
Red Hat support for Spring Boot 2.1

Spring Boot 2.1.x Runtime Guide

Use Spring Boot 2.1 to develop applications that run on OpenShift and on stand-alone
RHEL

Last Updated: 2021-02-03

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

Use Spring Boot 2.1 to develop applications that run on OpenShift and on stand-alone RHEL

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details about using Spring Boot.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH SPRING BOOT
1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
1.2. APPLICATION DEVELOPMENT ON RED HAT OPENSHIFT USING DEVELOPER LAUNCHER
1.3. OVERVIEW OF SPRING BOOT

1.3.1. Spring Boot features and frameworks summary
1.3.2. Introduction to example applications

CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

CHAPTER 3. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER
3.1. WORKING WITH DEVELOPER LAUNCHER
3.2. DOWNLOADING THE EXAMPLE APPLICATIONS USING DEVELOPER LAUNCHER
3.3. DEPLOYING AN EXAMPLE APPLICATION ON OPENSHIFT CONTAINER PLATFORM OR CDK (MINISHIFT)

CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION
4.1. DEVELOPING SPRING BOOT APPLICATION
4.2. DEPLOYING SPRING BOOT APPLICATION TO OPENSHIFT

4.2.1. OpenJDK images for Red Hat Enterprise Linux
4.2.2. Preparing Spring Boot application for OpenShift deployment
4.2.3. Deploying Spring Boot application to OpenShift using Fabric8 Maven plugin

4.3. DEPLOYING SPRING BOOT APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX
4.3.1. Preparing Spring Boot application for stand-alone Red Hat Enterprise Linux deployment
4.3.2. Deploying Spring Boot application to stand-alone Red Hat Enterprise Linux using jar

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X
5.1. INTRODUCTION TO SPRING BOOT WITH ECLIPSE VERT.X
5.2. REACTIVE SPRING WEB
5.3. CREATING A REACTIVE SPRING BOOT HTTP SERVICE WITH WEBFLUX
5.4. USING BASIC AUTHENTICATION IN A REACTIVE SPRING BOOT WEBFLUX APPLICATION.
5.5. USING OAUTH2 AUTHENTICATION IN A REACTIVE SPRING BOOT APPLICATION.
5.6. CREATING A REACTIVE SPRING BOOT SMTP MAIL APPLICATION
5.7. SERVER-SENT EVENTS
5.8. USING SERVER-SENT EVENTS IN A REACTIVE SPRING BOOT APPLICATION

CHAPTER 6. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION
6.1. REMOTE DEBUGGING

6.1.1. Starting your Spring Boot application locally in debugging mode
6.1.2. Starting an uberjar in debugging mode
6.1.3. Starting your application on OpenShift in debugging mode
6.1.4. Attaching a remote debugger to the application

6.2. DEBUG LOGGING
6.2.1. Add Spring Boot debug logging
6.2.2. Accessing Spring Boot debug logs on localhost
6.2.3. Accessing debug logs on OpenShift

CHAPTER 7. MONITORING YOUR APPLICATION
7.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT

7.1.1. Accessing JVM metrics using Jolokia on OpenShift

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT
8.1. REST API LEVEL 0 EXAMPLE FOR SPRING BOOT

6

7
7
7
8
8
9

11

13
13
13

14

16
16
19
19
19
21
22
22
23

24
24
25
26
28
31

34
36
37

40
40
40
40
41

42
43
43
44
44

46
46
46

48
48

Table of Contents

1

8.1.1. REST API Level 0 design tradeoffs
8.1.2. Deploying the REST API Level 0 example application to OpenShift Online

8.1.2.1. Deploying the example application using developers.redhat.com/launch
8.1.2.2. Authenticating the oc CLI client
8.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

8.1.3. Deploying the REST API Level 0 example application to Minishift or CDK
8.1.3.1. Getting the Fabric8 Launcher tool URL and credentials
8.1.3.2. Deploying the example application using the Fabric8 Launcher tool
8.1.3.3. Authenticating the oc CLI client
8.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

8.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform
8.1.5. Interacting with the unmodified REST API Level 0 example application for Spring Boot
8.1.6. Running the REST API Level 0 example application integration tests
8.1.7. REST resources

8.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR SPRING BOOT
8.2.1. The externalized configuration design pattern
8.2.2. Externalized Configuration design tradeoffs
8.2.3. Deploying the Externalized Configuration example application to OpenShift Online

8.2.3.1. Deploying the example application using developers.redhat.com/launch
8.2.3.2. Authenticating the oc CLI client
8.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

8.2.4. Deploying the Externalized Configuration example application to Minishift or CDK
8.2.4.1. Getting the Fabric8 Launcher tool URL and credentials
8.2.4.2. Deploying the example application using the Fabric8 Launcher tool
8.2.4.3. Authenticating the oc CLI client
8.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

8.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform
8.2.6. Interacting with the unmodified Externalized Configuration example application for Spring Boot
8.2.7. Running the Externalized Configuration example application integration tests
8.2.8. Externalized Configuration resources

8.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR SPRING BOOT
8.3.1. Relational Database Backend design tradeoffs
8.3.2. Deploying the Relational Database Backend example application to OpenShift Online

8.3.2.1. Deploying the example application using developers.redhat.com/launch
8.3.2.2. Authenticating the oc CLI client
8.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

8.3.3. Deploying the Relational Database Backend example application to Minishift or CDK
8.3.3.1. Getting the Fabric8 Launcher tool URL and credentials
8.3.3.2. Deploying the example application using the Fabric8 Launcher tool
8.3.3.3. Authenticating the oc CLI client
8.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

8.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform
8.3.5. Interacting with the Relational Database Backend API

Troubleshooting
8.3.6. Running the Relational Database Backend example application integration tests
8.3.7. Relational database resources

8.4. HEALTH CHECK EXAMPLE FOR SPRING BOOT
8.4.1. Health check concepts
8.4.2. Deploying the Health Check example application to OpenShift Online

8.4.2.1. Deploying the example application using developers.redhat.com/launch
8.4.2.2. Authenticating the oc CLI client
8.4.2.3. Deploying the Health Check example application using the oc CLI client

8.4.3. Deploying the Health Check example application to Minishift or CDK

48
49
49
49
50
51
51
52
52
52
54
54
54
55
55
56
56
57
57
57
57
59
59
60
60
61

62
62
63
64
64
65
66
66
66
67
68
69
69
69
70
71
72
73
73
74
74
75
75
76
76
76
77

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

2

8.4.3.1. Getting the Fabric8 Launcher tool URL and credentials
8.4.3.2. Deploying the example application using the Fabric8 Launcher tool
8.4.3.3. Authenticating the oc CLI client
8.4.3.4. Deploying the Health Check example application using the oc CLI client

8.4.4. Deploying the Health Check example application to OpenShift Container Platform
8.4.5. Interacting with the unmodified Health Check example application
8.4.6. Running the Health Check example application integration tests
8.4.7. Health check resources

8.5. CIRCUIT BREAKER EXAMPLE FOR SPRING BOOT
8.5.1. The circuit breaker design pattern

Circuit breaker implementation
8.5.2. Circuit Breaker design tradeoffs
8.5.3. Deploying the Circuit Breaker example application to OpenShift Online

8.5.3.1. Deploying the example application using developers.redhat.com/launch
8.5.3.2. Authenticating the oc CLI client
8.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

8.5.4. Deploying the Circuit Breaker example application to Minishift or CDK
8.5.4.1. Getting the Fabric8 Launcher tool URL and credentials
8.5.4.2. Deploying the example application using the Fabric8 Launcher tool
8.5.4.3. Authenticating the oc CLI client
8.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

8.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform
8.5.6. Interacting with the unmodified Spring Boot Circuit Breaker example application
8.5.7. Running the Circuit Breaker example application integration tests
8.5.8. Using Hystrix Dashboard to monitor the circuit breaker
8.5.9. Circuit breaker resources

8.6. SECURED EXAMPLE APPLICATION FOR SPRING BOOT
8.6.1. The Secured project structure
8.6.2. Red Hat SSO deployment configuration
8.6.3. Red Hat SSO realm model

8.6.3.1. Red Hat SSO users
8.6.3.2. The application clients

8.6.4. Spring Boot SSO adapter configuration
8.6.5. Deploying the Secured example application to Minishift or CDK

8.6.5.1. Getting the Fabric8 Launcher tool URL and credentials
8.6.5.2. Creating the Secured example application using Fabric8 Launcher
8.6.5.3. Authenticating the oc CLI client
8.6.5.4. Deploying the Secured example application using the oc CLI client

8.6.6. Deploying the Secured example application to OpenShift Container Platform
8.6.6.1. Authenticating the oc CLI client
8.6.6.2. Deploying the Secured example application using the oc CLI client

8.6.7. Authenticating to the Secured example application API endpoint
8.6.7.1. Getting the Secured example application API endpoint
8.6.7.2. Authenticating HTTP requests using the command line
8.6.7.3. Authenticating HTTP requests using the web interface

8.6.8. Running the Spring Boot Secured example application integration tests
8.6.9. Secured SSO resources

8.7. CACHE EXAMPLE FOR SPRING BOOT
8.7.1. How caching works and when you need it
8.7.2. Deploying the Cache example application to OpenShift Online

8.7.2.1. Deploying the example application using developers.redhat.com/launch
8.7.2.2. Authenticating the oc CLI client
8.7.2.3. Deploying the Cache example application using the oc CLI client

78
78
78
79
80
80
82
83
83
84
84
84
85
85
85
86
87
87
88
88
89
90
90
92
93
94
94
95
95
96
96
97
98
98
98
99
99

100
101
101
101
102
102
103
105
108
109
109
109
110
111
111
111

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

8.7.3. Deploying the Cache example application to Minishift or CDK
8.7.3.1. Getting the Fabric8 Launcher tool URL and credentials
8.7.3.2. Deploying the example application using the Fabric8 Launcher tool
8.7.3.3. Authenticating the oc CLI client
8.7.3.4. Deploying the Cache example application using the oc CLI client

8.7.4. Deploying the Cache example application to OpenShift Container Platform
8.7.5. Interacting with the unmodified Cache example application
8.7.6. Running the Cache example application integration tests
8.7.7. Caching resources

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH
THE FABRIC8 MAVEN PLUGIN

Next steps

APPENDIX D. DEPLOYING A SPRING BOOT APPLICATION USING WAR FILES

APPENDIX E. ADDITIONAL SPRING BOOT RESOURCES

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

APPENDIX G. PROFICIENCY LEVELS
Foundational
Advanced
Expert

APPENDIX H. GLOSSARY
H.1. PRODUCT AND PROJECT NAMES
H.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

113
113
113
114
114
115
116
116
117

118

119

121
122

123

126

127

128
128
128
128

129
129
129

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

4

Table of Contents

5

PREFACE
This guide covers concepts as well as practical details needed by developers to use the Spring Boot
runtime. It provides information governing the design of a Spring Boot application deployed as a Linux
container on OpenShift.

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

6

CHAPTER 1. INTRODUCTION TO APPLICATION
DEVELOPMENT WITH SPRING BOOT

This section explains the basic concepts of application development with Red Hat runtimes. It also
provides an overview about the Spring Boot runtime.

1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT
RUNTIMES

Red Hat OpenShift is a container application platform, which provides a collection of cloud-native
runtimes. You can use the runtimes to develop, build, and deploy Java or JavaScript applications on
OpenShift.

Application development using Red Hat Runtimes for OpenShift includes:

A collection of runtimes, such as, Eclipse Vert.x, Thorntail, Spring Boot, and so on, designed to
run on OpenShift.

A prescriptive approach to cloud-native development on OpenShift.

OpenShift helps you manage, secure, and automate the deployment and monitoring of your
applications. You can break your business problems into smaller microservices and use OpenShift to
deploy, monitor, and maintain the microservices. You can implement patterns such as circuit breaker,
health check, and service discovery, in your applications.

Cloud-native development takes full advantage of cloud computing.

You can build, deploy, and manage your applications on:

OpenShift Container Platform

A private on-premise cloud by Red Hat.

Red Hat Container Development Kit (Minishift)

A local cloud that you can install and execute on your local machine. This functionality is provided by
Red Hat Container Development Kit (CDK) or Minishift.

Red Hat CodeReady Studio

An integrated development environment (IDE) for developing, testing, and deploying applications.

To help you get started with application development, all the runtimes are available with example
applications. These example applications are accessible from the Developer Launcher. You can use the
examples as templates to create your applications. For more information on example applications, see
the section Introduction to example applications .

This guide provides detailed information about the Spring Boot runtime. For more information on other
runtimes, see the relevant runtime documentation.

1.2. APPLICATION DEVELOPMENT ON RED HAT OPENSHIFT USING
DEVELOPER LAUNCHER

You can get started with developing cloud-native applications on OpenShift using Developer Launcher
(developers.redhat.com/launch). It is a service provided by Red Hat.

Developer Launcher is a stand-alone project generator. You can use it to build and deploy applications

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH SPRING BOOT

7

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.openshift.com/products/container-platform/
https://developers.redhat.com/products/cdk/overview/
https://www.openshift.org/minishift/
https://access.redhat.com/products/red-hat-codeready-studio
https://access.redhat.com/documentation/en-us
https://developers.redhat.com/launch

Developer Launcher is a stand-alone project generator. You can use it to build and deploy applications
on OpenShift instances, such as, OpenShift Container Platform or Minishift or CDK.

For more information on how to download and deploy applications on Developer Launcher, see the
section Downloading and deploying applications using Developer Launcher .

1.3. OVERVIEW OF SPRING BOOT

Spring Boot lets you create stand-alone Spring-based applications. See Additional Resources for a list
of documents about Spring Boot.

Spring Boot on OpenShift combines streamlined application development capabilities of Spring Boot
with the infrastructure and container orchestration functionalities of the OpenShift, such as:

rolling updates

service discovery

canary deployments

ways to implement common microservice patterns: externalized configuration, health check,
circuit breaker, and failover

1.3.1. Spring Boot features and frameworks summary

This guide covers the design of modern applications using Spring Boot. These concepts support
developing Web or Websocket applications using either an HTTP connector or non-blocking HTTP
connector. The applications can be packaged and deployed without modification or updated to use
cloud native features on OpenShift.

The features in the table below are available as a collection of example applications that run on
OpenShift. Some features are native to Kubernetes, others are available from Spring Cloud Kubernetes.
Features such as Actuator are available directly in Spring Boot.

Table 1.1. Features and Frameworks Summary

Feature Problem Addressed Cloud Native Framework

Circuit Breaker Switches between
services and continues
to process incoming
requests without
interruption in case of
service failure.

Yes Spring Cloud Netflix -
Hystrix

Health Check Checks readiness and
liveness of the service.
Service restarts
automatically if probing
fails.

Yes Spring Boot Actuator

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

8

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#additional-springboot-resources_spring-boot
https://projects.spring.io/spring-boot/
https://github.com/spring-cloud/spring-cloud-kubernetes
https://github.com/spring-cloud/spring-cloud-netflix

Service Discovery//
include::modules/TEMP
LATE_CONCEPT_explai
ning_a_concept.adoc[le
veloffset=+1]

Discovers
Service/Endpoint
deployed on OpenShift
and exposed behind a
service or route using
the service name
matching a DNS entry.

Yes - using Kubernetes
API

Spring Cloud
Kubernetes -
DiscoveryClient

Server Side Load
Balancing

Handles load increases
by deploying multiple
service instances, and by
transparently
distributing the load
across them.

Yes - Using internal
Kubernetes Load
Balancer

-

Externalize Parameters Makes the application
independent of the
environment where it
runs.

Yes - Kubernetes
ConfigMap or Secret

Spring Cloud
Kubernetes - ConfigMap

Feature Problem Addressed Cloud Native Framework

1.3.2. Introduction to example applications

Examples are working applications that demonstrate how to build cloud native applications and services.
They demonstrate prescriptive architectures, design patterns, tools, and best practices that should be
used when you develop your applications. The example applications can be used as templates to create
your cloud-native microservices. You can update and redeploy these examples using the deployment
process explained in this guide.

The examples implement Microservice patterns such as:

Creating REST APIs

Interoperating with a database

Implementing the health check pattern

Externalizing the configuration of your applications to make them more secure and easier to
scale

You can use the examples applications as:

Working demonstration of the technology

Learning tool or a sandbox to understand how to develop applications for your project

Starting point for updating or extending your own use case

Each example application is implemented in one or more runtimes. For example, the REST API Level 0
example is available for the following runtimes:

Node.js

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH SPRING BOOT

9

https://github.com/spring-cloud/spring-cloud-kubernetes
https://github.com/spring-cloud/spring-cloud-kubernetes
http://microservices.io/patterns/microservices.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-nodejs

Spring Boot

Eclipse Vert.x

Thorntail

The subsequent sections explain the example applications implemented for the Spring Boot runtime.

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

10

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-wf-swarm

CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE
SPRING BOOT

Reference the Spring Boot BOM (Bill of Materials) artifact in the pom.xml file at the root directory of
your application.

Prerequisites

A Maven-based application

Procedure

1. Open the pom.xml file, add the me.snowdrop:spring-boot-bom artifact to the
<dependencyManagement> section, and specify the <type>pom</type> and
<scope>import</scope>:

2. Include the following properties to track the version of Spring Boot and the Spring Boot Maven
Plugin you are using:

3. Specify the repositories containing Spring Boot Starters and the Spring Boot Maven Plugin:

<project>
 ...
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>me.snowdrop</groupId>
 <artifactId>spring-boot-bom</artifactId>
 <version>2.1.15.Final-redhat-00001</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<project>
 ...
 <properties>
 <spring-boot.version>2.1.15.RELEASE</spring-boot.version>
 <spring-boot-maven-plugin.version>2.1.15.RELEASE</spring-boot-maven-plugin.version>
 </properties>
 ...
</project>

 <!-- Specify the repositories containing Spring Boot artifacts. -->
 <repositories>
 <repository>
 <id>redhat-ga</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

11

4. Reference spring-boot-maven-plugin as the plugin used to package your application:

Additional resources

For more information about packaging your Spring Boot application, see the Spring Boot
Maven Plugin documentation.

 <!-- Specify the repositories containing the plugins used to execute the build of your
application. -->
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </pluginRepository>
 </pluginRepositories>

<project>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${spring-boot-maven-plugin.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <redeploy>true</redeploy>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

12

https://docs.spring.io/spring-boot/docs/current/maven-plugin/plugin-info.html

CHAPTER 3. DOWNLOADING AND DEPLOYING
APPLICATIONS USING DEVELOPER LAUNCHER

This section shows you how to download and deploy example applications provided with the runtimes.
The example applications are available on Developer Launcher.

3.1. WORKING WITH DEVELOPER LAUNCHER

Developer Launcher (developers.redhat.com/launch) runs on OpenShift. When you deploy example
applications, the Developer Launcher guides you through the process of:

Selecting a runtime

Building and executing the application

Based on your selection, Developer Launcher generates a custom project. You can either download a
ZIP version of the project or directly launch the application on an OpenShift Online instance.

When you deploy your application on OpenShift using Developer Launcher, the Source-to-Image (S2I)
build process is used. This build process handles all the configuration, build, and deployment steps that
are required to run your application on OpenShift.

3.2. DOWNLOADING THE EXAMPLE APPLICATIONS USING
DEVELOPER LAUNCHER

Red Hat provides example applications that help you get started with the Spring Boot runtime. These
examples are available on Developer Launcher (developers.redhat.com/launch).

You can download the example applications, build, and deploy them. This section explains how to
download example applications.

You can use the example applications as templates to create your own cloud-native applications.

Procedure

1. Go to Developer Launcher (developers.redhat.com/launch).

2. Click Start.

3. Click Deploy an Example Application .

4. Click Select an Example to see the list of example applications available with the runtime.

5. Select a runtime.

6. Select an example application.

NOTE

Some example applications are available for multiple runtimes. If you have not
selected a runtime in the previous step, you can select a runtime from the list of
available runtimes in the example application.

7. Select the release version for the runtime. You can choose from the community or product

CHAPTER 3. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER

13

https://developers.redhat.com/launch
https://developers.redhat.com/launch
https://developers.redhat.com/launch
https://developers.redhat.com/launch

7. Select the release version for the runtime. You can choose from the community or product
releases listed for the runtime.

8. Click Save.

9. Click Download to download the example application.
A ZIP file containing the source and documentation files is downloaded.

3.3. DEPLOYING AN EXAMPLE APPLICATION ON OPENSHIFT
CONTAINER PLATFORM OR CDK (MINISHIFT)

You can deploy the example application to either OpenShift Container Platform or CDK (Minishift).
Depending on where you want to deploy your application use the relevant web console for
authentication.

Prerequisites

An example application project created using Developer Launcher.

If you are deploying your application on OpenShift Container Platform, you must have access to
the OpenShift Container Platform web console.

If you are deploying your application on CDK (Minishift), you must have access to the CDK
(Minishift) web console.

oc command-line client installed.

Procedure

1. Download the example application.

2. You can deploy the example application on OpenShift Container Platform or CDK (Minishift)
using the oc command-line client.
You must authenticate the client using the token provided by the web console. Depending on
where you want to deploy your application, use either the OpenShift Container Platform web
console or CDK (Minishift) web console. Perform the following steps to get the authenticate the
client:

a. Login to the web console.

b. Click the question mark icon, which is in the upper-right corner of the web console.

c. Select Command Line Tools from the list.

d. Copy the oc login command.

e. Paste the command in a terminal to authenticate your oc CLI client with your account.

3. Extract the contents of the ZIP file.

4. Create a new project in OpenShift.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ unzip MY_APPLICATION_NAME.zip

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

14

https://developers.redhat.com/launch

5. Navigate to the root directory of MY_APPLICATION_NAME.

6. Deploy your example application using Maven.

NOTE: Some example applications may require additional setups. To build and deploy the
example applications, follow the instructions provided in the README file.

7. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod has the status Running after it is fully deployed and started.
The pod name of your application may be different. The numeric value in the pod name is
incremented for every new build. The letters at the end are generated when the pod is created.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you can use to access it. In this
example, you can use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 3. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER

15

CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT
RUNTIME APPLICATION

In addition to using an example , you can create new Spring Boot applications from scratch and deploy
them to OpenShift.

The recommended approach for specifying and using supported and tested Maven artifacts in a Spring
Boot application is to use the OpenShift Application Runtimes Spring Boot BOM.

4.1. DEVELOPING SPRING BOOT APPLICATION

For a basic Spring Boot application, you need to create the following:

A Java class containing Spring Boot methods.

A pom.xml file containing information required by Maven to build the application.

The following procedure creates a simple Greeting application that returns "{"content":"Greetings!"}" as
response.

NOTE

For building and deploying your applications to OpenShift, Spring Boot 2.1.x only supports
builder images based on OpenJDK 8 and OpenJDK 11. Oracle JDK and OpenJDK 9
builder images are not supported.

Prerequisites

Maven installed.

OpenJDK 8 or OpenJDK 11 installed.

Procedure

1. Create a new directory myApp, and navigate to it.

This is the root directory for the application.

2. Create directory structure src/main/java/com/example/ in the root directory, and navigate to it.

3. Create a Java class file MyApp.java containing the application code.

$ mkdir myApp
$ cd myApp

$ mkdir -p src/main/java/com/example/
$ cd src/main/java/com/example/

package com.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

16

4. Create a pom.xml file in the application root directory myApp with the following content:

import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication
@RestController
public class MyApp {

 public static void main(String[] args) {
 SpringApplication.run(MyApp.class, args);
 }

 @RequestMapping("/")
 @ResponseBody
 public Message displayMessage() {
 return new Message();
 }

 static class Message {
 private String content = "Greetings!";

 public String getContent() {
 return content;
 }

 public void setContent(String content) {
 this.content = content;
 }
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>my-app</artifactId>
 <version>1.0.0-SNAPSHOT</version>

 <name>MyApp</name>
 <description>My Application</description>

 <!-- Specify the JDK builder image used to build your application. -->
 <!-- Use OpenJDK 8 and OpenJDK 11-based images. OracleJDK-based images are not
supported. -->
 <properties>
 <fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>
 </properties>

 <!-- Import dependencies from the Spring Boot BOM. -->
 <dependencyManagement>

CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

17

5. Build the application using Maven from the root directory of the application.

 <dependencies>
 <dependency>
 <groupId>me.snowdrop</groupId>
 <artifactId>spring-boot-bom</artifactId>
 <version>2.1.15.Final-redhat-00001</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>2.1.15.RELEASE</version>
 </plugin>
 </plugins>
 </build>

 <!-- Specify the repositories containing Spring Boot artifacts -->
 <repositories>
 <repository>
 <id>redhat-ga</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </pluginRepository>
 </pluginRepositories>

</project>

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

18

6. Verify that the application is running.
Using curl or your browser, verify your application is running at http://localhost:8080.

Additional information

As a recommended practice, you can configure liveness and readiness probes to enable health
monitoring for your application when running on OpenShift. To learn how application health
monitoring on OpenShift works, try the Health Check example .

4.2. DEPLOYING SPRING BOOT APPLICATION TO OPENSHIFT

To deploy your Spring Boot application to OpenShift, configure the pom.xml file in your application and
then use the Fabric8 Maven plugin. You can specify an OpenJDK image by replacing the
fabric8.generator.from URL in the pom.xml file.

4.2.1. OpenJDK images for Red Hat Enterprise Linux

You can select the OpenJDK image used to build and deploy your application to OpenShift. OpenJDK
images are available for RHEL 7 and RHEL 8 with OpenJDK 8 or OpenJDK 11.

Docker or podman authentication into the Red Hat Ecosystem Catalog is required to access RHEL 8
images. The authentication procedures are provided in the Red Hat Ecosystem Catalog links in the
following table.

OS JDK Red Hat Ecosystem Catalog

RHEL 7 OpenJDK 8 RHEL 7 with OpenJDK 8

RHEL 7 OpenJDK 11 RHEL 7 with OpenJDK 11

RHEL 8 OpenJDK 8 RHEL 8 with OpenJDK 8

RHEL 8 OpenJDK 11 RHEL 8 with OpenJDK 11

NOTE

The use of a RHEL 8-based container on a RHEL 7 host, for example with OpenShift 3 or
OpenShift 4, has limited support. For more information, see the Red Hat Enterprise Linux
Container Compatibility Matrix.

4.2.2. Preparing Spring Boot application for OpenShift deployment

For deploying your Spring Boot application to OpenShift, it must contain:

Launcher profile information in the application’s pom.xml file.

$ mvn spring-boot:run

$ curl http://localhost:8080
{"content":"Greetings!"}

CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

19

http://localhost:8080
https://access.redhat.com/containers/#/registry.access.redhat.com/redhat-openjdk-18/openjdk18-openshift
https://access.redhat.com/containers/#/registry.access.redhat.com/openjdk/openjdk-11-rhel7
https://access.redhat.com/containers/#/registry.access.redhat.com/openjdk/openjdk-8-rhel8
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/openjdk/openjdk-11-rhel8
https://access.redhat.com/support/policy/rhel-container-compatibility

In the following procedure, a profile with Fabric8 Maven plugin is used for building and deploying the
application to OpenShift.

Prerequisites

Maven is installed.

Docker or podman authentication into Red Hat Ecosystem Catalog to access RHEL 8 images.

Procedure

1. Add the following content to the pom.xml file in the application root directory:

2. Replace the fabric8.generator.from property in the pom.xml file to specify OpenJDK image.

RHEL 7 with OpenJDK 8

RHEL 7 with OpenJDK 11

RHEL 8 with OpenJDK 8

...

<profiles>
 <profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>4.4.1</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

<fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>

<fabric8.generator.from>registry.access.redhat.com/openjdk/openjdk-11-
rhel7:latest</fabric8.generator.from>

<fabric8.generator.from>registry.redhat.io/openjdk/openjdk-8-
rhel8:latest</fabric8.generator.from>

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

20

https://access.redhat.com/containers/

RHEL 8 with OpenJDK 11

4.2.3. Deploying Spring Boot application to OpenShift using Fabric8 Maven plugin

To deploy your Spring Boot application to OpenShift, you must perform the following:

Log in to your OpenShift instance.

Deploy the application to the OpenShift instance.

Prerequisites

oc CLI client installed.

Maven installed.

Procedure

1. Log in to your OpenShift instance with the oc client.

2. Create a new project in the OpenShift instance.

3. Deploy the application to OpenShift using Maven from the application’s root directory. The root
directory of an application contains the pom.xml file.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and start
the pod.

4. Verify the deployment.

a. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully
deployed and started.

Your specific pod name will vary.

b. Determine the route for the pod.

Example Route Information

<fabric8.generator.from>registry.redhat.io/openjdk/openjdk-11-
rhel8:latest</fabric8.generator.from>

$ oc login ...

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

21

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The route information of a pod gives you the base URL which you use to access it.

In this example, http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
is the base URL to access the application.

c. Verify that your application is running in OpenShift.

4.3. DEPLOYING SPRING BOOT APPLICATION TO STAND-ALONE RED
HAT ENTERPRISE LINUX

To deploy your Spring Boot application to stand-alone Red Hat Enterprise Linux, configure the
pom.xml file in the application, package it using Maven and deploy using the java -jar command.

Prerequisites

RHEL 7 or RHEL 8 installed.

4.3.1. Preparing Spring Boot application for stand-alone Red Hat Enterprise Linux
deployment

For deploying your Spring Boot application to stand-alone Red Hat Enterprise Linux, you must first
package the application using Maven.

Prerequisites

Maven installed.

Procedure

1. Add the following content to the pom.xml file in the application’s root directory:

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME 8080

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
{"content":"Greetings!"}

 ...
 <!-- Specify target artifact type for the repackage goal. -->
 <packaging>jar</packaging>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${spring-boot.version}</version>
 <executions>
 <execution>
 <goals>

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

22

2. Package your application using Maven.

The resulting JAR file is in the target directory.

4.3.2. Deploying Spring Boot application to stand-alone Red Hat Enterprise Linux
using jar

To deploy your Spring Boot application to stand-alone Red Hat Enterprise Linux, use java -jar
command.

Prerequisites

RHEL 7 or RHEL 8 installed.

OpenJDK 8 or OpenJDK 11 installed.

A JAR file with the application.

Procedure

1. Deploy the JAR file with the application.

2. Verify the deployment.
Use curl or your browser to verify your application is running at http://localhost:8080:

 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...

$ mvn clean package

$ java -jar my-project-1.0.0.jar

$ curl http://localhost:8080

CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION

23

http://localhost:8080

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING
SPRING BOOT WITH ECLIPSE VERT.X

NOTE

Eclipse Vert.x reactive components for Spring Boot are provided as a Technology
Preview.

This section provides an introduction to developing applications in a reactive way using Spring Boot
starters based on Spring Boot and Eclipse Vert.x. The following examples demonstrate how you can use
the starters to create reactive applications.

5.1. INTRODUCTION TO SPRING BOOT WITH ECLIPSE VERT.X

The Spring reactive stack is build on Project Reactor, a reactive library that implements backpressure
and is compliant with the Reactive Streams specification. It provides the Flux and Mono functional API
types that enable asynchronous event stream processing.

On top of Project Reactor, Spring provides WebFlux, an asynchronous event-driven web application
framework. While WebFlux is designed to work primarily with Reactor Netty, it can also operate with
other reactive HTTP servers, such as Eclipse Vert.x.

Spring WebFlux and Reactor enable you to create applications that are:

Non-blocking: The application continues to handle further requests when waiting for a response
from a remote component or service that is required to complete the current request.

Asynchronous: the application responds to events from an event stream by generating response
events and publishing them back to the event stream where they can be picked up by other
clients in the application.

Event-driven: The application responds to events generated by the user or by another service,
such as mouse clicks, HTTP requests, or new files being added to a storage.

Scalable: Increasing the number of Publishers or Subscribers to match the required event
processing capacity of an application only results in a slight increase in the complexity of routing
requests between individual clients in the application. Reactive applications can handle large
numbers of events using fewer computing and networking resources as compared to other
application programming models.

Resilient: The application can handle failure of services it depend on without a negative impact
on its overall quality of service.

Additional advantages of using Spring WebFlux include:

Similarity with SpringMVC

The SpringMVC API types and WebFlux API types are similar, and it is easy for developers to apply
knowledge of SpringMVC to programming applications with WebFlux.

The Spring Reactive offering by Red Hat brings the benefits of Reactor and WebFlux to OpenShift and
stand-alone RHEL, and introduces a set of Eclipse Vert.x extensions for the WebFLux framework. This
allows you to retain the level of abstraction and rapid prototyping capabilities of Spring Boot, and
provides an asynchronous IO API that handles the network communications between the services in your
application in a fully reactive manner.

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

24

https://access.redhat.com/support/offerings/techpreview
https://projectreactor.io
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux
https://projectreactor.io/docs/netty/release/reference/index.html

Annotated controllers support

WebFlux retains the endpoint controller annotations introduced by SpringMVC (Both SpringMVC
and WebFlux support reactive RxJava2 and Reactor return types).

Functional programming support

Reactor interacts with the Java 8 Functional API, as well as CompletablebFuture, and Stream APIs.
In addition to annotation-based endpoints, WebFlux also supports functional endpoints.

Additional resources

See the following resources for additional in-depth information on the implementation details of
technologies that are part of the Spring Reactive stack:

The Reactive Manifesto

Reactive Streams specification

Spring Framework reference documentation: Web Applications on Reactive Stack

Reactor Netty documentation

API Reference page for the Mono class in Project Reactor Documentation

API Reference page for the Flux class in Project Reactor Documentation

5.2. REACTIVE SPRING WEB

The spring-web module provides the foundational elements of the reactive capabilities of Spring
WebFlux, including:

HTTP abstractions provided by the HttpHandler API

Reactive Streams adapters for supported servers (Eclipse Vert.x, Undertow and others)

Codecs for encoding and decoding event stream data. This includes:

DataBuffer, an abstraction for different types of byte buffer representations (Netty
ByteBuf, java.nio.ByteBuffer, as well as others)

Low-level contracts to encode and decode content independent of HTTP

HttpMessageReader and HTTPMessageWriter contracts to encode and decode HTTP
message content

The WebHandler API (a counterpart to the Servlet 3.1 I/O API that uses non-blocking
contracts).

When designing your web application, you can choose between 2 programming models that Spring
WebFlux provides:

Annotated Controllers

Annotated controllers in Spring WebFlux are consistent with Spring MVC, and are based on the same
annotations from the spring-web module. In addition to the spring-web module from SpringMVC,
its WebFlux counterpart also supports reactive @RequestBody arguments.

Functional Endpoints

Functional endpoints provided by spring WebFlux on Java 8 Lambda expressions and functional

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

25

https://www.reactivemanifesto.org/
https://www.reactive-streams.org/
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://projectreactor.io/docs/netty/release/reference/index.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-web-handler-api
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-controller
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-fn

APIs, this programming model relies on a dedicated library (Reactor, in this case) that routes and
handles requests. As opposed to annotation-based endpoint controllers that rely on declaring Intent
and using callbacks to complete an activity, the reactive model based on functional endpoints allows
request handling to be fully controlled by the application.

5.3. CREATING A REACTIVE SPRING BOOT HTTP SERVICE WITH
WEBFLUX

Create a basic reactive Hello World HTTP web service using Spring Boot and WebFlux.

Prerequisites

JDK 8 or JDK 11 installed

Maven installed

A Maven-based application project configured to use Spring Boot

Procedure

1. Add vertx-spring-boot-starter-http as a dependency in the pom.xml file of your project.

pom.xml

2. Create a main class for your application and define the router and handler methods.

HttpSampleApplication.java

<project>
...
 <dependencies>
 ...
 <dependency>
 <groupId>dev.snowdrop</groupId>
 <artifactId>vertx-spring-boot-starter-http</artifactId>
 </dependency>
 ...
 <dependencies>
...
</project>

package dev.snowdrop.vertx.sample.http;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Mono;

import static org.springframework.web.reactive.function.BodyInserters.fromObject;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;
import static org.springframework.web.reactive.function.server.ServerResponse.ok;

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

26

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

3. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:

b. Package your application:

c. Start your application from the command line:

d. In a new terminal window, issue an HTTP request on the /hello endpoint:

e. Provide a custom name with your request to get a personalized response:

Additional resources

You can deploy your application to an OpenShift cluster using Fabric8 Maven Plugin.

@SpringBootApplication
public class HttpSampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(HttpSampleApplication.class, args);
 }

 @Bean
 public RouterFunction<ServerResponse> helloRouter() {
 return route()
 .GET("/hello", this::helloHandler)
 .build();
 }

 private Mono<ServerResponse> helloHandler(ServerRequest request) {
 String name = request
 .queryParam("name")
 .orElse("World");
 String message = String.format("Hello, %s!", name);

 return ok()
 .body(fromObject(message));
 }
}

$ cd myApp

$ mvn clean package

$ java -jar target/vertx-spring-boot-sample-http.jar

$ curl localhost:8080/hello
Hello, World!

$ curl http://localhost:8080/hello?name=John
Hello, John!

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

27

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot

You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

For more detail on creating reactive web services with Spring Boot, see the reactive REST
service development guide in the Spring community documentation.

5.4. USING BASIC AUTHENTICATION IN A REACTIVE SPRING BOOT
WEBFLUX APPLICATION.

Create a reactive Hello World HTTP web service with basic form-based authentication using Spring
Security and WebFlux starters.

Prerequisites

JDK 8 or JDK 11 installed

Maven installed

A Maven-based application project configured to use Spring Boot

Procedure

1. Add vertx-spring-boot-starter-http and spring-boot-starter-security as dependencies in the
pom.xml file of your project.

pom.xml

2. Create an endpoint controller class for your application:

HelloController.java

<project>
...
 <dependencies>
 ...
 <dependency>
 <groupId>dev.snowdrop</groupId>
 <artifactId>vertx-spring-boot-starter-http</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 ...
 <dependencies>
...
</project>

package dev.snowdrop.vertx.sample.http.security;

import java.security.Principal;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

28

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot
https://spring.io/guides/gs/reactive-rest-service/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

3. Create the main class of your application:

HttpSecuritySampleApplication.java

4. Create a SecurityConfiguration class that stores the user credentials for accessing the /hello
endpoint.

SecurityConfiguration.java

import reactor.core.publisher.Mono;

@RestController
public class HelloController {

 @GetMapping("/")
 public Mono<String> hello(Mono<Principal> principal) {
 return principal
 .map(Principal::getName)
 .map(this::helloMessage);
 }

 private String helloMessage(String username) {
 return "Hello, " + username + "!";
 }
}

package dev.snowdrop.vertx.sample.http.security;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class HttpSecuritySampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(HttpSecuritySampleApplication.class, args);
 }
}

package dev.snowdrop.vertx.sample.http.security;

import org.springframework.context.annotation.Bean;
import org.springframework.security.config.annotation.web.reactive.EnableWebFluxSecurity;
import org.springframework.security.core.userdetails.MapReactiveUserDetailsService;
import org.springframework.security.core.userdetails.User;
import org.springframework.security.core.userdetails.UserDetails;

@EnableWebFluxSecurity
public class SecurityConfiguration {

 @Bean
 public MapReactiveUserDetailsService userDetailsService() {
 UserDetails user = User.withDefaultPasswordEncoder()
 .username("user")
 .password("user")

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

29

5. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:

b. Package your application:

c. Start your application from the command line:

d. Navigate to http://localhost:8080 using a browser to access the login screen.

e. Log in using the credentials below:

username: user

password: user

You receive a customized greeting when you are logged in:

Hello, user!

f. Navigate to http://localhost:8080/logout using a web browser and use the Log out button
to log out of your application.

g. Alternatively, use a terminal to make an unauthenticated HTTP request on localhost:8080.
You receive HTTP 401 Unauthorized response from your application.

h. Issue an authenticated request using the example user credentials. You receive a
personalized response.

 .roles("USER")
 .build();

 return new MapReactiveUserDetailsService(user);
 }
}

$ cd myApp

$ mvn clean package

$ java -jar target/vertx-spring-boot-sample-http-security.jar

$ curl -I http://localhost:8080
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="Realm"
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 1 ; mode=block
Referrer-Policy: no-referrer

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

30

http://localhost:8080
http://localhost:8080/logout

Additional resources

You can deploy your application to an OpenShift cluster using Fabric8 Maven Plugin.

You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

For the full specification of the Basic HTTP authentication scheme, see document RFC-7617.

For the full specification of HTTP authentication extensions for interactive clients, including
form-based authentication, see document RFC-8053.

5.5. USING OAUTH2 AUTHENTICATION IN A REACTIVE SPRING BOOT
APPLICATION.

Set up OAuth2 authentication for your reactive Spring Boot application and authenticate using your
client ID and client secret.

Prerequisites

JDK 8 or JDK 11 installed

A GitHub account

Maven installed

A Maven-based application project configured to use Spring Boot

Procedure

1. Register a new OAuth 2 application on your Github account. Ensure that you provide the
following values in the registration form:

Homepage URL: http://localhost:8080

Authorization callback URL: http://localhost:8080/login/oauth2/code/github
Ensure that you save the client ID and a client secret that you receive upon completing the
registration.

2. Add the following dependencies in the pom.xml file of your project:

vertx-spring-boot-starter-http

spring-boot-starter-security

spring-boot-starter-oauth2-client

reactor-netty
Note that the reactor-netty client is required to ensure that spring-boot-starter-oauth2-
client works properly.

pom.xml

$ curl -u user:user http://localhost:8080
Hello, user!

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

31

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc8053
https://oauth.net/2/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot
https://github.com/settings/developers
http://localhost:8080
http://localhost:8080/login/oauth2/code/github

3. Create an endpoint controller class for your application:

HelloController.java

4. Create the main class of your application:

OAuthSampleApplication.java

<project>
...
 <dependencies>
 ...
 <dependency>
 <groupId>dev.snowdrop</groupId>
 <artifactId>vertx-spring-boot-starter-http</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-client</artifactId>
 </dependency>
 <!-- Spring OAuth2 client only works with Reactor Netty client -->
 <dependency>
 <groupId>io.projectreactor.netty</groupId>
 <artifactId>reactor-netty</artifactId>
 </dependency>
 ...
 <dependencies>
...
</project>

package dev.snowdrop.vertx.sample.http.oauth;

import org.springframework.security.core.annotation.AuthenticationPrincipal;
import org.springframework.security.oauth2.core.user.OAuth2User;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Mono;

@RestController
public class HelloController {

 @GetMapping
 public Mono<String> hello(@AuthenticationPrincipal OAuth2User oauth2User) {
 return Mono.just("Hello, " + oauth2User.getAttributes().get("name") + "!");
 }
}

package dev.snowdrop.vertx.sample.http.oauth;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

32

5. Create a YAML configuration file to store the OAuth2 client ID and client secret you received
from GitHub upon registering your application.

src/main/resources/application.yml

6. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:

b. Package your application:

c. Start your application from the command line:

d. Navigate to http://localhost:8080 using a web browser. You are redirected to an OAuth2
application authorization screen on GitHub. If prompted, log in using your GitHub account
credentials.

e. Click Authorize to confirm. You are redirected to a screen showing a personalized greeting
message.

Additional resources

You can deploy your application to an OpenShift cluster using Fabric8 Maven Plugin.

You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

For more information, see the OAuth2 tutorial in the Spring community documentation.
Alternatively, see the tutorial on using OAuth2 with Spring Security.

@SpringBootApplication
public class OAuthSampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(OAuthSampleApplication.class, args);
 }
}

spring:
 security:
 oauth2:
 client:
 registration:
 github:
 client-id: YOUR_GITHUB_CLIENT_ID
 client-secret: YOUR_GITHUB_CLIENT_SECRET

$ cd myApp

$ mvn clean package

$ java -jar target/vertx-spring-boot-sample-http-oauth.jar

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

33

http://localhost:8080
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot
https://spring.io/guides/tutorials/spring-boot-oauth2/
https://developer.okta.com/blog/2019/03/12/oauth2-spring-security-guide?utm_campaign=text_website_all_multiple_dev_dev_oauth2-spring-security_null&utm_source=oauthio&utm_medium=cpc

For the full OAuth2 authentication framework specification, see document RFC-6749.

5.6. CREATING A REACTIVE SPRING BOOT SMTP MAIL APPLICATION

Create a reactive SMTP email service with Spring Boot with Eclipse Vert.x.

Prerequisites

JDK 8 or JDK 11 installed

Maven installed

A Maven-based application project configured to use Spring Boot

A SMTP mail server configured on your machine

Procedure

1. Add vertx-spring-boot-starter-http and vertx-spring-boot-starter-mail as dependencies in the
pom.xml file of your project.

pom.xml

2. Create a mail handler class for your application:

MailHandler.java

<project>
...
 <dependencies>
 ...
 <dependency>
 <groupId>dev.snowdrop</groupId>
 <artifactId>vertx-spring-boot-starter-http</artifactId>
 </dependency>
 <dependency>
 <groupId>dev.snowdrop</groupId>
 <artifactId>vertx-spring-boot-starter-mail</artifactId>
 </dependency>
 ...
 <dependencies>
...
</project>

package dev.snowdrop.vertx.sample.mail;

import dev.snowdrop.vertx.mail.MailClient;
import dev.snowdrop.vertx.mail.MailMessage;
import dev.snowdrop.vertx.mail.SimpleMailMessage;
import org.springframework.stereotype.Component;
import org.springframework.util.MultiValueMap;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Mono;

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

34

https://tools.ietf.org/html/rfc6749
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

3. Create the main class of your application:

MailSampleApplication.java

import static org.springframework.web.reactive.function.server.ServerResponse.noContent;

@Component
public class MailHandler {

 private final MailClient mailClient;

 public MailHandler(MailClient mailClient) {
 this.mailClient = mailClient;
 }

 public Mono<ServerResponse> send(ServerRequest request) {
 return request.formData()
 .log()
 .map(this::formToMessage)
 .flatMap(mailClient::send)
 .flatMap(result -> noContent().build());
 }

 private MailMessage formToMessage(MultiValueMap<String, String> form) {
 return new SimpleMailMessage()
 .setFrom(form.getFirst("from"))
 .setTo(form.get("to"))
 .setSubject(form.getFirst("subject"))
 .setText(form.getFirst("text"));
 }

}

package dev.snowdrop.vertx.sample.mail;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.io.ClassPathResource;
import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerResponse;

import static org.springframework.http.MediaType.APPLICATION_FORM_URLENCODED;
import static org.springframework.web.reactive.function.server.RequestPredicates.accept;
import static org.springframework.web.reactive.function.server.RouterFunctions.resources;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;

@SpringBootApplication
public class MailSampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(MailSampleApplication.class, args);
 }

 @Bean

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

35

4. Create an application.properties file to store your SMTP server credentials:

application.properties

5. Create a src/main/resources/static/index.html file that serves as the frontend of your
application. Alternatively, use the example HTML email form available for this procedure.

6. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:

b. Package your application:

c. Start your application from the command line.

d. Navigate to http://localhost:8080/index.html using a web browser to access the email
form.

Additional resources

For more information on setting up an SMTP mail server on RHEL 7, see the Mail Transport
Agent Configuration section in the RHEL 7 documentation.

You can deploy your application to an OpenShift cluster using Fabric8 Maven Plugin

You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

5.7. SERVER-SENT EVENTS

 public RouterFunction<ServerResponse> mailRouter(MailHandler mailHandler) {
 return route()
 .POST("/mail", accept(APPLICATION_FORM_URLENCODED),
mailHandler::send)
 .build();
 }

 @Bean
 public RouterFunction<ServerResponse> staticResourceRouter() {
 return resources("/**", new ClassPathResource("static/"));
 }

}

vertx.mail.host=YOUR_SMTP_SERVER_HOSTNAME
vertx.mail.username=YOUR_SMTP_SERVER_USERNAME
vertx.mail.password=YOUR_SMTP_SERVER_PASSWORD

$ cd myApp

$ mvn clean package

$ java -jar target/vertx-spring-boot-sample-mail.jar

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

36

https://raw.githubusercontent.com/snowdrop/vertx-spring-boot/master/vertx-spring-boot-samples/vertx-spring-boot-sample-mail/src/main/resources/static/index.html
http://localhost:8080/index.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#s1-email-mta
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

Server-sent events (SSE) is a push technology allowing HTTP sever to send unidirectional updates to
the client. SSE works by establishing a connection between the event source and the client. The event
source uses this connection to push events to the client-side. After the server pushes the events, the
connection remains open and can be used to push subsequent events. When the client terminates the
request on the server, the connection is closed. SSE represents a more resource-efficient alternative to
polling, where a new connection must be established each time the client polls the event source for
updates. As opposed to WebSockets, SSE pushes events in one direction only (that is, from the source
to the client). It does not handle bidirectional communication between the event source and the client.

The specification for SSE is incorporated into HTML5, and is widely supported by web browsers,
including their legacy versions. SSE can be used from the command line, and is relatively simple to set up
compared to other protocols.

SSE is suitable for use cases that require frequent updates from the server to the client, while updates
from the client side to the server are expected to be less frequent. Updates form the client side to the
server can then be handled over a different protocol, such as REST. Examples of such use cases include
social media feed updates or notifications sent to a client when new files are uploaded to a file server.

5.8. USING SERVER-SENT EVENTS IN A REACTIVE SPRING BOOT
APPLICATION

Create a simple service that accepts HTTP requests and returns a stream of server-sent events (SSE).
When the client establishes a connection to the server and the streaming starts, the connection remains
open. The server re-uses the connection to continuously push new events to the client. Canceling the
request closes the connection and stops the stream, causing the client to stop receiving updates form
the server.

Prerequisites

JDK 8 or JDK 11 installed

Maven installed

A Maven-based application project configured to use Spring Boot

Procedure

1. Add vertx-spring-boot-starter-http as a dependency in the pom.xml file of your project.

pom.xml

<project>
...
 <dependencies>
 ...
 <dependency>
 <groupId>dev.snowdrop</groupId>
 <artifactId>vertx-spring-boot-starter-http</artifactId>
 </dependency>
 ...
 <dependencies>
...
</project>

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

37

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#configuring-your-application-to-use-spring-boot_spring-boot

2. Create the main class of your application:

SseExampleApplication.java

3. Create a Server-sent Event controller class for your application. In this example, the class
generates a stream of random integers and prints them to a terminal application.

SseController.java

4. OPTIONAL: Run and test your application locally:

a. Navigate to the root directory of your Maven project:

b. Package your application:

package dev.snowdrop.vertx.sample.sse;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SseSampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(SseSampleApplication.class, args);
 }
}

package dev.snowdrop.vertx.sample.sse;

import java.time.Duration;
import java.util.Random;

import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

@RestController
public class SseController {

 @GetMapping(produces = MediaType.TEXT_EVENT_STREAM_VALUE)
 public Flux<Integer> getRandomNumberStream() {
 Random random = new Random();

 return Flux.interval(Duration.ofSeconds(1))
 .map(i -> random.nextInt())
 .log();
 }
}

$ cd myApp

$ mvn clean package

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

38

c. Start your application from the command line:

d. In a new terminal window, issue a HTTP request to localhost. You start receiving a
continuous stream of random integers from the server-sent event controller:

Press Ctrl+C to cancel your HTTP request and terminate the stream of responses.

Additional resources

You can deploy your application to an OpenShift cluster using Fabric8 Maven Plugin.

You can also configure your application for deployment on stand-alone Red Hat Enterprise
Linux.

In addition to using an example , you can also use Spring Boot with Eclipse Vert.x starters to create new
Spring Boot applications from scratch and deploy them to OpenShift.

$ java -jar target/vertx-spring-boot-sample-sse.jar

$ curl localhost:8080
data:-2126721954

data:-573499422

data:1404187823

data:1338766210

data:-666543077
...

CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X

39

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-openshift_spring-boot
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#deploying-runtime-application-to-standalone-red-hat-enterprise-linux_spring-boot

CHAPTER 6. DEBUGGING YOUR SPRING BOOT-BASED
APPLICATION

This sections contains information about debugging your Spring Boot–based application both in local
and remote deployments.

6.1. REMOTE DEBUGGING

To remotely debug an application, you must first configure it to start in a debugging mode, and then
attach a debugger to it.

6.1.1. Starting your Spring Boot application locally in debugging mode

One of the ways of debugging a Maven-based project is manually launching the application while
specifying a debugging port, and subsequently connecting a remote debugger to that port. This method
is applicable at least when launching the application manually using the mvn spring-boot:run goal.

Prerequisites

A Maven-based application

Procedure

1. In a console, navigate to the directory with your application.

2. Launch your application and specify the necessary JVM arguments and the debug port using
the following syntax:

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to y.

6.1.2. Starting an uberjar in debugging mode

If you chose to package your application as a Spring Boot uberjar, debug it by executing it with the
following parameters.

Prerequisites

An uberjar with your application

Procedure

1. In a console, navigate to the directory with the uberjar.

2. Execute the uberjar with the following parameters. Ensure that all the parameters are specified
before the name of the uberjar on the line.

$ mvn spring-boot:run -Drun.jvmArguments="-Xdebug -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER"

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

40

$PORT_NUMBER is an unused port number of your choice. Remember this number for the
remote debugger configuration.

If you want the JVM to pause and wait for remote debugger connection before it starts the
application, change suspend to y.

6.1.3. Starting your application on OpenShift in debugging mode

To debug your Spring Boot-based application on OpenShift remotely, you must set the JAVA_DEBUG
environment variable inside the container to true and configure port forwarding so that you can connect
to your application from a remote debugger.

Prerequisites

Your application running on OpenShift.

The oc binary installed on your machine.

The ability to execute the oc port-forward command in your target OpenShift environment.

Procedure

1. Using the oc command, list the available deployment configurations:

2. Set the JAVA_DEBUG environment variable in the deployment configuration of your
application to true, which configures the JVM to open the port number 5005 for debugging. For
example:

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

4. Configure port forwarding from your local machine to the application pod:

a. List the currently running pods and find one containing your application:

b. Configure port forwarding:

Here, $LOCAL_PORT_NUMBER is an unused port number of your choice on your local

$ java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=$PORT_NUMBER -
jar $UBERJAR_FILENAME

$ oc get dc

$ oc set env dc/MY_APP_NAME JAVA_DEBUG=true

$ oc rollout latest dc/MY_APP_NAME

$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 0/1 Running 0 6s
...

$ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5005

CHAPTER 6. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

41

Here, $LOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. When you are done debugging, unset the JAVA_DEBUG environment variable in your
application pod. For example:

Additional resources

You can also set the JAVA_DEBUG_PORT environment variable if you want to change the debug port
from the default, which is 5005.

6.1.4. Attaching a remote debugger to the application

When your application is configured for debugging, attach a remote debugger of your choice to it. In this
guide, Red Hat CodeReady Studio is covered, but the procedure is similar when using other programs.

Prerequisites

The application running either locally or on OpenShift, and configured for debugging.

The port number that your application is listening on for debugging.

Red Hat CodeReady Studio installed on your machine. You can download it from the Red Hat
CodeReady Studio download page.

Procedure

1. Start Red Hat CodeReady Studio.

2. Create a new debug configuration for your application:

a. Click Run→Debug Configurations.

b. In the list of configurations, double-click Remote Java application. This creates a new
remote debugging configuration.

c. Enter a suitable name for the configuration in the Name field.

d. Enter the path to the directory with your application into the Project field. You can use the
Browse…​ button for convenience.

e. Set the Connection Type field to Standard (Socket Attach) if it is not already.

f. Set the Port field to the port number that your application is listening on for debugging.

g. Click Apply.

3. Start debugging by clicking the Debug button in the Debug Configurations window.
To quickly launch your debug configuration after the first time, click Run→Debug History and
select the configuration from the list.

Additional resources

Debug an OpenShift Java Application with JBoss Developer Studio on Red Hat

$ oc set env dc/MY_APP_NAME JAVA_DEBUG-

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

42

https://www.redhat.com/en/technologies/jboss-middleware/codeready-studio
https://developers.redhat.com/products/codeready-studio/download

Debug an OpenShift Java Application with JBoss Developer Studio on Red Hat
Knowledgebase.
Red Hat CodeReady Studio was previously called JBoss Developer Studio.

A Debugging Java Applications On OpenShift and Kubernetes article on OpenShift Blog.

6.2. DEBUG LOGGING

6.2.1. Add Spring Boot debug logging

Add debug logging to your application.

Prerequisites

An application you want to debug. For example, the REST API Level 0 example .

Procedure

1. Declare a org.apache.commons.logging.Log object using the
org.apache.commons.logging.LogFactory for the class you want to add logging.

For example, if you wanted to add logging to the GreetingEndpoint class in the REST API Level
0 example, you would use GreetingEndpoint.class.

2. Add debugging statements using logger.debug("my logging message").

Example logging statement

3. Add a logging.level.fully.qualified.name.of.TheClass=DEBUG in
src/main/resources/application.properties.
For example, if you added a logging statement to
io.openshift.booster.service.GreetingEndpoint you would use:

This enables log messages at the DEBUG level and above to be shown in the logs for your class.

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
...
private static Log logger = LogFactory.getLog(TheClass.class);

@GET
@Path("/greeting")
@Produces("application/json")
public Greeting greeting(@QueryParam("name") @DefaultValue("World") String name) {
 String message = String.format(properties.getMessage(), name);

 logger.debug("Message: " + message);

 return new Greeting(message);
}

logging.level.io.openshift.booster.service.GreetingEndpoint=DEBUG

CHAPTER 6. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

43

https://access.redhat.com/articles/1290703
https://blog.openshift.com/debugging-java-applications-on-openshift-kubernetes/

6.2.2. Accessing Spring Boot debug logs on localhost

Start your application and interact with it to see the debugging statements.

Prerequisites

An application with debug logging enabled.

Procedure

1. Start your application.

2. Test your application to invoke debug logging.
For example, to test the REST API Level 0 example , you can invoke the /api/greeting method:

3. View your application logs to see your debug messages.

To disable debug logging, remove logging.level.fully.qualified.name.of.TheClass=DEBUG from
src/main/resources/application.properties and restart your application.

6.2.3. Accessing debug logs on OpenShift

Start your application and interact with it to see the debugging statements in OpenShift.

Prerequisites

A Maven-based application with debug logging enabled.

The oc CLI client installed and authenticated.

Procedure

1. Deploy your application to OpenShift:

2. View the logs:

1. Get the name of the pod with your application:

2. Start watching the log output:

Keep the terminal window displaying the log output open so that you can watch the log

$ mvn spring-boot:run

$ curl http://localhost:8080/api/greeting?name=Sarah

i.o.booster.service.GreetingEndpoint : Message: Hello, Sarah!

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods

$ oc logs -f pod/MY_APP_NAME-2-aaaaa

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

44

Keep the terminal window displaying the log output open so that you can watch the log
output.

3. Interact with your application:
For example, if you had debug logging in the REST API Level 0 example to log the message
variable in the /api/greeting method:

1. Get the route of your application:

2. Make an HTTP request on the /api/greeting endpoint of your application:

4. Return to the window with your pod logs and inspect debug logging messages in the logs.

i.o.booster.service.GreetingEndpoint : Message: Hello, Sarah!

5. To disable debug logging, remove logging.level.fully.qualified.name.of.TheClass=DEBUG
from src/main/resources/application.properties and redeploy your application.

$ oc get routes

$ curl $APPLICATION_ROUTE/api/greeting?name=Sarah

CHAPTER 6. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION

45

CHAPTER 7. MONITORING YOUR APPLICATION
This section contains information about monitoring your Spring Boot–based application running on
OpenShift.

7.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON
OPENSHIFT

7.1.1. Accessing JVM metrics using Jolokia on OpenShift

Jolokia is a built-in lightweight solution for accessing JMX (Java Management Extension) metrics over
HTTP on OpenShift. Jolokia allows you to access CPU, storage, and memory usage data collected by
JMX over an HTTP bridge. Jolokia uses a REST interface and JSON-formatted message payloads. It is
suitable for monitoring cloud applications thanks to its comparably high speed and low resource
requirements.

For Java-based applications, the OpenShift Web console provides the integrated hawt.io console that
collects and displays all relevant metrics output by the JVM running your application.

Prerequistes

the oc client authenticated

a Java-based application container running in a project on OpenShift

latest JDK 1.8.0 image

Procedure

1. List the deployment configurations of the pods inside your project and select the one that
corresponds to your application.

NAME REVISION DESIRED CURRENT TRIGGERED BY
MY_APP_NAME 2 1 1 config,image(my-app:6)
...

2. Open the YAML deployment template of the pod running your application for editing.

3. Add the following entry to the ports section of the template and save your changes:

oc get dc

oc edit dc/MY_APP_NAME

...
spec:
 ...
 ports:
 - containerPort: 8778
 name: jolokia
 protocol: TCP
 ...
...

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

46

https://jolokia.org/documentation.html
https://docs.openshift.com/container-platform/3.6/architecture/infrastructure_components/web_console.html#jvm-console
https://github.com/jboss-container-images/openjdk/blob/openjdk18-dev/image.yaml

4. Redeploy the pod running your application.

The pod is redeployed with the updated deployment configuration and exposes the port 8778.

5. Log into the OpenShift Web console.

6. In the sidebar, navigate to Applications > Pods, and click on the name of the pod running your
application.

7. In the pod details screen, click Open Java Console to access the hawt.io console.

Additional resources

hawt.io documentation

oc rollout latest dc/MY_APP_NAME

CHAPTER 7. MONITORING YOUR APPLICATION

47

https://hawt.io/docs/index.html

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT
The Spring Boot runtime provides examples applications. When you start developing applications on
OpenShift, you can use the examples applications as templates.

You can access these example applications on Developer Launcher.

8.1. REST API LEVEL 0 EXAMPLE FOR SPRING BOOT

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

What the REST API Level 0 example does

The REST API Level 0 example shows how to map business operations to a remote procedure call
endpoint over HTTP using a REST framework. This corresponds to Level 0 in the Richardson Maturity
Model. Creating an HTTP endpoint using REST and its underlying principles to define your API lets you
quickly prototype and design the API flexibly.

This example introduces the mechanics of interacting with a remote service using the HTTP protocol. It
allows you to:

Execute an HTTP GET request on the api/greeting endpoint.

Receive a response in JSON format with a payload consisting of the Hello, World! String.

Execute an HTTP GET request on the api/greeting endpoint while passing in a String argument.
This uses the name request parameter in the query string.

Receive a response in JSON format with a payload of Hello, $name! with $name replaced by
the value of the name parameter passed into the request.

8.1.1. REST API Level 0 design tradeoffs

Table 8.1. Design tradeoffs

Pros Cons

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

48

https://developers.redhat.com/launch
https://martinfowler.com/articles/richardsonMaturityModel.html#level0

The example application enables fast
prototyping.

The API Design is flexible.

HTTP endpoints allow clients to be
language-neutral.

As an application or service matures, the
REST API Level 0 approach might not scale
well. It might not support a clean API design
or use cases with database interactions.

Any operations involving shared,
mutable state must be integrated with
an appropriate backing datastore.

All requests handled by this API design
are scoped only to the container
servicing the request. Subsequent
requests might not be served by the
same container.

Pros Cons

8.1.2. Deploying the REST API Level 0 example application to OpenShift Online

Use one of the following options to execute the REST API Level 0 example application on OpenShift
Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

8.1.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Spring Boot.

8.1.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

49

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

8.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 8.1.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 8.1.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project in OpenShift.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

50

https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.1.3. Deploying the REST API Level 0 example application to Minishift or CDK

Use one of the following options to execute the REST API Level 0 example application locally on
Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

8.1.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

51

8.1.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.1.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Spring Boot.

8.1.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.1.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

8.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

52

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 8.1.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 8.1.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project in OpenShift.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

53

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.1.4. Deploying the REST API Level 0 example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 8.1.2, “Deploying the REST API Level 0 example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

8.1.5. Interacting with the unmodified REST API Level 0 example application for
Spring Boot

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Use curl to execute a GET request against the example. You can also use a browser to do this.

2. Use curl to execute a GET request with the name URL parameter against the example. You can
also use a browser to do this.

NOTE

From a browser, you can also use a form provided by the example to perform these same
interactions. The form is located at the root of the project http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME.

8.1.6. Running the REST API Level 0 example application integration tests

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

$ curl http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting?name=Sarah
{"content":"Hello, Sarah!"}

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

54

https://developers.redhat.com/launch

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

8.1.7. REST resources

More background and related information on REST can be found here:

Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer (REST)

Richardson Maturity Model

JSR 311: JAX-RS: The JavaTM API for RESTful Web Services

Building a RESTful Service with Spring

REST API Level 0 for Eclipse Vert.x

REST API Level 0 for Thorntail

REST API Level 0 for Node.js

8.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR SPRING BOOT

IMPORTANT



$ mvn clean verify -Popenshift,openshift-it

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

55

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.jcp.org/en/jsr/detail?id=311
https://spring.io/guides/gs/rest-service/
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-wf-swarm
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-nodejs

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

Externalized Configuration provides a basic example of using a ConfigMap to externalize configuration.
ConfigMap is an object used by OpenShift to inject configuration data as simple key and value pairs into
one or more Linux containers while keeping the containers independent of OpenShift.

This example shows you how to:

Set up and configure a ConfigMap.

Use the configuration provided by the ConfigMap within an application.

Deploy changes to the ConfigMap configuration of running applications.

8.2.1. The externalized configuration design pattern

Whenever possible, externalize the application configuration and separate it from the application code.
This allows the application configuration to change as it moves through different environments, but
leaves the code unchanged. Externalizing the configuration also keeps sensitive or internal information
out of your code base and version control. Many languages and application servers provide environment
variables to support externalizing an application’s configuration.

Microservices architectures and multi-language (polyglot) environments add a layer of complexity to
managing an application’s configuration. Applications consist of independent, distributed services, and
each can have its own configuration. Keeping all configuration data synchronized and accessible creates
a maintenance challenge.

ConfigMaps enable the application configuration to be externalized and used in individual Linux
containers and pods on OpenShift. You can create a ConfigMap object in a variety of ways, including
using a YAML file, and inject it into the Linux container. ConfigMaps also allow you to group and scale
sets of configuration data. This lets you configure a large number of environments beyond the basic
Development, Stage, and Production. You can find more information about ConfigMaps in the OpenShift
documentation.

8.2.2. Externalized Configuration design tradeoffs

Table 8.2. Design Tradeoffs

Pros Cons

Configuration is separate from deployments

Can be updated independently

Can be shared across services

Adding configuration to environment
requires additional step

Has to be maintained separately

Requires coordination beyond the scope of
a service

8.2.3. Deploying the Externalized Configuration example application to OpenShift

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

56

https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html

8.2.3. Deploying the Externalized Configuration example application to OpenShift
Online

Use one of the following options to execute the Externalized Configuration example application on
OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

8.2.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Spring Boot.

8.2.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

8.2.3.3. Deploying the Externalized Configuration example application using the oc CLI
client

Prerequisites

$ oc login OPENSHIFT_URL --token=MYTOKEN

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

57

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 8.2.3.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 8.2.3.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Assign view access rights to the service account before deploying your example application, so
that the application can access the OpenShift API in order to read the contents of the
ConfigMap.

4. Navigate to the root directory of your application.

5. Deploy your ConfigMap configuration to OpenShift using application.yml.

6. Verify your ConfigMap configuration has been deployed.

7. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

8. Check the status of your application and ensure your pod is running.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc policy add-role-to-user view -n $(oc project -q) -z default

$ oc create configmap app-config --from-file=application.yml

$ oc get configmap app-config -o yaml

apiVersion: v1
data:
 application.yml: |
 # This properties file should be used to initialise a ConfigMap
 greeting:
 message: "Hello %s from a ConfigMap!"
...

$ mvn clean fabric8:deploy -Popenshift

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

58

https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

9. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.2.4. Deploying the Externalized Configuration example application to Minishift or
CDK

Use one of the following options to execute the Externalized Configuration example application locally
on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

8.2.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

59

8.2.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.2.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Spring Boot.

8.2.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.2.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

60

8.2.4.4. Deploying the Externalized Configuration example application using the oc CLI
client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 8.2.4.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 8.2.4.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Assign view access rights to the service account before deploying your example application, so
that the application can access the OpenShift API in order to read the contents of the
ConfigMap.

4. Navigate to the root directory of your application.

5. Deploy your ConfigMap configuration to OpenShift using application.yml.

6. Verify your ConfigMap configuration has been deployed.

7. Use Maven to start the deployment to OpenShift.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc policy add-role-to-user view -n $(oc project -q) -z default

$ oc create configmap app-config --from-file=application.yml

$ oc get configmap app-config -o yaml

apiVersion: v1
data:
 application.yml: |
 # This properties file should be used to initialise a ConfigMap
 greeting:
 message: "Hello %s from a ConfigMap!"
...

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

61

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

8. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

9. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.2.5. Deploying the Externalized Configuration example application to OpenShift
Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 8.2.3, “Deploying the Externalized Configuration example
application to OpenShift Online”, only use the URL and user credentials from the OpenShift
Container Platform Web Console.

8.2.6. Interacting with the unmodified Externalized Configuration example
application for Spring Boot

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

62

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://developers.redhat.com/launch

Your application running

The curl binary or a web browser

Procedure

1. Use curl to execute a GET request against the example. You can also use a browser to do this.

2. Update the deployed ConfigMap configuration.

Change the value for the greeting.message key to Bonjour! and save the file. After you save
this, the changes will be propagated to your OpenShift instance.

3. Deploy the new version of your application so the ConfigMap configuration changes are picked
up.

4. Check the status of your example and ensure your new pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it’s fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

5. Execute a GET request using curl against the example with the updated ConfigMap
configuration to see your updated greeting. You can also do this from your browser using the
web form provided by the application.

8.2.7. Running the Externalized Configuration example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello World from a ConfigMap!"}

$ oc edit configmap app-config

$ oc rollout latest dc/MY_APP_NAME

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Bonjour!"}

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

63

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

View access permission assigned to the service account of your example application. This allows
your application to read the configuration from the ConfigMap:

Procedure

Execute the following command to run the integration tests:

8.2.8. Externalized Configuration resources

More background and related information on Externalized Configuration and ConfigMap can be found
here:

OpenShift ConfigMap Documentation

Blog Post about ConfigMap in OpenShift

Externalized Configuration with Spring Boot

Externalized Configuration for Eclipse Vert.x

Externalized Configuration for Thorntail

Externalized Configuration for Node.js

8.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR SPRING BOOT

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to



$ oc policy add-role-to-user view -n $(oc project -q) -z default

$ mvn clean verify -Popenshift,openshift-it

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

64

https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html
https://blog.openshift.com/configuring-your-application-part-1/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-external-config
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-configmap-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-configmap-wf-swarm
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-configmap-nodejs

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

What the Relational Database Backend example does

The Relational Database Backend example expands on the REST API Level 0 application to provide a
basic example of performing create, read, update and delete (CRUD) operations on a PostgreSQL
database using a simple HTTP API. CRUD operations are the four basic functions of persistent storage,
widely used when developing an HTTP API dealing with a database.

The example also demonstrates the ability of the HTTP application to locate and connect to a database
in OpenShift. Each runtime shows how to implement the connectivity solution best suited in the given
case. The runtime can choose between options such as using JDBC, JPA, or accessing ORM APIs
directly.

The example application exposes an HTTP API, which provides endpoints that allow you to manipulate
data by performing CRUD operations over HTTP. The CRUD operations are mapped to HTTP Verbs.
The API uses JSON formatting to receive requests and return responses to the user. The user can also
use a user interface provided by the example to use the application. Specifically, this example provides
an application that allows you to:

Navigate to the application web interface in your browser. This exposes a simple website
allowing you to perform CRUD operations on the data in the my_data database.

Execute an HTTP GET request on the api/fruits endpoint.

Receive a response formatted as a JSON array containing the list of all fruits in the database.

Execute an HTTP GET request on the api/fruits/* endpoint while passing in a valid item ID as an
argument.

Receive a response in JSON format containing the name of the fruit with the given ID. If no item
matches the specified ID, the call results in an HTTP error 404.

Execute an HTTP POST request on the api/fruits endpoint passing in a valid name value to
create a new entry in the database.

Execute an HTTP PUT request on the api/fruits/* endpoint passing in a valid ID and a name as
an argument. This updates the name of the item with the given ID to match the name specified
in your request.

Execute an HTTP DELETE request on the api/fruits/* endpoint, passing in a valid ID as an
argument. This removes the item with the specified ID from the database and returns an HTTP
code 204 (No Content) as a response. If you pass in an invalid ID, the call results in an HTTP
error 404.

This example also contains a set of automated integration tests that can be used to verify that the
application is fully integrated with the database.

This example does not showcase a fully matured RESTful model (level 3), but it does use compatible
HTTP verbs and status, following the recommended HTTP API practices.

8.3.1. Relational Database Backend design tradeoffs

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

65

Table 8.3. Design Tradeoffs

Pros Cons

Each runtime determines how to implement
the database interactions. One can use a
low-level connectivity API such as JDBC,
some other can use JPA, and yet another
can access ORM APIs directly. Each runtime
decides what would be the best way.

Each runtime determines how the schema is
created.

The PostgreSQL database provided with
this example application is not backed up
with persistent storage. Changes to the
database are lost if you stop or redeploy the
database pod. To use an external database
with your example application’s pod in order
to preserve changes, see the Creating an
application with a database chapter of the
OpenShift Documentation. It is also possible
to set up persistent storage with database
containers on OpenShift. (For more details
about using persistent storage with
OpenShift and containers, see the
Persistent Storage, Managing Volumes and
Persistent Volumes chapters of the
OpenShift Documentation).

8.3.2. Deploying the Relational Database Backend example application to OpenShift
Online

Use one of the following options to execute the Relational Database Backend example application on
OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

8.3.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Spring Boot.

8.3.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

66

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_developer_cli/creating-an-application-with-a-database.html
https://docs.openshift.com/online/architecture/additional_concepts/storage.html
https://docs.openshift.com/online/dev_guide/volumes.html
https://docs.openshift.com/online/dev_guide/persistent_volumes.html
https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

8.3.2.3. Deploying the Relational Database Backend example application using the oc CLI
client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 8.3.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 8.3.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for
user name, password, and database name when creating your database application. The
example application is pre-configured to use these values. Using different values prevents your
application from integrating with the database.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -
ePOSTGRESQL_DATABASE=my_data centos/postgresql-10-centos7 --name=my-database

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

67

https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

5. Check the status of your database and ensure the pod is running.

The my-database-1-aaaaa pod should have a status of Running and should be indicated as
ready once it is fully deployed and started. Your specific pod name will vary. The number in the
middle will increase with each new build. The letters at the end are generated when the pod is
created.

6. Use maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

7. Check the status of your application and ensure your pod is running.

Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated
as ready once it is fully deployed and started.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.3.3. Deploying the Relational Database Backend example application to Minishift
or CDK

Use one of the following options to execute the Relational Database Backend example application
locally on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

$ oc get pods -w
my-database-1-aaaaa 1/1 Running 0 45s
my-database-1-deploy 0/1 Completed 0 53s

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

68

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

8.3.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

8.3.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.3.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Spring Boot.

8.3.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

69

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.3.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

8.3.3.4. Deploying the Relational Database Backend example application using the oc CLI
client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 8.3.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 8.3.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for
user name, password, and database name when creating your database application. The
example application is pre-configured to use these values. Using different values prevents your
application from integrating with the database.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

70

5. Check the status of your database and ensure the pod is running.

The my-database-1-aaaaa pod should have a status of Running and should be indicated as
ready once it is fully deployed and started. Your specific pod name will vary. The number in the
middle will increase with each new build. The letters at the end are generated when the pod is
created.

6. Use maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

7. Check the status of your application and ensure your pod is running.

Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated
as ready once it is fully deployed and started.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.3.4. Deploying the Relational Database Backend example application to OpenShift
Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

$ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -
ePOSTGRESQL_DATABASE=my_data centos/postgresql-10-centos7 --name=my-database

$ oc get pods -w
my-database-1-aaaaa 1/1 Running 0 45s
my-database-1-deploy 0/1 Completed 0 53s

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

71

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://developers.redhat.com/launch

Procedure

Follow the instructions in Section 8.3.2, “Deploying the Relational Database Backend example
application to OpenShift Online”, only use the URL and user credentials from the OpenShift
Container Platform Web Console.

8.3.5. Interacting with the Relational Database Backend API

When you have finished creating your example application, you can interact with it the following way:

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Obtain the URL of your application by executing the following command:

NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

2. To access the web interface of the database application, navigate to the application URL in your
browser:

Alternatively, you can make requests directly on the api/fruits/* endpoint using curl:

List all entries in the database:

Retrieve an entry with a specific ID

$ oc get route MY_APP_NAME

http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

[{
 "id" : 1,
 "name" : "Apple",
 "stock" : 10
}, {
 "id" : 2,
 "name" : "Orange",
 "stock" : 10
}, {
 "id" : 3,
 "name" : "Pear",
 "stock" : 10
}]

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

72

Create a new entry:

Update an Entry

Delete an Entry:

Troubleshooting

If you receive an HTTP Error code 503 as a response after executing these commands, it means
that the application is not ready yet.

8.3.6. Running the Relational Database Backend example application integration
tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/3

{
 "id" : 3,
 "name" : "Pear",
 "stock" : 10
}

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"Peach","stock":1}'
http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

{
 "id" : 4,
 "name" : "Peach",
 "stock" : 1
}

$ curl -H "Content-Type: application/json" -X PUT -d '{"name":"Apple","stock":"100"}'
http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

{
 "id" : 1,
 "name" : "Apple",
 "stock" : 100
}

$ curl -X DELETE http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

73

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

8.3.7. Relational database resources

More background and related information on running relational databases in OpenShift, CRUD, HTTP
API and REST can be found here:

HTTP Verbs

Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer (REST)

The never ending REST API design debase

REST APIs must be Hypertext driven

Richardson Maturity Model

JSR 311: JAX-RS: The JavaTM API for RESTful Web Services

Building a RESTful Service with Spring

Relational Database Backend for Eclipse Vert.x

Relational Database Backend for Thorntail

Relational Database Backend for Node.js

8.4. HEALTH CHECK EXAMPLE FOR SPRING BOOT

IMPORTANT

The following example is not meant to be run in a production environment.



$ mvn clean verify -Popenshift,openshift-it

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

74

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://speakerdeck.com/glaforge/the-never-ending-rest-api-design-debate
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.jcp.org/en/jsr/detail?id=311
https://spring.io/guides/gs/rest-service/
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-crud-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-crud-wf-swarm
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-crud-nodejs

Example proficiency level: Foundational.

When you deploy an application, it is important to know if it is available and if it can start handling
incoming requests. Implementing the health check pattern allows you to monitor the health of an
application, which includes if an application is available and whether it is able to service requests.

NOTE

If you are not familiar with the health check terminology, see the Section 8.4.1, “Health
check concepts” section first.

The purpose of this use case is to demonstrate the health check pattern through the use of probing.
Probing is used to report the liveness and readiness of an application. In this use case, you configure an
application which exposes an HTTP health endpoint to issue HTTP requests. If the container is alive,
according to the liveness probe on the health HTTP endpoint, the management platform receives 200
as return code and no further action is required. If the health HTTP endpoint does not return a
response, for example if the thread is blocked, then the application is not considered alive according to
the liveness probe. In that case, the platform kills the pod corresponding to that application and
recreates a new pod to restart the application.

This use case also allows you to demonstrate and use a readiness probe. In cases where the application is
running but is unable to handle requests, such as when the application returns an HTTP 503 response
code during restart, this application is not considered ready according to the readiness probe. If the
application is not considered ready by the readiness probe, requests are not routed to that application
until it is considered ready according to the readiness probe.

8.4.1. Health check concepts

In order to understand the health check pattern, you need to first understand the following concepts:

Liveness

Liveness defines whether an application is running or not. Sometimes a running application moves
into an unresponsive or stopped state and needs to be restarted. Checking for liveness helps
determine whether or not an application needs to be restarted.

Readiness

Readiness defines whether a running application can service requests. Sometimes a running
application moves into an error or broken state where it can no longer service requests. Checking
readiness helps determine whether or not requests should continue to be routed to that application.

Fail-over

Fail-over enables failures in servicing requests to be handled gracefully. If an application fails to
service a request, that request and future requests can then fail-over or be routed to another
application, which is usually a redundant copy of that same application.

Resilience and Stability

Resilience and Stability enable failures in servicing requests to be handled gracefully. If an application
fails to service a request due to connection loss, in a resilient system that request can be retried after
the connection is re-established.

Probe

A probe is a Kubernetes action that periodically performs diagnostics on a running container.

8.4.2. Deploying the Health Check example application to OpenShift Online

Use one of the following options to execute the Health Check example application on OpenShift Online.

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

75

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

8.4.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Spring Boot.

8.4.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

8.4.2.3. Deploying the Health Check example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 8.4.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 8.4.2.2, “Authenticating the oc
CLI client”.

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

76

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. You should also wait for your pod to be ready before proceeding, which is shown in the
READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is
1/1. Your specific pod name will vary. The number in the middle will increase with each new build.
The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.4.3. Deploying the Health Check example application to Minishift or CDK

Use one of the following options to execute the Health Check example application locally on Minishift or
CDK:

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

77

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

8.4.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

8.4.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.4.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Spring Boot.

8.4.3.3. Authenticating the oc CLI client

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

78

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.4.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

8.4.3.4. Deploying the Health Check example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 8.4.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 8.4.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

79

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. You should also wait for your pod to be ready before proceeding, which is shown in the
READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is
1/1. Your specific pod name will vary. The number in the middle will increase with each new build.
The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.4.4. Deploying the Health Check example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 8.4.2, “Deploying the Health Check example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

8.4.5. Interacting with the unmodified Health Check example application

After you deploy the example application, you will have the MY_APP_NAME service running. The
MY_APP_NAME service exposes the following REST endpoints:

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

80

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build
https://developers.redhat.com/launch

/api/greeting

Returns a name as a String.

/api/stop

Forces the service to become unresponsive as means to simulate a failure.

The following steps demonstrate how to verify the service availability and simulate a failure. This failure
of an available service causes the OpenShift self-healing capabilities to be trigger on the service.

Alternatively, you can use the web interface to perform these steps.

1. Use curl to execute a GET request against the MY_APP_NAME service. You can also use a
browser to do this.

{"content":"Hello, World!"}

2. Invoke the /api/stop endpoint and verify the availability of the /api/greeting endpoint shortly
after that.
Invoking the /api/stop endpoint simulates an internal service failure and triggers the OpenShift
self-healing capabilities. When invoking /api/greeting after simulating the failure, the service
should return an Application is not available page.

(followed by)

<html>
 <head>
 ...
 </head>
 <body>
 <div>
 <h1>Application is not available</h1>
 ...
 </div>
 </body>
</html>

NOTE

Depending on when OpenShift removes the pod after you invoke the /api/stop
endpoint, you might initially see a 404 error code. If continue to invoke the
/api/greeting endpoint, you will see the Application is not available page after
OpenShift removes the pod.

3. Use oc get pods -w to continuously watch the self-healing capabilities in action.
While invoking the service failure, you can watch the self-healing capabilities in action on
OpenShift console, or with the oc client tools. You should see the number of pods in the
READY state move to zero (0/1) and after a short period (less than one minute) move back up

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/stop

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

81

to one (1/1). In addition to that, the RESTARTS count increases every time you you invoke the
service failure.

4. Optional: Use the web interface to invoke the service.
Alternatively to the interaction using the terminal window, you can use the web interface
provided by the service to invoke the different methods and watch the service move through
the life cycle phases.

http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

5. Optional: Use the web console to view the log output generated by the application at each
stage of the self-healing process.

1. Navigate to your project.

2. On the sidebar, click on Monitoring.

3. In the upper right-hand corner of the screen, click on Events to display the log messages.

4. Optional: Click View Details to display a detailed view of the Event log.

The health check application generates the following messages:

Message Status

Unhealthy Readiness probe failed. This message is
expected and indicates that the simulated failure
of the /api/greeting endpoint has been
detected and the self-healing process starts.

Killing The unavailable Docker container running the
service is being killed before being re-created.

Pulling Downloading the latest version of docker image
to re-create the container.

Pulled Docker image downloaded successfully.

Created Docker container has been successfully created

Started Docker container is ready to handle requests

8.4.6. Running the Health Check example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-26iy7 0/1 Running 5 18m
MY_APP_NAME-1-26iy7 1/1 Running 5 19m

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

82

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

8.4.7. Health check resources

More background and related information on health checking can be found here:

Application Health in OpenShift

Kubernetes Liveness and Readiness Probes

Health Check for Eclipse Vert.x

Health Check for Thorntail

Health Check for Node.js

8.5. CIRCUIT BREAKER EXAMPLE FOR SPRING BOOT

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Foundational.



$ mvn clean verify -Popenshift,openshift-it

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-health-check-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-health-check-wf-swarm
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-health-check-nodejs

The Circuit Breaker example demonstrates a generic pattern for reporting the failure of a service and
then limiting access to the failed service until it becomes available to handle requests. This helps prevent
cascading failure in other services that depend on the failed services for functionality.

This example shows you how to implement a Circuit Breaker and Fallback pattern in your services.

8.5.1. The circuit breaker design pattern

The Circuit Breaker is a pattern intended to:

Reduce the impact of network failure and high latency on service architectures where services
synchronously invoke other services.
If one of the services:

becomes unavailable due to network failure, or

incurs unusually high latency values due to overwhelming traffic,

other services attempting to call its endpoint may end up exhausting critical resources in an
attempt to reach it, rendering themselves unusable.

Prevent the condition also known as cascading failure, which can render the entire microservice
architecture unusable.

Act as a proxy between a protected function and a remote function, which monitors for failures.

Trip once the failures reach a certain threshold, and all further calls to the circuit breaker return
an error or a predefined fallback response, without the protected call being made at all.

The Circuit Breaker usually also contain an error reporting mechanism that notifies you when the Circuit
Breaker trips.

Circuit breaker implementation

With the Circuit Breaker pattern implemented, a service client invokes a remote service
endpoint via a proxy at regular intervals.

If the calls to the remote service endpoint fail repeatedly and consistently, the Circuit Breaker
trips, making all calls to the service fail immediately over a set timeout period and returns a
predefined fallback response.

When the timeout period expires, a limited number of test calls are allowed to pass through to
the remote service to determine whether it has healed, or remains unavailable.

If the test calls fail, the Circuit Breaker keeps the service unavailable and keeps returning
the fallback responses to incoming calls.

If the test calls succeed, the Circuit Breaker closes, fully enabling traffic to reach the remote
service again.

8.5.2. Circuit Breaker design tradeoffs

Table 8.4. Design Tradeoffs

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

84

Pros Cons

Enables a service to handle the failure of
other services it invokes.

Optimizing the timeout values can be
challenging

Larger-than-necessary timeout values
may generate excessive latency.

Smaller-than-necessary timeout values
may introduce false positives.

8.5.3. Deploying the Circuit Breaker example application to OpenShift Online

Use one of the following options to execute the Circuit Breaker example application on OpenShift
Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

8.5.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Spring Boot.

8.5.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

85

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

8.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 8.5.3.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 8.5.3.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should
have a status of Running once they are fully deployed and started. You should also wait for your

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-greeting-1-aaaaa 1/1 Running 0 17s
MY_APP_NAME-greeting-1-deploy 0/1 Completed 0 22s
MY_APP_NAME-name-1-aaaaa 1/1 Running 0 14s
MY_APP_NAME-name-1-deploy 0/1 Completed 0 28s

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

86

https://manage.openshift.com
https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

pods to be ready before proceeding, which is shown in the READY column. For example,
MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod
names will vary. The number in the middle will increase with each new build. The letters at the
end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.5.4. Deploying the Circuit Breaker example application to Minishift or CDK

Use one of the following options to execute the Circuit Breaker example application locally on Minishift
or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

8.5.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None
MY_APP_NAME-name MY_APP_NAME-name-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-name 8080
None

...
-- Removing temporary directory ... OK

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

87

8.5.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.5.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Spring Boot.

8.5.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.5.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

88

8.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 8.5.4.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 8.5.4.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use Maven to start the deployment to OpenShift.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift and to
start the pod.

5. Check the status of your application and ensure your pod is running.

Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should
have a status of Running once they are fully deployed and started. You should also wait for your
pods to be ready before proceeding, which is shown in the READY column. For example,
MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod
names will vary. The number in the middle will increase with each new build. The letters at the
end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-greeting-1-aaaaa 1/1 Running 0 17s
MY_APP_NAME-greeting-1-deploy 0/1 Completed 0 22s
MY_APP_NAME-name-1-aaaaa 1/1 Running 0 14s
MY_APP_NAME-name-1-deploy 0/1 Completed 0 28s

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

89

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

8.5.5. Deploying the Circuit Breaker example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 8.5.3, “Deploying the Circuit Breaker example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

8.5.6. Interacting with the unmodified Spring Boot Circuit Breaker example
application

After you have the Spring Boot example application deployed, you have the following services running:

MY_APP_NAME-name

Exposes the following endpoints:

the /api/name endpoint, which returns a name when this service is working, and an error when
this service is set up to demonstrate failure.

the /api/state endpoint, which controls the behavior of the /api/name endpoint and
determines whether the service works correctly or demonstrates failure.

MY_APP_NAME-greeting

Exposes the following endpoints:

the /api/greeting endpoint that you can call to get a personalized greeting response.
When you call the /api/greeting endpoint, it issues a call against the /api/name endpoint of
the MY_APP_NAME-name service as part of processing your request. The call made against
the /api/name endpoint is protected by the Circuit Breaker.

If the remote endpoint is available, the name service responds with an HTTP code 200 (OK)

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None
MY_APP_NAME-name MY_APP_NAME-name-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-name 8080
None

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

90

https://developers.redhat.com/launch

If the remote endpoint is available, the name service responds with an HTTP code 200 (OK)
and you receive the following greeting from the /api/greeting endpoint:

{"content":"Hello, World!"}

If the remote endpoint is unavailable, the name service responds with an HTTP code 500
(Internal server error) and you receive a predefined fallback response from the
/api/greeting endpoint:

{"content":"Hello, Fallback!"}

the /api/cb-state endpoint, which returns the state of the Circuit Breaker. The state can be:

open : the circuit breaker is preventing requests from reaching the failed service,

closed: the circuit breaker is allowing requests to reach the service.

The following steps demonstrate how to verify the availability of the service, simulate a failure and
receive a fallback response.

1. Use curl to execute a GET request against the MY_APP_NAME-greeting service. You can also
use the Invoke button in the web interface to do this.

2. To simulate the failure of the MY_APP_NAME-name service you can:

use the Toggle button in the web interface.

scale the number of replicas of the pod running the MY_APP_NAME-name service down to
0.

execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-
name service to set its state to fail.

3. Invoke the /api/greeting endpoint. When several requests on the /api/name endpoint fail:

a. the Circuit Breaker opens,

b. the state indicator in the web interface changes from CLOSED to OPEN,

c. the Circuit Breaker issues a fallback response when you invoke the /api/greeting endpoint:

4. Restore the name MY_APP_NAME-name service to availability. To do this you can:

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

$ curl -X PUT -H "Content-Type: application/json" -d '{"state": "fail"}'
http://MY_APP_NAME-name-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, Fallback!"}

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

91

use the Toggle button in the web interface.

scale the number of replicas of the pod running the MY_APP_NAME-name service back up
to 1.

execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-
name service to set its state back to ok.

5. Invoke the /api/greeting endpoint again. When several requests on the /api/name endpoint
succeed:

a. the Circuit Breaker closes,

b. the state indicator in the web interface changes from OPEN to CLOSED,

c. the Circuit Breaker issues a returns the Hello World! greeting when you invoke the
/api/greeting endpoint:

8.5.7. Running the Circuit Breaker example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated

An empty OpenShift project

Procedure

$ curl -X PUT -H "Content-Type: application/json" -d '{"state": "ok"}'
http://MY_APP_NAME-name-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}



Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

92

Execute the following command to run the integration tests:

8.5.8. Using Hystrix Dashboard to monitor the circuit breaker

Hystrix Dashboard lets you easily monitor the health of your services in real time by aggregating Hystrix
metrics data from an event stream and displaying them on one screen.

Prerequisites

The application deployed

Procedure

1. Log in to your Minishift or CDK cluster.

2. To access the Web console, use your browser to navigate to your Minishift or CDK URL.

3. Navigate to the project that contains your Circuit Breaker application.

4. Import the YAML template for the Hystrix Dashboard application. You can do this by clicking
Add to Project , then selecting the Import YAML / JSON tab, and copying the contents of the
YAML file into the text box. Alternatively, you can execute the following command:

5. Click the Create button to create the Hystrix Dashboard application based on the template.
Alternatively, you can execute the following command.

6. Wait for the pod containing Hystrix Dashboard to deploy.

7. Obtain the route of your Hystrix Dashboard application.

8. To access the Dashboard, open the Dashboard application route URL in your browser.
Alternatively, you can navigate to the Overview screen in the Web console and click the route
URL in the header above the pod containing your Hystrix Dashboard application.

9. To use the Dashboard to monitor the MY_APP_NAME-greeting service, replace the default

$ mvn clean verify -Popenshift,openshift-it

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ oc project MY_PROJECT_NAME

$ oc create -f https://raw.githubusercontent.com/snowdrop/openshift-
templates/master/hystrix-dashboard/hystrix-dashboard.yml

$ oc new-app --template=hystrix-dashboard

$ oc get route hystrix-dashboard
NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD
hystrix-dashboard hystrix-dashboard-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME hystrix-dashboard
<all> None

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

93

https://raw.githubusercontent.com/snowdrop/openshift-templates/master/hystrix-dashboard/hystrix-dashboard.yml

9. To use the Dashboard to monitor the MY_APP_NAME-greeting service, replace the default
event stream address with the following address and click the Monitor Stream button.

http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/hystrix.stream

Additional resources

The Hystrix Dashboard wiki page

8.5.9. Circuit breaker resources

Follow the links below for more background information on the design principles behind the Circuit
Breaker pattern

microservices.io: Microservice Patterns: Circuit Breaker

Martin Fowler: CircuitBreaker

Circuit Breaker for Eclipse Vert.x

Circuit Breaker for Node.js

Circuit Breaker for Thorntail

8.6. SECURED EXAMPLE APPLICATION FOR SPRING BOOT

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Advanced.

The Secured example application secures a REST endpoint using Red Hat SSO . (This example expands
on the REST API Level 0 example).

Red Hat SSO:

Implements the Open ID Connect protocol which is an extension of the OAuth 2.0 specification.

Issues access tokens to provide clients with various access rights to secured resources.

Securing an application with SSO enables you to add security to your applications while centralizing the
security configuration.

IMPORTANT

This example comes with Red Hat SSO pre-configured for demonstration purposes, it
does not explain its principles, usage, or configuration. Before using this example, ensure
that you are familiar with the basic concepts related to Red Hat SSO .

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

94

https://github.com/Netflix/Hystrix/wiki
https://microservices.io/patterns/reliability/circuit-breaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-circuit-breaker-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-circuit-breaker-nodejs
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-circuit-breaker-nodejs
https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html/securing_applications_and_services_guide/openid_connect_3
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/getting_started_guide/

8.6.1. The Secured project structure

The SSO example contains:

the sources for the Greeting service, which is the one which we are going to to secure

a template file (service.sso.yaml) to deploy the SSO server

the Keycloak adapter configuration to secure the service

8.6.2. Red Hat SSO deployment configuration

The service.sso.yaml file in this example contains all OpenShift configuration items to deploy a pre-
configured Red Hat SSO server. The SSO server configuration has been simplified for the sake of this
exercise and does provide an out-of-the-box configuration, with pre-configured users and security
settings. The service.sso.yaml file also contains very long lines, and some text editors, such as gedit,
may have issues reading this file.

WARNING

It is not recommended to use this SSO configuration in production. Specifically, the
simplifications made to the example security configuration impact the ability to use
it in a production environment.

Table 8.5. SSO Example Simplifications

Change Reason Recommendation

The default configuration includes
both public and private keys in
the yaml configuration files.

We did this because the end user
can deploy Red Hat SSO module
and have it in a usable state
without needing to know the
internals or how to configure Red
Hat SSO.

In production, do not store private
keys under source control. They
should be added by the server
administrator.

The configured clients accept
any callback url.

To avoid having a custom
configuration for each runtime,
we avoid the callback verification
that is required by the OAuth2
specification.

An application-specific callback
URL should be provided with a
valid domain name.

Clients do not require SSL/TLS
and the secured applications are
not exposed over HTTPS.

The examples are simplified by
not requiring certificates
generated for each runtime.

In production a secure application
should use HTTPS rather than
plain HTTP.



CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

95

https://wiki.gnome.org/Apps/Gedit

The token timeout has been
increased to 10 minutes from the
default of 1 minute.

Provides a better user experience
when working with the command
line examples

From a security perspective, the
window an attacker would have to
guess the access token is
extended. It is recommended to
keep this window short as it makes
it much harder for a potential
attacker to guess the current
token.

Change Reason Recommendation

8.6.3. Red Hat SSO realm model

The master realm is used to secure this example. There are two pre-configured application client
definitions that provide a model for command line clients and the secured REST endpoint.

There are also two pre-configured users in the Red Hat SSO master realm that can be used to validate
various authentication and authorization outcomes: admin and alice.

8.6.3.1. Red Hat SSO users

The realm model for the secured examples includes two users:

admin

The admin user has a password of admin and is the realm administrator. This user has full access to
the Red Hat SSO administration console, but none of the role mappings that are required to access
the secured endpoints. You can use this user to illustrate the behavior of an authenticated, but
unauthorized user.

alice

The alice user has a password of password and is the canonical application user. This user will
demonstrate successful authenticated and authorized access to the secured endpoints. An example
representation of the role mappings is provided in this decoded JWT bearer token:

{
 "jti": "0073cfaa-7ed6-4326-ac07-c108d34b4f82",
 "exp": 1510162193,
 "nbf": 0,
 "iat": 1510161593,
 "iss": "https://secure-sso-sso.LOCAL_OPENSHIFT_HOSTNAME/auth/realms/master", 1
 "aud": "demoapp",
 "sub": "c0175ccb-0892-4b31-829f-dda873815fe8",
 "typ": "Bearer",
 "azp": "demoapp",
 "nonce": "90ff5d1a-ba44-45ae-a413-50b08bf4a242",
 "auth_time": 1510161591,
 "session_state": "98efb95a-b355-43d1-996b-0abcb1304352",
 "acr": "1",
 "client_session": "5962112c-2b19-461e-8aac-84ab512d2a01",
 "allowed-origins": [
 "*"
],
 "realm_access": {

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

96

1

2

3

4

5

The iss field corresponds to the Red Hat SSO realm instance URL that issues the token. This
must be configured in the secured endpoint deployments in order for the token to be verified.

The roles object provides the roles that have been granted to the user at the global realm level.
In this case alice has been granted the example-admin role. We will see that the secured
endpoint will look to the realm level for authorized roles.

The resource_access object contains resource specific role grants. Under this object you will
find an object for each of the secured endpoints.

The resource_access.secured-example-endpoint.roles object contains the roles granted to
alice for the secured-example-endpoint resource.

The preferred_username field provides the username that was used to generate the access
token.

8.6.3.2. The application clients

The OAuth 2.0 specification allows you to define a role for application clients that access secured
resources on behalf of resource owners. The master realm has the following application clients defined:

demoapp

This is a confidential type client with a client secret that is used to obtain an access token. The token
contains grants for the alice user which enable alice to access the Thorntail, Eclipse Vert.x, Node.js
and Spring Boot based REST example application deployments.

secured-example-endpoint

The secured-example-endpoint is a bearer-only type of client that requires a example-admin role
for accessing the associated resources, specifically the Greeting service.

 "roles": [2
 "example-admin"
]
 },
 "resource_access": { 3
 "secured-example-endpoint": {
 "roles": [
 "example-admin" 4
]
 },
 "account": {
 "roles": [
 "manage-account",
 "view-profile"
]
 }
 },
 "name": "Alice InChains",
 "preferred_username": "alice", 5
 "given_name": "Alice",
 "family_name": "InChains",
 "email": "alice@keycloak.org"
}

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

97

1

2

3

4

5

6

7

8

9

8.6.4. Spring Boot SSO adapter configuration

The SSO adapter is the client side, or client to the SSO server, component that enforces security on the
web resources. In this specific case, it is the Greeting service.

Both the SSO adapter and endpoint security are configured in
src/main/resources/application.properties.

Example application.properties file

The security realm to be used.

The address of the Red Hat SSO server (Interpolation at build time).

The actual keycloak client configuration.

Secret to access authentication server.

Check the token for application level role mappings for the user.

If enabled the adapter will not attempt to authenticate users, but only verify bearer tokens.

A simple name for the security constraint.

A roles needed to access a secured endpoint.

A secured endpoints path pattern.

8.6.5. Deploying the Secured example application to Minishift or CDK

8.6.5.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

$ # Adapter configuration
keycloak.realm=${realm:master} 1
keycloak.realm-key=...
keycloak.auth-server-url=${sso.auth.server.url} 2
keycloak.resource=${client.id:secured-example-endpoint} 3
keycloak.credentials.secret=${secret:1daa57a2-b60e-468b-a3ac-25bd2dc2eadc} 4
keycloak.use-resource-role-mappings=true 5
keycloak.bearer-only=true 6
Endpoint security configuration
keycloak.securityConstraints[0].securityCollections[0].name=admin stuff 7
keycloak.securityConstraints[0].securityCollections[0].authRoles[0]=example-admin 8
keycloak.securityConstraints[0].securityCollections[0].patterns[0]=/api/greeting 9

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

98

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

8.6.5.2. Creating the Secured example application using Fabric8 Launcher

Prerequisites

The URL and user credentials of your running Fabric8 Launcher instance. For more information,
see Section 8.6.5.1, “Getting the Fabric8 Launcher tool URL and credentials” .

Procedure

Navigate to the Fabric8 Launcher URL in a browser and log in.

Follow the on-screen instructions to create your example in Spring Boot. When asked about
which deployment type, select I will build and run locally.

Follow on-screen instructions.
When done, click the Download as ZIP file button and store the file on your hard drive.

8.6.5.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.6.5.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

99

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

8.6.5.4. Deploying the Secured example application using the oc CLI client

Prerequisites

The example application created using the Fabric8 Launcher tool on a Minishift or CDK. For
more information, see Section 8.6.5.2, “Creating the Secured example application using Fabric8
Launcher”.

Your Fabric8 Launcher URL.

The oc client authenticated. For more information, see Section 8.6.5.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

5. Use Maven to start the deployment to Minishift or CDK.

This command uses the Fabric8 Maven Plugin to launch the S2I process on Minishift or CDK
and to start the pod.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create -f service.sso.yaml

$ mvn clean fabric8:deploy -Popenshift -DskipTests \
 -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}
{.spec.host}{"/auth\n"}')

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

100

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

This process generates the uberjar file as well as the OpenShift resources and deploys them to the
current project on your Minishift or CDK server.

8.6.6. Deploying the Secured example application to OpenShift Container Platform

In addition to the Minishift or CDK, you can create and deploy the example on OpenShift Container
Platform with only minor differences. The most important difference is that you need to create the
example application on Minishift or CDK before you can deploy it with OpenShift Container Platform.

Prerequisites

The example created using Minishift or CDK.

8.6.6.1. Authenticating the oc CLI client

To work with example applications on OpenShift Container Platform using the oc command-line client,
you must authenticate the client using the token provided by the OpenShift Container Platform web
interface.

Prerequisites

An account at OpenShift Container Platform.

Procedure

1. Navigate to the OpenShift Container Platform URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Container Platform account.

8.6.6.2. Deploying the Secured example application using the oc CLI client

Prerequisites

The example application created using the Fabric8 Launcher tool on a Minishift or CDK.

The oc client authenticated. For more information, see Section 8.6.6.1, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

101

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

5. Use Maven to start the deployment to OpenShift Container Platform.

This command uses the Fabric8 Maven Plugin to launch the S2I process on OpenShift
Container Platform and to start the pod.

This process generates the uberjar file as well as the OpenShift resources and deploys them to the
current project on your OpenShift Container Platform server.

8.6.7. Authenticating to the Secured example application API endpoint

The Secured example application provides a default HTTP endpoint that accepts GET requests if the
caller is authenticated and authorized. The client first authenticates against the Red Hat SSO server and
then performs a GET request against the Secured example application using the access token returned
by the authentication step.

8.6.7.1. Getting the Secured example application API endpoint

When using a client to interact with the example, you must specify the Secured example application
endpoint, which is the PROJECT_ID service.

Prerequisites

The Secured example application deployed and running.

The oc client authenticated.

Procedure

1. In a terminal application, execute the oc get routes command.
A sample output is shown in the following table:

Example 8.1. List of Secured endpoints

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create -f service.sso.yaml

$ mvn clean fabric8:deploy -Popenshift -DskipTests \
 -DSSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}
{.spec.host}{"/auth\n"}')

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

102

https://docs.openshift.com/container-platform/latest/architecture/core_concepts/builds_and_image_streams.html#source-build

Name Host/Port Path Services Port Termination

secure-sso secure-sso-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 secure-sso <all> passthrough

PROJECT_I
D

PROJECT_I
D-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 PROJECT_I
D

<all>

sso sso-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 sso <all>

In the above example, the example endpoint would be http://PROJECT_ID-
myproject.LOCAL_OPENSHIFT_HOSTNAME. PROJECT_ID is based on the name you
entered when generating your example using developers.redhat.com/launch or the Fabric8
Launcher tool.

8.6.7.2. Authenticating HTTP requests using the command line

Request a token by sending a HTTP POST request to the Red Hat SSO server. In the following example,
the jq CLI tool is used to extract the token value from the JSON response.

Prerequisites

The secured example endpoint URL. For more information, see Section 8.6.7.1, “Getting the
Secured example application API endpoint”.

The jq command-line tool (optional). To download the tool and for more information, see
https://stedolan.github.io/jq/.

Procedure

1. Request an access token with curl, the credentials, and <SSO_AUTH_SERVER_URL> and
extract the token from the response with the jq command:

curl -sk -X POST https://<SSO_AUTH_SERVER_URL>/auth/realms/master/protocol/openid-
connect/token \
 -d grant_type=password \
 -d username=alice\
 -d password=password \
 -d client_id=demoapp \

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

103

https://developers.redhat.com/launch
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

<SSO_AUTH_SERVER_URL> is the url of the secure-sso service.

The attributes, such as username, password, and client_secret are usually kept secret, but the
above command uses the default provided credentials with this example for demonstration
purpose.

If you do not want to use jq to extract the token, you can run just the curl command and
manually extract the access token.

NOTE

The -sk option tells curl to ignore failures resulting from self-signed certificates.
Do not use this option in a production environment. On macOS, you must have
curl version 7.56.1 or greater installed. It must also be built with OpenSSL.

1. Invoke the Secured service. Attach the access (bearer) token to the HTTP headers:

Example 8.2. A sample GET Request Headers with an Access (Bearer) Token

 -d client_secret=1daa57a2-b60e-468b-a3ac-25bd2dc2eadc \
 | jq -r '.access_token'

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJRek1nbXhZMUhrQnpxTnR0SnkwMm5j
NTNtMGNiWDQxV1hNSTU1MFo4MGVBIn0.eyJqdGkiOiI0NDA3YTliNC04YWRhLTRlMTctOD
Q2ZS03YjI5MjMyN2RmYTIiLCJleHAiOjE1MDc3OTM3ODcsIm5iZiI6MCwiaWF0IjoxNTA3Nzkz
NzI3LCJpc3MiOiJodHRwczovL3NlY3VyZS1zc28tc3NvLWRlbW8uYXBwcy5jYWZlLWJhYmUub
3JnL2F1dGgvcmVhbG1zL21hc3RlciIsImF1ZCI6ImRlbW9hcHAiLCJzdWIiOiJjMDE3NWNjYi0w
ODkyLTRiMzEtODI5Zi1kZGE4NzM4MTVmZTgiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJkZW1vY
XBwIiwiYXV0aF90aW1lIjowLCJzZXNzaW9uX3N0YXRlIjoiMDFjOTkzNGQtNmZmOS00NWYzL
WJkNWUtMTU4NDI5ZDZjNDczIiwiYWNyIjoiMSIsImNsaWVudF9zZXNzaW9uIjoiMzM3Yzk0MT
YtYTdlZS00ZWUzLThjZWQtODhlODI0MGJjNTAyIiwiYWxsb3dlZC1vcmlnaW5zIjpbIioiXSwicmV
hbG1fYWNjZXNzIjp7InJvbGVzIjpbImJvb3N0ZXItYWRtaW4iXX0sInJlc291cmNlX2FjY2VzcyI6ey
JzZWN1cmVkLWJvb3N0ZXItZW5kcG9pbnQiOnsicm9sZXMiOlsiYm9vc3Rlci1hZG1pbiJdfSwiY
WNjb3VudCI6eyJyb2xlcyI6WyJtYW5hZ2UtYWNjb3VudCIsInZpZXctcHJvZmlsZSJdfX0sIm5hbW
UiOiJBbGljZSBJbkNoYWlucyIsInByZWZlcnJlZF91c2VybmFtZSI6ImFsaWNlIiwiZ2l2ZW5fbmFtZ
SI6IkFsaWNlIiwiZmFtaWx5X25hbWUiOiJJbkNoYWlucyIsImVtYWlsIjoiYWxpY2VAa2V5Y2xvYW
sub3JnIn0.mjmZe37enHpigJv0BGuIitOj-
kfMLPNwYzNd3n0Ax4Nga7KpnfytGyuPSvR4KAG8rzkfBNN9klPYdy7pJEeYlfmnFUkM4EDrZY
gn4qZAznP1Wzy1RfVRdUFi0-
GqFTMPb37o5HRldZZ09QljX_j3GHnoMGXRtYW9RZN4eKkYkcz9hRwgfJoTy2CuwFqeJwZY
UyXifrfA-JoTr0UmSUed-0NMksGrtJjjPggUGS-
qOn6OgKcmN2vaVAQlxW32y53JqUXctfLQ6DhJzIMYTmOflIPy0sgG1mG7sovQhw1xTg0vTjdx
8zQ-EJcexkj7IivRevRZsslKgqRFWs67jQAFQA

$ curl -v -H "Authorization: Bearer <TOKEN>" http://<SERVICE_HOST>/api/greeting

{
 "content": "Hello, World!",
 "id": 2
}

> GET /api/greeting HTTP/1.1
> Host: <SERVICE_HOST>
> User-Agent: curl/7.51.0

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

104

<SERVICE_HOST> is the URL of the secured example endpoint. For more information, see
Section 8.6.7.1, “Getting the Secured example application API endpoint” .

2. Verify the signature of the access token.
The access token is a JSON Web Token, so you can decode it using the JWT Debugger:

a. In a web browser, navigate to the JWT Debugger website.

b. Select RS256 from the Algorithm drop down menu.

NOTE

Make sure the web form has been updated after you made the selection, so it
displays the correct RSASHA256(…​) information in the Signature section. If it
has not, try switching to HS256 and then back to RS256.

c. Paste the following content in the topmost text box into the VERIFY SIGNATURE section:

NOTE

This is the master realm public key from the Red Hat SSO server deployment
of the Secured example application.

d. Paste the token output from the client output into the Encoded box.
The Signature Verified sign is displayed on the debugger page.

8.6.7.3. Authenticating HTTP requests using the web interface

In addition to the HTTP API, the secured endpoint also contains a web interface to interact with.

The following procedure is an exercise for you to see how security is enforced, how you authenticate,
and how you work with the authentication token.

Prerequisites

The secured endpoint URL. For more information, see Section 8.6.7.1, “Getting the Secured
example application API endpoint”.

Procedure

> Accept: */*
> Authorization: Bearer <TOKEN>

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoETnPmN55xBJjRzN/cs30OzJ
9olkteLVNRjzdTxFOyRtS2ovDfzdhhO9XzUcTMbIsCOAZtSt8K+6yvBXypOSYvI75EUdypm
kcK1KoptqY5KEBQ1KwhWuP7IWQ0fshUwD6jI1QWDfGxfM/h34FvEn/0tJ71xN2P8TI2Yan
wuDZgosdobx/PAvlGREBGuk4BgmexTOkAdnFxIUQcCkiEZ2C41uCrxiS4CEe5OX91aK9
HKZV4ZJX6vnqMHmdDnsMdO+UFtxOBYZio+a1jP4W3d7J5fGeiOaXjQCOpivKnP2yU2D
PdWmDMyVb67l8DRA+jh0OJFKZ5H2fNgE3II59vdsRwIDAQAB
-----END PUBLIC KEY-----

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

105

https://jwt.io
https://jwt.io/#debugger-io
https://jwt.io/#debugger-io

1. In a web browser, navigate to the endpoint URL.

2. Perform an unauthenticated request:

a. Click the Invoke button.

Figure 8.1. Unauthenticated Secured Example Web Interface

The services responds with an HTTP 401 Unauthorized status code.

Figure 8.2. Unauthenticated Error Message

3. Perform an authenticated request as a user:

a. Click the Login button to authenticate against Red Hat SSO. You will be redirected to the
SSO server.

b. Log in as the Alice user. You will be redirected back to the web interface.

NOTE

You can see the access (bearer) token in the command line output at the
bottom of the page.

Figure 8.3. Authenticated Secured Example Web Interface (as Alice)

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

106

Figure 8.3. Authenticated Secured Example Web Interface (as Alice)

c. Click Invoke again to access the Greeting service.
Confirm that there is no exception and the JSON response payload is displayed. This means
the service accepted your access (bearer) token and you are authorized access to the
Greeting service.

Figure 8.4. The Result of an Authenticated Greeting Request (as Alice)

d. Log out.

4. Perform an authenticated request as an admininstrator:

a. Click the Invoke button.
Confirm that this sends an unauthenticated request to the Greeting service.

b. Click the Login button and log in as the admin user.

Figure 8.5. Authenticated Secured Example Web Interface (as admin)

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

107

Figure 8.5. Authenticated Secured Example Web Interface (as admin)

5. Click the Invoke button.
The service responds with an HTTP 403 Forbidden status code because the admin user is not
authorized to access the Greeting service.

Figure 8.6. Unauthorized Error Message

8.6.8. Running the Spring Boot Secured example application integration tests

Prerequisites

The oc client authenticated.

Procedure

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

1. In a terminal application, navigate to the directory with your project.



Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

108

2. Create the Red Hat SSO server application:

3. Wait until the Red Hat SSO server is ready. Go to the Web console or view the output of oc get
pods to check if the pod running the Red Hat SSO server is ready.

4. Execute the integration tests:

8.6.9. Secured SSO resources

Follow the links below for additional information on the principles behind the OAuth2 specification and
on securing your applications using Red Hat SSO and Keycloak:

Aaron Parecki: OAuth2 Simplified

Red Hat SSO 7.1 Documentation

Keycloak 3.2 Documentation

Secured for Eclipse Vert.x

Secured for Thorntail

Secured for Node.js

8.7. CACHE EXAMPLE FOR SPRING BOOT

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Advanced.

The Cache example demonstrates how to use a cache to increase the response time of applications.

This example shows you how to:

Deploy a cache to OpenShift.

Use a cache within an application.

8.7.1. How caching works and when you need it

Caches allows you to store information and access it for a given period of time. You can access
information in a cache faster or more reliably than repeatedly calling the original service. A disadvantage
of using a cache is that the cached information is not up to date. However, that problem can be reduced

oc create -f service.sso.yaml

mvn clean verify -Popenshift,openshift-it -DSSO_AUTH_SERVER_URL=$(oc get route
secure-sso -o jsonpath='{"https://"}{.spec.host}{"/auth\n"}')

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

109

https://aaronparecki.com/oauth-2-simplified/
https://access.redhat.com/documentation/en/red-hat-single-sign-on?version=7.1/
https://www.keycloak.org/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-secured-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-secured-wf-swarm
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-secured-nodejs

by setting an expiration or TTL (time to live) on each value stored in the cache.

Example 8.3. Caching example

Assume you have two applications: service1 and service2:

Service1 depends on a value from service2.

If the value from service2 infrequently changes, service1 could cache the value from
service2 for a period of time.

Using cached values can also reduce the number of times service2 is called.

If it takes service1 500 ms to retrieve the value directly from service2, but 100 ms to retrieve
the cached value, service1 would save 400 ms by using the cached value for each cached call.

If service1 would make uncached calls to service2 5 times per second, over 10 seconds, that
would be 50 calls.

If service1 started using a cached value with a TTL of 1 second instead, that would be reduced
to 10 calls over 10 seconds.

How the Cache example works

1. The cache, cute name, and greeting services are deployed and exposed.

2. User accesses the web frontend of the greeting service.

3. User invokes the greeting HTTP API using a button on the web frontend.

4. The greeting service depends on a value from the cute name service.

The greeting service first checks if that value is stored in the cache service. If it is, then the
cached value is returned.

If the value is not cached, the greeting service calls the cute name service, returns the value,
and stores the value in the cache service with a TTL of 5 seconds.

5. The web front end displays the response from the greeting service as well as the total time of
the operation.

6. User invokes the service multiple times to see the difference between cached and uncached
operations.

Cached operations are significantly faster than uncached operations.

User can force the cache to be cleared before the TTL expires.

8.7.2. Deploying the Cache example application to OpenShift Online

Use one of the following options to execute the Cache example application on OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

110

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

8.7.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser.

2. Follow on-screen instructions to create and launch your example application in Spring Boot.

8.7.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your OpenShift Online account.

8.7.2.3. Deploying the Cache example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 8.7.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 8.7.2.2, “Authenticating the oc
CLI client”.

Procedure

$ oc login OPENSHIFT_URL --token=MYTOKEN

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

111

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project.

3. Navigate to the root directory of your application.

4. Deploy the cache service.

5. Use Maven to start the deployment to OpenShift.

6. Check the status of your application and ensure your pod is running.

Your 3 pods should have a status of Running once they are fully deployed and started.

7. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting
service.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc apply -f service.cache.yml

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
cache-server-123456789-aaaaa 1/1 Running 0 8m
MY_APP_NAME-cutename-1-bbbbb 1/1 Running 0 4m
MY_APP_NAME-cutename-s2i-1-build 0/1 Completed 0 7m
MY_APP_NAME-greeting-1-ccccc 1/1 Running 0 3m
MY_APP_NAME-greeting-s2i-1-build 0/1 Completed 0 3m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-cutename MY_APP_NAME-cutename-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-cutename 8080
None
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

112

8.7.3. Deploying the Cache example application to Minishift or CDK

Use one of the following options to execute the Cache example application locally on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

8.7.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

8.7.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.7.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

113

2. Follow the on-screen instructions to create and launch your example application in Spring Boot.

8.7.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 8.7.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Copy the oc login command.

5. Paste the command in a terminal. The command uses your authentication token to authenticate
your oc CLI client with your Minishift or CDK account.

8.7.3.4. Deploying the Cache example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 8.7.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 8.7.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

114

3. Navigate to the root directory of your application.

4. Deploy the cache service.

5. Use Maven to start the deployment to OpenShift.

6. Check the status of your application and ensure your pod is running.

Your 3 pods should have a status of Running once they are fully deployed and started.

7. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting
service.

8.7.4. Deploying the Cache example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

$ oc new-project MY_PROJECT_NAME

$ oc apply -f service.cache.yml

$ mvn clean fabric8:deploy -Popenshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
cache-server-123456789-aaaaa 1/1 Running 0 8m
MY_APP_NAME-cutename-1-bbbbb 1/1 Running 0 4m
MY_APP_NAME-cutename-s2i-1-build 0/1 Completed 0 7m
MY_APP_NAME-greeting-1-ccccc 1/1 Running 0 3m
MY_APP_NAME-greeting-s2i-1-build 0/1 Completed 0 3m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-cutename MY_APP_NAME-cutename-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-cutename 8080
None
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

115

https://developers.redhat.com/launch

Follow the instructions in Section 8.7.2, “Deploying the Cache example application to OpenShift
Online”, only use the URL and user credentials from the OpenShift Container Platform Web
Console.

8.7.5. Interacting with the unmodified Cache example application

Prerequisites

Your application deployed

Procedure

1. Navigate to the greeting service using your browser.

2. Click Invoke the service once.
Notice the duration value is above 2000. Also notice the cache state has changed form No
cached value to A value is cached.

3. Wait 5 seconds and notice cache state has changed back to No cached value.
The TTL for the cached value is set to 5 seconds. When the TTL expires, the value is no longer
cached.

4. Click Invoke the service once more to cache the value.

5. Click Invoke the service a few more times over the course of a few seconds while cache state is
A value is cached.
Notice a significantly lower duration value since it is using a cached value. If you click Clear the
cache, the cache is emptied.

8.7.6. Running the Cache example application integration tests

This example application includes a self-contained set of integration tests. When run inside an
OpenShift project, the tests:

Deploy a test instance of the application to the project.

Execute the individual tests on that instance.

Remove all instances of the application from the project when the testing is done.

WARNING

Executing integration tests removes all existing instances of the example
application from the target OpenShift project. To avoid accidentally removing your
example application, ensure that you create and select a separate OpenShift
project to execute the tests.

Prerequisites

The oc client authenticated



Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

116

An empty OpenShift project

Procedure

Execute the following command to run the integration tests:

8.7.7. Caching resources

More background and related information on caching can be found here:

Cache for Eclipse Vert.x

Cache for Thorntail

Cache for Node.js

$ mvn clean verify -Popenshift,openshift-it

CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT

117

https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.9/html-single/eclipse_vert.x_runtime_guide/#example-cache-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-cache-wf-swarm
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-cache-nodejs

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:

The application sources hosted in an online SCM repository, such as GitHub.

The S2I Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

Optionally, you can also provide environment variables and parameters that are used by S2I
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

118

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For examples that
use the Fabric8 Maven Plugin, the YAML files are located in the src/main/fabric8/ directory. For
examples using Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by the Fabric8 Maven Plugin and Nodeshift do
not have to be full OpenShift resource definitions. Both Fabric8 Maven Plugin and
Nodeshift can take the deployment configuration files and add some missing information
to create a full OpenShift resource definition. The resource definitions generated by the
Fabric8 Maven Plugin are available in the target/classes/META-INF/fabric8/ directory.
The resource definitions generated by Nodeshift are available in the
tmp/nodeshift/resource/ directory.

Prerequisites

An existing example project.

The oc CLI client installed.

Procedure

1. Edit an existing YAML file or create an additional YAML file with your configuration update.

For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

If a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.

3. Verify that your configuration updates show in the deployed version of your example.

spec:
 template:
 spec:
 containers:
 readinessProbe:
 httpGet:
 path: /path/to/probe
 port: 8080
 scheme: HTTP
...

$ oc export all --as-template='my-template'

apiVersion: v1
kind: Template

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

119

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

metadata:
 creationTimestamp: null
 name: my-template
objects:
- apiVersion: v1
 kind: DeploymentConfig
 ...
 spec:
 ...
 template:
 ...
 spec:
 containers:
 ...
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /path/to/different/probe
 port: 8080
 scheme: HTTP
 initialDelaySeconds: 60
 periodSeconds: 30
 successThreshold: 1
 timeoutSeconds: 1
 ...

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

120

APPENDIX C. CONFIGURING A JENKINS FREESTYLE
PROJECT TO DEPLOY YOUR APPLICATION WITH THE

FABRIC8 MAVEN PLUGIN
Similar to using Maven and the Fabric8 Maven Plugin from your local host to deploy an application, you
can configure Jenkins to use Maven and the Fabric8 Maven Plugin to deploy an application.

Prerequisites

Access to an OpenShift cluster.

The Jenkins container image running on same OpenShift cluster.

A JDK and Maven installed and configured on your Jenkins server.

An application configured to use Maven, the Fabric8 Maven Plugin, and the Red Hat base image
in the pom.xml.

NOTE

For building and deploying your applications to OpenShift, Spring Boot 2.1.x only
supports builder images based on OpenJDK 8 and OpenJDK 11. Oracle JDK and
OpenJDK 9 builder images are not supported.

Example pom.xml

The source of the application available in GitHub.

Procedure

1. Create a new OpenShift project for your application:

a. Open the OpenShift Web console and log in.

b. Click Create Project to create a new OpenShift project.

c. Enter the project information and click Create.

2. Ensure Jenkins has access to that project.
For example, if you configured a service account for Jenkins, ensure that account has edit
access to the project of your application.

3. Create a new freestyle Jenkins project on your Jenkins server:

a. Click New Item.

b. Enter a name, choose Freestyle project, and click OK.

<properties>
 ...
 <fabric8.generator.from>registry.access.redhat.com/redhat-openjdk-18/openjdk18-
openshift:latest</fabric8.generator.from>
</properties>

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH THE FABRIC8 MAVEN PLUGIN

121

https://docs.openshift.com/container-platform/latest/openshift_images/using_images/images-other-jenkins.html
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

c. Under Source Code Management, choose Git and add the GitHub url of your application.

d. Under Build, choose Add build step and select Invoke top-level Maven targets.

e. Add the following to Goals:

Substitute MY_PROJECT with the name of the OpenShift project for your application.

f. Click Save.

4. Click Build Now from the main page of the Jenkins project to verify your application builds and
deploys to the OpenShift project for your application.
You can also verify that your application is deployed by opening the route in the OpenShift
project of the application.

Next steps

Consider adding GITSCM polling or using the Poll SCM build trigger. These options enable
builds to run every time a new commit is pushed to the GitHub repository.

Consider adding a build step that executes tests before deploying.

clean fabric8:deploy -Popenshift -Dfabric8.namespace=MY_PROJECT

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

122

https://wiki.jenkins.io/display/JENKINS/Github+Plugin#GitHubPlugin-GitHubhooktriggerforGITScmpolling
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Buildsbysourcechanges

APPENDIX D. DEPLOYING A SPRING BOOT APPLICATION
USING WAR FILES

As an alternative to the supported application packaging and deployment workflow using fat JAR files,
you can package and deploy a Spring Boot application as a WAR (Web Application Archive) file. You
must configure your build and deployment settings to ensure that your application builds and deploys
correctly on OpenShift.

Prerequisites

A Spring Boot application, such as an example.

Fabric8 Maven Plugin used to deploy your application to OpenShift.

Spring Boot Maven Plugin used to package your application.

Procedure

1. Add war packaging to the pom.xml file of your project:

Example pom.xml

2. Specify spring-boot-starter-tomcat as a dependency of your application:

Example pom.xml

3. Ensure the repackage Maven goal for the Spring Boot Maven plugin is defined in the pom.xml
file:

Example pom.xml

<project ...>
 ...
 <packaging>war</packaging>
 ...
</project>

<project ...>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </dependency>
 ...
 </dependencies>
 ...
</project>

<project ...>
...
 <build>

APPENDIX D. DEPLOYING A SPRING BOOT APPLICATION USING WAR FILES

123

This ensures that the Spring Boot classes used to launch the application are included in the
WAR file, and that the corresponding properties for these classes are defined in the
MANIFEST.mf file of the WAR file:

Main-Class: org.springframework.boot.loader.WarLauncher

Spring-Boot-Classes: WEB-INF/classes/

Spring-Boot-Lib: WEB-INF/lib/

Spring-Boot-Version: 2.1.15.RELEASE

4. Add the ARTIFACT_COPY_ARGS environment variable to the pom.xml file.
The Fabric8 Maven Plugin consumes this variable during the build process and ensures that the
Build and Deploy tool uses the WAR file (rather than the default fat JAR file) to create the
application container image:

Example pom.xml

 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
...
</project>

 ...
 <profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <executions>
 ...
 </executions>
 <configuration>
 <images>
 
 </images>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 ...

spec:
 template:
 spec:
 containers:
 ...
 env:
 - name: JAVA_APP_JAR
 value: ${project.artifactId}-${project.version}.war

mvn clean fabric8:deploy -Popenshift

APPENDIX D. DEPLOYING A SPRING BOOT APPLICATION USING WAR FILES

125

APPENDIX E. ADDITIONAL SPRING BOOT RESOURCES
OpenShift Architecture Overview

Spring Boot Microservices On Red Hat OpenShift Container Platform 3

Spring Cloud Kubernetes

Spring Boot Project

Spring Framework Project

OpenShift Spring Boot Lab Microservices

Creating Spring Boot Applications using Fabric8

Fabric8 Maven Plugin

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

126

https://docs.openshift.com/container-platform/latest/architecture/architecture.html
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://github.com/spring-cloud/spring-cloud-kubernetes/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-framework/
https://github.com/redhat-microservices/lab_springboot-openshift/
https://spring.fabric8.io/
https://github.com/fabric8io/fabric8-maven-plugin/

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
For additional information about application development with OpenShift, see:

OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your Minishift or CDK:

Setting Up a Nexus Mirror for Maven

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

127

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

APPENDIX G. PROFICIENCY LEVELS
Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational
The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced
When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert
Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

Red Hat support for Spring Boot 2.1 Spring Boot 2.1.x Runtime Guide

128

APPENDIX H. GLOSSARY

H.1. PRODUCT AND PROJECT NAMES

Developer Launcher (developers.redhat.com/launch)

developers.redhat.com/launch called Developer Launcher is a stand-alone getting started
experience provided by Red Hat. It helps you get started with cloud-native development on
OpenShift. It contains functional example applications that you can download, build, and deploy on
OpenShift.

Minishift or CDK

An OpenShift cluster running on your machine using Minishift.

H.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

Example

An application specification, for example a web service with a REST API.
Examples generally do not specify which language or platform they should run on; the description
only contains the intended functionality.

Example application

A language-specific implementation of a particular example on a particular runtime. Example
applications are listed in an examples catalog.
For example, an example application is a web service with a REST API implemented using the
Thorntail runtime.

Examples Catalog

A Git repository that contains information about example applications.

Runtime

A platform that executes an example application. For example, Thorntail or Eclipse Vert.x.

APPENDIX H. GLOSSARY

129

https://developers.redhat.com/launch

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH SPRING BOOT
	1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
	1.2. APPLICATION DEVELOPMENT ON RED HAT OPENSHIFT USING DEVELOPER LAUNCHER
	1.3. OVERVIEW OF SPRING BOOT
	1.3.1. Spring Boot features and frameworks summary
	1.3.2. Introduction to example applications

	CHAPTER 2. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT
	CHAPTER 3. DOWNLOADING AND DEPLOYING APPLICATIONS USING DEVELOPER LAUNCHER
	3.1. WORKING WITH DEVELOPER LAUNCHER
	3.2. DOWNLOADING THE EXAMPLE APPLICATIONS USING DEVELOPER LAUNCHER
	3.3. DEPLOYING AN EXAMPLE APPLICATION ON OPENSHIFT CONTAINER PLATFORM OR CDK (MINISHIFT)

	CHAPTER 4. DEVELOPING AND DEPLOYING A SPRING BOOT RUNTIME APPLICATION
	4.1. DEVELOPING SPRING BOOT APPLICATION
	4.2. DEPLOYING SPRING BOOT APPLICATION TO OPENSHIFT
	4.2.1. OpenJDK images for Red Hat Enterprise Linux
	4.2.2. Preparing Spring Boot application for OpenShift deployment
	4.2.3. Deploying Spring Boot application to OpenShift using Fabric8 Maven plugin

	4.3. DEPLOYING SPRING BOOT APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX
	4.3.1. Preparing Spring Boot application for stand-alone Red Hat Enterprise Linux deployment
	4.3.2. Deploying Spring Boot application to stand-alone Red Hat Enterprise Linux using jar

	CHAPTER 5. DEVELOPING REACTIVE APPLICATIONS USING SPRING BOOT WITH ECLIPSE VERT.X
	5.1. INTRODUCTION TO SPRING BOOT WITH ECLIPSE VERT.X
	5.2. REACTIVE SPRING WEB
	5.3. CREATING A REACTIVE SPRING BOOT HTTP SERVICE WITH WEBFLUX
	5.4. USING BASIC AUTHENTICATION IN A REACTIVE SPRING BOOT WEBFLUX APPLICATION.
	5.5. USING OAUTH2 AUTHENTICATION IN A REACTIVE SPRING BOOT APPLICATION.
	5.6. CREATING A REACTIVE SPRING BOOT SMTP MAIL APPLICATION
	5.7. SERVER-SENT EVENTS
	5.8. USING SERVER-SENT EVENTS IN A REACTIVE SPRING BOOT APPLICATION

	CHAPTER 6. DEBUGGING YOUR SPRING BOOT-BASED APPLICATION
	6.1. REMOTE DEBUGGING
	6.1.1. Starting your Spring Boot application locally in debugging mode
	6.1.2. Starting an uberjar in debugging mode
	6.1.3. Starting your application on OpenShift in debugging mode
	6.1.4. Attaching a remote debugger to the application

	6.2. DEBUG LOGGING
	6.2.1. Add Spring Boot debug logging
	6.2.2. Accessing Spring Boot debug logs on localhost
	6.2.3. Accessing debug logs on OpenShift

	CHAPTER 7. MONITORING YOUR APPLICATION
	7.1. ACCESSING JVM METRICS FOR YOUR APPLICATION ON OPENSHIFT
	7.1.1. Accessing JVM metrics using Jolokia on OpenShift

	CHAPTER 8. AVAILABLE EXAMPLES SPRING BOOT
	8.1. REST API LEVEL 0 EXAMPLE FOR SPRING BOOT
	8.1.1. REST API Level 0 design tradeoffs
	8.1.2. Deploying the REST API Level 0 example application to OpenShift Online
	8.1.2.1. Deploying the example application using developers.redhat.com/launch
	8.1.2.2. Authenticating the oc CLI client
	8.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

	8.1.3. Deploying the REST API Level 0 example application to Minishift or CDK
	8.1.3.1. Getting the Fabric8 Launcher tool URL and credentials
	8.1.3.2. Deploying the example application using the Fabric8 Launcher tool
	8.1.3.3. Authenticating the oc CLI client
	8.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

	8.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform
	8.1.5. Interacting with the unmodified REST API Level 0 example application for Spring Boot
	8.1.6. Running the REST API Level 0 example application integration tests
	8.1.7. REST resources

	8.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR SPRING BOOT
	8.2.1. The externalized configuration design pattern
	8.2.2. Externalized Configuration design tradeoffs
	8.2.3. Deploying the Externalized Configuration example application to OpenShift Online
	8.2.3.1. Deploying the example application using developers.redhat.com/launch
	8.2.3.2. Authenticating the oc CLI client
	8.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

	8.2.4. Deploying the Externalized Configuration example application to Minishift or CDK
	8.2.4.1. Getting the Fabric8 Launcher tool URL and credentials
	8.2.4.2. Deploying the example application using the Fabric8 Launcher tool
	8.2.4.3. Authenticating the oc CLI client
	8.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

	8.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform
	8.2.6. Interacting with the unmodified Externalized Configuration example application for Spring Boot
	8.2.7. Running the Externalized Configuration example application integration tests
	8.2.8. Externalized Configuration resources

	8.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR SPRING BOOT
	8.3.1. Relational Database Backend design tradeoffs
	8.3.2. Deploying the Relational Database Backend example application to OpenShift Online
	8.3.2.1. Deploying the example application using developers.redhat.com/launch
	8.3.2.2. Authenticating the oc CLI client
	8.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

	8.3.3. Deploying the Relational Database Backend example application to Minishift or CDK
	8.3.3.1. Getting the Fabric8 Launcher tool URL and credentials
	8.3.3.2. Deploying the example application using the Fabric8 Launcher tool
	8.3.3.3. Authenticating the oc CLI client
	8.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

	8.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform
	8.3.5. Interacting with the Relational Database Backend API
	Troubleshooting

	8.3.6. Running the Relational Database Backend example application integration tests
	8.3.7. Relational database resources

	8.4. HEALTH CHECK EXAMPLE FOR SPRING BOOT
	8.4.1. Health check concepts
	8.4.2. Deploying the Health Check example application to OpenShift Online
	8.4.2.1. Deploying the example application using developers.redhat.com/launch
	8.4.2.2. Authenticating the oc CLI client
	8.4.2.3. Deploying the Health Check example application using the oc CLI client

	8.4.3. Deploying the Health Check example application to Minishift or CDK
	8.4.3.1. Getting the Fabric8 Launcher tool URL and credentials
	8.4.3.2. Deploying the example application using the Fabric8 Launcher tool
	8.4.3.3. Authenticating the oc CLI client
	8.4.3.4. Deploying the Health Check example application using the oc CLI client

	8.4.4. Deploying the Health Check example application to OpenShift Container Platform
	8.4.5. Interacting with the unmodified Health Check example application
	8.4.6. Running the Health Check example application integration tests
	8.4.7. Health check resources

	8.5. CIRCUIT BREAKER EXAMPLE FOR SPRING BOOT
	8.5.1. The circuit breaker design pattern
	Circuit breaker implementation

	8.5.2. Circuit Breaker design tradeoffs
	8.5.3. Deploying the Circuit Breaker example application to OpenShift Online
	8.5.3.1. Deploying the example application using developers.redhat.com/launch
	8.5.3.2. Authenticating the oc CLI client
	8.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

	8.5.4. Deploying the Circuit Breaker example application to Minishift or CDK
	8.5.4.1. Getting the Fabric8 Launcher tool URL and credentials
	8.5.4.2. Deploying the example application using the Fabric8 Launcher tool
	8.5.4.3. Authenticating the oc CLI client
	8.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

	8.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform
	8.5.6. Interacting with the unmodified Spring Boot Circuit Breaker example application
	8.5.7. Running the Circuit Breaker example application integration tests
	8.5.8. Using Hystrix Dashboard to monitor the circuit breaker
	8.5.9. Circuit breaker resources

	8.6. SECURED EXAMPLE APPLICATION FOR SPRING BOOT
	8.6.1. The Secured project structure
	8.6.2. Red Hat SSO deployment configuration
	8.6.3. Red Hat SSO realm model
	8.6.3.1. Red Hat SSO users
	8.6.3.2. The application clients

	8.6.4. Spring Boot SSO adapter configuration
	8.6.5. Deploying the Secured example application to Minishift or CDK
	8.6.5.1. Getting the Fabric8 Launcher tool URL and credentials
	8.6.5.2. Creating the Secured example application using Fabric8 Launcher
	8.6.5.3. Authenticating the oc CLI client
	8.6.5.4. Deploying the Secured example application using the oc CLI client

	8.6.6. Deploying the Secured example application to OpenShift Container Platform
	8.6.6.1. Authenticating the oc CLI client
	8.6.6.2. Deploying the Secured example application using the oc CLI client

	8.6.7. Authenticating to the Secured example application API endpoint
	8.6.7.1. Getting the Secured example application API endpoint
	8.6.7.2. Authenticating HTTP requests using the command line
	8.6.7.3. Authenticating HTTP requests using the web interface

	8.6.8. Running the Spring Boot Secured example application integration tests
	8.6.9. Secured SSO resources

	8.7. CACHE EXAMPLE FOR SPRING BOOT
	8.7.1. How caching works and when you need it
	8.7.2. Deploying the Cache example application to OpenShift Online
	8.7.2.1. Deploying the example application using developers.redhat.com/launch
	8.7.2.2. Authenticating the oc CLI client
	8.7.2.3. Deploying the Cache example application using the oc CLI client

	8.7.3. Deploying the Cache example application to Minishift or CDK
	8.7.3.1. Getting the Fabric8 Launcher tool URL and credentials
	8.7.3.2. Deploying the example application using the Fabric8 Launcher tool
	8.7.3.3. Authenticating the oc CLI client
	8.7.3.4. Deploying the Cache example application using the oc CLI client

	8.7.4. Deploying the Cache example application to OpenShift Container Platform
	8.7.5. Interacting with the unmodified Cache example application
	8.7.6. Running the Cache example application integration tests
	8.7.7. Caching resources

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR APPLICATION WITH THE FABRIC8 MAVEN PLUGIN
	Next steps

	APPENDIX D. DEPLOYING A SPRING BOOT APPLICATION USING WAR FILES
	APPENDIX E. ADDITIONAL SPRING BOOT RESOURCES
	APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX G. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

	APPENDIX H. GLOSSARY
	H.1. PRODUCT AND PROJECT NAMES
	H.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

