
Red Hat Single Sign-On 7.6

Server Installation and Configuration Guide

For Use with Red Hat Single Sign-On 7.6

Last Updated: 2024-04-17

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

For Use with Red Hat Single Sign-On 7.6

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information to install and configure Red Hat Single Sign-On 7.6

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. GUIDE OVERVIEW
1.1. RECOMMENDED ADDITIONAL EXTERNAL DOCUMENTATION

CHAPTER 2. INSTALLING THE SOFTWARE
2.1. INSTALLATION PREREQUISITES
2.2. INSTALLING RH-SSO FROM A ZIP FILE
2.3. INSTALLING RH-SSO FROM AN RPM

2.3.1. Subscribing to the JBoss EAP 7.4 repository
2.3.2. Subscribing to the RH-SSO 7.6 repository and installing RH-SSO 7.6

2.4. IMPORTANT DIRECTORIES

CHAPTER 3. USING OPERATING MODES
3.1. USING STANDALONE MODE

3.1.1. Booting in standalone mode
3.1.2. Standalone configuration

3.2. USING STANDALONE CLUSTERED MODE
3.2.1. Standalone clustered configuration
3.2.2. Booting in standalone clustered mode

3.3. USING DOMAIN CLUSTERED MODE
3.3.1. Domain configuration
3.3.2. Host controller configuration
3.3.3. Server instance working directories
3.3.4. Booting in domain clustered mode
3.3.5. Testing with a sample clustered domain

3.4. USING CROSS-SITE REPLICATION MODE

CHAPTER 4. MANAGING THE SUBSYSTEM CONFIGURATION
4.1. CONFIGURE SPI PROVIDERS
4.2. STARTING THE JBOSS EAP CLI
4.3. CLI EMBEDDED MODE
4.4. USING CLI GUI MODE
4.5. CLI SCRIPTING
4.6. CLI RECIPES

4.6.1. Changing the web context of the server
4.6.2. Setting the global default theme
4.6.3. Adding a new SPI and a provider
4.6.4. Disabling a provider
4.6.5. Changing the default provider for an SPI
4.6.6. Adding or changing a single property value for an SPI
4.6.7. Removing a single property from an SPI
4.6.8. Configuring the dblock SPI
4.6.9. Adding or changing a single property value for a provider
4.6.10. Removing a single property from a provider
4.6.11. Setting values on a provider property of type List

CHAPTER 5. PROFILES

CHAPTER 6. SETTING UP THE RELATIONAL DATABASE
6.1. DATABASE SETUP CHECKLIST
6.2. PACKAGING THE JDBC DRIVER
6.3. DECLARING AND LOADING THE JDBC DRIVER

5

6
6

7
7
7
8
8
9
9

11
11
11

13
14
14
15
17
18

20
21
22
24
26

27
27
28
29
29
30
30
31
31
31
31
31
31
31
31
31
31
31

33

35
35
35
37

Table of Contents

1

. .

. .

. .

. .

. .

6.4. MODIFYING THE RED HAT SINGLE SIGN-ON DATASOURCE
6.5. DATABASE CONFIGURATION
6.6. UNICODE CONSIDERATIONS FOR DATABASES

6.6.1. Oracle database
6.6.2. Microsoft SQL Server database
6.6.3. MySQL database
6.6.4. PostgreSQL database

CHAPTER 7. USE OF THE PUBLIC HOSTNAME
7.1. DEFAULT PROVIDER
7.2. CUSTOM PROVIDER

CHAPTER 8. SETTING UP THE NETWORK
8.1. BIND ADDRESSES
8.2. SOCKET PORT BINDINGS
8.3. HTTPS/SSL
8.4. ENABLING HTTPS/SSL FOR THE RED HAT SINGLE SIGN-ON SERVER

8.4.1. Creating the Certificate and Java Keystore
8.4.1.1. Self Signed Certificate

8.4.2. Configuring Red Hat Single Sign-On to use the keystore
8.4.2.1. JBoss Security Legacy
8.4.2.2. Elytron TLS v1.2
8.4.2.3. Elytron TLS 1.3

8.5. OUTGOING HTTP REQUESTS
8.5.1. Proxy mappings for outgoing HTTP requests
8.5.2. Using standard environment variables
8.5.3. Outgoing HTTPS request truststore

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER
9.1. RECOMMENDED NETWORK ARCHITECTURE
9.2. CLUSTERING EXAMPLE
9.3. SETTING UP A LOAD BALANCER OR PROXY

9.3.1. Identifying client IP addresses
9.3.2. Enabling HTTPS/SSL with a reverse proxy
9.3.3. Verifying the configuration
9.3.4. Using the built-in load balancer

9.3.4.1. Master bind addresses
9.3.4.2. Host slave bind addresses

9.4. STICKY SESSIONS
9.4.1. Disable adding the route

9.5. SETTING UP MULTICAST NETWORKING
9.6. SECURE CLUSTER COMMUNICATION
9.7. SERIALIZED CLUSTER STARTUP
9.8. BOOTING THE CLUSTER
9.9. TROUBLESHOOTING

CHAPTER 10. SERVER CACHE CONFIGURATION
10.1. EVICTION AND EXPIRATION
10.2. REPLICATION AND FAILOVER
10.3. DISABLING CACHING
10.4. CLEARING CACHE AT RUNTIME

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR
11.1. INSTALLING THE RED HAT SINGLE SIGN-ON OPERATOR ON A CLUSTER

38
39
40
41
41
41
41

43
43
44

45
45
46
47
47
48
48
49
49
50
51
52
53
54
55

57
57
57
57
58
59
60
61

62
62
62
63
64
65
65
65
66

67
67
68
69
69

70
70

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

2

11.1.1. Installing using the Operator Lifecycle Manager
11.1.2. Installing from the command line

11.2. USING THE RED HAT SINGLE SIGN-ON OPERATOR IN PRODUCTION ENVIRONMENT
11.3. INSTALLING RED HAT SINGLE SIGN-ON USING A CUSTOM RESOURCE

11.3.1. The Keycloak custom resource
11.3.2. Creating a Keycloak custom resource on OpenShift

11.4. CREATING A REALM CUSTOM RESOURCE
11.5. CREATING A CLIENT CUSTOM RESOURCE
11.6. CREATING A USER CUSTOM RESOURCE
11.7. CONNECTING TO AN EXTERNAL DATABASE
11.8. CONNECTING TO AN EXTERNAL RED HAT SINGLE SIGN-ON
11.9. SCHEDULING DATABASE BACKUPS
11.10. INSTALLING EXTENSIONS AND THEMES
11.11. COMMAND OPTIONS FOR MANAGING CUSTOM RESOURCES
11.12. UPGRADE STRATEGY

70
72
74
74
75
76
79
82
84
86
89
90
91

92
92

Table of Contents

3

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. GUIDE OVERVIEW
The purpose of this guide is to walk through the steps that need to be completed prior to booting up the
Red Hat Single Sign-On server for the first time. If you just want to test drive Red Hat Single Sign-On, it
pretty much runs out of the box with its own embedded and local-only database. For actual
deployments that are going to be run in production you’ll need to decide how you want to manage
server configuration at runtime (standalone or domain mode), configure a shared database for Red Hat
Single Sign-On storage, set up encryption and HTTPS, and finally set up Red Hat Single Sign-On to run
in a cluster. This guide walks through each and every aspect of any pre-boot decisions and setup you
must do prior to deploying the server.

One thing to particularly note is that Red Hat Single Sign-On is derived from the JBoss EAP Application
Server. Many aspects of configuring Red Hat Single Sign-On revolve around JBoss EAP configuration
elements. Often this guide will direct you to documentation outside of the manual if you want to dive
into more detail.

1.1. RECOMMENDED ADDITIONAL EXTERNAL DOCUMENTATION

Red Hat Single Sign-On is built on top of the JBoss EAP application server and its sub-projects like
Infinispan (for caching) and Hibernate (for persistence). This guide only covers basics for infrastructure-
level configuration. It is highly recommended that you peruse the documentation for JBoss EAP and its
sub projects. Here is the link to the documentation:

JBoss EAP Configuration Guide

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

6

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

CHAPTER 2. INSTALLING THE SOFTWARE
You can install Red Hat Single Sign-On by downloading a ZIP file and unzipping it, or by using an RPM.
This chapter reviews system requirements as well as the directory structure.

2.1. INSTALLATION PREREQUISITES

These prerequisites exist for installing the Red Hat Single Sign-On server:

Java 8 JRE or Java 11 JRE

An operating system that supports the Java version you have chosen. See Supported
Configurations.

zip or gzip and tar

At least 512M of RAM

At least 1G of diskspace

A shared external database like PostgreSQL, MySQL, Oracle, etc. Red Hat Single Sign-On
requires an external shared database if you want to run in a cluster. Please see the database
configuration section of this guide for more information.

Network multicast support on your machine if you want to run in a cluster. Red Hat Single Sign-
On can be clustered without multicast, but this requires a bunch of configuration changes.
Please see the clustering section of this guide for more information.

On Linux, it is recommended to use /dev/urandom as a source of random data to prevent Red
Hat Single Sign-On hanging due to lack of available entropy, unless /dev/random usage is
mandated by your security policy. To achieve that on Oracle JDK 8 and OpenJDK 8, set the
java.security.egd system property on startup to file:/dev/urandom.

2.2. INSTALLING RH-SSO FROM A ZIP FILE

The Red Hat Single Sign-On server download ZIP file contains the scripts and binaries to run the Red
Hat Single Sign-On server. You install the 7.6 server first, then the 7.6.8 server patch.

Procedure

1. Go to the Red Hat customer portal .

2. Download the Red Hat Single Sign-On 7.6 server.

3. Unpack the ZIP file using the appropriate unzip utility, such as unzip, tar, or Expand-Archive.

4. Return to the Red Hat customer portal .

5. Click the Patches tab.

6. Download the Red Hat Single Sign-On 7.6.8 server patch.

7. Place the downloaded file in a directory you choose.

8. Go to the bin directory of JBoss EAP.

CHAPTER 2. INSTALLING THE SOFTWARE

7

https://access.redhat.com/articles/2342861
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso

9. Start the JBoss EAP command line interface.

Linux/Unix

Windows

10. Apply the patch.

Additional resources

For more details on applying patches, see Patching a ZIP/Installer Installation.

2.3. INSTALLING RH-SSO FROM AN RPM

NOTE

With Red Hat Enterprise Linux 7 and 8, the term channel was replaced with the term
repository. In these instructions only the term repository is used.

You must subscribe to both the JBoss EAP 7.4 and RH-SSO 7.6 repositories before you can install RH-
SSO from an RPM.

NOTE

You cannot continue to receive upgrades to EAP RPMs but stop receiving updates for
RH-SSO.

2.3.1. Subscribing to the JBoss EAP 7.4 repository

Prerequisites

1. Ensure that your Red Hat Enterprise Linux system is registered to your account using Red Hat
Subscription Manager. For more information see the Red Hat Subscription Management
documentation.

2. If you are already subscribed to another JBoss EAP repository, you must unsubscribe from that
repository first.

For Red Hat Enterprise Linux 6, 7: Using Red Hat Subscription Manager, subscribe to the JBoss EAP 7.4
repository using the following command. Replace <RHEL_VERSION> with either 6 or 7 depending on
your Red Hat Enterprise Linux version.

For Red Hat Enterprise Linux 8: Using Red Hat Subscription Manager, subscribe to the JBoss EAP 7.4

$ jboss-cli.sh

> jboss-cli.bat

$ patch apply <path-to-zip>/rh-sso-7.6.8-patch.zip

subscription-manager repos --enable=jb-eap-7.4-for-rhel-<RHEL_VERSION>-server-rpms --
enable=rhel-<RHEL_VERSION>-server-rpms

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

8

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html/upgrading_guide/upgrading#zip-patching
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/quick_registration_for_rhel/index

For Red Hat Enterprise Linux 8: Using Red Hat Subscription Manager, subscribe to the JBoss EAP 7.4
repository using the following command:

2.3.2. Subscribing to the RH-SSO 7.6 repository and installing RH-SSO 7.6

Prerequisites

1. Ensure that your Red Hat Enterprise Linux system is registered to your account using Red Hat
Subscription Manager. For more information see the Red Hat Subscription Management
documentation.

2. Ensure that you have already subscribed to the JBoss EAP 7.4 repository. For more information
see Subscribing to the JBoss EAP 7.4 repository .

Procedure

1. For Red Hat Enterprise Linux 6, 7: Using Red Hat Subscription Manager, subscribe to the RH-
SSO 7.6 repository using the following command. Replace <RHEL_VERSION> with either 6 or 7
depending on your Red Hat Enterprise Linux version.

2. For Red Hat Enterprise Linux 8: Using Red Hat Subscription Manager, subscribe to the RH-SSO
7.6 repository using the following command:

3. For Red Hat Enterprise Linux 6, 7: Install RH-SSO from your subscribed RH-SSO 7.6 repository
using the following command:

yum groupinstall rh-sso7

4. For Red Hat Enterprise Linux 8: Install RH-SSO from your subscribed RH-SSO 7.6 repository
using the following command:

dnf groupinstall rh-sso7

Your installation is complete. The default RH-SSO_HOME path for the RPM installation is /opt/rh/rh-
sso7/root/usr/share/keycloak.

Additional resources

For details on installing the 7.6.8 patch for Red Hat Single Sign-On, see RPM patching.

2.4. IMPORTANT DIRECTORIES

The following are some important directories in the server distribution.

bin/

This contains various scripts to either boot the server or perform some other management action on

subscription-manager repos --enable=jb-eap-7.4-for-rhel-8-x86_64-rpms --enable=rhel-8-for-x86_64-
baseos-rpms --enable=rhel-8-for-x86_64-appstream-rpms

subscription-manager repos --enable=rh-sso-7.6-for-rhel-<RHEL-VERSION>-server-rpms

subscription-manager repos --enable=rh-sso-7.6-for-rhel-8-x86_64-rpms

CHAPTER 2. INSTALLING THE SOFTWARE

9

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/quick_registration_for_rhel/index
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html/upgrading_guide/upgrading#rpm-patching

This contains various scripts to either boot the server or perform some other management action on
the server.

domain/

This contains configuration files and working directory when running Red Hat Single Sign-On in
domain mode.

modules/

These are all the Java libraries used by the server.

standalone/

This contains configuration files and working directory when running Red Hat Single Sign-On in
standalone mode.

standalone/deployments/

If you are writing extensions to Red Hat Single Sign-On, you can put your extensions here. See the
Server Developer Guide for more information on this.

themes/

This directory contains all the html, style sheets, JavaScript files, and images used to display any UI
screen displayed by the server. Here you can modify an existing theme or create your own. See the
Server Developer Guide for more information on this.

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

10

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/

CHAPTER 3. USING OPERATING MODES
Before deploying Red Hat Single Sign-On in a production environment you need to decide which type of
operating mode you are going to use.

Will you run Red Hat Single Sign-On within a cluster?

Do you want a centralized way to manage your server configurations?

Your choice of operating mode affects how you configure databases, configure caching and even how
you boot the server.

TIP

The Red Hat Single Sign-On is built on top of the JBoss EAP Application Server. This guide will only go
over the basics for deployment within a specific mode. If you want specific information on this, a better
place to go would be the JBoss EAP Configuration Guide .

3.1. USING STANDALONE MODE

Standalone operating mode is only useful when you want to run one, and only one Red Hat Single Sign-
On server instance. It is not usable for clustered deployments and all caches are non-distributed and
local-only. It is not recommended that you use standalone mode in production as you will have a single
point of failure. If your standalone mode server goes down, users will not be able to log in. This mode is
really only useful to test drive and play with the features of Red Hat Single Sign-On

3.1.1. Booting in standalone mode

When running the server in standalone mode, there is a specific script you need to boot the server
depending on your operating system. These scripts live in the bin/ directory of the server distribution.

Standalone Boot Scripts

CHAPTER 3. USING OPERATING MODES

11

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

To boot the server:

Linux/Unix

$.../bin/standalone.sh

Windows

> ...\bin\standalone.bat

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

12

WARNING

In order to use Java SE 17 to run Red Hat Single Sign-On in standalone mode the
configuration should be modified executing the bundled script enable-elytron-
se17.cli.

Linux/Unix

Windows

3.1.2. Standalone configuration

The bulk of this guide walks you through how to configure infrastructure level aspects of Red Hat Single
Sign-On. These aspects are configured in a configuration file that is specific to the application server
that Red Hat Single Sign-On is a derivative of. In the standalone operation mode, this file lives in …​
/standalone/configuration/standalone.xml. This file is also used to configure non-infrastructure level
things that are specific to Red Hat Single Sign-On components.

Standalone Config File


$./bin/jboss-cli.sh --file=docs/examples/enable-elytron-se17.cli

> .\bin\jboss-cli.bat --file=docs\examples\enable-elytron-se17.cli

CHAPTER 3. USING OPERATING MODES

13

WARNING

Any changes you make to this file while the server is running will not take effect and
may even be overwritten by the server. Instead use the command line scripting or
the web console of JBoss EAP. See the JBoss EAP Configuration Guide for more
information.

3.2. USING STANDALONE CLUSTERED MODE

Standalone clustered operation mode applies when you want to run Red Hat Single Sign-On within a
cluster. This mode requires that you have a copy of the Red Hat Single Sign-On distribution on each
machine where you want to run a server instance. This mode can be very easy to deploy initially, but can
become quite cumbersome. To make a configuration change, you modify each distribution on each
machine. For a large cluster, this mode can become time consuming and error prone.

3.2.1. Standalone clustered configuration



Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

The distribution has a mostly pre-configured app server configuration file for running within a cluster. It
has all the specific infrastructure settings for networking, databases, caches, and discovery. This file
resides in …​/standalone/configuration/standalone-ha.xml . There’s a few things missing from this
configuration. You can’t run Red Hat Single Sign-On in a cluster without configuring a shared database
connection. You also need to deploy some type of load balancer in front of the cluster. The clustering
and database sections of this guide walk you through these things.

Standalone HA Config

WARNING

Any changes you make to this file while the server is running will not take effect and
may even be overwritten by the server. Instead use the command line scripting or
the web console of JBoss EAP. See the JBoss EAP Configuration Guide for more
information.

3.2.2. Booting in standalone clustered mode



CHAPTER 3. USING OPERATING MODES

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

You use the same boot scripts to start Red Hat Single Sign-On as you do in standalone mode. The
difference is that you pass in an additional flag to point to the HA config file.

Standalone Clustered Boot Scripts

To boot the server:

Linux/Unix

$.../bin/standalone.sh --server-config=standalone-ha.xml

Windows

> ...\bin\standalone.bat --server-config=standalone-ha.xml

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

16

WARNING

In order to use Java SE 17 to run Red Hat Single Sign-On in standalone clustered
mode the configuration should be modified executing the bundled script enable-
elytron-se17.cli.

Linux/Unix

Windows

3.3. USING DOMAIN CLUSTERED MODE

Domain mode is a way to centrally manage and publish the configuration for your servers.

Running a cluster in standard mode can quickly become aggravating as the cluster grows in size. Every
time you need to make a configuration change, you perform it on each node in the cluster. Domain mode
solves this problem by providing a central place to store and publish configurations. It can be quite
complex to set up, but it is worth it in the end. This capability is built into the JBoss EAP Application
Server which Red Hat Single Sign-On derives from.

NOTE

The guide will go over the very basics of domain mode. Detailed steps on how to set up
domain mode in a cluster should be obtained from the JBoss EAP Configuration Guide .

Here are some of the basic concepts of running in domain mode.

domain controller

The domain controller is a process that is responsible for storing, managing, and publishing the
general configuration for each node in the cluster. This process is the central point from which nodes
in a cluster obtain their configuration.

host controller

The host controller is responsible for managing server instances on a specific machine. You configure
it to run one or more server instances. The domain controller can also interact with the host
controllers on each machine to manage the cluster. To reduce the number of running process, a
domain controller also acts as a host controller on the machine it runs on.

domain profile

A domain profile is a named set of configuration that can be used by a server to boot from. A domain
controller can define multiple domain profiles that are consumed by different servers.

server group

A server group is a collection of servers. They are managed and configured as one. You can assign a


$./bin/jboss-cli.sh --file=docs/examples/enable-elytron-se17.cli -
Dconfig=standalone-ha.xml

> .\bin\jboss-cli.bat --file=docs\examples\enable-elytron-se17.cli "-
Dconfig=standalone-ha.xml"

CHAPTER 3. USING OPERATING MODES

17

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

A server group is a collection of servers. They are managed and configured as one. You can assign a
domain profile to a server group and every service in that group will use that domain profile as their
configuration.

In domain mode, a domain controller is started on a master node. The configuration for the cluster
resides in the domain controller. Next a host controller is started on each machine in the cluster. Each
host controller deployment configuration specifies how many Red Hat Single Sign-On server instances
will be started on that machine. When the host controller boots up, it starts as many Red Hat Single
Sign-On server instances as it was configured to do. These server instances pull their configuration from
the domain controller.

NOTE

In some environments, such as Microsoft Azure, the domain mode is not applicable.
Please consult the JBoss EAP documentation.

3.3.1. Domain configuration

Various other chapters in this guide walk you through configuring various aspects like databases, HTTP
network connections, caches, and other infrastructure related things. While standalone mode uses the
standalone.xml file to configure these things, domain mode uses the …​
/domain/configuration/domain.xml configuration file. This is where the domain profile and server group
for the Red Hat Single Sign-On server are defined.

domain.xml

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

18

WARNING

Any changes you make to this file while the domain controller is running will not take
effect and may even be overwritten by the server. Instead use the command line
scripting or the web console of JBoss EAP. See the JBoss EAP Configuration Guide
for more information.

Let’s look at some aspects of this domain.xml file. The auth-server-standalone and auth-server-
clustered profile XML blocks are where you are going to make the bulk of your configuration decisions.
You’ll be configuring things here like network connections, caches, and database connections.

auth-server profile

The auth-server-standalone profile is a non-clustered setup. The auth-server-clustered profile is the
clustered setup.

If you scroll down further, you’ll see various socket-binding-groups defined.

socket-binding-groups

This configration defines the default port mappings for various connectors that are opened with each
Red Hat Single Sign-On server instance. Any value that contains ${… ​} is a value that can be overridden
on the command line with the -D switch, i.e.

$ domain.sh -Djboss.http.port=80

The definition of the server group for Red Hat Single Sign-On resides in the server-groups XML block.
It specifies the domain profile that is used (default) and also some default boot arguments for the Java



 <profiles>
 <profile name="auth-server-standalone">
 ...
 </profile>
 <profile name="auth-server-clustered">
 ...
 </profile>

 <socket-binding-groups>
 <socket-binding-group name="standard-sockets" default-interface="public">
 ...
 </socket-binding-group>
 <socket-binding-group name="ha-sockets" default-interface="public">
 ...
 </socket-binding-group>
 <!-- load-balancer-sockets should be removed in production systems and replaced with a better
software or hardware based one -->
 <socket-binding-group name="load-balancer-sockets" default-interface="public">
 ...
 </socket-binding-group>
 </socket-binding-groups>

CHAPTER 3. USING OPERATING MODES

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

VM when the host controller boots an instance. It also binds a socket-binding-group to the server
group.

server group

3.3.2. Host controller configuration

Red Hat Single Sign-On comes with two host controller configuration files that reside in the …​
/domain/configuration/ directory: host-master.xml and host-slave.xml. host-master.xml is configured to
boot up a domain controller, a load balancer, and one Red Hat Single Sign-On server instance. host-
slave.xml is configured to talk to the domain controller and boot up one Red Hat Single Sign-On server
instance.

NOTE

The load balancer is not a required service. It exists so that you can easily test drive
clustering on your development machine. While usable in production, you have the option
of replacing it if you have a different hardware or software based load balancer you want
to use.

Host Controller Config

 <server-groups>
 <!-- load-balancer-group should be removed in production systems and replaced with a better
software or hardware based one -->
 <server-group name="load-balancer-group" profile="load-balancer">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="load-balancer-sockets"/>
 </server-group>
 <server-group name="auth-server-group" profile="auth-server-clustered">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
 </server-groups>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

20

To disable the load balancer server instance, edit host-master.xml and comment out or remove the
"load-balancer" entry.

Another interesting thing to note about this file is the declaration of the authentication server instance.
It has a port-offset setting. Any network port defined in the domain.xml socket-binding-group or the
server group will have the value of port-offset added to it. For this sample domain setup, we do this so
that ports opened by the load balancer server don’t conflict with the authentication server instance that
is started.

3.3.3. Server instance working directories

Each Red Hat Single Sign-On server instance defined in your host files creates a working directory under
…​/domain/servers/{SERVER NAME} . Additional configuration can be put there, and any temporary, log,
or data files the server instance needs or creates go there too. The structure of these per server
directories ends up looking like any other JBoss EAP booted server.

 <servers>
 <!-- remove or comment out next line -->
 <server name="load-balancer" group="loadbalancer-group"/>
 ...
 </servers>

 <servers>
 ...
 <server name="server-one" group="auth-server-group" auto-start="true">
 <socket-bindings port-offset="150"/>
 </server>
 </servers>

CHAPTER 3. USING OPERATING MODES

21

Working Directories

3.3.4. Booting in domain clustered mode

When running the server in domain mode, there is a specific script you need to run to boot the server
depending on your operating system. These scripts live in the bin/ directory of the server distribution.

Domain Boot Script

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

22

To boot the server:

Linux/Unix

$.../bin/domain.sh --host-config=host-master.xml

Windows

> ...\bin\domain.bat --host-config=host-master.xml

When running the boot script you will need to pass in the host controlling configuration file you are going
to use via the --host-config switch.

CHAPTER 3. USING OPERATING MODES

23

WARNING

In order to use Java SE 17 to run Red Hat Single Sign-On in domain mode the
configuration should be modified executing the bundled script enable-keycloak-
se17-domain.cli.

Linux/Unix

Windows

3.3.5. Testing with a sample clustered domain

You can test drive clustering using the sample domain.xml configuration. This sample domain is meant
to run on one machine and boots up:

a domain controller

an HTTP load balancer

two Red Hat Single Sign-On server instances

Procedure

1. Run the domain.sh script twice to start two separate host controllers.
The first one is the master host controller that starts a domain controller, an HTTP load
balancer, and one Red Hat Single Sign-On authentication server instance. The second one is a
slave host controller that starts up only an authentication server instance.

2. Configure the slave host controller so that it can talk securely to the domain controller. Perform
these steps:
If you omit these steps, the slave host cannot obtain the centralized configuration from the
domain controller.

a. Set up a secure connection by creating a server admin user and a secret that are shared
between the master and the slave.
Run the … ​/bin/add-user.sh script.

b. Select Management User when the script asks about the type of user to add.
This choice generates a secret that you cut and paste into the …​
/domain/configuration/host-slave.xml file.

Add App Server Admin

$ add-user.sh
 What type of user do you wish to add?
 a) Management User (mgmt-users.properties)


$./bin/jboss-cli.sh --file=docs/examples/enable-keycloak-se17-domain.cli

> .\bin\jboss-cli.bat --file=docs\examples\enable-keycloak-se17-domain.cli

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

24

 b) Application User (application-users.properties)
 (a): a
 Enter the details of the new user to add.
 Using realm 'ManagementRealm' as discovered from the existing property files.
 Username : admin
 Password recommendations are listed below. To modify these restrictions edit the add-
user.properties configuration file.
 - The password should not be one of the following restricted values {root, admin,
administrator}
 - The password should contain at least 8 characters, 1 alphabetic character(s), 1
digit(s), 1 non-alphanumeric symbol(s)
 - The password should be different from the username
 Password :
 Re-enter Password :
 What groups do you want this user to belong to? (Please enter a comma separated list,
or leave blank for none)[]:
 About to add user 'admin' for realm 'ManagementRealm'
 Is this correct yes/no? yes
 Added user 'admin' to file '/.../standalone/configuration/mgmt-users.properties'
 Added user 'admin' to file '/.../domain/configuration/mgmt-users.properties'
 Added user 'admin' with groups to file '/.../standalone/configuration/mgmt-
groups.properties'
 Added user 'admin' with groups to file '/.../domain/configuration/mgmt-groups.properties'
 Is this new user going to be used for one AS process to connect to another AS process?
 e.g. for a slave host controller connecting to the master or for a Remoting connection for
server to server EJB calls.
 yes/no? yes
 To represent the user add the following to the server-identities definition <secret
value="bWdtdDEyMyE=" />

NOTE

The add-user.sh script does not add the user to the Red Hat Single Sign-On
server but to the underlying JBoss Enterprise Application Platform. The
credentials used and generated in this script are only for demonstration
purposes. Please use the ones generated on your system.

3. Cut and paste the secret value into the …​/domain/configuration/host-slave.xml file as follows:

4. Add the username of the created user in the …​/domain/configuration/host-slave.xml file:

5. Run the boot script twice to simulate a two node cluster on one development machine.

Boot up master

 <management>
 <security-realms>
 <security-realm name="ManagementRealm">
 <server-identities>
 <secret value="bWdtdDEyMyE="/>
 </server-identities>

 <remote security-realm="ManagementRealm" username="admin">

CHAPTER 3. USING OPERATING MODES

25

Boot up slave

6. Open your browser and go to http://localhost:8080/auth to try it out.

3.4. USING CROSS-SITE REPLICATION MODE

Cross-site replication, which was introduced as a Technology Preview feature in Red Hat Single Sign-On
7.2, is no longer available as a supported feature in any Red Hat SSO 7.x release including the latest RH-
SSO 7.6 release. Red Hat does not recommend any customer implement or use this feature in their
environment because it is not supported. Also, support exceptions for this feature are no longer
considered or accepted.

A new solution for cross-site replication is being discussed and tentatively considered for a future
release of Red Hat build of Keycloak (RHBK), which is the product that will be introduced instead of Red
Hat SSO 8. More details will be available soon.

$ domain.sh --host-config=host-master.xml

$ domain.sh --host-config=host-slave.xml

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

26

http://localhost:8080/auth

CHAPTER 4. MANAGING THE SUBSYSTEM CONFIGURATION
Low-level configuration of Red Hat Single Sign-On is done by editing the standalone.xml, standalone-
ha.xml, or domain.xml file in your distribution. The location of this file depends on your operating
mode.

While there are endless settings you can configure here, this section will focus on configuration of the
keycloak-server subsystem. No matter which configuration file you are using, configuration of the
keycloak-server subsystem is the same.

The keycloak-server subsystem is typically declared toward the end of the file like this:

Note that anything changed in this subsystem will not take effect until the server is rebooted.

4.1. CONFIGURE SPI PROVIDERS

The specifics of each configuration setting is discussed elsewhere in context with that setting. However,
it is useful to understand the format used to declare settings on SPI providers.

Red Hat Single Sign-On is a highly modular system that allows great flexibility. There are more than 50
service provider interfaces (SPIs), and you are allowed to swap out implementations of each SPI. An
implementation of an SPI is known as a provider.

All elements in an SPI declaration are optional, but a full SPI declaration looks like this:

Here we have two providers defined for the SPI myspi. The default-provider is listed as myprovider.
However, it is up to the SPI to decide how it will treat this setting. Some SPIs allow more than one
provider and some do not. So default-provider can help the SPI to choose.

The SPI properties can be used to specify SPI-specific configuration properties. As an example, the
user, client and role SPIs allow the configuration of storage provider timeouts in milliseconds through
the storageProviderTimeout property, as follows:

<subsystem xmlns="urn:jboss:domain:keycloak-server:1.2">
 <web-context>auth</web-context>
 ...
</subsystem>

<spi name="myspi">
 <default-provider>myprovider</default-provider>
 <properties>
 <property name="spi-foo" value="spi-bar"/>
 </properties>
 <provider name="myprovider" enabled="true">
 <properties>
 <property name="foo" value="bar"/>
 </properties>
 </provider>
 <provider name="mysecondprovider" enabled="true">
 <properties>
 <property name="foo" value="foo"/>
 </properties>
 </provider>
</spi>

CHAPTER 4. MANAGING THE SUBSYSTEM CONFIGURATION

27

Also notice that each provider defines its own set of configuration properties. The fact that both
providers above have a property called foo is just a coincidence.

The type of each property value is interpreted by the provider. However, there is one exception.
Consider the jpa provider for the eventsStore SPI:

We see that the value begins and ends with square brackets. That means that the value will be passed to
the provider as a list. In this example, the system will pass the provider a list with two element values
EVENT1 and EVENT2. To add more values to the list, just separate each list element with a comma.
Unfortunately, you do need to escape the quotes surrounding each list element with ".

Follow the steps in Server Developer Guide for more details on custom providers and the configuration
of providers.

4.2. STARTING THE JBOSS EAP CLI

Besides editing the configuration by hand, you also have the option of changing the configuration by
issuing commands via the jboss-cli tool. CLI allows you to configure servers locally or remotely. And it is
especially useful when combined with scripting.

To start the JBoss EAP CLI, you need to run jboss-cli.

Linux/Unix

$.../bin/jboss-cli.sh

Windows

> ...\bin\jboss-cli.bat

This will bring you to a prompt like this:

Prompt

[disconnected /]

If you wish to execute commands on a running server, you will first execute the connect command.

<spi name="user">
 <properties>
 <property name="storageProviderTimeout" value="10000"/>
 </properties>
</spi>

<spi name="eventsStore">
 <provider name="jpa" enabled="true">
 <properties>
 <property name="exclude-events" value="["EVENT1",
 "EVENT2"]"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

28

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/#_providers

connect

[disconnected /] connect
connect
[standalone@localhost:9990 /]

You may be thinking to yourself, "I didn’t enter in any username or password!". If you run jboss-cli on the
same machine as your running standalone server or domain controller and your account has appropriate
file permissions, you do not have to setup or enter in an admin username and password. See the JBoss
EAP Configuration Guide for more details on how to make things more secure if you are uncomfortable
with that setup.

4.3. CLI EMBEDDED MODE

If you do happen to be on the same machine as your standalone server and you want to issue commands
while the server is not active, you can embed the server into CLI and make changes in a special mode
that disallows incoming requests. To do this, first execute the embed-server command with the config
file you wish to change.

embed-server

[disconnected /] embed-server --server-config=standalone.xml
[standalone@embedded /]

4.4. USING CLI GUI MODE

The CLI can also run in GUI mode. GUI mode launches a Swing application that allows you to graphically
view and edit the entire management model of a running server. GUI mode is especially useful when you
need help formatting your CLI commands and learning about the options available. The GUI can also
retrieve server logs from a local or remote server.

Procedure

1. Start the CLI in GUI mode

$.../bin/jboss-cli.sh --gui

Note: to connect to a remote server, you pass the --connect option as well. Use the --help
option for more details.

2. Scroll down to find the node subsystem=keycloak-server.

3. Right-click the node and select Explore subsystem=keycloak-server.
A new tab displays only the keycloak-server subsystem.

keycloak-server subsystem

CHAPTER 4. MANAGING THE SUBSYSTEM CONFIGURATION

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/

4.5. CLI SCRIPTING

The CLI has extensive scripting capabilities. A script is just a text file with CLI commands in it. Consider a
simple script that turns off theme and template caching.

turn-off-caching.cli

/subsystem=keycloak-server/theme=defaults/:write-attribute(name=cacheThemes,value=false)
/subsystem=keycloak-server/theme=defaults/:write-attribute(name=cacheTemplates,value=false)

To execute the script, you can follow the Scripts menu in CLI GUI, or execute the script from the
command line as follows:

$.../bin/jboss-cli.sh --file=turn-off-caching.cli

4.6. CLI RECIPES

Here are some configuration tasks and how to perform them with CLI commands. Note that in all but the
first example, we use the wildcard path ** to mean you should substitute or the path to the keycloak-
server subsystem.

For standalone, this just means:

** = /subsystem=keycloak-server

For domain mode, this would mean something like:

** = /profile=auth-server-clustered/subsystem=keycloak-server

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

30

4.6.1. Changing the web context of the server

/subsystem=keycloak-server/:write-attribute(name=web-context,value=myContext)

4.6.2. Setting the global default theme

**/theme=defaults/:write-attribute(name=default,value=myTheme)

4.6.3. Adding a new SPI and a provider

**/spi=mySPI/:add
**/spi=mySPI/provider=myProvider/:add(enabled=true)

4.6.4. Disabling a provider

**/spi=mySPI/provider=myProvider/:write-attribute(name=enabled,value=false)

4.6.5. Changing the default provider for an SPI

**/spi=mySPI/:write-attribute(name=default-provider,value=myProvider)

4.6.6. Adding or changing a single property value for an SPI

**/spi=mySPI/:map-put(name=properties, key=storageProviderTimeout, value=10000)

4.6.7. Removing a single property from an SPI

**/spi=mySPI/:map-remove(name=properties, key=storageProviderTimeout)

4.6.8. Configuring the dblock SPI

**/spi=dblock/:add(default-provider=jpa)
**/spi=dblock/provider=jpa/:add(properties={lockWaitTimeout => "900"},enabled=true)

4.6.9. Adding or changing a single property value for a provider

**/spi=dblock/provider=jpa/:map-put(name=properties,key=lockWaitTimeout,value=3)

4.6.10. Removing a single property from a provider

**/spi=dblock/provider=jpa/:map-remove(name=properties,key=lockRecheckTime)

4.6.11. Setting values on a provider property of type List

CHAPTER 4. MANAGING THE SUBSYSTEM CONFIGURATION

31

**/spi=eventsStore/provider=jpa/:map-put(name=properties,key=exclude-events,value=
[EVENT1,EVENT2])

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

32

CHAPTER 5. PROFILES
There are features in Red Hat Single Sign-On that are not enabled by default, these include features
that are not fully supported. In addition there are some features that are enabled by default, but that can
be disabled.

The features that can be enabled and disabled are:

Name Description Enabled by default Support level

account2 New Account
Management Console

Yes Supported

account_api Account Management
REST API

Yes Supported

admin_fine_grained_aut
hz

Fine-Grained Admin
Permissions

No Preview

ciba OpenID Connect Client
Initiated Backchannel
Authentication (CIBA)

Yes Supported

client_policies Add client configuration
policies

Yes Supported

client_secret_rotation Enables client secret
rotation for confidential
clients

Yes Preview

par OAuth 2.0 Pushed
Authorization Requests
(PAR)

Yes Supported

declarative_user_profile Configure user profiles
using a declarative style

No Preview

docker Docker Registry
protocol

No Supported

impersonation Ability for admins to
impersonate users

Yes Supported

openshift_integration Extension to enable
securing OpenShift

No Preview

recovery_codes Recovery codes for
authentication

No Preview

CHAPTER 5. PROFILES

33

scripts Write custom
authenticators using
JavaScript

No Preview

step_up_authentication Step-up authentication Yes Supported

token_exchange Token Exchange Service No Preview

upload_scripts Upload scripts No Deprecated

web_authn W3C Web
Authentication
(WebAuthn)

Yes Supported

update_email Update Email Workflow No Preview

Name Description Enabled by default Support level

To enable all preview features start the server with:

bin/standalone.sh|bat -Dkeycloak.profile=preview

You can set this permanently by creating the file standalone/configuration/profile.properties (or
domain/servers/server-one/configuration/profile.properties for server-one in domain mode). Add
the following to the file:

profile=preview

To enable a specific feature start the server with:

bin/standalone.sh|bat -Dkeycloak.profile.feature.<feature name>=enabled

For example to enable Docker use -Dkeycloak.profile.feature.docker=enabled.

You can set this permanently in the profile.properties file by adding:

feature.docker=enabled

To disable a specific feature start the server with:

bin/standalone.sh|bat -Dkeycloak.profile.feature.<feature name>=disabled

For example to disable Impersonation use -Dkeycloak.profile.feature.impersonation=disabled.

You can set this permanently in the profile.properties file by adding:

feature.impersonation=disabled

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

34

CHAPTER 6. SETTING UP THE RELATIONAL DATABASE
Red Hat Single Sign-On comes with its own embedded Java-based relational database called H2. This is
the default database that Red Hat Single Sign-On will use to persist data and really only exists so that
you can run the authentication server by default.

The H2 database is intended only for example purposes. It is not a supported database, so it is not tested
for database migration. We highly recommend that you replace it with a more production ready external
database. The H2 database is not very viable in high concurrency situations and should not be used in a
cluster either. The purpose of this chapter is to show you how to connect Red Hat Single Sign-On to a
more mature database.

Red Hat Single Sign-On uses two layered technologies to persist its relational data. The bottom layered
technology is JDBC. JDBC is a Java API that is used to connect to a RDBMS. There are different JDBC
drivers per database type that are provided by your database vendor. This chapter discusses how to
configure Red Hat Single Sign-On to use one of these vendor-specific drivers.

The top layered technology for persistence is Hibernate JPA. This is an object to relational mapping API
that maps Java Objects to relational data. Most deployments of Red Hat Single Sign-On will never have
to touch the configuration aspects of Hibernate, but we will discuss how that is done if you run into that
rare circumstance.

NOTE

Datasource configuration is covered much more thoroughly in the datasource
configuration chapter in the JBoss EAP Configuration Guide .

6.1. DATABASE SETUP CHECKLIST

Following are the steps you perform to get an RDBMS configured for Red Hat Single Sign-On.

1. Locate and download a JDBC driver for your database

2. Package the driver JAR into a module and install this module into the server

3. Declare the JDBC driver in the configuration profile of the server

4. Modify the datasource configuration to use your database’s JDBC driver

5. Modify the datasource configuration to define the connection parameters to your database

This chapter will use PostgresSQL for all its examples. Other databases follow the same steps for
installation.

6.2. PACKAGING THE JDBC DRIVER

Find and download the JDBC driver JAR for your RDBMS. Before you can use this driver, you must
package it up into a module and install it into the server. Modules define JARs that are loaded into the
Red Hat Single Sign-On classpath and the dependencies those JARs have on other modules.

Procedure

1. Create a directory structure to hold your module definition within the …​/modules/ directory of
your Red Hat Single Sign-On distribution.

The convention is use the Java package name of the JDBC driver for the name of the directory

CHAPTER 6. SETTING UP THE RELATIONAL DATABASE

35

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#datasource_management

The convention is use the Java package name of the JDBC driver for the name of the directory
structure. For PostgreSQL, create the directory org/postgresql/main.

2. Copy your database driver JAR into this directory and create an empty module.xml file within it
too.

Module Directory

3. Open up the module.xml file and create the following XML:

Module XML

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.3" name="org.postgresql">

 <resources>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

36

The module name should match the directory structure of your module. So, org/postgresql
maps to org.postgresql.

The resource-root path attribute should specify the JAR filename of the driver.

The rest are just the normal dependencies that any JDBC driver JAR would have.

6.3. DECLARING AND LOADING THE JDBC DRIVER

You declare your JDBC into your deployment profile so that it loads and becomes available when the
server boots up.

Prerequisites

You have packaged the JDBC driver.

Procedure

1. Declare your JDBC driver by editing one of these files based on your deployment mode:

For standalone mode, edit …​/standalone/configuration/standalone.xml.

For standalone clustering mode, edit …​/standalone/configuration/standalone-ha.xml .

For domain mode, edit …​/domain/configuration/domain.xml.
In domain mode, make sure you edit the profile you are using: either auth-server-
standalone or auth-server-clustered

2. Within the profile, search for the drivers XML block within the datasources subsystem.
You should see a pre-defined driver declared for the H2 JDBC driver. This is where you’ll
declare the JDBC driver for your external database.

JDBC Drivers

3. Within the drivers XML block, declare an additional JDBC driver.

 <resource-root path="postgresql-VERSION.jar"/>
 </resources>

 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

 <subsystem xmlns="urn:jboss:domain:datasources:6.0">
 <datasources>
 ...
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>

CHAPTER 6. SETTING UP THE RELATIONAL DATABASE

37

Assign any name to this driver.

Specify the module attribute which points to the module package that you created earlier
for the driver JAR.

Specify the driver’s Java class.
Here’s an example of installing a PostgreSQL driver that lives in the module example
defined earlier in this chapter.

Declare Your JDBC Drivers

6.4. MODIFYING THE RED HAT SINGLE SIGN-ON DATASOURCE

You modify the existing datasource configuration that Red Hat Single Sign-On uses to connect it to
your new external database. You’ll do this within the same configuration file and XML block that you
registered your JDBC driver in. Here’s an example that sets up the connection to your new database:

Declare Your JDBC Drivers

Prerequisites

 <subsystem xmlns="urn:jboss:domain:datasources:6.0">
 <datasources>
 ...
 <drivers>
 <driver name="postgresql" module="org.postgresql">
 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-
class>
 </driver>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>

 <subsystem xmlns="urn:jboss:domain:datasources:6.0">
 <datasources>
 ...
 <datasource jndi-name="java:jboss/datasources/KeycloakDS" pool-name="KeycloakDS"
enabled="true" use-java-context="true">
 <connection-url>jdbc:postgresql://localhost/keycloak</connection-url>
 <driver>postgresql</driver>
 <pool>
 <max-pool-size>20</max-pool-size>
 </pool>
 <security>
 <user-name>William</user-name>
 <password>password</password>
 </security>
 </datasource>
 ...
 </datasources>
 </subsystem>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

38

You have already declared your JDBC driver.

Procedure

1. Search for the datasource definition for KeycloakDS.
You’ll first need to modify the connection-url. The documentation for your vendor’s JDBC
implementation should specify the format for this connection URL value.

2. Define the driver you will use.
This is the logical name of the JDBC driver you declared in the previous section of this chapter.

It is expensive to open a new connection to a database every time you want to perform a
transaction. To compensate, the datasource implementation maintains a pool of open
connections. The max-pool-size specifies the maximum number of connections it will pool. You
may want to change the value of this depending on the load of your system.

3. Define the database username and password that is needed to connect to the database. This
step is necessary for at least PostgreSQL. You may be concerned that these credentials are in
clear text in the example. Methods exist to obfuscate these credentials, but these methods are
beyond the scope of this guide.

NOTE

For more information about datasource features, see the datasource configuration
chapter in the JBoss EAP Configuration Guide .

6.5. DATABASE CONFIGURATION

The configuration for this component is found in the standalone.xml, standalone-ha.xml, or
domain.xml file in your distribution. The location of this file depends on your operating mode.

Database Config

Possible configuration options are:

dataSource

JNDI name of the dataSource

jta

<subsystem xmlns="urn:jboss:domain:keycloak-server:1.2">
 ...
 <spi name="connectionsJpa">
 <provider name="default" enabled="true">
 <properties>
 <property name="dataSource" value="java:jboss/datasources/KeycloakDS"/>
 <property name="initializeEmpty" value="false"/>
 <property name="migrationStrategy" value="manual"/>
 <property name="migrationExport" value="${jboss.home.dir}/keycloak-database-update.sql"/>
 </properties>
 </provider>
 </spi>
 ...
</subsystem>

CHAPTER 6. SETTING UP THE RELATIONAL DATABASE

39

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#datasource_management

boolean property to specify if datasource is JTA capable

driverDialect

Value of database dialect. In most cases you don’t need to specify this property as dialect will be
autodetected by Hibernate.

initializeEmpty

Initialize database if empty. If set to false the database has to be manually initialized. If you want to
manually initialize the database set migrationStrategy to manual which will create a file with SQL
commands to initialize the database. Defaults to true.

migrationStrategy

Strategy to use to migrate database. Valid values are update, manual and validate. Update will
automatically migrate the database schema. Manual will export the required changes to a file with
SQL commands that you can manually execute on the database. Validate will simply check if the
database is up-to-date.

migrationExport

Path for where to write manual database initialization/migration file.

showSql

Specify whether Hibernate should show all SQL commands in the console (false by default). This is
very verbose!

formatSql

Specify whether Hibernate should format SQL commands (true by default)

globalStatsInterval

Will log global statistics from Hibernate about executed DB queries and other things. Statistics are
always reported to server log at specified interval (in seconds) and are cleared after each report.

schema

Specify the database schema to use

NOTE

These configuration switches and more are described in the JBoss EAP Development
Guide.

6.6. UNICODE CONSIDERATIONS FOR DATABASES

Database schema in Red Hat Single Sign-On only accounts for Unicode strings in the following special
fields:

Realms: display name, HTML display name, localization texts (keys and values)

Federation Providers: display name

Users: username, given name, last name, attribute names and values

Groups: name, attribute names and values

Roles: name

Descriptions of objects

Otherwise, characters are limited to those contained in database encoding which is often 8-bit.
However, for some database systems, it is possible to enable UTF-8 encoding of Unicode characters

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

40

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#java_persistence_api

and use full Unicode character set in all text fields. Often, this is counterbalanced by shorter maximum
length of the strings than in case of 8-bit encodings.

Some of the databases require special settings to database and/or JDBC driver to be able to handle
Unicode characters. Please find the settings for your database below. Note that if a database is listed
here, it can still work properly provided it handles UTF-8 encoding properly both on the level of
database and JDBC driver.

Technically, the key criterion for Unicode support for all fields is whether the database allows setting of
Unicode character set for VARCHAR and CHAR fields. If yes, there is a high chance that Unicode will be
plausible, usually at the expense of field length. If it only supports Unicode in NVARCHAR and NCHAR
fields, Unicode support for all text fields is unlikely as Keycloak schema uses VARCHAR and CHAR
fields extensively.

6.6.1. Oracle database

Unicode characters are properly handled provided the database was created with Unicode support in
VARCHAR and CHAR fields (e.g. by using AL32UTF8 character set as the database character set). No
special settings is needed for JDBC driver.

If the database character set is not Unicode, then to use Unicode characters in the special fields, the
JDBC driver needs to be configured with the connection property oracle.jdbc.defaultNChar set to
true. It might be wise, though not strictly necessary, to also set the oracle.jdbc.convertNcharLiterals
connection property to true. These properties can be set either as system properties or as connection
properties. Please note that setting oracle.jdbc.defaultNChar may have negative impact on
performance. For details, please refer to Oracle JDBC driver configuration documentation.

6.6.2. Microsoft SQL Server database

Unicode characters are properly handled only for the special fields. No special settings of JDBC driver or
database is necessary.

6.6.3. MySQL database

Unicode characters are properly handled provided the database was created with Unicode support in
VARCHAR and CHAR fields in the CREATE DATABASE command (e.g. by using utf8 character set as
the default database character set in MySQL 5.5. Please note that utf8mb4 character set does not work
due to different storage requirements to utf8 character set [1]). Note that in this case, length restriction
to non-special fields does not apply because columns are created to accommodate given amount of
characters, not bytes. If the database default character set does not allow storing Unicode, only the
special fields allow storing Unicode values.

At the side of JDBC driver settings, it is necessary to add a connection property
characterEncoding=UTF-8 to the JDBC connection settings.

6.6.4. PostgreSQL database

Unicode is supported when the database character set is UTF8. In that case, Unicode characters can be
used in any field, there is no reduction of field length for non-special fields. No special settings of JDBC
driver is necessary.

The character set of a PostgreSQL database is determined at the time it is created. You can determine
the default character set for a PostgreSQL cluster with the SQL command

show server_encoding;

CHAPTER 6. SETTING UP THE RELATIONAL DATABASE

41

If the default character set is not UTF 8, then you can create the database with UTF8 as its character
set like this:

[1] Tracked as https://issues.redhat.com/browse/KEYCLOAK-3873

create database keycloak with encoding 'UTF8';

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

42

https://issues.redhat.com/browse/KEYCLOAK-3873

CHAPTER 7. USE OF THE PUBLIC HOSTNAME
Red Hat Single Sign-On uses the public hostname for a number of things. For example, in the token
issuer fields and URLs sent in password reset emails.

The Hostname SPI provides a way to configure the hostname for a request. The default provider allows
setting a fixed URL for frontend requests, while allowing backend requests to be based on the request
URI. It is also possible to develop your own provider in the case the built-in provider does not provide
the functionality needed.

7.1. DEFAULT PROVIDER

The default hostname provider uses the configured frontendUrl as the base URL for frontend requests
(requests from user-agents) and uses the request URL as the basis for backend requests (direct
requests from clients).

Frontend request do not have to have the same context-path as the Keycloak server. This means you
can expose Keycloak on for example https://auth.example.org or https://example.org/keycloak while
internally its URL could be https://10.0.0.10:8080/auth.

This makes it possible to have user-agents (browsers) send requests to Red Hat Single Sign-On through
the public domain name, while internal clients can use an internal domain name or IP address.

This is reflected in the OpenID Connect Discovery endpoint for example where the
authorization_endpoint uses the frontend URL, while token_endpoint uses the backend URL. As a
note here a public client for instance would contact Keycloak through the public endpoint, which would
result in the base of authorization_endpoint and token_endpoint being the same.

To set the frontendUrl for Keycloak you can either pass add -
Dkeycloak.frontendUrl=https://auth.example.org to the startup or you can configure it in
standalone.xml. See the example below:

To update the frontendUrl with jboss-cli use the following command:

If you want all requests to go through the public domain name you can force backend requests to use
the frontend URL as well by setting forceBackendUrlToFrontendUrl to true.

It is also possible to override the default frontend URL for individual realms. This can be done in the
admin console.

If you do not want to expose the admin endpoints and console on the public domain use the property
adminUrl to set a fixed URL for the admin console, which is different to the frontendUrl. It is also

<spi name="hostname">
 <default-provider>default</default-provider>
 <provider name="default" enabled="true">
 <properties>
 <property name="frontendUrl" value="https://auth.example.com"/>
 <property name="forceBackendUrlToFrontendUrl" value="false"/>
 </properties>
 </provider>
</spi>

/subsystem=keycloak-server/spi=hostname/provider=default:write-
attribute(name=properties.frontendUrl,value="https://auth.example.com")

CHAPTER 7. USE OF THE PUBLIC HOSTNAME

43

https://auth.example.org
https://example.org/keycloak
https://10.0.0.10:8080/auth

required to block access to /auth/admin externally, for details on how to do that refer to the Server
Administration Guide.

7.2. CUSTOM PROVIDER

To develop a custom hostname provider you need to implement
org.keycloak.urls.HostnameProviderFactory and org.keycloak.urls.HostnameProvider.

Follow the instructions in the Service Provider Interfaces section in Server Developer Guide for more
information on how to develop a custom provider.

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

44

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/

CHAPTER 8. SETTING UP THE NETWORK
The default installation of Red Hat Single Sign-On can run with some networking limitations. For one, all
network endpoints bind to localhost so the auth server is really only usable on one local machine. For
HTTP based connections, it does not use default ports like 80 and 443. HTTPS/SSL is not configured
out of the box and without it, Red Hat Single Sign-On has many security vulnerabilities. Finally, Red Hat
Single Sign-On may often need to make secure SSL and HTTPS connections to external servers and
thus need a trust store set up so that endpoints can be validated correctly. This chapter discusses all of
these things.

8.1. BIND ADDRESSES

By default Red Hat Single Sign-On binds to the localhost loopback address 127.0.0.1. That’s not a very
useful default if you want the authentication server available on your network. Generally, what we
recommend is that you deploy a reverse proxy or load balancer on a public network and route traffic to
individual Red Hat Single Sign-On server instances on a private network. In either case though, you still
need to set up your network interfaces to bind to something other than localhost.

Setting the bind address is quite easy and can be done on the command line with either the
standalone.sh or domain.sh boot scripts discussed in the Choosing an Operating Mode chapter.

$ standalone.sh -b 192.168.0.5

The -b switch sets the IP bind address for any public interfaces.

Alternatively, if you don’t want to set the bind address at the command line, you can edit the profile
configuration of your deployment. Open up the profile configuration file (standalone.xml or domain.xml
depending on your operating mode) and look for the interfaces XML block.

The public interface corresponds to subsystems creating sockets that are available publicly. An example
of one of these subsystems is the web layer which serves up the authentication endpoints of Red Hat
Single Sign-On. The management interface corresponds to sockets opened up by the management
layer of the JBoss EAP. Specifically the sockets which allow you to use the jboss-cli.sh command line
interface and the JBoss EAP web console.

In looking at the public interface you see that it has a special string ${jboss.bind.address:127.0.0.1}.
This string denotes a value 127.0.0.1 that can be overridden on the command line by setting a Java
system property, i.e.:

$ domain.sh -Djboss.bind.address=192.168.0.5

The -b is just a shorthand notation for this command. So, you can either change the bind address value
directly in the profile config, or change it on the command line when you boot up.

NOTE

 <interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 </interfaces>

CHAPTER 8. SETTING UP THE NETWORK

45

NOTE

There are many more options available when setting up interface definitions. For more
information, see the network interface in the JBoss EAP Configuration Guide .

8.2. SOCKET PORT BINDINGS

The ports opened for each socket have a pre-defined default that can be overridden at the command
line or within configuration. To illustrate this configuration, let’s pretend you are running in standalone
mode and open up the …​/standalone/configuration/standalone.xml. Search for socket-binding-group.

socket-bindings define socket connections that will be opened by the server. These bindings specify
the interface (bind address) they use as well as what port number they will open. The ones you will be
most interested in are:

http

Defines the port used for Red Hat Single Sign-On HTTP connections

https

Defines the port used for Red Hat Single Sign-On HTTPS connections

ajp

This socket binding defines the port used for the AJP protocol. This protocol is used by Apache
HTTPD server in conjunction mod-cluster when you are using Apache HTTPD as a load balancer.

management-http

Defines the HTTP connection used by JBoss EAP CLI and web console.

When running in domain mode setting the socket configurations is a bit trickier as the example
domain.xml file has multiple socket-binding-groups defined. If you scroll down to the server-group
definitions you can see what socket-binding-group is used for each server-group.

domain socket bindings

 <socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 <socket-binding name="management-http" interface="management"
port="${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management"
port="${jboss.management.https.port:9993}"/>
 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>
 <socket-binding name="http" port="${jboss.http.port:8080}"/>
 <socket-binding name="https" port="${jboss.https.port:8443}"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
 <outbound-socket-binding name="mail-smtp">
 <remote-destination host="localhost" port="25"/>
 </outbound-socket-binding>
 </socket-binding-group>

 <server-groups>
 <server-group name="load-balancer-group" profile="load-balancer">
 ...
 <socket-binding-group ref="load-balancer-sockets"/>
 </server-group>
 <server-group name="auth-server-group" profile="auth-server-clustered">

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#network_and_port_configuration

NOTE

There are many more options available when setting up socket-binding-group
definitions. For more information, see the socket binding group in the JBoss EAP
Configuration Guide.

8.3. HTTPS/SSL

WARNING

Red Hat Single Sign-On is not set up by default to handle SSL/HTTPS. It is highly
recommended that you either enable SSL on the Red Hat Single Sign-On server
itself or on a reverse proxy in front of the Red Hat Single Sign-On server.

This default behavior is defined by the SSL/HTTPS mode of each Red Hat Single Sign-On realm. This is
discussed in more detail in the Server Administration Guide, but let’s give some context and a brief
overview of these modes.

external requests

Red Hat Single Sign-On can run out of the box without SSL so long as you stick to private IP
addresses like localhost, 127.0.0.1, 10.x.x.x, 192.168.x.x, and 172.16.x.x. If you don’t have
SSL/HTTPS configured on the server or you try to access Red Hat Single Sign-On over HTTP from a
non-private IP adress you will get an error.

none

Red Hat Single Sign-On does not require SSL. This should really only be used in development when
you are playing around with things.

all requests

Red Hat Single Sign-On requires SSL for all IP addresses.

The SSL mode for each realm can be configured in the Red Hat Single Sign-On admin console.

8.4. ENABLING HTTPS/SSL FOR THE RED HAT SINGLE SIGN-ON
SERVER

If you are not using a reverse proxy or load balancer to handle HTTPS traffic for you, you’ll need to
enable HTTPS for the Red Hat Single Sign-On server. This involves

1. Obtaining or generating a keystore that contains the private key and certificate for SSL/HTTP
traffic

2. Configuring the Red Hat Single Sign-On server to use this keypair and certificate.

 ...
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
 </server-groups>



CHAPTER 8. SETTING UP THE NETWORK

47

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#network_and_port_configuration
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/

8.4.1. Creating the Certificate and Java Keystore

In order to allow HTTPS connections, you need to obtain a self signed or third-party signed certificate
and import it into a Java keystore before you can enable HTTPS in the web container where you are
deploying the Red Hat Single Sign-On Server.

8.4.1.1. Self Signed Certificate

In development, you will probably not have a third party signed certificate available to test a Red Hat
Single Sign-On deployment so you’ll need to generate a self-signed one using the keytool utility that
comes with the Java JDK.

$ keytool -genkey -alias localhost -keyalg RSA -keystore keycloak.jks -validity 10950
 Enter keystore password: secret
 Re-enter new password: secret
 What is your first and last name?
 [Unknown]: localhost
 What is the name of your organizational unit?
 [Unknown]: Keycloak
 What is the name of your organization?
 [Unknown]: Red Hat
 What is the name of your City or Locality?
 [Unknown]: Westford
 What is the name of your State or Province?
 [Unknown]: MA
 What is the two-letter country code for this unit?
 [Unknown]: US
 Is CN=localhost, OU=Keycloak, O=Test, L=Westford, ST=MA, C=US correct?
 [no]: yes

When you see the question What is your first and last name ?, supply the DNS name of the machine
where you are installing the server. For testing purposes, localhost should be used. After executing this
command, the keycloak.jks file will be generated in the same directory as you executed the keytool
command in.

If you want a third-party signed certificate, but don’t have one, you can obtain one for free at cacert.org.
However, you first need to use the following procedure.

Procedure

1. Generate a Certificate Request:

$ keytool -certreq -alias yourdomain -keystore keycloak.jks > keycloak.careq

Where yourdomain is a DNS name for which this certificate is generated. Keytool generates the
request:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIC2jCCAcICAQAwZTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1BMREwDwYDVQQHE
whXZXN0Zm9y
ZDEQMA4GA1UEChMHUmVkIEhhdDEQMA4GA1UECxMHUmVkIEhhdDESMBAGA1UEAxM
JbG9jYWxob3N0
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr7kck2TaavlEOGbcpi9c0rncY4Hhd
zmY
Ax2nZfq1eZEaIPqI5aTxwQZzzLDK9qbeAd8Ji79HzSqnRDxNYaZu7mAYhFKHgixsolE3o5Yfzb

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

48

http://www.cacert.org

w1
29RvyeUVe+WZxv5oo9wolVVpdSINIMEL2LaFhtX/c1dqiqYVpfnvFshZQaIg2nL8juzZcBjj4as
H98gIS7khql/dkZKsw9NLvyxgJvp7PaXurX29fNf3ihG+oFrL22oFyV54BWWxXCKU/GPn61EGZ
Gw
Ft2qSIGLdctpMD1aJR2bcnlhEjZKDksjQZoQ5YMXaAGkcYkG6QkgrocDE2YXDbi7GIdf9MegV
J35
2DQMpwIDAQABoDAwLgYJKoZIhvcNAQkOMSEwHzAdBgNVHQ4EFgQUQwlZJBA+fjiDdiVz
aO9vrE/i
n2swDQYJKoZIhvcNAQELBQADggEBAC5FRvMkhal3q86tHPBYWBuTtmcSjs4qUm6V6f63frh
veWHf
PzRrI1xH272XUIeBk0gtzWo0nNZnf0mMCtUBbHhhDcG82xolikfqibZijoQZCiGiedVjHJFtniDQ
9bMDUOXEMQ7gHZg5q6mJfNG9MbMpQaUVEEFvfGEQQxbiFK7hRWU8S23/d80e8nExgQx
dJWJ6vd0X
MzzFK6j4Dj55bJVuM7GFmfdNC52pNOD5vYe47Aqh8oajHX9XTycVtPXl45rrWAH33ftbrS8SrZ
2S
vqIFQeuLL3BaHwpl3t7j2lMWcK1p80laAxEASib/fAwrRHpLHBXRcq6uALUOZl4Alt8=
-----END NEW CERTIFICATE REQUEST-----

2. Send this CA request to your Certificate Authority (CA).
The CA will issue you a signed certificate and send it to you.

3. Obtain and import the root certificate of the CA.
You can download the cert from CA (in other words: root.crt) and import as follows:

$ keytool -import -keystore keycloak.jks -file root.crt -alias root

4. Import your new CA generated certificate to your keystore:

$ keytool -import -alias yourdomain -keystore keycloak.jks -file your-certificate.cer

8.4.2. Configuring Red Hat Single Sign-On to use the keystore

Now that you have a Java keystore with the appropriate certificates, you need to configure your Red Hat
Single Sign-On installation to use it. Use the configuration procedure that applies to your installation:

JBoss Security Legacy

Elytron TLS v1.2

Elytron TLS v1.3

8.4.2.1. JBoss Security Legacy

Procedure

1. Edit the standalone.xml, standalone-ha.xml, or host.xml file to use the keystore and enable
HTTPS.

2. Either move the keystore file to the configuration directory of your deployment or the file in a
location you choose and provide an absolute path to it.
If you are using absolute paths, remove the optional relative-to parameter from your
configuration (See operating mode).

3. Create a batch file named sso_legacy.cli in the bin directory of JBoss EAP.

CHAPTER 8. SETTING UP THE NETWORK

49

4. Add the following content to the batch file:

5. Start the Red Hat Single Sign-On server.

6. Change to the bin directory of JBoss EAP.

7. Run the following script.

8. Restart the Red Hat Single Sign-On server so that the sso_legacy.cli changes take effect.

8.4.2.2. Elytron TLS v1.2

Procedure

1. Create a batch file named sso.cli in the bin directory of JBoss EAP.

2. Add the following content to the batch file:

Start batching commands

batch

/core-service=management/security-realm=UndertowRealm:add()
/core-service=management/security-realm=UndertowRealm/server-identity=ssl:add(keystore-
path=keycloak.jks, keystore-relative-to=jboss.server.config.dir, keystore-password=secret)
/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=security-realm, value=UndertowRealm)

Run the batch commands

run-batch

$ sh jboss-cli.sh --connect --file=sso_legacy.cli

The batch executed successfully
process-state: reload-required

Start batching commands

batch

Add the keystore, key manager and ssl context configuration in the elytron subsystem

/subsystem=elytron/key-store=httpsKS:add(relative-
to=jboss.server.config.dir,path=keycloak.jks,credential-reference={clear-
text=secret},type=JKS)
/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,credential-reference=
{clear-text=secret})
/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=
["TLSv1.2"])

Change the undertow subsystem configuration to use the ssl context defined in the
previous step for https

/subsystem=undertow/server=default-server/https-listener=https:undefine-

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

50

3. Start the Red Hat Single Sign-On server.

4. Change to the bin directory of JBoss EAP.

5. Run the following script.

6. Restart the Red Hat Single Sign-On server so that the sso.cli changes take effect.

For more information on configuring TLS, refer to the WildFly documentation.

8.4.2.3. Elytron TLS 1.3

Procedure

1. Create a batch file named sso.cli in the bin directory of JBoss EAP.

2. Add the following content to the batch file:

attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=httpsSSC)

Run the batch commands

run-batch

$ sh jboss-cli.sh --connect --file=sso.cli

The batch executed successfully
process-state: reload-required

batch

Add the keystore, key manager and ssl context configuration in the elytron subsystem
/subsystem=elytron/key-store=httpsKS:add(relative-
to=jboss.server.config.dir,path=keycloak.jks,credential-reference={clear-
text=secret},type=JKS)
/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS,credential-reference=
{clear-text=secret})

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=
["TLSv1.3"])
/subsystem=elytron/server-ssl-context=httpsSSC:write-attribute(name=cipher-suite-
names,value=TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AE
S_128_GCM_SHA256)

Change the undertow subsystem configuration to use the ssl context defined in the
previous step for https

/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=httpsSSC)

CHAPTER 8. SETTING UP THE NETWORK

51

https://docs.wildfly.org/25/WildFly_Elytron_Security.html#configure-ssltls

3. Start the Red Hat Single Sign-On server.

4. Change to the bin directory of JBoss EAP.

5. Run the following script.

6. Restart the Red Hat Single Sign-On server so that the sso.cli changes take effect.

For more information on configuring TLS, refer to the WildFly documentation.

8.5. OUTGOING HTTP REQUESTS

The Red Hat Single Sign-On server often needs to make non-browser HTTP requests to the applications
and services it secures. The auth server manages these outgoing connections by maintaining an HTTP
client connection pool. There are some things you’ll need to configure in standalone.xml, standalone-
ha.xml, or domain.xml. The location of this file depends on your operating mode.

HTTP client Config example

Possible configuration options are:

establish-connection-timeout-millis

Timeout for establishing a socket connection.

socket-timeout-millis

If an outgoing request does not receive data for this amount of time, timeout the connection.

connection-pool-size

How many connections can be in the pool (128 by default).

max-pooled-per-route

How many connections can be pooled per host (64 by default).

connection-ttl-millis

Maximum connection time to live in milliseconds. Not set by default.

max-connection-idle-time-millis

Maximum time the connection might stay idle in the connection pool (900 seconds by default). Will

Run the batch commands

run-batch

$ sh jboss-cli.sh --connect --file=sso.cli

The batch executed successfully
process-state: reload-required

<spi name="connectionsHttpClient">
 <provider name="default" enabled="true">
 <properties>
 <property name="connection-pool-size" value="256"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

52

https://docs.wildfly.org/25/WildFly_Elytron_Security.html#configure-ssltls

Maximum time the connection might stay idle in the connection pool (900 seconds by default). Will
start background cleaner thread of Apache HTTP client. Set to -1 to disable this checking and the
background thread.

disable-cookies

true by default. When set to true, this will disable any cookie caching.

client-keystore

This is the file path to a Java keystore file. This keystore contains client certificate for two-way SSL.

client-keystore-password

Password for the client keystore. This is REQUIRED if client-keystore is set.

client-key-password

Password for the client’s key. This is REQUIRED if client-keystore is set.

proxy-mappings

Denotes proxy configurations for outgoing HTTP requests. See the section on Proxy Mappings for
Outgoing HTTP Requests for more details.

disable-trust-manager

If an outgoing request requires HTTPS and this config option is set to true you do not have to specify
a truststore. This setting should only be used during development and never in production as it will
disable verification of SSL certificates. This is OPTIONAL. The default value is false.

8.5.1. Proxy mappings for outgoing HTTP requests

Outgoing HTTP requests sent by Red Hat Single Sign-On can optionally use a proxy server based on a
comma delimited list of proxy-mappings. A proxy-mapping denotes the combination of a regex based
hostname pattern and a proxy-uri in the form of hostnamePattern;proxyUri, e.g.:

.*\.(google|googleapis)\.com;http://www-proxy.acme.com:8080

To determine the proxy for an outgoing HTTP request the target hostname is matched against the
configured hostname patterns. The first matching pattern determines the proxy-uri to use. If none of the
configured patterns match for the given hostname then no proxy is used.

If the proxy server requires authentication, include the proxy user’s credentials in this format
username:password@. For example:

.*\.(google|googleapis)\.com;http://user01:pas2w0rd@www-proxy.acme.com:8080

The special value NO_PROXY for the proxy-uri can be used to indicate that no proxy should be used for
hosts matching the associated hostname pattern. It is possible to specify a catch-all pattern at the end
of the proxy-mappings to define a default proxy for all outgoing requests.

The following example demonstrates the proxy-mapping configuration.

All requests to Google APIs should use http://www-proxy.acme.com:8080 as proxy
.*\.(google|googleapis)\.com;http://www-proxy.acme.com:8080

All requests to internal systems should use no proxy
.*\.acme\.com;NO_PROXY

All other requests should use http://fallback:8080 as proxy
.*;http://fallback:8080

CHAPTER 8. SETTING UP THE NETWORK

53

This can be configured via the following jboss-cli command. Note that you need to properly escape the
regex-pattern as shown below.

echo SETUP: Configure proxy routes for HttpClient SPI

In case there is no connectionsHttpClient definition yet
/subsystem=keycloak-server/spi=connectionsHttpClient/provider=default:add(enabled=true)

Configure the proxy-mappings
/subsystem=keycloak-server/spi=connectionsHttpClient/provider=default:write-
attribute(name=properties.proxy-mappings,value=[".*\\.(google|googleapis)\\.com;http://www-
proxy.acme.com:8080",".*\\.acme\\.com;NO_PROXY",".*;http://fallback:8080"])

The jboss-cli command results in the following subsystem configuration. Note that one needs to
encode " characters with ".

8.5.2. Using standard environment variables

Alternatively, it is possible to use standard environment variables to configure the proxy mappings, that
is HTTP_PROXY, HTTPS_PROXY and NO_PROXY variables.

The HTTP_PROXY and HTTPS_PROXY variables represent the proxy server that should be used for all
outgoing HTTP requests. Red Hat Single Sign-On does not differ between the two. If both are specified,
HTTPS_PROXY takes the precedence regardless of the actual scheme the proxy server uses.

The NO_PROXY variable is used to define a comma separated list of hostnames that should not use the
proxy. If a hostname is specified, all its prefixes (subdomains) are also excluded from using proxy.

Take the following example:

HTTPS_PROXY=https://www-proxy.acme.com:8080
NO_PROXY=google.com,login.facebook.com

In this example, all outgoing HTTP requests will use https://www-proxy.acme.com:8080 proxy server
except for requests to for example login.google.com, google.com, auth.login.facebook.com.
However, for example groups.facebook.com will be routed through the proxy.

NOTE

The environment variables can be lowercase or uppercase. Lowercase takes precedence.
For example if both HTTP_PROXY and http_proxy are defined, http_proxy will be used.

<spi name="connectionsHttpClient">
 <provider name="default" enabled="true">
 <properties>
 <property
 name="proxy-mappings"
 value="[".*\\.(google|googleapis)\\.com;http://www-
proxy.acme.com:8080",".*\\.acme\\.com;NO_PROXY",".*;http://fallback:8080&qu
ot;]"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

54

If proxy mappings are defined using the subsystem configuration (as described above), the environment
variables are not considered by Red Hat Single Sign-On. This scenario applies in case no proxy server
should be used despite having for example HTTP_PROXY environment variable defined. To do so, you
can specify a generic no proxy route as follows:

8.5.3. Outgoing HTTPS request truststore

When Red Hat Single Sign-On invokes on remote HTTPS endpoints, it has to validate the remote
server’s certificate in order to ensure it is connecting to a trusted server. This is necessary in order to
prevent man-in-the-middle attacks. The certificates of these remote server’s or the CA that signed
these certificates must be put in a truststore. This truststore is managed by the Red Hat Single Sign-On
server.

The configuration of the trustore is always done by the Red Hat Single Sign-On truststore SPI. The
instructions in this section apply if the keystore was configured bye the JBoss Security Legacy or
Elytron TLS.

The truststore is used when connecting securely to identity brokers, LDAP identity providers, when
sending emails, and for backchannel communication with client applications.

WARNING

By default, a truststore provider is not configured, and any https connections fall
back to standard java truststore configuration as described in Java’s JSSE
Reference Guide. If there is no trust established, then these outgoing HTTPS
requests will fail.

You can use keytool to create a new truststore file or add trusted host certificates to an existing one:

$ keytool -import -alias HOSTDOMAIN -keystore truststore.jks -file host-certificate.cer

The truststore is configured within the standalone.xml, standalone-ha.xml, or domain.xml file in your
distribution. The location of this file depends on your operating mode. You can add your truststore
configuration by using the following template:

<spi name="connectionsHttpClient">
 <provider name="default" enabled="true">
 <properties>
 <property name="proxy-mappings" value=".*;NO_PROXY"/>
 </properties>
 </provider>
</spi>



<spi name="truststore">
 <provider name="file" enabled="true">
 <properties>
 <property name="file" value="path to your .jks file containing public certificates"/>
 <property name="password" value="password"/>
 <property name="hostname-verification-policy" value="WILDCARD"/>

CHAPTER 8. SETTING UP THE NETWORK

55

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html

Possible configuration options for this setting are:

file

The path to a Java keystore file. HTTPS requests need a way to verify the host of the server they are
talking to. This is what the trustore does. The keystore contains one or more trusted host certificates
or certificate authorities. This truststore file should only contain public certificates of your secured
hosts. This is REQUIRED if any of these properties are defined.

password

Password of the keystore. This is REQUIRED if any of these properties are defined.

hostname-verification-policy

WILDCARD by default. For HTTPS requests, this verifies the hostname of the server’s certificate.
ANY means that the hostname is not verified. WILDCARD Allows wildcards in subdomain names i.e.
*.foo.com. STRICT CN must match hostname exactly.

 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

56

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO
RUN IN A CLUSTER

To configure Red Hat Single Sign-On to run in a cluster, you perform these actions:

Pick an operation mode

Configure a shared external database

Set up a load balancer

Supplying a private network that supports IP multicast

Picking an operation mode and configuring a shared database have been discussed earlier in this guide.
This chapter describes setting up a load balancer and supplying a private network as well as booting up a
host in the cluster.

NOTE

It is possible to cluster Red Hat Single Sign-On without IP Multicast, but this topic is
beyond the scope of this guide. For more information, see JGroups chapter of the JBoss
EAP Configuration Guide.

9.1. RECOMMENDED NETWORK ARCHITECTURE

The recommended network architecture for deploying Red Hat Single Sign-On is to set up an
HTTP/HTTPS load balancer on a public IP address that routes requests to Red Hat Single Sign-On
servers sitting on a private network. This isolates all clustering connections and provides a nice means of
protecting the servers.

NOTE

By default, there is nothing to prevent unauthorized nodes from joining the cluster and
broadcasting multicast messages. This is why cluster nodes should be in a private
network, with a firewall protecting them from outside attacks.

9.2. CLUSTERING EXAMPLE

Red Hat Single Sign-On does come with an out of the box clustering demo that leverages domain
mode. Review the Clustered Domain Example chapter for more details.

9.3. SETTING UP A LOAD BALANCER OR PROXY

This section discusses a number of things you need to configure before you can put a reverse proxy or
load balancer in front of your clustered Red Hat Single Sign-On deployment. It also covers configuring
the built-in load balancer that was Clustered Domain Example.

The following diagram illustrates the use of a load balancer. In this example, the load balancer serves as a
reverse proxy between three clients and a cluster of three Red Hat Single Sign-On servers.

Example Load Balancer Diagram

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER

57

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#cluster_communication_jgroups

9.3.1. Identifying client IP addresses

A few features in Red Hat Single Sign-On rely on the fact that the remote address of the HTTP client
connecting to the authentication server is the real IP address of the client machine. Examples include:

Event logs - a failed login attempt would be logged with the wrong source IP address

SSL required - if the SSL required is set to external (the default) it should require SSL for all
external requests

Authentication flows - a custom authentication flow that uses the IP address to for example
show OTP only for external requests

Dynamic Client Registration

This can be problematic when you have a reverse proxy or loadbalancer in front of your Red Hat Single
Sign-On authentication server. The usual setup is that you have a frontend proxy sitting on a public
network that load balances and forwards requests to backend Red Hat Single Sign-On server instances
located in a private network. There is some extra configuration you have to do in this scenario so that
the actual client IP address is forwarded to and processed by the Red Hat Single Sign-On server
instances. Specifically:

Configure your reverse proxy or loadbalancer to properly set X-Forwarded-For and X-
Forwarded-Proto HTTP headers.

Configure your reverse proxy or loadbalancer to preserve the original 'Host' HTTP header.

Configure the authentication server to read the client’s IP address from X-Forwarded-For
header.

Configuring your proxy to generate the X-Forwarded-For and X-Forwarded-Proto HTTP headers and

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

58

preserving the original Host HTTP header is beyond the scope of this guide. Take extra precautions to
ensure that the X-Forwarded-For header is set by your proxy. If your proxy isn’t configured correctly,
then rogue clients can set this header themselves and trick Red Hat Single Sign-On into thinking the
client is connecting from a different IP address than it actually is. This becomes really important if you
are doing any black or white listing of IP addresses.

Beyond the proxy itself, there are a few things you need to configure on the Red Hat Single Sign-On
side of things. If your proxy is forwarding requests via the HTTP protocol, then you need to configure
Red Hat Single Sign-On to pull the client’s IP address from the X-Forwarded-For header rather than
from the network packet. To do this, open up the profile configuration file (standalone.xml, standalone-
ha.xml, or domain.xml depending on your operating mode) and look for the
urn:jboss:domain:undertow:12.0 XML block.

X-Forwarded-For HTTP Config

Add the proxy-address-forwarding attribute to the http-listener element. Set the value to true.

If your proxy is using the AJP protocol instead of HTTP to forward requests (i.e. Apache HTTPD + mod-
cluster), then you have to configure things a little differently. Instead of modifying the http-listener, you
need to add a filter to pull this information from the AJP packets.

X-Forwarded-For AJP Config

9.3.2. Enabling HTTPS/SSL with a reverse proxy

<subsystem xmlns="urn:jboss:domain:undertow:12.0">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http" redirect-socket="https"
 proxy-address-forwarding="true"/>
 ...
 </server>
 ...
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:12.0">
 <buffer-cache name="default"/>
 <server name="default-server">
 <ajp-listener name="ajp" socket-binding="ajp"/>
 <http-listener name="default" socket-binding="http" redirect-socket="https"/>
 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="proxy-peer"/>
 </host>
 </server>
 ...
 <filters>
 ...
 <filter name="proxy-peer"
 class-name="io.undertow.server.handlers.ProxyPeerAddressHandler"
 module="io.undertow.core" />
 </filters>
 </subsystem>

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER

59

Assuming that your reverse proxy doesn’t use port 8443 for SSL you also need to configure to what port
the HTTPS traffic is redirected.

Procedure

1. Add the redirect-socket attribute to the http-listener element. The value should be proxy-
https which points to a socket binding you also need to define.

2. Add a new socket-binding element to the socket-binding-group element:

9.3.3. Verifying the configuration

You can verify the reverse proxy or load balancer configuration

Procedure

1. Open the path /auth/realms/master/.well-known/openid-configuration through the reverse
proxy.
For example if the reverse proxy address is https://acme.com/ then open the URL
https://acme.com/auth/realms/master/.well-known/openid-configuration. This will show a
JSON document listing a number of endpoints for Red Hat Single Sign-On.

2. Make sure the endpoints starts with the address (scheme, domain and port) of your reverse
proxy or load balancer. By doing this you make sure that Red Hat Single Sign-On is using the
correct endpoint.

3. Verify that Red Hat Single Sign-On sees the correct source IP address for requests.
To check this, you can try to login to the Admin Console with an invalid username and/or
password. This should show a warning in the server log something like this:

08:14:21,287 WARN XNIO-1 task-45 [org.keycloak.events] type=LOGIN_ERROR,
realmId=master, clientId=security-admin-console, userId=8f20d7ba-4974-4811-a695-
242c8fbd1bf8, ipAddress=X.X.X.X, error=invalid_user_credentials, auth_method=openid-
connect, auth_type=code, redirect_uri=http://localhost:8080/auth/admin/master/console/?
redirect_fragment=%2Frealms%2Fmaster%2Fevents-settings, code_id=a3d48b67-a439-
4546-b992-e93311d6493e, username=admin

4. Check that the value of ipAddress is the IP address of the machine you tried to login with and
not the IP address of the reverse proxy or load balancer.

<subsystem xmlns="urn:jboss:domain:undertow:12.0">
 ...
 <http-listener name="default" socket-binding="http"
 proxy-address-forwarding="true" redirect-socket="proxy-https"/>
 ...
</subsystem>

<socket-binding-group name="standard-sockets" default-interface="public"
 port-offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="proxy-https" port="443"/>
 ...
</socket-binding-group>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

60

9.3.4. Using the built-in load balancer

This section covers configuring the built-in load balancer that is discussed in the Clustered Domain
Example.

The Clustered Domain Example is only designed to run on one machine. To bring up a slave on another
host, you’ll need to

1. Edit the domain.xml file to point to your new host slave

2. Copy the server distribution. You don’t need the domain.xml, host.xml, or host-master.xml files.
Nor do you need the standalone/ directory.

3. Edit the host-slave.xml file to change the bind addresses used or override them on the
command line

Procedure

1. Open domain.xml so you can registering the new host slave with the load balancer configuration.

2. Go to the undertow configuration in the load-balancer profile. Add a new host definition called
remote-host3 within the reverse-proxy XML block.

domain.xml reverse-proxy config

The output-socket-binding is a logical name pointing to a socket-binding configured later in
the domain.xml file. The instance-id attribute must also be unique to the new host as this value
is used by a cookie to enable sticky sessions when load balancing.

3. Go down to the load-balancer-sockets socket-binding-group and add the outbound-socket-
binding for remote-host3.
This new binding needs to point to the host and port of the new host.

domain.xml outbound-socket-binding

<subsystem xmlns="urn:jboss:domain:undertow:12.0">
 ...
 <handlers>
 <reverse-proxy name="lb-handler">
 <host name="host1" outbound-socket-binding="remote-host1" scheme="ajp" path="/"
instance-id="myroute1"/>
 <host name="host2" outbound-socket-binding="remote-host2" scheme="ajp" path="/"
instance-id="myroute2"/>
 <host name="remote-host3" outbound-socket-binding="remote-host3" scheme="ajp"
path="/" instance-id="myroute3"/>
 </reverse-proxy>
 </handlers>
 ...
</subsystem>

<socket-binding-group name="load-balancer-sockets" default-interface="public">
 ...
 <outbound-socket-binding name="remote-host1">
 <remote-destination host="localhost" port="8159"/>
 </outbound-socket-binding>

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER

61

9.3.4.1. Master bind addresses

Next thing you’ll have to do is to change the public and management bind addresses for the master
host. Either edit the domain.xml file as discussed in the Bind Addresses chapter or specify these bind
addresses on the command line as follows:

$ domain.sh --host-config=host-master.xml -Djboss.bind.address=192.168.0.2 -
Djboss.bind.address.management=192.168.0.2

9.3.4.2. Host slave bind addresses

Next you’ll have to change the public, management, and domain controller bind addresses
(jboss.domain.master-address). Either edit the host-slave.xml file or specify them on the command
line as follows:

$ domain.sh --host-config=host-slave.xml
 -Djboss.bind.address=192.168.0.5
 -Djboss.bind.address.management=192.168.0.5
 -Djboss.domain.master.address=192.168.0.2

The values of jboss.bind.address and jboss.bind.address.management pertain to the host slave’s IP
address. The value of jboss.domain.master.address needs to be the IP address of the domain
controller, which is the management address of the master host.

Additional resources

See the load balancing section in the JBoss EAP Configuration Guide for information how to use
other software-based load balancers.

9.4. STICKY SESSIONS

Typical cluster deployment consists of the load balancer (reverse proxy) and 2 or more Red Hat Single
Sign-On servers on private network. For performance purposes, it may be useful if load balancer
forwards all requests related to particular browser session to the same Red Hat Single Sign-On backend
node.

The reason is, that Red Hat Single Sign-On is using Infinispan distributed cache under the covers for
save data related to current authentication session and user session. The Infinispan distributed caches
are configured with one owner by default. That means that particular session is saved just on one cluster
node and the other nodes need to lookup the session remotely if they want to access it.

For example if authentication session with ID 123 is saved in the Infinispan cache on node1, and then
node2 needs to lookup this session, it needs to send the request to node1 over the network to return
the particular session entity.

It is beneficial if particular session entity is always available locally, which can be done with the help of

 <outbound-socket-binding name="remote-host2">
 <remote-destination host="localhost" port="8259"/>
 </outbound-socket-binding>
 <outbound-socket-binding name="remote-host3">
 <remote-destination host="192.168.0.5" port="8259"/>
 </outbound-socket-binding>
</socket-binding-group>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

62

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_high_availability

It is beneficial if particular session entity is always available locally, which can be done with the help of
sticky sessions. The workflow in the cluster environment with the public frontend load balancer and two
backend Red Hat Single Sign-On nodes can be like this:

User sends initial request to see the Red Hat Single Sign-On login screen

This request is served by the frontend load balancer, which forwards it to some random node
(eg. node1). Strictly said, the node doesn’t need to be random, but can be chosen according to
some other criterias (client IP address etc). It all depends on the implementation and
configuration of underlying load balancer (reverse proxy).

Red Hat Single Sign-On creates authentication session with random ID (eg. 123) and saves it to
the Infinispan cache.

Infinispan distributed cache assigns the primary owner of the session based on the hash of
session ID. See Infinispan documentation for more details around this. Let’s assume that
Infinispan assigned node2 to be the owner of this session.

Red Hat Single Sign-On creates the cookie AUTH_SESSION_ID with the format like <session-
id>.<owner-node-id> . In our example case, it will be 123.node2 .

Response is returned to the user with the Red Hat Single Sign-On login screen and the
AUTH_SESSION_ID cookie in the browser

From this point, it is beneficial if load balancer forwards all the next requests to the node2 as this is the
node, who is owner of the authentication session with ID 123 and hence Infinispan can lookup this
session locally. After authentication is finished, the authentication session is converted to user session,
which will be also saved on node2 because it has same ID 123 .

The sticky session is not mandatory for the cluster setup, however it is good for performance for the
reasons mentioned above. You need to configure your loadbalancer to sticky over the
AUTH_SESSION_ID cookie. How exactly do this is dependent on your loadbalancer.

It is recommended on the Red Hat Single Sign-On side to use the system property jboss.node.name
during startup, with the value corresponding to the name of your route. For example, -
Djboss.node.name=node1 will use node1 to identify the route. This route will be used by Infinispan
caches and will be attached to the AUTH_SESSION_ID cookie when the node is the owner of the
particular key. Here is an example of the start up command using this system property:

cd $RHSSO_NODE1
./standalone.sh -c standalone-ha.xml -Djboss.socket.binding.port-offset=100 -
Djboss.node.name=node1

Typically in production environment the route name should use the same name as your backend host,
but it is not required. You can use a different route name. For example, if you want to hide the host name
of your Red Hat Single Sign-On server inside your private network.

9.4.1. Disable adding the route

Some load balancers can be configured to add the route information by themselves instead of relying on
the back end Red Hat Single Sign-On node. However, as described above, adding the route by the Red
Hat Single Sign-On is recommended. This is because when done this way performance improves, since
Red Hat Single Sign-On is aware of the entity that is the owner of particular session and can route to
that node, which is not necessarily the local node.

You are permitted to disable adding route information to the AUTH_SESSION_ID cookie by Red Hat

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER

63

https://infinispan.org/docs/10.1.x/titles/configuring/configuring.html#clustered_caches

Single Sign-On, if you prefer, by adding the following into your
RHSSO_HOME/standalone/configuration/standalone-ha.xml file in the Red Hat Single Sign-On
subsystem configuration:

9.5. SETTING UP MULTICAST NETWORKING

The default clustering support needs IP Multicast. Multicast is a network broadcast protocol. This
protocol is used at boot time to discover and join the cluster. It is also used to broadcast messages for
the replication and invalidation of distributed caches used by Red Hat Single Sign-On.

The clustering subsystem for Red Hat Single Sign-On runs on the JGroups stack. Out of the box, the
bind addresses for clustering are bound to a private network interface with 127.0.0.1 as default IP
address.

Procedure

1. Edit your the standalone-ha.xml or domain.xml sections discussed in the Bind Address chapter.

private network config

2. Configure the jboss.bind.address.private and jboss.default.multicast.address as well as the

<subsystem xmlns="urn:jboss:domain:keycloak-server:1.2">
 ...
 <spi name="stickySessionEncoder">
 <provider name="infinispan" enabled="true">
 <properties>
 <property name="shouldAttachRoute" value="false"/>
 </properties>
 </provider>
 </spi>

</subsystem>

 <interfaces>
 ...
 <interface name="private">
 <inet-address value="${jboss.bind.address.private:127.0.0.1}"/>
 </interface>
 </interfaces>
 <socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="jgroups-mping" interface="private" port="0" multicast-
address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>
 <socket-binding name="jgroups-tcp" interface="private" port="7600"/>
 <socket-binding name="jgroups-tcp-fd" interface="private" port="57600"/>
 <socket-binding name="jgroups-udp" interface="private" port="55200" multicast-
address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>
 <socket-binding name="jgroups-udp-fd" interface="private" port="54200"/>
 <socket-binding name="modcluster" port="0" multicast-address="224.0.1.105" multicast-
port="23364"/>
 ...
 </socket-binding-group>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

64

2. Configure the jboss.bind.address.private and jboss.default.multicast.address as well as the
ports of the services on the clustering stack.

NOTE

It is possible to cluster Red Hat Single Sign-On without IP Multicast, but this
topic is beyond the scope of this guide. For more information, see JGroups in the
JBoss EAP Configuration Guide .

9.6. SECURE CLUSTER COMMUNICATION

When cluster nodes are isolated on a private network it requires access to the private network to be able
to join a cluster or to view communication in the cluster. In addition you can also enable authentication
and encryption for cluster communication. As long as your private network is secure it is not necessary
to enable authentication and encryption. Red Hat Single Sign-On does not send very sensitive
information on the cluster in either case.

If you want to enable authentication and encryption for clustering communication, see Securing a
Cluster in the JBoss EAP Configuration Guide .

9.7. SERIALIZED CLUSTER STARTUP

Red Hat Single Sign-On cluster nodes are allowed to boot concurrently. When Red Hat Single Sign-On
server instance boots up it may do some database migration, importing, or first time initializations. A DB
lock is used to prevent start actions from conflicting with one another when cluster nodes boot up
concurrently.

By default, the maximum timeout for this lock is 900 seconds. If a node is waiting on this lock for more
than the timeout it will fail to boot. Typically you won’t need to increase/decrease the default value, but
just in case it’s possible to configure it in standalone.xml, standalone-ha.xml, or domain.xml file in
your distribution. The location of this file depends on your operating mode.

9.8. BOOTING THE CLUSTER

Booting Red Hat Single Sign-On in a cluster depends on your operating mode

Standalone Mode

$ bin/standalone.sh --server-config=standalone-ha.xml

Domain Mode

$ bin/domain.sh --host-config=host-master.xml
$ bin/domain.sh --host-config=host-slave.xml

<spi name="dblock">
 <provider name="jpa" enabled="true">
 <properties>
 <property name="lockWaitTimeout" value="900"/>
 </properties>
 </provider>
</spi>

CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER

65

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#cluster_communication_jgroups
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/configuring_high_availability#securing_cluster

You may need to use additional parameters or system properties. For example, the parameter -b for the
binding host or the system property jboss.node.name to specify the name of the route, as described in
Sticky Sessions section.

9.9. TROUBLESHOOTING

Note that when you run a cluster, you should see message similar to this in the log of both
cluster nodes:

INFO [org.infinispan.remoting.transport.jgroups.JGroupsTransport] (Incoming-
10,shared=udp)
ISPN000094: Received new cluster view: [node1/keycloak|1] (2) [node1/keycloak,
node2/keycloak]

If you see just one node mentioned, it’s possible that your cluster hosts are not joined together.

Usually it’s best practice to have your cluster nodes on private network without firewall for
communication among them. Firewall could be enabled just on public access point to your
network instead. If for some reason you still need to have firewall enabled on cluster nodes, you
will need to open some ports. Default values are UDP port 55200 and multicast port 45688 with
multicast address 230.0.0.4. Note that you may need more ports opened if you want to enable
additional features like diagnostics for your JGroups stack. Red Hat Single Sign-On delegates
most of the clustering work to Infinispan/JGroups. For more information, see JGroups in the
JBoss EAP Configuration Guide .

If you are interested in failover support (high availability), evictions, expiration and cache tuning,
see Chapter 10, Server cache configuration .

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

66

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#cluster_communication_jgroups

CHAPTER 10. SERVER CACHE CONFIGURATION
Red Hat Single Sign-On has two types of caches. One type of cache sits in front of the database to
decrease load on the DB and to decrease overall response times by keeping data in memory. Realm,
client, role, and user metadata is kept in this type of cache. This cache is a local cache. Local caches do
not use replication even if you are in the cluster with more Red Hat Single Sign-On servers. Instead, they
only keep copies locally and if the entry is updated an invalidation message is sent to the rest of the
cluster and the entry is evicted. There is separate replicated cache work, which task is to send the
invalidation messages to the whole cluster about what entries should be evicted from local caches. This
greatly reduces network traffic, makes things efficient, and avoids transmitting sensitive metadata over
the wire.

The second type of cache handles managing user sessions, offline tokens, and keeping track of login
failures so that the server can detect password phishing and other attacks. The data held in these
caches is temporary, in memory only, but is possibly replicated across the cluster.

This chapter discusses some configuration options for these caches for both clustered and non-
clustered deployments.

NOTE

More advanced configuration of these caches can be found in the Infinispan section of
the JBoss EAP Configuration Guide .

10.1. EVICTION AND EXPIRATION

There are multiple different caches configured for Red Hat Single Sign-On. There is a realm cache that
holds information about secured applications, general security data, and configuration options. There is
also a user cache that contains user metadata. Both caches default to a maximum of 10000 entries and
use a least recently used eviction strategy. Each of them is also tied to an object revisions cache that
controls eviction in a clustered setup. This cache is created implicitly and has twice the configured size.
The same applies for the authorization cache, which holds the authorization data. The keys cache holds
data about external keys and does not need to have dedicated revisions cache. Rather it has expiration
explicitly declared on it, so the keys are periodically expired and forced to be periodically downloaded
from external clients or identity providers.

The eviction policy and max entries for these caches can be configured in the standalone.xml,
standalone-ha.xml, or domain.xml depending on your operating mode. In the configuration file, there is
the part with infinispan subsystem, which looks similar to this:

<subsystem xmlns="urn:jboss:domain:infinispan:12.0">
 <cache-container name="keycloak">
 <local-cache name="realms">
 <object-memory size="10000"/>
 </local-cache>
 <local-cache name="users">
 <object-memory size="10000"/>
 </local-cache>
 ...
 <local-cache name="keys">
 <object-memory size="1000"/>
 <expiration max-idle="3600000"/>
 </local-cache>
 ...
 </cache-container>

CHAPTER 10. SERVER CACHE CONFIGURATION

67

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#infinispan

To limit or expand the number of allowed entries simply add or edit the object element or the
expiration element of particular cache configuration.

In addition, there are also separate caches sessions, clientSessions, offlineSessions,
offlineClientSessions, loginFailures and actionTokens. These caches are distributed in cluster
environment and they are unbounded in size by default. If they are bounded, it would then be possible
that some sessions will be lost. Expired sessions are cleared internally by Red Hat Single Sign-On itself to
avoid growing the size of these caches without limit. If you see memory issues due to a large number of
sessions, you can try to:

Increase the size of cluster (more nodes in cluster means that sessions are spread more equally
among nodes)

Increase the memory for Red Hat Single Sign-On server process

Decrease the number of owners to ensure that caches are saved in one single place. See
Section 10.2, “Replication and failover” for more details

Disable l1-lifespan for distributed caches. See Infinispan documentation for more details

Decrease session timeouts, which could be done individually for each realm in Red Hat Single
Sign-On admin console. But this could affect usability for end users. See Timeouts for more
details.

There is an additional replicated cache, work, which is mostly used to send messages among cluster
nodes; it is also unbounded by default. However, this cache should not cause any memory issues as
entries in this cache are very short-lived.

10.2. REPLICATION AND FAILOVER

There are caches like sessions, authenticationSessions, offlineSessions, loginFailures and a few
others (See Section 10.1, “Eviction and expiration” for more details), which are configured as distributed
caches when using a clustered setup. Entries are not replicated to every single node, but instead one or
more nodes is chosen as an owner of that data. If a node is not the owner of a specific cache entry it
queries the cluster to obtain it. What this means for failover is that if all the nodes that own a piece of
data go down, that data is lost forever. By default, Red Hat Single Sign-On only specifies one owner for
data. So if that one node goes down that data is lost. This usually means that users will be logged out
and will have to login again.

You can change the number of nodes that replicate a piece of data by change the owners attribute in
the distributed-cache declaration.

owners

Here we’ve changed it so at least two nodes will replicate one specific user login session.

TIP

<subsystem xmlns="urn:jboss:domain:infinispan:12.0">
 <cache-container name="keycloak">
 <distributed-cache name="sessions" owners="2"/>
...

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

68

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_timeouts

TIP

The number of owners recommended is really dependent on your deployment. If you do not care if users
are logged out when a node goes down, then one owner is good enough and you will avoid replication.

TIP

It is generally wise to configure your environment to use loadbalancer with sticky sessions. It is beneficial
for performance as Red Hat Single Sign-On server, where the particular request is served, will be usually
the owner of the data from the distributed cache and will therefore be able to look up the data locally.
See Section 9.4, “Sticky sessions” for more details.

10.3. DISABLING CACHING

You can disable the realm or user cache.

Procedure

1. Edit the standalone.xml, standalone-ha.xml, or domain.xml file in your distribution.
The location of this file depends on your operating mode. Here is a sample config file.

2. Set the enabled attribute to false for the cache you want to disable.

3. Reboot your server for this change to take effect.

10.4. CLEARING CACHE AT RUNTIME

You can clear the realm cache, user cache, or the external public keys.

Procedure

1. Log into the Admin Console.

2. Click Realm Settings.

3. Click the Cache tab.

4. Clear the realm cache, the user cache or cache of external public keys.

NOTE

The cache will be cleared for all realms!

 <spi name="userCache">
 <provider name="default" enabled="true"/>
 </spi>

 <spi name="realmCache">
 <provider name="default" enabled="true"/>
 </spi>

CHAPTER 10. SERVER CACHE CONFIGURATION

69

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR
The Red Hat Single Sign-On Operator automates Red Hat Single Sign-On administration in Openshift.
You use this Operator to create custom resources (CRs), which automate administrative tasks. For
example, instead of creating a client or a user in the Red Hat Single Sign-On admin console, you can
create custom resources to perform those tasks. A custom resource is a YAML file that defines the
parameters for the administrative task.

You can create custom resources to perform the following tasks:

Install Red Hat Single Sign-On

Create realms

Create clients

Create users

Connect to an external database

Schedule database backups

Install extensions and themes

NOTE

After you create custom resources for realms, clients, and users, you can manage them by
using the Red Hat Single Sign-On admin console or as custom resources using the oc
command. However, you cannot use both methods, because the Operator performs a
one way sync for custom resources that you modify. For example, if you modify a realm
custom resource, the changes show up in the admin console. However, if you modify the
realm using the admin console, those changes have no effect on the custom resource.

Begin using the Operator by Installing the Red Hat Single Sign-On Operator on a cluster .

11.1. INSTALLING THE RED HAT SINGLE SIGN-ON OPERATOR ON A
CLUSTER

To install the Red Hat Single Sign-On Operator, you can use:

The Operator Lifecycle Manager (OLM)

Command line installation

11.1.1. Installing using the Operator Lifecycle Manager

Prerequisites

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

Perform this procedure on an OpenShift cluster.

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

70

1. Open the OpenShift Container Platform web console.

2. In the left column, click Operators, OperatorHub.

3. Search for Red Hat Single Sign-On Operator.

OperatorHub tab in OpenShift

4. Click the Red Hat Single Sign-On Operator icon.
An Install page opens.

Operator Install page on OpenShift

5. Click Install.

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

71

6. Select a namespace and click Subscribe.
Be sure you are on the stable channel.

Namespace selection in OpenShift

The Operator starts installing.

Additional resources

When the Operator installation completes, you are ready to create your first custom resource.
See Red Hat Single Sign-On installation using a custom resource .

For more information on OpenShift Operators, see the OpenShift Operators guide.

11.1.2. Installing from the command line

You can install the Red Hat Single Sign-On Operator from the command line.

Prerequisites

You have cluster-admin permission or an equivalent level of permissions granted by an

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

72

https://docs.openshift.com/container-platform/4.4/operators/olm-what-operators-are.html

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Create a project.

2. Create a file named rhsso-operator-olm.yaml to define a YAML group and a subscription
operator.
Update the targetNamespaces to the namespace for RH-SSO.

3. Install the operator group and subscription.

4. Approve the install plan and fill in the appropriate namespace.

5. Verify the operator is running.

Additional resources

When the Operator installation completes, you are ready to create your first custom resource.

$ oc new-project <namespace>

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: rhsso-operator-group
spec:
 targetNamespaces:
 - <namespace> # change this to the namespace you will use for RH-SSO

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: rhsso-operator
spec:
 channel: stable
 installPlanApproval: Manual
 name: rhsso-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 # Here you can specify a specific Operator version, otherwise it will use the latest
 # startingCSV: rhsso-operator.7.6.0-opr-001

$ oc apply -f rhsso-operator-olm.yaml

oc patch installplan $(oc get ip -n <namespace> -o=jsonpath='{.items[?
(@.spec.approved==false)].metadata.name}') -n <namespace> --type merge --patch
'{"spec":{"approved":true}}'

$ oc get pods
NAME READY STATUS RESTARTS AGE
rhsso-operator-558876f75c-m25mt 1/1 Running 0 28s

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

73

When the Operator installation completes, you are ready to create your first custom resource.
See Red Hat Single Sign-On installation using a custom resource .

For more information on OpenShift Operators, see the OpenShift Operators guide.

11.2. USING THE RED HAT SINGLE SIGN-ON OPERATOR IN
PRODUCTION ENVIRONMENT

The usage of embedded DB is not supported in a production environment.

Backup CRD is deprecated and not supported in a production environment.

The podDisruptionBudget field in the Keycloak CR is deprecated and will be ignored when the
Operator is deployed on Kubernetes version 1.25 and higher.

We fully support using the rest of the CRDs in production, despite the v1alpha1 version. We do
not plan to make any breaking changes in this CRDs version.

11.3. INSTALLING RED HAT SINGLE SIGN-ON USING A CUSTOM
RESOURCE

You can use the Operator to automate the installation of Red Hat Single Sign-On by creating a Keycloak
custom resource. When you use a custom resource to install Red Hat Single Sign-On, you create the
components and services that are described here and illustrated in the graphic that follows.

keycloak-db-secret - Stores properties such as the database username, password, and external
address (if you connect to an external database)

credentials-<CR-Name> - Admin username and password to log into the Red Hat Single Sign-
On admin console (the <CR-Name> is based on the Keycloak custom resource name)

keycloak - Keycloak deployment specification that is implemented as a StatefulSet with high
availability support

keycloak-postgresql - Starts a PostgreSQL database installation

keycloak-discovery Service - Performs JDBC_PING discovery

keycloak Service - Connects to Red Hat Single Sign-On through HTTPS (HTTP is not
supported)

keycloak-postgresql Service - Connects an internal and external, if used, database instance

keycloak Route - The URL for accessing the Red Hat Single Sign-On admin console from
OpenShift

How Operator components and services interact

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

74

https://docs.openshift.com/container-platform/4.4/operators/olm-what-operators-are.html

11.3.1. The Keycloak custom resource

The Keycloak custom resource is a YAML file that defines the parameters for installation. This file
contains three properties.

instances - controls the number of instances running in high availability mode.

externalAccess - if the enabled is True, the Operator creates a route for OpenShift for the
Red Hat Single Sign-On cluster. You can set host to override the automatically chosen host
name for Route

externalDatabase - in order to connect to an externally hosted database. That topic is covered
in the external database section of this guide. Setting it to false should be used only for testing
purposes and will install an embedded PostgreSQL database. Be aware that
externalDatabase:false is NOT supported in production environments.

Example YAML file for a Keycloak custom resource

NOTE

You can update the YAML file and the changes appear in the Red Hat Single Sign-On
admin console, however changes to the admin console do not update the custom
resource.

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 name: example-sso
 labels:
 app: sso
spec:
 instances: 1
 externalAccess:
 enabled: True

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

75

11.3.2. Creating a Keycloak custom resource on OpenShift

On OpenShift, you use the custom resource to create a route, which is the URL of the admin console,
and find the secret, which holds the username and password for the admin console.

Prerequisites

You have a YAML file for this custom resource.

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Create a route using your YAML file: oc create -f <filename>.yaml -n <namespace>. For
example:

A route is created in OpenShift.

2. Log into the OpenShift web console.

3. Select Networking, Routes and search for Keycloak.

Routes screen in OpenShift web console

4. On the screen with the Keycloak route, click the URL under Location.
The Red Hat Single Sign-On admin console login screen appears.

Admin console login screen

$ oc create -f sso.yaml -n sso
keycloak.keycloak.org/example-sso created

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

76

5. Locate the username and password for the admin console in the OpenShift web console; under
Workloads, click Secrets and search for Keycloak.

Secrets screen in OpenShift web console

6. Enter the username and password into the admin console login screen.

Admin console login screen

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

77

You are now logged into an instance of Red Hat Single Sign-On that was installed by a Keycloak
custom resource. You are ready to create custom resources for realms, clients, and users.

Red Hat Single Sign-On master realm

7. Check the status of the custom resource:

Results

After the Operator processes the custom resource, view the status with this command:

Keycloak custom resource Status

$ oc describe keycloak <CR-name>

$ oc describe keycloak <CR-name>

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

78

Additional resources

Once the installation of Red Hat Single Sign-On completes, you are ready to create a realm
custom resource.

An external database is the supported option and needs to be enabled in the Keycloak custom
resource. You can disable this option only for testing and enable it when you switch to a
production environment. See Connecting to an external database .

11.4. CREATING A REALM CUSTOM RESOURCE

You can use the Operator to create realms in Red Hat Single Sign-On as defined by a custom resource.
You define the properties of the realm custom resource in a YAML file.

NOTE

Name: example-keycloak
Namespace: keycloak
Labels: app=sso
Annotations: <none>
API Version: keycloak.org/v1alpha1
Kind: Keycloak
Spec:
 External Access:
 Enabled: true
 Instances: 1
Status:
 Credential Secret: credential-example-keycloak
 Internal URL: https://<External URL to the deployed instance>
 Message:
 Phase: reconciling
 Ready: true
 Secondary Resources:
 Deployment:
 keycloak-postgresql
 Persistent Volume Claim:
 keycloak-postgresql-claim
 Prometheus Rule:
 keycloak
 Route:
 keycloak
 Secret:
 credential-example-keycloak
 keycloak-db-secret
 Service:
 keycloak-postgresql
 keycloak
 keycloak-discovery
 Service Monitor:
 keycloak
 Stateful Set:
 keycloak
 Version:
Events:

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

79

NOTE

You can only create or delete realms by creating or deleting the YAML file, and changes
appear in the Red Hat Single Sign-On admin console. However changes to the admin
console are not reflected back and updates of the CR after the realm is created are not
supported.

Example YAML file for a Realm custom resource

Prerequisites

You have a YAML file for this custom resource.

In the YAML file, the app under instanceSelector matches the label of a Keycloak custom
resource. Matching these values ensures that you create the realm in the right instance of Red
Hat Single Sign-On.

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Use this command on the YAML file that you created: oc create -f <realm-name>.yaml. For
example:

2. Log into the admin console for the related instance of Red Hat Single Sign-On.

3. Click Select Realm and locate the realm that you created.
The new realm opens.

Admin console master realm

apiVersion: keycloak.org/v1alpha1
kind: KeycloakRealm
metadata:
 name: test
 labels:
 app: sso
spec:
 realm:
 id: "basic"
 realm: "basic"
 enabled: True
 displayName: "Basic Realm"
 instanceSelector:
 matchLabels:
 app: sso

$ oc create -f initial_realm.yaml
keycloak.keycloak.org/test created

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

80

Results

After the Operator processes the custom resource, view the status with this command:

Realm custom resource status

$ oc describe keycloak <CR-name>

Name: example-keycloakrealm
Namespace: keycloak
Labels: app=sso
Annotations: <none>
API Version: keycloak.org/v1alpha1
Kind: KeycloakRealm
Metadata:
 Creation Timestamp: 2019-12-03T09:46:02Z
 Finalizers:
 realm.cleanup
 Generation: 1
 Resource Version: 804596
 Self Link: /apis/keycloak.org/v1alpha1/namespaces/keycloak/keycloakrealms/example-
keycloakrealm
 UID: b7b2f883-15b1-11ea-91e6-02cb885627a6
Spec:
 Instance Selector:
 Match Labels:
 App: sso
 Realm:
 Display Name: Basic Realm
 Enabled: true
 Id: basic
 Realm: basic
Status:
 Login URL:
 Message:
 Phase: reconciling
 Ready: true
Events: <none>

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

81

Additional resources

When the realm creation completes, you are ready to create a client custom resource .

11.5. CREATING A CLIENT CUSTOM RESOURCE

You can use the Operator to create clients in Red Hat Single Sign-On as defined by a custom resource.
You define the properties of the realm in a YAML file.

NOTE

You can update the YAML file and changes appear in the Red Hat Single Sign-On admin
console, however changes to the admin console do not update the custom resource.

Example YAML file for a Client custom resource

Prerequisites

You have a YAML file for this custom resource.

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Use this command on the YAML file that you created: oc create -f <client-name>.yaml. For
example:

2. Log into the Red Hat Single Sign-On admin console for the related instance of Red Hat Single
Sign-On.

3. Click Clients.

apiVersion: keycloak.org/v1alpha1
kind: KeycloakClient
metadata:
 name: example-client
 labels:
 app: sso
spec:
 realmSelector:
 matchLabels:
 app: <matching labels for KeycloakRealm custom resource>
 client:
 # auto-generated if not supplied
 #id: 123
 clientId: client-secret
 secret: client-secret
 # ...
 # other properties of Keycloak Client

$ oc create -f initial_client.yaml
keycloak.keycloak.org/example-client created

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

82

The new client appears in the list of clients.

Results

After a client is created, the Operator creates a Secret containing the Client ID and the client’s secret
using the following naming pattern: keycloak-client-secret-<custom resource name>. For example:

Client’s Secret

After the Operator processes the custom resource, view the status with this command:

Client custom resource Status

apiVersion: v1
data:
 CLIENT_ID: <base64 encoded Client ID>
 CLIENT_SECRET: <base64 encoded Client Secret>
kind: Secret

$ oc describe keycloak <CR-name>

Name: client-secret
Namespace: keycloak
Labels: app=sso
API Version: keycloak.org/v1alpha1
Kind: KeycloakClient
Spec:
 Client:
 Client Authenticator Type: client-secret
 Client Id: client-secret
 Id: keycloak-client-secret
 Realm Selector:
 Match Labels:
 App: sso
Status:
 Message:
 Phase: reconciling
 Ready: true
 Secondary Resources:
 Secret:
 keycloak-client-secret-client-secret
Events: <none>

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

83

Additional resources

When the client creation completes, you are ready to create a user custom resource .

11.6. CREATING A USER CUSTOM RESOURCE

You can use the Operator to create users in Red Hat Single Sign-On as defined by a custom resource.
You define the properties of the user custom resource in a YAML file.

NOTE

You can update properties in the YAML file and changes appear in the Red Hat Single
Sign-On admin console, however changes to the admin console do not update the
custom resource.

Be aware that the same applies for the credentials. If the credentials field is defined, a
user’s credentials will always match the value set in the CR. In other words, if a user
changes password via the Account Console, the Operator will reset it in order to match
the value set in the CR.

Example YAML file for a user custom resource

Prerequisites

You have a YAML file for this custom resource.

The realmSelector matches the labels of an existing realm custom resource.

You have cluster-admin permission or an equivalent level of permissions granted by an

apiVersion: keycloak.org/v1alpha1
kind: KeycloakUser
metadata:
 name: example-user
spec:
 user:
 username: "realm_user"
 firstName: "John"
 lastName: "Doe"
 email: "user@example.com"
 enabled: True
 emailVerified: False
 credentials:
 - type: "password"
 value: "12345"
 realmRoles:
 - "offline_access"
 clientRoles:
 account:
 - "manage-account"
 realm-management:
 - "manage-users"
 realmSelector:
 matchLabels:
 app: sso

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

84

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Use this command on the YAML file that you created: oc create -f <user_cr>.yaml. For
example:

2. Log into the admin console for the related instance of Red Hat Single Sign-On.

3. Click Users.

4. Search for the user that you defined in the YAML file.
You may need to switch to a different realm to find the user.

Results

After a user is created, the Operator creates a Secret using the following naming pattern: credential-
<realm name>-<username>-<namespace>, containing the username and, if it has been specified in the
CR credentials attribute, the password.

Here’s an example:

KeycloakUser Secret

Once the Operator processes the custom resource, view the status with this command:

User custom resource Status

$ oc create -f initial_user.yaml
keycloak.keycloak.org/example-user created

kind: Secret
apiVersion: v1
data:
 password: <base64 encoded password>
 username: <base64 encoded username>
type: Opaque

$ oc describe keycloak <CR-name>

Name: example-realm-user
Namespace: keycloak
Labels: app=sso

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

85

Additional resources

If you have an external database, you can modify the Keycloak custom resource to support it.
See Connecting to an external database .

To back up your database using custom resources, see schedule database backups.

11.7. CONNECTING TO AN EXTERNAL DATABASE

You can use the Operator to connect to an external PostgreSQL database by creating a keycloak-db-
secret YAML file and setting Keycloak CR externalDatabase property to enabled. Note that values are
Base64 encoded.

Example YAML file for keycloak-db-secret

The following properties set the hostname or IP address and port of the database.

POSTGRES_EXTERNAL_ADDRESS - hostname of the external database. If you only have an

API Version: keycloak.org/v1alpha1
Kind: KeycloakUser
Spec:
 Realm Selector:
 Match Labels:
 App: sso
 User:
 Email: realm_user@redhat.com
 Credentials:
 Type: password
 Value: <user password>
 Email Verified: false
 Enabled: true
 First Name: John
 Last Name: Doe
 Username: realm_user
Status:
 Message:
 Phase: reconciled
Events: <none>

apiVersion: v1
kind: Secret
metadata:
 name: keycloak-db-secret
 namespace: keycloak
stringData:
 POSTGRES_DATABASE: <Database Name>
 POSTGRES_EXTERNAL_ADDRESS: <External Database URL (resolvable by K8s)>
 POSTGRES_EXTERNAL_PORT: <External Database Port>
 POSTGRES_PASSWORD: <Database Password>
 # Required for AWS Backup functionality
 POSTGRES_SUPERUSER: "true"
 POSTGRES_USERNAME: <Database Username>
 SSLMODE: <TLS configuration for the Database connection>
type: Opaque

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

86

POSTGRES_EXTERNAL_ADDRESS - hostname of the external database. If you only have an
IP for your database instead of a hostname, then create a Service and corresponding
EndpointSlice or Endpoint to provide a hostname.

POSTGRES_EXTERNAL_PORT - (Optional) A database port.

The other properties work in the same way for a hosted or external database. Set them as follows:

POSTGRES_DATABASE - Database name to be used.

POSTGRES_USERNAME - Database username

POSTGRES_PASSWORD - Database password

POSTGRES_SUPERUSER - Indicates whether backups should run as super user. Typically
true.

SSLMODE - Indicates whether to use TLS on the connection to the external PostgreSQL
database. Check the possible values

When SSLMODE is enabled, the operator searches for a secret called keycloak-db-ssl-cert-secret
containing the root.crt that has been used by the PostgreSQL database. Creating the secret is optional
and the secret is used only when you want to verify the Database’s certificate (for example SSLMODE:
verify-ca). Here is an example :

Example YAML file for TLS Secret to be used by the operator.

The Operator will create a Service named keycloak-postgresql. This Service is configured by the
Operator to expose the external database based on the content of
POSTGRES_EXTERNAL_ADDRESS. Red Hat Single Sign-On uses this Service to connect to the
Database, which means it does not connect to the Database directly but rather through this Service.

The Keycloak custom resource requires updates to enable external database support.

Example YAML file for Keycloak custom resource that supports an external database

apiVersion: v1
kind: Secret
metadata:
 name: keycloak-db-ssl-cert-secret
 namespace: keycloak
type: Opaque
data:
 root.crt: {root.crt base64}

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 labels:
 app: sso
 name: example-keycloak
 namespace: keycloak
spec:
 externalDatabase:
 enabled: true
 instances: 1

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

87

https://kubernetes.io/docs/concepts/services-networking/service/#services-without-selectors
https://www.postgresql.org/docs/current/libpq-ssl.html

Prerequisites

You have a YAML file for keycloak-db-secret.

You have modified the Keycloak custom resource to set externalDatabase to true.

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Locate the secret for your PostgreSQL database: oc get secret <secret_for_db> -o yaml. For
example:

The POSTGRES_EXTERNAL_ADDRESS is in Base64 format.

2. Decode the value for the secret: echo "<encoded_secret>" | base64 -decode. For example:

3. Confirm that the decoded value matches the IP address for your database:

4. Confirm that keycloak-postgresql appears in a list of running services:

The keycloak-postgresql service sends requests to a set of IP addresses in the backend. These
IP addresses are called endpoints.

5. View the endpoints used by the keycloak-postgresql service to confirm that they use the IP
addresses for your database:

6. Confirm that Red Hat Single Sign-On is running with the external database. This example shows
that everything is running:

$ oc get secret keycloak-db-secret -o yaml
apiVersion: v1
data
 POSTGRES_DATABASE: cm9vdA==
 POSTGRES_EXTERNAL_ADDRESS: MTcyLjE3LjAuMw==
 POSTGRES_EXTERNAL_PORT: NTQzMg==

$ echo "MTcyLjE3LjAuMw==" | base64 -decode
192.0.2.3

$ oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP
keycloak-0 1/1 Running 0 13m 192.0.2.0
keycloak-postgresql-c8vv27m 1/1 Running 0 24m 192.0.2.3

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
keycloak ClusterIP 203.0.113.0 <none> 8443/TCP 27m
keycloak-discovery ClusterIP None <none> 8080/TCP 27m
keycloak-postgresql ClusterIP 203.0.113.1 <none> 5432/TCP 27m

$ oc get endpoints keycloak-postgresql
NAME ENDPOINTS AGE
keycloak-postgresql 192.0.2.3.5432 27m

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

88

11.8. CONNECTING TO AN EXTERNAL RED HAT SINGLE SIGN-ON

This operator can also be used to partially manage an external Red Hat Single Sign-On instance. In it’s
current state, it will only be able to create clients.

To do this, you’ll need to create unmanaged versions of the Keycloak and KeycloakRealm CRDs to use
for targeting and configuration.

Example YAML file for external-keycloak

In order to authenticate against this keycloak, the operator infers the secret name from the CRD by
prefixing the CRD name with credential-.

Example YAML file for credential-external-ref

Example YAML file for external-realm

$ oc get pods
NAME READY STATUS RESTARTS AGE IP
keycloak-0 1/1 Running 0 26m 192.0.2.0
keycloak-postgresql-c8vv27m 1/1 Running 0 36m 192.0.2.3

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 name: external-ref
 labels:
 app: external-sso
spec:
 unmanaged: true
 external:
 enabled: true
 url: https://some.external.url

apiVersion: v1
kind: Secret
metadata:
 name: credential-external-ref
type: Opaque
data:
 ADMIN_USERNAME: YWRtaW4=
 ADMIN_PASSWORD: cGFzcw==

apiVersion: keycloak.org/v1alpha1
kind: KeycloakRealm
metadata:
 name: external-realm
 labels:
 app: external-sso
spec:
 unmanaged: true
 realm:
 id: "basic"

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

89

You can now use the realm reference in your client as usual, and it will create the client on the external
Red Hat Single Sign-On instance.

11.9. SCHEDULING DATABASE BACKUPS

WARNING

Backup CR is deprecated and could be removed in future releases.

You can use the Operator to schedule automatic backups of the database as defined by custom
resources. The custom resource triggers a backup job and reports back its status.

You can use Operator to create a backup job that performs a one-time backup to a local Persistent
Volume.

Example YAML file for a Backup custom resource

Prerequisites

You have a YAML file for this custom resource.

You have a PersistentVolume with a claimRef to reserve it only for a PersistentVolumeClaim
created by the Red Hat Single Sign-On Operator.

Procedure

1. Create a backup job: oc create -f <backup_crname>. For example:

The Operator creates a PersistentVolumeClaim with the following naming scheme: Keycloak-
backup-<CR-name>.

2. View a list of volumes:

 realm: "basic"
 instanceSelector:
 matchLabels:
 app: external-sso



apiVersion: keycloak.org/v1alpha1
kind: KeycloakBackup
metadata:
 name: test-backup

$ oc create -f one-time-backup.yaml
keycloak.keycloak.org/test-backup

$ oc get pvc
NAME STATUS VOLUME
keycloak-backup-test-backup Bound pvc-e242-ew022d5-093q-3134n-41-adff

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

90

3. View a list of backup jobs:

4. View the list of executed backup jobs:

5. View the log of your completed backup job:

Additional resources

For more details on persistent volumes, see Understanding persistent storage .

11.10. INSTALLING EXTENSIONS AND THEMES

You can use the operator to install extensions and themes that you need for your company or
organization. The extension or theme can be anything that Red Hat Single Sign-On can consume. For
example, you can add a metrics extension. You add the extension or theme to the Keycloak custom
resource.

Example YAML file for a Keycloak custom resource

You can package and deploy themes in the same way as any other extensions. See Deploying Themes
manual entry for more information.

keycloak-postresql-claim Bound pvc-e242-vs29202-9bcd7-093q-31-zadj

$ oc get jobs
NAME COMPLETIONS DURATION AGE
test-backup 0/1 6s 6s

$ oc get pods
NAME READY STATUS RESTARTS AGE
test-backup-5b4rf 0/1 Completed 0 24s
keycloak-0 1/1 Running 0 52m
keycloak-postgresql-c824c6-vv27m 1/1 Running 0 71m

$ oc logs test-backup-5b4rf
==> Component data dump completed
.
.
.
.

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 name: example-keycloak
 labels:
 app: sso
spec:
 instances: 1
 extensions:
 - <url_for_extension_or_theme>
 externalAccess:
 enabled: True

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

91

https://docs.openshift.com/container-platform/4.4/storage/understanding-persistent-storage.html
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/#deploying-themes

Prerequisites

You have a YAML file for the Keycloak custom resource.

You have cluster-admin permission or an equivalent level of permissions granted by an
administrator.

Procedure

1. Edit the YAML file for the Keycloak custom resource: oc edit <CR-name>

2. Add a line called extensions: after the instances line.

3. Add a URL to a JAR file for your custom extension or theme.

4. Save the file.

The Operator downloads the extension or theme and installs it.

11.11. COMMAND OPTIONS FOR MANAGING CUSTOM RESOURCES

After you create a custom request, you can edit it or delete using the oc command.

To edit a custom request, use this command: oc edit <CR-name>

To delete a custom request, use this command: oc delete <CR-name>

For example, to edit a realm custom request named test-realm, use this command:

A window opens where you can make changes.

NOTE

You can update the Keycloak CR YAML file and changes will be applied to the
deployment.

Updates to the other resources are limited:

Keycloak Realm CR only supports basic creation and deletion without sync options.
Keycloak User and Client CRs support unidirectional updates (changes to the CR are
reflected in Keycloak but changes done in Keycloak are not updated in the CR).

11.12. UPGRADE STRATEGY

You can configure how the operator performs Red Hat Single Sign-On upgrades. You can choose from
the following upgrade strategies.

recreate: This is the default strategy. The operator removes all Red Hat Single Sign-On
replicas, optionally creates a backup and then creates the replicas based on a newer Red Hat
Single Sign-On image. This strategy is suitable for major upgrades as a single Red Hat Single
Sign-On version is accessing the underlying database. The downside is Red Hat Single Sign-On
needs to be shut down during the upgrade.

$ oc edit test-realm

Red Hat Single Sign-On 7.6 Server Installation and Configuration Guide

92

rolling: The operator removes one replica at a time and creates it again based on a newer Red
Hat Single Sign-On image. This ensures a zero-downtime upgrade but is more suitable for
minor version upgrades that do not require database migration since the database is accessed
by multiple Red Hat Single Sign-On versions concurrently. Automatic backups are not
supported with this strategy.

Example YAML file for a Keycloak custom resource

NOTE

Due to a bug introduced in a previous version of the Operator, Selector field on the Red
Hat Single Sign-On StatefulSet might be misconfigured depending on your
configuration. If such state is detected by the Operator and you are using the recreate
strategy, it will delete and recreate the StatefulSet with the correct Selector field. This
is required as the Selector field is immutable.

As a "delete" operation can have potentially dangerous side effects in very rare cases, for
example when you have added custom functionality unknown to the Operator to the
StatefulSet definition, you can instead delete the StatefulSet manually.

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 name: example-keycloak
 labels:
 app: sso
spec:
 instances: 2
 migration:
 strategy: recreate
 backups:
 enabled: True
 externalAccess:
 enabled: True

CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR

93

https://github.com/keycloak/keycloak-operator/issues/566

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. GUIDE OVERVIEW
	1.1. RECOMMENDED ADDITIONAL EXTERNAL DOCUMENTATION

	CHAPTER 2. INSTALLING THE SOFTWARE
	2.1. INSTALLATION PREREQUISITES
	2.2. INSTALLING RH-SSO FROM A ZIP FILE
	2.3. INSTALLING RH-SSO FROM AN RPM
	2.3.1. Subscribing to the JBoss EAP 7.4 repository
	2.3.2. Subscribing to the RH-SSO 7.6 repository and installing RH-SSO 7.6

	2.4. IMPORTANT DIRECTORIES

	CHAPTER 3. USING OPERATING MODES
	3.1. USING STANDALONE MODE
	3.1.1. Booting in standalone mode
	3.1.2. Standalone configuration

	3.2. USING STANDALONE CLUSTERED MODE
	3.2.1. Standalone clustered configuration
	3.2.2. Booting in standalone clustered mode

	3.3. USING DOMAIN CLUSTERED MODE
	3.3.1. Domain configuration
	3.3.2. Host controller configuration
	3.3.3. Server instance working directories
	3.3.4. Booting in domain clustered mode
	3.3.5. Testing with a sample clustered domain

	3.4. USING CROSS-SITE REPLICATION MODE

	CHAPTER 4. MANAGING THE SUBSYSTEM CONFIGURATION
	4.1. CONFIGURE SPI PROVIDERS
	4.2. STARTING THE JBOSS EAP CLI
	4.3. CLI EMBEDDED MODE
	4.4. USING CLI GUI MODE
	4.5. CLI SCRIPTING
	4.6. CLI RECIPES
	4.6.1. Changing the web context of the server
	4.6.2. Setting the global default theme
	4.6.3. Adding a new SPI and a provider
	4.6.4. Disabling a provider
	4.6.5. Changing the default provider for an SPI
	4.6.6. Adding or changing a single property value for an SPI
	4.6.7. Removing a single property from an SPI
	4.6.8. Configuring the dblock SPI
	4.6.9. Adding or changing a single property value for a provider
	4.6.10. Removing a single property from a provider
	4.6.11. Setting values on a provider property of type List

	CHAPTER 5. PROFILES
	CHAPTER 6. SETTING UP THE RELATIONAL DATABASE
	6.1. DATABASE SETUP CHECKLIST
	6.2. PACKAGING THE JDBC DRIVER
	6.3. DECLARING AND LOADING THE JDBC DRIVER
	6.4. MODIFYING THE RED HAT SINGLE SIGN-ON DATASOURCE
	6.5. DATABASE CONFIGURATION
	6.6. UNICODE CONSIDERATIONS FOR DATABASES
	6.6.1. Oracle database
	6.6.2. Microsoft SQL Server database
	6.6.3. MySQL database
	6.6.4. PostgreSQL database

	CHAPTER 7. USE OF THE PUBLIC HOSTNAME
	7.1. DEFAULT PROVIDER
	7.2. CUSTOM PROVIDER

	CHAPTER 8. SETTING UP THE NETWORK
	8.1. BIND ADDRESSES
	8.2. SOCKET PORT BINDINGS
	8.3. HTTPS/SSL
	8.4. ENABLING HTTPS/SSL FOR THE RED HAT SINGLE SIGN-ON SERVER
	8.4.1. Creating the Certificate and Java Keystore
	8.4.1.1. Self Signed Certificate

	8.4.2. Configuring Red Hat Single Sign-On to use the keystore
	8.4.2.1. JBoss Security Legacy
	8.4.2.2. Elytron TLS v1.2
	8.4.2.3. Elytron TLS 1.3

	8.5. OUTGOING HTTP REQUESTS
	8.5.1. Proxy mappings for outgoing HTTP requests
	8.5.2. Using standard environment variables
	8.5.3. Outgoing HTTPS request truststore

	CHAPTER 9. CONFIGURING RED HAT SINGLE SIGN-ON TO RUN IN A CLUSTER
	9.1. RECOMMENDED NETWORK ARCHITECTURE
	9.2. CLUSTERING EXAMPLE
	9.3. SETTING UP A LOAD BALANCER OR PROXY
	9.3.1. Identifying client IP addresses
	9.3.2. Enabling HTTPS/SSL with a reverse proxy
	9.3.3. Verifying the configuration
	9.3.4. Using the built-in load balancer
	9.3.4.1. Master bind addresses
	9.3.4.2. Host slave bind addresses

	9.4. STICKY SESSIONS
	9.4.1. Disable adding the route

	9.5. SETTING UP MULTICAST NETWORKING
	9.6. SECURE CLUSTER COMMUNICATION
	9.7. SERIALIZED CLUSTER STARTUP
	9.8. BOOTING THE CLUSTER
	9.9. TROUBLESHOOTING

	CHAPTER 10. SERVER CACHE CONFIGURATION
	10.1. EVICTION AND EXPIRATION
	10.2. REPLICATION AND FAILOVER
	10.3. DISABLING CACHING
	10.4. CLEARING CACHE AT RUNTIME

	CHAPTER 11. RED HAT SINGLE SIGN-ON OPERATOR
	11.1. INSTALLING THE RED HAT SINGLE SIGN-ON OPERATOR ON A CLUSTER
	11.1.1. Installing using the Operator Lifecycle Manager
	11.1.2. Installing from the command line

	11.2. USING THE RED HAT SINGLE SIGN-ON OPERATOR IN PRODUCTION ENVIRONMENT
	11.3. INSTALLING RED HAT SINGLE SIGN-ON USING A CUSTOM RESOURCE
	11.3.1. The Keycloak custom resource
	11.3.2. Creating a Keycloak custom resource on OpenShift

	11.4. CREATING A REALM CUSTOM RESOURCE
	11.5. CREATING A CLIENT CUSTOM RESOURCE
	11.6. CREATING A USER CUSTOM RESOURCE
	11.7. CONNECTING TO AN EXTERNAL DATABASE
	11.8. CONNECTING TO AN EXTERNAL RED HAT SINGLE SIGN-ON
	11.9. SCHEDULING DATABASE BACKUPS
	11.10. INSTALLING EXTENSIONS AND THEMES
	11.11. COMMAND OPTIONS FOR MANAGING CUSTOM RESOURCES
	11.12. UPGRADE STRATEGY

