp design document.

26.2. ENABLING SECCOMP

Seccomp is a feature of the Linux kernel. To ensure seccomp is enabled on your system, run:

$ cat /boot/config-`uname -r` | grep CONFIG_SECCOMP=
CONFIG_SECCOMP=y

26.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR
SECCOMP

A seccomp profile is a json file providing syscalls and the appropriate action to take when a syscall is
invoked.

1. Create the seccomp profile.
The default profile is sufficient in many cases, but the cluster administrator must define the
security constraints of an individual system.

To create your own custom profile, create a file on every node in the seccomp-profile-root
directory.

If you are using the default docker/default profile, you do not need to create one.

2. Configure your nodes to use the seccomp-profile-root where your profiles will be stored. In the
node-config.yaml via the kubeletArguments:

kubeletArguments:
 seccomp-profile-root:
 - "/your/path"

OpenShift Container Platform 3.3 Cluster Administration

128

https://github.com/kubernetes/kubernetes/blob/release-1.4/docs/design/seccomp.md
https://github.com/docker/docker/blob/master/profiles/seccomp/default.json

3. Restart the node service to apply the changes:

systemctl restart atomic-openshift-node

4. In order to control which profiles may be used, and to set the default profile, configure your SCC
via the seccompProfiles field. The first profile will be used as a default.
The allowable formats of the seccompProfiles field include:

docker/default: the default profile for the container runtime (no profile required)

unconfined: unconfined profile, and disables seccomp

localhost/<profile-name>: the profile installed to the node’s local seccomp profile root
For example, if you are using the default docker/default profile, configure your SCC with:

seccompProfiles:
- docker/default

26.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR A
CUSTOM SECCOMP PROFILE

To ensure pods in your cluster run with a custom profile:

1. Create the seccomp profile in seccomp-profile-root.

2. Configure seccomp-profile-root:

kubeletArguments:
 seccomp-profile-root:
 - "/your/path"

3. Restart the node service to apply the changes:

systemctl restart atomic-openshift-node

4. Configure your SCC:

seccompProfiles:
- localhost/<profile-name>

CHAPTER 26. RESTRICTING APPLICATION CAPABILITIES USING SECCOMP

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#authorization-seccomp

CHAPTER 27. SYSCTLS

27.1. OVERVIEW

Sysctl settings are exposed via Kubernetes, allowing users to modify certain kernel parameters at
runtime for namespaces within a container. Only sysctls that are namespaced can be set independently
on pods; if a sysctl is not namespaced (called node-level), it cannot be set within OpenShift Container
Platform. Moreover, only those sysctls considered safe are whitelisted by default; other unsafe sysctls
can be manually enabled on the node to be available to the user.

NOTE

As of OpenShift Container Platform 3.3.1, sysctl support is a feature in Technology
Preview.

27.2. UNDERSTANDING SYSCTLS

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime. Parameters
are available via the /proc/sys/ virtual process file system. The parameters cover various subsystems
such as:

kernel (common prefix: kernel.)

networking (common prefix: net.)

virtual memory (common prefix: vm.)

MDADM (common prefix: dev.)

More subsystems are described in Kernel documentation. To get a list of all parameters, you can run:

$ sudo sysctl -a

27.3. NAMESPACED VS NODE-LEVEL SYSCTLS

A number of sysctls are namespaced in today’s Linux kernels. This means that they can be set
independently for each pod on a node. Being namespaced is a requirement for sysctls to be accessible
in a pod context within Kubernetes.

The following sysctls are known to be namespaced:

kernel.shm*

kernel.msg*

kernel.sem

fs.mqueue.*

net.*

Sysctls that are not namespaced are called node-level and must be set manually by the cluster
administrator, either by means of the underlying Linux distribution of the nodes (e.g., via
/etc/sysctls.conf) or using a DaemonSet with privileged containers.

OpenShift Container Platform 3.3 Cluster Administration

130

https://access.redhat.com/support/offerings/techpreview
https://www.kernel.org/doc/Documentation/sysctl/README

NOTE

Consider marking nodes with special sysctls as tainted. Only schedule pods onto them
that need those sysctl settings. Use the Kubernetes taints and toleration feature to
implement this.

27.4. SAFE VS UNSAFE SYSCTLS

Sysctls are grouped into safe and unsafe sysctls. In addition to proper namespacing, a safe sysctl must
be properly isolated between pods on the same node. This means that setting a safe sysctl for one pod:

must not have any influence on any other pod on the node,

must not allow to harm the node’s health, and

must not allow to gain CPU or memory resources outside of the resource limits of a pod.

By far, most of the namespaced sysctls are not necessarily considered safe.

For OpenShift Container Platform 3.3.1, the following sysctls are supported (whitelisted) in the safe set:

kernel.shm_rmid_forced

net.ipv4.ip_local_port_range

This list will be extended in future versions when the kubelet supports better isolation mechanisms.

All safe sysctls are enabled by default. All unsafe sysctls are disabled by default and must be allowed
manually by the cluster administrator on a per-node basis. Pods with disabled unsafe sysctls will be
scheduled, but will fail to launch.

WARNING

Due to their nature of being unsafe, the use of unsafe sysctls is at-your-own-risk and
can lead to severe problems like wrong behavior of containers, resource shortage,
or complete breakage of a node.

27.5. ENABLING UNSAFE SYSCTLS

With the warning above in mind, the cluster administrator can allow certain unsafe sysctls for very
special situations, e.g., high-performance or real-time application tuning.

If you want to use unsafe sysctls, cluster administrators must enable them individually on nodes. Only
namespaced sysctls can be enabled this way.

1. Use the kubeletArguments field in the /etc/origin/node/node-config.yaml file, as described
in Configuring Node Resources, to set the desired unsafe sysctls:

kubeletArguments:
 experimental-allowed-unsafe-sysctls:
 - "kernel.msg*,net.ipv4.route.min_pmtu"

CHAPTER 27. SYSCTLS

131

http://kubernetes.io/docs/user-guide/kubectl/kubectl_taint/

2. Restart the node service to apply the changes:

systemctl restart atomic-openshift-node

27.6. SETTING SYSCTLS FOR A POD

Sysctls are set on pods using annotations. They apply to all containers in the same pod.

Here is an example, with different annotations for safe and unsafe sysctls:

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
 annotations:
 security.alpha.kubernetes.io/sysctls: kernel.shm_rmid_forced=1
 security.alpha.kubernetes.io/unsafe-sysctls:
net.ipv4.route.min_pmtu=1000,kernel.msgmax=1 2 3
spec:
 ...

NOTE

A pod with the unsafe sysctls specified above will fail to launch on any node that has not
enabled those two unsafe sysctls explicitly. As with node-level sysctls, use the taints and
toleration feature or labels on nodes to schedule those pods onto the right nodes.

OpenShift Container Platform 3.3 Cluster Administration

132

http://kubernetes.io/docs/user-guide/kubectl/kubectl_taint

CHAPTER 28. ENCRYPTING HOSTS WITH IPSEC

28.1. OVERVIEW

IPsec protects traffic in an OpenShift Container Platform cluster by encrypting the communication
between all master and node hosts that communicate using the Internet Protocol (IP).

This topic shows how to secure communication of an entire IP subnet from which the OpenShift
Container Platform hosts receive their IP addresses, including all cluster management and pod data
traffic.

NOTE

Because OpenShift Container Platform management traffic uses HTTPS, enabling IPsec
encrypts management traffic a second time.

IMPORTANT

This procedure should be repeated on each master host, then node host, in your cluster.
Hosts that do not have IPsec enabled will not be able to communicate with a host that
does.

28.2. ENCRYPTING HOSTS

28.2.1. Step 1: Prerequisites

At this time, libreswan version 3.15 is the latest version supported on Red Hat Enterprise Linux 7.
Ensure that libreswan 3.15 or later is installed on cluster hosts. If opportunistic group functionality is
required, then libreswan version 3.19 or later is required.

Configure the SDN MTU to allow space for the IPSec header. In the configuration described here IPSec
requires 62 bytes. If the cluster is operating on an ethernet network with an MTU of 1500 then the SDN
MTU should be 1388, to allow for the overhead of IPSec and the SDN encapsulation.

28.2.2. Step 2: Certificates

By default, OpenShift Container Platform secures cluster management communication with mutually
authenticated HTTPS communication. This means that both the client (for example, an OpenShift
Container Platform node) and the server (for example, an OpenShift Container Platform api-server) send
each other their certificates, which are checked against a known certificate authority (CA). These
certificates are generated at cluster set up time, and typically live on each host.

These certificates can also be used to secure pod communications with IPsec. You need three files on
each host:

Cluster CA file

Host client certificate file

Host private key file

CHAPTER 28. ENCRYPTING HOSTS WITH IPSEC

133

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-configuring-sdn

1. Determine what the certificate’s nickname will be after it has been imported into the
libreswan certificate database. The nickname is taken directly from the certificate’s
subject’s Common Name (CN):

openssl x509 \
 -in /path/to/client-certificate -subject -noout | \
 sed -n 's/.*CN=\(.*\)/\1/p'

2. Use openssl to combine the client certificate, CA certificate, and private key files into a
PKCS#12 file, which is a common file format for multiple certificates and keys:

openssl pkcs12 -export \
 -in /path/to/client-certificate \
 -inkey /path/to/private-key \
 -certfile /path/to/certificate-authority \
 -passout pass: \
 -out certs.p12

3. Import the PKCS#12 file into the libreswan certificate database. The -W option is left empty,
because no password is assigned to the PKCS#12 file, as it is only temporary.

ipsec initnss
pk12util -i certs.p12 -d sql:/etc/ipsec.d -W ""
rm certs.p12

28.2.3. Step 3: libreswan IPsec Policy

Now that the necessary certificates are imported into the libreswan certificate database, create a policy
that uses them to secure communication between hosts in your cluster.

If you are using libreswan 3.19 or later, then opportunistic group configuration is recommended.
Otherwise, explicit connections are required.

28.2.3.1. Opportunistic Group Configuration

The following configuration creates two libreswan connections. The first encrypts traffic using the
OpenShift Container Platform certificates, while the second creates exceptions to the encryption for
cluster-external traffic.

1. Place the following into the /etc/ipsec.d/openshift-cluster.conf file:

conn private
 left=%defaultroute
 leftid=%fromcert
 # our certificate

 leftcert="NSS Certificate DB:<cert_nickname>" 1
 right=%opportunisticgroup
 rightid=%fromcert
 # their certificate transmitted via IKE
 rightca=%same
 ikev2=insist
 authby=rsasig
 failureshunt=drop
 negotiationshunt=hold

OpenShift Container Platform 3.3 Cluster Administration

134

1

 auto=ondemand

conn clear
 left=%defaultroute
 right=%group
 authby=never
 type=passthrough
 auto=route
 priority=100

Replace <cert_nickname> with the certificate nickname from step one.

2. Tell libreswan which IP subnets and hosts to apply each policy using policy files in
/etc/ipsec.d/policies/, where each configured connection has a corresponding policy file. So, in
the example above, the two connections, private and clear, each have a file in
/etc/ipsec.d/policies/.
/etc/ipsec.d/policies/private should contain the IP subnet of your cluster, which your hosts
receive IP addresses from. By default, this causes all communication between hosts in the
cluster subnet to be encrypted if the remote host’s client certificate authenticates against the
local host’s Certificate Authority certificate. If the remote host’s certificate does not authenticate,
all traffic between the two hosts will be blocked.

For example, if all hosts are configured to use addresses in the 172.16.0.0/16 address
space, your private policy file would contain 172.16.0.0/16. Any number of additional
subnets to encrypt may be added to this file, which results in all traffic to those subnets using
IPsec as well.

3. Unencrypt the encryption between all hosts and the subnet gateway to ensure that traffic can
enter and exit the cluster. Add the gateway to the /etc/ipsec.d/policies/clear file:

172.16.0.1/32

Additional hosts and subnets may be added to this file, which will result in all traffic to these
hosts and subnets being unencrypted.

28.2.3.2. Explicit Connection Configuration

In this configuration, each IPSec node configuration must explicitly list the configuration of every other
node in the cluster. Using a configuration management tool such as Ansible to generate this file on each
host is recommended.

1. Place the following lines into the /etc/ipsec.d/openshift-cluster.conf file on each node for every
other node in the cluster:

conn <other_node_hostname>

 left=<this_node_ip> 1

 leftid="CN=<this_node_cert_nickname>" 2
 leftrsasigkey=%cert

 leftcert=<this_node_cert_nickname> 3

 right=<other_node_ip> 4

 rightid="CN=<other_node_cert_nickname>" 5
 rightrsasigkey=%cert
 auto=start
 keyingtries=%forever

CHAPTER 28. ENCRYPTING HOSTS WITH IPSEC

135

1

2 3

4

5

1

Replace <this_node_ip> with the cluster IP address of this node.

Replace <this_node_cert_nickname> with the node certificate nickname from step one.

Replace <other_node_ip> with the cluster IP address of the other node.

Replace <other_node_cert_nickname> with the other node certificate nickname from step
one.

2. Place the following in the /etc/ipsec.d/openshift-cluster.secrets file on each node:

: RSA "<this_node_cert_nickname>" 1

Replace <this_node_cert_nickname> with the node certificate nickname from step one.

28.3. IPSEC FIREWALL CONFIGURATION

All nodes within the cluster need to allow IPSec related network traffic. This includes IP protocol numbers
50 and 51 as well as UDP port 500.

For example, if the cluster nodes communicate over interface eth0:

-A OS_FIREWALL_ALLOW -i eth0 -p 50 -j ACCEPT
-A OS_FIREWALL_ALLOW -i eth0 -p 51 -j ACCEPT
-A OS_FIREWALL_ALLOW -i eth0 -p udp --dport 500 -j ACCEPT

NOTE

IPSec also uses UDP port 4500 for NAT traversal, though this should not apply to normal
cluster deployments.

28.4. STARTING AND ENABLING IPSEC

1. Start the ipsec service to load the new configuration and policies, and begin encrypting:

systemctl start ipsec

2. Enable the ipsec service to start on boot:

systemctl enable ipsec

28.5. TROUBLESHOOTING

When authentication cannot be completed between two hosts, you will not be able to ping between
them, because all IP traffic will be rejected. If the clear policy is not configured correctly, you will also
not be able to SSH to the host from another host in the cluster.

You can use the ipsec status command to check that the clear and private policies have been
loaded.

OpenShift Container Platform 3.3 Cluster Administration

136

CHAPTER 29. BUILDING DEPENDENCY TREES

29.1. OVERVIEW

OpenShift Container Platform uses image change triggers in a build configuration to detect when an
image stream tag has been updated. You can use the oadm build-chain command to build a
dependency tree that identifies which images would be affected by updating an image in a specified
image stream.

The build-chain tool can determine which builds to trigger; it analyzes the output of those builds to
determine if they will in turn update another image stream tag. If they do, the tool continues to follow the
dependency tree. Lastly, it outputs a graph specifying the image stream tags that would be impacted by
an update to the top-level tag. The default output syntax for this tool is set to a human-readable format;
the DOT format is also supported.

29.2. USAGE

The following table describes common build-chain usage and general syntax:

Table 29.1. Common build-chain Operations

Description Syntax

Build the dependency tree for the latest tag in
<image-stream>. $ oadm build-chain <image-stream>

Build the dependency tree for the v2 tag in DOT
format, and visualize it using the DOT utility. $ oadm build-chain <image-

stream>:v2 \
 -o dot \
 | dot -T svg -o deps.svg

Build the dependency tree across all projects for the
specified image stream tag found the test project. $ oadm build-chain <image-

stream>:v1 \
 -n test --all

NOTE

You may need to install the graphviz package to use the dot command.

CHAPTER 29. BUILDING DEPENDENCY TREES

137

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#image-change-triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#builds

CHAPTER 30. BACKUP AND RESTORE

30.1. OVERVIEW

In OpenShift Container Platform, you can back up (saving state to separate storage) and restore
(recreating state from separate storage) at the cluster level. There is also some preliminary support for
per-project backup. The full state of a cluster installation includes:

etcd data on each master

API objects

registry storage

volume storage

This topic does not cover how to back up and restore persistent storage, as those topics are left to the
underlying storage provider. However, an example of how to perform a generic backup of application
data is provided.

IMPORTANT

This topic only provides a generic way of backing up applications and the OpenShift
Container Platform cluster. It can not take into account custom requirements. Therefore,
you should create a full backup and restore procedure. To prevent data loss, necessary
precautions should be taken.

30.2. PREREQUISITES

1. Because the restore procedure involves a complete reinstallation, save all the files used in the
initial installation. This may include:

~/.config/openshift/installer.cfg.yml (from the Quick Installation method)

Ansible playbooks and inventory files (from the Advanced Installation method)

/etc/yum.repos.d/ose.repo (from the Disconnected Installation method)

2. Backup the procedures for post-installation steps. Some installations may involve steps that are
not included in the installer. This may include changes to the services outside of the control of
OpenShift Container Platform or the installation of extra services like monitoring agents.
Additional configuration that is not supported yet by the advanced installer might also be
affected, for example when using multiple authentication providers.

3. Install packages that provide various utility commands:

yum install etcd

4. If using a container-based installation, pull the etcd image instead:

docker pull rhel7/etcd

Note the location of the etcd data directory (or $ETCD_DATA_DIR in the following sections), which
depends on how etcd is deployed.

OpenShift Container Platform 3.3 Cluster Administration

138

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-persistent-storage-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-install-disconnected-install

Deployment Type Description Data Directory

separate etcd etcd runs as a separate service, either co-
located on master nodes or on separate
nodes.

/var/lib/etcd

embedded etcd etcd runs as part of the master service. /var/lib/origin/openshift.local.etcd

30.3. CLUSTER BACKUP

30.3.1. Master Backup

IMPORTANT

You must perform the following step on each master node.

1. Create a backup of the master host configuration files:

$ MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
$ sudo mkdir -p ${MYBACKUPDIR}/etc/sysconfig
$ sudo cp -aR /etc/origin ${MYBACKUPDIR}/etc
$ sudo cp -aR /etc/sysconfig/atomic-* ${MYBACKUPDIR}/etc/sysconfig/

2. If etcd is running on more than one host, stop it on each host:

sudo systemctl stop etcd

Although this step is not strictly necessary, doing so ensures that the etcd data is fully
synchronized.

3. Create an etcd backup:

etcdctl backup \
 --data-dir $ETCD_DATA_DIR \
 --backup-dir $ETCD_DATA_DIR.bak

NOTE

If etcd is running on more than one host, the various instances regularly
synchronize their data, so creating a backup for one of them is sufficient.

NOTE

For a container-based installation, you must use docker exec to run etcdctl
inside the container.

4. Copy the db file over to the backup you created:

$ cp "$ETCD_DATA_DIR"/member/snap/db
"$ETCD_DATA_DIR.bak"/member/snap/db

CHAPTER 30. BACKUP AND RESTORE

139

30.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS

To restore the cluster:

1. Reinstall OpenShift Container Platform.
This should be done in the same way that OpenShift Container Platform was previously
installed.

2. Run all necessary post-installation steps.

3. Restore the certificates and keys, on each master:

cd /etc/origin/master
tar xvf /tmp/certs-and-keys-$(hostname).tar

4. Restore from the etcd backup:

mv $ETCD_DATA_DIR $ETCD_DATA_DIR.orig
cp -Rp $ETCD_DATA_DIR.bak $ETCD_DATA_DIR
chcon -R --reference $ETCD_DATA_DIR.orig $ETCD_DATA_DIR
chown -R etcd:etcd $ETCD_DATA_DIR

5. Create the new single node cluster using etcd’s --force-new-cluster option. You can do
this using the values from /etc/etcd/etcd.conf, or you can temporarily modify the systemd unit
file and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service file, and add --force-new-
cluster:

sed -i '/ExecStart/s/"$/ --force-new-cluster"/'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-
new-cluster"

Then, restart the etcd service:

systemctl daemon-reload
systemctl start etcd

6. Verify the etcd service started correctly, then re-edit the /usr/lib/systemd/system/etcd.service
file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

7. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Container Platform’s configuration:

OpenShift Container Platform 3.3 Cluster Administration

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#installation-methods

systemctl daemon-reload
systemctl restart etcd

30.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS

When using a separate etcd cluster, you must first restore the etcd backup by creating a new, single
node etcd cluster. If you run etcd as a stand-alone service on your master nodes, you can create the
single node etcd cluster on a master node. If you use separate etcd with multiple members, you must
then also add any additional etcd members to the etcd cluster one by one.

However, the details of the restoration process differ between embedded and external etcd. See the
following section and follow the relevant steps before Bringing OpenShift Services Back Online.

30.5.1. Embedded etcd

Restore your etcd backup and configuration:

1. Run the following on the master with the embedded etcd:

ETCD_DIR=/var/lib/origin/openshift.local.etcd
mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp /var/lib/origin/etcd-backup-<timestamp>/ $ETCD_DIR
chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

WARNING

The $ETCD_DIR location differs between external and embedded etcd.

2. Create the new, single node etcd cluster:

etcd -data-dir=/var/lib/origin/openshift.local.etcd \
 -force-new-cluster

Verify etcd has started successfully by checking the output from the above command, which
should look similar to the following near the end:

[...]
2016-06-24 12:14:45.644073 I | etcdserver: starting server...
[version: 2.2.5, cluster version: 2.2]
[...]
2016-06-24 12:14:46.834394 I | etcdserver: published {Name:default
ClientURLs:[http://localhost:2379 http://localhost:4001]} to cluster
5580663a6e0002

3. Shut down the process by running the following from a separate terminal:

pkill etcd

CHAPTER 30. BACKUP AND RESTORE

141

4. Continue to Bringing OpenShift Container Platform Services Back Online.

30.5.2. Separate etcd

Choose a system to be the initial etcd member, and restore its etcd backup and configuration:

1. Run the following on the etcd host:

ETCD_DIR=/var/lib/etcd/
mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp /var/lib/origin/etcd-backup-<timestamp>/ $ETCD_DIR
chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

WARNING

The $ETCD_DIR location differs between external and embedded etcd.

2. Restore your /etc/etcd/etcd.conf file from backup or .rpmsave.

3. Create the new single node cluster using etcd’s --force-new-cluster option. You can do
this with a long complex command using the values from /etc/etcd/etcd.conf, or you can
temporarily modify the systemd unit file and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service file, and add --force-new-
cluster:

sed -i '/ExecStart/s/"$/ --force-new-cluster"/'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-
new-cluster"

Then restart the etcd service:

systemctl daemon-reload
systemctl start etcd

4. Verify the etcd service started correctly, then re-edit the /usr/lib/systemd/system/etcd.service
file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

OpenShift Container Platform 3.3 Cluster Administration

142

1

1

5. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Container Platform’s configuration:

systemctl daemon-reload
systemctl restart etcd
etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \

 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \ 1
 ls /

Ensure that you specify the URLs of only active etcd members in the --peers parameter
value.

6. If you have additional etcd members to add to your cluster, continue to Adding Additional etcd
Members. Otherwise, if you only want a single node separate etcd cluster, continue to Bringing
OpenShift Container Platform Services Back Online.

30.5.2.1. Adding Additional etcd Members

To add additional etcd members to the cluster, you must first adjust the default localhost peer in the
peerURLs value for the first member:

1. Get the member ID for the first member using the member list command:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://17

2.18.0.75:2379" \ 1
 member list

Ensure that you specify the URLs of only active etcd members in the --peers parameter
value.

2. Update the value of peerURLs using the etcdctl member update command by passing the
member ID obtained from the previous step:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://17
2.18.0.75:2379" \
 member update 511b7fb6cc0001 https://172.18.1.18:2380

Alternatively, you can use curl:

curl --cacert /etc/etcd/ca.crt \
 --cert /etc/etcd/peer.crt \
 --key /etc/etcd/peer.key \
 https://172.18.1.18:2379/v2/members/511b7fb6cc0001 \

CHAPTER 30. BACKUP AND RESTORE

143

1

 -XPUT -H "Content-Type: application/json" \
 -d '{"peerURLs":["https://172.18.1.18:2380"]}'

3. Re-run the member list command and ensure the peer URLs no longer include localhost.

4. Now, add each additional member to the cluster one at a time.

WARNING

Each member must be fully added and brought online one at a time. When
adding each additional member to the cluster, the peerURLs list must be
correct for that point in time, so it will grow by one for each member added.
The etcdctl member add command will output the values that need to
be set in the etcd.conf file as you add each member, as described in the
following instructions.

a. For each member, add it to the cluster using the values that can be found in that system’s
etcd.conf file:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \

 member add 10.3.9.222 https://172.16.4.27:2380 1

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="10.3.9.222"
ETCD_INITIAL_CLUSTER="10.3.9.221=https://172.16.4.18:2380,10.3.9.
222=https://172.16.4.27:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

In this line, 10.3.9.222 is a label for the etcd member. You can specify the host
name, IP address, or a simple name.

b. Using the environment variables provided in the output of the above etcdctl member add
command, edit the /etc/etcd/etcd.conf file on the member system itself and ensure these
settings match.

c. Now start etcd on the new member:

rm -rf /var/lib/etcd/member
systemctl enable etcd
systemctl start etcd

d. Ensure the service starts correctly and the etcd cluster is now healthy:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \

OpenShift Container Platform 3.3 Cluster Administration

144

 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 member list

51251b34b80001: name=10.3.9.221 peerURLs=https://172.16.4.18:2380
clientURLs=https://172.16.4.18:2379
d266df286a41a8a4: name=10.3.9.222
peerURLs=https://172.16.4.27:2380
clientURLs=https://172.16.4.27:2379

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 cluster-health

cluster is healthy
member 51251b34b80001 is healthy
member d266df286a41a8a4 is healthy

e. Now repeat this process for the next member to add to the cluster.

5. After all additional etcd members have been added, continue to Bringing OpenShift Container
Platform Services Back Online.

30.6. ADDING NEW ETCD HOSTS

In cases where etcd members have failed and you still have a quorum of etcd cluster members running,
you can use the surviving members to add additional etcd members without downtime.

Suggested Cluster Size

Having a cluster with an odd number of etcd hosts can account for fault tolerance. Having an odd number
of etcd hosts does not change the number needed for a quorum, but increases the tolerance for failure.
For example, a cluster size of three members, quorum is two leaving a failure tolerance of one. This
ensures the cluster will continue to operate if two of the members are healthy.

Having an in-production cluster of three etcd hosts is recommended.

NOTE

The following presumes you have a backup of the /etc/etcd configuration for the etcd
hosts.

1. If the new etcd members will also be OpenShift Container Platform nodes, see Add the desired
number of hosts to the cluster. The rest of this procedure presumes you have added just one
host, but if adding multiple, perform all steps on each host.

2. Upgrade etcd and iptables on the surviving nodes:

yum update etcd iptables-services

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed, and that the same version
is installed on each host.

CHAPTER 30. BACKUP AND RESTORE

145

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-adding-hosts-to-cluster

3. Install etcd and iptables on the new host

yum install etcd iptables-services

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed, and that the same version
is installed on the new host.

4. Backup the etcd data store on surviving hosts before making any cluster configuration changes.

5. If replacing a failed etcd member, remove the failed member before adding the new member.

etcdctl -C https://<surviving host IP>:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key cluster-health

etcdctl -C https://<surviving host IP>:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member remove <failed member
identifier>

Stop the etcd service on the failed etcd member:

systemctl stop etcd

6. On the new host, add the appropriate iptables rules:

systemctl enable iptables.service --now
iptables -N OS_FIREWALL_ALLOW
iptables -t filter -I INPUT -j OS_FIREWALL_ALLOW
iptables -A OS_FIREWALL_ALLOW -p tcp -m state \
 --state NEW -m tcp --dport 2379 -j ACCEPT
iptables -A OS_FIREWALL_ALLOW -p tcp -m state \
 --state NEW -m tcp --dport 2380 -j ACCEPT
iptables-save > /etc/sysconfig/iptables

7. Generate the required certificates for the new host. On a surviving etcd host:

a. Make a backup of the /etc/etcd/ca/ directory.

b. Set the variables and working directory for the certificates, ensuring to create the PREFIX
directory if one has not been created:

cd /etc/etcd
export NEW_ETCD="<NEW_HOST_NAME>"

export CN=$NEW_ETCD
export SAN="IP:<NEW_HOST_IP>"
export PREFIX="./generated_certs/etcd-$CN/"

c. Create the $PREFIX directory:

$ mkdir -p $PREFIX

OpenShift Container Platform 3.3 Cluster Administration

146

d. Create the server.csr and server.crt certificates:

openssl req -new -keyout ${PREFIX}server.key \
 -config ca/openssl.cnf \
 -out ${PREFIX}server.csr \
 -reqexts etcd_v3_req -batch -nodes \
 -subj /CN=$CN

openssl ca -name etcd_ca -config ca/openssl.cnf \
 -out ${PREFIX}server.crt \
 -in ${PREFIX}server.csr \
 -extensions etcd_v3_ca_server -batch

e. Create the peer.csr and peer.crt certificates:

openssl req -new -keyout ${PREFIX}peer.key \
 -config ca/openssl.cnf \
 -out ${PREFIX}peer.csr \
 -reqexts etcd_v3_req -batch -nodes \
 -subj /CN=$CN

openssl ca -name etcd_ca -config ca/openssl.cnf \
 -out ${PREFIX}peer.crt \
 -in ${PREFIX}peer.csr \
 -extensions etcd_v3_ca_peer -batch

f. Copy the etcd.conf and ca.crt files, and archive the contents of the directory:

cp etcd.conf ${PREFIX}
cp ca.crt ${PREFIX}
tar -czvf ${PREFIX}${CN}.tgz -C ${PREFIX} .

g. Transfer the files to the new etcd hosts:

scp ${PREFIX}${CN}.tgz $CN:/etc/etcd/

8. While still on the surviving etcd host, add the new host to the cluster:

a. Add the new host to the cluster:

export ETCD_CA_HOST="<SURVIVING_ETCD_HOSTNAME>"
export NEW_ETCD="<NEW_ETCD_HOSTNAME>"
export NEW_ETCD_IP="<NEW_HOST_IP>"

etcdctl -C https://${ETCD_CA_HOST}:2379 \
 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key member add ${NEW_ETCD}
https://${NEW_ETCD_IP}:2380

ETCD_NAME="<NEW_ETCD_HOSTNAME>"
ETCD_INITIAL_CLUSTER="
<NEW_ETCD_HOSTNAME>=https://<NEW_HOST_IP>:2380,
<SURVIVING_ETCD_HOST>=https:/<SURVIVING_HOST_IP>:2380
ETCD_INITIAL_CLUSTER_STATE="existing"

CHAPTER 30. BACKUP AND RESTORE

147

Copy the three environment variables in the etcdctl member add output. They will be used
later.

b. On the new host, extract the copied configuration data and set the permissions:

tar -xf /etc/etcd/<NEW_ETCD_HOSTNAME>.tgz -C /etc/etcd/ --
overwrite
chown -R etcd:etcd /etc/etcd/*

c. On the new host, remove any etcd data:

rm -rf /var/lib/etcd/member
chown -R etcd:etcd /var/lib/etcd

9. On the new etcd host, update the etcd.conf file:

a. Replace the following with the values generated in the previous step:

ETCD_NAME

ETCD_INITIAL_CLUSTER

ETCD_INITIAL_CLUSTER_STATE

b. Replace the IP address with the "NEW_ETCD" value for:

ETCD_LISTEN_PEER_URLS

ETCD_LISTEN_CLIENT_URLS

ETCD_INITIAL_ADVERTISE_PEER_URLS

ETCD_ADVERTISE_CLIENT_URLS

c. For replacing failed members, replace the failed hosts with the new hosts.

10. To ensure the etcd configuration does not use the failed host when the etcd service is restarted,
modify the etcd.conf file on all remaining etcd hosts and remove the failed host in the value for
the ETCD_INITIAL_CLUSTER variable.

11. On the node that hosts the installation files, update the [etcd] hosts group in the
/etc/ansible/hosts inventory file. Remove the old etcd hosts and add the new ones.

12. Start etcd on the new host:

systemctl enable etcd --now

13. To verify that the new member has been added successfully:

etcdctl -C https://${ETCD_CA_HOST}:2379 --ca-file=/etc/etcd/ca.crt \
 --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key cluster-health

14. Update the master configuration on all masters to point to the new etcd host

a. On every master in the cluster, edit /etc/origin/master/master-config.yaml

OpenShift Container Platform 3.3 Cluster Administration

148

a. On every master in the cluster, edit /etc/origin/master/master-config.yaml

b. Find the etcdClientInfo section.

c. Add the new etcd host to the urls list.

d. If a failed etcd host was replaced, remove it from the list.

e. Restart the master API service.
On a single master cluster installation:

systemctl restart atomic-openshift-master

On a multi-master cluster installation, on each master:

systemctl restart atomic-openshift-master-api

The procedure to add an etcd member is complete.

30.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK
ONLINE

On each OpenShift Container Platform master, restore your master and node configuration from backup
and enable and restart all relevant services.

On the master in a single master cluster:

cp ${MYBACKUPDIR}/etc/sysconfig/atomic-openshift-master
/etc/sysconfig/atomic-openshift-master
cp ${MYBACKUPDIR}/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml
cp ${MYBACKUPDIR}/etc/origin/node/node-config.yaml.<timestamp>
/etc/origin/node/node-config.yaml
systemctl enable atomic-openshift-master
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-master
systemctl start atomic-openshift-node

On each master in a multi-master cluster:

cp ${MYBACKUPDIR}/etc/sysconfig/atomic-openshift-master-api
/etc/sysconfig/atomic-openshift-master-api
cp ${MYBACKUPDIR}/etc/sysconfig/atomic-openshift-master-controllers
/etc/sysconfig/atomic-openshift-master-controllers
cp ${MYBACKUPDIR}/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml
cp ${MYBACKUPDIR}/etc/origin/node/node-config.yaml.<timestamp>
/etc/origin/node/node-config.yaml
systemctl enable atomic-openshift-master-api
systemctl enable atomic-openshift-master-controllers
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-master-api
systemctl start atomic-openshift-master-controllers
systemctl start atomic-openshift-node

CHAPTER 30. BACKUP AND RESTORE

149

On each OpenShift Container Platform node, restore your node-config.yaml file from backup and
enable and restart the atomic-openshift-node service:

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-
config.yaml
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

Your OpenShift Container Platform cluster should now be back online.

30.8. PROJECT BACKUP

A future release of OpenShift Container Platform will feature specific support for per-project back up and
restore.

For now, to back up API objects at the project level, use oc export for each object to be saved. For
example, to save the deployment configuration frontend in YAML format:

$ oc export dc frontend -o yaml > dc-frontend.yaml

To back up all of the project (with the exception of cluster objects like namespaces and projects):

$ oc export all -o yaml > project.yaml

30.8.1. Role Bindings

Sometimes custom policy role bindings are used in a project. For example, a project administrator can
give another user a certain role in the project and grant that user project access.

These role bindings can be exported:

$ oc get rolebindings -o yaml --export=true > rolebindings.yaml

30.8.2. Service Accounts

If custom service accounts are created in a project, these need to be exported:

$ oc get serviceaccount -o yaml --export=true > serviceaccount.yaml

30.8.3. Secrets

Custom secrets like source control management secrets (SSH Public Keys, Username/Password)
should be exported if they are used:

$ oc get secret -o yaml --export=true > secret.yaml

30.8.4. Persistent Volume Claims

If the an application within a project uses a persistent volume through a persistent volume claim (PVC),
these should be backed up:

OpenShift Container Platform 3.3 Cluster Administration

150

$ oc get pvc -o yaml --export=true > pvc.yaml

30.9. PROJECT RESTORE

To restore a project, recreate the project and recreate all all of the objects that were exported during the
backup:

$ oc new-project myproject
$ oc create -f project.yaml
$ oc create -f secret.yaml
$ oc create -f serviceaccount.yaml
$ oc create -f pvc.yaml
$ oc create -f rolebindings.yaml

NOTE

Some resources can fail to be created (for example, pods and default service accounts).

30.10. APPLICATION DATA BACKUP

In many cases, application data can be backed up using the oc rsync command, assuming rsync is
installed within the container image. The Red Hat rhel7 base image does contain rsync. Therefore, all
images that are based on rhel7 contain it as well. See Troubleshooting and Debugging CLI Operations -
rsync.

WARNING

This is a generic backup of application data and does not take into account
application-specific backup procedures, for example special export/import
procedures for database systems.

Other means of backup may exist depending on the type of the persistent volume (for example, Cinder,
NFS, Gluster, or others).

The paths to back up are also application specific. You can determine what path to back up by looking at
the mountPath for volumes in the deploymentconfig.

Example of Backing up a Jenkins Deployment’s Application Data

1. Get the application data mountPath from the deploymentconfig:

$ oc get dc/jenkins -o jsonpath='{ .spec.template.spec.containers[?
(@.name=="jenkins")].volumeMounts[?(@.name=="jenkins-
data")].mountPath }'
/var/lib/jenkins

2. Get the name of the pod that is currently running:

CHAPTER 30. BACKUP AND RESTORE

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#cli-operations-rsync

$ oc get pod --selector=deploymentconfig=jenkins -o jsonpath='{
.metadata.name }'
jenkins-1-37nux

3. Use the oc rsync command to copy application data:

$ oc rsync jenkins-1-37nux:/var/lib/jenkins /tmp/

NOTE

This type of application data backup can only be performed while an application pod is
currently running.

30.11. APPLICATION DATA RESTORE

The process for restoring application data is similar to the application backup procedure using the oc
rsync tool. The same restrictions apply and the process of restoring application data requires a
persistent volume.

Example of Restoring a Jenkins Deployment’s Application Data

1. Verify the backup:

$ ls -la /tmp/jenkins-backup/
total 8
drwxrwxr-x. 3 user user 20 Sep 6 11:14 .
drwxrwxrwt. 17 root root 4096 Sep 6 11:16 ..
drwxrwsrwx. 12 user user 4096 Sep 6 11:14 jenkins

2. Use the oc rsync tool to copy the data into the running pod:

$ oc rsync /tmp/jenkins-backup/jenkins jenkins-1-37nux:/var/lib

NOTE

Depending on the application, you may be required to restart the application.

3. Restart the application with new data (optional):

$ oc delete pod jenkins-1-37nux

Alternatively, you can scale down the deployment to 0, and then up again:

$ oc scale --replicas=0 dc/jenkins
$ oc scale --replicas=1 dc/jenkins

OpenShift Container Platform 3.3 Cluster Administration

152

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

31.1. OVERVIEW

As described in the SDN documentation there are multiple layers of interfaces that are created to
correctly pass the traffic from one container to another. In order to debug connectivity issues, you have to
test the different layers of the stack to work out where the problem arises. This guide will help you dig
down through the layers to identify the problem and how to fix it.

Part of the problem is that OpenShift Container Platform can be set up many ways, and the networking
can be wrong in a few different places. So this document will work through some scenarios that,
hopefully, will cover the majority of cases. If your problem is not covered, the tools and concepts that are
introduced should help guide debugging efforts.

31.2. NOMENCLATURE

Cluster

The set of machines in the cluster. i.e. the Masters and the Nodes.

Master

A controller of the OpenShift Container Platform cluster. Note that the master may not be a node in
the cluster, and thus, may not have IP connectivity to the pods.

Node

Host in the cluster running OpenShift Container Platform that can host pods.

Pod

Group of containers running on a node, managed by OpenShift Container Platform.

Service

Abstraction that presents a unified network interface that is backed by one or more pods.

Router

A web proxy that can map various URLs and paths into OpenShift Container Platform services to
allow external traffic to travel into the cluster.

Node Address

The IP address of a node. This is assigned and managed by the owner of the network to which the
node is attached. Must be reachable from any node in the cluster (master and client).

Pod Address

The IP address of a pod. These are assigned and managed by OpenShift Container Platform. By
default they are assigned out of the 10.128.0.0/14 network (or, in older versions, 10.1.0.0/16). Only
reachable from the client nodes.

Service Address

An IP address that represents the service, and is mapped to a pod address internally. These are
assigned and managed by OpenShift Container Platform. By default they are assigned out of the
172.30.0.0/16 network. Only reachable from the client nodes.

The following diagram shows all of the pieces involved with external access.

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

153

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-additional-concepts-sdn

31.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE

If you are on an machine outside the cluster and are trying to access a resource provided by the cluster
there needs to be a process running in a pod that listens on a public IP address and "routes" that traffic
inside the cluster. The OpenShift Container Platform router serves that purpose for HTTP, HTTPS (with
SNI), WebSockets, or TLS (with SNI).

Assuming you can’t access an HTTP service from the outside of the cluster, let’s start by reproducing the
problem on the command line of the machine where things are failing. Try:

curl -kv http://foo.example.com:8000/bar # But replace the argument
with your URL

If that works, are you reproducing the bug from the right place? It is also possible that the service has
some pods that work, and some that don’t. So jump ahead to the Section 31.4, “Debugging the Router”
section.

If that failed, then let’s resolve the DNS name to an IP address (assuming it isn’t already one):

dig +short foo.example.com # But replace the hostname
with yours

If that doesn’t give back an IP address, it’s time to troubleshoot DNS, but that’s outside the scope of this
guide.

IMPORTANT

Make sure that the IP address that you got back is one that you expect to be running the
router. If it’s not, fix your DNS.

Next, use ping -c address and tracepath address to check that you can reach the router host. It
is possible that they will not respond to ICMP packets, in which case those tests will fail, but the router
machine may be reachable. In which case, try using the telnet command to access the port for the router
directly:

telnet 1.2.3.4 8000

You may get:

OpenShift Container Platform 3.3 Cluster Administration

154

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-routes

Trying 1.2.3.4...
Connected to 1.2.3.4.
Escape character is '^]'.

If so, there’s something listening on the port on the IP address. That’s good. Hit ctrl-] then hit the
enter key and then type close to quit telnet. Move on to the Section 31.4, “Debugging the Router”
section to check other things on the router.

Or you could get:

Trying 1.2.3.4...
telnet: connect to address 1.2.3.4: Connection refused

Which tells us that the router is not listening on that port. Please see the Section 31.4, “Debugging the
Router” section for more pointers on how to configure the router.

Or if you see:

Which tells us that you can’t talk to anything on that IP address. Check your routing, firewalls, and that
you have a router listening on that IP address. To debug the router, see the Section 31.4, “Debugging
the Router” section. For IP routing and firewall issues, debugging that is beyond the purview of this
guide.

31.4. DEBUGGING THE ROUTER

Now that you have an IP address, we need to ssh to that machine and check that the router software is
running on that machine and configured correctly. So let’s ssh there and get administrative OpenShift
Container Platform credentials.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file. The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

Check that the router is running:

oc get endpoints --namespace=default --selector=router
NAMESPACE NAME ENDPOINTS
default router 10.128.0.4:80

If that command fails, then your OpenShift Container Platform configuration is broken. Fixing that is
outside the scope of this document.

You should see one or more router endpoints listed, but that won’t tell you if they are running on the
machine with the given external IP address, since the endpoint IP address will be one of the pod
addresses that is internal to the cluster. To get the list of router host IP addresses, run:

Trying 1.2.3.4...
 telnet: connect to address 1.2.3.4: Connection timed out

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

155

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/cli_reference/#cli-configuration-files

oc get pods --all-namespaces --selector=router --template='{{range
.items}}HostIP: {{.status.hostIP}} PodIP: {{.status.podIP}}{{end}}
{{"\n"}}'
HostIP: 192.168.122.202 PodIP: 10.128.0.4

You should see the host IP that corresponds to your external address. If you do not, please refer to the
router documentation to configure the router pod to run on the right node (by setting the affinity correctly)
or update your DNS to match the IP addresses where the routers are running.

At this point in the guide, you should be on a node, running your router pod, but you still cannot get the
HTTP request to work. First we need to make sure that the router is mapping the external URL to the
correct service, and if that works, we need to dig into that service to make sure that all endpoints are
reachable.

Let’s list all of the routes that OpenShift Container Platform knows about:

oc get route --all-namespaces
NAME HOST/PORT PATH SERVICE LABELS
TLS TERMINATION
route-unsecured www.example.com /test service-name

If the host name and path from your URL don’t match anything in the list of returned routes, then you
need to add a route. See the router documentation.

If your route is present, then you need to debug access to the endpoints. That’s the same as if you were
debugging problems with a service, so please continue on with the next Section 31.5, “Debugging a
Service” section.

31.5. DEBUGGING A SERVICE

If you can’t communicate with a service from inside the cluster (either because your services can’t
communicate directly, or because you are using the router and everything works until you get into the
cluster) then you need to work out what endpoints are associated with a service and debug them.

First, let’s get the services:

oc get services --all-namespaces
NAMESPACE NAME LABELS
SELECTOR IP(S) PORT(S)
default docker-registry docker-registry=default
docker-registry=default 172.30.243.225 5000/TCP
default kubernetes component=apiserver,provider=kubernetes
<none> 172.30.0.1 443/TCP
default router router=router
router=router 172.30.213.8 80/TCP

You should see your service in the list. If not, then you need to define your service.

The IP addresses listed in the service output are the Kubernetes service IP addresses that Kubernetes
will map to one of the pods that backs that service. So you should be able to talk to that IP address. But,
unfortunately, even if you can, it doesn’t mean all pods are reachable; and if you can’t, it doesn’t mean
all pods aren’t reachable. It just tells you the status of the one that kubeproxy hooked you up to.

Let’s test the service anyway. From one of your nodes:

OpenShift Container Platform 3.3 Cluster Administration

156

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/architecture/#architecture-core-concepts-pods-and-services

curl -kv http://172.30.243.225:5000/bar # Replace the
argument with your service IP address and port

Then, let’s work out what pods are backing our service (replace docker-registry with the name of
the broken service):

oc get endpoints --selector=docker-registry
NAME ENDPOINTS
docker-registry 10.128.2.2:5000

From this, we can see that there’s only one endpoint. So, if your service test succeeded, and the router
test succeeded, then something really odd is going on. But if there’s more than one endpoint, or the
service test failed, try the following for each endpoint. Once you identify what endpoints aren’t working,
then proceed to the next section.

First, test each endpoint (change the URL to have the right endpoint IP, port, and path):

curl -kv http://10.128.2.2:5000/bar

If that works, great, try the next one. If it failed, make a note of it and we’ll work out why, in the next
section.

If all of them failed, then it is possible that the local node is not working, jump to the Section 31.7,
“Debugging Local Networking” section.

If all of them worked, then jump to the Section 31.11, “Debugging Kubernetes” section to work out why
the service IP address isn’t working.

31.6. DEBUGGING NODE TO NODE NETWORKING

Using our list of non-working endpoints, we need to test connectivity to the node.

1. Make sure that all nodes have the expected IP addresses:

oc get hostsubnet
NAME HOST HOST IP
SUBNET
rh71-os1.example.com rh71-os1.example.com 192.168.122.46
10.1.1.0/24
rh71-os2.example.com rh71-os2.example.com 192.168.122.18
10.1.2.0/24
rh71-os3.example.com rh71-os3.example.com 192.168.122.202
10.1.0.0/24

If you are using DHCP they could have changed. Ensure the host names, IP addresses, and
subnets match what you expect. If any node details have changed, use oc edit hostsubnet
to correct the entries.

2. After ensuring the node addresses and host names are correct, list the endpoint IPs and node
IPs:

oc get pods --selector=docker-registry \
 --template='{{range .items}}HostIP: {{.status.hostIP}} PodIP:
{{.status.podIP}}{{end}}{{"\n"}}'

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

157

HostIP: 192.168.122.202 PodIP: 10.128.0.4

3. Find the endpoint IP address you made note of before and look for it in the PodIP entry, and find
the corresponding HostIP address. Then test connectivity at the node host level using the
address from HostIP:

ping -c 3 <IP_address>: No response could mean that an intermediate router is eating
the ICMP traffic.

tracepath <IP_address>: Shows the IP route taken to the target, if ICMP packets are
returned by all hops.
If both tracepath and ping fail, then look for connectivity issues with your local or virtual
network.

4. For local networking, check the following:

Check the route the packet takes out of the box to the target address:

ip route get 192.168.122.202
 192.168.122.202 dev ens3 src 192.168.122.46
 cache

In the above example, it will go out the interface named ens3 with the source address of
192.168.122.46 and go directly to the target. If that is what you expected, use ip a
show dev ens3 to get the interface details and make sure that is the expected interface.

An alternate result may be the following:

ip route get 192.168.122.202
 1.2.3.4 via 192.168.122.1 dev ens3 src 192.168.122.46

It will pass through the via IP value to route appropriately. Ensure that the traffic is routing
correctly. Debugging route traffic is beyond the scope of this guide.

Other debugging options for node to node networking can be solved with the following:

Do you have ethernet link on both ends? Look for Link detected: yes in the output from
ethtool <network_interface>.

Are your duplex settings, and ethernet speeds right on both ends? Look through the rest of the
ethtool <network_interface> information.

Are the cables plugged in correctly? To the correct ports?

Are the switches configured correctly?

Once you have ascertained that the node to node connectivity is fine, we need to look at the SDN
configuration on both ends.

31.7. DEBUGGING LOCAL NETWORKING

OpenShift Container Platform 3.3 Cluster Administration

158

At this point we should have a list of one or more endpoints that you can’t communicate with, but that
have node to node connectivity. For each one, we need to work out what is wrong, but first you need to
understand how the SDN sets up the networking on a node for the different pods.

31.7.1. The Interfaces on a Node

These are the interfaces that the OpenShift Container Platform SDN creates:

br0: The OVS bridge device that containers will be attached to. OpenShift Container Platform
SDN also configures a set of non-subnet-specific flow rules on this bridge. (The multitenant
plug-in does this immediately; the ovssubnet plug-in waits until the SDN master announces the
creation of the new node subnet.)

lbr0: A Linux bridge device, which is configured as Docker’s bridge and given the cluster
subnet gateway address (eg, 10.128.x.1/23).

tun0: An OVS internal port (port 2 on br0). This also gets assigned the cluster subnet gateway
address, and is used for external network access. OpenShift Container Platform SDN configures
netfilter and routing rules to enable access from the cluster subnet to the external network
via NAT.

vlinuxbr and vovsbr: Two Linux peer virtual Ethernet interfaces. vlinuxbr is added to
lbr0, and vovsbr is added to br0 (port 3), to provide connectivity for containers created
directly with Docker outside of OpenShift Container Platform.

vxlan0: The OVS VXLAN device (port 1 on br0), which provides access to containers on
remote nodes.

vethX (in the main netns): A Linux virtual ethernet peer of eth0 in the docker netns. It will be
attached to the OVS bridge on one of the other ports.

31.7.2. SDN Flows Inside a Node

Depending on what you are trying to access (or be accessed from) the path will vary. There are four
different places the SDN connects (inside a node). They are labeled in red on the diagram above.

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

159

Pod: Traffic is going from one pod to another on the same machine (1 to a different 1)

Remote Node (or Pod): Traffic is going from a local pod to a remote node or pod in the same
cluster (1 to 2)

External Machine: Traffic is going from a local pod outside the cluster (1 to 3)

Local Docker: Traffic is going from a local pod to a local container that is not managed by
Kubernetes (1 to 4)

Of course the opposite traffic flows are also possible.

31.7.3. Debugging Steps

31.7.3.1. Is IP Forwarding Enabled?

Check that sysctl net.ipv4.ip_forward is set to 1 (and check the host if this is a VM)

31.7.3.2. Are your routes correct?

Check the route tables with ip route:

ip route
default via 192.168.122.1 dev ens3
10.128.0.0/14 dev tun0 proto kernel scope link #
This sends all pod traffic into OVS
10.128.2.0/23 dev tun0 proto kernel scope link src 10.128.2.1 #
This is traffic going to local pods, overriding the above
169.254.0.0/16 dev ens3 scope link metric 1002 #
This is for Zeroconf (may not be present)
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.42.1 #
Docker's private IPs... used only by things directly configured by docker;
not {product-title}
192.168.122.0/24 dev ens3 proto kernel scope link src 192.168.122.46 #
The physical interface on the local subnet

You should see the 10.128.x.x lines (assuming you have your pod network set to the default range in
your configuration). If you do not, check the OpenShift Container Platform logs (see the Section 31.10,
“Reading the Logs” section)

31.7.4. Is the Open vSwitch configured correctly?

Check the Open vSwitch bridges on both sides:

ovs-vsctl list-br
br0

This should just be br0.

You can list all of the ports that ovs knows about:

ovs-ofctl -O OpenFlow13 dump-ports-desc br0
OFPST_PORT_DESC reply (OF1.3) (xid=0x2):
 1(vxlan0): addr:9e:f1:7d:4d:19:4f

OpenShift Container Platform 3.3 Cluster Administration

160

 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 2(tun0): addr:6a:ef:90:24:a3:11
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 8(vethe19c6ea): addr:1e:79:f3:a0:e8:8c
 config: 0
 state: 0
 current: 10GB-FD COPPER
 speed: 10000 Mbps now, 0 Mbps max
 9(vovsbr): addr:6e:dc:28:df:63:c3
 config: 0
 state: 0
 current: 10GB-FD COPPER
 speed: 10000 Mbps now, 0 Mbps max
 LOCAL(br0): addr:0a:7f:b4:33:c2:43
 config: PORT_DOWN
 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max

Next list the flows that are configured on that bridge. In output below I have removed the cookie,
duration, n_packets and n_bytes columns; and I have lined up the various columns to make it
easier to understand, and added in-line comments and blank lines:

ovs-ofctl -O OpenFlow13 dump-flows br0
OFPST_FLOW reply (OF1.3) (xid=0x2):

External access is the default if no higher priority matches
table=0, priority=50 actions=output:2

ARP and IP Traffic destined for the local subnet gateway goes out of the
switch to
IP tables and the main route table
table=0, priority=100,arp,arp_tpa=10.128.2.1 actions=output:2
table=0, priority=100, ip, nw_dst=10.128.2.1 actions=output:2

All remote nodes should have two entries here, one for IP and one for
ARP.
Here we see the entries for two remote nodes
table=0, priority=100,arp,arp_tpa=10.128.4.0/23
actions=set_field:192.168.122.18->tun_dst,output:1
table=0, priority=100, ip, nw_dst=10.128.4.0/23
actions=set_field:192.168.122.18->tun_dst,output:1

table=0, priority=100,arp,arp_tpa=10.128.0.0/23
actions=set_field:192.168.122.202->tun_dst,output:1
table=0, priority=100, ip, nw_dst=10.128.0.0/23
actions=set_field:192.168.122.202->tun_dst,output:1

Other traffic destined for a local pod IP that hasn't been handled by a
higher priority rule
goes out port 9 to the virtual bridge for docker
table=0, priority=75, ip, nw_dst=10.128.2.0/23 actions=output:9
table=0, priority=75, arp,arp_tpa=10.128.2.0/23 actions=output:9

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

161

Then ports 3-8 or 10+ are for local pods, here there are two local pods
table=0, priority=100, ip, nw_dst=10.128.2.7 actions=output:8
table=0, priority=100,arp,arp_tpa=10.128.2.7 actions=output:8

table=0, priority=100, ip, nw_dst=10.128.2.10 actions=output:12
table=0, priority=100,arp,arp_tpa=10.128.2.10 actions=output:12

The SDN networking plug-in configures two entries (one for arp and one for ip) with output=1 per peer
endpoint (i.e. if there are five nodes, then there should be 4 * 2 rules; In the example above we have 3
nodes total, so there are four entries above). It also sets up the other entries on ports 2 and 9 that are
shown above. If there are flows missing, please look in the Section 31.10, “Reading the Logs” section.

31.7.4.1. Is the iptables configuration correct?

Check the output from iptables-save to make sure you are not filtering traffic. However, OpenShift
Container Platform sets up iptables rules during normal operation, so do not be surprised to see entries
there.

31.7.4.2. Is your external network correct?

Check external firewalls, if any, allow traffic to the target address (this is site-dependent, and beyond the
purview of this guide).

31.8. DEBUGGING VIRTUAL NETWORKING

31.8.1. Builds on a Virtual Network are Failing

If you are installing OpenShift Container Platform using a virtual network (for example, OpenStack), and
a build is failing, the maximum transmission unit (MTU) of the target node host might not be compatible
with the MTU of the primary network interface (for example, eth0).

For a build to complete successfully, the MTU of an SDN must be less than the eth0 network MTU in
order to pass data to between node hosts.

1. Check the MTU of your network by running the ip addr command:

ip addr

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
 link/ether fa:16:3e:56:4c:11 brd ff:ff:ff:ff:ff:ff
 inet 172.16.0.0/24 brd 172.16.0.0 scope global dynamic eth0
 valid_lft 168sec preferred_lft 168sec
 inet6 fe80::f816:3eff:fe56:4c11/64 scope link
 valid_lft forever preferred_lft forever

The MTU of the above network is 1500.

2. The MTU in your node configuration must be lower than the network value. Check the mtu in the
node configuration of the targeted node host:

cat /etc/origin/node/node-config.yaml

OpenShift Container Platform 3.3 Cluster Administration

162

...
networkConfig:
 mtu: 1450
 networkPluginName: company/openshift-ovs-subnet
...

In the above node configuration file, the mtu value is lower than the network MTU, so no
configuration is needed. If the mtu value was higher, edit the file and lower the value to at least
50 units fewer than the MTU of the primary network interface, then restart the node service. This
would allow larger packets of data to pass between nodes.

31.9. DEBUGGING POD EGRESS

If you are trying to access an external service from a pod, e.g.:

curl -kv github.com

Make sure that the DNS is resolving correctly:

dig +search +noall +answer github.com

That should return the IP address for the github server, but check that you got back the correct address.
If you get back no address, or the address of one of your machines, then you may be matching the
wildcard entry in your local DNS server.

To fix that, you either need to make sure that DNS server that has the wildcard entry is not listed as a
nameserver in your /etc/resolv.conf or you need to make sure that the wildcard domain is not
listed in the search list.

If the correct IP address was returned, then try the debugging advice listed above in Section 31.7,
“Debugging Local Networking”. Your traffic should leave the Open vSwitch on port 2 to pass through the
iptables rules, then out the route table normally.

31.10. READING THE LOGS

Run: journalctl -u atomic-openshift-node.service --boot | less

Look for the Output of setup script: line. Everything starting with '+' below that are the script
steps. Look through that for obvious errors.

Following the script you should see lines with Output of adding table=0. Those are the OVS
rules, and there should be no errors.

31.11. DEBUGGING KUBERNETES

Check iptables -t nat -L to make sure that the service is being NAT’d to the right port on the local
machine for the kubeproxy.

CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN

163

WARNING

This is all changing soon… Kubeproxy is being eliminated and replaced with an
iptables-only solution.

31.12. FURTHER HELP

1. Run the script at https://raw.githubusercontent.com/openshift/openshift-
sdn/master/hack/debug.sh on the master (or from another machine with access to the master) to
generate useful debugging information.

2. When debugging IP failover problems, run the script at
https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/ipf-debug.sh on the
master (or from another machine with access to the master) to generate useful debugging
information.

31.13. MISCELLANEOUS NOTES

31.13.1. Other clarifications on ingress

Kube - declare a service as NodePort and it will claim that port on all machines in the cluster (on
what interface?) and then route into kube-proxy and then to a backing pod. See
http://kubernetes.io/v1.0/docs/user-guide/services.html#type-nodeport (some node must be
accessible from outside)

Kube - declare as a LoadBalancer and something you have to write does the rest

OS/AE - Both use the router

31.13.2. TLS Handshake Timeout

When a pod fails to deploy, check its docker log for a TLS handshake timeout:

$ docker log <container_id>
...
[...] couldn't get deployment [...] TLS handshake timeout
...

This condition, and generally, errors in establishing a secure connection, may be caused by a large
difference in the MTU values between tun0 and the primary interface (e.g., eth0), such as when tun0
MTU is 1500 and eth0 MTU is 9000 (jumbo frames).

31.13.3. Other debugging notes

Peer interfaces (of a Linux virtual ethernet pair) can be determined with ethtool -S ifname

Driver type: ethtool -i ifname

OpenShift Container Platform 3.3 Cluster Administration

164

https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/debug.sh
https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/ipf-debug.sh
http://kubernetes.io/v1.0/docs/user-guide/services.html#type-nodeport

CHAPTER 32. DIAGNOSTICS TOOL

32.1. OVERVIEW

The oc adm diagnostics command runs a series of checks for error conditions in the host or cluster.
Specifically, it:

Verifies that the default registry and router are running and correctly configured.

Checks ClusterRoleBindings and ClusterRoles for consistency with base policy.

Checks that all of the client configuration contexts are valid and can be connected to.

Checks that SkyDNS is working properly and the pods have SDN connectivity.

Validates master and node configuration on the host.

Checks that nodes are running and available.

Analyzes host logs for known errors.

Checks that systemd units are configured as expected for the host.

32.2. USING THE DIAGNOSTICS TOOL

OpenShift Container Platform can be deployed in many ways: built from source, included in a VM image,
in a container image, or as enterprise RPMs. Each method implies a different configuration and
environment. To minimize environment assumptions, the diagnostics were added to the openshift
binary so that wherever there is an OpenShift Container Platform server or client, the diagnostics can
run in the exact same environment.

To use the diagnostics tool, preferably on a master host and as cluster administrator, run:

$ oc adm diagnostics

This runs all available diagnostics, skipping any that do not apply. For example, the NodeConfigCheck
does not run unless a node configuration is available. You can also run specific diagnostics by name as
you work to address issues. For example:

$ oc adm diagnostics NodeConfigCheck UnitStatus

Diagnostics look for configuration files in standard locations:

Client:

As indicated by the $KUBECONFIG environment variable variable

~/.kube/config file

Master:

/etc/origin/master/master-config.yaml

Node:

/etc/origin/node/node-config.yaml

CHAPTER 32. DIAGNOSTICS TOOL

165

/etc/origin/node/node-config.yaml

Non-standard locations can be specified with flags (respectively, --config, --master-config, and -
-node-config). If a configuration file is not found or specified, related diagnostics are skipped.

Consult the output with the --help flag for all available options.

32.3. RUNNING DIAGNOSTICS IN A SERVER ENVIRONMENT

Master and node diagnostics are most useful in a specific target environment, which is a deployment of
RPMs with Ansible deployment logic. This provides some diagnostic benefits:

Master and node configuration is based on a configuration file in a standard location.

Systemd units are configured to manage the server(s).

All components log to journald.

Having configuration files where Ansible places them means that you will generally not need to specify
where to find them. Running oc adm diagnostics without flags will look for master and node
configurations in the standard locations and use them if found; this should make the Ansible-installed use
case as simple as possible. Also, it is easy to specify configuration files that are not in the expected
locations:

$ oc adm diagnostics --master-config=<file_path> --node-config=<file_path>

Systemd units and logs entries in journald are necessary for the current log diagnostic logic. For other
deployment types, logs may be going into files, to stdout, or may combine node and master. At this time,
for these situations, log diagnostics are not able to work properly and will be skipped.

32.4. RUNNING DIAGNOSTICS IN A CLIENT ENVIRONMENT

You may have access as an ordinary user, and/or as a cluster-admin user, and/or may be running on a
host where OpenShift Container Platform master or node servers are operating. The diagnostics attempt
to use as much access as the user has available.

A client with ordinary access should be able to diagnose its connection to the master and run a
diagnostic pod. If multiple users or masters are configured, connections will be tested for all, but the
diagnostic pod only runs against the current user, server, or project.

A client with cluster-admin access available (for any user, but only the current master) should be able to
diagnose the status of infrastructure such as nodes, registry, and router. In each case, running oc adm
diagnostics looks for the client configuration in its standard location and uses it if available.

OpenShift Container Platform 3.3 Cluster Administration

166

CHAPTER 33. IDLING APPLICATIONS

33.1. OVERVIEW

As an OpenShift Container Platform administrator, you can idle applications in order to reduce the
consumption of resources.

Applications are made of services, as well as other scalable resources, such as deployment
configurations. The action of idling an application involves idling all associated resources.

33.2. IDLING APPLICATIONS

Idling an application involves finding the scalable resources (deployment configurations, replication
controllers, and others) associated with a service. Idling an application finds the service and marks it as
idled, scaling down the resources to zero replicas.

You can use the oc idle command to idle a single service, or use the --resource-names-file
option to idle multiple services.

33.2.1. Idling Single Services

Idle a single service with the following command:

$ oc idle <service>

33.2.2. Idling Multiple Services

Idle multiple services by creating a list of the desired services, then using the --resource-names-
file option with the oc idle command.

This is helpful if an application spans across a set of services within a project, or when idling multiple
services in conjunction with a script in order to idle multiple applications in bulk within the same project.

1. Create a text file containing a list of the services, each on their own line.

2. Idle the services using the --resource-names-file option:

$ oc idle --resource-names-file <filename>

NOTE

The idle command is limited to a single project. For idling applications across a cluster,
run the idle command for each project individually.

33.3. UNIDLING APPLICATIONS

Application services become active again when they receive network traffic and will be scaled back up
their previous state. This includes both traffic to the services and traffic passing through routes.

Applications may be manually unidled by scaling up the resources. For example, to scale up a
deploymentconfig, run the command:

CHAPTER 33. IDLING APPLICATIONS

167

$ oc scale --replicas=1 dc <deploymentconfig>

NOTE

Automatic unidling by a router is currently only supported by the default HAProxy router.

OpenShift Container Platform 3.3 Cluster Administration

168

CHAPTER 34. REVISION HISTORY: CLUSTER
ADMINISTRATION

Red Hat OpenShift Documentation Team 3.3 :experimental:

34.1. THU JUL 27 2017

Affected Topic Description of Change

Setting Quotas Updated the references to quota and limit ranges, as they are now listed on the
Quota page.

Setting Limit Ranges Updated the references to quota and limit ranges, as they are now listed on the
Quota page.

Setting Quotas Removed unsupported options from the Compute Resources Managed by Quota
table.

34.2. TUE JUL 18 2017

Affected Topic Description of Change

Managing Security
Context Constraints

Updated the Add an SCC to a User, Group, or Project section to add notes on
granting SCC access and clarify project access.

34.3. THU MAY 25 2017

Affected Topic Description of Change

Managing Security
Context Constraints

Added a warning about pod creation on behalf of a user within the Grant Access to
the Privileged SCC section.

34.4. MON MAY 15 2017

Affected Topic Description of Change

Backup and Restore Restored and updated steps for adding an etcd member .

34.5. TUE MAY 02 2017

CHAPTER 34. REVISION HISTORY: CLUSTER ADMINISTRATION

169

Affected Topic Description of Change

Securing Builds by
Strategy

Added that custom builds are disabled by default.

34.6. WED APR 12 2017

Affected Topic Description of Change

Managing Security
Context Constraints

Added information about preserving labels and annotations, in addition to groups.

Managing Nodes Fixed markup error in the examples in the Setting Maximum Pods Per Node
section.

34.7. MON MAR 27 2017

Affected Topic Description of Change

Setting Limit Ranges Added the missing -n demoproject option to the oc describe limits
example and updated the command’s output.

Backup and Restore Updated the backup and restore procedure.

34.8. MON MAR 20 2017

Affected Topic Description of Change

Managing Nodes Added the Setting Maximum Pods Per Node section.

Managing Authorization
Policies

Updated the ClusterRole file in the Granting Users Daemonset Permissions
section.

34.9. TUE MAR 14 2017

Affected Topic Description of Change

Managing Nodes Renamed instances of openshift_node_set_node_ip to
openshift_set_node_ip, the correct openshift-ansible variable
name.

Restricting Application
Capabilities Using
Seccomp

Updated Seccomp references of runtime/default to be
docker/default.

OpenShift Container Platform 3.3 Cluster Administration

170

34.10. TUE MAR 07 2017

Affected Topic Description of Change

Encrypting Hosts with
IPsec

Re-added the Encrypting Hosts with IPsec topic and made it specific to the
current version of libreswan.

Managing Pods Added information and arranged the Controlling Egress Traffic section.

Added clarifying details around EgressNetworkPolicy, including that it only
affects external traffic (not pod-to-pod traffic) and that you can only have a single
EgressNetworkPolicy in a namespace; added additional details about rule
ordering and that breaking the rules can result in all egress traffic from the
namespace being dropped.

34.11. THU FEB 16 2017

Affected Topic Description of Change

Managing Pods Added more information about disabling MAC filtering for the Egress router.

Aggregating Container
Logs

Added a requirement that port 9300 be open for Elasticsearch to the Pre-
deployment Configuration section.

High Availability Added a step for deploying the ipfailover router to monitor postgresql listening to
the Configuring a Highly-available Service section

34.12. MON FEB 06 2017

Affected Topic Description of Change

Handling Out of
Resource Errors

Added clarifying details around kubeletArguments in the Example Scenario
section.

34.13. WED JAN 25 2017

Affected Topic Description of Change

Monitoring Routers Removed references to the deprecated --credentials option.

High Availability Removed references to the deprecated --credentials option.

Configuring the Cluster
to Use Unique External
IPs

Added a CAUTION box indicating that external IPs assigned to services of type
LoadBalancer will always be in the range of ingressIPNetworkCIDR and
updated Ingress CIDR references to the new default.

CHAPTER 34. REVISION HISTORY: CLUSTER ADMINISTRATION

171

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#install-config-aggregate-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.3/html-single/installation_and_configuration/#pre-deployment-configuration

34.14. MON JAN 09 2017

Affected Topic Description of Change

Managing Pods Added important box about Red Hat OpenStack Platform to the Limiting Pod
Access with an Egress Router section.

Managing Authorization
Policies

Added clarifying details about cluster roles.

34.15. TUE DEC 20 2016

Affected Topic Description of Change

Backup and Restore Added to the note with information on host backups over 700 MB.

34.16. TUE DEC 13 2016

Affected Topic Description of Change

Idling Applications New topic.

Diagnostics Tool Added Running Diagnostics in a Server Environment and Running Diagnostics in
a Client Environment sections.

34.17. MON DEC 05 2016

Affected Topic Description of Change

Managing Pods Fixed the syntax of the Example Pod Definition for an Egress Router .

Backup and Restore Added the Backup and Restore section.

34.18. MON NOV 21 2016

Affected Topic Description of Change

Sysctls New topic on Technology Preview sysctl support.

Managing Security
Context Constraints

Updated the output for oc get scc.

34.19. MON NOV 14 2016

OpenShift Container Platform 3.3 Cluster Administration

172

Affected Topic Description of Change

Troubleshooting
OpenShift SDN

Removed references to firewalld, as the installer does not currently support
it.

iptables New topic on how OpenShift Container Platform and iptables interact.

Securing Builds by
Strategy

Added jenkinspipeline build strategy role information.

Assigning Unique
External IPs for Ingress
Traffic

Added a NOTE stating that this feature is only supported in non-cloud
deployments.

Overcommiting Added a Warning box about swap in the Disabling Swap Memory section.

Out of Resource
Handling

New topic about memory eviction.

34.20. TUE NOV 01 2016

Affected Topic Description of Change

Backup and Restore Added a NOTE box to the Cluster Restore section, indicating that the outlined
procedure only works for single-member etcd clusters.

34.21. MON OCT 24 2016

Affected Topic Description of Change

Configuring Service
Accounts

Added a Service Accounts and Secrets heading.

Restricting Application
Capabilities Using
Seccomp

New topic.

34.22. MON OCT 17 2016

Affected Topic Description of Change

High Availability Added the Multiple Highly Available Services In a Network section.

Diagnostics Tool New topic about the oc adm diagnostics command.

CHAPTER 34. REVISION HISTORY: CLUSTER ADMINISTRATION

173

34.23. TUE OCT 11 2016

Affected Topic Description of Change

Setting Quotas Added that cpu and requests.cpu are the same value and can be used
interchangeably, as with memory and requests.memory.

34.24. TUE OCT 04 2016

Affected Topic Description of Change

High Availability Fixed deprecated commands in the Configuring a Highly-available Routing
Service section.

Backup and Restore Added Prerequisites details and created new sections for Application Data
Backup, Application Data Restore, Project Restore, as well as backing up Role
Bindings, Service Accounts, Secrets, and Persistent Volume Claims.

Pruning Objects Added a Note box about the required storage:delete:enabled flag when
pruning images.

34.25. TUE SEP 27 2016

OpenShift Container Platform 3.3 initial release.

Affected Topic Description of Change

High Availability Fixed deprecated commands in the Configuring a Highly-available Routing
Service section.

Backup and Restore Added Prerequisites details and created new sections for Application Data
Backup, Application Data Restore, Project Restore, as well as backing up Role
Bindings, Service Accounts, Secrets, and Persistent Volume Claims.

Pruning Objects Added a Note box about the required storage:delete:enabled flag when
pruning images.

Cluster Administration
→ Managing Pods →
Limiting the Bandwidth
Available to Pods

Added details on limiting the bandwidth available to pods via quality-of-service
traffic shaping.

Cluster Administration
→ Limit Pod Access
with Egress Firewall

Added new topic covering how to limit the IP addresses and traffic that a pod can
access.

OpenShift Container Platform 3.3 Cluster Administration

174

Scoped Tokens New topic discussing scoped tokens, which are tokens that identify given users,
but are limited to certain actions by its scope.

Image Policy New topic about controlling which images are allowed to run on your cluster using
the ImagePolicy admission plug-in.

Setting Multi-Project
Quotas

New topic about how to set multi-project quotas.

Monitoring Images New topic discussing oadm top images and oadm top imagestreams
commands.

Managing Nodes Added a new Rebooting Nodes section.

Pruning Objects Added --prune-over-size-limit information.

Setting Quotas Added recent image quota restrictions.

Setting Limit Ranges Added recent image quota restrictions.

Affected Topic Description of Change

CHAPTER 34. REVISION HISTORY: CLUSTER ADMINISTRATION

175

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. MANAGING NODES
	2.1. OVERVIEW
	2.2. LISTING NODES
	2.3. ADDING NODES
	2.4. DELETING NODES
	2.5. UPDATING LABELS ON NODES
	2.6. LISTING PODS ON NODES
	2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
	2.8. EVACUATING PODS ON NODES
	2.9. REBOOTING NODES
	2.9.1. Infrastructure Nodes
	2.9.2. Using Pod Anti-Affinity for the Docker Registry Pod
	2.9.3. Handling Nodes Running Routers

	2.10. CONFIGURING NODE RESOURCES
	2.10.1. Setting Maximum Pods Per Node

	2.11. CHANGING NODE TRAFFIC INTERFACE

	CHAPTER 3. MANAGING USERS
	3.1. OVERVIEW
	3.2. ADDING A USER
	3.3. VIEWING USER AND IDENTITY LISTS
	3.4. MANAGING USER AND GROUP LABELS
	3.5. DELETING A USER

	CHAPTER 4. MANAGING PROJECTS
	4.1. OVERVIEW
	4.2. SELF-PROVISIONING PROJECTS
	4.2.1. Modifying the Template for New Projects
	4.2.2. Disabling Self-provisioning

	4.3. USING NODE SELECTORS
	4.3.1. Setting the Cluster-wide Default Node Selector
	4.3.2. Setting the Project-wide Node Selector
	4.3.3. Developer-specified Node Selectors

	4.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

	CHAPTER 5. MANAGING PODS
	5.1. OVERVIEW
	5.2. MANAGING POD NETWORKS
	5.2.1. Joining Project Networks

	5.3. ISOLATING PROJECT NETWORKS
	5.3.1. Making Project Networks Global

	5.4. LIMITING RUN-ONCE POD DURATION
	5.4.1. Configuring the RunOnceDuration Plug-in
	5.4.2. Specifying a Custom Duration per Project

	5.5. CONTROLLING EGRESS TRAFFIC
	5.5.1. Using an Egress Firewall to Limit Access to External Resources
	5.5.2. Using an Egress Router to Allow External Resources to Recognize Pod Traffic
	5.5.2.1. Important Deployment Considerations
	5.5.2.2. Deploying an Egress Router Pod
	5.5.2.3. Enabling Failover for Egress Router Pods

	5.6. LIMITING THE BANDWIDTH AVAILABLE TO PODS

	CHAPTER 6. CONFIGURING SERVICE ACCOUNTS
	6.1. OVERVIEW
	6.2. USER NAMES AND GROUPS
	6.3. MANAGING SERVICE ACCOUNTS
	6.4. ENABLING SERVICE ACCOUNT AUTHENTICATION
	6.5. MANAGED SERVICE ACCOUNTS
	6.6. INFRASTRUCTURE SERVICE ACCOUNTS
	6.7. SERVICE ACCOUNTS AND SECRETS

	CHAPTER 7. MANAGING AUTHORIZATION POLICIES
	7.1. OVERVIEW
	7.2. VIEWING ROLES AND BINDINGS
	7.2.1. Viewing Cluster Policy
	7.2.2. Viewing Local Policy

	7.3. MANAGING ROLE BINDINGS
	7.4. GRANTING USERS DAEMONSET PERMISSIONS
	7.5. CREATING A LOCAL ROLE

	CHAPTER 8. IMAGE POLICY
	8.1. OVERVIEW
	8.2. CONFIGURING THE IMAGEPOLICY ADMISSION PLUG-IN
	8.3. TESTING THE IMAGEPOLICY ADMISSION PLUG-IN

	CHAPTER 9. SCOPED TOKENS
	9.1. OVERVIEW
	9.2. EVALUATION
	9.3. USER SCOPES
	9.4. ROLE SCOPE

	CHAPTER 10. MONITORING IMAGES
	10.1. OVERVIEW
	10.2. VIEWING IMAGES STATISTICS
	10.3. VIEWING IMAGESTREAMS STATISTICS
	10.4. PRUNING IMAGES

	CHAPTER 11. MANAGING SECURITY CONTEXT CONSTRAINTS
	11.1. OVERVIEW
	11.2. LISTING SECURITY CONTEXT CONSTRAINTS
	11.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT
	11.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS
	11.5. DELETING SECURITY CONTEXT CONSTRAINTS
	11.6. UPDATING SECURITY CONTEXT CONSTRAINTS
	11.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS
	11.8. HOW DO I?
	11.8.1. Grant Access to the Privileged SCC
	11.8.2. Grant a Service Account Access to the Privileged SCC
	11.8.3. Enable Images to Run with USER in the Dockerfile
	11.8.4. Enable Container Images that Require Root
	11.8.5. Use --mount-host on the Registry
	11.8.6. Provide Additional Capabilities
	11.8.7. Modify Cluster Default Behavior
	11.8.8. Use the hostPath Volume Plug-in
	11.8.9. Ensure That Admission Attempts to Use a Specific SCC First
	11.8.10. Add an SCC to a User, Group, or Project

	CHAPTER 12. SETTING QUOTAS
	12.1. OVERVIEW
	12.2. RESOURCES MANAGED BY QUOTA
	12.3. QUOTA SCOPES
	12.4. QUOTA ENFORCEMENT
	12.5. REQUESTS VS LIMITS
	12.6. SAMPLE RESOURCE QUOTA DEFINITIONS
	12.7. CREATING A QUOTA
	12.8. VIEWING A QUOTA
	12.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD
	12.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS

	CHAPTER 13. SETTING MULTI-PROJECT QUOTAS
	13.1. OVERVIEW
	13.2. SELECTING PROJECTS
	13.3. VIEWING APPLICABLE CLUSTERRESOURCEQUOTAS
	13.4. SELECTION GRANULARITY

	CHAPTER 14. SETTING LIMIT RANGES
	14.1. OVERVIEW
	14.1.1. Container Limits
	14.1.2. Pod Limits
	14.1.3. Image Limits
	14.1.4. Image Stream Limits
	14.1.4.1. Counting of Image References

	14.2. CREATING A LIMIT RANGE
	14.3. VIEWING LIMITS
	14.4. DELETING LIMITS

	CHAPTER 15. PRUNING OBJECTS
	15.1. OVERVIEW
	15.2. BASIC PRUNE OPERATIONS
	15.3. PRUNING DEPLOYMENTS
	15.4. PRUNING BUILDS
	15.5. PRUNING IMAGES

	CHAPTER 16. GARBAGE COLLECTION
	16.1. OVERVIEW
	16.2. CONTAINER GARBAGE COLLECTION
	16.2.1. Detecting Containers for Deletion

	16.3. IMAGE GARBAGE COLLECTION
	16.3.1. Detecting Images for Deletion

	CHAPTER 17. SCHEDULER
	17.1. OVERVIEW
	17.2. GENERIC SCHEDULER
	17.2.1. Filter the Nodes
	17.2.2. Prioritize the Filtered List of Nodes
	17.2.3. Select the Best Fit Node

	17.3. AVAILABLE PREDICATES
	17.3.1. Static Predicates
	17.3.2. Configurable Predicates

	17.4. AVAILABLE PRIORITY FUNCTIONS
	17.4.1. Static Priority Functions
	17.4.2. Configurable Priority Functions

	17.5. SCHEDULER POLICY
	17.5.1. Default Scheduler Policy
	17.5.2. Modifying Scheduler Policy

	17.6. USE CASES
	17.6.1. Infrastructure Topological Levels
	17.6.2. Affinity
	17.6.3. Anti Affinity

	17.7. SAMPLE POLICY CONFIGURATIONS
	17.8. SCHEDULER EXTENSIBILITY
	17.8.1. Enhancements
	17.8.2. Replacement

	17.9. CONTROLLING POD PLACEMENT
	17.9.1. Constraining Pod Placement Using Node Name
	17.9.2. Constraining Pod Placement Using a Node Selector

	CHAPTER 18. ALLOCATING NODE RESOURCES
	18.1. OVERVIEW
	18.2. CONFIGURING NODES FOR ALLOCATED RESOURCES
	18.3. COMPUTING ALLOCATED RESOURCES
	18.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY
	18.5. SYSTEM RESOURCES REPORTED BY NODE
	18.6. NODE ENFORCEMENT
	18.7. EVICTION THRESHOLDS
	18.8. SCHEDULER

	CHAPTER 19. OVERCOMMITTING
	19.1. OVERVIEW
	19.2. REQUESTS AND LIMITS
	19.3. COMPUTE RESOURCES
	19.3.1. CPU
	19.3.2. Memory

	19.4. QUALITY OF SERVICE CLASSES
	19.5. CONFIGURING MASTERS FOR OVERCOMMITMENT
	19.6. CONFIGURING NODES FOR OVERCOMMITMENT
	19.6.1. Enforcing CPU Limits
	19.6.2. Reserving Resources for System Processes
	19.6.3. Kernel Tunable Flags
	19.6.4. Disabling Swap Memory

	CHAPTER 20. ASSIGNING UNIQUE EXTERNAL IPS FOR INGRESS TRAFFIC
	20.1. OVERVIEW
	20.2. RESTRICTIONS
	20.3. CONFIGURING THE CLUSTER TO USE UNIQUE EXTERNAL IPS
	20.4. CONFIGURING AN INGRESS IP FOR A SERVICE
	20.5. ROUTING THE INGRESS CIDR FOR DEVELOPMENT OR TESTING

	CHAPTER 21. HANDLING OUT OF RESOURCE ERRORS
	21.1. OVERVIEW
	21.2. EVICTION POLICY
	21.2.1. Eviction Signals
	21.2.2. Eviction Thresholds
	21.2.2.1. Soft Eviction Thresholds
	21.2.2.2. Hard Eviction Thresholds

	21.2.3. Oscillation of Node Conditions
	21.2.4. Eviction Monitoring Interval
	21.2.5. Mapping Eviction Signals to Node Conditions
	21.2.6. Eviction of Pods
	21.2.7. Scheduler
	21.2.8. Example Scenario

	21.3. OUT OF RESOURCE AND OUT OF MEMORY
	21.4. RECOMMENDED PRACTICES
	21.4.1. DaemonSets and Out of Resource Handling

	CHAPTER 22. MONITORING ROUTERS
	22.1. OVERVIEW
	22.2. VIEWING STATISTICS
	22.3. DISABLING STATISTICS VIEW
	22.4. VIEWING LOGS
	22.5. VIEWING THE ROUTER INTERNALS

	CHAPTER 23. HIGH AVAILABILITY
	23.1. OVERVIEW
	23.2. CONFIGURING IP FAILOVER
	23.2.1. Virtual IP Addresses
	23.2.2. Configuring a Highly-available Routing Service
	23.2.3. Configuring a Highly-available Network Service
	23.2.4. Dynamically Updating Virtual IPs for a Highly-available Service
	23.2.5. Multiple Highly Available Services In a Network

	CHAPTER 24. IPTABLES
	24.1. OVERVIEW
	24.2. IPTABLES
	24.3. IPTABLES.SERVICE

	CHAPTER 25. SECURING BUILDS BY STRATEGY
	25.1. OVERVIEW
	25.2. DISABLING A BUILD STRATEGY GLOBALLY
	25.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY
	25.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

	CHAPTER 26. RESTRICTING APPLICATION CAPABILITIES USING SECCOMP
	26.1. OVERVIEW
	26.2. ENABLING SECCOMP
	26.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR SECCOMP
	26.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR A CUSTOM SECCOMP PROFILE

	CHAPTER 27. SYSCTLS
	27.1. OVERVIEW
	27.2. UNDERSTANDING SYSCTLS
	27.3. NAMESPACED VS NODE-LEVEL SYSCTLS
	27.4. SAFE VS UNSAFE SYSCTLS
	27.5. ENABLING UNSAFE SYSCTLS
	27.6. SETTING SYSCTLS FOR A POD

	CHAPTER 28. ENCRYPTING HOSTS WITH IPSEC
	28.1. OVERVIEW
	28.2. ENCRYPTING HOSTS
	28.2.1. Step 1: Prerequisites
	28.2.2. Step 2: Certificates
	28.2.3. Step 3: libreswan IPsec Policy
	28.2.3.1. Opportunistic Group Configuration
	28.2.3.2. Explicit Connection Configuration

	28.3. IPSEC FIREWALL CONFIGURATION
	28.4. STARTING AND ENABLING IPSEC
	28.5. TROUBLESHOOTING

	CHAPTER 29. BUILDING DEPENDENCY TREES
	29.1. OVERVIEW
	29.2. USAGE

	CHAPTER 30. BACKUP AND RESTORE
	30.1. OVERVIEW
	30.2. PREREQUISITES
	30.3. CLUSTER BACKUP
	30.3.1. Master Backup

	30.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS
	30.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS
	30.5.1. Embedded etcd
	30.5.2. Separate etcd
	30.5.2.1. Adding Additional etcd Members

	30.6. ADDING NEW ETCD HOSTS
	30.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
	30.8. PROJECT BACKUP
	30.8.1. Role Bindings
	30.8.2. Service Accounts
	30.8.3. Secrets
	30.8.4. Persistent Volume Claims

	30.9. PROJECT RESTORE
	30.10. APPLICATION DATA BACKUP
	30.11. APPLICATION DATA RESTORE

	CHAPTER 31. TROUBLESHOOTING OPENSHIFT SDN
	31.1. OVERVIEW
	31.2. NOMENCLATURE
	31.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE
	31.4. DEBUGGING THE ROUTER
	31.5. DEBUGGING A SERVICE
	31.6. DEBUGGING NODE TO NODE NETWORKING
	31.7. DEBUGGING LOCAL NETWORKING
	31.7.1. The Interfaces on a Node
	31.7.2. SDN Flows Inside a Node
	31.7.3. Debugging Steps
	31.7.3.1. Is IP Forwarding Enabled?
	31.7.3.2. Are your routes correct?

	31.7.4. Is the Open vSwitch configured correctly?
	31.7.4.1. Is the iptables configuration correct?
	31.7.4.2. Is your external network correct?

	31.8. DEBUGGING VIRTUAL NETWORKING
	31.8.1. Builds on a Virtual Network are Failing

	31.9. DEBUGGING POD EGRESS
	31.10. READING THE LOGS
	31.11. DEBUGGING KUBERNETES
	31.12. FURTHER HELP
	31.13. MISCELLANEOUS NOTES
	31.13.1. Other clarifications on ingress
	31.13.2. TLS Handshake Timeout
	31.13.3. Other debugging notes

	CHAPTER 32. DIAGNOSTICS TOOL
	32.1. OVERVIEW
	32.2. USING THE DIAGNOSTICS TOOL
	32.3. RUNNING DIAGNOSTICS IN A SERVER ENVIRONMENT
	32.4. RUNNING DIAGNOSTICS IN A CLIENT ENVIRONMENT

	CHAPTER 33. IDLING APPLICATIONS
	33.1. OVERVIEW
	33.2. IDLING APPLICATIONS
	33.2.1. Idling Single Services
	33.2.2. Idling Multiple Services

	33.3. UNIDLING APPLICATIONS

	CHAPTER 34. REVISION HISTORY: CLUSTER ADMINISTRATION
	34.1. THU JUL 27 2017
	34.2. TUE JUL 18 2017
	34.3. THU MAY 25 2017
	34.4. MON MAY 15 2017
	34.5. TUE MAY 02 2017
	34.6. WED APR 12 2017
	34.7. MON MAR 27 2017
	34.8. MON MAR 20 2017
	34.9. TUE MAR 14 2017
	34.10. TUE MAR 07 2017
	34.11. THU FEB 16 2017
	34.12. MON FEB 06 2017
	34.13. WED JAN 25 2017
	34.14. MON JAN 09 2017
	34.15. TUE DEC 20 2016
	34.16. TUE DEC 13 2016
	34.17. MON DEC 05 2016
	34.18. MON NOV 21 2016
	34.19. MON NOV 14 2016
	34.20. TUE NOV 01 2016
	34.21. MON OCT 24 2016
	34.22. MON OCT 17 2016
	34.23. TUE OCT 11 2016
	34.24. TUE OCT 04 2016
	34.25. TUE SEP 27 2016

