‘® redhat.

JBoss Enterprise Application Platform
Common Criteria Certification 6.2.2

Security Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Last Updated: 2017-11-17

JBoss Enterprise Application Platform Common Criteria Certification6.2.2
Security Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Nidhi Chaudhary
Lucas Costi
Russell Dickenson
Sande Gilda
Vikram Goyal
Eamon Logue
Darrin Mison
Scott Mumford
David Ryan

Misty Stanley-Jones
Keerat Verma
Tom Wells
Nichola Moore

Nidhi Srinivas

Legal Notice

Copyright © 2015 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a guide to securing Red Hat JBoss Enterprise Application Platform 6 and its patch
releases.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM6 7
CHAPTER 1. INTRODUCTION ... ittt it i et atsa s aasaa e ansansasaasansaneanannns 8
1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 (JBOSS EAP 6) 8
1.2. ABOUT SECURING JBOSS ENTERPRISE APPLICATION PLATFORM 6 8
CHAPTER 2. SECURITY OVERVIEW ittt et e e e et et sasasaanaasaneanannn, 9
2.1. ABOUT DECLARATIVE SECURITY 9
2.1.1. Java EE Declarative Security Overview 9
2.1.2. Security References 9
2.1.3. Security Identity 10
2.1.4. Security Roles 12
2.1.5. EJB Method Permissions 13
2.1.6. Enterprise Beans Security Annotations 17
2.1.7. Web Content Security Constraints 18
2.1.8. Enable Form-based Authentication 20
2.1.9. Enable Declarative Security 21
CHAPTER 3. INTRODUCTION TO JAAS ... ittt ittt ia e e sasaa e sansansasnasaanansnnns 22
3.1. ABOUT JAAS 22
3.2. JAAS CORE CLASSES 22
3.3. SUBJECT AND PRINCIPAL CLASSES 22
3.4. SUBJECT AUTHENTICATION 23
PARTIL. SECURING THE PLATFORM it et a s e e e ae e asaanaannnennens 27
CHAPTER 4. THE SECURITY SUBSYSTEMttt et e taesansasannasnanansanns 28
4.1. ABOUT THE SECURITY SUBSYSTEM 28
4.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM 28
4.3. CONFIGURING THE SECURITY SUBSYSTEM 29
4.3.1. Configure the Security Subsystem 29
4.3.2. Security Management 30
4.3.2.1. About Deep Copy Subject Mode 30
4.3.2.2. Enable Deep Copy Subject Mode 30

4.3.3. Security Domains 31
4.3.3.1. About Security Domains 31
4.3.3.2. About Picketbox 32
CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT it it e e iaenannanannnnns 33
5.1. ABOUT SECURITY TOKEN SERVICE (STS) 33
5.2. CONFIGURE PICKETLINK STS 34
5.3. ABOUT PICKETLINK STS LOGIN MODULES 36
5.4. CONFIGURE STSISSUINGLOGINMODULE 38
5.5. CONFIGURE STSVALIDATINGLOGINMODULE 38
5.6. SAML WEB BROWSER BASED SSO 39
5.6.1. About SAML Web Browser Based SSO 39
5.6.2. Setup SAML v2 based Web SSO using HTTP/Redirect Binding 40
5.6.3. Configure Identity Provider 40
5.6.4. Configure Service Provider 42
5.6.5. Setup SAML v2 based Web SSO using HTTP/POST Binding 44

5.7. CONFIGURE SAML GLOBAL LOGOUT PROFILE 44
5.8. KERBEROS AND SPNEGO INTEGRATION 45
5.8.1. About Kerberos and SPNEGO Integration 45

Security Guide

5.8.2. Desktop SSO using SPNEGO
5.8.3. Configure JBoss Negotiation for Microsoft Windows Domain
5.9. AUTHENTICATION
5.9.1. About Authentication
5.9.2. Configure Authentication in a Security Domain
5.10. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
5.10.1. About Java Authentication SPI for Containers (JASPI) Security
5.10.2. Configure Java Authentication SPI for Containers (JASPI) Security
5.11. AUTHORIZATION
5.11.1. About Authorization
5.11.2. Configure Authorization in a Security Domain
5.12. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
5.12.1. About Java Authorization Contract for Containers (JACC)
5.12.2. Configure Java Authorization Contract for Containers (JACC) Security
5.13. SECURITY AUDITING
5.13.1. About Security Auditing
5.13.2. Configure Security Auditing
5.13.3. New Security Properties
5.14. SECURITY MAPPING
5.14.1. About Security Mapping
5.14.2. Configure Security Mapping in a Security Domain

CHAPTER 6. JAVA SECURITY MANAGER ... oo i it et a e e

6.1. ABOUT THE JAVA SECURITY MANAGER

6.2. ABOUT JAVA SECURITY MANAGER POLICIES

6.3. WRITE A JAVA SECURITY MANAGER POLICY

6.4. IBM JRE AND THE JAVA SECURITY MANAGER

6.5. JAVA SECURITY POLICY STATEMENTS

6.6. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER
6.7. DEBUG SECURITY MANAGER POLICIES

CHAPTER 7. SECURITY REALMS et e it et a e e aa e nananns

7.1. ABOUT SECURITY REALMS
7.2. ADD A NEW SECURITY REALM
7.3. ADD A USER TO A SECURITY REALM

CHAPTER 8. ENCRYPTION ... ittt e et et n e e e a s aaannnnnns

8.1. ABOUT ENCRYPTION
8.2. ABOUT SSL ENCRYPTION
8.3. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB SERVER
8.4. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE
8.5. SSL CONNECTOR REFERENCE
8.6. FIPS 140-2 COMPLIANT ENCRYPTION
8.6.1. About FIPS 140-2 Compliance
8.6.2. FIPS 140-2 Compliant Passwords
8.6.3. Enable FIPS 140-2 Cryptography for SSL on Red Hat Enterprise Linux 6

CHAPTER 9. NETWORK SECURITY ...ttt et et e ti e e e n e nasnaenanans

9.1. SECURE THE MANAGEMENT INTERFACES

9.2. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES

9.3. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP 6
9.4. NETWORK PORTS USED BY JBOSS EAP 6

CHAPTER 10. MANAGEMENT INTERFACE SECURITYottt iia e

45
48
49
49
49
51
51
51
52
52
52
53
53
54
55
55
55
56
57
57
58

59
59
59
60
60
61
62
64

66
66
66
67

68
68
68
68
70
73
76
76
77
77

81
81
82
84

Table of Contents

10.1. SECURE THE MANAGEMENT INTERFACES 88
10.2. DEFAULT USER SECURITY CONFIGURATION 88
10.3. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE CONFIGURATION 89
10.4. DISABLE THE HTTP MANAGEMENT INTERFACE 90
10.5. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT SECURITY REALM 91
10.6. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM 93
10.7. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT INTERFACES 94
10.8. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS IN STANDALONE MODE 95
10.9. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS IN DOMAIN MODE 96
10.10. USING 2-WAY SSL FOR THE MANAGEMENT INTERFACE AND THE CLI 96
10.11. PASSWORD VAULTS FOR SENSITIVE STRINGS 98
10.11.1. About Securing Sensitive Strings in Clear-Text Files 98
10.11.2. Create a Java Keystore to Store Sensitive Strings 99
10.11.3. Mask the Keystore Password and Initialize the Password Vault 101
10.11.4. Configure JBoss EAP 6 to Use the Password Vault 102
10.11.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore 104
10.11.6. Store and Resolve Sensitive Strings In Your Applications 106
10.12. LDAP 108
10.12.1. About LDAP 108
10.12.2. Use LDAP to Authenticate to the Management Interfaces 109

CHAPTER 11. SECURING THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL 114

11.1. ABOUT ROLE-BASED ACCESS CONTROL (RBAC) 114
11.2. ROLE-BASED ACCESS CONTROL IN THE GUI AND CLI 114
11.3. SUPPORTED AUTHENTICATION SCHEMES 115
11.4. THE STANDARD ROLES 115
11.5. ABOUT ROLE PERMISSIONS 116
11.6. ABOUT CONSTRAINTS 117
11.7. ABOUT JMX AND ROLE-BASED ACCESS CONTROL 118
11.8. CONFIGURING ROLE-BASED ACCESS CONTROL 119
11.8.1. Overview of RBAC Configuration Tasks 119
11.8.2. Enabling Role-Based Access Control 119
11.8.3. Changing the Permission Combination Policy 121
11.9. MANAGING ROLES 122
11.9.1. About Role Membership 122
11.9.2. Configure User Role Assignment 122
11.9.3. Configure User Role Assignment using jboss-cli.sh 126
11.9.4. About Roles and User Groups 129
11.9.5. Configure Group Role Assignment 130
11.9.6. Configure Group Role Assignment with jboss-cli.sh 133
11.9.7. About Authorization and Group Loading with LDAP 137
username-to-dn 138

The Group Search 139
General Group Searching 141
11.9.8. About Scoped Roles 143
11.9.9. Creating Scoped Roles 144
11.10. CONFIGURING CONSTRAINTS 148
11.10.1. Configure Sensitivity Constraints 148
11.10.2. Configure Application Resource Constraints 149
11.10.3. Configure the Vault Expression Constraint 150
11.11. CONSTRAINTS REFERENCE 151
11.11.1. Application Resource Constraints Reference 152
11.11.2. Sensitivity Constraints Reference 154

Security Guide

CHAPTER 12. WEB, HTTP CONNECTORS, AND HTTP CLUSTERINGottt inannns
12.1. CONFIGURE A MOD_CLUSTER WORKER NODE

CHAPTER 13. PATCH INSTALLATION ittt i it et et sasaanaasaaransansarnnannns
13.1. ABOUT PATCHES AND UPGRADES
13.2. ABOUT PATCHING MECHANISMS
13.3. SUBSCRIBE TO PATCH MAILING LISTS
13.4. INSTALL PATCHES IN ZIP FORM
13.4.1. The patch Command
13.4.2. Installing Patches in Zip Form Using the patch Command
13.4.3. Rollback the Application of a Patch in Zip Form Using the patch Command
13.5. INSTALL PATCHES IN RPM FORM
13.6. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

13.7. MANAGE SECURITY UPDATES FOR DEPENDENCIES BUNDLED INSIDE THE APPLICATIONS
DEPLOYED ON JBOSS EAP

PART Ill. SECURING APPLICATIONS ... it ettt i et e e st a s aa i aan s a e a e annns,

CHAPTER 14. APPLICATION SECURITY ittt ittt a e e aanaasaaansansannnnnns
14.1. ABOUT APPLICATION SECURITY
14.2. ENABLING/DISABLING DESCRIPTOR BASED PROPERTY REPLACEMENT
14.3. DATASOURCE SECURITY
14.3.1. About Datasource Security
14.4. EJB APPLICATION SECURITY
14.4.1. Security Identity
14.4.1.1. About EJB Security Identity
14.4.1.2. Set the Security Identity of an EJB
14.4.2. EJB Method Permissions
14.4.2.1. About EJB Method Permissions
14.4.2.2. Use EJB Method Permissions
14.4.3. EJB Security Annotations
14.4.3.1. About EJB Security Annotations
14.4.3.2. Use EJB Security Annotations
14.4.4. Remote Access to EJBs
14.4.4.1. About Remote Method Access
14.4.4.2. About Remoting Callbacks
14.4.4.3. About Remoting Server Detection
14.4.4.4. Configure the Remoting Subsystem
14.4.4.5. Use Security Realms with Remote EJB Clients
14.4.4.6. Add a New Security Realm
14.4.4.7. Add a User to a Security Realm
14.4.4.8. About Remote EJB Access Using SSL Encryption
14.5. JAX-RS APPLICATION SECURITY
14.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
14.5.2. Secure a JAX-RS Web Service using Annotations

CHAPTER 15. LOGIN MODULESttt ittt ete e e sata e asa s asasanaanansnsannnnnnn,
15.1. USING MODULES
15.1.1. Password Stacking
15.1.2. Password Hashing
15.1.3. Unauthenticated Identity
15.1.4. Ldap Login Module
15.1.5. LdapExtended Login Module
15.1.6. UsersRoles Login Module

168

173
173
173
173
174
174
175
176
178
179

181

182

183
183
183
184
184
185
185
185
185
187
187
187
190
190
190
191
191
192
193
193
201
202
203
203
203
203
205

206
206
207
208
209
212
220

Table of Contents

15.1.7. Database Login Module 221
15.1.8. Certificate Login Module 222
15.1.9. Identity Login Module 225
15.1.10. RunAs Login Module 225
15.1.10.1. RunAsldentity Creation 225
15.1.11. Client Login Module 227
15.1.12. SPNEGO Login Module 227
15.1.13. RoleMapping Login Module 228
15.2. CUSTOM MODULES 229
15.2.1. Subject Usage Pattern Support 230
15.2.2. Custom LoginModule Example 235
CHAPTER 16. SINGLE SIGN ON (SS0O) ... it ittt it e st i et e e e saasaasaasansansarnnannns 239
16.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS 239
16.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS 240
16.3. CHOOSE THE RIGHT SSO IMPLEMENTATION 240
16.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION 241
16.5. ABOUT KERBEROS 243
16.6. ABOUT SPNEGO 243
16.7. ABOUT MICROSOFT ACTIVE DIRECTORY 243
16.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB
APPLICATIONS 244
CHAPTER 17. ROLE-BASED SECURITY IN APPLICATIONSt e i i iee e enannns 248
17.1. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS) 248
17.2. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS) 248
17.3. USE A SECURITY DOMAIN IN YOUR APPLICATION 249
17.4. USE ROLE-BASED SECURITY IN SERVLETS 251
17.5. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR APPLICATION 254
CHAPTER 18. MIGRATION ... ittt et e it et e e et e tsaesasaanansaasansansasnnnnns 261
18.1. CONFIGURE APPLICATION SECURITY CHANGES 261
APPENDIX A. REFERENCE it ettt et et sasasaanaasaaransansannnnnns 262
A.1. INCLUDED AUTHENTICATION MODULES 262
A.2. INCLUDED AUTHORIZATION MODULES 290
A.3. INCLUDED SECURITY MAPPING MODULES 291
A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES 291
A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE 291
A.6. EJB SECURITY PARAMETER REFERENCE 295
APPENDIX B. REVISION HISTORY ... ittt et e sttt e e et sasaanaasaasansansannnnnns 297

Security Guide

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM 6

Security Guide

CHAPTER 1. INTRODUCTION

1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
6 (JBOSS EAP 6)

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a fast, secure, powerful middleware
platform built upon open standards, and compliant with the Java Enterprise Edition 6 specification. It
integrates JBoss Application Server 7 with high-availability clustering, powerful messaging, distributed
caching, and other technologies to create a stable and scalable platform.

The new modular structure allows for services to be enabled only when required, significantly increasing
start up speed. The Management Console and Management Command Line Interface remove the need
to edit XML configuration files by hand, adding the ability to script and automate tasks. In addition, it
includes APIs and development frameworks that can be used to develop secure, powerful, and scalable
Java EE applications quickly.

Report a bug

1.2. ABOUT SECURING JBOSS ENTERPRISE APPLICATION
PLATFORM 6

Computer security is the all encompassing term given to the field of information technology that deals
with securing the virtual environments that power the digital age. This can include data protection and
integrity, application security, risk and vulnerability assessment and authentication and authorization
protocols.

Computer data is an all important asset for most organizations. Data protection is vital and forms the core
of most businesses. JBoss EAP 6 provides a multi-layered approach to security to take care of data at all
stages.

Truly secure systems are the ones that are designed from the ground up with security as the main
feature. Such systems use the principle of Security by Design. In such systems, malicious attacks and
infiltration's are accepted as part and parcel of normal security apparatus and systems are designed to
work around them.

Security can be applied at the operating system, middleware and application level. For more information
about security at the operating system level as it applies to RHEL, refer to the Red Hat Enterprise Linux
Security Guide.

In the coming chapters, you will read about the different levels and layers of security within JBoss EAP 6.
These layers provides the infrastructure for all security functionality within the platform.

Report a bug

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+228-458161+%5BSpecified%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6+%28JBoss+EAP+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-458161+07+Jun+2013+12%3A15+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+13955-555636+%5BSpecified%5D&comment=Title%3A+About+Securing+JBoss+Enterprise+Application+Platform+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13955-555636+13+Nov+2013+20%3A29+en-US+%5BSpecified%5D

CHAPTER 2. SECURITY OVERVIEW

CHAPTER 2. SECURITY OVERVIEW

2.1. ABOUT DECLARATIVE SECURITY

Declarative security is a method to separate security concerns from your application code by using the
container to manage security. The container provides an authorization system based on either file
permissions or users, groups, and roles. This approach is usually superior to programmatic security,
which gives the application itself all of the responsibility for security.

JBoss EAP 6 provides declarative security via security domains.

Report a bug

2.1.1. Java EE Declarative Security Overview

The J2EE security model is declarative in that you describe the security roles and permissions in a
standard XML descriptor rather than embedding security into your business component. This isolates
security from business-level code because security tends to be more a function of where the component
is deployed than an inherent aspect of the component's business logic. For example, consider an
Automated Teller Machine (ATM) that is to be used to access a bank account. The security
requirements, roles and permissions will vary independent of how you access the bank account, based
on what bank is managing the account, where the ATM is located, and so on.

Securing a J2EE application is based on the specification of the application security requirements via the
standard J2EE deployment descriptors. You secure access to EJBs and web components in an
enterprise application by using the ejb-jar.xml and web.xml deployment descriptors.

Report a bug

2.1.2. Security References

Both Enterprise Java Beans (EJBs) and servlets can declare one or more <security-role-ref> elements.

2 e id

% # description

descriptionType

security-role-ref # role-name

security-role-refType role-nameType

offe ok)

role-nameType

Figure 2.1. Security Roles Reference Model

This element declares that a component is using the <role-name> element's role-nameType attribute
value as an argument to the isCallerInRole(String) method. By using the isCallerInRole
method, a component can verify whether the caller is in a role that has been declared with a <security-

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+IDs%3A%0A4766-460002+%5BSpecified%5D&comment=Title%3A+About+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24326-549222+%5BSpecified%5D&comment=Title%3A+Java+EE+Declarative+Security+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24326-549222+28+Oct+2013+13%3A49+en-US+%5BSpecified%5D

Security Guide

role-ref> or <role-name> element. The <role-name> element value must link to a <security-role> element
through the <role-link> element. The typical use of isCallerInRole is to perform a security check that
cannot be defined by using the role-based <method-permissions> elements.

Example 2.1. ejb-jar.xml descriptor fragment

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>ASessionBean</ejb-name>

<security-role-ref>
<role-name>TheRoleICheck<role-name>
<role-link>TheApplicationRole</role-1link>
</security-role-ref>
</session>
</enterprise-beans>

</ejb-jar>

NOTE

This fragment is an example only. In deployments, the elements in this section must
contain role names and links relevant to the EJB deployment.

<security-role-ref>
<role-name>TheServletRole</role-name>
<role-link>TheApplicationRole</role-1link>
</security-role-ref>
</servlet>

<web-app>
<servlet>
<servlet-name>AServlet</servlet-name>
</web-app>

‘ Example 2.2. web.xml descriptor fragment

Report a bug

2.1.3. Security Identity

An Enterprise Java Bean (EJB) can specify the identity another EJB must use when it invokes methods
on components using the <security-identity> element.

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24093-548989+%5BSpecified%5D&comment=Title%3A+Security+References%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24093-548989+25+Oct+2013+17%3A09+en-US+%5BSpecified%5D

CHAPTER 2. SECURITY OVERVIEW

® id

* L+ description

descriptionType

security-identity Type

use-caller-identity

empy Type

* run-as

run-asType

Figure 2.2. J2EE Security Identity Data Model

The invocation identity can be that of the current caller, or it can be a specific role. The application
assembler uses the <security-identity> element with a <use-caller-identity> child element. This indicate
that the current caller's identity should be propagated as the security identity for method invocations
made by the EJB. Propagation of the caller's identity is the default used in the absence of an explicit
<security-identity> element declaration.

Alternatively, the application assembler can use the <run-as> or <role-name> child element to specify
that a specific security role supplied by the <role-name> element value must be used as the security
identity for method invocations made by the EJB.

Note that this does not change the caller's identity as seen by the
EJBContext.getCallerPrincipal() method. Rather, the caller's security roles are set to the single

role specified by the <run-as> or <role-name> element value.

One use case for the <run-as> element is to prevent external clients from accessing internal EJBs. You
configure this behavior by assigning the internal EJB <method-permission> elements, which restrict
access to a role never assigned to an external client. EJBs that must in turn use internal EJBs are then
configured with a <run-as> or <role-name> equal to the restricted role. The following descriptor fragment
describes an example<security-identity> element usage.

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>ASessionBean</ejb-name>
<l-- ... -->
<security-identity>
<use-caller-identity/>
</security-identity>
</session>
<session>
<ejb-name>RunAsBean</ejb-name>
<I-- ... -->
<security-identity>
<run-as>

<description>A private internal role</description>
<role-name>InternalRole</role-name>
</run-as>
</security-identity>

11

Security Guide

</session>
</enterprise-beans>
<I-- ... -->

</ejb-jar>

When you use <run-as> to assign a specific role to outgoing calls, a principal named anonymous is
assigned to all outgoing calls. If you want another principal to be associated with the call, you must
associate a <run-as-principal> with the bean in the jboss . xml file. The following fragment associates a
principal named internal with RunAsBean from the prior example.

<session>
<ejb-name>RunAsBean</ejb-name>
<security-identity>
<run-as-principal>internal</run-as-principal>
</security-identity>
</session>

The <run-as> element is also available in servlet definitions in aweb . xml file. The following example
shows how to assign the role InternalRole to a servlet:

<servlet>
<servlet-name>AServlet</servlet-name>
<l-- ... -->
<run-as>
<role-name>InternalRole</role-name>
</run-as>
</servlet>

Calls from this servlet are associated with the anonymous principal. The <run-as-principal> element
is available in the jboss-web.xml file to assign a specific principal to go along with the run-as role.
The following fragment shows how to associate a principal named internal to the servlet above.

<servlet>
<servlet-name>AServlet</servlet-name>
<run-as-principal>internal</run-as-principal>
</servlet>

Report a bug

2.1.4. Security Roles

The security role name referenced by either the security-role-ref or security-identity
element needs to map to one of the application's declared roles. An application assembler defines logical
security roles by declaring security-role elements. The role-name value is a logical application
role name like Administrator, Architect, SalesManager, etc.

The J2EE specifications note that it is important to keep in mind that the security roles in the deployment

descriptor are used to define the logical security view of an application. Roles defined in the J2EE
deployment descriptors should not be confused with the user groups, users, principals, and other

12

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24094-548934+%5BSpecified%5D&comment=Title%3A+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24094-548934+25+Oct+2013+17%3A07+en-US+%5BSpecified%5D

CHAPTER 2. SECURITY OVERVIEW

concepts that exist in the target enterprise's operational environment. The deployment descriptor roles
are application constructs with application domain-specific names. For example, a banking application
might use role names such as BankManager, Teller, or Customer.

In JBoss EAP, a security-role elementis only used to map security-role-ref/role-name
values to the logical role that the component role references. The user's assigned roles are a dynamic
function of the application's security manager. JBoss does not require the definition of security-role
elements in order to declare method permissions. However, the specification of security-role
elements is still a recommended practice to ensure portability across application servers and for
deployment descriptor maintenance.

Example 2.3. An ejb-jar.xml descriptor fragment that illustrates the security-role element
usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<assembly-descriptor>
<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>
</security-role>
</assembly-descriptor>
</ejb-jar>

Example 2.4. An example web.xml descriptor fragment that illustrates the security-role
element usage.

<!-- A sample web.xml fragment -->
<web-app>
<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>
</security-role>
</web-app>

Report a bug

2.1.5. EJB Method Permissions

An application assembler can set the roles that are allowed to invoke an EJB's home and remote
interface methods through method-permission element declarations.

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24095-549164+%5BSpecified%5D&comment=Title%3A+Security+Roles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24095-549164+28+Oct+2013+11%3A15+en-US+%5BSpecified%5D

Security Guide

4 description

*

descriptionType

& role-name

— role-nameType
method-permission P
method-permissionType
unchecked

emptyType

& method

methodType

Figure 2.3. J2EE Method Permissions Element

Each method-permission element contains one or more role-name child elements that define the
logical roles that are allowed to access the EJB methods as identified by method child elements. You

can also specify an unchecked element instead of the role - name element to declare that any
authenticated user can access the methods identified by method child elements. In addition, you can
declare that no one should have access to a method that has the exclude-1ist element. If an EJB has
methods that have not been declared as accessible by a role using a method-permission element,
the EJB methods default to being excluded from use. This is equivalent to defaulting the methods into
the exclude-1list.

14

CHAPTER 2. SECURITY OVERVIEW

description

descriptionType

gjb-nameType

& method-name

method-nameType

+ method
method Type

method-params

method-paramsType

L method-param

java-typeType

Figure 2.4. J2EE Method Element
There are three supported styles of method element declarations.

The first is used for referring to all the home and component interface methods of the named enterprise
bean:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>
</method>

The second style is used for referring to a specified method of the home or component interface of the
named enterprise bean:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
</method>

If there are multiple methods with the same overloaded name, this style refers to all of the overloaded
methods.

The third style is used to refer to a specified method within a set of methods with an overloaded name:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>
<method-param>PARAMETER_1</method-param>

15

Security Guide

<l-- ... -->
<method-param>PARAMETER_N</method-param>
</method-params>
</method>

The method must be defined in the specified enterprise bean's home or remote interface. The method-
param element values are the fully qualified name of the corresponding method parameter type. If there
are multiple methods with the same overloaded signature, the permission applies to all of the matching
overloaded methods.

The optional method-intf element can be used to differentiate methods with the same name and
signature that are defined in both the home and remote interfaces of an enterprise bean.

Example 2.5, “An ejb-jar.xml descriptor fragment that illustrates the method-permission element usage.”
provides complete examples of the method-permission element usage.

Example 2.5. An ejb-jar.xml descriptor fragment that illustrates the method-permission
element usage.

<ejb-jar>

<assembly-descriptor>
<method-permission>
<description>The employee and temp-employee roles may
access any
method of the EmployeeService bean </description>

<role-name>employee</role-name>
<role-name>temp-employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<method-permission>
<description>The employee role may access the
findByPrimaryKey,
getEmployeeInfo, and the updateEmployeeInfo(String)
method of
the AardvarkPayroll bean </description>
<role-name>employee</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</method>
</method-permission>
<method-permission>

16

CHAPTER 2. SECURITY OVERVIEW

<description>The admin role may access any method of the
EmployeeServiceAdmin bean </description>
<role-name>admin</role-name>

<method>
<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<method-permission>
<description>Any authenticated user may access any method
of the
EmployeeServiceHelp bean</description>
<unchecked/>
<method>
<ejb-name>EmployeeServiceHelp</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<exclude-list>
<description>No fireTheCTO methods of the EmployeeFiring
bean may be
used in this deployment</description>
<method>
<ejb-name>EmployeeFiring</ejb-name>
<method-name>fireTheCT0</method-name>
</method>
</exclude-1list>
</assembly-descriptor>
</ejb-jar>

Report a bug

2.1.6. Enterprise Beans Security Annotations

Enterprise beans use Annotations to pass information to the deployer about security and other aspects of
the application. The deployer can set up the appropriate enterprise bean security policy for the
application if specified in annotations, or the deployment descriptor.

Any method values explicitly specified in the deployment descriptor override annotation values. If a
method value is not specified in the deployment descriptor, those values set using annotations are used.
The overriding granularity is on a per-method basis

Those annotations that address security and can be used in an enterprise beans include the following:

@beclareRoles

Declares each security role declared in the code. For information about configuring roles, refer to the
Java EE 5 Tutorial Declaring Security Roles Using Annotations.

@RolesAllowed, @PermitAll, and @DenyAll
Specifies method permissions for annotations. For information about configuring annotation method

permissions, refer to the Java EE 5 Tutorial Specifying Method Permissions Using Annotations.

@RuUnAs

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24096-549176+%5BSpecified%5D&comment=Title%3A+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24096-549176+28+Oct+2013+11%3A46+en-US+%5BSpecified%5D
http://docs.sun.com/app/docs/doc/819-3669/bnbyp?l=en&a=view
http://docs.sun.com/app/docs/doc/819-3669/bnbyw?l=en&a=view

Security Guide

Configures the propagated security identity of a component. For information about configuring
propagated security identities using annotations, refer to the Java EE 5 Tutorial Configuring a
Component’s Propagated Security |dentity.

Report a bug

2.1.7. Web Content Security Constraints

In a web application, security is defined by the roles that are allowed access to content by a URL pattern
that identifies the protected content. This set of information is declared by using the web . xmlsecurity-
constraint element.

2 ®id 2 oid

#+ web-resource-name
string

=0+ display-name

display-nameType

+ description

descriptionType

#+web-resource-collection

web-resource-collectionType

* url-pattern

url-patternType

http-methodType

*

. . 2 @ id
security-constraint

security-constraintType

+ auth-constraint

auth-constraintType

+ description
descriptionType

+ role-name

role-nameType

*

*

2 e id

+ description
descriptionType

+ fransport-guarantee

transport-guaranteeType

¥*

#+Uuser-data-constraint

user-data-constraintType

Figure 2.5. Web Content Security Constraints

The content to be secured is declared using one or more <web-resource-collection> elements. Each
<web-resource-collection> element contains an optional series of <url-pattern> elements followed by an
optional series of <http-method> elements. The <url-pattern> element value specifies a URL pattern
against which a request URL must match for the request to correspond to an attempt to access secured
content. The <http-method> element value specifies a type of HTTP request to allow.

The optional <user-data-constraint> element specifies the requirements for the transport layer of the

18

http://docs.oracle.com/cd/E19226-01/820-7627/bnbzb/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24097-549282+%5BSpecified%5D&comment=Title%3A+Enterprise+Beans+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24097-549282+28+Oct+2013+21%3A34+en-US+%5BSpecified%5D

CHAPTER 2. SECURITY OVERVIEW

client to server connection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit). The <transport-
guarantee> element value specifies the degree to which communication between the client and server
should be protected. Its values are NONE, INTEGRAL, and CONFIDENTIAL. A value of NONE means that
the application does not require any transport guarantees. A value of INTEGRAL means that the
application requires the data sent between the client and server to be sent in such a way that it can not
be changed in transit. A value of CONFIDENTIAL means that the application requires the data to be
transmitted in a fashion that prevents other entities from observing the contents of the transmission. In
most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use of SSL is
required.

The optional <login-config> element is used to configure the authentication method that should be used,
the realm name that should be used for the application, and the attributes that are needed by the form
login mechanism.

auth-method

auth-methodType

? #* realm-name

string

login-config 2 e id

login-config Type

form-login-config

formi-login-config Type

?

form-login-page

war-pathType

form-error-page

war-pathType

Figure 2.6. Web Login Configuration

The <auth-method> child element specifies the authentication mechanism for the web application. As a
prerequisite to gaining access to any web resources that are protected by an authorization constraint, a
user must have authenticated using the configured mechanism. Legal <auth-method> values are BASIC,
DIGEST, FORM, and CLIENT-CERT. The <realm-name> child element specifies the realm name to use
in HTTP basic and digest authorization. The <form-login-config> child element specifies the log in as
well as error pages that should be used in form-based log in. If the <auth-method> value is not FORM,
then form-login-config and its child elements are ignored.

The following configuration example indicates that any URL lying under the web application's

/restricted path requires an AuthorizedUser role. There is no required transport guarantee and
the authentication method used for obtaining the user identity is BASIC HTTP authentication.

<web-resource-collection>

Example 2.6. web.xml Descriptor Fragment
<web-resource-name>Secure Content</web-resource-name>

<web-app>
<security-constraint>

19

Security Guide

<url-pattern>/restricted/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>AuthorizedUser</role-name>

</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>
<l-- ... -->
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>The Restricted Zone</realm-name>
</login-config>
<I-- ... -->
<security-role>
<description>The role required to access restricted content
</description>
<role-name>AuthorizedUser</role-name>
</security-role>
</web-app>

Report a bug

2.1.8. Enable Form-based Authentication

Form-based authentication provides flexibility in defining a custom JSP/HTML page for log in, and a
separate page to which users are directed if an error occurs during login.

Form-based authentication is defined by including <auth-method>FORM</auth-method> in the
<login-config> element of the deployment descriptor, web . xm1. The login and error pages are also
defined in <login-config>, as follows:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>

When a web application with form-based authentication is deployed, the web container uses
FormAuthenticator to direct users to the appropriate page. JBoss EAP maintains a session pool so
that authentication information does not need to be present for each request. When
FormAuthenticator receives a request, it queries org.apache.catalina.session.Manager for
an existing session. If no session exists, a new session is created. FormAuthenticator then verifies
the credentials of the session.

20

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24098-549602+%5BSpecified%5D&comment=Title%3A+Web+Content+Security+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24098-549602+30+Oct+2013+13%3A56+en-US+%5BSpecified%5D

CHAPTER 2. SECURITY OVERVIEW

NOTE

Each session is identified by a session ID, a 16 byte string generated from random
values. These values are retrieved from /dev/urandom (Linux) by default, and hashed
with MD5. Checks are performed at session ID creation to ensure that the ID created is
unique.

Once verified, the session ID is assigned as part of a cookie, and then returned to the client. This cookie
is expected in subsequent client requests and is used to identify the user session.

The cookie passed to the client is a name value pair with several optional attributes. The identifier
attribute is called JSESSIONID . lts value is a hex-string of the session ID. This cookie is configured to
be non-persistent. This means that on the client side it will be deleted when the browser exits. On the
server side, sessions expire after 60 seconds of inactivity, at which time session objects and their
credential information are deleted.

Say a user attempts to access a web application that is protected with form-based authentication.
FormAuthenticator caches the request, creates a new session if necessary, and redirects the user to
the login page defined in 1ogin-config. (In the previous example code, the login page is
login.html.) The user then enters their user name and password in the HTML form provided. User
name and password are passed to FormAuthenticator via the j_security_check form action.

The FormAuthenticator then authenticates the user name and password against the realm attached
to the web application context. In JBoss Enterprise Application Platform, the realm is JBossWebRealm.
When authentication is successful, FormAuthenticator retrieves the saved request from the cache
and redirects the user to their original request.

NOTE

The server recognizes form authentication requests only when the URI ends with
/j_security_check and at least the j_username and j_password parameters exist.

Report a bug

2.1.9. Enable Declarative Security

The Java EE security elements that have been covered so far describe the security requirements only
from the application's perspective. Because Java EE security elements declare logical roles, the
application deployer maps the roles from the application domain onto the deployment environment. The
Java EE specifications omit these application server-specific details.

To map application roles onto the deployment environment, you must specify a security manager that
implements the Java EE security model using JBoss EAP-specific deployment descriptors. Refer to the
custom login module example for details of this security configuration.

Report a bug

21

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24099-549604+%5BSpecified%5D&comment=Title%3A+Enable+Form-based+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24099-549604+30+Oct+2013+14%3A03+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24100-549607+%5BSpecified%5D&comment=Title%3A+Enable+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24100-549607+30+Oct+2013+14%3A13+en-US+%5BSpecified%5D

Security Guide

CHAPTER 3. INTRODUCTION TO JAAS

3.1. ABOUT JAAS
The JBossSX framework is based on the JAAS API. You must understand the basic elements of the
JAAS API before you can understand the implementation details of JBossSX. The following sections

provide an introduction to JAAS to prepare you for the JBossSX architecture discussion later in this
guide.

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and authorization.
The API implements a Java version of the standard Pluggable Authentication Modules (PAM) framework
and extends the Java 2 Platform access control architecture to support user-based authorization.

JAAS was first released as an extension package for JDK 1.3 and is bundled with JDK 1.5. Because the
JBossSX framework only uses the authentication capabilities of JAAS to implement the declarative role-
based J2EE security model, this introduction focuses on only that topic.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain
independent from underlying authentication technologies, and allows the JBossSX security manager to
work in different security infrastructures. Integration with a security infrastructure is achievable without
changing the JBossSX security manager implementation. You need only change the configuration of the
authentication stack JAAS uses.

Report a bug

3.2. JAAS CORE CLASSES

The JAAS core classes can be broken down into three categories: common, authentication, and
authorization. The following list presents only the common and authentication classes because these are
the specific classes used to implement the functionality of JBossSX covered in this chapter.
These are the common classes:

e Subject (javax.security.auth.Subject)
These are the authentication classes:

e Configuration (javax.security.auth.login.Configuration)

e LoginContext (javax.security.auth.login.LoginContext)
These are the associated interfaces:

e Principal (java.security.Principal)

e Callback (javax.security.auth.callback.Callback)

e CallbackHandler (javax.security.auth.callback.CallbackHandler)

e LoginModule (javax.security.auth.spi.LoginModule)

Report a bug

3.3. SUBJECT AND PRINCIPAL CLASSES

22

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24380-550355+%5BSpecified%5D&comment=Title%3A+About+JAAS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24380-550355+04+Nov+2013+12%3A39+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24101-549623+%5BSpecified%5D&comment=Title%3A+JAAS+Core+Classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24101-549623+30+Oct+2013+14%3A38+en-US+%5BSpecified%5D

CHAPTER 3. INTRODUCTION TO JAAS

To authorize access to resources, applications must first authenticate the request's source. The JAAS
framework defines the term subject to represent a request's source. The Subject class is the central
class in JAAS. A Subject represents information for a single entity, such as a person or service. It
encompasses the entity's principals, public credentials, and private credentials. The JAAS APlIs use the
existing Java 2 java.security.Principal interface to represent a principal, which is essentially a
typed name.

During the authentication process, a subject is populated with associated identities, or principals. A
subject may have many principals. For example, a person may have a name principal (John Doe), a
social security number principal (123-45-6789), and a user name principal (johnd), all of which help
distinguish the subject from other subjects. To retrieve the principals associated with a subject, two
methods are available:

public Set getPrincipals() {...}

public Set getPrincipals(Class c) {...}
getPrincipals() returns all principals contained in the subject. getPrincipals(Class c) returns
only those principals that are instances of class ¢ or one of its subclasses. An empty set is returned if the
subject has no matching principals.

Note that the java.security.acl.Group interface is a sub-interface of
java.security.Principal, so an instance in the principals set may represent a logical grouping of
other principals or groups of principals.

Report a bug

3.4. SUBJECT AUTHENTICATION
Subject Authentication requires a JAAS login. The login process consists of the following points:

1. An application instantiates a LoginContext and passes in the name of the login configuration
and a CallbackHandler to populate the Callback objects, as required by the configuration
LoginModules.

2. The LoginContext consults a Configuration to load all the LoginModules included in the
named login configuration. If no such named configuration exists the other configuration is
used as a default.

3. The application invokes the LoginContext.login method.

4. The login method invokes all the loaded LoginModules. As each LoginModule attempts to
authenticate the subject, it invokes the handle method on the associated CallbackHandler to
obtain the information required for the authentication process. The required information is passed
to the handle method in the form of an array of Callback objects. Upon success, the
LoginModules associate relevant principals and credentials with the subject.

5. The LoginContext returns the authentication status to the application. Success is represented
by a return from the login method. Failure is represented through a LoginException being thrown
by the login method.

6. If authentication succeeds, the application retrieves the authenticated subject using the
LoginContext.getSubject method.

7. After the scope of the subject authentication is complete, all principals and related information
associated with the subject by the 1login method can be removed by invoking the

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24102-549625+%5BSpecified%5D&comment=Title%3A+Subject+and+Principal+classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24102-549625+30+Oct+2013+14%3A42+en-US+%5BSpecified%5D

Security Guide

LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating subjects and offers a way to
develop an application that is independent of the underlying authentication technology. The
LoginContext consults a Configuration to determine the authentication services configured for a
particular application. LoginModule classes represent the authentication services. Therefore, you can
plug different login modules into an application without changing the application itself. The following
code shows the steps required by an application to authenticate a subject.

CallbackHandler handler = new MyHandler();
LoginContext lc = new LoginContext("some-config", handler);

try {
1c.login();
Subject subject = lc.getSubject();

} catch(LoginException e) {
System.out.println("authentication failed");
e.printStackTrace();

}

// Perform work as authenticated Subject
/.

// Scope of work complete, logout to remove authentication info
try {

lc.logout();
} catch(LoginException e) {

System.out.println("logout failed");

e.printStackTrace();

}

// A sample MyHandler class
class MyHandler
implements CallbackHandler
{
public void handle(Callback[] callbacks) throws
IOException, UnsupportedCallbackException
{
for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {

NameCallback nc = (NameCallback)callbacks[i];
nc.setName(username);

} else if (callbacks[i] instanceof PasswordCallback) {
PasswordCallback pc = (PasswordCallback)callbacks[i];
pc.setPassword(password);

} else {
throw new UnsupportedCallbackException(callbacks[i],

"Unrecognized
Callback");

}
}

Developers integrate with an authentication technology by creating an implementation of the
LoginModule interface. This allows an administrator to plug different authentication technologies into

24

CHAPTER 3. INTRODUCTION TO JAAS

an application. You can chain together multiple LoginModules to allow for more than one authentication
technology to participate in the authentication process. For example, one LoginModule may perform
user name/password-based authentication, while another may interface to hardware devices such as
smart card readers or biometric authenticators.

The life cycle of a LoginModule is driven by the LoginContext object against which the client creates
and issues the login method. The process consists of two phases. The steps of the process are as
follows:

e The LoginContext creates each configured LoginModule using its public no-arg constructor.

e Each LoginModule is initialized with a call to its initialize method. The Subject argument is
guaranteed to be non-null. The signature of the initialize method is: public void
initialize(Subject subject, CallbackHandler callbackHandler, Map
sharedState, Map options)

e The login method is called to start the authentication process. For example, a method
implementation might prompt the user for a user name and password and then verify the
information against data stored in a naming service such as NIS or LDAP. Alternative
implementations might interface to smart cards and biometric devices, or simply extract user
information from the underlying operating system. The validation of user identity by each
LoginModule is considered phase 1 of JAAS authentication. The signature of thelogin
method is boolean login() throws LoginException . A LoginException indicates
failure. A return value of true indicates that the method succeeded, whereas a return value of
false indicates that the login module should be ignored.

e Ifthe LoginContext's overall authentication succeeds, commit is invoked on each
LoginModule. If phase 1 succeeds for a LoginModule, then the commit method continues
with phase 2 and associates the relevant principals, public credentials, and/or private credentials
with the subject. If phase 1 fails for a LoginModule, then commit removes any previously
stored authentication state, such as user names or passwords. The signature of the commit
method is: boolean commit() throws LoginException . Failure to complete the commit
phase is indicated by throwing a LoginException. A return of true indicates that the method
succeeded, whereas a return of false indicates that the login module should be ignored.

e Ifthe LoginContext's overall authentication fails, then the abort method is invoked on each
LoginModule. The abort method removes or destroys any authentication state created by the
login or initialize methods. The signature of the abort method is boolean abort() throws
LoginException . Failure to complete the abort phase is indicated by throwing a
LoginException. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

e To remove the authentication state after a successful login, the application invokes logout on
the LoginContext. This in turn results in a logout method invocation on each
LoginModule. The logout method removes the principals and credentials originally
associated with the subject during the commit operation. Credentials should be destroyed upon
removal. The signature of the 1logout method is: boolean logout() throws
LoginException . Failure to complete the logout process is indicated by throwing a
LoginException. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

When a LoginModule must communicate with the user to obtain authentication information, it uses a
CallbackHandler object. Applications implement the CallbackHandler interface and pass it to the
LoginContext, which send the authentication information directly to the underlying login modules.

25

Security Guide

Login modules use the CallbackHandler both to gather input from users, such as a password or
smart card PIN, and to supply information to users, such as status information. By allowing the
application to specify the CallbackHandler, underlying LoginModules remain independent from the
different ways applications interact with users. For example, a CallbackHandler's implementation for
a GUI application might display a window to solicit user input. On the other hand, a CallbackHandler
implementation for a non-GUI environment, such as an application server, might simply obtain credential
information by using an application server API. The CallbackHandler interface has one method to
implement:

void handle(Callback[] callbacks)
throws java.io.IOException,
UnsupportedCallbackException;

The Callback interface is the last authentication class we will look at. This is a tagging interface for
which several default implementations are provided, including the NameCallback and
PasswordCallback used in an earlier example. A LoginModule uses a Callback to request
information required by the authentication mechanism. LoginModules pass an array of Callbacks
directly to the CallbackHandler . handle method during the authentication's login phase. If a
callbackhandler does not understand how to use a Callback object passed into the handle
method, it throws an UnsupportedCallbackException to abort the login call.

Report a bug

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24103-549630+%5BSpecified%5D&comment=Title%3A+Subject+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24103-549630+30+Oct+2013+14%3A50+en-US+%5BSpecified%5D

PART Il. SECURING THE PLATFORM

PART Il. SECURING THE PLATFORM

27

Security Guide

CHAPTER 4. THE SECURITY SUBSYSTEM

4.1. ABOUT THE SECURITY SUBSYSTEM

The security subsystem provides the infrastructure for all security functionality in JBoss EAP 6. Most
configuration elements rarely need to be changed. The only configuration element which may need to be
changed is whether to use deep-copy-subject-mode. In addition, you can configure system-wide security
properties. Most of the configuration relates to security domains.

Deep Copy Mode

If deep copy subject mode is disabled (the default), copying a security data structure makes a reference
to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone
to data corruption if multiple threads with the same identity clear the subject by means of a flush or
logout operation.

Deep copy subject mode causes a complete copy of the data structure and all its associated data to be
made, as long as they are marked cloneable. This is more thread-safe, but less efficient.

System-Wide Security Properties

You can set system-wide security properties, which are applied to java.security.Security class.

Security Domain

A security domain is a set of Java Authentication and Authorization Service (JAAS) declarative security
configurations which one or more applications use to control authentication, authorization, auditing, and
mapping. Three security domains are included by default: jboss-ejb-policy, jboss-web-policy,
and other. You can create as many security domains as you need to accommodate the needs of your
applications.

Report a bug

4.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM

The security subsystem is configured in the managed domain or standalone configuration file. Most of
the configuration elements can be configured using the web-based management console or the console-
based management CLI. The following is the XML representing an example security subsystem.

<security-management>

</security-management>
<security-domains>
<security-domain name="other" cache-type="default">
<authentication>
<login-module code="Remoting" flag="optional">
<module-option name="password-stacking"
value="useFirstPass"/>
</login-module>
<login-module code="RealmUsersRoles" flag="required">
<module-option name="usersProperties"
value="${jboss.domain.config.dir}/application-users.properties"/>

Example 4.1. Example Security Subsystem Configuration
<module-option name="rolesProperties"

| <subsystem xmlns="urn:jboss:domain:security:1.2">

28

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4702-490493+%5BSpecified%5D&comment=Title%3A+About+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4702-490493+02+Aug+2013+15%3A42+en-US+%5BSpecified%5D

CHAPTER 4. THE SECURITY SUBSYSTEM

value="${jboss.domain.config.dir}/application-roles.properties"/>
<module-option name="realm"
value="ApplicationRealm" />
<module-option name="password-stacking"
value="useFirstPass"/>
</login-module>
</authentication>
</security-domain>
<security-domain name="jboss-web-policy" cache-type="default">
<authorization>
<policy-module code="Delegating" flag="required"/>
</authorization>
</security-domain>
<security-domain name="jboss-ejb-policy" cache-type="default">
<authorization>
<policy-module code="Delegating" flag="required"/>
</authorization>
</security-domain>
</security-domains>
<vault>
</vault>
</subsystem>

The <security-management>, <subject-factory> and <security-properties> elements
are not present in the default configuration. The <subject-factory> and <security-
properties> elements have been deprecated in JBoss EAP 6.1 onwards.

Report a bug

4.3. CONFIGURING THE SECURITY SUBSYSTEM

4.3.1. Configure the Security Subsystem

You can configure the security subsystem using the Management CLI or web-based Management
Console.

Each top-level element within the security subsystem contains information about a different aspect of the
security configuration. Refer to Section 4.2, “About the Structure of the Security Subsystem” for an
example of security subsystem configuration.

<security-management>

This section overrides high-level behaviors of the security subsystem. Each setting is optional. It is
unusual to change any of these settings except for deep copy subject mode.

Option Description

deep-copy-subject-mode Specifies whether to copy or link to security tokens,
for additional thread safety.

29

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+7200-458752+%5BSpecified%5D&comment=Title%3A+About+the+Structure+of+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7200-458752+11+Jun+2013+14%3A18+en-US+%5BSpecified%5D

Security Guide

Option Description

authentication-manager-class-name Specifies an alternate AuthenticationManager
implementation class name to use.

authorization-manager-class-name Specifies an alternate AuthorizationManager
implementation class name to use.

audit-manager-class-name Specifies an alternate AuditManager
implementation class name to use.

identity-trust-manager-class-name Specifies an alternate ldentityTrustManager
implementation class name to use.

mapping-manager-class-name Specifies the MappingManager implementation
class name to use.

<subject-factory>

The subject factory controls creation of subject instances. It may use the authentication manager to
verify the caller. The main use of the subject factory is for JCA components to establish a subject.lt is
unusual to need to modify the subject factory.

<security-domains>

A container element which holds multiple security domains. A security domain may contain
information about authentication, authorization, mapping, and auditing modules, as well as JASPI
authentication and JSSE configuration. Your application would specify a security domain to manage
its security information.

<security-properties>
Contains names and values of properties which are set on the java.security.Security class.

Report a bug
4.3.2. Security Management

4.3.2.1. About Deep Copy Subject Mode

If deep copy subject modeis disabled (the default), copying a security data structure makes a reference
to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone
to data corruption if multiple threads with the same identity clear the subject by means of a flush or
logout operation.

Deep copy subject mode causes a complete copy of the data structure and all its associated data to be
made, as long as they are marked cloneable. This is more thread-safe, but less efficient.

Deep copy subject mode is configured as part of the security subsystem.

Report a bug

4.3.2.2. Enable Deep Copy Subject Mode

30

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8424-466657+%5BSpecified%5D&comment=Title%3A+Configure+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8424-466657+19+Jun+2013+15%3A47+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+6851-328492+%5BSpecified%5D&comment=Title%3A+About+Deep+Copy+Subject+Mode%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6851-328492+05+Nov+2012+14%3A24+en-US+%5BSpecified%5D

CHAPTER 4. THE SECURITY SUBSYSTEM

You can enable deep copy security mode from the web-based management console or the management
CLL.

Procedure 4.1. Enable Deep Copy Security Mode from the Management Console

1. Log into the Management Console.
The management console is usually available at a URL such as http://127.0.0.1:9990/. Adjust
this value to suit your needs.

2. Managed Domain: Select the appropriate profile.
In a managed domain, the security subsystem is configured per profile, and you can enable or
disable the deep copy security mode in each, independently.

To select a profile, click the Profiles label at the top right of the console display, and then
select the profile you wish to change from the Profile selection box at the top left.

3. Open the Security Subsystem configuration menu.
Expand the Security menu item at the right of the management console, then click the
Security Subsystem link.

4. Modify the deep-copy-subject-mode value.
Click the Edit button. Check the box beside Deep Copy Subjects: to enable deep copy
subject mode.

Enable Deep Copy Subject Mode Using the Management CLI

If you prefer to use the management CLI to enable this option, use one of the following commands.

Example 4.2. Managed Domain

/profile=full/subsystem=security:write-attribute(name=deep-copy-subject-
mode, value=TRUE)

Example 4.3. Standalone Server

/subsystem=security:write-attribute(name=deep-copy-subject-
mode, value=TRUE)

Report a bug
4.3.3. Security Domains

4.3.3.1. About Security Domains

Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now
managed centrally, by the domain controller of a managed domain, or by the standalone server.

A security domain consists of configurations for authentication, authorization, security mapping, and
auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.

31

http://127.0.0.1:9990/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+6852-436012+%5BSpecified%5D&comment=Title%3A+Enable+Deep+Copy+Subject+Mode%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6852-436012+19+Apr+2013+09%3A51+en-US+%5BSpecified%5D

Security Guide

Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as
a principal. Although authentication and authorization are different, many of the included authentication
modules also handle authorization.

An authorization is a security policy, by which the server determines whether an authenticated user has
permission to access specific privileges or resources in the system or operation. In security terminology,
this is often referred to as a role.

Security mapping refers to the ability to add, modify, or delete information from a principal, role, or
attribute before passing the information to your application.

The auditing manager allows you to configure provider modules to control the way that security events
are reported.

If you use security domains, you can remove all specific security configuration from your application
itself. This allows you to change security parameters centrally. One common scenario that benefits from
this type of configuration structure is the process of moving applications between testing and production
environments.

Report a bug

4.3.3.2. About Picketbox

Picketbox is the foundational security framework that provides the authentication, authorization, audit
and mapping capabilities to Java applications running in JBoss EAP 6. It provides the following
capabilities, in a single framework with a single configuration:

e Section 5.9.1, “About Authentication”

e Section 5.11.1, “About Authorization” and access control

e Section 5.13.1, “About Security Auditing”

e Section 5.14.1, “About Security Mapping” of principals, roles, and attributes

Report a bug

32

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4721-481770+%5BSpecified%5D&comment=Title%3A+About+Security+Domains%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4721-481770+25+Jul+2013+13%3A19+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4722-458756+%5BSpecified%5D&comment=Title%3A+About+Picketbox%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4722-458756+11+Jun+2013+14%3A22+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

5.1. ABOUT SECURITY TOKEN SERVICE (STS)

The Security Token Service generates and manages the security tokens. It does not issue tokens of a
specific type. Instead, it defines generic interfaces that allows multiple token providers to be plugged in.
As a result, it can be configured to deal with various types of token, as long as a token provider exists for
each token type. It also specifies the format of the security token request and response messages.

A security token request message specifies the following:

e Type of the request, such as Issue, Renew, and so on.

Type of the token.

Lifetime of the issued token.

Information about the service provider that requested the token.
e Information used to encrypt the generated token.

The token request message is sent in the body of the SOAP message. All information related to the
token request is enclosed in the RequestSecurityToken element. The sample request contains two
other WS-Trust elements: RequestType, which specifies that this request is an Issue request, and
TokenType, which specifies the type of the token to be issued.

The following is an example of the WS-Trust request message.

<S11:Header>

</S11:Header>
<S11:Body wsu:Id="body">
<wst:RequestSecurityToken Context="context">

<wst:TokenType>http://www.tokens.org/SpecialToken</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
</wst:RequestSecurityToken>
</S11:Body>

<S11:Envelope xmlns:S11=".." xmlns:wsu=".." xmlns:wst="..">
</S11:Envelope>

‘ Example 5.1. WS-Trust security token request message

The following is an example of a security token response.

xmlns:wsu="..">
<wst:TokenType>http://www.tokens.org/SpecialToken</wst:TokenType>

Example 5.2. Security token response message
<wst:RequestedSecurityToken>

| <wst:RequestSecurityTokenResponse Context="context" xmlns:wst=".."

33

Security Guide

<token:SpecialToken xmlns:token="...">
ARhjefhE2FEjneovi&@FHfeoveq3
</token:SpecialToken>
</wst:RequestedSecurityToken>
<wst:Lifetime>
<wsu:Created>...</wsu:Created>
<wsu:Expires>...</wsu:Expires>
</wst:Lifetime>
</wst:RequestSecurityTokenResponse>

In the example for the security token response, the TokenType element specifies the type of the issued
token, while the RequestedSecurityToken element contains the token itself. The format of the token
depends on the type of the token. The Lifetime element specifies when the token was created and
when it expires.

Security Token Request Processing

The following are the steps in which the security token requests are processed:
e A client sends a security token request to PicketLinkSTS.
e PicketLinkSTS parses the request message, generating a JAXB object model.

e PicketLinkSTS reads the configuration file and creates the STSConfiguration object, if
needed. Then it obtains a reference to the WSTrustRequestHandler from the configuration
and delegates the request processing to the handler instance.

e The request handler uses the STSConfiguration to set default values when needed (for
example, when the request doesn't specify a token lifetime value).

e The WSTrustRequestHandler creates the WSTrustRequestContext, setting the JAXB
request object and the caller principal it received from PicketLinkSTS.

e The WSTrustRequestHandler uses the STSConfiguration to get the
SecurityTokenProvider that must be used to process the request based on the type of the
token that is being requested. Then it invokes the provider, passing the constructed
WSTrustRequestContext as a parameter.

e The SecurityTokenProvider instance process the token request and stores the issued
token in the request context.

e The WSTrustRequestHandler obtains the token from the context, encrypts it if needed, and
constructs the WS-Trust response object containing the security token.

e PicketLinkSTS dictates the response generated by the request handler and returns it to the
client.

Report a bug

5.2. CONFIGURE PICKETLINK STS

PicketLink STS defines several interfaces that provide extension points where implementations can be
plugged via configuration and the default values for some properties can be specified via configuration.
All PicketLink STS configurations must be specified in the picketlink-sts.xml file. The following are

34

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24107-547960+%5BSpecified%5D&comment=Title%3A+About+Security+Token+Service+%28STS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24107-547960+20+Oct+2013+03%3A54+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

the elements that can be configured in the picketlink-sts.xml file.

NOTE

In the following text, a service provider refers to the Web service that requires a security
token to be presented by its clients.

e PicketLinkSTS: This is the root element. It defines some properties that allows the STS
administrator to set a the following default values:

o STSName: A string representing the name of the security token service. If not specified, the
default PicketLinkSTS value is used.

o TokenTimeout: The token lifetime value in seconds. If not specified, the default value of
3600 (one hour) is used.

o EncryptToken: A boolean specifying whether issued tokens are to be encrypted or not.
The default value is false.

e KeyProvider: This element and all its sub elements are used to configure the keystore that are
used by PicketLink STS to sign and encrypt tokens. Properties like the keystore location, its
password, and the signing (private key) alias and password are all configured in this section.

e RequestHandler: This element specifies the fully qualified name of the
WSTrustRequestHandler implementation to be used. If not specified, the default
org.picketlink.identity.federation.core.wstrust.StandardRequestHandler
is used.

e SecurityTokenProvider: This section specifies the SecurityTokenProvider
implementations that must be used to handle each type of security token. In the example we
have two providers - one that handles tokens of type SpecialToken and one that handles
tokens of type StandardToken. The WSTrustRequestHandler calls the
getProviderForTokenType(String type)method of STSConfiguration to obtain a
reference to the appropriate SecurityTokenProvider.

e TokenTimeout: This is used by the WSTrustRequestHandler when no Lifetime has been
specified in the WS-Trust request. It creates a Lifetime instance that has the current time as the
creation time and expires after the specified number of seconds.

e ServiceProviders: This section specifies the token types that must be used for each service

provider (the Web service that requires a security token). When a WS-Trust request does not
contain the token type, the WSTrustRequestHandler must use the service provider endpoint

to find out the type of the token that must be issued.

e EncryptToken: This is used by the WSTrustRequestHandler to decide if the issued token
must be encrypted or not. If true, the public key certificate (PKC) of the service provider is used
to encrypt the token.

The following is an example of PicketLink STS configuration.

Example 5.3. PicketLink STS Configuration
STSName="Test STS" TokenTimeout="7200" EncryptToken="true">

I <PicketLinkSTS xmlns="urn:picketlink:identity-federation:config:1.0"

35

Security Guide

<KeyProvider
ClassName="org.picketlink.identity.federation.bindings.tomcat.KeyStoreKe
yManager">
<Auth Key="KeyStoreURL"
Value="keystore/sts_keystore.jks"/>
<Auth Key="KeyStorePass" Value="testpass"/>

<Auth Key="SigningKeyAlias" Value="sts"/>
<Auth Key="SigningKeyPass" Value="keypass'"/>
<ValidatingAlias
Key="http://services.testcorp.org/providerl" Value="servicel"/>
<ValidatingAlias
Key="http://services.testcorp.org/provider2" Value="service2"/>
</KeyProvider>

<RequestHandler>org.picketlink.identity.federation.core.wstrust.Standard
RequestHandler</RequestHandler>
<TokenProviders>
<TokenProvider
ProviderClass="org.picketlink.test.identity.federation.bindings.wstrust.
SpecialTokenProvider"
TokenType="http://www.tokens.org/SpecialToken"/>
<TokenProvider
ProviderClass="org.picketlink.identity.federation.api.wstrust.plugins.sa
ml.SAML20TokenProvider"
TokenType="http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.1#SAMLV2.0"/>
</TokenProviders>
<ServiceProviders>
<ServiceProvider
Endpoint="http://services.testcorp.org/provider1"
TokenType="http://www.tokens.org/SpecialToken"
TruststoreAlias="servicel"/>
<ServiceProvider
Endpoint="http://services.testcorp.org/provider2"
TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV2.0"
TruststoreAlias="service2"/>
</ServiceProviders>
</PicketLinkSTS>

Report a bug

5.3. ABOUT PICKETLINK STS LOGIN MODULES

A PicketLink Login Module is typically configured as part of the security setup of a JEE container to use a
Security Token Service for authenticating users. The STS may be collocated on the same container as
the Login Module or be accessed remotely through Web Service calls or another technology. PicketLink
Login Modules support non-PicketLink STS implementations through standard WS-Trust calls.

Types of STS Login Modules
The following are the different types of STS Login Modules.

STSlIssuingLoginModule

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24108-547829+%5BSpecified%5D&comment=Title%3A+Configure+PicketLink+STS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24108-547829+18+Oct+2013+17%3A02+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

e (alls the configured STS and requests for a security token. Upon successfully receiving the
RequestedSecurityToken, it marks the authentication as successful.

e A call to STS typically requires authentication. This Login Module uses credentials from one of
the following sources:

o lts properties file, if the useOptionsCredentials module option is set to true.

o Previous login module credentials if the password-stackingmodule option is set to
useFirstPass.

o From the configured CallbackHandler by supplying a Name and Password Callback.

e Upon successful authentication, the SamlCredential is inserted in the Subject's public
credentials if one with the same Assertion is not found to be already present there.

STSValidatingLoginModule

e (alls the configured STS and validates an available security token.

e A call to STS typically requires authentication. This Login Module uses credentials from one of
the following sources:

o lts properties file, if the useOptionsCredentials module option is set to true.

o Previous login module credentials if the password-stacking module option is set to
useFirstPass.

o From the configured CallbackHandler by supplying a Name and Password Callback.

e Upon successful authentication, the SamlCredential is inserted in the Subject's public credentials
if one with the same Assertion is not found to be already present there.

SAML2STSLoginModule

e This Login Module supplies a ObjectCallback to the configured CallbackHandler and
expects a SamlCredential object back. The Assertion is validated against the configured STS.

e If auser ID and SAML token are shared, this Login Module bypasses validation When stacked
on top of another Login Module that is successfully authenticated.

e Upon successful authentication, the SamlCredential is inspected for a NameID and a multi-
valued role attribute that is respectively set as the ID and roles of the user.

SAML2LoginModule

e This login module is used in conjunction with other components for SAML authentication and
performs no authentication itself.

e The SPRedirectFormAuthenticator uses this login module in PicketLink's implementation
of the SAML v2 HTTP Redirect Profile.

e The Tomcat authenticator valve performs authentication through redirecting to the identity
provider and getting a SAML assertion.

37

Security Guide

e This login module is used to pass the user ID and roles to the JBoss security framework to be
populated in the JAAS subject.

Report a bug

5.4. CONFIGURE STSISSUINGLOGINMODULE

The STSIssuingLoginModule uses a user name and password to authenticate the user against an
STS by retrieving a token.

Example 5.4. Configure STSIssuingLoginModule
<application-policy name="saml-issue-token">
<authentication>
<login-module
code="org.picketlink.identity.federation.core.wstrust.auth.STSIssuinglLog
inModule" flag="required"> <module-option
name="configFile">./picketlink-sts-client.properties</module-option>
<module-option
name="endpointURI">http://security_saml/endpoint</module-option>
</login-module>
</authentication>
<mapping>
<mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STS
PrincipalMappingProvider"
type="principal" />
<mapping-module
code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STS
GroupMappingProvider"
type="role" />

</mapping>
</application-policy>

Most configurations can switch to the configuration sited in the above example by:

e changing their declared security-domain

e specifying a Principal mapping provider

e specifying a RoleGroup mapping provider
The specified Principal mapping provider and the RoleGroup mapping provider results in an
authenticated Subject being populated that enables coarse-grained and role-based authorization. After
authentication, the Security Token is available and may be used to invoke other services by Single Sign-

On.

Report a bug

5.5. CONFIGURE STSVALIDATINGLOGINMODULE

38

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24255-548426+%5BSpecified%5D&comment=Title%3A+About+PicketLink+STS+Login+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24255-548426+23+Oct+2013+09%3A10+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24270-548426+%5BSpecified%5D&comment=Title%3A+Configure+STSIssuingLoginModule%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24270-548426+23+Oct+2013+09%3A10+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

The STSValidatingLoginModule uses a TokenCallback to ask the configured CallbackHandler an STS by
<module-option

retrieving a token.
Example 5.5. Configure STSValidatingLoginModule
<application-policy name="saml-validate-token">
<authentication>

<login-module

code="org.picketlink.identity.federation.core.wstrust.auth.STSValidating

name="endpointURI">http://security_saml/endpoint</module-option>
</login-module>

LoginModule" flag="required">
<module-option name="configFile">./picketlink-sts-
client.properties</module-option>
</authentication>
<mapping>
<mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STS
PrincipalMappingProvider"
type="principal" />
<mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STS
GroupMappingProvider"
type="role" />
</mapping>
</application-policy>

The configuration cited in the example enables Single Sign-On for your applications and services. A
token once issued, either by directly contacting the STS or through a token-issuing login module, can be
used to authenticate against multiple applications and services by employing the setup provided in the
example. Providing a Principal mapping provider and a RoleGroup mapping provider result in an
authenticated Subject being populated that enables coarse-grained and role-based authorization. After
authentication, the Security Token is available and can be used to invoke other services by Single Sign-
On.

Report a bug

5.6. SAML WEB BROWSER BASED SSO

5.6.1. About SAML Web Browser Based SSO

PicketLink in JBoss EAP provides a platform to implement federated identity based services. This
includes centralized identity services and Single Sign-On (SSO) for applications.

The SAML profile has support for both the HTTP/POST and the HTTP/Redirect bindings with centralized
identity services to enable web SSO for your applications. The architecture for the SAML v2 based Web
SSO follows the hub and spoke architecture of identity management. In this architecture an identity
provider (IDP) acts as the central source (hub) for identity and role information to all the applications
(Service Providers). The spokes are the service providers (SP).

39

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24271-549126+%5BSpecified%5D&comment=Title%3A+Configure+STSValidatingLoginModule%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24271-549126+28+Oct+2013+09%3A35+en-US+%5BSpecified%5D

Security Guide

Report a bug

5.6.2. Setup SAML v2 based Web SSO using HTTP/Redirect Binding

To setup SAML v2 based SSO using HTTP/Redirect Binding you have to configure the following:

e Identity Provider: The Identity Provider is the authoritative entity responsible for authenticating an
end user and asserting the identity for that user in a trusted fashion to trusted partners.

e Service Provider: The Service Provider relies on the Identity Provider to assert information about
a user via an electronic user credential, leaving the service provider to manage access control
and dissemination based on a trusted set of user credential assertions.

Report a bug

5.6.3. Configure ldentity Provider

The Identity Provider (IDP) is a JBoss EAP server instance.

Procedure 5.1. Configure Identity Provider (IDP)

1. Configure the web application security for the IDP
Configure a web application as the Identity provider.

NOTE

The use of FORM based web application security is recommended as it gives
you the ability to customize the login page.

The following is an example of the web . xm1 configuration

Example 5.6. web.xml Configuration for IDP

<display-name>IDP</display-name>
<description>IDP</description>
<!-- Define a security constraint that gives unlimited access to
images -->
<security-constraint>
<web-resource-collection>
<web-resource-name>Images</web-resource-name>
<url-pattern>/images/*</url-pattern>
</web-resource-collection>
</security-constraint>
<!-- Define a Security Constraint on this Application -->
<security-constraint>
<web-resource-collection>
<web-resource-name>IDP</web-resource-name>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
</security-constraint>
<!-- Define the Login Configuration for this Application -->

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24105-558044+%5BSpecified%5D&comment=Title%3A+About+SAML+Web+Browser+Based+SSO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24105-558044+22+Nov+2013+10%3A22+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24273-548426+%5BSpecified%5D&comment=Title%3A+Setup+SAML+v2+based+Web+SSO+using+HTTP%2FRedirect+Binding%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24273-548426+23+Oct+2013+09%3A10+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

<login-config>
<auth-method>FORM</auth-method>
<realm-name>IDP Application</realm-name>

<form-login-config>
<form-login-page>/jsp/login.jsp</form-login-page>
<form-error-page>/jsp/loginerror.jsp</form-error-page>
</form-login-config>
</login-config>
<!-- Security roles referenced by this web application -->
<security-role>
<description>
The role that is required to log in to the IDP Application
</description>
<role-name>manager</role-name>
</security-role>
</web-app>

2. Configure the IDP Valves
Create a context . xml file in the WEB-INF directory of your IDP web application to configure
the valves for the IDP. The following is an example of context . xml file.

className="org.picketlink.identity.federation.bindings.tomcat.idp.
IDPWebBrowserSSOvalve"/>

Example 5.7. context.xml File Configuration for IDP Valves
<context>
<Valve
</context>

3. Configure the PicketLink Configuration File (picketlink.xml)
Configure picketlink.xml in the WEB-INF directory of your IDP web application. In this
configuration file you provide the URL that gets added as the issuer in the outgoing SAML2
assertions to the service providers and the IDP. The following is an example of
picketlink.xml configuration.

<PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:2.1">

<IdentityURL>http://localhost:8080/idp/</IdentityURL>
</PicketLinkIDP>
<Handlers xmlns="urn:picketlink:identity-
federation:handler:config:2.1">
<Handler

class="org.picketlink.identity.federation.web.handlers.saml2.SAML2

IssuerTrustHandler" />

Example 5.8. picketlink-idfed.xml Configuration
<Handler

| <PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">

class="org.picketlink.identity.federation.web.handlers.saml2.SAML2

41

Security Guide

LogOutHandler" />
<Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2

AuthenticationHandler" />
<Handler
class="org.picketlink.identity.federation.web.handlers.saml2.Roles
GenerationHandler" />
</Handlers>
</PicketLink>

Report a bug

5.6.4. Configure Service Provider

The Service Provider (SP) can be a JBoss EAP server instance.

Procedure 5.2. Configure Service Provider (SP)

1. Configure the Web Application Security For the SP
The web application to be configured as a SP should have FORM based security enabled in its
web.xml file.

Example 5.9. web.xml Configuration for SP
<display-name>IDP</display-name>
<description>IDP</description>
<!-- Define a security constraint that gives unlimited access to

images -->
<security-constraint>
<web-resource-collection>
<web-resource-name>Images</web-resource-name>
<url-pattern>/images/*</url-pattern>
</web-resource-collection>
</security-constraint>
<!-- Define a Security Constraint on this Application -->
<security-constraint>
<web-resource-collection>
<web-resource-name>IDP</web-resource-name>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
</security-constraint>
<!-- Define the Login Configuration for this Application -->
<login-config>
<auth-method>FORM</auth-method>
<realm-name>IDP Application</realm-name>
<form-login-config>
<form-login-page>/jsp/login.jsp</form-login-page>
<form-error-page>/jsp/loginerror.jsp</form-error-page>
</form-login-config>

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24284-558063+%5BSpecified%5D&comment=Title%3A+Configure+Identity+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24284-558063+22+Nov+2013+11%3A07+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

</login-config>

<!-- Security roles referenced by this web application -->
<security-role>
<description>
The role that is required to log in to the IDP Application
</description>

<role-name>manager</role-name>
</security-role>
</web-app>

2. Configure the SP Valve
To configure the valve for the SP, create a context .xml in the WEB-INF directory of your SP
web application.

<Context>

<Valve
className="org.jboss.identity.federation.bindings.tomcat.sp.SPRedi
rectSignatureFormAuthenticator" />
</Context>

| Example 5.10. context.xml File Configuration for IDP Valves

3. Configure the PicketLink Federation configuration file (picketlink-idfed.xml)
Configure picketlink-idfed.xml in WEB-INF of your IDP web application. In this
configuration file you provide the URL that gets added as the issuer in the outgoing SAML2
assertions to the Service Providers and the IDP. The following is an example of picketlink-
idfed.xml configuration.

<PicketLinkIDP xmlns="urn:picketlink:identity-
federation:config:1.0" >
<IdentityURL>http://localhost:8080/idp/</IdentityURL>
</PicketLinkIDP

‘ Example 5.11. picketlink-idfed.xml Configuration

4. Configure the PicketLink Federation Handlers file (picketlink-handlers.xml)
Configure picketlink-handlers.xml in WEB-INF of your SP web application.

<Handlers xmlns="urn:picketlink:identity-
federation:handler:config:1.0">

<Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2
LogOutHandler"/>

<Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2
AuthenticationHandler"/>

</Handlers>

‘ Example 5.12. Configure picketlink-handlers.xml

43

Security Guide

NOTE

Retain the order in which the handlers are listed.

Report a bug

5.6.5. Setup SAML v2 based Web SSO using HTTP/POST Binding

HTTP/POST binding is the recommended binding for obtaining the web browser based SSO.

Procedure 5.3. Setup SAML v2 based Web SSO using HTTP/POST Binding

1. Configure the Identity Provider (IDP).
The steps to configure IDP for HTTP/POST Binding are same as that of the HTTP/Redirect
Binding. For more information on configuring the IDP, see Section 5.6.2, “Setup SAML v2 based
Web SSO using HTTP/Redirect Binding”

2. Configure the Service Provider (SP)

T

NOTE

The steps to configure SP for HTTP/POST Binding are the same as that of the
HTTP/Redirect Binding, except for a variation in the context . xm1 file.

The following is an example of the context . xml file for IDP valves.

PPostFormAuthenticator"
/>

</Context>

Example 5.13. context.xml File Configuration for IDP Valves
<Context>
<Valve
className="org.picketlink.identity.federation.bindings.tomcat.sp.S

For more information on configuring the SP, see Section 5.6.4, “Configure Service Provider”

Report a bug

5.7. CONFIGURE SAML GLOBAL LOGOUT PROFILE

A Global Logout initiated at one service provider logs out the user from the Identity Provider (IDP) and all
the service providers.

NOTE

For a Global Logout to function appropriately ensure that you have only up to five Service
Providers per Identity Provider.

44

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24286-561316+%5BSpecified%5D&comment=Title%3A+Configure+Service+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24286-561316+28+Nov+2013+10%3A27+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24287-555790+%5BSpecified%5D&comment=Title%3A+Setup+SAML+v2+based+Web+SSO+using+HTTP%2FPOST+Binding%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24287-555790+14+Nov+2013+13%3A54+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

Procedure 5.4. Configure Global Logout

1. Configure picketlink-handlers.xml
Add the SAML2LogOutHandler in the picketlink-handlers.xml.

2. Configure Service Provider web page
Append GLO=true to the link at the end of your web page of the service provider.

Example 5.14. Link to Global Logout

I Click to Globally LogOut

Report a bug

5.8. KERBEROS AND SPNEGO INTEGRATION

5.8.1. About Kerberos and SPNEGO Integration

Kerberos is an authentication method that is designed for open network computing environments. It
works on the basis of a ticket and authenticator to establish the identity of both the user and the server. It
helps the two nodes communicating over a non secure environment to establish their identity to each
other in a secured manner.

SPNEGO is an authentication method used by a client application to authenticate itself to the server.

This technology is used when the client application and the server trying to communicate with each other
are not sure of the authentication protocol the other supports. SPNEGO determines the common GSSAPI
mechanisms between the client application and the server and then dispatches all further security
operations to it.

Kerberos and SPNEGO Integration

In a typical setup, the user logs into a desktop which is governed by the Active Directory domain. The
user then uses the web browser, either Firebox or Internet Explorer, to access a web application that
uses JBoss Negotiation hosted on the JBoss EAP. The web browser transfers the desktop sign on
information to the web application. JBoss EAP uses background GSS messages with the Active
Directory or any Kerberos Server to validate the user. This enables the user to achieve a seamless SSO
into the web application.

Report a bug

5.8.2. Desktop SSO using SPNEGO

To configure the desktop SSO using SPNEGO configure the following:
e Security Domain
e System Properties

e Web Application

Procedure 5.5. Configure Desktop SSO using SPNEGO

1. Configure Security Domain

45

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24106-548150+%5BSpecified%5D&comment=Title%3A+Configure+SAML+Global+Logout+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24106-548150+22+Oct+2013+05%3A47+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24109-548398+%5BSpecified%5D&comment=Title%3A+About+Kerberos+and+SPNEGO+Integration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24109-548398+23+Oct+2013+02%3A04+en-US+%5BSpecified%5D

Security Guide

Configure the security domains to represent the identity of the server and to secure the web

application.
Example 5.15. Security Domain Configuration
<security-domains>
<security-domain name="host" cache-type="default">
<authentication>
<login-module code="Kerberos" flag="required">
<module-option name="storeKey" value="true"/>
<module-option name="useKeyTab" value="true"/>
<module-option name="principal"
value="host/testserver@vY_REALM"/>
<module-option name="keyTab"
value="/home/username/service.keytab"/>
<module-option name="doNotPrompt" value="true"/>
<module-option name="debug" value="false"/>
</login-module>
</authentication>
</security-domain>
<security-domain name="SPNEGO" cache-type="default">
<authentication>
<login-module code="SPNEGO" flag="requisite">
<module-option name="password-stacking"
value="useFirstPass"/>
<module-option name="serverSecurityDomain"
value="host"/>
</login-module>
<!-- Login Module For Roles Search -->
</security-domain>

46

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

2. Setup the System Properties
If required, the system properties can be set in the domain model.

value="mykdc.mydomain"/>
<property name="java.security.krb5.realm" value="MY_REALM"/>

<system-properties>
<property name="java.security.krb5.kdc"
</system-properties>

‘ Example 5.16. Configure System Properties

3. Configure Web Application
It is not possible to override the authenticators, but it is possible to add the
NegotiationAuthenticator as a valve to your jooss-web.xml descriptor to configure the

web application.

NOTE

The valve requires the security-constraint and login-config to be
defined in the web.xml file as this is used to decide which resources are secured.
However, the chosen auth-method is overridden by this authenticator.

Example 5.17. Configure Web Application
<!DOCTYPE jboss-web PUBLIC
"-//JBoss//DTD Web Application 2.4//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">
<jboss-web>
<security-domain>java:/jaas/SPNEGO</security-domain>
<valve>
<class-
name>org.jboss.security.negotiation.NegotiationAuthenticator</clas
Ss-name>
</valve>
</jboss-web>

The web application also requires a dependency defining in META-INF/MANIFEST . MF so that
the JBoss Negotiation classes can be located.

Example 5.18. Define Dependency in META-INF/MANIFEST .MF

47

Security Guide

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.jboss.security.negotiation

Report a bug

5.8.3. Configure JBoss Negotiation for Microsoft Windows Domain

This section describes how to configure the accounts required for JBoss Negotiation to be used when
JBoss EAP is running on a Microsoft Windows server, which is a part of the Active Directory domain.

In this section, the hostname that is used to access the server as is referred to as {hostname}, realm is
referred to as {realm}, domain is referred to as {domain}, and the server hosting the JBoss EAP
instance is referred to as {machine_name}.

Procedure 5.6. Configure JBoss Negotiation for Microsoft Windows Domain

1. Clear Existing Service Principal Mappings
On a Microsoft Windows network some mappings are created automatically. Delete the
automatically created mappings to map the identity of the server to the service principal for
negotiation to take place correctly. The mapping enables the web browser on the client
computer to trust the server and attempt SPNEGO. The client computer verifies with the domain
controller for a mapping in the form of HTTP{hostname}.

The following are the steps to delete the existing mappings:

o List the mapping registered with the domain for the computer using the command, setspn
-L {machine_name}.

o Delete the existing mappings using the commands, setspn -D HTTP/{hostname}
{machine_name} and setspn -D host/{hostname} {machine_name}.

2. Create a host user account.

NOTE

Ensure the host user name is different from the {machine_name}.

In the rest of the section the host user name is referred to as {user_name}.

3. Define the mapping between the {user_name} and {hostname}.

o Run the following command to configure the Service Principal Mapping, ktpass -princ
HTTP/{hostname}@{realm} -pass * -mapuser {domain}\{user_name}.

o Enter the password for the user name when prompted.

48

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24110-548401+%5BSpecified%5D&comment=Title%3A+Desktop+SSO+using+SPNEGO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24110-548401+23+Oct+2013+04%3A03+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

NOTE

Reset the password for the user name as it is a prerequisite for exporting the
keytab.

o Verify the mapping by running the following command, setspn -L {user_name}

4. Export the keytab of the user to the server on which EAP JBoss is installed.
Run the following command to export the keytab, ktab -k service.keytab -a
HTTP/{hostname}@{realm}.

NOTE

This command exports the ticket for the HTTP/{hostname} principal to the keytab
service.keytab, which is used to configure the host security domain on JBoss.

5. Define the principal within the security domain as follows:

<module-option name="principal">HTTP/{hostname}@{realm}</module-
option>

Report a bug

5.9. AUTHENTICATION

5.9.1. About Authentication

Authentication refers to identifying a subject and verifying the authenticity of the identification. The most
common authentication mechanism is a username and password combination. Other common
authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful
authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.

JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration
with the authentication systems you already use in your organization. Each security domain contains one
or more configured authentication modules. Each module includes additional configuration parameters to
customize its behavior. The easiest way to configure the authentication subsystem is within the web-
based management console.

Authentication is not the same as authorization, although they are often linked. Many of the included
authentication modules can also handle authorization.

Report a bug

5.9.2. Configure Authentication in a Security Domain

To configure authentication settings for a security domain, log into the management console and follow
this procedure.

Procedure 5.7. Setup Authentication Settings for a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. In a managed domain,

49

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+24328-555789+%5BSpecified%5D&comment=Title%3A+Configure+JBoss+Negotiation+for+Microsoft+Windows+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24328-555789+14+Nov+2013+13%3A47+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4723-458757+%5BSpecified%5D&comment=Title%3A+About+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4723-458757+11+Jun+2013+14%3A27+en-US+%5BSpecified%5D

Security Guide

Result

50

select the profile to modify from the Profile selection box at the top left of the Profile view.
Click the Security menu item at the left, and click Security Domains from the expanded
menu. Click the View link for the security domain you want to edit.

. Navigate to the Authentication subsystem configuration.

Click the Authentication label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Login Modules and Details. The login
module is the basic unit of configuration. A security domain can include several login modules,
each of which can include several attributes and options.

. Add an authentication module.

Click the Add button to add a JAAS authentication module. Fill in the details for your module.
The Code is the class name of the module. The Flags controls how the module relates to other
authentication modules within the same security domain.

Explanation of the Flags

The Java Enterprise Edition 6 specification provides the following explanation of the flags for
security modules. The following list is taken from
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#Appendix
Refer to that document for more detailed information.

Flag Details

required The LoginModule is required to succeed. If it
succeeds or fails, authentication still continues to
proceed down the LoginModule list.

requisite LoginModule is required to succeed. If it
succeeds, authentication continues down the
LoginModule list. If it fails, control immediately
returns to the application (authentication does
not proceed down the LoginModule list).

sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to the
application (authentication does not proceed
down the LoginModule list). If it fails,
authentication continues down the LoginModule
list.

optional The LoginModule is not required to succeed. If it
succeeds or fails, authentication still continues to
proceed down the LoginModule list.

After you have added your module, you can modify its Code or Flags by clicking the Edit
button in the Details section of the screen. Be sure the Attributes tab is selected.

. Optional: Add or remove module options.

If you need to add options to your module, click its entry in the Login Modules list, and select
the Module Options tab in the Details section of the page. Click the Add button, and
provide the key and value for the option. Use the Remove button to remove an option.

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

Your authentication module is added to the security domain, and is immediately available to applications
which use the security domain.

The jboss.security.security_domain Module Option

By default, each login module defined in a security domain has the
jboss.security.security_domain module option added to it automatically. This option causes
problems with login modules which check to make sure that only known options are defined. The IBM
Kerberos login module, com. ibm.security.auth.module.Krb5LoginModule is one of these.

You can disable the behavior of adding this module option by setting the system property to true when
starting JBoss EAP 6. Add the following to your start-up parameters.

I -Djboss.security.disable.secdomain.option=true

You can also set this property using the web-based Management Console. In a standalone server, you
can set system properties in the Profile section of the configuration. In a managed domain, you can
set system properties for each server group.

Report a bug

5.10. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

5.10.1. About Java Authentication SPI for Containers (JASPI) Security

Java Application SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications. It
is defined in JSR-196 of the Java Community Process. Refer to http://www.jcp.org/en/jsr/detail ?id=196
for details about the specification.

Report a bug

5.10.2. Configure Java Authentication SPI for Containers (JASPI) Security

To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security
domain. The configuration is similar to a standard authentication module, but login module elements are
enclosed in a <login-module-stack> element. The structure of the configuration is:

<login-module code="..." flag="...">
<module-option name="..." value="..."/>
</login-module>
</login-module-stack>
<auth-module code="..." login-module-stack-ref="...">
<module-option name="..." value="..."/>
</auth-module>

<authentication-jaspi>
<login-module-stack name="...">
</authentication-jaspi>

| Example 5.19. Structure of the authentication-jaspi element

The login module itself is configured in exactly the same way as a standard authentication module.

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4724-490496+%5BSpecified%5D&comment=Title%3A+Configure+Authentication+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4724-490496+02+Aug+2013+15%3A52+en-US+%5BSpecified%5D
http://www.jcp.org/en/jsr/detail?id=196
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+7199-328604+%5BSpecified%5D&comment=Title%3A+About+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7199-328604+05+Nov+2012+14%3A55+en-US+%5BSpecified%5D

Security Guide

Because the web-based management console does not expose the configuration of JASPI
authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration
directly to EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml.

Report a bug

5.11. AUTHORIZATION

5.11.1. About Authorization

Authorization is a mechanism for granting or denying access to a resource based on identity. It is
implemented as a set of declarative security roles which can be granted to principals.

JBoss EAP 6 uses a modular system to configure authorization. Each security domain can contain one
or more authorization policies. Each policy has a basic module which defines its behavior. It is configured
through specific flags and attributes. The easiest way to configure the authorization subsystem is by
using the web-based management console.

Authorization is different from authentication, and usually happens after authentication. Many of the
authentication modules also handle authorization.

NOTE

XACML is not permitted in the Common Criteria Certified configuration.
Report a bug

5.11.2. Configure Authorization in a Security Domain

To configure authorization settings for a security domain, log into the management console and follow
this procedure.

Procedure 5.8. Setup Authorization in a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. In a managed domain,
select the profile to modify from the Profile selection box at the top left of the Profile view.
Click the Security menu item at the left, and click Security Domains from the expanded
menu. Click the View link for the security domain you want to edit.

2. Navigate to the Authorization subsystem configuration.
Click the Authorization label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Policies and Details. The login module is
the basic unit of configuration. A security domain can include several authorization policies, each
of which can include several attributes and options.

3. Add a policy.
Click the Add button to add a JAAS authorization policy module. Fill in the details for your
module. The Code is the class name of the module. The Flags controls how the module relates
to other authorization policy modules within the same security domain.

52

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4934-458763+%5BSpecified%5D&comment=Title%3A+Configure+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4934-458763+11+Jun+2013+14%3A34+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4725-642063+%5BSpecified%5D&comment=Title%3A+About+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4725-642063+21+May+2014+10%3A02+en-US+%5BSpecified%5D

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

Explanation of the Flags

The Java Enterprise Edition 6 specification provides the following explanation of the flags for
security modules. The following list is taken from
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#Appendix
Refer to that document for more detailed information.

Flag Details

required The LoginModule is required to succeed. If it
succeeds or fails, authorization still continues to
proceed down the LoginModule list.

requisite LoginModule is required to succeed. If it
succeeds, authorization continues down the
LoginModule list. If it fails, control immediately
returns to the application (authorization does not
proceed down the LoginModule list).

sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to the
application (authorization does not proceed
down the LoginModule list). If it fails,
authorization continues down the LoginModule
list.

optional The LoginModule is not required to succeed. If it
succeeds or fails, authorization still continues to
proceed down the LoginModule list.

After you have added your module, you can modify its Code or Flags by clicking the Edit
button in the Details section of the screen. Be sure the Attributes tab is selected.

4. Optional: Add, edit, or remove module options.
If you need to add options to your module, click its entry in the Login Modules list, and select
the Module Options tab in the Details section of the page. Click the Add button, and
provide the key and value for the option. To edit an option that already exists, click the key or to
change it. Use the Remove button to remove an option.

Result

Your authorization policy module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

5.12. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

5.12.1. About Java Authorization Contract for Containers (JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It was defined in JSR-115, which can be found on the Java Community Process website
at http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE)
specification since Java EE version 1.3.

53

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4726-504599+%5BSpecified%5D&comment=Title%3A+Configure+Authorization+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4726-504599+30+Aug+2013+12%3A56+en-US+%5BSpecified%5D
http://jcp.org/en/jsr/detail?id=115

Security Guide

JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

Report a bug

5.12.2. Configure Java Authorization Contract for Containers (JACC) Security

To configure Java Authorization Contract for Containers (JACC), you need to configure your security
domain with the correct module, and then modify your jboss-web . xml to include the correct
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization stack
of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, the security domain is configured in the Management Console or
Management CLI, rather than directly in the XML.

<security-domain name="jacc" cache-type="default">
<authentication>
<login-module code="UsersRoles" flag="required">
</login-module>
</authentication>
<authorization>
<policy-module code="JACC" flag="required"/>
</authorization>
</security-domain>

Configure a Web Application to use JACC

The jboss-web.xml is located in the META-INF/ or WEB-INF/ directory of your deployment, and
contains overrides and additional JBoss-specific configuration for the web container. To use your JACC-
enabled security domain, you need to include the <security-domain> element, and also set the
<use-jboss-authorization> element to true. The following application is properly configured to
use the JACC security domain above.

<jboss-web>
<security-domain>jacc</security-domain>
<use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is
part of the Java Enterprise Edition 6 API, and is documented at
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.

<description>The employee and temp-employee roles may access any
method of the EmployeeService bean </description>

Example 5.20. Example JACC Method Permissions in an EJB
<role-name>employee</role-name>

<ejb-jar>
<method-permission>

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+7687-458762+%5BSpecified%5D&comment=Title%3A+About+Java+Authorization+Contract+for+Containers+%28JACC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7687-458762+11+Jun+2013+14%3A32+en-US+%5BSpecified%5D
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

<role-name>temp-employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
</ejb-jar>

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss -
ejb3.xml descriptor, in the <security> child element. In addition to the security domain, you can also
specify the run-as principal, which changes the principal the EJB runs as.

<security-domain>myDomain</security-domain>
<run-as-principal>myPrincipal</run-as-principal>

</security>

Example 5.21. Example Security Domain Declaration in an EJB
<security>
<ejb-name>*</ejb-name>

Report a bug

5.13. SECURITY AUDITING

5.13.1. About Security Auditing

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details.

Auditing uses provider modules. You can use one of the included ones, or implement your own.

Report a bug

5.13.2. Configure Security Auditing

To configure security auditing settings for a security domain, log into the management console and
follow this procedure.

Procedure 5.9. Setup Security Auditing for a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. In a standalone server,
the tab is labeled Profile. In a managed domain, select the profile to modify from the Profile
selection box at the top left of the Profile view. Click the Security menu item at the left, and

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4933-455587+%5BSpecified%5D&comment=Title%3A+Configure+Java+Authorization+Contract+for+Containers+%28JACC%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4933-455587+29+May+2013+13%3A39+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4727-328515+%5BSpecified%5D&comment=Title%3A+About+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4727-328515+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D

Security Guide

Result

click Security Domains from the expanded menu. Click the View link for the security domain
you want to edit.

. Navigate to the Auditing subsystem configuration.

Click the Audit label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Provider Modules and Details. The
provider module is the basic unit of configuration. A security domain can include several provider
modules each of which can include attributes and options.

. Add a provider module.

Click the Add button to add a provider module. Fill in the Code section with the classname of the
provider module.

After you have added your module, you can modify its Code by clicking the Edit button in the
Details section of the screen. Be sure the Attributes tab is selected.

. Verify if your module is working

The goal of an audit module is to provide a way to monitor the events in the security subsystem.
This monitoring can be done by means of writing to a log file, email notifications or any other
measurable auditing mechanism.

For example, JBoss EAP 6 includes the LogAuditProvider module by default. If enabled
following the steps above, this audit module writes security notifications to a audit . log file in
the log subfolder within the EAP_HOME directory.

To verify if the steps above have worked in the context of the LogAuditProvider, perform an
action that is likely to trigger a notification and then check the audit log file.

For a full list of included security auditing provider modules, see here: Section A.4, “Included
Security Auditing Provider Modules”

. Optional: Add, edit, or remove module options.

If you need to add options to your module, click its entry in the Modules list, and select the
Module Options tab in the Details section of the page. Click the Add button, and provide
the key and value for the option. To edit an option that already exists, remove it by clicking the
Remove label, and add it again with the correct options by clicking the Add button.

Your security auditing module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

5.13.3. New Security Properties

New system properties have been added to the security audit functionality for JBoss EAP versions 6.2.2
and later. These new properties mitigate security concerns surrounding plain text logging of web request
components, particularly in scenarios involving BASIC or FORM based authentication.

The new properties allow greater control over which components of a web request are captured in audit
logs (parameters, cookies, headers or attributes). These components can also be masked using the new
properties.

The new properties are:

56

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4728-460687+%5BSpecified%5D&comment=Title%3A+Configure+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4728-460687+17+Jun+2013+14%3A27+en-US+%5BSpecified%5D

Table 5.1. New Security Properties

Description

CHAPTER 5. PICKETLINK IDENTITY MANAGEMENT

Possible values

Behavior

Default

org.jhoss.se
curity.web.a
udit

This property
controls the
granularity of the
security auditing of
web requests.

org.jhoss.se
curity.web.a
udit.mask

This property can
be used to specify
a list of strings to
be matched
against headers,
parameters,
cookies, and
attributes of web
requests. Any
element matching
the specified
masks will be
excluded from
security audit

logging.

Report a bug

5.14. SECURITY MAPPING

5.14.1. About Security Mapping

off, headers,
cookies,
parameters,
attributes

Any comma
separated string
indicating keys of
headers,
parameters,
cookies, and
attributes.

Any component (or
comma-separated
group of
components)
specified will be
audited out of web
requests.

headers, para
meters

Currently, the
matching of the
masks is fuzzy
rather than strict.
For example, a
mask of
authorizatio
n will mask both
the header called
authorization and
the parameter
called
custom_authorizati
on. A future
release may
introduce strict
masks.

j_password,authori
zation

Security mapping allows you to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application. One
example of this is using an X509 certificate for authentication, and then converting the principal from the

certificate to a logical name which your application can display.

You can map principals (authentication), roles (authorization), or credentials (attributes which are not

principals or roles).

Role Mapping is used to add, replace, or remove roles to the subject after authentication.

Principal mapping is used to modify a principal after authentication.

Attribute mapping is used to convert attributes from an external system to be used by your application,

and vice versa.

Report a bug

57

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+29465-608813+%5BSpecified%5D&comment=Title%3A+New+Security+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=29465-608813+05+Mar+2014+11%3A57+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4729-328516+%5BSpecified%5D&comment=Title%3A+About+Security+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4729-328516+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D

Security Guide

5.14.2. Configure Security Mapping in a Security Domain

To configure security mapping settings for a security domain, log into the management console and
follow this procedure.

Procedure 5.10. Setup Security Mapping Settings in a Security Domain

1.

Result

Open the security domain's detailed view.

Click the Profiles label at the top right of the management console. This tab is labeled
Profile in a standalone server. In a managed domain, select the profile to modify from the
Profile selection box at the top left of the Profile view. Click the Security menu item at the
left, and click Security Domains from the expanded menu. Click the View link for the security
domain you want to edit.

. Navigate to the Mapping subsystem configuration.

Click the Mapping label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Modules and Details. The mapping module
is the basic unit of configuration. A security domain can include several mapping modules, each
of which can include several attributes and options.

. Add a module.

Click the Add button to add a security mapping module. Fill in the details for your module. The
Code is the class name of the module. The Type field refers to the type of mapping this module
performs. Allowed values are principal, role, attribute or credential.

After you have added your module, you can modify its Code or Type by clicking the Edit button
in the Details section of the screen. Be sure the Attributes tab is selected.

. Optional: Add, edit, or remove module options.

If you need to add options to your module, click its entry in the Modules list, and select the
Module Options tab in the Details section of the page. Click the Add button, and provide
the key and value for the option. To edit an option that already exists, click the Remove label key
to remove it, and add it again with the new value. Use the Remove button to remove an option.

Your security mapping module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4730-432982+%5BSpecified%5D&comment=Title%3A+Configure+Security+Mapping+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4730-432982+11+Apr+2013+10%3A49+en-US+%5BSpecified%5D

CHAPTER 6. JAVA SECURITY MANAGER

CHAPTER 6. JAVA SECURITY MANAGER

6.1. ABOUT THE JAVA SECURITY MANAGER
Java Security Manager

The Java Security Manager is a class that manages the external boundary of the Java
Virtual Machine (JVM) sandbox, controlling how code executing within the JVM can
interact with resources outside the JVM. When the Java Security Manager is activated,
the Java API checks with the security manager for approval before executing a wide
range of potentially unsafe operations.

The Java Security Manager uses a security policy to determine whether a given action will be permitted
or denied.

Report a bug

6.2. ABOUT JAVA SECURITY MANAGER POLICIES
Security Policy

A set of defined permissions for different classes of code. The Java Security Manager
compares actions requested by applications against the security policy. If an action is
allowed by the policy, the Security Manager will permit that action to take place. If the
action is not allowed by the policy, the Security Manager will deny that action. The
security policy can define permissions based on the location of code, on the code's
signature, or based on the subject's principals.

The Java Security Manager and the security policy used are configured using the Java Virtual Machine
options java.security.manager and java.security.policy.

Basic Information

A security policy's entry consists of the following configuration elements, which are connected to the
policytool:

CodeBase

The URL location (excluding the host and domain information) where the code originates from. This
parameter is optional.

SignedBy

The alias used in the keystore to reference the signer whose private key was used to sign the code.
This can be a single value or a comma-separated list of values. This parameter is optional. If omitted,
presence or lack of a signature has no impact on the Java Security Manager.

Principals

Alist of principal_type/principal_name pairs, which must be present within the executing
thread's principal set. The Principals entry is optional. If it is omitted, it signifies that the principals of
the executing thread will have no impact on the Java Security Manager.

Permissions

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4778-435837+%5BSpecified%5D&comment=Title%3A+About+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4778-435837+19+Apr+2013+03%3A31+en-US+%5BSpecified%5D

Security Guide

A permission is the access which is granted to the code. Many permissions are provided as part of
the Java Enterprise Edition 6 (Java EE 6) specification. This document only covers additional
permissions which are provided by JBoss EAP 6.

Report a bug

6.3. WRITE A JAVA SECURITY MANAGER POLICY

Introduction

An application called policytool is included with most JDK and JRE distributions, for the purpose of
creating and editing Java Security Manager security policies. Detailed information about policytool is
linked from http://docs.oracle.com/javase/6/docs/technotes/tools/.

Procedure 6.1. Setup a new Java Security Manager Policy

1. Start policytool.
Start the policytool tool in one of the following ways.

o Red Hat Enterprise Linux
From your GUI or a command prompt, run /usr/bin/policytool.

o Microsoft Windows Server
Run policytool.exe from your Start menu or from the bin\ of your Java installation. The
location can vary.

2. Create a policy.
To create a policy, select Add Policy Entry. Add the parameters you need, then click Done.

3. Edit an existing policy
Select the policy from the list of existing policies, and select the Edit Policy Entry button.
Edit the parameters as needed.

4. Delete an existing policy.
Select the policy from the list of existing policies, and select the Remove Policy Entry
button.

Report a bug

6.4. IBM JRE AND THE JAVA SECURITY MANAGER

IBM JRE uses a default policy provider which does not work correctly with the JBoss Enterprise
Application Platform security policy. You must change the JRE configuration to use the standard policy
provider, if you want to use the IBM JRE to host JBoss Enterprise Application Platform with the Java
Security Manager enabled.

To configure the JRE configuration for the IBM JRE, edit the
JAVA_HOME/jre/lib/security/java.security file, and set the policy. provider value to
sun.security.provider.PolicyFile.

I policy.provider=sun.security.provider.PolicyFile

Report a bug

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4781-632642+%5BSpecified%5D&comment=Title%3A+About+Java+Security+Manager+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4781-632642+22+Apr+2014+14%3A25+en-US+%5BSpecified%5D
http://docs.oracle.com/javase/6/docs/technotes/tools/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4782-623810+%5BSpecified%5D&comment=Title%3A+Write+a+Java+Security+Manager+Policy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4782-623810+25+Mar+2014+13%3A39+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+30502-632583+%5BSpecified%5D&comment=Title%3A+IBM+JRE+and+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30502-632583+22+Apr+2014+11%3A17+en-US+%5BSpecified%5D

CHAPTER 6. JAVA SECURITY MANAGER

6.5. JAVA SECURITY POLICY STATEMENTS

A policy file specifies permissions to modules and deployed applications. Permissions are applied to
deployed applications via the VFS protocol. See the following Oracle Java SE documentation page
Default Policy Implementation and Policy File Syntax for further information at
http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html

The following is an example of policy statements.

// Grant all to the jboss-modules.jar
grant codeBase "file:${jboss.home.dir}/jboss-modules.jar" {
permission java.security.AllPermission;

iy

// Standard extensions get all permissions by default
grant codeBase "file:${{java.ext.dirs}}/*" {
permission java.security.AllPermission;

iy

// Grant read PropertyPermission for all properties to a deployed EJB
application
grant codeBase "vfs:/content/ejb-app.jar" {

permission java.util.PropertyPermission "*", "read";

iy

// Grant read FilePermission for all files to a web application
grant codeBase "vfs:/content/myapp.war/-" {
permission java.io.FilePermission "/-", "read";

iy

NOTE

On Microsoft Windows Server, when specifying a FilePermission statement including
a file path in a string, not a codeBase URL, you must replace single backslash characters
with two backslash characters. This is because when file paths are parsed, a single
backslash is interpreted as an escape character.

61

http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html

Security Guide

NOTE

Two VFS issues currently exist in JBoss EAP that require a workaround:

e If you define a grant for a deployment on Microsoft Windows, instead of:
I grant codeBase "vfs:/content/..." {
you must use:

I grant codeBase "vfs:/${user.dir}/content/..." {

e If your application contains JSPs, then the permissions granted to the deployment
using a VFS URL is not sufficient, and you will have to duplicate it with file-based
URL. For example, if you have permission:

grant codeBase "vfs:/content/application.war/-" {
permission java.util.PropertyPermission "*", "read";

3
then you also need to add the following:

grant codeBase
"file:${jboss.home.dir}/standalone/tmp/work/jboss.web/def
ault-host/application/-" {

permission java.util.PropertyPermission "*", "read";

iy

Module permissions are defined in module.xml (version 1.2 or higher). The following example
demonstrates specifying module permissions.

<module xmlns="urn:jboss:module:1.2" name="org.jboss.custom.module">
<permissions>
<grant permission="java.io.FilePermission" name="/-" actions='"read"/>
<grant permission="java.lang.RuntimePermission" name='"org.jboss.*"/>
</permissions>

<resources>
<resource-root path="custom-module.jar" />
</resources>

</module>

If there is no <permissions/> element, then A11Permission permission is granted to the module. If
there is an empty <permissions/> element, then no permission is granted.

Report a bug

6.6. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER

To specify a Java Security Manager policy, you need to edit the Java options passed to the domain or
server instance during the bootstrap process. For this reason, you cannot pass the parameters as
options to the domain. sh or standalone. sh scripts. The following procedure guides you through the
steps of configuring your instance to run within a Java Security Manager policy.

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+30196-641256+%5BSpecified%5D&comment=Title%3A+Java+Security+Policy+Statements%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30196-641256+16+May+2014+06%3A42+en-US+%5BSpecified%5D

CHAPTER 6. JAVA SECURITY MANAGER

Prerequisites

e Before you following this procedure, you need to write a security policy, using the policytool
command which is included with your Java Development Kit (JDK). This procedure assumes
that your policy is located at EAP_HOME/bin/server .policy. As an alternative, write the
security policy using any text editor and manually save it as EAP_HOME/bin/server .policy

e The domain or standalone server must be completely stopped before you edit any configuration
files.

Perform the following procedure for each physical host or instance in your domain, if you have domain
members spread across multiple systems.

Procedure 6.2. Configure the Security Manager for JBoss EAP 6

1. Open the configuration file.
Open the configuration file for editing. This file is located in one of two places, depending on
whether you use a managed domain or standalone server. This is not the executable file used to
start the server or domain.

o Managed Domain
m For Linux; EAP_HOME/bin/domain.conf

m For Windows: EAP_HOME\bin\domain.conf.bat

o Standalone Server

m For Linux; EAP_HOME/bin/standalone.conf
m For Windows: EAP_HOME\bin\standalone.conf.bat

2. Add the Java options to the file.
To ensure the Java options are used, add them to the code block that begins with:

I if ["x$JAVA_OPTS" = "x"]; then

You can modify the -Djava.security.policy value to specify the exact location of your
security policy. It should go onto one line only, with no line break. Using == when setting the -
Djava.security.policy property specifies that the security manager will use only the
specified policy file. Using = specifies that the security manager will use the specified policy
combined with the policy set in the policy.url section of

JAVA _HOME/lib/security/java.security.

IMPORTANT

JBoss Enterprise Application Platform releases from 6.2.2 onwards require that
the system property jboss.modules.policy-permissions is set to frue.

Djava.security.policy==$PWD/server.policy -

Example 6.1. domain.conf
Djboss.home.dir=/path/to/EAP_HOME -Djboss.modules.policy-

‘ JAVA_OPTS="$JAVA_OPTS -Djava.security.manager -

63

Security Guide

I permissions=true"

Djava.security.policy==\path\to\server.policy -
Djboss.home.dir=\path\to\EAP_HOME -Djboss.modules.policy-

set "JAVA_OPTS=%JAVA_OPTS% -Djava.security.manager -
permissions=true"

‘ Example 6.2. domain.conf.bat

Djava.security.policy==$PWD/server.policy -
Djboss.home.dir=$JBOSS_HOME -Djboss.modules.policy-

JAVA_OPTS="$JAVA_OPTS -Djava.security.manager -
permissions=true"

‘ Example 6.3. standalone.conf

Djava.security.policy==\path\to\server.policy -
Djboss.home.dir=%JBOSS_HOME% -Djboss.modules.policy-

set "JAVA_OPTS=%JAVA_OPTS% -Djava.security.manager -
permissions=true"

‘ Example 6.4. standalone.conf.bat

3. Start the domain or server.
Start the domain or server as normal.

Report a bug

6.7. DEBUG SECURITY MANAGER POLICIES

You can enable debugging information to help you troubleshoot security policy-related issues. The
java.security.debug option configures the level of security-related information reported. The
command java -Djava.security.debug=help will produce help output with the full range of
debugging options. Setting the debug level to all is useful when troubleshooting a security-related
failure whose cause is completely unknown, but for general use it will produce too much information. A
sensible general default is access: failure.

Procedure 6.3. Enable general debugging

e This procedure will enable a sensible general level of security-related debug information.
Add the following line to the server configuration file.

o If the JBoss EAP 6 instance is running in a managed domain, the line is added to the
bin/domain.conf file for Linux or the bin/domain. conf.bat file for Windows.

64

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4779-633185+%5BSpecified%5D&comment=Title%3A+Run+JBoss+EAP+6+Within+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4779-633185+23+Apr+2014+16%3A16+en-US+%5BSpecified%5D

CHAPTER 6. JAVA SECURITY MANAGER

o If the JBoss EAP 6 instance is running as a standalone server, the line is added to the
bin/standalone. conf file for Linux, or the bin\standalone.conf.bat file for
Windows.

Linux

I JAVA_OPTS="$JAVA_OPTS -Djava.security.debug=access:failure"
Windows

I JAVA_OPTS="%JAVA_OPTS% -Djava.security.debug=access:failure"

Result

A general level of security-related debug information has been enabled.

Report a bug

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4780-458784+%5BSpecified%5D&comment=Title%3A+Debug+Security+Manager+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4780-458784+11+Jun+2013+14%3A59+en-US+%5BSpecified%5D

Security Guide

CHAPTER 7. SECURITY REALMS

7.1. ABOUT SECURITY REALMS

A security realmis a series of mappings between users and passwords, and users and roles. Security
realms are a mechanism for adding authentication and authorization to your EJB and Web applications.
JBoss EAP 6 provides two security realms by default:

e ManagementRealm stores authentication information for the Management API, which provides
the functionality for the Management CLI and web-based Management Console. It provides an
authentication system for managing JBoss EAP 6 itself. You could also use the
ManagementRealm if your application needed to authenticate with the same business rules you
use for the Management API.

e ApplicationRealm stores user, password, and role information for Web Applications and
EJBs.

Each realm is stored in two files on the filesystem:
e REALM-users.properties stores usernames and hashed passwords.
e REALM-users.properties stores user-to-role mappings.

The properties files are stored in the domain/configuration/ and standalone/configuration/
directories. The files are written simultaneously by the add-user . sh or add-user .bat command.
When you run the command, the first decision you make is which realm to add your new user to.

Report a bug

7.2. ADD A NEW SECURITY REALM

1. Run the Management CLI.
Start the jboss-cli.shor jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

/host=master/core-service=management/security-
realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new
role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly-created properties file is not managed by the included add-user . sh
and add-user . bat scripts. It must be managed externally.

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8269-495465+%5BSpecified%5D&comment=Title%3A+About+Security+Realms%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8269-495465+16+Aug+2013+16%3A14+en-US+%5BSpecified%5D

Result

CHAPTER 7. SECURITY REALMS

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.proper
ties)

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

7.3. ADD A USER TO A SECURITY REALM

1.

Run the add-user.sh or add-user.bat command.

Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add -user . sh. If you run Microsoft
Windows Server, run add-user . bat.

. Choose whether to add a Management User or Application User.

For this procedure, type b to add an Application User.

Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm,
you can type its name instead.

Type the username, password, and roles, when prompted.

Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8272-455581+%5BSpecified%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-455581+29+May+2013+13%3A28+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8271-450875+%5BSpecified%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-450875+21+May+2013+14%3A28+en-US+%5BSpecified%5D

Security Guide

CHAPTER 8. ENCRYPTION

8.1. ABOUT ENCRYPTION

Encryption refers to obfuscating sensitive information by applying mathematical algorithms to it.
Encryption is one of the foundations of securing your infrastructure from data breaches, system outages,
and other risks.

Encryption can be applied to simple string data, such as passwords. It can also be applied to data
communication streams. The HTTPS protocol, for instance, encrypts all data before transferring it from
one party to another. If you connect from one server to another using the Secure Shell (SSH) protocol, all
of your communication is sent in an encrypted tunnel .

Report a bug

8.2. ABOUT SSL ENCRYPTION

Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the two
systems is encrypted using a two-way key, generated during the handshake phase of the connection and
known only by those two systems.

For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure (PKI), a
method of encryption that utilizes a key pair. A key pair consists of two separate but matching
cryptographic keys - a public key and a private key. The public key is shared with others and is used to
encrypt data, and the private key is kept secret and is used to decrypt data that has been encrypted using
the public key.

When a client requests a secure connection, a handshake phase takes place before secure
communication can begin. During the SSL handshake the server passes its public key to the client in the
form of a certificate. The certificate contains the identity of the server (its URL), the public key of the
server, and a digital signature that validates the certificate. The client then validates the certificate and
makes a decision about whether the certificate is trusted or not. If the certificate is trusted, the client
generates the two-way encryption key for the SSL connection, encrypts it using the public key of the
server, and sends it back to the server. The server decrypts the two-way encryption key, using its private
key, and further communication between the two machines over this connection is encrypted using the
two-way encryption key.

Report a bug

8.3. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB
SERVER

Introduction

Many web applications require a SSL-encrypted connection between clients and server, also known as a
HTTPS connection. You can use this procedure to enable HTTPS on your server or server group.

Prerequisites

e You need a set of SSL encryption keys and a SSL encryption certificate. You may purchase
these from a certificate-signing authority, or you can generate them yourself using command-line
utilities. To generate encryption keys using Red Hat Enterprise Linux utilities, refer to
Section 8.4, “Generate a SSL Encryption Key and Certificate”.

68

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4774-435776+%5BSpecified%5D&comment=Title%3A+About+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4774-435776+18+Apr+2013+15%3A10+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4775-432896+%5BSpecified%5D&comment=Title%3A+About+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4775-432896+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D

CHAPTER 8. ENCRYPTION

e You need to know the following details about your specific environment and set-up:

o The full directory name and path to your certificate files

o The encryption password for your encryption keys.

e You need to run the Management CLI and connect it to your domain controller or standalone

server.

NOTE

This procedure uses commands appropriate for a JBoss EAP 6 configuration that uses a
managed domain. If you use a standalone server, modify Management CLI commands by
removing the /profile=default from the beginning of any Management CLI
commands.

Procedure 8.1. Configure the JBoss Web Server to use HTTPS

1. Add a new HTTPS connector.

Execute the following Management CLI command, changing the profile as appropriate. This
creates a new secure connector, called HTTPS, which uses the https scheme, the https
socket binding (which defaults to 8443), and is set to be secure.

Example 8.1. Management CLI Command

/profile=default/subsystem=web/connector=HTTPS/:add(socket-
binding=https, scheme=https, protocol=HTTP/1.1, secure=true)

. Configure the SSL encryption certificate and keys.

Execute the following CLI commands to configure your SSL certificate, substituting your own
values for the example ones. This example assumes that the keystore is copied to the server
configuration directory, which is EAP_HOME/domain/configuration/ for a managed
domain.

Example 8.2. Management CLI Command

/profile=default/subsystem=web/connector=HTTPS/ssl=configuration:a
dd(name=https,certificate-key-
file="${jboss.server.config.dir}/keystore. jks", password=SECRET,
key-alias=KEY_ALIAS)

For a full listing of parameters you can set for the SSL properties of the connector, refer to
Section 8.5, “SSL Connector Reference”.

. Deploy an application.

Deploy an application to a server group which uses the profile you have configured. If you use a
standalone server, deploy an application to your server. HTTP requests to it use the new SSL-
encrypted connection.

Report a bug

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+9036-458786+%5BSpecified%5D&comment=Title%3A+Implement+SSL+Encryption+for+the+JBoss+EAP+6+Web+Server%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9036-458786+11+Jun+2013+15%3A00+en-US+%5BSpecified%5D

Security Guide

8.4. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE

To use a SSL-encrypted HTTP connection (HTTPS), as well as other types of SSL-encrypted
communication, you need a signed encryption certificate. You can purchase a certificate from a
Certificate Authority (CA), or you can use a self-signed certificate. Self-signed certificates are not
considered trustworthy by many third parties, but are appropriate for internal testing purposes.

This procedure enables you to create a self-signed certificate using utilities which are available on Red
Hat Enterprise Linux.

Prerequisites

e You need the keytool utility, which is provided by any Java Development Kit implementation.
OpendDK on Red Hat Enterprise Linux installs this command to /usr/bin/keytool.

e Understand the syntax and parameters of the keytool command. This procedure uses
extremely generic instructions, because further discussion of the specifics of SSL certificates or
the keytool command are out of scope for this documentation.

Procedure 8.2. Generate a SSL Encryption Key and Certificate

1. Generate a keystore with public and private keys.
Run the following command to generate a keystore named server . keystore with the alias
jboss in your current directory.

keytool -genkeypair -alias jboss -keyalg RSA -keystore
server.keystore -storepass mykeystorepass --dname
"CN=jsmith, OU=Engineering, O=mycompany.com, L=Raleigh, S=NC, C=US"

The following table describes the parameters used in the keytool command:

Parameter Description

-genkeypair The keytool command to generate a key pair
containing a public and private key.

-alias The alias for the keystore. This value is arbitrary,
but the alias jboss is the default used by the
JBoss Web server.

-keyalg The key pair generation algorithm. In this case it
is RSA.
-keystore The name and location of the keystore file. The

default location is the current directory. The
name you choose is arbitrary. In this case, the
file will be named server .keystore.

70

CHAPTER 8. ENCRYPTION

Parameter Description

-storepass This password is used to authenticate to the
keystore so that the key can be read. The
password must be at least 6 characters long and
must be provided when the keystore is
accessed. In this case, we used
mykeystorepass. If you omit this parameter,
you will be prompted to enter it when you
execute the command.

-keypass This is the password for the actual key.

g NOTE

Due to an implementation

g limitation this must be the same
as the store password.
- -dname A quoted string describing the distinguished

name for the key, for example:
"CN=jsmith,OU=Engineering,O=mycompany.co
m,L=Raleigh,C=US". This string is a
concatenation of the following components:
o CN - The common name or host name. If
the hostname is "jsmith.mycompany.com",
the CN is "jsmith".

o 0U - The organizational unit, for example
"Engineering"

o 0 - The organization name, for example
"mycompany.com".

o L - The locality, for example "Raleigh" or
"London"

o S - The state or province, for example "NC".
This parameter is optional.

o C - The 2 letter country code, for example
"US" or "UKII’

When you execute the above command, you are prompted for the following information:

o If you did not use the -storepass parameter on the command line, you are asked to enter
the keystore password. Re-enter the new password at the next prompt.

o If you did not use the -keypass parameter on the command line, you are asked to enter the
key password. Press Enter to set this to the same value as the keystore password.

When the command completes, the file server. keystore now contains the single key with the
alias jboss.

ral

Security Guide

72

2. Verify the key.

Verify that the key works properly by using the following command.
I keytool -list -keystore server.keystore

You are prompted for the keystore password. The contents of the keystore are displayed (in this
case, a single key called jboss). Notice the type of the jboss key, which is keyEntry. This
indicates that the keystore contains both a public and private entry for this key.

. Generate a certificate signing request.

Run the following command to generate a certificate signing request using the public key from
the keystore you created in step 1.

keytool -certreq -keyalg RSA -alias jboss -keystore server.keystore
-file certreq.csr

You are prompted for the password in order to authenticate to the keystore. The keytool
command then creates a new certificate signing request called certreq.csr in the current
working directory.

. Test the newly generated certificate signing request.

Test the contents of the certificate by using the following command.
I openssl req -in certreq.csr -noout -text

The certificate details are shown.

. Optional: Submit your certificate signing request to a Certificate Authority (CA).

A Certificate Authority (CA) can authenticate your certificate so that it is considered trustworthy
by third-party clients. The CA supplies you with a signed certificate, and optionally with one or
more intermediate certificates.

. Optional: Export a self-sighed certificate from the keystore.

If you only need it for testing or internal purposes, you can use a self-signed certificate. You can
export one from the keystore you created in step 1 as follows:

keytool -export -alias jboss -keystore server.keystore -file
server.crt

You are prompted for the password in order to authenticate to the keystore. A self-signed
certificate, named server.crt, is created in the current working directory.

. Import the signed certificate, along with any intermediate certificates.

Import each certificate, in the order that you are instructed by the CA. For each certificate to
import, replace intermediate.ca or server.crt with the actual file name. If your

certificates are not provided as separate files, create a separate file for each certificate, and
paste its contents into the file.

NOTE

Your signed certificate and certificate keys are valuable assets. Be cautious with
how you transport them between servers.

file intermediate.ca

CHAPTER 8. ENCRYPTION

I keytool -import -keystore server.keystore -alias intermediateCA -

server.crt

I keytool -import -alias jboss -keystore server.keystore -file

8. Test that your certificates imported successfully.

Run the following command, and enter the keystore password when prompted. The contents of
your keystore are displayed, and the certificates are part of the list.

I keytool -list -keystore server.keystore

Result

Your signed certificate is now included in your keystore and is ready to be used to encrypt SSL
connections, including HTTPS web server communications.

Report a bug

8.5. SSL CONNECTOR REFERENCE

JBoss Web connectors may include the following SSL configuration attributes. The CLI commands
provided are designed for a managed domain using profile default. Change the profile name to the
one you wish to configure, for a managed domain, or omit the /profile=default portion of the

command, for a standalone server.

Table 8.1. SSL Connector Attributes

Attribute

name

verify-client

Description

The display name of the SSL
connector.

Set to true to require a valid
certificate chain from the client
before accepting a connection.
Set to want if you want the SSL
stack to request a client
Certificate, but not fail if one is not
presented. Set to false (the
default) to not require a certificate
chain unless the client requests a
resource protected by a security
constraint that uses CLIENT -
CERT authentication.

CLI Command

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=name,
value=https)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-

attribute(name=verif
y-client, value=want)

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+9037-490501+%5BSpecified%5D&comment=Title%3A+Generate+a+SSL+Encryption+Key+and+Certificate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9037-490501+02+Aug+2013+15%3A55+en-US+%5BSpecified%5D

Security Guide

Attribute

verify-depth

certificate-key-file

certificate-file

password

protocol

74

Description

The maximum number of
intermediate certificate issuers

checked before deciding that the

clients do not have a valid
certificate. The default value is
10.

The full file path and file name of
the keystore file where the signed

server certificate is stored. With
JSSE encryption, this certificate
file will be the only one, while

OpenSSL uses several files. The
default value is the . keystore

file in the home directory of the

user running JBoss EAP 6. If your
keystoreType does not use a
file, set the parameter to an empty

string.

If you use OpenSSL encryption,

set the value of this parameter to
the path to the file containing the

server certificate.

The password for both the
trustore and keystore. In the
following example, replace
PASSWORD with your own
password.

The version of the SSL protocol to

use. Supported values include
SSLv2, SSLv3, TLSv1,

SSLv2+SSLv3, and ALL. The

default is ALL.

CLI Command

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=verif
y-depth,value=10)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=certi
ficate-key-
file,value=../domain
/configuration/serve
r.keystore)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=certi
ficate-
file,value=server.cr
t)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=passw
ord, value=PASSWORD)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=proto
col,value=ALL)

Attribute

cipher-suite

key-alias

truststore-type

keystore-type

ca-certificate-file

Description

A comma-separated list of the
encryption ciphers which are
allowed. The JVM default for
JSSE contains weak ciphers
which should not be used. The
example only lists two possible

ciphers, but real-world examples

will likely use more.

The alias used to for the server

certificate in the keystore. In the

following example, replace

KEY_ALIAS with your certificate's

alias.

The type of the truststore. Various
types of keystores are available,

including PKCS12 and Java's
standard JKS.

The type of the keystore, Various
types of keystores are available,

including PKCS12 and Java's
standard JKS.

The file containing the CA
certificates. This is the

truststoreFile, in the case

of JSSE, and uses the same
password as the keystore. The

ca-certificate-filefileis
used to validate client certificates.

CHAPTER 8. ENCRYPTION

CLI Command

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=ciphe
r-suite,

value="TLS_RSA WITH_
AES_128_CBC_SHA, TLS_

RSA_WITH_AES_256_CBC
_SHA™)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=key-
alias,value=KEY_ALIA
S)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=trust
store-

type, value=jks)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=keyst
ore-type, value=jks)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=certi
ficate-
file,value=ca.crt)

75

Security Guide

Attribute Description

ca-certificate-password The Certificate password for the
ca-certificate-file.In
the following example, replace the
MASKED_PASSWORD with your

own masked password.

A file or URL which contains the
revocation list. It refers to the
crlFile for JSSE or the
SSLCARevocationFile for
SSL.

ca-revocation-url

The size of the SSLSession
cache. This attribute applies only
to JSSE connectors. The default
is @, which specifies an unlimited
cache size.

session-cache-size

The number of seconds before a
cached SSLSession expires. This
attribute applies only to JSSE
connectors. The default is 86400
seconds, which is 24 hours.

session-timeout

Report a bug

8.6. FIPS 140-2 COMPLIANT ENCRYPTION

8.6.1. About FIPS 140-2 Compliance

The Federal Information Processing Standard 140-2 (FIPS 140-2) is a US government computer security

CLI Command

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=ca-
certificate-
password, value=MASKE
D_PASSWORD)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=ca-
revocation-
url,value=ca.crl)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=sessi
on-cache-
size,value=100)

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=sessi
on-

timeout, value=43200)

standard for the accreditation of cryptographic software modules. FIPS 140-2 compliance is often a
requirement of software systems used by government agencies and private sector business.

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+9038-496418+%5BSpecified%5D&comment=Title%3A+SSL+Connector+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9038-496418+20+Aug+2013+16%3A24+en-US+%5BSpecified%5D

CHAPTER 8. ENCRYPTION

JBoss EAP 6 uses external modules encryption and can be configured to use a FIPS 140-2 compliant
cryptography module.

Report a bug

8.6.2. FIPS 140-2 Compliant Passwords

A FIPS compliant password must have the following characteristics:

1. Must be at least seven (7) characters in length.

2. Must include characters from at least three (3) of the following character classes:
o ASCII digits,
o lowercase ASCII,
o uppercase ASCII,
o non-alphanumeric ASCII, and
o non-ASCII.

If the first character of the password is an uppercase ASCII letter, then it is not counted as an uppercase
ASCII letter for restriction 2.

If the last character of the password is an ASCII digit, then it does not count as an ASCII digit for
restriction 2.

Report a bug

8.6.3. Enable FIPS 140-2 Cryptography for SSL on Red Hat Enterprise Linux 6

This task describes how to configure the web container (JBoss Web) of JBoss EAP 6 to FIPS 140-2
compliant cryptography for SSL. This task only covers the steps to do this on Red Hat Enterprise Linux 6.

This task uses the Mozilla NSS library in FIPS mode for this feature.

Prerequisites

e Red Hat Enterprise Linux 6 must already be configured to be FIPS 140-2 compliant. Refer to
https://access.redhat.com/knowledge/solutions/137833.

Procedure 8.3. Enable FIPS 140-2 Compliant Cryptography for SSL

1. Create the database
Create the NSS database in a directory own by the jboss user.

$ mkdir -p /usr/share/jboss-as/nssdb
$ chown jboss /usr/share/jboss-as/nssdb
$ modutil -create -dbdir /usr/share/jboss-as/nssdb

2. Create NSS configuration file
Create a new text file with the name nss_pkcsll fips.cfginthe /usr/share/jboss-as
directory with the following contents:

77

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+13767-458815+%5BSpecified%5D&comment=Title%3A+About+FIPS+140-2+Compliance%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13767-458815+11+Jun+2013+15%3A45+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+13893-383346+%5BSpecified%5D&comment=Title%3A+FIPS+140-2+Compliant+Passwords%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13893-383346+12+Mar+2013+15%3A52+en-US+%5BSpecified%5D
https://access.redhat.com/knowledge/solutions/137833

Security Guide

name = nss-fips
nssLibraryDirectory=/usr/1ib64
nssSecmodDirectory=/usr/share/jboss-as/nssdb
nssModule = fips

The NSS configuration file must specify:
o aname,
o the directory where the NSS library is located, and
o the directory where the NSS database was created as per step 1.

If you are not running a 64bit version of Red Hat Enterprise Linux 6 then set
nssLibraryDirectoryto /usr/1lib instead of /usr/1ib64.

3. Enable SunPKCS11 provider
Edit the java.security configuration file for your JRE
($JAVA_HOME/jre/lib/security/java.security) and add the following line:

security.provider.1=sun.security.pkcs11.SunPKCS11 /usr/share/jboss-
as/nss_pkcsll_fips.cfg

Note that the configuration file specified in this line is the file created in step 2.

Any other security.provider.X lines in this file must have the value of their Xincreased by
one to ensure that this provider is given priority.

4. Enable FIPS mode for the NSS library
Run the modutil command as shown to enable FIPS mode:

I modutil -fips true -dbdir /usr/share/jboss-as/nssdb

Note that the directory specified here is the one created in step 1.

You may get a security library error at this point requiring you to regenerate the library
signatures for some of the NSS shared objects.

5. Change the password on the FIPS token
Set the password on the FIPS token using the following command. Note that the name of the
token must be NSS FIPS 140-2 Certificate DB.

modutil -changepw "NSS FIPS 140-2 Certificate DB" -dbdir
/usr/share/jboss-as/nssdb

The password used for the FIPS token must be a FIPS compliant password.

6. Create certificate using NSS tools
Enter the following command to create a certificate using the NSS tools.

certutil -S -k rsa -n jbossweb -t "u,u,u" -x -s "CN=localhost,

OU=MYQU, O0=MYORG, L=MYCITY, ST=MYSTATE, C=MY" -d /usr/share/jboss-
as/nssdb

78

CHAPTER 8. ENCRYPTION

7. Configure the HTTPS connector to use the PKCS11 keystore
Add a HTTPS connector using the following command in the JBoss CLI Tool:

/subsystem=web/connector=https/:add(socket-
binding=https, scheme=https, protocol=HTTP/1.1, secure=true)

Then add the SSL configuration with the following command, replacing PASSWORD with the
FIPS compliant password from step 5.

/subsystem=web/connector=https/ssl=configuration:add(name=https, pass
word=PASSWORD, keystore-type=PCKS11,

cipher-
suite="SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA WITH_3DES_EDE_CBC_S
HA,

TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_ECDSA_WITH_AES_128_CBC
_SHA,

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_ECDSA_WITH_3DES_EDE_CB
C_SHA,

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_256_CB
C_SHA,

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_RSA_WITH_AES_128_CBC_SHA

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SH
A,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SH
A,

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_anon_WITH_AES_128_CBC_S
HA,

TLS_ECDH_anon_WITH_AES_256_CBC_SHA")

8. Verify
Verify that the JVM can read the private key from the PKCS11 keystore by running the following
command:

I keytool -list -storetype pkcsii

Example 8.3. XML configuration for HTTPS connector using FIPS 140-2 compliance

<connector name="https" protocol="HTTP/1.1" scheme="https" socket-
binding="https" secure="true">
<ssl name="https" password="****"
cipher-

suite="SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA WITH_3DES_EDE_CBC_SHA,

TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA,

TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,

TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA

14

79

Security Guide

A,

TLS_ECDHE_ECDSA_WITH_AES_128_ CBC_SHA, TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SH
A,

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA"

keystore-type="PKCS11"/>

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SH
</connector>

Note that the cipher -suite attribute has linebreaks inserted to make it easier to read.

Report a bug

80

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+13768-458816+%5BSpecified%5D&comment=Title%3A+Enable+FIPS+140-2+Cryptography+for+SSL+on+Red+Hat+Enterprise+Linux+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13768-458816+11+Jun+2013+15%3A46+en-US+%5BSpecified%5D

CHAPTER 9. NETWORK SECURITY

CHAPTER 9. NETWORK SECURITY

9.1. SECURE THE MANAGEMENT INTERFACES

Summary

In a test environment, it is typical to run JBoss EAP 6 with no security layer on the management
interfaces, comprised of the Management Console, Management CLI, and any other API
implementation. This allows for rapid development and configuration changes.

In addition, a silent authentication mode is present by default, allowing a local client on the host machine
to connect to the Management CLI without requiring a username or password. This behavior is a
convenience for local users and Management CLI scripts, but it can be disabled if required. The
procedure is described in the topic Section 10.5, “Remove Silent Authentication from the Default
Security Realm”.

When you begin testing and preparing your environment to move to production, it is vitally important to
secure the management interfaces by at least the following methods:

e Section 9.2, “Specify Which Network Interface JBoss EAP 6 Uses”
e Section 9.3, “Configure Network Firewalls to Work with JBoss EAP 6”

Report a bug

9.2. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES

Overview

Isolating services so that they are accessible only to the clients who need them increases the security of
your network. JBoss EAP 6 includes two interfaces in its default configuration, both of which bind to the
IP address 127.0.0.1, or localhost, by default. One of the interfaces is called management, and is
used by the Management Console, CLI, and API. The other is called public, and is used to deploy
applications. These interfaces are not special or significant, but are provided as a starting point.

The management interface uses ports 9990 and 9999 by default, and thepublic interface uses port
8080, or port 8443 if you use HTTPS.

You can change the IP address of the management interface, public interface, or both.

! WARNING
If you expose the management interfaces to other network interfaces which are

accessible from remote hosts, be aware of the security implications. Most of the
time, it is not advisable to provide remote access to the management interfaces.

1. Stop JBoss EAP 6.
Stop JBoss EAP 6 by sending an interrupt in the appropriate way for your operating system. If
you are running JBoss EAP 6 as a foreground application, the typical way to do this is to press
Ctrl+C.

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4703-537642+%5BSpecified%5D&comment=Title%3A+Secure+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4703-537642+17+Sep+2013+10%3A18+en-US+%5BSpecified%5D

Security Guide

2. Restart JBoss EAP 6, specifying the bind address.
Use the -b command-line switch to start JBoss EAP 6 on a specific interface.

Example 9.1. Specify the public interface.

I EAP_HOME/bin/domain.sh -b 10.1.1.1

Example 9.2. Specify the management interface.

I EAP_HOME/bin/domain.sh -bmanagement=10.1.1.1

Example 9.3. Specify different addresses for each interface.

I EAP_HOME/bin/domain.sh -bmanagement=127.0.0.1 -b 10.1.1.1

Example 9.4. Bind the public interface to all network interfaces.

I EAP_HOME/bin/domain.sh -b 0.0.0.0

It is possible to edit your XML configuration file directly, to change the default bind addresses. However,
if you do this, you will no longer be able to use the -bcommand-line switch to specify an IP address at
run-time, so this is not recommended. If you do decide to do this, be sure to stop JBoss EAP 6
completely before editing the XML file.

Report a bug

9.3. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP
6

Summary

Most production environments use firewalls as part of an overall network security strategy. If you need
multiple server instances to communicate with each other or with external services such as web servers
or databases, your firewall must take this into account. A well-managed firewall only opens the ports
which are necessary for operation, and limits access to the ports to specific IP addresses, subnets, and
network protocols.

A full discussion of firewalls is out of the scope of this documentation.

Prerequisites

e Determine the ports you need to open.

e An understanding of your firewall software is required. This procedure uses the system-
config-firewall command in Red Hat Enterprise Linux 6. Microsoft Windows Server
includes a built-in firewall, and several third-party firewall solutions are available for each
platform.

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4704-458774+%5BSpecified%5D&comment=Title%3A+Specify+Which+Network+Interface+JBoss+EAP+6+Uses%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4704-458774+11+Jun+2013+14%3A49+en-US+%5BSpecified%5D

CHAPTER 9. NETWORK SECURITY

Assumptions

This procedure configures a firewall in an environment with the following assumptions:

The operating system is Red Hat Enterprise Linux 6.
JBoss EAP 6 runs on host 10.1.1.2. Optionally, the server has its own firewall.

The network firewall server runs on host 10.1.1.1 on interface eth®, and has an external
interface ethil.

You want traffic on port 5445 (a port used by JMS) forwarded to JBoss EAP 6. No other traffic
should be allowed through the network firewall.

Procedure 9.1. Manage Network Firewalls and JBoss EAP 6 to work together

1.

Log into the Management Console.
Log into the Management Console. By default, it runs on http://localhost:9990/console/.

Determine the socket bindings used by the socket binding group.

Click the Profiles label at the top right of the Management Console. At the left side of the
screen, a series of menus is shown. The bottom menu heading is General Configuration.
Click the Socket Binding item below this heading. The Socket Binding Declarations
screen appears. Initially, the standard-sockets group is shown. You can choose a different
group by selecting it from the combo box on the right-hand side.

NOTE

If you use a standalone server, it has only one socket binding group.

The list of socket names and ports is shown, eight values per page. You can go through the
pages by using the arrow navigation below the table.

Determine the ports you need to open.
Depending on the function of the particular port and the requirements of your environment, some
ports may need to be opened on your firewall.

. Configure your firewall to forward traffic to JBoss EAP 6.

Perform these steps to configure your network firewall to allow traffic on the desired port.
a. Log into your firewall machine and access a command prompt, as the root user.

b. Issue the command system-config-firewall to launch the firewall configuration utility.
A GUI or command-line utility launches, depending on the way you are logged into the
firewall system. This task makes the assumption that you are logged in via SSH and using
the command-line interface.

c. Use the TAB key on your keyboard to navigate to the Customize button, and press the
ENTER key. The Trusted Services screen appears.

d. Do not change any values, but use the TAB key to navigate to the Forward button, and
press ENTER to advanced to the next screen. The Other Ports screen appears.

e. Use the TAB key to navigate to the <Add> button, and press ENTER. The Port and
Protocol screen appears.

83

http://localhost:9990/console/

Security Guide

Enter 5445 in the Port / Port Range field, then use the TAB key to move to the
Protocol field, and enter tcp. Use the TAB key to navigate to the OK button, and press
ENTER.

Use the TAB key to navigate to the Forward button until you reach the Port Forwarding
screen.

Use the TAB key to navigate to the <Add> button, and press the ENTER key.
Fill in the following values to set up port forwarding for port 5445.
m Source interface: eth1
m Protocol: tcp
m Port/ Port Range: 5445
m Destination IP address: 10.1.1.2
m Port/ Port Range: 5445
Use the TAB key to navigate to the OK button, and press ENTER.
Use the TAB key to navigate to the Close button, and press ENTER.

Use the TAB key to navigate to the OK button, and press ENTER. To apply the changes, read
the warning and click Yes.

5. Configure a firewall on your JBoss EAP 6 host.
Some organizations choose to configure a firewall on the JBoss EAP 6 server itself, and close all
ports that are not necessary for its operation. See Section 9.4, “Network Ports Used By JBoss
EAP 6” and determine which ports to open, then close the rest. The default configuration of Red

Hat

Enterprise Linux 6 closes all ports except 22 (used for Secure Shell (SSH) and 5353 (used

for multicast DNS). While you are configuring ports, ensure you have physical access to your
server so that you do not inadvertently lock yourself out.

Result

Your firewall is configured to forward traffic to your internal JBoss EAP 6 server in the way you specified
in your firewall configuration. If you chose to enable a firewall on your server, all ports are closed except
the ones needed to run your applications.

Report a bug

9.4. NETWORK PORTS USED BY JBOSS EAP 6

The ports used by the JBoss EAP 6 default configuration depend on several factors:

e Whether your server groups use one of the default socket binding groups, or a custom group.

e The

84

requirements of your individual deployments.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4705-548800+%5BSpecified%5D&comment=Title%3A+Configure+Network+Firewalls+to+Work+with+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4705-548800+25+Oct+2013+10%3A20+en-US+%5BSpecified%5D

CHAPTER 9. NETWORK SECURITY

NOTE

A numerical port offset can be configured, to alleviate port conflicts when you run multiple
servers on the same physical server. If your server uses a numerical port offset, add the
offset to the default port number for its server group's socket binding group. For instance,
if the HTTP port of the socket binding group is 8080, and your server uses a port offset of
100, its HTTP port is 8180.

Unless otherwise stated, the ports use the TCP protocol.

The default socket binding groups

e full-ha-sockets

e full-sockets

e ha-sockets

e standard-sockets

Table 9.1. Reference of the default socket bindings

ajp

http

https

jacorb

jacorb
-ssl

Mulicast Description full-ha- full- ha- standar

Port sockets sockets socket d-
socket

8009 Apache JServ Yes Yes Yes Yes
Protocol. Used for
HTTP clustering and
load balancing.

8080 The default port for Yes Yes Yes Yes
deployed web
applications.

8443 SSL-encrypted Yes Yes Yes Yes
connection between
deployed web
applications and
clients.

3528 CORBA services for Yes Yes No No
JTS transactions and
other ORB-
dependent services.

3529 SSL-encrypted Yes Yes No No
CORBA services.

85

Security Guide

Mulicast Description full-ha- full- ha- standar

Port sockets sockets socket d-
socket

jgroup 7500 Multicast. Used for Yes No Yes No
S- peer discovery in HA
diagno clusters. Not
stics configurable using

the Management

Interfaces.
jgroup 45700 Multicast. Used to Yes No Yes No
S- discover initial
mping membership in a HA

cluster.
jgroup 7600 Unicast peer Yes No Yes No
s-tcp discovery in HA

clusters using TCP.

jgroup 57600 Used for HA failure Yes No Yes No
s-tcp- detection over TCP.

fd

jgroup 55200 45688 Unicast peer Yes No Yes No
s-udp discovery in HA

clusters using UDP.

jgroup 54200 Used for HA failure Yes No Yes No
s-udp- detection over UDP.

fd

messag 5445 JMS service. Yes Yes No No
ing

messag Referenced by Yes Yes No No
ing- HornetQ JMS

group broadcast and

discovery groups.

messag 5455 Used by JMS Yes Yes No No
ing- Remoting.

throug

hput

mod_cl 23364 Multicast port for Yes No Yes No
uster communication

between JBoss EAP
6 and the HTTP load
balancer.

86

CHAPTER 9. NETWORK SECURITY

Mulicast Description full-ha- full- ha- standar

Port sockets sockets socket d-
socket

0sgi- 8090 Used by internal Yes Yes Yes Yes
http components which
use the OSGi

subsystem. Not
configurable using
the Management

Interfaces.
remoti 4447 Used for remote EJB Yes Yes Yes Yes
ng invocation.
txn- 4712 The JTA transaction Yes Yes Yes Yes
recove recovery manager.
ry-
enviro
nment
txn- 4713 The JTA/JTS Yes Yes Yes Yes
status transation manager.
manage
r

Management Ports

In addition to the socket binding groups, each host controller opens two more ports for management
purposes:

e 9990 - The Web Management Console port
e 9999 - The port used by the Management Console and Management API

Report a bug

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+5377-481771+%5BSpecified%5D&comment=Title%3A+Network+Ports+Used+By+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5377-481771+25+Jul+2013+13%3A24+en-US+%5BSpecified%5D

Security Guide

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

10.1. SECURE THE MANAGEMENT INTERFACES

Summary

In a test environment, it is typical to run JBoss EAP 6 with no security layer on the management
interfaces, comprised of the Management Console, Management CLI, and any other API
implementation. This allows for rapid development and configuration changes.

In addition, a silent authentication mode is present by default, allowing a local client on the host machine
to connect to the Management CLI without requiring a username or password. This behavior is a
convenience for local users and Management CLI scripts, but it can be disabled if required. The
procedure is described in the topic Section 10.5, “Remove Silent Authentication from the Default
Security Realm”.

When you begin testing and preparing your environment to move to production, it is vitally important to
secure the management interfaces by at least the following methods:

e Section 9.2, “Specify Which Network Interface JBoss EAP 6 Uses”
e Section 9.3, “Configure Network Firewalls to Work with JBoss EAP 6”

Report a bug

10.2. DEFAULT USER SECURITY CONFIGURATION

Introduction

All management interfaces in JBoss EAP 6 are secured by default. This security takes two different
forms:

e Local interfaces are secured by a SASL contract between local clients and the server they
connect to. This security mechanism is based on the client's ability to access the local filesystem.
This is because access to the local filesystem would allow the client to add a user or otherwise
change the configuration to thwart other security mechanisms. This adheres to the principle that
if physical access to the filesystem is achieved, other security mechanisms are superfluous. The
mechanism happens in four steps:

NOTE

HTTP access is considered to be remote, even if you connect to the localhost
using HTTP.

1. The client sends a message to the server which includes a request to authenticate with the
local SASL mechanism.

2. The server generates a one-time token, writes it to a unique file, and sends a message to
the client with the full path of the file.

3. The client reads the token from the file and sends it to the server, verifying that it has local
access to the filesystem.

4. The server verifies the token and then deletes the file.

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4703-537642+%5BSpecified%5D&comment=Title%3A+Secure+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4703-537642+17+Sep+2013+10%3A18+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

e Remote clients, including local HTTP clients, use realm-based security. The default realm with
the permissions to configure the JBoss EAP 6 remotely using the management interfaces is
ManagementRealm. A script is provided which allows you to add users to this realm (or realms
you create). For more information on adding users, see the Getting Started chapter of the JBoss
EAP 6 Installation Guide. For each user, the username, a hashed password, and the realm are
stored in a file.

Managed domain

EAP_HOME/domain/configuration/mgmt-users.properties

Standalone server

EAP_HOME/standalone/configuration/mgmt-users.properties

Even though the contents of the mgmt -users. properties are masked, the file must still be
treated as a sensitive file. It is recommended that it be set to the file mode of 600, which gives
no access other than read and write access by the file owner.

Report a bug

10.3. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE
CONFIGURATION

The Management interface configuration in the EAP_HOME/domain/configuration/host.xml or
EAP_HOME/standalone/configuration/standalone.xml controls which network interfaces the
host controller process binds to, which types of management interfaces are available at all, and which
type of authentication system is used to authenticate users on each interface. This topic discusses how
to configure the Management Interfaces to suit your environment.

The Management subsystem consists of a <management> element that includes several configurable
attributes, and the following three configurable child elements. The security realms and outbound
connections are each first defined, and then applied to the management interfaces as attributes.

e <security-realms>
e <outbound-connections>
e <management-interfaces>

e <audit-log>

NOTE

Refer to the Management Interface Audit Logging section of the Administration and
Configuration Guide for more information on audit logging.

Security Realms
The security realm is responsible for the authentication and authorization of users allowed to administer
JBoss EAP 6 via the Management APIl, Management CLI, or web-based Management Console.

Two different file-based security realms are included in a default installation: ManagementRealm and
ApplicationRealm. Each of these security realms uses a -users. properties file to store users
and hashed passwords, and a -roles.properties to store mappings between users and roles.

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+5751-548788+%5BSpecified%5D&comment=Title%3A+Default+User+Security+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5751-548788+25+Oct+2013+08%3A38+en-US+%5BSpecified%5D

Security Guide

Support is also included for an LDAP-enabled security realm.

NOTE

Security realms can also be used for your own applications. The security realms
discussed here are specific to the management interfaces.

Outbound Connections

Some security realms connect to external interfaces, such as an LDAP server. An outbound connection
defines how to make this connection. A pre-defined connection type, 1dap-connection, sets all of the
required and optional attributes to connect to the LDAP server and verify the credential.

For more information on how to configure LDAP authentication see Section 10.12.2, “Use LDAP to
Authenticate to the Management Interfaces”.

Management Interfaces

A management interface includes properties about how connect to and configure JBoss EAP. Such
information includes the named network interface, port, security realm, and other configurable
information about the interface. Two interfaces are included in a default installation:

e http-interface is the configuration for the web-based Management Console.

e native-interface is the configuration for the command-line Management CLI and the REST-
like Management API.

Each of the three main configurable elements of the host management subsystem are interrelated. A
security realm refers to an outbound connection, and a management interface refers to a security realm.

Associated information can be found in Section 10.1, “Secure the Management Interfaces”.

Report a bug

10.4. DISABLE THE HTTP MANAGEMENT INTERFACE

In a managed domain, you only need access to the HTTP interface on the domain controller, rather than
on domain member servers. In addition, on a production server, you may decide to disable the web-
based Management Console altogether.

NOTE

Other clients, such as JBoss Operations Network, also operate using the HTTP interface.
If you want to use these services, and simply disable the Management Console itself, you
can set the console-enabled attribute of the HTTP interface to false, instead of
disabling the interface completely.

/host=master/core-service=management/management-interface=http-
interface/:write-attribute(name=console-enabled, value=false)

To disable access to the HTTP interface, which also disables access to the web-based Management
Console, you can delete the HTTP interface altogether.

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8428-632984+%5BSpecified%5D&comment=Title%3A+Overview+of+Advanced+Management+Interface+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8428-632984+23+Apr+2014+00%3A16+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

The following JBoss CLI command allows you to read the current contents of your HTTP interface, in
case you decide to add it again.

interface/:read-resource(recursive=true, proxies=false, include-
runtime=false, include-defaults=true)
{
"outcome" => "success",
"result" => {
"console-enabled" => true,
"interface" => "management",
"port" => expression "${jboss.management.http.port:9990}",
"secure-port" => undefined,
"security-realm" => "ManagementRealm"

(o

Example 10.1. Read the Configuration of the HTTP Interface
| /host=master/core-service=management/management-interface=http-

To remove the HTTP interface, issue the following command:

Example 10.2. Remove the HTTP Interface

/host=master/core-service=management/management-interface=http-
interface/:remove

To re-enable access, issue the following commands to re-create the HTTP Interface with the default
values.

interface:add(console-
enabled=true, interface=management, port="${jboss.management.http.port:999

/host=master/core-service=management/management-interface=http-
0}", security-realm=ManagementRealm)

‘ Example 10.3. Re-Create the HTTP Interface

Report a bug

10.5. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT
SECURITY REALM

Summary

The default installation of JBoss EAP 6 contains a method of silent authentication for a local
Management CLI user. This allows the local user the ability to access the Management CLI without
username or password authentication. This functionality is enabled as a convenience, and to assist local
users running Management CLI scripts without requiring authentication. It is considered a useful feature
given that access to the local configuration typically also gives the user the ability to add their own user
details or otherwise disable security checks.

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8430-466979+%5BSpecified%5D&comment=Title%3A+Disable+the+HTTP+Management+Interface%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8430-466979+20+Jun+2013+05%3A14+en-US+%5BSpecified%5D

Security Guide

The convenience of silent authentication for local users can be disabled where greater security control is
required. This can be achieved by removing the 1ocal element within the security-realm section of

the configuration file. This applies to both the standalone.xml for a Standalone Server instance, or
host.xml for a Managed Domain. You should only consider the removal of the local element if you
understand the impact that it might have on your particular server configuration.

The preferred method of removing silent authentication is by use of the Management CLI, which directly

removes the local element visible in the following example.
Example 10.4. Example of the 1local element in the security-realm
<security-realms>
<security-realm name="ManagementRealm">
<authentication>
<local default-user="$local"/>
<properties path="mgmt-users.properties" relative-
to="jboss.server.config.dir"/>
</authentication>
</security-realm>
<security-realm name="ApplicationRealm">
<authentication>
<local default-user="$local" allowed-users="*"/>
<properties path="application-users.properties" relative-
to="jboss.server.config.dir"/>
</authentication>

<authorization>

<properties path="application-roles.properties" relative-
to="jboss.server.config.dir"/>
</authorization>
</security-realm>
</security-realms>

Prerequisites

e Start the JBoss EAP 6 instance.

e Launch the Management CLI.

Procedure 10.1. Remove Silent Authentication from the Default Security Realm

e Remove silent authentication with the Management CLI
Remove the 1ocal element from the Management Realm and Application Realm as required.

a. Remove the local element from the Management Realm.

m For Standalone Servers

/core-service=management/security-
realm=ManagementRealm/authentication=local:remove

m For Managed Domains

92

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

/host=HOST_NAME/core-service=management/security-
realm=ManagementRealm/authentication=local:remove

b. Remove the local element from the Application Realm.

m For Standalone Servers

/core-service=management/security-
realm=ApplicationRealm/authentication=local:remove

m For Managed Domains

/host=HOST_NAME/core-service=management/security-
realm=ApplicationRealm/authentication=local:remove

Result

The silent authentication mode is removed from the ManagementRealm and the ApplicationRealm.

Report a bug

10.6. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM

Remote JMX connectivity allows you to trigger JDK and application management operations. In order to
secure an installation, disable this function. You can do this either by removing the remote connection
configuration, or removing the JMX subsystem entirely. The JBoss CLI commands reference the default
profile in a managed domain configuration. To modify a different profile, modify the /profile=default
part of the command. For a standalone server, remove that portion of the command completely.

NOTE

In a managed domain the remoting connector is removed from the JMX subsystem by
default. This command is provided for your information, in case you add it during
development.

Example 10.5. Remove the Remote Connector from the JMX Subsystem

I /profile=default/subsystem=jmx/remoting-connector=jmx/:remove

Example 10.6. Remove the JMX Subsystem

Run this command for each profile you use, if you use a managed domain.

I /profile=default/subsystem=jmx/:remove

Report a bug

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+9053-458767+%5BSpecified%5D&comment=Title%3A+Remove+Silent+Authentication+from+the+Default+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9053-458767+11+Jun+2013+14%3A39+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8432-431484+%5BSpecified%5D&comment=Title%3A+Disable+Remote+Access+to+the+JMX+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8432-431484+05+Apr+2013+15%3A19+en-US+%5BSpecified%5D

Security Guide

10.7. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT
INTERFACES

The Management Interfaces use security realms to control authentication and access to the configuration
mechanisms of JBoss EAP 6. This topic shows you how to read and configure security realms. These
commands use the Management CLI.

Read a Security Realm's Configuration

This example shows the default configuration for the ManagementRealm security realm. It uses a file
called mgmt -users.properties to store its configuration information.

Example 10.7. Default ManagementRealm
/host=master/core-service=management/security-
realm=ManagementRealm/:read-
resource(recursive=true, proxies=false, include-runtime=false, include-
defaults=true)
{
"outcome" => "success",
"result" => {
"authorization" => undefined,
"server-identity" => undefined,
"authentication" => {"properties" => {
"path" => "mgmt-users.properties",
"plain-text" => false,
"relative-to" => "jboss.domain.config.dir"

T}

(o

Write a Security Realm

The following commands create a new security realm called TestRealm and set the directory for the
relevant properties file.

/host=master/core-service=management/security-
realm=TestRealm/authentication=properties/:add(path=TestUsers.properties

/host=master/core-service=management/security-realm=TestRealm/:add
, relative-to=jboss.domain.config.dir)

‘ Example 10.8. Writing a Security Realm

Apply a Security Realm to the Management Interface

After adding a security realm, supply it as a reference to the Management Interface.

Example 10.9. Add a Security Realm to a Management Interface

/host=master/core-service=management/management-interface=http-
interface/:write-attribute(security-realm=TestRealm)

94

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

Report a bug

10.8. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS IN
STANDALONE MODE

Procedure 10.2.

1. Ensure the management console binds to HTTPS for its interface by adding the management -
https configuration and removing the management -http configuration.

This can be done by editing the standalone.xml file (which is not recommended) or by using
the following CLI interface commands:

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

/core-service=management/management-interface=http-
interface:undefine-attribute(name=socket-binding)

2. Optional:
If you are using a custom socket -binding group, ensure the management -https binding is
defined (it is present by default, bound to port 9443).

<socket-binding-group name="standard-sockets" default-
interface="public" port-offset="${jboss.socket.binding.port-
offset:0}">

<socket-binding name="management-native"
interface="management" port="${jboss.management.native.port:9999}"/>

<socket-binding name="management-http"
interface="management" port="${jboss.management.http.port:9990}"/>

<socket-binding name="management-https"
interface="management" port="${jboss.management.https.port:9443}"/>

3. Generate a keypair as discussed in Section 8.4, “Generate a SSL Encryption Key and
Certificate”.

4. Add a server-identities element to the security-realm section of the
standalone.xml configuration file of your installation.

Within this element you define the protocol, the keystore path, the keystore password and alias
for the key pair.

Execute the following CLI command, substituting your own values for the example ones. This
example assumes that the keystore is copied to the server configuration directory, which is
EAP_HOME/standalone/configuration/ for a standalone server.

/core-service=management/security-realm=ManagementRealm/server -
identity=ssl:add(keystore-path=server.keystore, keystore-relative-
to=jboss.server.config.dir, keystore-password=SECRET,
alias=KEY_ALIAS)

5. Restart your standalone server.

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+8433-481767+%5BSpecified%5D&comment=Title%3A+Configure+Security+Realms+for+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8433-481767+25+Jul+2013+13%3A09+en-US+%5BSpecified%5D

Security Guide
Report a bug

10.9. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS IN
DOMAIN MODE

Procedure 10.3.

1. Generate a keypair as discussed in Section 8.4, “Generate a SSL Encryption Key and
Certificate”.

2. Add a server-identities element to the security-realm block in your installations
host.xml..

Within this element you define the protocol, the keystore path, the keystore password and alias
for the key pair.

Execute the following CLI command, substituting your own values for the example ones. This

example assumes that the keystore is copied to the server configuration directory, which is
EAP_HOME/domain/configuration/ for a managed domain.

/host=master/core-service=management/security-
realm=ManagementRealm/server-identity=ssl:add(protocol=TLSv1,
keystore-path=server.keystore, keystore-relative-
to=jboss.domain.config.dir, keystore-password=SECRET,
alias=KEY_ALIAS)

3. Change the socket element within the management - interface section by adding secure-
port and removing port configuration.

Use the following commands:

/host=master/core-service=management/management-interface=http-
interface:write-attribute(name=secure-port,value=9443)

/host=master/core-service=management/management-interface=http-
interface:undefine-attribute(name=port)

4. Restart your domain.

Report a bug

10.10. USING 2-WAY SSL FOR THE MANAGEMENT INTERFACE AND
THE CLI

In this topic the following conventions are used:

HOST1
The JBoss server hostname. For example; jboss.redhat.com

HOST2

96

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+22638-548430+%5BSpecified%5D&comment=Title%3A+Configure+the+Management+Console+for+HTTPS+in+Standalone+mode%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22638-548430+23+Oct+2013+10%3A27+en-US+%5BSpecified%5D
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+22639-548431+%5BSpecified%5D&comment=Title%3A+Configure+the+Management+Console+for+HTTPS+in+Domain+mode%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22639-548431+23+Oct+2013+10%3A29+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

A suitable name for the client. For example: myclient. Note this is not necessarily an actual
hostname.

CA_HOST1

The DN (distinguished name) to use for the HOST1 certificate. For example
cn=jboss, dc=redhat, dc=com.

CA_HOST2

The DN (distinguished name) to use for the HOSTZ certificate. For example
cn=myclient, dc=redhat, dc=com.

Procedure 10.4.

1. Generate the stores:

keytool -genkeypair -alias HOST1_alias -keyalg RSA -keysize 1024 -
validity 365 -keystore hostl.keystore.jks -dname "CA_HOST1" -keypass
secret -storepass secret

keytool -genkeypair -alias HOST2_ alias -keyalg RSA -keysize 1024 -
validity 365 -keystore host2.keystore.jks -dname "CA_HOST2" -keypass
secret -storepass secret

2. Export the certificates:

keytool -exportcert -keystore HOST1.keystore.jks -alias HOST1 alias
-keypass secret -storepass secret -file HOST1.cer

keytool -exportcert -keystore HOST2.keystore.jks -alias HOST2 alias
-keypass secret -storepass secret -file HOST2.cer

3. Import the certificates into the opposing trust stores:

keytool -importcert -keystore HOST1.truststore.jks -storepass secret
-alias HOST2_ alias -trustcacerts -file HOSTZ2.cer

keytool -importcert -keystore HOST2.truststore.jks -storepass secret
-alias HOST1_alias -trustcacerts -file HOST1.cer

4. Define a CertificateRealm in the configuration for your installation (host . xml or
standalone.xml) and point the interface to it:

This can be done by manually editing the configuration file (not recommended) or by using the
following commands:

I /core-service=management/security-realm=CertificateRealm:add()

/core-service=management/security-realm=CertificateRealm:add/server-
identity=ssl:add(keystore-path=/path/to/HOST1.keystore. jks, keystore-
password=secret, alias=HOST1_alias)

97

Security Guide

/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-
path=/path/to/HOST1. truststore. jks, keystore-password=secret)

5. Edit the JBOSS_HOME/bin/jboss-cli.xml and add the SSL configuration (using the
appropriate values for the variables):

<ssl>
<alias>$HOST2alias</alias>
<key-store>/path/to/HOST2.keystore. jks</key-store>
<key-store-password>secret</key-store-password>
<trust-store>/path/to/HOST2.truststore.jks</trust-store>
<trust-store-password>secret</trust-store-password>
<modify-trust-store>true</modify-trust-store>

</ssl>

Report a bug
10.11. PASSWORD VAULTS FOR SENSITIVE STRINGS

10.11.1. About Securing Sensitive Strings in Clear-Text Files

Web applications and other deployments often include clear-text files, such as XML deployment
descriptors, which include sensitive information such as passwords and other sensitive strings. JBoss
EAP 6 includes a password vault mechanism which enables you to encrypt sensitive strings and store
them in an encrypted keystore. The vault mechanism manages decrypting the strings for use with
security domains, security realms, or other verification systems. This provides an extra layer of security.
The mechanism relies upon tools that are included in all supported Java Development Kit (JDK)
implementations.

g WARNING
Problems have been encountered when using the Vault security feature with JBoss

EAP 6. It has been found that the vault.keystore generated the Sun/Oracle keytool is
not a valid keystore when used with an IBM JDK. This is due to the fact that the
JCEKS keystore implementations differ across Java vendors.

The issue presents when a keystore generated by Oracle Java is used in a JBoss
EAP instance on an IBM Java installation. In these cases the server will not start and
throws the following exception:

java.io.IOException:
com.sun.crypto.provider.SealedObjectForKeyProtector

At the moment, the only workaround is to avoid attempting to use a keystore
generated with an Oracle keytool in an environment using an IBM Java
implementation.

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+22641-548432+%5BSpecified%5D&comment=Title%3A+Using+2-way+SSL+for+the+Management+interface+and+the+CLI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22641-548432+23+Oct+2013+10%3A30+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY
Report a bug

10.11.2. Create a Java Keystore to Store Sensitive Strings

Prerequisites

e The keytool command must be available to use. It is provided by the Java Runtime

Environment (JRE). Locate the path for the file. In Red Hat Enterprise Linux, it is installed to
/usr/bin/keytool.

Procedure 10.5. Setup a Java Keystore

1. Create a directory to store your keystore and other encrypted information.
Create a directory to hold your keystore and other important information. The rest of this
procedure assumes that the directory is /home/USER/vault/.

2. Determine the parameters to use with keytool.
Determine the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. The alias in
the example command at the end of this procedure is vault. Aliases are case-insensitive.

keyalg

The algorithm to use for encryption. The example in this procedure uses RSA. Use the

documentation for your JRE and operating system to see which other choices may be
available to you.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. The
example in this procedure uses 2048. For information on appropriate values, see the
documentation distributed with the keytool.

keystore

The keystore is a database which holds encrypted information and the information about how
to decrypt it. If you do not specify a keystore, the default keystore to use is a file called
.keystore in your home directory. The first time you add data to a keystore, it is created.
The example in this procedure uses the vault . keystore keystore.

The keytool command has many other options. Refer to the documentation for your JRE or
your operating system for more details.

3. Determine the answers to questions the keystore command will ask.
The keystore needs the following information in order to populate the keystore entry:

Keystore password

When you create a keystore, you must set a password. In order to work with the keystore in
the future, you need to provide the password. Create a strong password that you will
remember. The keystore is only as secure as its password and the security of the file system
and operating system where it resides.

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+9001-550105+%5BSpecified%5D&comment=Title%3A+About+Securing+Sensitive+Strings+in+Clear-Text+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9001-550105+01+Nov+2013+12%3A48+en-US+%5BSpecified%5D

Security Guide

100

Key password (optional)

In addition to the keystore password, you can specify a password for each key it holds. In
order to use such a key, the password needs to be given each time it is used. Usually, this
facility is not used.

First name (given name) and last name (surname)

This, and the rest of the information in the list, helps to uniquely identify the key and place it
into a hierarchy of other keys. It does not necessarily need to be a name at all, but it should
be two words, and must be unique to the key. The example in this procedure uses

Accounting Administrator. In directory terms, this becomes the common name of the

certificate.

Organizational unit

This is a single word that identifies who uses the certificate. It may be the application or the
business unit. The example in this procedure uses AccountingServices. Typically, all
keystores used by a group or application use the same organizational unit.

Organization

This is usually a single-word representation of your organization's name. This typically
remains the same across all certificates used by an organization. This example uses
MyOrganization.

City or municipality
Your city.

State or province
Your state or province, or the equivalent for your locality.

Country
The two-letter code for your country.

All of this information together will create a hierarchy for your keystores and certificates, ensuring
that they use a consistent naming structure but are unique.

4. Run the keytool command, supplying the information that you gathered.

keysize 128 -storepass vault22 -keypass vault22 -keystore

/home/USER/vault/vault.keystore

Enter keystore password: vault22

Re-enter new password:vault22

What is your first and last name?
[Unknown]: Accounting Administrator

What is the name of your organizational unit?
[Unknown]: AccountingServices

What is the name of your organization?
[Unknown]: MyOrganization

What is the name of your City or Locality?

Example 10.10. Example input and output of keystore command
[Unknown]: Raleigh

| $ keytool -genseckey -alias vault -storetype jceks -keyalg AES -

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

What is the name of your State or Province?
[Unknown]: NC
What is the two-letter country code for this unit?
[Unknown]: US
Is CN=Accounting Administrator, OU=AccountingServices,
0=MyOrganization, L=Raleigh, ST=NC, C=US correct?

[no]: vyes

Enter key password for <vault>
(RETURN if same as keystore password):

Result

A file named vault . keystore is created in the /home/USER/vault/ directory. It stores a single key,
called vault, which will be used to store encrypted strings, such as passwords, for JBoss EAP 6.

Report a bug

10.11.3. Mask the Keystore Password and Initialize the Password Vault

Prerequisites

e Section 10.11.2, “Create a Java Keystore to Store Sensitive Strings”

e The EAP_HOME/bin/vault . sh application needs to be accessible via a command-line
interface.

1. Run the vault.sh command.
Run EAP_HOME/bin/vault.sh. Start a new interactive session by typing 0.

2. Enter the directory where encrypted files will be stored.
This directory should be reasonably secure, but JBoss EAP 6 needs to be able to access it. If
you followed Section 10.11.2, “Create a Java Keystore to Store Sensitive Strings”, your keystore
is in a directory called vault/ in your home directory. This example uses the directory
/home/USER/vault/.

NOTE

Do not forget to include the trailing slash on the directory name. Either use / or \,
depending on your operating system.

3. Enter the path to the keystore.
Enter the full path to the keystore file. This example uses
/home/USER/vault/vault.keystore.

4. Encrypt the keystore password.
The following steps encrypt the keystore password, so that you can use it in configuration files
and applications securely.

a. Enter the keystore password.
When prompted, enter the keystore password.

b. Enter a salt value.

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+5353-549388+%5BSpecified%5D&comment=Title%3A+Create+a+Java+Keystore+to+Store+Sensitive+Strings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5353-549388+29+Oct+2013+14%3A35+en-US+%5BSpecified%5D

Security Guide

Enter an 8-character salt value. The salt value, together with the iteration count (below), are
used to create the hash value.

c. Enter the iteration count.
Enter a number for the iteration count.

d. Make a note of the masked password information.
The masked password, the salt, and the iteration count are printed to standard output. Make
a note of them in a secure location. An attacker could use them to decrypt the password.

e. Enter the alias of the vault.
When prompted, enter the alias of the vault. If you followed Section 10.11.2, “Create a Java
Keystore to Store Sensitive Strings” to create your vault, the alias is vault.

5. Exit the interactive console.
Type 2 to exit the interactive console.
Result
Your keystore password has been masked for use in configuration files and deployments. In addition,

your vault is fully configured and ready to use.

Report a bug

10.11.4. Configure JBoss EAP 6 to Use the Password Vault

Overview

Before you can mask passwords and other sensitive attributes in configuration files, you need to make
JBoss EAP 6 aware of the password vault which stores and decrypts them. Follow this procedure to
enable this functionality.

Prerequisites

e Section 10.11.2, “Create a Java Keystore to Store Sensitive Strings”

e Section 10.11.3, “Mask the Keystore Password and Initialize the Password Vault”

Procedure 10.6. Setup a Password Vault

1. Determine the correct values for the command.
Determine the values for the following parameters, which are determined by the commands
used to create the keystore itself. For information on creating a keystore, refer to the following
topics: Section 10.11.2, “Create a Java Keystore to Store Sensitive Strings” and Section 10.11.3,
“Mask the Keystore Password and Initialize the Password Vault”.

Parameter Description

KEYSTORE_URL The file system path or URI of the keystore file,
usually called something like
vault.keystore

KEYSTORE_PASSWORD The password used to access the keystore. This
value should be masked.

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+5357-458811+%5BSpecified%5D&comment=Title%3A+Mask+the+Keystore+Password+and+Initialize+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5357-458811+11+Jun+2013+15%3A38+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

Parameter Description

KEYSTORE_ALIAS The name of the keystore.

SALT The salt used to encrypt and decrypt keystore
values.

ITERATION_COUNT The number of times the encryption algorithm is
run.

ENC_FILE_DIR The path to the directory from which the keystore

commands are run. Typically the directory
containing the password vault.

host (managed domain only) The name of the host you are configuring

2. Use the Management CLI to enable the password vault.
Run one of the following commands, depending on whether you use a managed domain or
standalone server configuration. Substitute the values in the command with the ones from the
first step of this procedure.

NOTE

If you use Microsoft Windows Server, replace each / character in a filename or
directory path with four \ characters. This is because it should be two \
characters, each escaped. This does not need to be done for other / characters.

o Managed Domain

/host=YOUR_HOST/core-service=vault:add(vault-options=

[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" =>
"MASKED_PASSWORD"), ("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" =>
"SALT"), ("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR"
=> "ENC_FILE_DIR")])

o Standalone Server

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"),
("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),
("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR" =>
"ENC_FILE_DIR")])

The following is an example of the command with hypothetical values:

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"/home/user/vault/vault.keystore"), ("KEYSTORE_PASSWORD" => "MASK-
3y28rCzZ1cKR"), ("KEYSTORE_ALIAS" => "vault"), ("SALT" =>
"12438567"), ("ITERATION_COUNT" => "50"), ("ENC_FILE_DIR"
"/home/user/vault/")])

>

103

Security Guide

Result

JBoss EAP 6 is configured to decrypt masked strings using the password vault. To add strings to the
vault and use them in your configuration, refer to the following topic: Section 10.11.5, “Store and Retrieve
Encrypted Sensitive Strings in the Java Keystore”.

Report a bug

10.11.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore

Summary

Including passwords and other sensitive strings in plain-text configuration files is insecure. JBoss EAP 6
includes the ability to store and mask these sensitive strings in an encrypted keystore, and use masked
values in configuration files.

Prerequisites

Section 10.11.2, “Create a Java Keystore to Store Sensitive Strings”
Section 10.11.3, “Mask the Keystore Password and Initialize the Password Vault”
Section 10.11.4, “Configure JBoss EAP 6 to Use the Password Vault”

The EAP_HOME/bin/vault. sh application needs to be accessible via a command-line
interface.

Procedure 10.7. Setup the Java Keystore

104

1.

Run the vault. sh command.
Run EAP_HOME/bin/vault.sh. Start a new interactive session by typing 0.

Enter the directory where encrypted files will be stored.

If you followed Section 10.11.2, “Create a Java Keystore to Store Sensitive Strings”, your
keystore is in a directory called vault/ in your home directory. In most cases, it makes sense
to store all of your encrypted information in the same place as the key store. This example uses
the directory /home/USER/vault/.

NOTE

Do not forget to include the trailing slash on the directory name. Either use / or \,
depending on your operating system.

Enter the path to the keystore.
Enter the full path to the keystore file. This example uses
/home/USER/vault/vault.keystore.

Enter the keystore password, vault name, salt, and iteration count.
When prompted, enter the keystore password, vault name, salt, and iteration count. A
handshake is performed.

. Select the option to store a password.

Select option 0 to store a password or other sensitive string.

Enter the value.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+5358-498084+%5BSpecified%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5358-498084+22+Aug+2013+10%3A21+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

When prompted, enter the value twice. If the values do not match, you are prompted to try again.

7. Enter the vault block.
Enter the vault block, which is a container for attributes which pertain to the same resource. An
example of an attribute name would be ds_ExampleDS. This will form part of the reference to
the encrypted string, in your datasource or other service definition.

8. Enter the attribute name.
Enter the name of the attribute you are storing. An example attribute name would be password.

Result

A message such as the one below shows that the attribute has been saved.

I Attribute Value for (ds_ExampleDS, password) saved

9. Make note of the information about the encrypted string.
A message prints to standard output, showing the vault block, attribute name, shared key, and
advice about using the string in your configuration. Make note of this information in a secure
location. Example output is shown below.

R I o S R SRR I o kR I I S I O

Vault Block:ds_ExampleDS

Attribute Name:password

Configuration should be done as follows:
VAULT: :ds_ExampleDS: :password::1

R I o S R SRR I o b S b O R I S S

10. Use the encrypted string in your configuration.
Use the string from the previous step in your configuration, in place of a plain-text string. A
datasource using the encrypted password above is shown below.

<subsystem xmlns="urn:jboss:domain:datasources:1.0">
<datasources>
<datasource jndi-name="java:jboss/datasources/ExampleDS"
enabled="true" use-java-context="true" pool-name="H2DS">
<connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1</connection-url>
<driver>h2</driver>
<pool></pool>
<security>
<user-name>sa</user -name>
<password>${VAULT: :ds_ExampleDS: :password::1}</password>
</security>
</datasource>
<drivers>
<driver name="h2" module="com.h2database.h2">
<xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
</driver>
</drivers>
</datasources>
</subsystem>

105

Security Guide

You can use an encrypted string anywhere in your domain or standalone configuration file
where expressions are allowed.

NOTE
To check if expressions are allowed within a particular subsystem, run the
following CLI command against that subsystem:

/host=master/core-service=management/security-
realm=TestRealm:read-resource-description(recursive=true)

From the output of running this command, look for the value for the
expressions-allowed parameter. If this is true, then you can use expressions
within the configuration of this particular subsystem.

After you store your string in the keystore, use the following syntax to replace any clear-text
string with an encrypted one.

${VAULT: :<replaceable>VAULT_BLOCK</replaceable>::
<replaceable>ATTRIBUTE_NAME</replaceable>::
<replaceable>ENCRYPTED_VALUE</replaceable>}

Here is a sample real-world value, where the vault block is ds_ExampleDS and the attribute is
password.

I <password>${VAULT: :ds_ExampleDS: :password: :1}</password>

Report a bug

10.11.6. Store and Resolve Sensitive Strings In Your Applications

Overview

Configuration elements of JBoss EAP 6 support the ability to resolve encrypted strings against values
stored in a Java Keystore, via the Security Vault mechanism. You can add support for this feature to your
own applications.

First, add the password to the vault. Second, replace the clear-text password with the one stored in the
vault. You can use this method to obscure any sensitive string in your application.

Prerequisites

Before performing this procedure, make sure that the directory for storing your vault files exists. It does
not matter where you place them, as long as the user who executes JBoss EAP 6 has permission to
read and write the files. This example places the vault/ directory into the /home/USER/vault/
directory. The vault itself is a file called vault . keystore inside the vault/ directory.

Example 10.11. Adding the Password String to the Vault

Add the string to the vault using the EAP_HOME /bin/vault .sh command. The full series of
commands and responses is included in the following screen output. Values entered by the user are
emphasized. Some output is removed for formatting. In Microsoft Windows, the name of the
command is vault .bat. Note that in Microsoft Windows, file paths use the \ character as a
directory separator, rather than the / character.

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+5359-550324+%5BSpecified%5D&comment=Title%3A+Store+and+Retrieve+Encrypted+Sensitive+Strings+in+the+Java+Keystore%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5359-550324+04+Nov+2013+10%3A50+en-US+%5BSpecified%5D

Enter Keystore Alias:vault
Vault is initialized and ready for use
Handshake with Vault complete

CHAPTER 10. MANAGEMENT INTERFACE SECURITY
Please enter a Digit:: 0: Store a password 1: Check whether password
exists 2: Exit

[user@host bin]$./vault.sh
R I b S S I R R R S S I E I R S I
* %k k% JBOSS Vault *kkxkkkk k%%
IR I b b S S I R R R I S I I R R I I
Please enter a Digit:: @: Start Interactive Session 1: Remove
Interactive Session 2: Exit
(C]
Starting an interactive session
Enter directory to store encrypted files:/home/user/vault/
Enter Keystore URL:/home/user/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:

Values match

Enter 8 character salt:12345678

Enter iteration count as a number (Eg: 44):25

(C]

Task: Store a password

Please enter attribute value: sa

Please enter attribute value again: sa

Values match

Enter Vault Block:DS

Enter Attribute Name:thePass

Attribute Value for (DS, thePass) saved

Please make note of the following:

EE R R b S I S R R S R S I kR b R R R I R I R R R O S
Vault Block:DS

Attribute Name:thePass

Configuration should be done as follows:
VAULT: :DS::thePass::1

R R I o S R SRR I o O S O R R I I I O O

Please enter a Digit:: 0: Store a password 1: Check whether password
exists 2: Exit
2

The string that will be added to the Java code is the last value of the output, the line beginning with
VAULT.

The following servlet uses the vaulted string instead of a clear-text password. The clear-text version is
commented out so that you can see the difference.

import java.io.IOException;

Example 10.12. Servlet Using a Vaulted Password
import java.io.Writer;

| package vaulterror.web;

107

Security Guide

import javax.annotation.Resource;

import javax.annotation.sql.DataSourceDefinition;
import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import javax.sgl.DataSource;

/*@DataSourceDefinition(
name = "java:jboss/datasources/LoginDS",
user = "sa",
password = "sa",
className = '"org.h2.jdbcx.JdbcDataSource",
url = "jdbc:h2:tcp://localhost/mem:test"
)*/
@DataSourceDefinition(
name = "java:jboss/datasources/LoginDS",
user = "sa",
password = "VAULT::DS::thePass::1",
className = "org.h2.jdbcx.JdbcDataSource",
url = "jdbc:h2:tcp://localhost/mem:test"
)
@webServlet (name = "MyTestServlet", urlPatterns = { "/my/" 1},
loadOnStartup = 1)
public class MyTestServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

@Resource(lookup = "java:jboss/datasources/LoginDS")
private DataSource ds;

@Override
protected void doGet(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException {
Writer writer = resp.getWriter();
writer.write((ds != null) + "");

(o

Your servlet is now able to resolve the vaulted string.

Report a bug

10.12. LDAP

10.12.1. About LDAP

Lightweight Directory Access Protocol (LDAP) is a protocol for storing and distributing directory
information across a network. This directory information includes information about users, hardware
devices, access roles and restrictions, and other information.

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+4930-550325+%5BSpecified%5D&comment=Title%3A+Store+and+Resolve+Sensitive+Strings+In+Your+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4930-550325+04+Nov+2013+10%3A56+en-US+%5BSpecified%5D

CHAPTER 10. MANAGEMENT INTERFACE SECURITY

Some common implementations of LDAP include OpenLDAP, Microsoft Active Directory, IBM Tivoli
Directory Server, Oracle Internet Directory, and others.

JBoss EAP 6 includes several authentication and authorization modules which allow you to use a LDAP
server as the authentication and authorization authority for your Web and EJB applications.

Report a bug

10.12.2. Use LDAP to Authenticate to the Management Interfaces

To use an LDAP directory server as the authentication source for the Management Console,
Management CLI, or Management API, you need to perform the following procedures:

1. Create an outbound connection to the LDAP server.
2. Create an LDAP-enabled security realm.
3. Reference the new security domain in the Management Interface.

Create an Outbound Connection to an LDAP Server

The LDAP outbound connection allows the following attributes:

Table 10.1. Attributes of an LDAP Outbound Connection

Attribute Required Description

url yes The URL address of the directory
server.

search-dn yes The fully distinguished name (DN)
of the user authorized to perform
searches.

search-credentials yes The password of the user

authorized to perform searches.

initial-context-factory no The initial context factory to use
when establishing the connection.
Defaults to
com.sun. jndi.ldap.LdapC
txFactory.

security-realm no The security realm to reference to
obtain a configured SSLContext
to use when establishing the
connection.

Example 10.13. Add an LDAP Outbound Connection

This example adds an outbound connection with the following properties set:
e Search DN: cn=search, dc=acme, dc=com

e Search Credential: myPass

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22671%2C+Security+Guide-6.2.2-1%0ABuild+Date%3A+07-08-2015+08%3A49%3A21%0ATopic+ID%3A+7819-555585+%5BSpecified%5D&comment=Title%3A+About+LDAP%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7819-555585+13+Nov+2013+18%3A18+en-US+%5