
Red Hat Software Collections 2.x

Packaging Guide

A guide to packaging Software Collections for Red Hat Enterprise Linux

Last Updated: 2017-10-17

Red Hat Software Collections 2.x Packaging Guide

A guide to packaging Software Collections for Red Hat Enterprise Linux

Petr Kovář
Red Hat Customer Content Services
pkovar@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Packaging Guide provides an explanation of Software Collections and details how to build and
package them. Developers and system administrators who have a basic understanding of software
packaging with RPM packages, but who are new to the concept of Software Collections, can use
this Guide to get started with Software Collections.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCING SOFTWARE COLLECTIONS
1.1. WHY PACKAGE SOFTWARE WITH RPM?
1.2. WHAT ARE SOFTWARE COLLECTIONS?
1.3. ENABLING SUPPORT FOR SOFTWARE COLLECTIONS
1.4. INSTALLING A SOFTWARE COLLECTION
1.5. LISTING INSTALLED SOFTWARE COLLECTIONS
1.6. ENABLING A SOFTWARE COLLECTION

1.6.1. Running an Application Directly
1.6.2. Running a Shell with Multiple Software Collections Enabled
1.6.3. Running Commands Stored in a File

1.7. LISTING ENABLED SOFTWARE COLLECTIONS
1.8. UNINSTALLING A SOFTWARE COLLECTION

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS
2.1. CREATING YOUR OWN SOFTWARE COLLECTIONS
2.2. THE FILE SYSTEM HIERARCHY
2.3. THE SOFTWARE COLLECTION ROOT DIRECTORY
2.4. THE SOFTWARE COLLECTION PREFIX
2.5. SOFTWARE COLLECTION PACKAGE NAMES
2.6. SOFTWARE COLLECTION SCRIPTLETS
2.7. PACKAGE LAYOUT

2.7.1. Metapackage
2.7.2. Creating a Metapackage

Example of the Metapackage
2.8. SOFTWARE COLLECTION MACROS

2.8.1. Macros Specific to a Software Collection
2.8.2. Macros Not Specific to a Software Collection
2.8.3. The nfsmountable Macro

2.9. COMMONLY USED PATH REDEFINITIONS
2.9.1. Language-specific Path Redefinitions
2.9.2. Other Path Redefinitions

2.10. CONVERTING A CONVENTIONAL SPEC FILE
2.10.1. Example of the Converted Spec File
2.10.2. Converting Tags and Macro Definitions
2.10.3. Converting Subpackages
2.10.4. Converting RPM Scripts
2.10.5. Software Collection Automatic Provides and Requires and Filtering Support
2.10.6. Software Collection Macro Files Support
2.10.7. Software Collection Shebang Support
2.10.8. Making a Software Collection Depend on Another Software Collection

2.11. UNINSTALLING ALL SOFTWARE COLLECTION DIRECTORIES
2.12. BUILDING A SOFTWARE COLLECTION

2.12.1. Rebuilding a Software Collection without build Subpackages
2.12.2. Avoiding debuginfo File Conflicts

CHAPTER 3. ADVANCED TOPICS
3.1. USING SOFTWARE COLLECTIONS OVER NFS

3.1.1. Changed Directory Structure and File Ownership
3.1.2. Registering and Deregistering Software Collections

3.1.2.1. Using (de)register Scriptlets in a Software Collection Metapackage
3.2. CONVERTING SOFTWARE COLLECTION SCRIPTLETS INTO ENVIRONMENT MODULES
3.3. PACKAGING WRAPPERS FOR SOFTWARE COLLECTIONS

5
5
5
6
7
7
7
8
8
8
9
9

10
10
10
11
12
12
12
13
13
14
15
17
17
18
19
19
19
20
22
22
23
24
25
26
27
28
29
29
30
30
30

32
32
33
33
33
34
35

Table of Contents

1

. .

. .

. .

3.4. MANAGING SERVICES IN SOFTWARE COLLECTIONS
3.4.1. Configuring an Environment for Services

3.5. SOFTWARE COLLECTION LIBRARY SUPPORT
3.5.1. Using a Library Outside of the Software Collection
3.5.2. Prefixing the Library Major soname with the Software Collection Name
3.5.3. Software Collection Library Support in Red Hat Enterprise Linux 7

3.6. SOFTWARE COLLECTION .PC FILES SUPPORT
3.7. SOFTWARE COLLECTION MANPATH SUPPORT
3.8. SOFTWARE COLLECTION CRONJOB SUPPORT
3.9. SOFTWARE COLLECTION LOG FILE SUPPORT
3.10. SOFTWARE COLLECTION LOGROTATE SUPPORT
3.11. SOFTWARE COLLECTION /VAR/RUN/ FILES SUPPORT
3.12. SOFTWARE COLLECTION LOCK FILE SUPPORT

Preventing Programs from Running Concurrently
3.12.1. Software Collection SysV init Lock File Support

3.13. SOFTWARE COLLECTION CONFIGURATION FILES SUPPORT
3.14. SOFTWARE COLLECTION KERNEL MODULE SUPPORT
3.15. SOFTWARE COLLECTION SELINUX SUPPORT

3.15.1. SELinux Support in Red Hat Enterprise Linux 7
3.16. DIFFERENCES BETWEEN RED HAT ENTERPRISE LINUX 6 AND 7

3.16.1. The %license Macro
3.16.2. Missing runtime Subpackage Dependencies
3.16.3. The scl-package() Provides

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS
4.1. PROVIDING AN SCLDEVEL SUBPACKAGE

4.1.1. Using an scldevel Subpackage in a Dependent Software Collection
4.2. EXTENDING THE PYTHON27 AND RH-PYTHON35 SOFTWARE COLLECTIONS

4.2.1. The vt191 Software Collection
4.2.2. The python-versiontools Package
4.2.3. Building the vt191 Software Collection
4.2.4. Testing the vt191 Software Collection

4.3. EXTENDING THE RH-RUBY23 SOFTWARE COLLECTION
4.3.1. The rh-ror42 Software Collection
4.3.2. The rh-ror42-rubygem-bcrypt Package
4.3.3. Building the rh-ror42 Software Collection
4.3.4. Testing the rh-ror42 Software Collection

4.4. EXTENDING THE RH-PERL524 SOFTWARE COLLECTION
4.4.1. The h2m144 Software Collection
4.4.2. The help2man Package
4.4.3. Building the h2m144 Software Collection
4.4.4. Testing the h2m144 Software Collection

CHAPTER 5. TROUBLESHOOTING SOFTWARE COLLECTIONS
5.1. ERROR: LINE XX: UNKNOWN TAG: %SCL_PACKAGE SOFTWARE_COLLECTION_NAME
5.2. SCL COMMAND DOES NOT EXIST
5.3. UNABLE TO OPEN /ETC/SCL/PREFIXES/SOFTWARE_COLLECTION_NAME
5.4. SCL_SOURCE: COMMAND NOT FOUND

APPENDIX A. GETTING MORE INFORMATION
A.1. RED HAT DEVELOPERS
A.2. INSTALLED DOCUMENTATION
A.3. ACCESSING RED HAT DOCUMENTATION

35
36
37
38
38
39
40
42
43
43
44
44
45
45
45
45
46
46
46
47
47
47
47

49
49
49
50
51
54
55
55
55
55
59
61
61
61
62
64
66
66

67
67
67
67
67

68
68
68
68

Packaging Guide

2

. .APPENDIX B. REVISION HISTORY
B.1. ACKNOWLEDGMENTS

70
71

Table of Contents

3

Packaging Guide

4

CHAPTER 1. INTRODUCING SOFTWARE COLLECTIONS
This chapter introduces you to the concept and usage of Software Collections or SCLs for short.

1.1. WHY PACKAGE SOFTWARE WITH RPM?

The RPM Package Manager (RPM) is a package management system that runs on Red Hat Enterprise
Linux. RPM makes it easier for you to distribute, manage, and update software that you create for Red
Hat Enterprise Linux. Many software vendors distribute their software via a conventional archive file
(such as a tarball). However, there are several advantages in packaging software into RPM packages.
These advantages are outlined below.

With RPM, you can:

Install, reinstall, remove, upgrade and verify packages.

Users can use standard package management tools (for example Yum or PackageKit) to install,
reinstall, remove, upgrade and verify your RPM packages.

Use a database of installed packages to query and verify packages.

Because RPM maintains a database of installed packages and their files, users can easily query and
verify packages on their system.

Use metadata to describe packages, their installation instructions, and so on.

Each RPM package includes metadata that describes the package's components, version, release,
size, project URL, installation instructions, and so on.

Package pristine software sources into source and binary packages.

RPM allows you to take pristine software sources and package them into source and binary packages
for your users. In source packages, you have the pristine sources along with any patches that were
used, plus complete build instructions. This design eases the maintenance of the packages as new
versions of your software are released.

Add packages to Yum repositories.

You can add your package to a Yum repository that enables clients to easily find and deploy your
software.

Digitally sign your packages.

Using a GPG signing key, you can digitally sign your package so that users are able to verify the
authenticity of the package.

For in-depth information on what is RPM and how to use it, see the Red Hat Enterprise Linux 7 System
Administrator's Guide, or the Red Hat Enterprise Linux 6 Deployment Guide.

1.2. WHAT ARE SOFTWARE COLLECTIONS?

With Software Collections, you can build and concurrently install multiple versions of the same software
components on your system. Software Collections have no impact on the system versions of the
packages installed by any of the conventional RPM package management utilities.

Software Collections:

CHAPTER 1. INTRODUCING SOFTWARE COLLECTIONS

5

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html

Do not overwrite system files

Software Collections are distributed as a set of several components, which provide their full
functionality without overwriting system files.

Are designed to avoid conflicts with system files

Software Collections make use of a special file system hierarchy to avoid possible conflicts between a
single Software Collection and the base system installation.

Require no changes to the RPM package manager

Software Collections require no changes to the RPM package manager present on the host system.

Need only minor changes to the spec file

To convert a conventional package to a single Software Collection, you only need to make minor
changes to the package spec file.

Allow you to build a conventional package and a Software Collection package with a single spec
file

With a single spec file, you can build both the conventional package and the Software Collection
package.

Uniquely name all included packages

With Software Collection's namespace, all packages included in the Software Collection are uniquely
named.

Do not conflict with updated packages

Software Collection's namespace ensures that updating packages on your system causes no
conflicts.

Can depend on other Software Collections

Because one Software Collection can depend on another, you can define multiple levels of
dependencies.

1.3. ENABLING SUPPORT FOR SOFTWARE COLLECTIONS

To enable support for Software Collections on your system so that you can enable and build Software
Collections, you need to have installed the packages scl-utils and scl-utils-build.

If the packages scl-utils and scl-utils-build are not already installed on your system, you can install them
by typing the following at a shell prompt as root:

yum install scl-utils scl-utils-build

The scl-utils package provides the scl tool that lets you enable Software Collections on your system. For
more information on enabling Software Collections, see Section 1.6, “Enabling a Software Collection”.

The scl-utils-build package provides macros that are essential for building Software Collections. For
more information on building Software Collections, see Section 2.12, “Building a Software Collection”.

Packaging Guide

6

IMPORTANT

Depending on the subscriptions available to your Red Hat Enterprise Linux system, you
may need to enable the Optional channel to install the scl-utils-build package.

1.4. INSTALLING A SOFTWARE COLLECTION

To ensure that a Software Collection is on your system, install the so-called metapackage of the Software
Collection. Thanks to Software Collections being fully compatible with the RPM Package Manager, you
can use conventional tools like Yum or PackageKit for this task.

For example, to install a Software Collection with the metapackage named software_collection_1,
run the following command:

yum install software_collection_1

This command will automatically install all the packages in the Software Collection that are essential for
the user to perform most common tasks with the Software Collection.

Software Collections allow you to only install a subset of packages you intend to use. For example, to
use the Ruby interpreter from the rh-ruby23 Software Collection, you only need to install a package rh-
ruby23-ruby from that Software Collection.

If you install an application that depends on a Software Collection, that Software Collection will be
installed along with the rest of the application's dependencies.

For detailed information on Software Collection metapackages, see Section 2.7.1, “Metapackage”.

For detailed information on Yum and PackageKit usage, see the Red Hat Enterprise Linux 7 System
Administrator's Guide, or the Red Hat Enterprise Linux 6 Deployment Guide.

1.5. LISTING INSTALLED SOFTWARE COLLECTIONS

To get a list of Software Collections that are installed on the system, run the following command:

 scl --list

To get a list of installed packages contained within a specified Software Collection, run the following
command:

 scl --list software_collection_1

1.6. ENABLING A SOFTWARE COLLECTION

The scl tool is used to enable a Software Collection and to run applications in the Software Collection
environment.

General usage of the scl tool can be described using the following syntax:

 scl action software_collection_1 software_collection_2 command

If you are running a command with multiple arguments, remember to enclose the command and its
arguments in quotes:

CHAPTER 1. INTRODUCING SOFTWARE COLLECTIONS

7

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html

 scl action software_collection_1 software_collection_2 'command --
argument'

Alternatively, use a -- command separator to run a command with multiple arguments:

 scl action software_collection_1 software_collection_2 -- command --
argument

Remember that:

When you run the scl tool, it creates a child process (subshell) of the current shell. Running the
command again then creates a subshell of the subshell.

You can list enabled Software Collections for the current subshell. See Section 1.7, “Listing
Enabled Software Collections” for more information.

You have to disable an enabled Software Collection first to be able to enable it again. To disable
the Software Collection, exit the subshell created when enabling the Software Collections.

When using the scl tool to enable a Software Collection, you can only perform one action with
the enabled Software Collection at a time. The enabled Software Collection must be disabled
first before performing another action.

1.6.1. Running an Application Directly

For example, to directly run Perl with the --version option in the Software Collection named
software_collection_1, execute the following command:

 scl enable software_collection_1 'perl --version'

Alternatively, you can create a wrapper script that shortens the commands for running applications in the
Software Collection environment. For more information on wrappers, see Section 3.3, “Packaging
Wrappers for Software Collections”.

1.6.2. Running a Shell with Multiple Software Collections Enabled

To run the Bash shell in the environment with multiple Software Collections enabled, execute the
following command:

 scl enable software_collection_1 software_collection_2 bash

The command above enables two Software Collections, named software_collection_1 and
software_collection_2.

1.6.3. Running Commands Stored in a File

To execute a number of commands, which are stored in a file, in the Software Collection environment,
run the following command:

 cat cmd | scl enable software_collection_1 -

Packaging Guide

8

The command above executes commands, which are stored in the cmd file, in the environment of the
Software Collection named software_collection_1.

1.7. LISTING ENABLED SOFTWARE COLLECTIONS

To get a list of Software Collections that are enabled in the current session, print the $X_SCLS
environment variable by running the following command:

echo $X_SCLS

1.8. UNINSTALLING A SOFTWARE COLLECTION

You can use conventional tools like Yum or PackageKit when uninstalling a Software Collection
because Software Collections are fully compatible with the RPM Package Manager. For example, to
uninstall all packages and subpackages that are part of a Software Collection named
software_collection_1, run the following command:

 yum remove software_collection_1*

You can also use the yum remove command to remove the scl utility.

For detailed information on Yum and PackageKit usage, see the Red Hat Enterprise Linux 7 System
Administrator's Guide, or the Red Hat Enterprise Linux 6 Deployment Guide.

CHAPTER 1. INTRODUCING SOFTWARE COLLECTIONS

9

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS
This chapter introduces you to packaging Software Collections.

2.1. CREATING YOUR OWN SOFTWARE COLLECTIONS

In general, you can use one of the following two approaches to deploy an application that depends on an
existing Software Collection:

install all required Software Collections and packages manually and then deploy your application,
or

create a new Software Collection for your application.

When creating a new Software Collection for your application:

Create a Software Collection metapackage

Each Software Collection includes a metapackage, which installs a subset of the Software Collection's
packages that are essential for the user to perform most common tasks with the Software Collection.
See Section 2.7.1, “Metapackage” for more information on creating metapackages.

Consider specifying the location of the Software Collection root directory

You are advised to specify the location of the Software Collection root directory by setting the
%_scl_prefix macro in the Software Collection spec file. For more information, see Section 2.3,
“The Software Collection Root Directory”.

Consider prefixing the name of your Software Collection packages

You are advised to prefix the name of your Software Collection packages with the vendor and
Software Collection's name. For more information, see Section 2.4, “The Software Collection Prefix”.

Specify all Software Collections and other packages required by your application as
dependencies

Ensure that all Software Collections and other packages required by your application are specified as
dependencies of your Software Collection. For more information, see Section 2.10.8, “Making a
Software Collection Depend on Another Software Collection”.

Convert existing conventional packages or create new Software Collection packages

Ensure that all macros in your Software Collection package spec files use conditionals. See
Section 2.10, “Converting a Conventional Spec File” for more information on how to convert an
existing package spec file.

Build your Software Collection

After you create the Software Collection metapackage and convert or create packages for your
Software Collection, you can build the Software Collection with the rpmbuild utility. For more
information, see Section 2.12, “Building a Software Collection”.

2.2. THE FILE SYSTEM HIERARCHY

Packaging Guide

10

The root directory of Software Collections is normally located in the /opt/ directory to avoid possible
conflicts between Software Collections and the base system installation. The use of the /opt/ directory
is recommended by the Filesystem Hierarchy Standard (FHS).

Below is an example of the file system hierarchy layout with two Software Collections,
software_collection_1 and software_collection_2:

Figure 2.1. The Software Collection File System Hierarchy

As you can see above, each of the Software Collections directories contains the Software Collection root
directory, and one or more Software Collection scriptlets. For more information on the Software Collection
scriptlets, refer to Section 2.6, “Software Collection Scriptlets”.

2.3. THE SOFTWARE COLLECTION ROOT DIRECTORY

You can change the location of the root directory by setting the %_scl_prefix macro in the spec file,
as in the following example:

where provider is the provider (vendor) name registered, where applicable, with the Linux Foundation
and the subordinated Linux Assigned Names and Numbers Authority (LANANA), in conformance with
the Filesystem Hierarchy Standard.

Each organization or project that builds and distributes Software Collections should use its own provider
name, which conforms to the Filesystem Hierarchy Standard (FHS) and avoids possible conflicts
between Software Collections and the base system installation.

You are advised to make the file system hierarchy conform to the following layout:

For more information on the Filesystem Hierarchy Standard, see http://www.pathname.com/fhs/.

%global _scl_prefix /opt/provider

/opt/provider/prefix-application-version/

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

11

http://www.pathname.com/fhs/

For more information on the Linux Assigned Names and Numbers Authority, see http://www.lanana.org/.

2.4. THE SOFTWARE COLLECTION PREFIX

When naming your Software Collection, you are advised to prefix the name of your Software Collection
as described below in order to avoid possible name conflicts with the system versions of the packages
that are part of your Software Collection.

The Software Collection prefix consists of two parts:

the provider part, which defines the provider's name, and

the name of the Software Collection itself.

These two parts of the Software Collection prefix are separated by a dash (-), as in the following
example:

In this example, myorganization is the provider's name, and ruby193 is the name of the Software
Collection.

While it is ultimately a vendor's or distributor's decision whether to specify the provider's name in the
prefix or not, specifying it is highly recommended.

A notable exception are Software Collections which were first shipped with Red Hat Software Collections
1.x, they do not specify the provider's name in their prefixes. Newer Software Collections added in Red
Hat Software Collections 2.0 and later use rh as the provider's name. For example:

2.5. SOFTWARE COLLECTION PACKAGE NAMES

The Software Collection package name consists of two parts:

the prefix part, discussed in Section 2.4, “The Software Collection Prefix”, and

the name and version number of the application that is a part of the Software Collection.

These two parts of the Software Collection package name are separated by a dash (-), as in the
following example:

In this example, myorganization-ruby193 is the prefix, and foreman-1.1 is the name and version number
of the application.

2.6. SOFTWARE COLLECTION SCRIPTLETS

The Software Collection scriptlets are simple shell scripts that change the current system environment so
that the group of packages in the Software Collection is preferred over the corresponding group of
conventional packages installed on the system.

myorganization-ruby193

rh-ruby23

myorganization-ruby193-foreman-1.1

Packaging Guide

12

http://www.lanana.org/

To utilize the Software Collection scriptlets, use the scl tool that is part of the scl-utils package. For more
information on scl, refer to Section 1.6, “Enabling a Software Collection”.

A single Software Collection can include multiple Software Collection scriptlets. These scriptlets are
located in the /opt/provider/software_collection/ directory in your Software Collection
package. If you only need to distribute a single scriptlet in your Software Collection, it is highly
recommended that you use enable as the name for that scriptlet. When the user runs a command in the
Software Collection environment by executing scl enable software_collection command, the
/opt/provider/software_collection/enable scriptlet is then used to update search paths, and
so on.

Note that Software Collection scriptlets can only set the system environment in a subshell that is created
by running the scl enable command. The subshell is only active for the time the command is being
performed.

2.7. PACKAGE LAYOUT

Each Software Collection's layout consists of the metapackage, which installs a subset of other
packages, and a number of the Software Collection's packages, which are installed within the Software
Collection namespace.

2.7.1. Metapackage

Each Software Collection includes a metapackage, which installs a subset of the Software Collection's
packages that are essential for the user to perform most common tasks with the Software Collection. For
example, the essential packages can provide the Perl language interpreter, but no Perl extension
modules. The metapackage contains a basic file system hierarchy and delivers a number of the Software
Collection's scriptlets.

The purpose of the metapackage is to make sure that all essential packages in the Software Collection
are properly installed and that it is possible to enable the Software Collection.

The metapackage produces the following packages that are also part of the Software Collection:

The main package: %name

The main package in the Software Collection contains dependencies of the base packages, which are
included in the Software Collection. The main package does not contain any files.

When specifying dependencies for your Software Collection's packages, ensure that no other
package in your Software Collection depends on the main package. The purpose of the main
package is to install only those packages that are essential for the user to perform most common
tasks with the Software Collection.

Normally, the main package does not specify any build time dependencies (for instance, packages
that are only build time dependencies of another Software Collection's packages).

For example, if the name of the Software Collection is myorganization-ruby193, then the main
package macro is expanded to:

The runtime subpackage: %name-runtime

myorganization-ruby193

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

13

The runtime subpackage in the Software Collection owns the Software Collection's file system and
delivers the Software Collection's scriptlets. This package needs to be installed for the user to be able
to use the Software Collection.

For example, if the name of the Software Collection is myorganization-ruby193, then the runtime
subpackage macro is expanded to:

The build subpackage: %name-build

The build subpackage in the Software Collection delivers the Software Collection's build configuration.
It contains RPM macros needed for building packages into the Software Collection. The build
subpackage is optional and can be excluded from the Software Collection.

For example, if the name of the Software Collection is myorganization-ruby193, then the build
subpackage macro is expanded to:

The contents of the myorganization-ruby193-build subpackage are shown below:

$ cat /etc/rpm/macros.ruby193-config
%scl myorganization-ruby193

The scldevel subpackage: %name-scldevel

The scldevel subpackage in the %name Software Collection contains development files, which are
useful when developing packages of another Software Collection that depends on the %name
Software Collection. The scldevel subpackage is optional and can be excluded from the %name
Software Collection.

For example, if the name of the Software Collection is myorganization-ruby193, then the
scldevel subpackage macro is expanded to:

For more information about the scldevel subpackage, see Section 4.1, “Providing an scldevel
Subpackage”.

2.7.2. Creating a Metapackage

When creating a new metapackage:

It is recommended to define the following macros at the top of the metapackage spec file:

scl_name_prefix that specifies the provider's name to be used as a prefix in your
Software Collection's name, for example, myorganization-. This is different from
_scl_prefix, which specifies the root of your Software Collection but also uses the
provider's name. See Section 2.4, “The Software Collection Prefix” for more information.

scl_name_base that specifies the base name of your Software Collection, for example,
ruby.

myorganization-ruby193-runtime

myorganization-ruby193-build

myorganization-ruby193-scldevel

Packaging Guide

14

scl_name_version that specifies the version of your Software Collection, for example,
193.

You are advised to define a Software Collection macro nfsmountable that changes the
location of configuration and state files and makes your Software Collection usable over NFS.
For more information, see Section 3.1, “Using Software Collections over NFS”.

Consider specifying all packages in your Software Collection that are essential for the Software
Collection run time as dependencies of the metapackage. That way you can ensure that the
packages are installed with the Software Collection metapackage.

You are advised to add Requires: scl-utils-build to the build subpackage.

You are not required to use conditionals for Software Collection-specific macros in the
metapackage.

Include any path redefinition that the packages in your Software Collection may require in the
enable scriptlet.

For information on commonly used path redefinitions, see Section 2.9, “Commonly Used Path
Redefinitions”.

Always make sure that the metapackage contains the %setup macro in the %prep section,
otherwise building the Software Collection will fail. If you do not need to use a particular option
with the %setup macro, add the %setup -c -T command to the %prep section.

This is because the %setup macro defines and creates the %buildsubdir directory, which is
normally used for storing temporary files at build time. If you do not define %setup in your
Software Collection packages, files in the %buildsubdir directory will be overwritten, causing
the build to fail.

Add any macros you need to use to the macros.%{scl}-config file in the build subpackage.

Example of the Metapackage
To get an idea of what a typical metapackage for a Software Collection named myorganization-ruby193
looks like, see the following example:

%global scl_name_prefix myorganization-
%global scl_name_base ruby
%global scl_name_version 193

%global scl %{scl_name_prefix}%{scl_name_base}%{scl_name_version}

Optional but recommended: define nfsmountable
%global nfsmountable 1

%scl_package %scl
%global _scl_prefix /opt/myorganization

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+
Requires: %{scl_prefix}less
BuildRequires: scl-utils-build

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

15

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build

%description build
Package shipping essential configuration macros to build %scl Software
Collection.

This is only needed when you want to provide an optional scldevel
subpackage
%package scldevel
Summary: Package shipping development files for %scl

%description scldevel
Package shipping development files, especially useful for development of
packages depending on %scl Software Collection.

%prep
%setup -c -T

%install
%scl_install

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PATH="%{_bindir}:%{_sbindir}\${PATH:+:\${PATH}}"
export LD_LIBRARY_PATH="%
{_libdir}\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}"
export MANPATH="%{_mandir}:\${MANPATH:-}"
export PKG_CONFIG_PATH="%
{_libdir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}"
EOF

This is only needed when you want to provide an optional scldevel
subpackage
cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-
scldevel << EOF
%%scl_%{scl_name_base} %{scl}
%%scl_prefix_%{scl_name_base} %{scl_prefix}
EOF

Install the generated man page
mkdir -p %{buildroot}%{_mandir}/man7/
install -p -m 644 %{scl_name}.7 %{buildroot}%{_mandir}/man7/

%files

Packaging Guide

16

2.8. SOFTWARE COLLECTION MACROS

The Software Collection packaging macro scl defines where to relocate the Software Collection's file
structure. The relocated file structure is a file system used exclusively by the Software Collection.

The %scl_package macro defines files ownership for the Software Collection's metapackage and
provides additional packaging macros to use in the Software Collection environment.

To be able to build a conventional package and a Software Collection package with a single spec file,
prefix the Software Collection macros with %{?scl:macro}, as in the following example:

In the example above, the %scl_runtime macro is the value of the Requires tag. Both the macro and
the tag use the %{?scl: prefix.

2.8.1. Macros Specific to a Software Collection

The table below shows a list of all macros specific to a particular Software Collection. All the macros
have default values that you will not need to change in most cases.

Table 2.1. Software Collection Specific Macros

Macro Description Example value

%scl_name name of the Software Collection software_collection_1

%scl_prefix name of the Software Collection
with a dash appended at the end

software_collection_1-

%pkg_name name of the original package perl

%_scl_prefix root of the Software Collection
(not package's root)

/opt/provider/

%_scl_scripts location of Software Collection's
scriptlets

/opt/provider/software_
collection_1/

%files runtime -f filelist
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%files scldevel
%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-scldevel

%changelog
* Fri Aug 30 2013 John Doe <jdoe@example.com> 1-1
- Initial package

%{?scl:Requires: %scl_runtime}

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

17

%_scl_root installation root (install-root) of the
package

/opt/provider/software_
collection_1/root/

%scl_require_package
software_collection_1
package_2

depend on a particular package
from a specific Software
Collection

software_collection_1-
package_2

Macro Description Example value

2.8.2. Macros Not Specific to a Software Collection

The table below shows a list of macros that are not specific to a particular Software Collection. Because
these macros are not relocated and do not point to the Software Collection file system, they allow you to
point to the system root file system. These macros use _root as a prefix.

All the macros have default values that you will not need to change in most cases.

Table 2.2. Software Collection Non-Specific Macros

Macro Description Relocated Example value

%_root_prefix Software Collection's
%_prefix macro

no /usr/

%_root_exec_pref
ix

Software Collection's
%_exec_prefix
macro

no /usr/

%_root_bindir Software Collection's
%_bindir macro

no /usr/bin/

%_root_sbindir Software Collection's
%_sbindir macro

no /usr/sbin/

%_root_datadir Software Collection's
%_datadir macro

no /usr/share/

%_root_sysconfdi
r

Software Collection's
%_sysconfdir macro

no /etc/

%_root_libexecdi
r

Software Collection's
%_libexecdir macro

no /usr/libexec/

%_root_sharedsta
tedir

Software Collection's
%_sharedstatedir
macro

no /usr/com/

Packaging Guide

18

%_root_localstat
edir

Software Collection's
%_localstatedir
macro

no /usr/var/

%_root_includedi
r

Software Collection's
%_includedir macro

no /usr/include/

%_root_infodir Software Collection's
%_infodir macro

no /usr/share/info/

%_root_mandir Software Collection's
%_mandir macro

no /usr/share/man/

%_root_initddir Software Collection's
%_initddir macro

no /etc/rc.d/init.d
/

%_root_libdir Software Collection's
%_libdir macro, this
macro does not work if
Software Collection's
metapackage is
platform-independent

no /usr/lib/

Macro Description Relocated Example value

2.8.3. The nfsmountable Macro

Using a Software Collection macro nfsmountable allows you to change values for the _sysconfdir,
_sharedstatedir, and _localstatedir macros so that your Software Collection can have its state
files and configuration files located outside the Software Collection's /opt file system hierarchy. This
makes the files easier to manage and is also required when using your Software Collection over NFS.

If you do not need support for Software Collections over NFS, using nfsmountable is optional but
recommended. For more information, see Section 3.1, “Using Software Collections over NFS”.

2.9. COMMONLY USED PATH REDEFINITIONS

This section lists environment variables commonly used to redefine paths in the enable scriptlet to set
up the Software Collection environment. They are also used to specify the location of the Software
Collection components in the Software Collection file system hierarchy.

Whether you need to specify a path redefinition in the enable scriptlet depends on the packages you
choose to include in your Software Collection. The environment variables normally follow this pattern:

2.9.1. Language-specific Path Redefinitions

GEM_PATH

$ENV_VAR=$SCL_ENV_VAR:$ENV_VAR

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

19

The GEM_PATH environment variable specifies the location of Ruby gems. As such, it is also used in
those Software Collections that extend the rh-ruby23 Software Collection. For more information, see
Section 4.3, “Extending the rh-ruby23 Software Collection”.

Include the following in the enable scriptlet to redefine the environment variable:

GOPATH

The GOPATH environment variable specifies the location of Go source and binary files. Include the
following in the enable scriptlet to redefine the environment variable:

JAVACONFDIRS

The JAVACONFDIRS environment variable is used to specify the location of the java.conf
configuration file. Include the following in the enable scriptlet to redefine the environment variable:

PERL5LIB

The PERL5LIB environment variable is used to specify the location of custom Perl modules so that
they can be installed with the %{?_scl_root} prefix. Include the following in the enable scriptlet
to redefine the environment variable:

PYTHONPATH

The PYTHONPATH environment variable specifies the location of custom Python libraries. Include the
following in the enable scriptlet to redefine the environment variable:

2.9.2. Other Path Redefinitions

CPATH

The CPATH environment variable specifies include paths for the GCC compiler to use. Include the
following in the enable scriptlet to redefine the environment variable:

INFOPATH

export GEM_PATH="\${GEM_PATH:=%{gem_dir}:\`scl enable %{scl_ruby} --
ruby -e "print Gem.path.join(':')"\`}"

export GOPATH="%{gopath}\${GOPATH:+:\${GOPATH}}"

export JAVACONFDIRS="%
{_sysconfdir}/java\${JAVACONFDIRS:+:}\${JAVACONFDIRS:-}"

export PERL5LIB="%{_scl_root}%
{perl_vendorlib}\${PERL5LIB:+:\${PERL5LIB}}"

export PYTHONPATH="%{_scl_root}%{python_sitearch}:%{_scl_root}%
{python_sitelib}\${PYTHONPATH:+:}\${PYTHONPATH:-}"

export CPATH="%{_includedir}\${CPATH:+:\${CPATH}}"

Packaging Guide

20

The INFOPATH environment variable specifies directories that contain Info files. Include the following
in the enable scriptlet to redefine the environment variable:

LD_LIBRARY_PATH

The LD_LIBRARY_PATH environment variable specifies the location of libraries. For more
information, see Section 3.5, “Software Collection Library Support”.

Include the following in the enable scriptlet to redefine the environment variable:

LIBRARY_PATH

The LIBRARY_PATH environment variable specifies the location of special linker files or ordinary
libraries for GCC to use. Include the following in the enable scriptlet to redefine the environment
variable:

MANPATH

The MANPATH environment variable specifies the location of man pages. For more information, see
Section 3.7, “Software Collection MANPATH Support”.

Include the following in the enable scriptlet to redefine the environment variable:

PATH

The PATH environment variable specifies the location of binary files. Include the following in the
enable scriptlet to redefine the environment variable:

PCP_DIR

The PCP_DIR environment variable specifies the location of files and directories used by PCP.
Include the following in the enable scriptlet to redefine the environment variable:

PKG_CONFIG_PATH

The PKG_CONFIG_PATH environment variable specifies the location of .pc files used by the pkg-
config program. For more information, see Section 3.6, “Software Collection .pc Files Support”.

Include the following in the enable scriptlet to redefine the environment variable:

export INFOPATH="%{_infodir}\${INFOPATH:+:\${INFOPATH}}"

export LD_LIBRARY_PATH="%
{_libdir}\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}"

export LIBRARY_PATH="%{_libdir}\${LIBRARY_PATH:+:\${LIBRARY_PATH}}"

export MANPATH="%{_mandir}:\${MANPATH:-}"

export PATH="%{_bindir}:%{_sbindir}\${PATH:+:\${PATH}}"

export PCP_DIR="%{_scl_root}"

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

21

XDG_CONFIG_DIRS

The XDG_CONFIG_DIRS environment variable specifies the location of desktop configuration files
according to the freedesktop.org specification. Include the following in the enable scriptlet to
redefine the environment variable:

XDG_DATA_DIRS

The XDG_DATA_DIRS environment variable specifies the location of desktop data files according to
the freedesktop.org specification. It is used in some Software Collections to locate the Software
Collection-specific scripts or to enable bash completion.

Include the following in the enable scriptlet to redefine the environment variable:

2.10. CONVERTING A CONVENTIONAL SPEC FILE

This section discusses converting a conventional spec file into a Software Collection spec file so that the
converted spec file can be used in both the conventional package and the Software Collection.

2.10.1. Example of the Converted Spec File

To see what the diff file comparing a conventional spec file with a converted spec file looks like, refer to
the following example:

export PKG_CONFIG_PATH="%
{_libdir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}"

export XDG_CONFIG_DIRS="%{_sysconfdir}/xdg:\${XDG_CONFIG_DIRS:-
/etc/xdg}"

export XDG_DATA_DIRS="%{_datadir}:\${XDG_DATA_DIRS:-/usr/local/share:%
{_root_datadir}}"

--- a/less.spec
+++ b/less.spec
@@ -1,10 +1,13 @@
+%{?scl:%scl_package less}
+%{!?scl:%global pkg_name %{name}}
+
 Summary: A text file browser similar to more, but better
-Name: less
+Name: %{?scl_prefix}less
 Version: 444
 Release: 7%{?dist}
 License: GPLv3+
 Group: Applications/Text
-Source: http://www.greenwoodsoftware.com/less/%{name}-%{version}.tar.gz
+Source: http://www.greenwoodsoftware.com/less/%{pkg_name}-%
{version}.tar.gz
 Source1: lesspipe.sh
 Source2: less.sh
 Source3: less.csh
@@ -19,6 +22,7 @@ URL: http://www.greenwoodsoftware.com/less/

Packaging Guide

22

2.10.2. Converting Tags and Macro Definitions

The following steps show how to convert tags and macro definitions in a conventional spec file into a
Software Collection spec file.

Procedure 2.1. Converting tags and macro definitions

1. Add the %scl_package macro to the spec file. Place the macro in front of the spec file
preamble as follows:

 Requires: groff
 BuildRequires: ncurses-devel
 BuildRequires: autoconf automake libtool
-Obsoletes: lesspipe < 1.0
+Obsoletes: %{?scl_prefix}lesspipe < 1.0
+%{?scl:Requires: %scl_runtime}

 %description
 The less utility is a text file browser that resembles more, but has
@@ -31,7 +35,7 @@ You should install less because it is a basic utility
for viewing text
 files, and you'll use it frequently.

 %prep
-%setup -q
+%setup -q -n %{pkg_name}-%{version}
 %patch1 -p1 -b .Foption
 %patch2 -p1 -b .search
 %patch4 -p1 -b .time
@@ -51,16 +55,16 @@ make CC="gcc $RPM_OPT_FLAGS -D_GNU_SOURCE -
D_LARGEFILE_SOURCE -D_LARGEFILE64_SOU
 %install
 rm -rf $RPM_BUILD_ROOT
 make DESTDIR=$RPM_BUILD_ROOT install
-mkdir -p $RPM_BUILD_ROOT/etc/profile.d
+mkdir -p $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
 install -p -c -m 755 %{SOURCE1} $RPM_BUILD_ROOT/%{_bindir}
-install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT/etc/profile.d
-install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT/etc/profile.d
-ls -la $RPM_BUILD_ROOT/etc/profile.d
+install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+install -p -c -m 644 %{SOURCE3} $RPM_BUILD_ROOT%{_sysconfdir}/profile.d
+ls -la $RPM_BUILD_ROOT%{_sysconfdir}/profile.d

 %files
 %defattr(-,root,root,-)
 %doc LICENSE
-/etc/profile.d/*
+%{_sysconfdir}/profile.d/*
 %{_bindir}/*
 %{_mandir}/man1/*

%{?scl:%scl_package package_name}

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

23

2. You are advised to define the %pkg_name macro in the spec file preamble in case the package
is not built for the Software Collection:

Consequently, you can use the %pkg_name macro to define the original name of the package
wherever it is needed in the spec file that you can then use for building both the conventional
package and the Software Collection.

3. Change the Name tag in the spec file preamble as follows:

4. If you are building or linking with other Software Collection packages, then prefix the names of
those Software Collection packages in the Requires and BuildRequires tags with %{?
scl_prefix} as follows:

When depending on the system versions of packages, you should avoid using versioned
Requires or BuildRequires. If you need to depend on a package that could be updated by
the system, consider including that package in your Software Collection, or remember to rebuild
your Software Collection when the system package updates.

5. To check that all essential Software Collection's packages are dependencies of the main
metapackage, add the following macro after the BuildRequires or Requires tags in the spec
file:

6. Prefix the Obsoletes, Conflicts and BuildConflicts tags with %{?scl_prefix}. This
is to ensure that the Software Collection can be used to deploy new packages to older systems
without having the packages specified, for example, by Obsolete removed from the base
system installation. For example:

7. Prefix the Provides tag with %{?scl_prefix}, as in the following example:

2.10.3. Converting Subpackages

For any subpackages that define their name with the -n option, prefix their name with %{?
scl_prefix}, as in the following example:

Prefixing applies not only to the %package macro, but also for %description and %files. For
example:

%{!?scl:%global pkg_name %{name}}

Name: %{?scl_prefix}package_name

Requires: %{?scl_prefix}ifconfig

%{?scl:Requires: %scl_runtime}

Obsoletes: %{?scl_prefix}lesspipe < 1.0

Provides: %{?scl_prefix}more

%package -n %{?scl_prefix}more

Packaging Guide

24

In case the subpackage requires the main package, make sure to also adjust the Requires tag in that
subpackage so that the tag uses %{?scl_prefix}%{pkg_name}. For example:

2.10.4. Converting RPM Scripts

This section describes general rules for converting RPM scripts that can often be found in the %prep,
%build, %install, %check, %pre, and %post sections of a conventional spec file.

Replace all occurrences of %name with %pkg_name. Most importantly, this includes adjusting the
%setup macro.

Adjust the %setup macro in the %prep section of the spec file so that the macro can deal
with a different package name in the Software Collection environment:

Note that the %setup macro is required and that you must always use the macro with the -
n option to successfully build your Software Collection.

If you are using any of the %_root_ macros to point to the system file system hierarchy, you
must use conditionals for these macros so that you can then use the spec file for building both
the conventional package and the Software Collection. Edit the macros as in the following
example:

When building Software Collection packages that depend on other Software Collection
packages, it is often important to ensure that the scl enable functionality links properly or run
proper binaries, and so on. One of the examples where this is needed is compiling against a
Software Collection library or running an interpreted script with the interpreter in the Software
Collection.

Wrap the script using the %{?scl: prefix, as in the following example:

It is important to specify set -e in the script so that the script behavior is consistent regardless
of whether the script is executed in the rpm shell or the scl environment.

Pay attention to any scripts that are executed during the Software Collection package
installation, such as:

%description -n %{?scl_prefix}rubygems
RubyGems is the Ruby standard for publishing and managing third party
libraries.

Requires: %{?scl_prefix}%{pkg_name} = %{version}-%{release}

%setup -q -n %{pkg_name}-%{version}

mkdir -p %{?scl:%_root_sysconfdir}%{?!scl:%_sysconfdir}

%{?scl:scl enable %scl - << \EOF}
 set -e
 ruby example.rb
 RUBYOPT="-Ilib" ruby bar.rb
 # The rest of the script contents goes here.
%{?scl:EOF}

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

25

%pretrans, %pre,

%post, %postun, %posttrans,

%triggerin, %triggerun, and %triggerpostun.

If you use the scl enable functionality in those scripts, you are advised to start with an empty
environment to avoid any unintentional collisions with the base system installation.

To do so, use env -i - before enabling the Software Collection, as in the following example:

All hardcoded paths found in RPM scripts must be replaced with proper macros. For example,
replace all occurrences of /usr/share with %{_datadir}. This is needed because the
$RPM_BUILD_ROOT variable and the %{build_root} macro are not relocated by the scl
macro.

2.10.5. Software Collection Automatic Provides and Requires and Filtering
Support

IMPORTANT

The functionality described in this section is not available in Red Hat Enterprise Linux 6.

RPM in Red Hat Enterprise Linux 7 features support for automatic Provides and Requires and
filtering. For example, for all Python libraries, RPM automatically adds the following Requires:

As explained in Section 2.10, “Converting a Conventional Spec File”, you should prefix this Requires
with %{?scl_prefix} when converting your conventional RPM package:

Keep in mind that the scripts searching for these dependencies must sometimes be rewritten for your
Software Collection, as the original RPM scripts are not extensible enough, and, in some cases, filtering
is not usable. For example, to rewrite automatic Python Provides and Requires, add the following
lines in the macros.%{scl}-config macro file:

The /usr/lib/rpm/pythondeps-scl.sh file is based on a pythondeps.sh file from the
conventional package and adjusts search paths.

%posttrans
%{?scl:env -i - scl enable %{scl} - << \EOF}
%vagrant_plugin_register %{vagrant_plugin_name}
%{?scl:EOF}

Requires: python(abi) = (version)

Requires: %{?scl_prefix}python(abi) = (version))

%__python_provides /usr/lib/rpm/pythondeps-scl.sh --provides %{_scl_root}
%{scl_prefix}
%__python_requires /usr/lib/rpm/pythondeps-scl.sh --requires %{_scl_root}
%{scl_prefix}

Packaging Guide

26

If there are Provides or Requires that you need to adjust, for example, a pkg_config Provides,
there are two ways to do it:

Add the following lines in the macros.%{scl}-config macro file so that it applies to all
packages in the Software Collection:

Or, alternatively, add the following lines after tag definitions in every spec file for which you want
to filter Provides or Requires:

IMPORTANT

When using filters, you need to pay attention to the automatic dependencies you change.
For example, if the conventional package contains Requires:
pkgconfig(package_1) and Requires: pkgconfig(package_2), and only
package_2 is included in the Software Collection, ensure that you do not filter the
Requires tag for package_1.

2.10.6. Software Collection Macro Files Support

In some cases, you may need to ship macro files with your Software Collection packages. They are
located in the %{?scl:%{_root_sysconfdir}}%{!?scl:%{_sysconfdir}}/rpm/ directory,
which corresponds to the /etc/rpm/ directory for conventional packages. When shipping macro files,
ensure that:

You rename the macro files by appending .%{scl} to their names so that they do not conflict
with the files from the base system installation.

The macros in the macro files are either not expanded, or they are using conditionals, as in the
following example:

%_use_internal_dependency_generator 0
%__deploop() while read FILE; do /usr/lib/rpm/rpmdeps -%{1} ${FILE};
done | /bin/sort -u
%__find_provides /bin/sh -c "%{?__filter_prov_cmd} %{__deploop P} %
{?__filter_from_prov}"
%__find_requires /bin/sh -c "%{?__filter_req_cmd} %{__deploop R} %
{?__filter_from_req}"

Handle pkgconfig's virtual Provides and Requires
%__filter_from_req | %{__sed} -e 's|pkgconfig|%{?
scl_prefix}pkgconfig|g'
%__filter_from_prov | %{__sed} -e 's|pkgconfig|%{?
scl_prefix}pkgconfig|g'

%{?scl:%filter_from_provides s|pkgconfig|%{?scl_prefix}pkgconfig|g}
%{?scl:%filter_from_requires s|pkgconfig|%{?scl_prefix}pkgconfig|g}
%{?scl:%filter_setup}

%__python2 %{_bindir}/python
%python2_sitelib %(%{?scl:scl enable %scl '}%{__python2} -c "from
distutils.sysconfig import get_python_lib; print(get_python_lib())"%
{?scl:'})

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

27

As another example, there may be a situation where you need to create a Software Collection mypython
that depends on a Software Collection python26. The python26 Software Collection defines the %
{__python2} macro as in the above sample. This macro will evaluate to
/opt/provider/mypython/root/usr/bin/python2, but the python2 binary is only available in
the python26 Software Collection (/opt/provider/python26/root/usr/bin/python2).

To be able to build software in the mypython Software Collection environment, ensure that:

The macros.python.python26 macro file, which is a part of the python26-python-devel
package, contains the following line:

And the macro file in the python26-build subpackage, and also the build subpackage in any
depending Software Collection, contains the following line:

This will redefine the %{__python2} macro only if the build subpackage from a corresponding Software
Collection is present, which usually means that you want to build software for that Software Collection.

2.10.7. Software Collection Shebang Support

A shebang is a sequence of characters at the beginning of a script that is used as an interpreter directive.
The shebang is processed by the automatic dependency generator and it points to a certain location,
possibly in the system root file system.

When the automatic dependency generator processes the shebang, it adds dependencies according to
the interpreters they point to. From the Software Collection point of view, there are two types of
shebangs:

#!/usr/bin/env example

This shebang instructs the /usr/bin/env program to run the interpreter.

The automatic dependency generator will create a dependency on the /usr/bin/env program, as
expected.

If the $PATH environment variable is redefined properly in the enable scriptlet, the example
interpreter is found in the Software Collection file system hierarchy, as expected.

You are advised to rewrite the shebang in your Software Collection package so that the shebang
specifies the full path to the interpreter located in the Software Collection file system hierarchy.

#!/usr/bin/example

This shebang specifies the direct path to the interpreter.

The automatic dependency generator will create a dependency on the /usr/bin/example
interpreter located outside the Software Collection file system hierarchy. However, when building a
package for your Software Collection, you often want to create a dependency on the %{?
_scl_root}/usr/bin/example interpreter located in the Software Collection file system
hierarchy.

%__python26_python2 /opt/provider/python26/root/usr/bin/python2

%scl_package_override() {%global __python2 %__python26_python2}

Packaging Guide

28

Keep in mind that even when you properly redefine the $PATH environment variable, this has no
effect on what interpreter is used. The system version of the interpreter located outside the Software
Collection file system hierarchy is always used. In most cases, this is not desired.

If you are using this type of shebang and you want the shebang to point to the Software Collection file
system hierarchy when building your Software Collection package, use a command like the following:

where /usr/bin/example is the interpreter you want to use.

2.10.8. Making a Software Collection Depend on Another Software Collection

To make one Software Collection depend on a package from another Software Collection, you need to
adjust the BuildRequires and Requires tags in the dependent Software Collection's spec file so that
these tags properly define the dependency.

For example, to define dependencies on two Software Collections named software_collection_1 and
software_collection_2, add the following three lines to your application's spec file:

Ensure that the spec file also contains the %scl_package macro in front of the spec file preamble, for
example:

Note that the %scl_package macro must be included in every spec file of your Software Collection.

You can also use the %scl_require_package macro to define dependencies on a particular package
from a specific Software Collection, as in the following example:

2.11. UNINSTALLING ALL SOFTWARE COLLECTION DIRECTORIES

Keep in mind that the yum remove command does not uninstall directories provided by those Software
Collection packages and subpackages that are removed after the Software Collection runtime
subpackage is removed.

To ensure that all directories are uninstalled, make those packages and subpackages depend on the
runtime subpackage. To do so, add the following line with the %scl_runtime macro to the spec file of
each of those packages and subpackages:

find %{buildroot} -type f | \
 xargs sed -i -e '1 s"^#!/usr/bin/example"#!%{?
_scl_root}/usr/bin/example"'

BuildRequires: scl-utils-build
Requires: %scl_require software_collection_1
Requires: %scl_require software_collection_2

%{?scl:%scl_package less}

BuildRequires: scl-utils-build
Requires: %scl_require_package software_collection_1 package_name

%{?scl:Requires: %scl_runtime}

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

29

Adding the above line ensures that all directories provided by those packages and subpackages are
removed correctly as long as the runtime subpackage does not depend on any of those packages and
subpackages.

2.12. BUILDING A SOFTWARE COLLECTION

If you have correctly converted a conventional spec file for your Software Collection as documented in
Section 2.10, “Converting a Conventional Spec File”, you will be able to build the resulting package in
both the Software Collection and conventional build roots. Building the converted package in a
conventional build root will produce a conventional base system RPM package, while building in a
Software Collection build root that contains %{scl}-build will produce a Software Collection package.

To build a Software Collection on your system, run the following command:

 rpmbuild -ba package.spec --define 'scl name'

The difference between the command shown above and the standard command to build conventional
packages (rpmbuild -ba package.spec) is that you have to append the --define option to the
rpmbuild command when building a Software Collection.

The --define option defines the scl macro, which uses the Software Collection configured in the
Software Collection spec file (package.spec).

Alternatively, to be able to use the standard command rpmbuild -ba package.spec to build the
Software Collection, specify the following in the package.spec file:

where software_collection is the name of the Software Collection.

2.12.1. Rebuilding a Software Collection without build Subpackages

When you want to rebuild a Software Collection that comes with no build subpackage
(software_collection-build), you can create the build subpackage by rebuilding the Software Collection
metapackage, and thus avoid using the rpmbuild -ba package.spec --define 'scl name'
command.

Note that you need to have the scl-utils-build package installed on your system, otherwise rebuilding the
Software Collection metapackage with the rpmbuild command will fail.

For more information about the scl-utils-build package, see Section 1.3, “Enabling Support for Software
Collections”.

2.12.2. Avoiding debuginfo File Conflicts

When you build two Software Collection packages (or a conventional RPM package and a Software
Collection package) that specify the same Source tag, and thus unpack source files into the same
directory underneath the %_builddir directory, their debuginfo packages will have file conflicts. Due
to these conflicts, the user will be unable to install both packages on the same system at the same time.

To avoid these file conflicts, the spec file of one of the packages has to be altered to unpack its upstream
source into a uniquely named top directory. This adds one more directory level to the build tree
underneath the %_builddir directory. By doing so, the debuginfo package generation script
produces debuginfo files that do not conflict with files from the other debuginfo package.

BuildRequires: software_collection-build

Packaging Guide

30

To see what the diff file comparing an original spec file with an altered spec file looks like, refer to the
following example:

--- a/tbb.spec
+++ b/tbb.spec
@@ -66,11 +66,13 @@ PDF documentation for the user of the Threading
Building Block (TBB)
 C++ library.

 %prep
-%setup -q -n %{sourcebasename}
+%setup -q -c -n %{name}
+cd %{sourcebasename}
 %patch1 -p1
 %patch2 -p1

 %build
+cd %{sourcebasename}
 %{?scl:scl enable %{scl} - << \EOF}
 make %{?_smp_mflags} CXXFLAGS="$RPM_OPT_FLAGS" tbb_build_prefix=obj
 %{?scl:EOF}
@@ -81,6 +83,7 @@ done

 %install
 rm -rf $RPM_BUILD_ROOT
+cd %{sourcebasename}
 mkdir -p $RPM_BUILD_ROOT/%{_libdir}
 mkdir -p $RPM_BUILD_ROOT/%{_includedir}

@@ -108,20 +111,20 @@ done

 %files
 %defattr(-,root,root,-)
-%doc COPYING doc/Release_Notes.txt
+%doc %{sourcebasename}/COPYING %{sourcebasename}/doc/Release_Notes.txt
 %{_libdir}/*.so.2

 %files devel
 %defattr(-,root,root,-)
-%doc CHANGES
+%doc %{sourcebasename}/CHANGES
 %{_includedir}/tbb
 %{_libdir}/*.so
 %{_libdir}/pkgconfig/*.pc

 %files doc
 %defattr(-,root,root,-)
-%doc doc/Release_Notes.txt
-%doc doc/html
+%doc %{sourcebasename}/doc/Release_Notes.txt
+%doc %{sourcebasename}/doc/html

 %changelog
 * Wed Nov 13 2013 John Doe <jdoe@example.com> - 4.1-5.20130314

CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS

31

CHAPTER 3. ADVANCED TOPICS
This chapter discusses advanced topics on packaging Software Collections.

3.1. USING SOFTWARE COLLECTIONS OVER NFS

In some environments, the requirement is often to have a centralized model for how applications and
tools are distributed rather than allowing users to install the application or tool version they prefer. In this
way, NFS is the common method of mounting centrally managed software.

You need to define a Software Collection macro nfsmountable to use a Software Collection over NFS.
If the macro is defined when building a Software Collection, the resulting Software Collection has its state
files and configuration files located outside the Software Collection's /opt file system hierarchy. This
enables you to mount the /opt file system hierarchy over NFS as read-only. It also makes state files and
configuration files easier to manage.

If you do not need support for Software Collections over NFS, using nfsmountable is optional but
recommended.

To define the nfsmountable macro, ensure that the Software Collection metapackage spec file
contains the following lines:

As shown above, the nfsmountable macro must be defined before defining the %scl_package
macro. This is because the %scl_package macro redefines the _sysconfdir, _sharedstatedir,
and _localstatedir macros depending on whether the nfsmountable macro has been defined or
not. The values that nfsmountable changes for the redefined macros are detailed in the following
table.

Table 3.1. Changed Values for Software Collection Macros

Macro Original
definition

Expanded value
for the original
definition

Changed
definition

Expanded value
for the changed
definition

_sysconfdir %{_scl_root}/etc /opt/provider/%
{scl}/root/etc

%
{_root_sysconfdir}
%{_scl_prefix}/%
{scl}

/etc/opt/provider/%
{scl}

_sharedstate
dir

%
{_scl_root}/var/lib

/opt/provider/%
{scl}/root/var/lib

%
{_root_localstatedir
}%{_scl_prefix}/%
{scl}/lib

/var/opt/provider/%
{scl}/lib

_localstated
ir

%{_scl_root}/var /opt/provider/%
{scl}/root/var

%
{_root_localstatedir
}%{_scl_prefix}/%
{scl}

/var/opt/provider/%
{scl}

%global nfsmountable 1

%scl_package %scl

Packaging Guide

32

3.1.1. Changed Directory Structure and File Ownership

The nfsmountable macro also has an impact on how the scl_install and scl_files macros
create a directory structure and set the file ownership when you run the rpmbuild command.

For example, a directory structure of a Software Collection named software_collection with the
nfsmountable macro defined looks as follows:

$ rpmbuild -ba software_collection.spec --define 'scl software_collection'
...
$ rpm -qlp software_collection-runtime-1-1.el6.x86_64
/etc/opt/provider/software_collection
/etc/opt/provider/software_collection/X11
/etc/opt/provider/software_collection/X11/applnk
/etc/opt/provider/software_collection/X11/fontpath.d
...
/opt/provider/software_collection/root/usr/src
/opt/provider/software_collection/root/usr/src/debug
/opt/provider/software_collection/root/usr/src/kernels
/opt/provider/software_collection/root/usr/tmp
/var/opt/provider/software_collection
/var/opt/provider/software_collection/cache
/var/opt/provider/software_collection/db
/var/opt/provider/software_collection/empty
...

3.1.2. Registering and Deregistering Software Collections

In case a Software Collection is shared over NFS but not locally installed on your system, you need to
make the scl tool aware of it by registering that Software Collection.

Registering a Software Collection is done by running the scl register command:

$ scl register /opt/provider/software_collection

where /opt/provider/software_collection is the absolute path to the file system hierarchy of the Software
Collection you want to register. The path's directory must contain the enable scriptlet and the root/
directory to be considered a valid Software Collection file system hierarchy.

Deregistering a Software Collection is a reverse operation that you perform when you no longer want the
scl tool to be aware of a registered Software Collection.

Deregistering a Software Collection is done by calling a deregister scriptet when running the scl
command:

$ scl deregister software_collection

where software_collection is the name of the Software Collection you want to deregister.

3.1.2.1. Using (de)register Scriptlets in a Software Collection Metapackage

You can specify (de)register scriptlets in a Software Collection metapackage similarly to how enable
scriptlets are specified. When specifying the scriptets, remember to explicitly include them in the %file
section of the metapackage spec file.

CHAPTER 3. ADVANCED TOPICS

33

See the following sample code for an example of specifying (de)register scriptets:

In the register scriptlet, you can optionally specify the commands you want to run when registering the
Software Collection, for example, commands to create files in /etc/opt/ or /var/opt/.

3.2. CONVERTING SOFTWARE COLLECTION SCRIPTLETS INTO
ENVIRONMENT MODULES

Environment modules allow you to manage, for example, different versions of applications by
dynamically modifying your shell environment. To use your Software Collection with the environment
module system, convert the Software Collection's enable scriptlet into an environment module with a
script /usr/share/Modules/bin/createmodule.sh.

Procedure 3.1. Converting an enable scriptlet into an environment module

1. Ensure that an environment-modules package is installed on your system:

yum install environment-modules

2. Run the /usr/share/Modules/bin/createmodule.sh script to convert your Software
Collection's enable scriptlet into an environment module:

/usr/share/Modules/bin/createmodule.sh /path/to/enable/scriptlet

Replace /path/to/enable/scriptlet with the file path of the enable scriptlet you want to convert.

3. Add the same command /usr/share/Modules/bin/createmodule.sh
/path/to/enable/scriptlet in the %pre section of your Software Collection
metapackage, below the code generating your enable scriptlet.

%install
%scl_install

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
Contents of the enable scriptlet goes here
...
EOF

cat >> %{buildroot}%{_scl_scripts}/register << EOF
Contents of the register scriptlet goes here
...
EOF

cat >> %{buildroot}%{_scl_scripts}/deregister << EOF
Contents of the deregister scriptlet goes here
...
EOF
...
%files runtime -f filelist
%scl_files
%{_scl_scripts}/register
%{_scl_scripts}/deregister

Packaging Guide

34

In case you have the enable scriptlet packaged as a file in one of your Software Collection
packages, add the command /usr/share/Modules/bin/createmodule.sh
/path/to/enable/scriptlet in the %post section.

See the module(1) man page for more information about environment modules.

3.3. PACKAGING WRAPPERS FOR SOFTWARE COLLECTIONS

Using wrappers is an easy way to shorten commands that the user runs in the Software Collection
environment.

The following is an example of a wrapper from a Ruby-based Software Collection named rubyscl that is
installed as /usr/bin/rubyscl-ruby and allows the user to run rubyscl-ruby command instead of
scl enable rubyscl 'ruby command':

It is important to package these wrappers as subpackages of the Software Collection package that will
use them. That way, you can make installation of these wrappers optional, allowing the user not to install
them, for example, on systems with read-only access to the /usr/bin/ directory where the wrappers
would otherwise be installed.

3.4. MANAGING SERVICES IN SOFTWARE COLLECTIONS

When packaging your Software Collection, ensure that users can directly manage any services
(daemons) provided by the Software Collection or one of the associated applications with the system
default tools, like service or chkconfig on Red Hat Enterprise Linux 6, or systemctl on Red Hat
Enterprise Linux 7.

For Software Collections on Red Hat Enterprise Linux 6, make sure to adjust the %install section of
the spec file as follows to avoid possible name conflicts with the system versions of the services that are
part of the Software Collection:

Replace service_name with the actual name of the service.

For Software Collections on Red Hat Enterprise Linux 7, adjust the %install section of the spec file as
follows:

With this configuration in place, you can then refer to the version of the service included in the Software
Collection as follows:

%{?scl_prefix}service_name

#!/bin/bash

COMMAND="ruby $@"
scl enable rubyscl "$COMMAND"

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?scl:%_root_sysconfdir}%
{!?scl:%_sysconfdir}/rc.d/init.d/%{?scl_prefix}service_name

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{_unitdir}/%{?
scl_prefix}service_name.service

CHAPTER 3. ADVANCED TOPICS

35

Keep in mind that no environment variables are propagated from the user's environment to a SysV init
script (or a systemd service file on Red Hat Enterprise Linux 7). This is expected and ensures that
services are always started in a clean environment. However, this requires you to properly set up a
Software Collection environment for processes that are to be run by the SysV init scripts (or systemd
service files).

3.4.1. Configuring an Environment for Services

It is recommended to make the Software Collection you want to enable for services configurable. The
directions in this section show how to make a Software Collection named software_collection
configurable.

Procedure 3.2. Configuring an environment for services on Red Hat Enterprise Linux 6

1. Create a configuration file in /opt/provider/software_collection/service-
environment with the following content:

Replace SCLNAME with a unique identifier for your Software Collection, for instance, your
Software Collection's name written in capital letters.

Replace software_collection with the name of your Software Collection as defined by the
%scl_name macro.

2. Add the following line at the beginning of the SysV init script:

3. In the SysV init script, determine commands that run binaries located in the /opt/provider/
file system hierarchy. Prefix these commands with scl enable
$[SCLNAME]_SCLS_ENABLED, similarly to when you run a command in the Software Collection
environment.

For example, replace the following line:

with:

4. Some commands, like su or runuser, also clear environment variables. Thus, if these
commands are used in the SysV init script, enable your Software Collection again after running
these commands.

For instance, replace the following line:

with:

[SCLNAME]_SCLS_ENABLED="software_collection"

source /opt/provider/software_collection/service-environment

/usr/bin/daemon_binary --argument-1 --argument-2

scl enable $[SCLNAME]_SCLS_ENABLED -- /usr/bin/daemon_binary --
argument-1 --argument-2

su - user_name -c '/usr/bin/daemon_binary --argument-1 --argument-2'

Packaging Guide

36

Procedure 3.3. Configuring an environment for services on Red Hat Enterprise Linux 7

1. Create a configuration file in /opt/provider/software_collection/service-
environment with the following content:

Replace SCLNAME with a unique identifier for your Software Collection, for instance, your
Software Collection's name written in capital letters.

Replace software_collection with the name of your Software Collection as defined by the
%scl_name macro.

2. Add the following line in the systemd service file to load the configuration file:

3. In the systemd service file, prefix all commands specified in ExecStartPre, ExecStart, and
similar directives with scl enable $[SCLNAME]_SCLS_ENABLED, similarly to when you run a
command in the Software Collection environment:

3.5. SOFTWARE COLLECTION LIBRARY SUPPORT

In case you distribute libraries that you intend to use only in the Software Collection environment or in
addition to the libraries available on the system, update the LD_LIBRARY_PATH environment variable in
the enable scriptlet as follows:

The configuration ensures that the version of the library in the Software Collection is preferred over the
version of the library available on the system if the Software Collection is enabled.

NOTE

In case you distribute a private shared library in the Software Collection, consider using
the DT_RUNPATH attribute instead of the LD_LIBRARY_PATH environment variable to
make the private shared library accessible in the Software Collection environment.

su - user_name -c '\
 source /opt/provider/software_collection/service-environment \
 scl enable $SCLNAME_SCLS_ENABLED -- /usr/bin/daemon_binary --
argument-1 --argument-2'

[SCLNAME]_SCLS_ENABLED="software_collection"

EnvironmentFile=/opt/provider/software_collection/service-
environment

ExecStartPre=/usr/bin/scl enable $[SCLNAME]_SCLS_ENABLED --
/opt/provider/software_collection/root/usr/bin/daemon_helper_binary
--argument-1 --argument-2
ExecStart=/usr/bin/scl enable $[SCLNAME]_SCLS_ENABLED --
/opt/provider/software_collection/root/usr/bin/daemon_binary --
argument-1 --argument-2

export LD_LIBRARY_PATH="%
{_libdir}\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}"

CHAPTER 3. ADVANCED TOPICS

37

3.5.1. Using a Library Outside of the Software Collection

If you distribute libraries that you intend to use outside of the Software Collection environment, you can
use the directory /etc/ld.so.conf.d/ for this purpose.

WARNING

Do not use /etc/ld.so.conf.d/ for libraries already available on the system.
Using /etc/ld.so.conf.d/ is only recommended for a library that is not
available on the system, as otherwise the version of the library in the Software
Collection might get preference over the system version of the library. That could
lead to undesired behavior of the system versions of the applications, including
unexpected termination and data loss.

Procedure 3.4. Using /etc/ld.so.conf.d/ for libraries in the Software Collection

1. Create a file named %{?scl_prefix}libs.conf and adjust the spec file configuration
accordingly:

2. In the %{?scl_prefix}libs.conf file, include a list of directories where the versions of the
libraries associated with the Software Collection are located. For example:

In the example above, the /usr/lib64/ directory that is part of the Software Collection
software_collection_1 is included in the list.

3. Edit the %install section of the spec file, so the %{?scl_prefix}libs.conf file is installed
as follows:

3.5.2. Prefixing the Library Major soname with the Software Collection Name

When using libraries included in the Software Collection, always remember that a library with the same
major soname can already be available on the system as a part of the base system installation. It is thus
important not to forget to use the scl enable command when building an application against a library
included in the Software Collection. Failing to do so may result in the application being executed in an
incorrect environment, linked against the incorrect system version of the library.

SOURCE2: %{?scl_prefix}libs.conf

/opt/provider/software_collection_1/root/usr/lib64/

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/ld.so.conf.d/

Packaging Guide

38

WARNING

Keep in mind that executing your application in an incorrect environment (for
example in the system environment instead of the Software Collection environment)
as well as linking your application against an incorrect library can lead to undesired
behavior of your application, including unexpected termination and data loss.

To ensure that your application is not linked against an incorrect library even if the LD_LIBRARY_PATH
environment variable has not been set properly, change the major soname of the library included in the
Software Collection. The recommended way to change the major soname is to prefix the major soname
version number with the Software Collection name.

Below is an example of the MySQL client library with the mysql55- prefix:

$ rpm -ql mysql55-mysql-libs | grep 'lib.*so'
/opt/provider/mysql55/root/usr/lib64/mysql/libmysqlclient.so.mysql55-18
/opt/provider/mysql55/root/usr/lib64/mysql/libmysqlclient.so.mysql55-
18.0.0

On the same system, the system version of the MySQL client library is listed below:

$ rpm -ql mysql-libs | grep 'lib.*so'
/usr/lib64/mysql/libmysqlclient.so.18
/usr/lib64/mysql/libmysqlclient.so.18.0.0

The rpmbuild utility generates an automatic Provides tag for packages that include a versioned
shared library. If you do not prefix the soname as described above, then an example of the Provides in
case of the mysql package is libmysqlclient.so.18()(64bit). With this Provides, RPM can
choose the incorrect RPM package, resulting in the application missing the requirement.

If you prefix the soname as described above, then an example of the generated Provides in case of
mysql is libmysqlclient.so.mysql55-18()(64bit). With this Provides, RPM chooses the
correct RPM dependencies and the application's requirements are satisfied.

In general, unless absolutely necessary, Software Collection packages should not provide any symbols
that are already provided by packages from the base system installation. One exception to that rule is
when you want to use the symbols in the packages from the base system installation.

3.5.3. Software Collection Library Support in Red Hat Enterprise Linux 7

When building your Software Collection for Red Hat Enterprise Linux 7, use the
%__provides_exclude_from macro to prevent scanning certain files for automatically generated
RPM symbols.

For example, to prevent scanning .so files in the %{_libdir} directory, add the following lines before
the BuildRequires or Requires tags in your Software Collection spec file:

%if %{?scl:1}%{!?scl:0}
 # Do not scan .so files in %{_libdir}

CHAPTER 3. ADVANCED TOPICS

39

The functionality is part of RPM support for automatic Provides and Requires, see Section 2.10.5,
“Software Collection Automatic Provides and Requires and Filtering Support” for more information.

3.6. SOFTWARE COLLECTION .PC FILES SUPPORT

The .pc files are special metadata files used by the pkg-config program to store information about
libraries available on the system.

In case you distribute .pc files that you intend to use only in the Software Collection environment or in
addition to the .pc files installed on the system, update the PKG_CONFIG_PATH environment variable.
Depending on what is defined in your .pc files, update the PKG_CONFIG_PATH environment variable for
the %{_libdir} macro (which expands to the library directory, typically /usr/lib/ or /usr/lib64/),
or for the %{_datadir} macro (which expands to the share directory, typically /usr/share/).

If the library directory is defined in your .pc files, update the PKG_CONFIG_PATH environment variable by
adjusting the %install section of the Software Collection spec file as follows:

If the share directory is defined in your .pc files, update the PKG_CONFIG_PATH environment variable by
adjusting the %install section of the Software Collection spec file as follows:

The two examples above both configure the enable scriptlet so that it ensures that the .pc files in the
Software Collection are preferred over the .pc files available on the system if the Software Collection is
enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software
Collection, for example in the /usr/bin/ directory. In this case, ensure that the .pc files are visible to
the system even if the Software Collection is disabled.

To allow your system to use .pc files from the disabled Software Collection, update the
PKG_CONFIG_PATH environment variable with the paths to the .pc files associated with the Software
Collection. Depending on what is defined in your .pc files, update the PKG_CONFIG_PATH environment
variable for the %{_libdir} macro (which expands to the library directory), or for the %{_datadir}
macro (which expands to the share directory).

Procedure 3.5. Updating the PKG_CONFIG_PATH environment variable for %{_libdir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_libdir} macro, create a
custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started on
the system.

 %global __provides_exclude_from ^%{_libdir}/.*.so.*$
%endif

%install
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PKG_CONFIG_PATH="%
{_libdir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}"
EOF

%install
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PKG_CONFIG_PATH="%
{_datadir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}"
EOF

Packaging Guide

40

For example, create the following file:

%{?scl_prefix}pc-libdir.sh

2. Use the pc-libdir.sh short script that modifies the PKG_CONFIG_PATH variable to refer to
your .pc files:

export PKG_CONFIG_PATH="%
{_libdir}/pkgconfig:/opt/provider/software_collection/path/to/your/p
c_files"

3. Add the file to your Software Collection package's spec file:

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section
of the Software Collection package's spec file:

Procedure 3.6. Updating the PKG_CONFIG_PATH environment variable for %{_datadir}

1. To update the PKG_CONFIG_PATH environment variable for the %{_datadir} macro, create a
custom script /etc/profile.d/name.sh. The script is preloaded when a shell is started on
the system.

For example, create the following file:

%{?scl_prefix}pc-datadir.sh

2. Use the pc-datadir.sh short script that modifies the PKG_CONFIG_PATH variable to refer to
your .pc files:

export PKG_CONFIG_PATH="%
{_datadir}/pkgconfig:/opt/provider/software_collection/path/to/your/
pc_files"

3. Add the file to your Software Collection package's spec file:

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section
of the Software Collection package's spec file:

SOURCE2: %{?scl_prefix}pc-libdir.sh

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/profile.d/

SOURCE2: %{?scl_prefix}pc-datadir.sh

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/profile.d/

CHAPTER 3. ADVANCED TOPICS

41

3.7. SOFTWARE COLLECTION MANPATH SUPPORT

To allow the man command on the system to display man pages from the enabled Software Collection,
update the MANPATH environment variable with the paths to the man pages that are associated with the
Software Collection.

To update the MANPATH environment variable, add the following to the %install section of the
Software Collection spec file:

This configures the enable scriptlet to update the MANPATH environment variable. The man pages
associated with the Software Collection are then not visible as long as the Software Collection is not
enabled.

The Software Collection can provide a wrapper script that is visible to the system to enable the Software
Collection, for example in the /usr/bin/ directory. In this case, ensure that the man pages are visible
to the system even if the Software Collection is disabled.

To allow the man command on the system to display man pages from the disabled Software Collection,
update the MANPATH environment variable with the paths to the man pages associated with the Software
Collection.

Procedure 3.7. Updating the MANPATH environment variable for the disabled Software Collection

1. To update the MANPATH environment variable, create a custom script
/etc/profile.d/name.sh. The script is preloaded when a shell is started on the system.

For example, create the following file:

%{?scl_prefix}manpage.sh

2. Use the manpage.sh short script that modifies the MANPATH variable to refer to your man path
directory:

export
MANPATH="/opt/provider/software_collection/path/to/your/man_pages:${
MANPATH}"

3. Add the file to your Software Collection package's spec file:

4. Install this file into the system /etc/profile.d/ directory by adjusting the %install section
of the Software Collection package's spec file:

%install
cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export MANPATH="%{_mandir}:\${MANPATH:-}"
EOF

SOURCE2: %{?scl_prefix}manpage.sh

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/profile.d/

Packaging Guide

42

3.8. SOFTWARE COLLECTION CRONJOB SUPPORT

With your Software Collection, you can run periodic tasks on the system either with a dedicated service
or with cronjobs. If you intend to use a dedicated service, refer to Section 3.4, “Managing Services in
Software Collections” on how to work with initscripts in the Software Collection environment.

Procedure 3.8. Running periodic tasks with cronjobs

1. To use cronjobs for running periodic tasks, place a crontab file for your Software Collection in
the /etc/cron.d/ directory with the Software Collection's name.

For example, create the following file:

%{?scl_prefix}crontab

2. Ensure that the contents of the crontab file follow the standard crontab file format, as in the
following example:

0 1 * * Sun root scl enable software_collection
'/opt/provider/software_collection/root/usr/bin/cron_job_name'

where software_collection is the name of your Software Collection, and
/opt/provider/software_collection/root/usr/bin/cron_job_name is the
command you want to periodically run.

3. Add the file to your spec file of the Software Collection package:

4. Install the file into the system directory /etc/cron.d/ by adjusting the %install section of
the Software Collection package's spec file:

3.9. SOFTWARE COLLECTION LOG FILE SUPPORT

By default, programs packaged in a Software Collection create log files in the /opt/provider/%
{scl}/root/var/log/ directory.

To make log files more accessible and easier to manage, you are advised to use the nfsmountable
macro that redefines the _localstatedir macro. This results in log files being created underneath the
/var/opt/provider/%{scl}/log/ directory, outside of the /opt/provider/%{scl} file system
hierarchy.

For example, a service mydaemon normally stores its log file in
/var/log/mydaemon/mydaemond.log in the base system installation. When mydaemon is packaged
as a software_collection Software Collection and the nfsmountable macro is defined, the path to the
log file in software_collection is as follows:

/var/opt/provider/software_collection/log/mydaemon/mydaemond.log

SOURCE2: %{?scl_prefix}crontab

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/cron.d/

CHAPTER 3. ADVANCED TOPICS

43

For more information on using the nfsmountable macro, see Section 3.1, “Using Software Collections
over NFS”.

3.10. SOFTWARE COLLECTION LOGROTATE SUPPORT

With your Software Collection or an application associated with your Software Collection, you can
manage log files with the logrotate program.

Procedure 3.9. Managing log files with logrotate

1. To manage your log files with logrotate, place a custom logrotate file for your Software
Collection in the system directory for the logrotate jobs /etc/logrotate.d/.

For example, create the following file:

%{?scl_prefix}logrotate

2. Ensure that the contents of the logrotate file follow the standard logrotate file format as
follows:

/opt/provider/software_collection/var/log/your_application_name.log
{
 missingok
 notifempty
 size 30k
 yearly
 create 0600 root root
 }

3. Add the file to your spec file of the Software Collection package:

4. Install the file into the system directory /etc/logrotate.d/ by adjusting the %install
section of the Software Collection package's spec file:

3.11. SOFTWARE COLLECTION /VAR/RUN/ FILES SUPPORT

PID files are one example of files usually located underneath the /var/run/package_name/ directory.
When packaging PID files into your Software Collection, you are advised to use the nfsmountable
macro and store the PID files in the following directory:

/var/run/software_collection-package_name/

where software_collection is the name of your Software Collection and package_name is the name of the
package included in your Software Collection.

SOURCE2: %{?scl_prefix}logrotate

%install
install -p -c -m 644 %{SOURCE2} $RPM_BUILD_ROOT%{?
scl:%_root_sysconfdir}%{!?scl:%_sysconfdir}/logrotate.d/

Packaging Guide

44

Following this naming convention avoids file conflicts with the base system installation, while it makes it
possible for your Software Collection to use /var/run/ features, for example the tmpfs file system for
PID files.

For more information on using the nfsmountable macro, see Section 3.1, “Using Software Collections
over NFS”.

3.12. SOFTWARE COLLECTION LOCK FILE SUPPORT

By default, programs packaged into a Software Collection create lock files in the /opt/provider/%
{scl}/root/var/lock/ directory.

To make lock files more accessible and easier to manage, you are advised to use the nfsmountable
macro that redefines the _localstatedir macro. This results in lock files being created underneath
the /var/opt/provider/%{scl}/lock/ directory, outside of the /opt/provider/%{scl} file
system hierarchy.

If applications or services packaged into your Software Collection write the lock underneath the
/var/opt/provider/%{scl}/lock/ directory, then those applications and services can run
concurrently with the system versions (when the resources of your Software Collection's applications and
services will not conflict with the system versions' resources).

For example, a lock file mylockfile.lock is normally created in the /var/lock/ directory in the
base system installation. If the lock file is a part of a software_collection Software Collection and the
nfsmountable macro is defined, the path to the lock file in software_collection is as follows:

/var/opt/provider/software_collection/lock/mylockfile.lock

For more information on using the nfsmountable macro, see Section 3.1, “Using Software Collections
over NFS”.

Preventing Programs from Running Concurrently
If you want to prevent your Software Collection's applications or services from running while the system
version of the respective application or service is running, make sure that your applications or services,
which require a lock, write the lock to the system directory /var/lock/. In this way, your applications or
services' lock file will not be overwritten. The lock file will not be renamed and the name stays the same
as the system version.

3.12.1. Software Collection SysV init Lock File Support

When a service is started by an init script, a lock file is touched in the /var/lock/subsys/ directory
with the same name as the init script. As discussed in Section 3.4, “Managing Services in Software
Collections”, service names include a Software Collection prefix. Use the same naming convention for
files underneath /var/lock/subsys/ to ensure that the lock file names do not conflict with the base
system installation.

3.13. SOFTWARE COLLECTION CONFIGURATION FILES SUPPORT

By default, configuration files in a Software Collection are stored within the /opt/provider/%{scl}
file system hierarchy.

To make configuration files more accessible and easier to manage, you are advised to use the
nfsmountable macro that redefines the _sysconfdir macro. This results in configuration files being

CHAPTER 3. ADVANCED TOPICS

45

created underneath the /etc/opt/provider/%{scl}/ directory, outside of the /opt/provider/%
{scl} file system hierarchy.

For example, a configuration file example.conf is normally stored in the /etc directory in the base
system installation. If the configuration file is a part of a software_collection Software Collection and the
nfsmountable macro is defined, the path to the configuration file in software_collection is as follows:

/etc/opt/provider/software_collection/example.conf

For more information about using the nfsmountable macro, see Section 3.1, “Using Software
Collections over NFS”.

3.14. SOFTWARE COLLECTION KERNEL MODULE SUPPORT

Because Linux kernel modules are normally tied to a particular version of the Linux kernel, you must be
careful when you package kernel modules into a Software Collection. This is because the package
management system on Red Hat Enterprise Linux does not automatically update or install an updated
version of the kernel module if an updated version of the Linux kernel is installed. To make packaging the
kernel modules into the Software Collection easier, see the following recommendations. Ensure that:

1. the name of your kernel module package includes the kernel version,

2. the tag Requires, which can be found in your kernel module spec file, includes the kernel
version and revision (in the format kernel-version-revision).

3.15. SOFTWARE COLLECTION SELINUX SUPPORT

Because Software Collections are designed to install the Software Collection packages in an alternate
directory, set up the necessary SELinux labels so that SELinux is aware of the alternate directory.

If the file system hierarchy of your Software Collection package imitates the file system hierarchy of the
corresponding conventional package, you can run the semanage fcontext and restorecon
commands to set up the SELinux labels.

For example, if the /opt/provider/software_collection_1/root/usr/ directory in your
Software Collection package imitates the /usr/ directory of your conventional package, set up the
SELinux labels as follows:

semanage fcontext -a -e /usr /opt/provider/software_collection_1/root/usr

restorecon -R -v /opt/provider/software_collection_1/root/usr

The commands above ensure that all directories and files in the
/opt/provider/software_collection_1/root/usr/ directory are labeled by SELinux as if they
were located in the /usr/ directory.

3.15.1. SELinux Support in Red Hat Enterprise Linux 7

When packaging a Software Collection for Red Hat Enterprise Linux 7, add the following commands to
the %post section in the Software Collection metapackage to set up the SELinux labels:

semanage fcontext -a -e /usr /opt/provider/software_collection_1/root/usr

Packaging Guide

46

restorecon -R -v /opt/provider/software_collection_1/root/usr

selinuxenabled && load_policy || :

The last command ensures that the newly created SELinux policy is properly loaded, and that the files
installed by a package in the Software Collection are created with the correct SELinux context. By using
this command in the metapackage, you do not need to include the restorecon command in all
packages in the Software Collection.

Note that the semanage fcontext command is provided by the policycoreutils-python package,
therefore it is important that you include policycoreutils-python in Requires for the Software
Collection metapackage.

3.16. DIFFERENCES BETWEEN RED HAT ENTERPRISE LINUX 6 AND 7

The RPM Package Manager in Red Hat Enterprise Linux 7 ships with a number of feature changes that
are not available in the older version of the RPM Package Manager shipped with Red Hat Enterprise
Linux 6.

This section provides more details on the changes that may affect you when building your Software
Collection packages for both systems.

Differences in library support are detailed in Section 3.5.3, “Software Collection Library Support in Red
Hat Enterprise Linux 7”. Differences in SELinux support are documented in Section 3.15.1, “SELinux
Support in Red Hat Enterprise Linux 7”.

3.16.1. The %license Macro

The %license macro allows you to specify the license file to be installed by your package. The macro is
only supported by the RPM Package Manager in Red Hat Enterprise Linux 7. When building your
Software Collection package on both Red Hat Enterprise Linux 6 and 7, declare the %license macro for
Red Hat Enterprise Linux 6 as follows:

3.16.2. Missing runtime Subpackage Dependencies

On Red Hat Enterprise Linux 7, the scl tool automatically generates the needed Requires on the
Software Collection runtime subpackage. This does not work on Red Hat Enterprise Linux 6. When
building your Software Collection for that system, you need to explicitly specify the dependency on the
runtime subpackage in each Software Collection package:

3.16.3. The scl-package() Provides

By design, building a Software Collection package generates a number of Provide: scl-package()
tags. The purpose of these is to internally identify the built package as belonging to a specific Software
Collection. The tags are detailed in the following table.

Table 3.2. Provides in Red Hat Enterprise Linux 7

%{!?_licensedir:%global license %%doc}

Requires: %{?scl_prefix}runtime

CHAPTER 3. ADVANCED TOPICS

47

Software Collection package Provide

${software_collection_1} scl-package(software_collection_1)

${software_collection_1}-build scl-package(software_collection_1)

${software_collection_1}-runtime scl-package(software_collection_1)

Red Hat Enterprise Linux 6 ships with an older version of the RPM Package Manager, so as an
exception, building the same package on Red Hat Enterprise Linux 6 only generates a single Provide:
scl-package() tag, as detailed in the following table. This is an expected behavior and the differences
are handled internally by the scl tool.

Table 3.3. Provide in Red Hat Enterprise Linux 6

Software Collection package Provide

${software_collection_1} scl-package(software_collection_1)

Do not use these internally generated dependencies to list packages that belong to a particular Software
Collection. For information on how to properly list Software Collection packages, see Section 1.5, “Listing
Installed Software Collections”.

Packaging Guide

48

CHAPTER 4. EXTENDING RED HAT SOFTWARE
COLLECTIONS
This chapter describes extending some of the Software Collections that are part of the Red Hat Software
Collections offering.

4.1. PROVIDING AN SCLDEVEL SUBPACKAGE

The purpose of an scldevel subpackage is to make the process of creating dependent Software
Collections easier by providing a number of generic macro files. Packagers then use these macro files
when they are extending existing Software Collections. scldevel is provided as a subpackage of your
Software Collection's metapackage.

The following section describes creating an scldevel subpackage for two examples of Ruby Software
Collections, ruby193 and ruby200.

Procedure 4.1. Providing your own scldevel subpackage

1. In your Software Collection's metapackage, add the scldevel subpackage by defining its name,
summary, and description:

You are advised to use the virtual Provides: scldevel(%{scl_name_base}) during the
build of packages of dependent Software Collections. This will ensure availability of a version of
the %{scl_name_base} Software Collection and its macros, as specified in the following step.

2. In the %install section of your Software Collection's metapackage, create the macros.%
{scl_name_base}-scldevel file that is part of the scldevel subpackage and contains:

Note that between all Software Collections that share the same %{scl_name_base} name, the
provided macros.%{scl_name_base}-scldevel files must conflict. This is to disallow
installing multiple versions of the %{scl_name_base} Software Collections. For example, the
ruby193-scldevel subpackage cannot be installed when there is the ruby200-scldevel
subpackage installed.

4.1.1. Using an scldevel Subpackage in a Dependent Software Collection

To use your scldevel subpackage in a Software Collection that depends on the ruby200 Software
Collection, update the metapackage of the dependent Software Collection as described below.

%package scldevel
Summary: Package shipping development files for %scl
Provides: scldevel(%{scl_name_base})

%description scldevel
Package shipping development files, especially useful for
development of
packages depending on %scl Software Collection.

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-
scldevel << EOF
%%scl_%{scl_name_base} %{scl}
%%scl_prefix_%{scl_name_base} %{scl_prefix}
EOF

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

49

Procedure 4.2. Using your own scldevel subpackage in a dependent Software Collection

1. Consider adding the following at the beginning of the metapackage's spec file:

These two lines are optional. They are only meant as a visual hint that the dependent Software
Collection has been designed to depend on the ruby200 Software Collection. If there is no other
scldevel subpackage available in the build root, then the ruby200-scldevel subpackage is used
as a build requirement.

You can substitute these lines with the following line:

2. Add the following build requirement to the metapackage:

By specifying this build requirement, you ensure that the scldevel subpackage is in the build root
and that the default values are not in use. Omitting this package could result in broken requires
at the subsequent packages' build time.

3. Ensure that the %package runtime part of the metapackage's spec file includes the following
lines:

4. Ensure that the %package build part of the metapackage's spec file includes the following
lines:

Specifying Requires: %{scl_prefix_ruby}scldevel ensures that macros are available
in all packages of the Software Collection.

4.2. EXTENDING THE PYTHON27 AND RH-PYTHON35 SOFTWARE
COLLECTIONS

This section describes extending the python27 and rh-python35 Software Collections by creating a
dependent Software Collection.

In Red Hat Software Collections 2.4, the scl tool is extended to support a macro
%scl_package_override(), which allows for easier packaging of your own dependent Software
Collection.

%{!?scl_ruby:%global scl_ruby ruby200}
%{!?scl_prefix_ruby:%global scl_prefix_ruby %{scl_ruby}-}

%{?scl_prefix_ruby}

BuildRequires: %{scl_prefix_ruby}scldevel

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
Requires: %{scl_prefix_ruby}runtime

%package build
Summary: Package shipping basic build configuration
Requires: %{scl_prefix_ruby}scldevel

Packaging Guide

50

4.2.1. The vt191 Software Collection

Below is a commented example of building a dependent Software Collection. The Software Collection is
named vt191 and contains the versiontools Python package version 1.9.1.

Note the following in the vt191 Software Collection metapackage:

The vt191 Software Collection metapackage has the following build dependency set:

This expands to, for example, python27-scldevel.

The python27-scldevel subpackage ships two important macros, %scl_python and
%scl_prefix_python. Note that these macros are defined at the top of the metapackage spec
file. Although the definitions are not required, they provide a visual hint that the vt191 Software
Collection has been designed to be built on top of the python27 Software Collection. They also
serve as a fallback value.

To have a site-packages directory set up properly, use the value of the
%python27python_sitelib macro and replace python27 with vt191. Note that if you are
building the Software Collection with a different provider (for example,
/opt/myorganization/ instead of /opt/rh/), you will need to change these, too.

IMPORTANT

Because the /opt/rh/ provider is used to install Software Collections provided
by Red Hat, it is strongly recommended to use a different provider to avoid
possible conflicts. See Section 2.3, “The Software Collection Root Directory” for
more information.

The vt191-build subpackage has the following dependency set:

This expands to, for example, python27-scldevel. The purpose of this dependency is to ensure
that the macros are always present when building packages for the vt191 Software Collection.

The enable scriptlet for the vt191 Software Collection uses the following line:

Note the dot at the beginning of the line. This line makes the Python Software Collection start
implicitly when the vt191 Software Collection is started so that the user can only type scl
enable vt191 command instead of scl enable python27 vt191 command to run
command in the Software Collection environment.

The macro file macros.vt191-config calls the %scl_package_override function to
properly override %__os_install_post, Python dependency generators, and certain Python-
specific macros used in other packages' spec files.

BuildRequires: %{scl_prefix_python}scldevel

Requires: %{scl_prefix_python}scldevel

. scl_source enable %{scl_python}

define name of the scl
%global scl vt191

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

51

%scl_package %scl

Defaults for the values for the python27/rh-python35 Software Collection.
These
will be used when python27-scldevel (or rh-python35-scldevel) is not in
the
build root
%{!?scl_python:%global scl_python python27}
%{!?scl_no_vendor:%global scl_no_vendor python27}
%{!?scl_prefix_python:%global scl_prefix_python %{scl_python}-}

Only for this build, you need to override default __os_install_post,
because the default one would find /opt/.../lib/python2.7/ and try
to bytecompile with the system /usr/bin/python2.7
%global __os_install_post %{%{scl_no_vendor}_os_install_post}
Similarly, override __python_requires for automatic dependency generator
%global __python_requires %{%{scl_no_vendor}_python_requires}

The directory for site packages for this Software Collection
%global vt191_sitelib %(echo %{python27python_sitelib} | sed 's|%
{scl_python}|%{scl}|')

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+
BuildRequires: scl-utils-build
Always make sure that there is the python27-sclbuild (or rh-python35-
sclbuild)
package in the build root
BuildRequires: %{scl_prefix_python}scldevel
Require python27-python-devel, you will need macros from that package
BuildRequires: %{scl_prefix_python}python-devel
Requires: %{scl_prefix}python-versiontools

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
Requires: %{scl_prefix_python}runtime

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build
Require python27-scldevel (or rh-python35-scldevel) so that there is
always access
to the %%scl_python and %%scl_prefix_python macros in builds for this
Software
Collection
Requires: %{scl_prefix_python}scldevel

Packaging Guide

52

%description build
Package shipping essential configuration macros to build %scl Software
Collection.

%prep
%setup -c -T

%install
%scl_install

Create the enable scriptlet that:
- Adds an additional load path for the Python interpreter.
- Runs scl_source so that you can run:
scl enable vt191 "bash"
instead of:
scl enable python27 vt191 "bash"

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
. scl_source enable %{scl_python}
export PYTHONPATH="%{vt191_sitelib}\${PYTHONPATH:+:\${PYTHONPATH}}"
EOF

mkdir -p %{buildroot}%{vt191_sitelib}

- Enable Software Collection-specific bytecompilation macros from
the python27-python-devel package.
- Also override the %%python_sitelib macro to point to the vt191
Software
Collection.
- If you have architecture-dependent packages, you will also need to
override
the %%python_sitearch macro.

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl}-config << EOF
%%scl_package_override() %%{expand:%{?python27_os_install_post:%%global
__os_install_post %%python27_os_install_post}
%%global __python_requires %%python27_python_requires
%%global __python_provides %%python27_python_provides
%%global __python %python27__python
%%global python_sitelib %vt191_sitelib
%%global python2_sitelib %vt191_sitelib
}
EOF

%files

%files runtime -f filelist
%scl_files
%vt191_sitelib

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

53

4.2.2. The python-versiontools Package

Below is a commented example of the python-versiontools package spec file. Note the following in the
spec file:

The BuildRequires tags are prefixed with %{?scl_prefix_python} instead of %
{scl_prefix}.

The %install section explictly specifies --install-purelib.

%changelog
* Wed Jan 22 2014 John Doe <jdoe@example.com> - 1-1
- Initial package.

%{?scl:%scl_package python-versiontools}
%{!?scl:%global pkg_name %{name}}

%global pypi_name versiontools

Name: %{?scl_prefix}python-versiontools
Version: 1.9.1
Release: 1%{?dist}
Summary: Smart replacement for plain tuple used in __version__

License: LGPLv3
URL: https://launchpad.net/versiontools
Source0:
http://pypi.python.org/packages/source/v/versiontools/versiontools-
1.9.1.tar.gz

BuildArch: noarch
BuildRequires: %{?scl_prefix_python}python-devel
BuildRequires: %{?scl_prefix_python}python-setuptools
%{?scl:BuildRequires: %{scl}-build %{scl}-runtime}
%{?scl:Requires: %{scl}-runtime}

%description
Smart replacement for plain tuple used in __version__

%prep
%setup -q -n %{pypi_name}-%{version}

%build
%{?scl:scl enable %{scl} "}
%{__python} setup.py build
%{?scl:"}

%install
Explicitly specify --install-purelib %{python_sitelib}, which is now
overriden
to point to vt191, otherwise Python will try to install into the
python27
Software Collection site-packages directory
%{?scl:scl enable %{scl} "}
%{__python} setup.py install -O1 --skip-build --root %{buildroot} --

Packaging Guide

54

4.2.3. Building the vt191 Software Collection

To build the vt191 Software Collection:

1. Install the python27-scldevel and python27-python-devel subpackages that are part of the
python27 Software Collection.

2. Build vt191.spec and install the vt191-runtime and vt191-build packages.

3. Install the python27-python-setuptools package, which is a build requirement for versiontools.

4. Build python-versiontools.spec.

4.2.4. Testing the vt191 Software Collection

To test the vt191 Software Collection:

1. Install the vt191-python-versiontools package.

2. Run the following command:

$ scl enable vt191 "python -c 'import versiontools;
print(versiontools.__file__)'"

3. Verify that the output contains the following line:

/opt/rh/vt191/root/usr/lib/python2.7/site-
packages/versiontools/__init__.pyc

Note that the provider rh in the path may vary depending on your redefinition of the
%_scl_prefix macro. See Section 2.3, “The Software Collection Root Directory” for more
information.

4.3. EXTENDING THE RH-RUBY23 SOFTWARE COLLECTION

In Red Hat Software Collections 2.4, it is possible to extend the rh-ruby23 Software Collection by adding
dependent packages. The Ruby on Rails 4.2 (rh-ror42) Software Collection, which is built on top of Ruby
2.3 provided by the rh-ruby23 Software Collection, is one example of such an extension.

This section provides detailed information about the rh-ror42 metapackage and the rh-ror42-rubygem-
bcrypt package, which are both part of the rh-ror42 Software Collection.

4.3.1. The rh-ror42 Software Collection

install-purelib %{python_sitelib}
%{?scl:"}

%files
%{python_sitelib}/%{pypi_name}*

%changelog
* Wed Jan 22 2014 John Doe <jdoe@example.com> - 1.9.1-1
- Built for vt191 SCL.

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

55

This section contains a commented example of the Ruby on Rails 4.2 metapackage for the rh-ror42
Software Collection. The rh-ror42 Software Collection depends on the rh-ruby23 Software Collection.

Note the following in the rh-ror42 Software Collection metapackage example:

The rh-ror42 Software Collection spec file has the following build dependencies set:

This expands to, for example, rh-ruby23-scldevel and rh-ruby23-rubygems-devel.

The rh-ruby23-scldevel subpackage contains two important macros, %scl_ruby and
%scl_prefix_ruby. The rh-ruby23-scldevel subpackage should be available in the build root.
In case there are multiple Ruby Software Collections available, rh-ruby23-scldevel determines
which of the available Software Collections should be used.

Note that the %scl_ruby and %scl_prefix_ruby macros are also defined at the top of the
spec file. Although the definitions are not required, they provide a visual hint that the rh-ror42
Software Collection has been designed to be built on top of the rh-ruby23 Software Collection.
They also serve as a fallback value.

The rh-ror42-runtime subpackage must depend on the runtime subpackage of the Software
Collection it depends on. This dependency is specified as follows:

When the package is built against the rh-ruby23 Software Collection, this expands to rh-ruby23-
runtime.

The rh-ror42-build subpackage must depend on the scldevel subpackage of the Software
Collection it depends on. This is to ensure that all other packages of this Software Collection will
have the same macros defined, thus it is built against the same Ruby version.

In the case of the rh-ruby23 Software Collection, this expands to rh-ruby23-scldevel.

The enable scriptlet for the rh-ror42 Software Collection contains the following line:

Note the dot at the beginning of the line. This line makes the Ruby Software Collection start
implicitly when the rh-ror42 Software Collection is started so that the user can only type scl
enable rh-ror42 command instead of scl enable rh-ruby23 rh-ror42 command to
run command in the Software Collection environment.

The rh-ror42-scldevel subpackage is provided so that it is available in case you need it to build a
Software Collection which extends the rh-ror42 Software Collection. The package provides the %
{scl_ror} and %{scl_prefix_ror} macros, which can be used to extend the rh-ror42
Software Collection.

BuildRequires: %{scl_prefix_ruby}scldevel
BuildRequires: %{scl_prefix_ruby}rubygems-devel

%package runtime
Requires: %{scl_prefix_ruby}runtime

%package build
Requires: %{scl_prefix_ruby}scldevel

. scl_source enable %{scl_ruby}

Packaging Guide

56

Because the rh-ror42 Software Collection's gems are installed in a separate root directory
structure, you need to ensure that the correct ownership for the rubygems directories is set. This
is done by using a snippet to generate a file list rubygems_filesystem.list.

You are advised to set the runtime package to own all directories which would, if located in the
root file system, be owned by another package. One example of such directories in the case of
the rh-ror42 Software Collection is the Rubygem directory structure.

%global scl_name_prefix rh-
%global scl_name_base ror
%global scl_name_version 41

%global scl %{scl_name_prefix}%{scl_name_base}%{scl_name_version}

Fallback to rh-ruby23. rh-ruby23-scldevel is unlikely to be available in
the build root.
%{!?scl_ruby:%global scl_ruby rh-ruby23}
%{!?scl_prefix_ruby:%global scl_prefix_ruby %{scl_ruby}-}

Do not produce empty debuginfo package.
%global debug_package %{nil}

Support SCL over NFS.
%global nfsmountable 1

%{!?install_scl: %global install_scl 1}

%scl_package %scl

Summary: Package that installs %scl
Name: %scl_name
Version: 2.0
Release: 5%{?dist}
License: GPLv2+

%if 0%{?install_scl}
Requires: %{scl_prefix}rubygem-therubyracer
Requires: %{scl_prefix}rubygem-sqlite3
Requires: %{scl_prefix}rubygem-rails
Requires: %{scl_prefix}rubygem-sass-rails
Requires: %{scl_prefix}rubygem-coffee-rails
Requires: %{scl_prefix}rubygem-jquery-rails
Requires: %{scl_prefix}rubygem-sdoc
Requires: %{scl_prefix}rubygem-turbolinks
Requires: %{scl_prefix}rubygem-bcrypt
Requires: %{scl_prefix}rubygem-uglifier
Requires: %{scl_prefix}rubygem-jbuilder
Requires: %{scl_prefix}rubygem-spring
%endif
BuildRequires: help2man
BuildRequires: scl-utils-build
BuildRequires: %{scl_prefix_ruby}scldevel
BuildRequires: %{scl_prefix_ruby}rubygems-devel

%description
This is the main package for %scl Software Collection.

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

57

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
The enable scriptlet depends on the ruby executable.
Requires: %{scl_prefix_ruby}ruby

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build
Requires: %{scl_runtime}
Requires: %{scl_prefix_ruby}scldevel

%description build
Package shipping essential configuration macros to build %scl Software
Collection.

%package scldevel
Summary: Package shipping development files for %scl
Provides: scldevel(%{scl_name_base})

%description scldevel
Package shipping development files, especially usefull for development of
packages depending on %scl Software Collection.

%prep
%setup -c -T

%install
%scl_install

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
export PATH="%{_bindir}:%{_sbindir}\${PATH:+:\${PATH}}"
export LD_LIBRARY_PATH="%
{_libdir}\${LD_LIBRARY_PATH:+:\${LD_LIBRARY_PATH}}"
export MANPATH="%{_mandir}:\${MANPATH:-}"
export PKG_CONFIG_PATH="%
{_libdir}/pkgconfig\${PKG_CONFIG_PATH:+:\${PKG_CONFIG_PATH}}"
export GEM_PATH="\${GEM_PATH:=%{gem_dir}:\`scl enable %{scl_ruby} -- ruby
-e "print Gem.path.join(':')"\`}"

. scl_source enable %{scl_ruby}
EOF

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-
scldevel << EOF
%%scl_%{scl_name_base} %{scl}
%%scl_prefix_%{scl_name_base} %{scl_prefix}
EOF

scl enable %{scl_ruby} - << \EOF
set -e

Packaging Guide

58

4.3.2. The rh-ror42-rubygem-bcrypt Package

Below is a commented example of the rh-ror42-rubygem-bcrypt package spec file. This package
provides the bcrypt Ruby gem. For more information on bcrypt, see the following website:

http://rubygems.org/gems/bcrypt-ruby

Note that the only significant difference between the rh-ror42-rubygem-bcrypt package spec file and a
normal Software Collection package spec file is the following:

The BuildRequires tags are prefixed with %{?scl_prefix_ruby} instead of %
{scl_prefix}.

Fake rh-ror42 Software Collection environment.
GEM_PATH=%{gem_dir}:`ruby -e "print Gem.path.join(':')"` \
X_SCLS=%{scl} \
ruby -rfileutils > rubygems_filesystem.list << \EOR
 # Create the RubyGems file system.
 Gem.ensure_gem_subdirectories '%{buildroot}%{gem_dir}'
 FileUtils.mkdir_p File.join '%{buildroot}', Gem.default_ext_dir_for('%
{gem_dir}')

 # Output the relevant directories.
 Gem.default_dirs['%{scl}_system'.to_sym].each { |k, p| puts p }
EOR
EOF

%files

%files runtime -f rubygems_filesystem.list
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%files scldevel
%{_root_sysconfdir}/rpm/macros.%{scl_name_base}-scldevel

%changelog
* Thu Jan 16 2015 John Doe <jdoe@example.com> - 1-1
- Initial package.

%{?scl:%scl_package rubygem-%{gem_name}}
%{!?scl:%global pkg_name %{name}}

%global gem_name bcrypt

Summary: Wrapper around bcrypt() password hashing algorithm
Name: %{?scl_prefix}rubygem-%{gem_name}
Version: 3.1.9
Release: 2%{?dist}
Group: Development/Languages
ext/* - Public Domain

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

59

http://rubygems.org/gems/bcrypt-ruby

spec/TestBCrypt.java - ISC
License: MIT and Public Domain and ISC
URL: https://github.com/codahale/bcrypt-ruby
Source0: http://rubygems.org/downloads/%{gem_name}-%{version}.gem
Requires: %{?scl_prefix_ruby}ruby(release)
Requires: %{?scl_prefix_ruby}ruby(rubygems)
BuildRequires: %{?scl_prefix_ruby}rubygems-devel
BuildRequires: %{?scl_prefix_ruby}ruby-devel
BuildRequires: %{?scl_prefix}rubygem(rspec)
Provides: %{?scl_prefix}rubygem(bcrypt) = %{version}

%description
bcrypt() is a sophisticated and secure hash algorithm designed by The
OpenBSD project for hashing passwords. bcrypt provides a simple,
humane wrapper for safely handling passwords.

%package doc
Summary: Documentation for %{pkg_name}
Group: Documentation
Requires: %{?scl_prefix}%{pkg_name} = %{version}-%{release}

%description doc
Documentation for %{pkg_name}.

%prep
%setup -n %{pkg_name}-%{version} -q -c -T
%{?scl:scl enable %{scl} - << \EOF}
%gem_install -n %{SOURCE0}
%{?scl:EOF}

%build

%install
mkdir -p %{buildroot}%{gem_dir}
cp -pa .%{gem_dir}/* \
 %{buildroot}%{gem_dir}/

mkdir -p %{buildroot}%{gem_extdir_mri}
cp -pa .%{gem_extdir_mri}/* %{buildroot}%{gem_extdir_mri}/

Prevent a symlink with an invalid target in -debuginfo (BZ#878863).
rm -rf %{buildroot}%{gem_instdir}/ext/

%check
%{?scl:scl enable %{scl} - << \EOF}
pushd .%{gem_instdir}
2 failutes due to old RSpec
https://github.com/rspec/rspec-expectations/pull/284
rspec -I$(dirs +1)%{gem_extdir_mri} spec |grep '34 examples, 2 failures'
|| exit 1
popd
%{?scl:EOF}

%files
%dir %{gem_instdir}
%exclude %{gem_instdir}/.*

Packaging Guide

60

4.3.3. Building the rh-ror42 Software Collection

To build the rh-ror42 Software Collection:

1. Install the rh-ruby23-scldevel subpackage which is a part of the rh-ruby23 Software Collection.

2. Build rh-ror42.spec and install the ror42-runtime and ror42-build packages.

3. Build rubygem-bcrypt.spec.

4.3.4. Testing the rh-ror42 Software Collection

To test the rh-ror42 Software Collection:

1. Install the rh-ror42-rubygem-bcrypt package.

2. Run the following command:

$ scl enable rh-ror42 -- ruby -r bcrypt -e "puts
BCrypt::Password.create('my password')"

3. Verify that the output contains the following line:

$2a$10$s./ReniLY.wXPHVBQ9npoeyZf5KzywfpvI5lhjG6Ams3u0hKqwVbW

4.4. EXTENDING THE RH-PERL524 SOFTWARE COLLECTION

This section describes extending the rh-perl524 Software Collection by building your own dependent
Software Collection.

%{gem_libdir}
%{gem_extdir_mri}
%exclude %{gem_cache}
%{gem_spec}
%doc %{gem_instdir}/COPYING

%files doc
%doc %{gem_docdir}
%doc %{gem_instdir}/README.md
%doc %{gem_instdir}/CHANGELOG
%{gem_instdir}/Rakefile
%{gem_instdir}/Gemfile*
%{gem_instdir}/%{gem_name}.gemspec
%{gem_instdir}/spec

%changelog
* Fri Mar 21 2015 John Doe <jdoe@example.com> - 3.1.2-4
- Initial package.

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

61

IMPORTANT

Examples described in this section only work as expected when extending the rh-perl524
Software Collection with packages that:

do not provide any Perl modules, and

only depend on Perl modules provided by the rh-perl524 Software Collection.

4.4.1. The h2m144 Software Collection

This section contains a commented example of a dependent Software Collection's metapackage. The
dependent Software Collection is named h2m144 and contains the help2man Perl package version
1.44.1. The h2m144 Software Collection depends on the rh-perl524 Software Collection.

Note the following in the h2m144 Software Collection metapackage:

The h2m144 Software Collection metapackage has the following build dependency set:

This expands to rh-perl524-scldevel.

The rh-perl524-scldevel subpackage contains two important macros, %scl_perl and
%scl_prefix_perl, and also provides Perl dependency generators. Note that the macros are
defined at the top of the metapackage spec file. Although the definitions are not required, they
provide a visual hint that the h2m144 Software Collection has been designed to be built on top of
the rh-perl524 Software Collection. They also serve as a fallback value.

The h2m144-build subpackage has the following dependency set:

This expands to rh-perl524-scldevel. The purpose of this dependency is to ensure that the
macros and dependency generators are always present when building packages for the h2m144
Software Collection.

The enable scriptlet for the h2m144 Software Collection contains the following line:

Note the dot at the beginning of the line. This line makes the Perl Software Collection start
implicitly when the h2m144 Software Collection is started so that the user can only type scl
enable h2m144 command instead of scl enable rh-perl524 h2m144 command to run
command in the Software Collection environment.

The macro file macros.h2m144-config calls the Perl dependency generators, and certain
Perl-specific macros used in other packages' spec files.

BuildRequires: %{scl_prefix_perl}scldevel

Requires: %{scl_prefix_perl}scldevel

. scl_source enable %{scl_perl}

%global scl h2m144
%scl_package %scl

Default values for the rh-perl524 Software Collection. These
will be used when rh-perl524-scldevel is not in the build root.

Packaging Guide

62

%{!?scl_perl:%global scl_perl rh-perl524}
%{!?scl_prefix_perl:%global scl_prefix_perl %{scl_perl}-}

Only for this build, override __perl_requires for the automatic
dependency
generator.
%global __perl_requires /usr/lib/rpm/perl.req.stack

Summary: Package that installs %scl
Name: %scl_name
Version: 1
Release: 1%{?dist}
License: GPLv2+
BuildRequires: scl-utils-build
Always make sure that there is the rh-perl524-scldevel
package in the build root.
BuildRequires: %{scl_prefix_perl}scldevel
Require rh-perl524-perl-macros; you will need macros from that package.
BuildRequires: %{scl_prefix_perl}perl-macros
Requires: %{scl_prefix}help2man

%description
This is the main package for %scl Software Collection.

%package runtime
Summary: Package that handles %scl Software Collection.
Requires: scl-utils
Requires: %{scl_prefix_perl}runtime

%description runtime
Package shipping essential scripts to work with %scl Software Collection.

%package build
Summary: Package shipping basic build configuration
Requires: scl-utils-build
Require rh-perl524-scldevel so that there is always access to the
%%scl_perl
and %%scl_prefix_perl macros in builds for this Software Collection.
Requires: %{scl_prefix_perl}scldevel

%description build
Package shipping essential configuration macros to build %scl Software
Collection.

%prep
%setup -c -T

%build

%install
%scl_install

Create the enable scriptlet that:
- Adds an additional load path for the Perl interpreter.
- Runs scl_source so that you can run:
scl enable h2m144 'bash'

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

63

4.4.2. The help2man Package

Below is a commented example of the help2man package spec file. Note the following in the spec file:

The BuildRequires tags are prefixed with %{?scl_prefix_perl} instead of %
{scl_prefix}.

instead of:
scl enable rh-perl524 h2m144 'bash'

cat >> %{buildroot}%{_scl_scripts}/enable << EOF
. scl_source enable %{scl_perl}
export PATH="%{_bindir}:%{_sbindir}\${PATH:+:\${PATH}}"
export MANPATH="%{_mandir}:\${MANPATH:-}"
EOF

cat >> %{buildroot}%{_root_sysconfdir}/rpm/macros.%{scl}-config << EOF
%%scl_package_override() %%{expand:%%global __perl_requires
/usr/lib/rpm/perl.req.stack
%%global __perl_provides /usr/lib/rpm/perl.prov.stack
%%global __perl %{_scl_prefix}/%{scl_perl}/root/usr/bin/perl
}
EOF

%files

%files runtime -f filelist
%scl_files

%files build
%{_root_sysconfdir}/rpm/macros.%{scl}-config

%changelog
* Tue Apr 22 2014 John Doe <jdoe@example.com> - 1-1
- Initial package.

%{?scl:%scl_package help2man}
%{!?scl:%global pkg_name %{name}}

Supported build option:
#
--with nls ... build this package with --enable-nls
%bcond_with nls

Name: %{?scl_prefix}help2man
Summary: Create simple man pages from --help output
Version: 1.44.1
Release: 1%{?dist}
Group: Development/Tools
License: GPLv3+
URL: http://www.gnu.org/software/help2man
Source: ftp://ftp.gnu.org/gnu/help2man/help2man-%{version}.tar.xz
%{!?with_nls:BuildArch: noarch}

BuildRequires: %{?scl_prefix_perl}perl(Getopt::Long)

Packaging Guide

64

BuildRequires: %{?scl_prefix_perl}perl(POSIX)
BuildRequires: %{?scl_prefix_perl}perl(Text::ParseWords)
BuildRequires: %{?scl_prefix_perl}perl(Text::Tabs)
BuildRequires: %{?scl_prefix_perl}perl(strict)
%{?with_nls:BuildRequires: %{?scl_prefix_perl}perl(Locale::gettext)
/usr/bin/msgfmt}
%{?with_nls:BuildRequires: %{?scl_prefix_perl}perl(Encode)}
%{?with_nls:BuildRequires: %{?scl_prefix_perl}perl(I18N::Langinfo)}
Requires: %{?scl_prefix_perl}perl(:MODULE_COMPAT_%(%{?scl:scl enable %
{scl_perl} '}eval "`perl -V:version`"; echo $version%{?scl:'}))

Requires(post): /sbin/install-info
Requires(preun): /sbin/install-info

%description
help2man is a script to create simple man pages from the --help and
--version output of programs.

Since most GNU documentation is now in info format, this provides a
way to generate a placeholder man page pointing to that resource while
still providing some useful information.

%prep
%setup -q -n help2man-%{version}

%build
%configure --%{!?with_nls:disable}%{?with_nls:enable}-nls --libdir=%
{_libdir}/help2man
%{?scl:scl enable %{scl} "}
make %{?_smp_mflags}
%{?scl:"}

%install
%{?scl:scl enable %{scl} "}
make install_l10n DESTDIR=$RPM_BUILD_ROOT
%{?scl:"}
%{?scl:scl enable %{scl} "}
make install DESTDIR=$RPM_BUILD_ROOT
%{?scl:"}
%find_lang %pkg_name --with-man

%post
/sbin/install-info %{_infodir}/help2man.info %{_infodir}/dir 2>/dev/null ||
:

%preun
if [$1 -eq 0]; then
 /sbin/install-info --delete %{_infodir}/help2man.info \
 %{_infodir}/dir 2>/dev/null || :
fi

%files -f %pkg_name.lang
%doc README NEWS THANKS COPYING
%{_bindir}/help2man
%{_infodir}/*
%{_mandir}/man1/*

CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS

65

4.4.3. Building the h2m144 Software Collection

To build the h2m144 Software Collection:

1. Install the rh-perl524-scldevel and rh-perl524-perl-macros packages that are part of the perl524
Software Collection.

2. Build h2m144.spec and install the h2m144-runtime and h2m144-build packages.

3. Install the rh-perl524-perl, rh-perl524-perl-Text-ParseWords and rh-perl524-perl-Getopt-Long
packages, which are all build requirements for help2man.

4. Build help2man.spec.

4.4.4. Testing the h2m144 Software Collection

To test the h2m144 Software Collection:

1. Install the h2m144-help2man package.

2. Run the following command:

$ scl enable h2m144 'help2man bash'

3. Verify that the output is similar to the following lines:

.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.44.1.

.TH BASH, "1" "April 2014" "bash, version 4.1.2(1)-release (x86_64-
redhat-linux-gnu)" "User Commands"
.SH NAME
bash, \- manual page for bash, version 4.1.2(1)-release (x86_64-
redhat-linux-gnu)
.SH SYNOPSIS
.B bash
[\fIGNU long option\fR] [\fIoption\fR] ...
.SH DESCRIPTION
GNU bash, version 4.1.2(1)\-release\-(x86_64\-redhat\-linux\-gnu)
.IP
bash [GNU long option] [option] script\-file ...
.SS "GNU long options:"
.HP
\fB\-\-debug\fR

%if %{with nls}
%{_libdir}/help2man
%endif

%changelog
* Tue Apr 22 2014 John Doe <jdoe@example.com> - 1.44.1-1
- Built for h2m144 SCL.

Packaging Guide

66

CHAPTER 5. TROUBLESHOOTING SOFTWARE COLLECTIONS
This chapter helps you troubleshoot some of the common issues you can encounter when building your
Software Collections.

5.1. ERROR: LINE XX: UNKNOWN TAG: %SCL_PACKAGE
SOFTWARE_COLLECTION_NAME

You can encounter this error message when building a Software Collection package. It is usually caused
by a missing package scl-utils-build. To install the scl-utils-build package, run the following command:

yum install scl-utils-build

For more information, see Section 1.3, “Enabling Support for Software Collections”.

5.2. SCL COMMAND DOES NOT EXIST

This error message is usually caused by a missing package scl-utils. To install the scl-utils package, run
the following command:

yum install scl-utils

For more information, see Section 1.3, “Enabling Support for Software Collections”.

5.3. UNABLE TO OPEN
/ETC/SCL/PREFIXES/SOFTWARE_COLLECTION_NAME

This error message can be caused by using incorrect arguments with the scl command you are calling.
Check the scl command is correct and that you have not mistyped any of the arguments.

The same error message can also be caused by a missing Software Collection. Ensure that the
software_collection_name Software Collection is properly installed on the system. For more information,
see Section 1.5, “Listing Installed Software Collections”.

5.4. SCL_SOURCE: COMMAND NOT FOUND

This error message is usually caused by having an old version of the scl-utils package installed. To
update the scl-utils package, run the following command:

yum update scl-utils

CHAPTER 5. TROUBLESHOOTING SOFTWARE COLLECTIONS

67

APPENDIX A. GETTING MORE INFORMATION
For more information on Software Collection packaging, Red Hat Developers, the Red Hat Software
Collections and Red Hat Developer Toolset offerings, and Red Hat Enterprise Linux, see the resources
listed below.

A.1. RED HAT DEVELOPERS

Overview of Red Hat Software Collections on Red Hat Developers – The Red Hat Developers
portal provides a number of tutorials to get you started with developing code using different
development technologies. This includes the Node.js, Perl, PHP, Python, and Ruby Software
Collection.

Red Hat Enterprise Linux Developer Program – The Red Hat Enterprise Linux Developer
Program delivers industry-leading developer tools, instructional resources, and an ecosystem of
experts to help programmers maximize productivity in building Linux applications.

Red Hat Developer Blog – The Red Hat Developer Blog contains up-to-date information, best
practices, opinion, product and program announcements as well as pointers to sample code and
other resources for those who are designing and developing applications based on Red Hat
technologies.

A.2. INSTALLED DOCUMENTATION

scl(1) – The man page for the scl tool for enabling Software Collections and running programs in
Software Collection's environment.

scl --help – General usage information for the scl tool for enabling Software Collections and
running programs in Software Collection's environment.

rpmbuild(8) – The man page for the rpmbuild utility for building both binary and source
packages.

A.3. ACCESSING RED HAT DOCUMENTATION

Red Hat Product Documentation located at https://access.redhat.com/documentation/ serves as a
central source of information. It is currently translated in 22 languages and for each product, it provides
different kinds of books from release and technical notes to installation, user, and reference guides in
HTML, PDF, and EPUB formats.

The following is a brief list of documents that are directly or indirectly relevant to this book:

Red Hat Software Collections 2.4 Release Notes – The Release Notes for Red Hat Software
Collections 2.4 document the major features and contains other information about Red Hat
Software Collections, a Red Hat offering that provides a set of dynamic programming languages,
database servers, and various related packages.

Red Hat Developer Toolset 6.1 User Guide – The User Guide for Red Hat Developer Toolset 6.1
contains information about Red Hat Developer Toolset, a Red Hat offering for developers on the
Red Hat Enterprise Linux platform. Using Software Collections, Red Hat Developer Toolset
provides current versions of the GCC compiler, GDB debugger and other binary utilities.

Using Red Hat Software Collections Container Images – This article provides information on how
to use container images based on Red Hat Software Collections. The available container images
include applications, daemons, and databases. The images can be run on Red Hat Enterprise

Packaging Guide

68

https://developers.redhat.com/products/softwarecollections/overview/
https://access.redhat.com/products/Red_Hat_Enterprise_Linux/Developer/
http://developerblog.redhat.com/
https://access.redhat.com/documentation/
https://access.redhat.com/documentation/en-US/Red_Hat_Software_Collections/2/html/2.4_Release_Notes/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/6/html/User_Guide/index.html
https://access.redhat.com/articles/1752723

Linux 7 Server and Red Hat Enterprise Linux Atomic Host.

Red Hat Enterprise Linux 7 Developer Guide – The Developer Guide for Red Hat Enterprise
Linux 7 provides detailed description of Red Hat Developer Toolset features, as well as an
introduction to Red Hat Software Collections, and information on libraries and runtime support,
compiling and building, debugging, and profiling.

Red Hat Enterprise Linux 7 System Administrator's Guide – The System Administrator's Guide
for Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

Red Hat Enterprise Linux 6 Developer Guide – The Developer Guide for Red Hat Enterprise
Linux 6 provides detailed description of Red Hat Developer Toolset features, as well as an
introduction to Red Hat Software Collections, and information on libraries and runtime support,
compiling and building, debugging, and profiling.

Red Hat Enterprise Linux 6 Deployment Guide – The Deployment Guide for Red Hat Enterprise
Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

APPENDIX A. GETTING MORE INFORMATION

69

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html

APPENDIX B. REVISION HISTORY

Revision 3.10-0 Mon Jun 5 2017 Petr Kovář
Republished to fix BZ#1458821.

Revision 3.9-0 Thu Apr 20 2017 Petr Kovář
Red Hat Software Collections 2.4 release of the Packaging Guide.

Revision 3.8-0 Wed Apr 05 2017 Petr Kovář
Red Hat Software Collections 2.4 Beta release of the Packaging Guide.

Revision 3.7-0 Wed Jan 25 2017 Petr Kovář
Republished to fix BZ#1263733.

Revision 3.6-0 Wed Nov 02 2016 Petr Kovář
Red Hat Software Collections 2.3 release of the Packaging Guide.

Revision 3.5-0 Wed Oct 12 2016 Petr Kovář
Red Hat Software Collections 2.3 Beta release of the Packaging Guide.

Revision 3.4-0 Mon May 23 2016 Petr Kovář
Red Hat Software Collections 2.2 release of the Packaging Guide.

Revision 3.3-0 Tue Apr 26 2016 Petr Kovář
Red Hat Software Collections 2.2 Beta release of the Packaging Guide.

Revision 3.2-0 Wed Nov 04 2015 Petr Kovář
Red Hat Software Collections 2.1 release of the Packaging Guide.

Revision 3.1-0 Tue Oct 06 2015 Petr Kovář
Red Hat Software Collections 2.1 Beta release of the Packaging Guide.

Revision 3.0-2 Tue May 19 2015 Petr Kovář
Red Hat Software Collections 2.0 release of the Packaging Guide.

Revision 3.0-1 Wed Apr 22 2015 Petr Kovář
Red Hat Software Collections 2.0 Beta release of the Packaging Guide.

Revision 2.2-4 Fri Nov 21 2014 Petr Kovář
Republished to fix BZ#1150573, BZ#1022023, and BZ#1149650.

Revision 2.2-2 Thu Oct 30 2014 Petr Kovář
Red Hat Software Collections 1.2 release of the Packaging Guide.

Revision 2.2-1 Tue Oct 07 2014 Petr Kovář
Red Hat Software Collections 1.2 Beta refresh release of the Packaging Guide.

Revision 2.2-0 Tue Sep 09 2014 Petr Kovář
The Software Collections Guide renamed to Packaging Guide.

Red Hat Software Collections 1.2 Beta release of the Packaging Guide.

Revision 2.1-29 Wed Jun 04 2014 Petr Kovář
Red Hat Software Collections 1.1 release of the Software Collections Guide.

Revision 2.1-21 Thu Mar 20 2014 Petr Kovář
Red Hat Software Collections 1.1 Beta release of the Software Collections Guide.

Packaging Guide

70

Revision 2.1-18 Tue Mar 11 2014 Petr Kovář
Red Hat Developer Toolset 2.1 release of the Software Collections Guide.

Revision 2.1-8 Tue Feb 11 2014 Petr Kovář
Red Hat Developer Toolset 2.1 Beta release of the Software Collections Guide.

Revision 2.0-12 Tue Sep 10 2013 Petr Kovář
Red Hat Developer Toolset 2.0 release of the Software Collections Guide.

Revision 2.0-8 Tue Aug 06 2013 Petr Kovář
Red Hat Developer Toolset 2.0 Beta-2 release of the Software Collections Guide.

Revision 2.0-3 Tue May 28 2013 Petr Kovář
Red Hat Developer Toolset 2.0 Beta-1 release of the Software Collections Guide.

Revision 1.0-2 Tue Apr 23 2013 Petr Kovář
Republished to fix BZ#949000.

Revision 1.0-1 Tue Jan 22 2013 Petr Kovář
Red Hat Developer Toolset 1.1 release of the Software Collections Guide.

Revision 1.0-2 Thu Nov 08 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-2 release of the Software Collections Guide.

Revision 1.0-1 Wed Oct 10 2012 Petr Kovář
Red Hat Developer Toolset 1.1 Beta-1 release of the Software Collections Guide.

Revision 1.0-0 Tue Jun 26 2012 Petr Kovář
Red Hat Developer Toolset 1.0 release of the Software Collections Guide.

Revision 0.0-2 Tue Apr 10 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-2 release of the Software Collections Guide.

Revision 0.0-1 Tue Mar 06 2012 Petr Kovář
Red Hat Developer Toolset 1.0 Alpha-1 release of the Software Collections Guide.

B.1. ACKNOWLEDGMENTS

The author of this book would like to thank the following people for their valuable contributions: Jindřich
Nový, Marcela Mašláňová, Bohuslav Kabrda, Honza Horák, Jan Zelený, Martin Čermák, Jitka
Plesníková, Langdon White, Florian Nadge, Stephen Wadeley, Douglas Silas, Tomáš Čapek, and Vít
Ondruch, among many others.

APPENDIX B. REVISION HISTORY

71

	Table of Contents
	CHAPTER 1. INTRODUCING SOFTWARE COLLECTIONS
	1.1. WHY PACKAGE SOFTWARE WITH RPM?
	1.2. WHAT ARE SOFTWARE COLLECTIONS?
	1.3. ENABLING SUPPORT FOR SOFTWARE COLLECTIONS
	1.4. INSTALLING A SOFTWARE COLLECTION
	1.5. LISTING INSTALLED SOFTWARE COLLECTIONS
	1.6. ENABLING A SOFTWARE COLLECTION
	1.6.1. Running an Application Directly
	1.6.2. Running a Shell with Multiple Software Collections Enabled
	1.6.3. Running Commands Stored in a File

	1.7. LISTING ENABLED SOFTWARE COLLECTIONS
	1.8. UNINSTALLING A SOFTWARE COLLECTION

	CHAPTER 2. PACKAGING SOFTWARE COLLECTIONS
	2.1. CREATING YOUR OWN SOFTWARE COLLECTIONS
	2.2. THE FILE SYSTEM HIERARCHY
	2.3. THE SOFTWARE COLLECTION ROOT DIRECTORY
	2.4. THE SOFTWARE COLLECTION PREFIX
	2.5. SOFTWARE COLLECTION PACKAGE NAMES
	2.6. SOFTWARE COLLECTION SCRIPTLETS
	2.7. PACKAGE LAYOUT
	2.7.1. Metapackage
	2.7.2. Creating a Metapackage
	Example of the Metapackage

	2.8. SOFTWARE COLLECTION MACROS
	2.8.1. Macros Specific to a Software Collection
	2.8.2. Macros Not Specific to a Software Collection
	2.8.3. The nfsmountable Macro

	2.9. COMMONLY USED PATH REDEFINITIONS
	2.9.1. Language-specific Path Redefinitions
	2.9.2. Other Path Redefinitions

	2.10. CONVERTING A CONVENTIONAL SPEC FILE
	2.10.1. Example of the Converted Spec File
	2.10.2. Converting Tags and Macro Definitions
	2.10.3. Converting Subpackages
	2.10.4. Converting RPM Scripts
	2.10.5. Software Collection Automatic Provides and Requires and Filtering Support
	2.10.6. Software Collection Macro Files Support
	2.10.7. Software Collection Shebang Support
	2.10.8. Making a Software Collection Depend on Another Software Collection

	2.11. UNINSTALLING ALL SOFTWARE COLLECTION DIRECTORIES
	2.12. BUILDING A SOFTWARE COLLECTION
	2.12.1. Rebuilding a Software Collection without build Subpackages
	2.12.2. Avoiding debuginfo File Conflicts

	CHAPTER 3. ADVANCED TOPICS
	3.1. USING SOFTWARE COLLECTIONS OVER NFS
	3.1.1. Changed Directory Structure and File Ownership
	3.1.2. Registering and Deregistering Software Collections
	3.1.2.1. Using (de)register Scriptlets in a Software Collection Metapackage

	3.2. CONVERTING SOFTWARE COLLECTION SCRIPTLETS INTO ENVIRONMENT MODULES
	3.3. PACKAGING WRAPPERS FOR SOFTWARE COLLECTIONS
	3.4. MANAGING SERVICES IN SOFTWARE COLLECTIONS
	3.4.1. Configuring an Environment for Services

	3.5. SOFTWARE COLLECTION LIBRARY SUPPORT
	3.5.1. Using a Library Outside of the Software Collection
	3.5.2. Prefixing the Library Major soname with the Software Collection Name
	3.5.3. Software Collection Library Support in Red Hat Enterprise Linux 7

	3.6. SOFTWARE COLLECTION .PC FILES SUPPORT
	3.7. SOFTWARE COLLECTION MANPATH SUPPORT
	3.8. SOFTWARE COLLECTION CRONJOB SUPPORT
	3.9. SOFTWARE COLLECTION LOG FILE SUPPORT
	3.10. SOFTWARE COLLECTION LOGROTATE SUPPORT
	3.11. SOFTWARE COLLECTION /VAR/RUN/ FILES SUPPORT
	3.12. SOFTWARE COLLECTION LOCK FILE SUPPORT
	Preventing Programs from Running Concurrently
	3.12.1. Software Collection SysV init Lock File Support

	3.13. SOFTWARE COLLECTION CONFIGURATION FILES SUPPORT
	3.14. SOFTWARE COLLECTION KERNEL MODULE SUPPORT
	3.15. SOFTWARE COLLECTION SELINUX SUPPORT
	3.15.1. SELinux Support in Red Hat Enterprise Linux 7

	3.16. DIFFERENCES BETWEEN RED HAT ENTERPRISE LINUX 6 AND 7
	3.16.1. The %license Macro
	3.16.2. Missing runtime Subpackage Dependencies
	3.16.3. The scl-package() Provides

	CHAPTER 4. EXTENDING RED HAT SOFTWARE COLLECTIONS
	4.1. PROVIDING AN SCLDEVEL SUBPACKAGE
	4.1.1. Using an scldevel Subpackage in a Dependent Software Collection

	4.2. EXTENDING THE PYTHON27 AND RH-PYTHON35 SOFTWARE COLLECTIONS
	4.2.1. The vt191 Software Collection
	4.2.2. The python-versiontools Package
	4.2.3. Building the vt191 Software Collection
	4.2.4. Testing the vt191 Software Collection

	4.3. EXTENDING THE RH-RUBY23 SOFTWARE COLLECTION
	4.3.1. The rh-ror42 Software Collection
	4.3.2. The rh-ror42-rubygem-bcrypt Package
	4.3.3. Building the rh-ror42 Software Collection
	4.3.4. Testing the rh-ror42 Software Collection

	4.4. EXTENDING THE RH-PERL524 SOFTWARE COLLECTION
	4.4.1. The h2m144 Software Collection
	4.4.2. The help2man Package
	4.4.3. Building the h2m144 Software Collection
	4.4.4. Testing the h2m144 Software Collection

	CHAPTER 5. TROUBLESHOOTING SOFTWARE COLLECTIONS
	5.1. ERROR: LINE XX: UNKNOWN TAG: %SCL_PACKAGE SOFTWARE_COLLECTION_NAME
	5.2. SCL COMMAND DOES NOT EXIST
	5.3. UNABLE TO OPEN /ETC/SCL/PREFIXES/SOFTWARE_COLLECTION_NAME
	5.4. SCL_SOURCE: COMMAND NOT FOUND

	APPENDIX A. GETTING MORE INFORMATION
	A.1. RED HAT DEVELOPERS
	A.2. INSTALLED DOCUMENTATION
	A.3. ACCESSING RED HAT DOCUMENTATION

	APPENDIX B. REVISION HISTORY
	B.1. ACKNOWLEDGMENTS

