
Red Hat Single Sign-On 7.2

Server Administration Guide

For Use with Red Hat Single Sign-On 7.2

Last Updated: 2019-04-24

Red Hat Single Sign-On 7.2 Server Administration Guide

For Use with Red Hat Single Sign-On 7.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for administrators to configure Red Hat Single Sign-On 7.2

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. FEATURES
1.2. HOW DOES SECURITY WORK?
1.3. CORE CONCEPTS AND TERMS

CHAPTER 2. SERVER INITIALIZATION

CHAPTER 3. ADMIN CONSOLE
3.1. THE MASTER REALM
3.2. CREATE A NEW REALM
3.3. SSL MODE
3.4. CLEARING SERVER CACHES
3.5. EMAIL SETTINGS
3.6. THEMES AND INTERNATIONALIZATION

3.6.1. Internationalization

CHAPTER 4. USER MANAGEMENT
4.1. SEARCHING FOR USERS
4.2. CREATING NEW USERS
4.3. USER ATTRIBUTES
4.4. USER CREDENTIALS

4.4.1. Changing Passwords
4.4.2. Changing OTPs

4.5. REQUIRED ACTIONS
4.5.1. Default Required Actions
4.5.2. Terms and Conditions

4.6. IMPERSONATION
4.7. USER REGISTRATION

4.7.1. reCAPTCHA Support

CHAPTER 5. LOGIN PAGE SETTINGS
5.1. FORGOT PASSWORD
5.2. REMEMBER ME

CHAPTER 6. AUTHENTICATION
6.1. PASSWORD POLICIES

6.1.1. Password Policy Types
6.2. OTP POLICIES

6.2.1. TOTP vs. HOTP
6.2.2. TOTP Configuration Options
6.2.3. HOTP Configuration Options

6.3. AUTHENTICATION FLOWS
6.4. KERBEROS

6.4.1. Setup of Kerberos server
6.4.2. Setup and configuration of Red Hat Single Sign-On server

6.4.2.1. Enable SPNEGO Processing
6.4.2.2. Configure Kerberos User Storage Federation Provider

6.4.3. Setup and configuration of client machines
6.4.4. Credential Delegation
6.4.5. Cross-realm trust
6.4.6. Troubleshooting

6.5. X.509 CLIENT CERTIFICATE USER AUTHENTICATION
6.5.1. Features

9
9
9

10

13

15
16
16
17
18
19
20
21

23
23
23
24
25
26
26
26
28
28
28
30
32

34
34
36

38
38
39
40
40
41
41
41
43
44
44
44
45
47
47
48
50
50
51

Table of Contents

1

. .

. .

. .

. .

. .

6.5.2. Enable X.509 Client Certificate User Authentication
6.5.3. Adding X.509 Client Certificate Authentication to a Browser Flow
6.5.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow
6.5.5. Client certificate lookup

6.5.5.1. HAProxy certificate lookup provider
6.5.5.2. Apache certificate lookup provider
6.5.5.3. Other reverse proxy implementations

6.5.6. Troubleshooting

CHAPTER 7. SSO PROTOCOLS
7.1. OPENID CONNECT

7.1.1. OIDC Auth Flows
7.1.1.1. Authorization Code Flow
7.1.1.2. Implicit Flow
7.1.1.3. Resource Owner Password Credentials Grant (Direct Access Grants)
7.1.1.4. Client Credentials Grant

7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints
7.2. SAML

7.2.1. SAML Bindings
7.2.1.1. Redirect Binding
7.2.1.2. POST Binding
7.2.1.3. ECP

7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints
7.3. OPENID CONNECT VS. SAML
7.4. DOCKER REGISTRY V2 AUTHENTICATION

7.4.1. Docker Auth Flow
7.4.2. Red Hat Single Sign-On Docker Registry v2 Authentication Server URI Endpoints

CHAPTER 8. MANAGING CLIENTS
8.1. OIDC CLIENTS

8.1.1. Confidential Client Credentials
8.2. SERVICE ACCOUNTS
8.3. SAML CLIENTS

8.3.1. IDP Initiated Login
8.3.2. SAML Entity Descriptors

8.4. CLIENT LINKS
8.5. OIDC TOKEN AND SAML ASSERTION MAPPINGS
8.6. GENERATING CLIENT ADAPTER CONFIG
8.7. CLIENT TEMPLATES

CHAPTER 9. ROLES
9.1. REALM ROLES
9.2. CLIENT ROLES
9.3. COMPOSITE ROLES
9.4. USER ROLE MAPPINGS

9.4.1. Default Roles
9.5. CLIENT SCOPE

CHAPTER 10. GROUPS
10.1. GROUPS VS. ROLES
10.2. DEFAULT GROUPS

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS
11.1. MASTER REALM ACCESS CONTROL

52
53
56
57
57
58
58
58

60
60
60
60
61
61
61
61
62
62
62
63
63
63
63
64
64
64

66
66
69
72
73
77
78
78
79
81
81

83
83
84
84
85
86
87

89
90
91

92
92

Red Hat Single Sign-On 7.2 Server Administration Guide

2

. .

. .

11.1.1. Global Roles
11.1.2. Realm Specific Roles

11.2. DEDICATED REALM ADMIN CONSOLES
11.3. FINE GRAIN ADMIN PERMISSIONS

11.3.1. Managing One Specific Client
11.3.1.1. Permission Setup
11.3.1.2. Testing It Out.

11.3.2. Restrict User Role Mapping
11.3.2.1. Testing It Out.
11.3.2.2. Per Client map-roles Shortcut

11.3.3. Full List of Permissions
11.3.3.1. Role
11.3.3.2. Client
11.3.3.3. Users
11.3.3.4. Group

11.4. REALM KEYS
11.4.1. Rotating keys
11.4.2. Adding a generated keypair
11.4.3. Adding an existing keypair and certificate
11.4.4. Loading keys from a Java Keystore
11.4.5. Making keys passive
11.4.6. Disabling keys
11.4.7. Compromised keys

CHAPTER 12. IDENTITY BROKERING
12.1. BROKERING OVERVIEW
12.2. DEFAULT IDENTITY PROVIDER
12.3. GENERAL CONFIGURATION
12.4. SOCIAL IDENTITY PROVIDERS

12.4.1. Bitbucket
12.4.2. Facebook
12.4.3. GitHub
12.4.4. GitLab
12.4.5. Google
12.4.6. LinkedIn
12.4.7. Microsoft
12.4.8. Openshift
12.4.9. PayPal
12.4.10. StackOverflow
12.4.11. Twitter

12.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS
12.6. SAML V2.0 IDENTITY PROVIDERS

12.6.1. SP Descriptor
12.7. CLIENT SUGGESTED IDENTITY PROVIDER
12.8. MAPPING CLAIMS AND ASSERTIONS
12.9. AVAILABLE USER SESSION DATA
12.10. FIRST LOGIN FLOW

12.10.1. Default First Login Flow
12.11. RETRIEVING EXTERNAL IDP TOKENS

CHAPTER 13. USER SESSION MANAGEMENT
13.1. ADMINISTERING SESSIONS

13.1.1. Logout All Limitations

92
92
93
93
94
94
99

100
104
105
106
106
106
107
108
108
108
109
109
109
109
109
110

111
111
113
113
116
116
120
124
127
130
134
138
141
143
145
147
150
153
156
156
157
158
158
159
159

161
161
161

Table of Contents

3

. .

. .

. .

. .

. .

. .

13.1.2. Application Drilldown
13.1.3. User Drilldown

13.2. REVOCATION POLICIES
13.3. SESSION AND TOKEN TIMEOUTS
13.4. OFFLINE ACCESS

CHAPTER 14. USER STORAGE FEDERATION
14.1. ADDING A PROVIDER
14.2. DEALING WITH PROVIDER FAILURES
14.3. LDAP AND ACTIVE DIRECTORY

14.3.1. Storage Mode
14.3.2. Edit Mode
14.3.3. Other config options
14.3.4. Connect to LDAP over SSL
14.3.5. Sync of LDAP users to Red Hat Single Sign-On
14.3.6. LDAP Mappers

14.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION
14.4.1. FreeIPA/IdM Server
14.4.2. SSSD and D-Bus
14.4.3. Enabling the SSSD Federation Provider

14.5. CONFIGURING A FEDERATED SSSD STORE
14.6. CUSTOM PROVIDERS

CHAPTER 15. AUDITING AND EVENTS
15.1. LOGIN EVENTS

15.1.1. Event Types
15.1.2. Event Listener

15.2. ADMIN EVENTS

CHAPTER 16. EXPORT AND IMPORT
16.1. ADMIN CONSOLE EXPORT/IMPORT

CHAPTER 17. USER ACCOUNT SERVICE
17.1. THEMEABLE

CHAPTER 18. THREAT MODEL MITIGATION
18.1. HOST
18.2. ADMIN ENDPOINTS AND CONSOLE

18.2.1. IP Restriction
18.2.2. Port Restriction
18.2.3. Server version

18.3. PASSWORD GUESS: BRUTE FORCE ATTACKS
18.3.1. Password Policies

18.4. CLICKJACKING
18.5. SSL/HTTPS REQUIREMENT
18.6. CSRF ATTACKS
18.7. UNSPECIFIC REDIRECT URIS
18.8. COMPROMISED ACCESS AND REFRESH TOKENS
18.9. COMPROMISED AUTHORIZATION CODE
18.10. OPEN REDIRECTORS
18.11. PASSWORD DATABASE COMPROMISED
18.12. LIMITING SCOPE
18.13. SQL INJECTION ATTACKS

CHAPTER 19. THE ADMIN CLI

161
162
162
163
166

167
167
167
168
168
168
169
169
169
170
171
172
172
173
174
174

175
175
177
178
179

183
184

186
188

189
189
189
190
190
191
192
194
194
195
195
195
195
196
196
196
196
196

198

Red Hat Single Sign-On 7.2 Server Administration Guide

4

19.1. INSTALLING THE ADMIN CLI
19.2. USING THE ADMIN CLI
19.3. AUTHENTICATING
19.4. WORKING WITH ALTERNATIVE CONFIGURATIONS
19.5. BASIC OPERATIONS AND RESOURCE URIS
19.6. REALM OPERATIONS

Creating a new realm
Listing existing realms
Getting a specific realm
Updating a realm
Deleting a realm
Turning on all login page options for the realm
Listing the realm keys
Generating new realm keys
Adding new realm keys from a Java Key Store file
Making the key passive or disabling the key
Deleting an old key
Configuring event logging for a realm
Flushing the caches

19.7. ROLE OPERATIONS
Creating a realm role
Creating a client role
Listing realm roles
Listing client roles
Getting a specific realm role
Getting a specific client role
Updating a realm role
Updating a client role
Deleting a realm role
Deleting a client role
Listing assigned, available, and effective realm roles for a composite role
Listing assigned, available, and effective client roles for a composite role
Adding realm roles to a composite role
Removing realm roles from a composite role
Adding client roles to a realm role
Adding client roles to a client role
Removing client roles from a composite role

19.8. CLIENT OPERATIONS
Creating a client
Listing clients
Getting a specific client
Getting the current secret for a specific client
Getting an adapter configuration file (keycloak.json) for a specific client
Getting a Wildfly subsystem adapter configuration for a specific client
Updating a client
Deleting a client

19.9. USER OPERATIONS
Creating a user
Listing users
Getting a specific user
Updating a user
Deleting a user
Resetting a user’s password

198
198
199
200
200
202
202
202
203
203
203
203
203
203
204
205
205
205
207
207
207
207
208
208
208
208
208
209
209
209
209
209
210
210
210
210
211
211
211
211
211
212
212
212
212
212
213
213
213
213
213
214
214

Table of Contents

5

Listing assigned, available, and effective realm roles for a user
Listing assigned, available, and effective client roles for a user
Adding realm roles to a user
Removing realm roles from a user
Adding client roles to a user
Removing client roles from a user
Listing a user’s sessions
Logging out a user from a specific session
Logging out a user from all sessions

19.10. GROUP OPERATIONS
Creating a group
Listing groups
Getting a specific group
Updating a group
Deleting a group
Creating a subgroup
Moving a group under another group
Get groups for a specific user
Adding a user to a group
Removing a user from a group
Listing assigned, available, and effective realm roles for a group
Listing assigned, available, and effective client roles for a group

19.11. IDENTITY PROVIDER OPERATIONS
Listing available identity providers
Listing configured identity providers
Getting a specific configured identity provider
Removing a specific configured identity provider
Configuring a Keycloak OpenID Connect identity provider
Configuring an OpenID Connect identity provider
Configuring a SAML 2 identity provider
Configuring a Facebook identity provider
Configuring a Google identity provider
Configuring a Twitter identity provider
Configuring a GitHub identity provider
Configuring a LinkedIn identity provider
Configuring a Microsoft Live identity provider
Configuring a StackOverflow identity provider

19.12. STORAGE PROVIDER OPERATIONS
Configuring a Kerberos storage provider
Configuring an LDAP user storage provider
Removing a user storage provider instance
Triggering synchronization of all users for a specific user storage provider
Triggering synchronization of changed users for a specific user storage provider
Test LDAP user storage connectivity
Test LDAP user storage authentication

19.13. ADDING MAPPERS
Adding a hardcoded role LDAP mapper
Adding an MS Active Directory mapper
Adding an user attribute LDAP mapper
Adding a group LDAP mapper
Adding a full name LDAP mapper

19.14. AUTHENTICATION OPERATIONS
Setting a password policy

214
215
215
215
215
216
216
216
216
216
216
216
217
217
217
217
217
217
218
218
218
218
219
219
219
219
219
220
220
220
220
221
221
221
221
222
222
222
222
222
223
223
223
224
224
224
224
224
225
225
226
226
226

Red Hat Single Sign-On 7.2 Server Administration Guide

6

Getting the current password policy
Listing authentication flows
Getting a specific authentication flow
Listing executions for a flow
Adding configuration to an execution
Getting configuration for an execution
Updating configuration for an execution
Deleting configuration for an execution

227
227
227
227
228
228
228
229

Table of Contents

7

Red Hat Single Sign-On 7.2 Server Administration Guide

8

CHAPTER 1. OVERVIEW
Red Hat Single Sign-On is a single sign on solution for web apps and RESTful web services. The goal of
Red Hat Single Sign-On is to make security simple so that it is easy for application developers to secure
the apps and services they have deployed in their organization. Security features that developers
normally have to write for themselves are provided out of the box and are easily tailorable to the
individual requirements of your organization. Red Hat Single Sign-On provides customizable user
interfaces for login, registration, administration, and account management. You can also use Red Hat
Single Sign-On as an integration platform to hook it into existing LDAP and Active Directory servers. You
can also delegate authentication to third party identity providers like Facebook and Google+.

1.1. FEATURES

Single-Sign On and Single-Sign Out for browser applications.

OpenID Connect support.

OAuth 2.0 support.

SAML support.

Identity Brokering - Authenticate with external OpenID Connect or SAML Identity Providers.

Social Login - Enable login with Google, GitHub, Facebook, Twitter, and other social networks.

User Federation - Sync users from LDAP and Active Directory servers.

Kerberos bridge - Automatically authenticate users that are logged-in to a Kerberos server.

Admin Console for central management of users, roles, role mappings, clients and configuration.

Account Management console that allows users to centrally manage their account.

Theme support - Customize all user facing pages to integrate with your applications and
branding.

Two-factor Authentication - Support for TOTP/HOTP via Google Authenticator or FreeOTP.

Login flows - optional user self-registration, recover password, verify email, require password
update, etc.

Session management - Admins and users themselves can view and manage user sessions.

Token mappers - Map user attributes, roles, etc. how you want into tokens and statements.

Not-before revocation policies per realm, application and user.

CORS support - Client adapters have built-in support for CORS.

Client adapters for JavaScript applications, JBoss EAP, Fuse, etc.

Supports any platform/language that has an OpenID Connect Resource Provider library or
SAML 2.0 Service Provider library.

1.2. HOW DOES SECURITY WORK?

CHAPTER 1. OVERVIEW

9

Red Hat Single Sign-On is a separate server that you manage on your network. Applications are
configured to point to and be secured by this server. Red Hat Single Sign-On uses open protocol
standards like OpenID Connect or SAML 2.0 to secure your applications. Browser applications redirect a
user’s browser from the application to the Red Hat Single Sign-On authentication server where they
enter their credentials. This is important because users are completely isolated from applications and
applications never see a user’s credentials. Applications instead are given an identity token or assertion
that is cryptographically signed. These tokens can have identity information like username, address,
email, and other profile data. They can also hold permission data so that applications can make
authorization decisions. These tokens can also be used to make secure invocations on REST-based
services.

1.3. CORE CONCEPTS AND TERMS

There are some key concepts and terms you should be aware of before attempting to use Red Hat
Single Sign-On to secure your web applications and REST services.

users

Users are entities that are able to log into your system. They can have attributes associated with
themselves like email, username, address, phone number, and birth day. They can be assigned
group membership and have specific roles assigned to them.

authentication

The process of identifying and validating a user.

authorization

The process of granting access to a user.

credentials

Credentials are pieces of data that Red Hat Single Sign-On uses to verify the identity of a user. Some
examples are passwords, one-time-passwords, digital certificates, or even fingerprints.

roles

Roles identify a type or category of user. Admin, user, manager, and employee are all typical roles
that may exist in an organization. Applications often assign access and permissions to specific roles
rather than individual users as dealing with users can be too fine grained and hard to manage.

user role mapping

A user role mapping defines a mapping between a role and a user. A user can be associated with
zero or more roles. This role mapping information can be encapsulated into tokens and assertions so
that applications can decide access permissions on various resources they manage.

composite roles

A composite role is a role that can be associated with other roles. For example a superuser
composite role could be associated with the sales-admin and order-entry-admin roles. If a
user is mapped to the superuser role they also inherit the sales-admin and order-entry-
admin roles.

groups

Groups manage groups of users. Attributes can be defined for a group. You can map roles to a group
as well. Users that become members of a group inherit the attributes and role mappings that group
defines.

realms

A realm manages a set of users, credentials, roles, and groups. A user belongs to and logs into a
realm. Realms are isolated from one another and can only manage and authenticate the users that
they control.

clients

Red Hat Single Sign-On 7.2 Server Administration Guide

10

http://openid.net/connect/
http://saml.xml.org/saml-specifications

Clients are entities that can request Red Hat Single Sign-On to authenticate a user. Most often,
clients are applications and services that want to use Red Hat Single Sign-On to secure themselves
and provide a single sign-on solution. Clients can also be entities that just want to request identity
information or an access token so that they can securely invoke other services on the network that
are secured by Red Hat Single Sign-On.

client adapters

Client adapters are plugins that you install into your application environment to be able to
communicate and be secured by Red Hat Single Sign-On. Red Hat Single Sign-On has a number of
adapters for different platforms that you can download. There are also third-party adapters you can
get for environments that we don’t cover.

consent

Consent is when you as an admin want a user to give permission to a client before that client can
participate in the authentication process. After a user provides their credentials, Red Hat Single Sign-
On will pop up a screen identifying the client requesting a login and what identity information is
requested of the user. User can decide whether or not to grant the request.

client templates

When a client is registered you need to enter configuration information about that client. It is often
useful to store a template to make create new clients easier. Red Hat Single Sign-On provides the
concept of a client template for this.

client role

Clients can define roles that are specific to them. This is basically a role namespace dedicated to the
client.

identity token

A token that provides identity information about the user. Part of the OpenID Connect specification.

access token

A token that can be provided as part of an HTTP request that grants access to the service being
invoked on. This is part of the OpenID Connect and OAuth 2.0 specification.

assertion

Information about a user. This usually pertains to an XML blob that is included in a SAML
authentication response that provided identity metadata about an authenticated user.

service account

Each client has a built-in service account which allows it to obtain an access token.

direct grant

A way for a client to obtain an access token on behalf of a user via a REST invocation.

protocol mappers

For each client you can tailor what claims and assertions are stored in the OIDC token or SAML
assertion. You do this per client by creating and configuring protocol mappers.

session

When a user logs in, a session is created to manage the login session. A session contains information
like when the user logged in and what applications have participated within single-sign on during that
session. Both admins and users can view session information.

user federation provider

Red Hat Single Sign-On can store and manage users. Often, companies already have LDAP or
Active Directory services that store user and credential information. You can point Red Hat Single
Sign-On to validate credentials from those external stores and pull in identity information.

identity provider

An identity provider (IDP) is a service that can authenticate a user. Red Hat Single Sign-On is an IDP.

CHAPTER 1. OVERVIEW

11

identity provider federation

Red Hat Single Sign-On can be configured to delegate authentication to one or more IDPs. Social
login via Facebook or Google+ is an example of identity provider federation. You can also hook Red
Hat Single Sign-On to delegate authentication to any other OpenID Connect or SAML 2.0 IDP.

identity provider mappers

When doing IDP federation you can map incoming tokens and assertions to user and session
attributes. This helps you propagate identity information from the external IDP to your client
requesting authentication.

required actions

Required actions are actions a user must perform during the authentication process. A user will not
be able to complete the authentication process until these actions are complete. For example, an
admin may schedule users to reset their passwords every month. An update password required
action would be set for all these users.

authentication flows

Authentication flows are work flows a user must perform when interacting with certain aspects of the
system. A login flow can define what credential types are required. A registration flow defines what
profile information a user must enter and whether something like reCAPTCHA must be used to filter
out bots. Credential reset flow defines what actions a user must do before they can reset their
password.

events

Events are audit streams that admins can view and hook into.

themes

Every screen provided by Red Hat Single Sign-On is backed by a theme. Themes define HTML
templates and stylesheets which you can override as needed.

Red Hat Single Sign-On 7.2 Server Administration Guide

12

CHAPTER 2. SERVER INITIALIZATION
After performing all the installation and configuration tasks defined in the Server Installation and
Configuration Guide, you will need to create an initial admin account. Red Hat Single Sign-On does not
have any configured admin account out of the box. This account will allow you to create an admin that
can log into the master realm’s administration console so that you can start creating realms, users and
registering applications to be secured by Red Hat Single Sign-On.

If your server is accessible from localhost, you can boot it up and create this admin user by going to
the http://localhost:8080/auth URL.

Welcome Page

Simply specify the username and password you want for this initial admin.

If you cannot access the server via a localhost address, or just want to provision Red Hat Single Sign-
On from the command line you can do this with the … /bin/add-user-keycloak script.

add-user-keycloak script

CHAPTER 2. SERVER INITIALIZATION

13

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_installation_and_configuration_guide/
http://localhost:8080/auth

The parameters are a little different depending if you are using the standalone operation mode or
domain operation mode. For standalone mode, here is how you use the script.

Linux/Unix

$.../bin/add-user-keycloak.sh -r master -u <username> -p <password>

Windows

> ...\bin\add-user-keycloak.bat -r master -u <username> -p <password>

For domain mode, you have to point the script to one of your server hosts using the -sc switch.

Linux/Unix

$.../bin/add-user-keycloak.sh --sc domain/servers/server-
one/configuration -r master -u <username> -p <password>

Windows

> ...\bin\add-user-keycloak.bat --sc domain/servers/server-
one/configuration -r master -u <username> -p <password>

Red Hat Single Sign-On 7.2 Server Administration Guide

14

CHAPTER 3. ADMIN CONSOLE
The bulk of your administrative tasks will be done through the Red Hat Single Sign-On Admin Console.
You can go to the console url directly at http://localhost:8080/auth/admin/

Login Page

Enter the username and password you created on the Welcome Page or the add-user-keycloak
script in the bin directory. This will bring you to the Red Hat Single Sign-On Admin Console.

Admin Console

CHAPTER 3. ADMIN CONSOLE

15

http://localhost:8080/auth/admin/

The left drop down menu allows you to pick a realm you want to manage or to create a new one. The
right drop down menu allows you to view your user account or logout. If you are curious about a certain
feature, button, or field within the Admin Console, simply hover your mouse over any question mark ?
icon. This will pop up tooltip text to describe the area of the console you are interested in. The image
above shows the tooltip in action.

3.1. THE MASTER REALM

When you boot Red Hat Single Sign-On for the first time Red Hat Single Sign-On creates a pre-defined
realm for you. This initial realm is the master realm. It is the highest level in the hierarchy of realms.
Admin accounts in this realm have permissions to view and manage any other realm created on the
server instance. When you define your initial admin account, you create an account in the master realm.
Your initial login to the admin console will also be via the master realm.

We recommend that you do not use the master realm to manage the users and applications in your
organization. Reserve use of the master realm for super admins to create and manage the realms in
your system. Following this security model helps prevent accidental changes and follows the tradition of
permitting user accounts access to only those privileges and powers necessary for the successful
completion of their current task.

It is possible to disable the master realm and define admin accounts within each individual new realm
you create. Each realm has its own dedicated Admin Console that you can log into with local accounts.
This guide talks more about this in the Dedicated Realm Admin Consoles chapter.

3.2. CREATE A NEW REALM

Creating a new realm is very simple. Mouse over the top left corner drop down menu that is titled with
Master. If you are logged in the master realm this drop down menu lists all the realms created. The last
entry of this drop down menu is always Add Realm. Click this to add a realm.

Red Hat Single Sign-On 7.2 Server Administration Guide

16

Add Realm Menu

This menu option will bring you to the Add Realm page. Specify the realm name you want to define and
click the Create button. Alternatively you can import a JSON document that defines your new realm.
We’ll go over this in more detail in the Export and Import chapter.

Create Realm

After creating the realm you are brought back to the main Admin Console page. The current realm will
now be set to the realm you just created. You can switch between managing different realms by doing a
mouse over on the top left corner drop down menu.

3.3. SSL MODE

Each realm has an SSL Mode associated with it. The SSL Mode defines the SSL/HTTPS requirements
for interacting with the realm. Browsers and applications that interact with the realm must honor the
SSL/HTTPS requirements defined by the SSL Mode or they will not be allowed to interact with the
server.

CHAPTER 3. ADMIN CONSOLE

17

WARNING

Red Hat Single Sign-On is not set up by default to handle SSL/HTTPS. It is highly
recommended that you either enable SSL on the Red Hat Single Sign-On server
itself or on a reverse proxy in front of the Red Hat Single Sign-On server.

To configure the SSL Mode of your realm, you need to click on the Realm Settings left menu item
and go to the Login tab.

Login Tab

The Require SSL option allows you to pick the SSL Mode you want. Here is an explanation of each
mode:

external requests

Users can interact with Red Hat Single Sign-On so long as they stick to private IP addresses like
localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and 172..16.x.x. If you try to access Red
Hat Single Sign-On from a non-private IP address you will get an error.

none

Red Hat Single Sign-On does not require SSL. This should really only be used in development when
you are playing around with things and don’t want to bother configuring SSL on your server.

all requests

Red Hat Single Sign-On requires SSL for all IP addresses.

3.4. CLEARING SERVER CACHES

Red Hat Single Sign-On will cache everything it can in memory within the limits of your JVM and/or the

Red Hat Single Sign-On 7.2 Server Administration Guide

18

limits you’ve configured it for. If the Red Hat Single Sign-On database is modified by a third party (i.e. a
DBA) outside the scope of the server’s REST APIs or Admin Console there’s a chance parts of the in-
memory cache may be stale. You can clear the realm cache, user cache or cache of external public keys
(Public keys of external clients or Identity providers, which Red Hat Single Sign-On usually uses for
verify signatures of particular external entity) from the Admin Console by going to the Realm Settings
left menu item and the Cache tab.

Cache tab

Just click the clear button on the cache you want to evict.

3.5. EMAIL SETTINGS

Red Hat Single Sign-On sends emails to users to verify their email address, when they forget their
passwords, or when an admin needs to receive notifications about a server event. To enable Red Hat
Single Sign-On to send emails you need to provide Red Hat Single Sign-On with your SMTP server
settings. This is configured per realm. Go to the Realm Settings left menu item and click the Email
tab.

Email Tab

CHAPTER 3. ADMIN CONSOLE

19

Host

Host denotes the SMTP server hostname used for sending emails.

Port

Port denotes the SMTP server port.

From

From denotes the address used for the From SMTP-Header for the emails sent.

From Display Name

From Display Name allows to configure an user friendly email address aliases (optional). If not set
the plain From email address will be displayed in email clients.

Reply To

Reply To denotes the address used for the Reply-To SMTP-Header for the mails sent (optional). If
not set the plain From email address will be used.

Reply To Display Name

Reply To Display Name allows to configure an user friendly email address aliases (optional). If
not set the plain Reply To email address will be displayed.

Envelope From

Envelope From denotes the Bounce Address used for the Return-Path SMTP-Header for the
mails sent (optional).

As emails are used for recovering usernames and passwords it’s recommended to use SSL or TLS,
especially if the SMTP server is on an external network. To enable SSL click on Enable SSL or to
enable TLS click on Enable TLS. You will most likely also need to change the Port (the default port for
SSL/TLS is 465).

If your SMTP server requires authentication click on Enable Authentication and insert the
Username and Password.

3.6. THEMES AND INTERNATIONALIZATION

Red Hat Single Sign-On 7.2 Server Administration Guide

20

https://en.wikipedia.org/wiki/Bounce_address

Themes allow you to change the look and feel of any UI in Red Hat Single Sign-On. Themes are
configured per realm. To change a theme go to the Realm Settings left menu item and click on the
Themes tab.

Themes Tab

Pick the theme you want for each UI category and click Save.

Login Theme

Username password entry, OTP entry, new user registration, and other similar screens related to
login.

Account Theme

Each user has an User Account Management UI.

Admin Console Theme

The skin of the Red Hat Single Sign-On Admin Console.

Email Theme

Whenever Red Hat Single Sign-On has to send out an email, it uses templates defined in this theme
to craft the email.

The Server Developer Guide goes into how to create a new themes or modify existing ones.

3.6.1. Internationalization

Every UI screen is internationalized in Red Hat Single Sign-On. The default language is English, but if

CHAPTER 3. ADMIN CONSOLE

21

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

you turn on the Internationalization switch on the Theme tab you can choose which locales you
want to support and what the default locale will be. The next time a user logs in, they will be able to
choose a language on the login page to use for the login screens, User Account Management UI, and
Admin Console. The Server Developer Guide explains how you can offer additional languages.

Red Hat Single Sign-On 7.2 Server Administration Guide

22

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

CHAPTER 4. USER MANAGEMENT
This section describes the administration functions for managing users.

4.1. SEARCHING FOR USERS

If you need to manage a specific user, click on Users in the left menu bar.

Users

This menu option brings you to the user list page. In the search box you can type in a full name, last
name, or email address you want to search for in the user database. The query will bring up all users that
match your criteria. The View all users button will list every user in the system. This will search just
local Red Hat Single Sign-On database and not the federated database (ie. LDAP) because some
backends like LDAP don’t have a way to page through users. So if you want the users from federated
backend to be synced into Red Hat Single Sign-On database you need to either:

Adjust search criteria. That will sync just the backend users matching the criteria into Red Hat
Single Sign-On database.

Go to User Federation tab and click Sync all users or Sync changed users in the
page with your federation provider.

See User Federation for more details.

4.2. CREATING NEW USERS

To create a user click on Users in the left menu bar.

Users

CHAPTER 4. USER MANAGEMENT

23

This menu option brings you to the user list page. On the right side of the empty user list, you should see
an Add User button. Click that to start creating your new user.

Add User

The only required field is Username. Click save. This will bring you to the management page for your
new user.

4.3. USER ATTRIBUTES

Red Hat Single Sign-On 7.2 Server Administration Guide

24

Beyond basic user metadata like name and email, you can store arbitrary user attributes. Choose a user
to manage then click on the Attributes tab.

Users

Enter in the attribute name and value in the empty fields and click the Add button next to it to add a new
field. Note that any edits you make on this page will not be stored until you hit the Save button.

4.4. USER CREDENTIALS

When viewing a user if you go to the Credentials tab you can manage a user’s credentials.

Credential Management

CHAPTER 4. USER MANAGEMENT

25

4.4.1. Changing Passwords

To change a user’s password, type in a new one. A Reset Password button will show up that you click
after you’ve typed everything in. If the Temporary switch is on, this new password can only be used
once and the user will be asked to change their password after they have logged in.

Alternatively, if you have email set up, you can send an email to the user that asks them to reset their
password. Choose Update Password from the Reset Actions list box and click Send Email. You
can optionally set the validity of the e-mail link which defaults to the one preset in Tokens tab in the
realm settings. The sent email contains a link that will bring the user to the update password screen.

4.4.2. Changing OTPs

You cannot configure One-Time Passwords for a specific user within the Admin Console. This is the
responsibility of the user. If the user has lost their OTP generator all you can do is disable OTP for them
on the Credentials tab. If OTP is optional in your realm, the user will have to go to the User Account
Management service to re-configure a new OTP generator. If OTP is required, then the user will be asked
to re-configure a new OTP generator when they log in.

Like passwords, you can alternatively send an email to the user that will ask them to reset their OTP
generator. Choose Configure OTP in the Reset Actions list box and click the Send Email button.
The sent email contains a link that will bring the user to the OTP setup screen.

4.5. REQUIRED ACTIONS

Required Actions are tasks that a user must finish before they are allowed to log in. A user must provide
their credentials before required actions are executed. Once a required action is completed, the user will

Red Hat Single Sign-On 7.2 Server Administration Guide

26

not have to perform the action again. Here are an explanation of some of the built-in required action
types:

Update Password

When set, a user must change their password.

Configure OTP

When set, a user must configure a one-time password generator on their mobile device using either
the Free OTP or Google Authenticator application.

Verify Email

When set, a user must verify that they have a valid email account. An email will be sent to the user
with a link they have to click. Once this workflow is successfully completed, they will be allowed to log
in.

Update Profile

This required action asks the user to update their profile information, i.e. their name, address, email,
and/or phone number.

Admins can add required actions for each individual user within the user’s Details tab in the Admin
Console.

Setting Required Action

In the Required User Actions list box, select all the actions you want to add to the account. If you
want to remove one, click the X next to the action name. Also remember to click the Save button after
you’ve decided what actions to add.

CHAPTER 4. USER MANAGEMENT

27

4.5.1. Default Required Actions

You can also specify required actions that will be added to an account whenever a new user is created,
i.e. through the Add User button the user list screen, or via the user registration link on the login page.
To specify the default required actions go to the Authentication left menu item and click on the
Required Actions tab.

Default Required Actions

Simply click the checkbox in the Default Action column of the required actions that you want to be
executed when a brand new user logs in.

4.5.2. Terms and Conditions

Many organizations have a requirement that when a new user logs in for the first time, they need to
agree to the terms and conditions of the website. Red Hat Single Sign-On has this functionality
implemented as a required action, but it requires some configuration. For one, you have to go to the
Required Actions tab described earlier and enable the Terms and Conditions action. You must
also edit the terms.ftl file in the base login theme. See the Server Developer Guide for more information
on extending and creating themes.

4.6. IMPERSONATION

It is often useful for an admin to impersonate a user. For example, a user may be experiencing a bug in
one of your applications and an admin may want to impersonate the user to see if they can duplicate the
problem. Admins with the appropriate permission can impersonate a user. There are two locations an
admin can initiate impersonation. The first is on the Users list tab.

Users

Red Hat Single Sign-On 7.2 Server Administration Guide

28

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

You can see here that the admin has searched for jim. Next to Jim’s account you can see an
impersonate button. Click that to impersonate the user.

Also, you can impersonate the user from the user Details tab.

User Details

Near the bottom of the page you can see the Impersonate button. Click that to impersonate the user.

CHAPTER 4. USER MANAGEMENT

29

When impersonating, if the admin and the user are in the same realm, then the admin will be logged out
and automatically logged in as the user being impersonated. If the admin and user are not in the same
realm, the admin will remain logged in, but additionally be logged in as the user in that user’s realm. In
both cases, the browser will be redirected to the impersonated user’s User Account Management page.

Any user with the realm’s impersonation role can impersonate a user. Please see the Admin Console
Access Control chapter for more details on assigning administration permissions.

4.7. USER REGISTRATION

You can enable Red Hat Single Sign-On to allow user self registration. When enabled, the login page
has a registration link the user can click on to create their new account.

When user self registration is enabled it is possible to use the registration form to detect valid usernames
and emails. To prevent this enable reCAPTCHA Support.

Enabling registration is pretty simple. Go to the Realm Settings left menu and click it. Then go to the
Login tab. There is a User Registration switch on this tab. Turn it on, then click the Save button.

Login Tab

After you enable this setting, a Register link should show up on the login page.

Registration Link

Red Hat Single Sign-On 7.2 Server Administration Guide

30

Clicking on this link will bring the user to the registration page where they have to enter in some user
profile information and a new password.

Registration Form

You can change the look and feel of the registration form as well as removing or adding additional fields
that must be entered. See the Server Developer Guide for more information.

CHAPTER 4. USER MANAGEMENT

31

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

4.7.1. reCAPTCHA Support

To safeguard registration against bots, Red Hat Single Sign-On has integration with Google
reCAPTCHA. To enable this you need to first go to Google Recaptcha Website and create an API key so
that you can get your reCAPTCHA site key and secret. (FYI, localhost works by default so you don’t
have to specify a domain).

Next, there are a few steps you need to perform in the Red Hat Single Sign-On Admin Console. Click the
Authentication left menu item and go to the Flows tab. Select the Registration flow from the
drop down list on this page.

Registration Flow

Set the 'reCAPTCHA' requirement to Required by clicking the appropriate radio button. This will enable
reCAPTCHA on the screen. Next, you have to enter in the reCAPTCHA site key and secret that you
generated at the Google reCAPTCHA Website. Click on the 'Actions' button that is to the right of the
reCAPTCHA flow entry, then "Config" link, and enter in the reCAPTCHA site key and secret on this
config page.

Recaptcha Config Page

The final step you have to do is to change some default HTTP response headers that Red Hat Single
Sign-On sets. Red Hat Single Sign-On will prevent a website from including any login page within an

Red Hat Single Sign-On 7.2 Server Administration Guide

32

https://developers.google.com/recaptcha/

iframe. This is to prevent clickjacking attacks. You need to authorize Google to use the registration page
within an iframe. Go to the Realm Settings left menu item and then go to the Security Defenses
tab. You will need to add https://www.google.com to the values of both the X-Frame-Options and
Content-Security-Policy headers.

Authorizing Iframes

Once you do this, reCAPTCHA should show up on your registration page. You may want to edit
register.ftl in your login theme to muck around with the placement and styling of the reCAPTCHA button.
See the Server Developer Guide for more information on extending and creating themes.

CHAPTER 4. USER MANAGEMENT

33

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

CHAPTER 5. LOGIN PAGE SETTINGS
There are several nice built-in login page features you can enable if you need the functionality.

5.1. FORGOT PASSWORD

If you enable it, users are able to reset their credentials if they forget their password or lose their OTP
generator. Go to the Realm Settings left menu item, and click on the Login tab. Switch on the
Forgot Password switch.

Login Tab

A forgot password link will now show up on your login pages.

Forgot Password Link

Red Hat Single Sign-On 7.2 Server Administration Guide

34

Clicking on this link will bring the user to a page where they can enter in their username or email and
receive an email with a link to reset their credentials.

Forgot Password Page

The text sent in the email is completely configurable. You just need to extend or edit the theme
associated with it. See the Server Developer Guide for more information.

When the user clicks on the email link, they will be asked to update their password, and, if they have an
OTP generator set up, they will also be asked to reconfigure this as well. Depending on the security
requirements of your organization you may not want users to be able to reset their OTP generator
through email. You can change this behavior by going to the Authentication left menu item, clicking
on the Flows tab, and selecting the Reset Credentials flow:

Reset Credentials Flow

CHAPTER 5. LOGIN PAGE SETTINGS

35

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

If you do not want OTP reset, then just chose the disabled radio button to the right of Reset OTP.

5.2. REMEMBER ME

If a logged in user closes their browser, their session is destroyed and they will have to log in again. You
can set things up so that if a user checks a remember me checkbox, they will remain logged in even if
the browser is closed. This basically turns the login cookie from a session-only cookie to a persistence
cookie.

To enable this feature go to Realm Settings left menu item and click on the Login tab and turn on the
Remember Me switch:

Login Tab

Once you save this setting, a remember me checkbox will be displayed on the realm’s login page.

Remember Me

Red Hat Single Sign-On 7.2 Server Administration Guide

36

CHAPTER 5. LOGIN PAGE SETTINGS

37

CHAPTER 6. AUTHENTICATION
There are a few features you should be aware of when configuring authentication for your realm. Many
organizations have strict password and OTP policies that you can enforce via settings in the Admin
Console. You may or may not want to require different credential types for authentication. You may want
to give users the option to login via Kerberos or disable or enable various built-in credential types. This
chapter covers all of these topics.

6.1. PASSWORD POLICIES

Each new realm created has no password policies associated with it. Users can have as short, as long,
as complex, as insecure a password, as they want. Simple settings are fine for development or learning
Red Hat Single Sign-On, but unacceptable in production environments. Red Hat Single Sign-On has a
rich set of password policies you can enable through the Admin Console.

Click on the Authentication left menu item and go to the Password Policy tab. Choose the policy
you want to add in the right side drop down list box. This will add the policy in the table on the screen.
Choose the parameters for the policy. Hit the Save button to store your changes.

Password Policy

After saving your policy, user registration and the Update Password required action will enforce your new
policy. An example of a user failing the policy check:

Failed Password Policy

Red Hat Single Sign-On 7.2 Server Administration Guide

38

If the password policy is updated, an Update Password action must be set for every user. An automatic
trigger is scheduled as a future enhancement.

6.1.1. Password Policy Types

Here’s an explanation of each policy type:

Hashing Algorithm

Passwords are not stored as clear text. Instead they are hashed using standard hashing algorithms
before they are stored or validated. Supported values are pbkdf2, pbkdf2-sha256 and pbkdf2-
sha512.

Hashing Iterations

This value specifies the number of times a password will be hashed before it is stored or verified. The
default value is 20,000. This hashing is done in the rare case that a hacker gets access to your
password database. Once they have access to the database, they can reverse engineer user
passwords. The industry recommended value for this parameter changes every year as CPU power
improves. A higher hashing iteration value takes more CPU power for hashing, and can impact
performance. You’ll have to weigh what is more important to you. Performance or protecting your
passwords stores. There may be more cost effective ways of protecting your password stores.

Digits

The number of digits required to be in the password string.

Lowercase Characters

The number of lower case letters required to be in the password string.

Uppercase Characters

The number of upper case letters required to be in the password string.

Special Characters

The number of special characters like '?!#%$' required to be in the password string.

Not Username

When set, the password is not allowed to be the same as the username.

Regular Expression

CHAPTER 6. AUTHENTICATION

39

Define one or more Perl regular expression patterns that passwords must match.

Expire Password

The number of days for which the password is valid. After the number of days has expired, the user is
required to change their password.

Not Recently Used

This policy saves a history of previous passwords. The number of old passwords stored is
configurable. When a user changes their password they cannot use any stored passwords.

Password Blacklist

This policy checks if a given password is contained in a blacklist file, which is potentially a very large
file. Password blacklists are UTF-8 plain-text files with Unix line endings where every line represents
a blacklisted password. The file name of the blacklist file must be provided as the password policy
value, e.g. 10_million_password_list_top_1000000.txt. Blacklist files are resolved against
${jboss.server.data.dir}/password-blacklists/ by default. This path can be
customized via the keycloak.password.blacklists.path system property, or the
blacklistsPath property of the passwordBlacklist policy SPI configuration.

6.2. OTP POLICIES

Red Hat Single Sign-On has a number of policies you can set up for your FreeOTP or Google
Authenticator One-Time Password generator. Click on the Authentication left menu item and go to
the OTP Policy tab.

OTP Policy

Any policies you set here will be used to validate one-time passwords. When configuring OTP, FreeOTP
and Google Authenticator can scan a QR code that is generated on the OTP set up page that Red Hat
Single Sign-On has. The bar code is also generated from information configured on the OTP Policy
tab.

6.2.1. TOTP vs. HOTP

There are two different algorithms to choose from for your OTP generators. Time Based (TOTP) and

Red Hat Single Sign-On 7.2 Server Administration Guide

40

Counter Based (HOTP). For TOTP, your token generator will hash the current time and a shared secret.
The server validates the OTP by comparing the all hashes within a certain window of time to the
submitted value. So, TOTPs are valid only for a short window of time (usually 30 seconds). For HOTP a
shared counter is used instead of the current time. The server increments the counter with each
successful OTP login. So, valid OTPs only change after a successful login.

TOTP is considered a little more secure because the matchable OTP is only valid for a short window of
time while the OTP for HOTP can be valid for an indeterminate amount of time. HOTP is much more
user friendly as the user won’t have to hurry to enter in their OTP before the time interval is up. With the
way Red Hat Single Sign-On has implemented TOTP this distinction becomes a little more blurry. HOTP
requires a database update every time the server wants to increment the counter. This can be a
performance drain on the authentication server when there is heavy load. So, to provide a more efficient
alternative, TOTP does not remember passwords used. This bypasses the need to do any DB updates,
but the downside is that TOTPs can be re-used in the valid time interval. For future versions of Red Hat
Single Sign-On it is planned that you will be able to configure whether TOTP checks older OTPs in the
time interval.

6.2.2. TOTP Configuration Options

OTP Hash Algorithm

Default is SHA1, more secure options are SHA256 and SHA512.

Number of Digits

How many characters is the OTP? Short means more user friendly as it is less the user has to type.
More means more security.

Look Ahead Window

How many intervals ahead should the server try and match the hash? This exists so just in case the
clock of the TOTP generator or authentication server get out of sync. The default value of 1 is usually
good enough. For example, if the time interval for a new token is every 30 seconds, the default value
of 1 means that it will only accept valid tokens in that 30 second window. Each increment of this config
value will increase the valid window by 30 seconds.

OTP Token Period

Time interval in seconds a new TOTP will be generated by the token generator. And, the time window
the server is matching a hash.

6.2.3. HOTP Configuration Options

OTP Hash Algorithm

Default is SHA1, more secure options are SHA256 and SHA512.

Number of Digits

How many characters is the OTP? Short means more user friendly as it is less the user has to type.
More means more security.

Look Ahead Window

How many counters ahead should the server try and match the hash? The default value is 1. This
exists to cover the case where the user’s counter gets ahead of the server’s. This can often happen
as users often increment the counter manually too many times by accident. This value really should
be increased to a value of 10 or so.

Initial Counter

What is the value of the initial counter?

6.3. AUTHENTICATION FLOWS

CHAPTER 6. AUTHENTICATION

41

An authentication flow is a container for all authentications, screens, and actions that must happen
during login, registration, and other Red Hat Single Sign-On workflows. If you go to the admin console
Authentication left menu item and go to the Flows tab, you can view all the defined flows in the
system and what actions and checks each flow requires. This section does a walk through of the browser
login flow. In the left drop down list select browser to come to the screen shown below:

Browser Flow

If you hover over the tooltip (the tiny question mark) to the right of the flow selection list, this will describe
what the flow is and does.

The Auth Type column is the name of authentication or action that will be executed. If an authentication
is indented this means it is in a sub-flow and may or may not be executed depending on the behavior of
its parent. The Requirement column is a set of radio buttons which define whether or not the action will
execute. Let’s describe what each radio button means:

Required

This authentication execution must execute successfully. If the user doesn’t have that type of
authentication mechanism configured and there is a required action associated with that
authentication type, then a required action will be attached to that account. For example, if you switch
OTP Form to Required, users that don’t have an OTP generator configured will be asked to do so.

Optional

If the user has the authentication type configured, it will be executed. Otherwise, it will be ignored.

Disabled

If disabled, the authentication type is not executed.

Alternative

This means that at least one alternative authentication type must execute successfully at that level of
the flow.

This is better described in an example. Let’s walk through the browser authentication flow.

1. The first authentication type is Cookie. When a user successfully logs in for the first time, a
session cookie is set. If this cookie has already been set, then this authentication type is
successful. Since the cookie provider returned success and each execution at this level of the

Red Hat Single Sign-On 7.2 Server Administration Guide

42

flow is alternative, no other execution is executed and this results in a successful login.

2. Next the flow looks at the Kerberos execution. This authenticator is disabled by default and will
be skipped.

3. The next execution is a subflow called Forms. Since this subflow is marked as alternative it will
not be executed if the Cookie authentication type passed. This subflow contains additional
authentication type that needs to be executed. The executions for this subflow are loaded and
the same processing logic occurs

4. The first execution in the Forms subflow is the Username Password Form. This authentication
type renders the username and password page. It is marked as required so the user must enter
in a valid username and password.

5. The next execution is the OTP Form. This is marked as optional. If the user has OTP set up,
then this authentication type must run and be successful. If the user doesn’t have OTP set up,
this authentication type is ignored.

6.4. KERBEROS

Red Hat Single Sign-On supports login with a Kerberos ticket through the SPNEGO protocol. SPNEGO
(Simple and Protected GSSAPI Negotiation Mechanism) is used to authenticate transparently through
the web browser after the user has been authenticated when logging-in his session. For non-web cases
or when ticket is not available during login, Red Hat Single Sign-On also supports login with Kerberos
username/password.

A typical use case for web authentication is the following:

1. User logs into his desktop (Such as a Windows machine in Active Directory domain or Linux
machine with Kerberos integration enabled).

2. User then uses his browser (IE/Firefox/Chrome) to access a web application secured by Red Hat
Single Sign-On.

3. Application redirects to Red Hat Single Sign-On login.

4. Red Hat Single Sign-On renders HTML login screen together with status 401 and HTTP header
WWW-Authenticate: Negotiate

5. In case that the browser has Kerberos ticket from desktop login, it transfers the desktop sign on
information to the Red Hat Single Sign-On in header Authorization: Negotiate
'spnego-token' . Otherwise it just displays the login screen.

6. Red Hat Single Sign-On validates token from the browser and authenticates the user. It
provisions user data from LDAP (in case of LDAPFederationProvider with Kerberos
authentication support) or let user to update his profile and prefill data (in case of
KerberosFederationProvider).

7. Red Hat Single Sign-On returns back to the application. Communication between Red Hat
Single Sign-On and application happens through OpenID Connect or SAML messages. The fact
that Red Hat Single Sign-On was authenticated through Kerberos is hidden from the application.
So Red Hat Single Sign-On acts as broker to Kerberos/SPNEGO login.

For setup there are 3 main parts:

1. Setup and configuration of Kerberos server (KDC)

CHAPTER 6. AUTHENTICATION

43

2. Setup and configuration of Red Hat Single Sign-On server

3. Setup and configuration of client machines

6.4.1. Setup of Kerberos server

This is platform dependent. Exact steps depend on your OS and the Kerberos vendor you’re going to
use. Consult Windows Active Directory, MIT Kerberos and your OS documentation for how exactly to
setup and configure Kerberos server.

At least you will need to:

Add some user principals to your Kerberos database. You can also integrate your Kerberos with
LDAP, which means that user accounts will be provisioned from LDAP server.

Add service principal for "HTTP" service. For example if your Red Hat Single Sign-On server
will be running on www.mydomain.org you may need to add principal
HTTP/www.mydomain.org@MYDOMAIN.ORG assuming that MYDOMAIN.ORG will be your
Kerberos realm.
For example on MIT Kerberos you can run a "kadmin" session. If you are on the same machine
where is MIT Kerberos, you can simply use the command:

sudo kadmin.local

Then add HTTP principal and export his key to a keytab file with the commands like:

addprinc -randkey HTTP/www.mydomain.org@MYDOMAIN.ORG
ktadd -k /tmp/http.keytab HTTP/www.mydomain.org@MYDOMAIN.ORG

The Keytab file /tmp/http.keytab will need to be accessible on the host where Red Hat Single Sign-
On server will be running.

6.4.2. Setup and configuration of Red Hat Single Sign-On server

You need to install a kerberos client on your machine. This is also platform dependent. If you are on
Fedora, Ubuntu or RHEL, you can install the package freeipa-client, which contains a Kerberos
client and several other utilities. Configure the kerberos client (on linux it’s in file /etc/krb5.conf).
You need to put your Kerberos realm and at least configure the HTTP domains your server will be
running on. For the example realm MYDOMAIN.ORG you may configure the domain_realm section
like this:

[domain_realm]
 .mydomain.org = MYDOMAIN.ORG
 mydomain.org = MYDOMAIN.ORG

Next you need to export the keytab file with the HTTP principal and make sure the file is accessible to the
process under which Red Hat Single Sign-On server is running. For production, it’s ideal if it’s readable
just by this process and not by someone else. For the MIT Kerberos example above, we already
exported keytab to /tmp/http.keytab . If your KDC and Red Hat Single Sign-On are running on
same host, you have that file already available.

6.4.2.1. Enable SPNEGO Processing

Red Hat Single Sign-On 7.2 Server Administration Guide

44

Red Hat Single Sign-On does not have the SPNEGO protocol support turned on by default. So, you
have to go to the browser flow and enable Kerberos.

Browser Flow

Switch the Kerberos requirement from disabled to either alternative or required. Alternative basically
means that Kerberos is optional. If the user’s browser hasn’t been configured to work with
SPNEGO/Kerberos, then Red Hat Single Sign-On will fall back to the regular login screens. If you set the
requirement to required then all users must have Kerberos enabled for their browser.

6.4.2.2. Configure Kerberos User Storage Federation Provider

Now that the SPNEGO protocol is turned on at the authentication server, you’ll need to configure how
Red Hat Single Sign-On interprets the Kerberos ticket. This is done through User Storage Federation.
We have 2 different federation providers with Kerberos authentication support.

If you want to authenticate with Kerberos backed by an LDAP server, you have to first configure the
LDAP Federation Provider. If you look at the configuration page for your LDAP provider you’ll see a
Kerberos Integration section.

LDAP Kerberos Integration

CHAPTER 6. AUTHENTICATION

45

Turning on the switch Allow Kerberos authentication will make Red Hat Single Sign-On use the
Kerberos principal to lookup information about the user so that it can be imported into the Red Hat Single
Sign-On environment.

If your Kerberos solution is not backed by an LDAP server, you have to use the Kerberos User Storage
Federation Provider. Go to the User Federation left menu item and select Kerberos from the Add
provider select box.

Kerberos User Storage Provider

Red Hat Single Sign-On 7.2 Server Administration Guide

46

This provider parses the Kerberos ticket for simple principal information and does a small import into the
local Red Hat Single Sign-On database. User profile information like first name, last name, and email are
not provisioned.

6.4.3. Setup and configuration of client machines

Clients need to install kerberos client and setup krb5.conf as described above. Additionally they need to
enable SPNEGO login support in their browser. See configuring Firefox for Kerberos if you are using
that browser. URI .mydomain.org must be allowed in the network.negotiate-auth.trusted-
uris config option.

In a Windows domain, clients usually don’t need to configure anything special as IE is already able to
participate in SPNEGO authentication for the Windows domain.

6.4.4. Credential Delegation

Kerberos 5 supports the concept of credential delegation. In this scenario, your applications may want
access to the Kerberos ticket so that they can re-use it to interact with other services secured by
Kerberos. Since the SPNEGO protocol is processed in the Red Hat Single Sign-On server, you have to
propagate the GSS credential to your application within the OpenID Connect token claim or a SAML
assertion attribute that is transmitted to your application from the Red Hat Single Sign-On server. To

CHAPTER 6. AUTHENTICATION

47

http://www.microhowto.info/howto/configure_firefox_to_authenticate_using_spnego_and_kerberos.html

have this claim inserted into the token or assertion, each application will need to enable the built-in
protocol mapper called gss delegation credential. This is enabled in the Mappers tab of the
application’s client page. See Protocol Mappers chapter for more details.

Applications will need to deserialize the claim it receives from Red Hat Single Sign-On before it can use
it to make GSS calls against other services. Once you deserialize the credential from the access token to
the GSSCredential object, the GSSContext will need to be created with this credential passed to the
method GSSManager.createContext for example like this:

// Obtain accessToken in your application.
KeycloakPrincipal keycloakPrincipal = (KeycloakPrincipal)
servletReq.getUserPrincipal();
AccessToken accessToken =
keycloakPrincipal.getKeycloakSecurityContext().getToken();

// Retrieve kerberos credential from accessToken and deserialize it
String serializedGssCredential = (String) accessToken.getOtherClaims().

get(org.keycloak.common.constants.KerberosConstants.GSS_DELEGATION_CREDENT
IAL);

GSSCredential deserializedGssCredential =
org.keycloak.common.util.KerberosSerializationUtils.
 deserializeCredential(serializedGssCredential);

// Create GSSContext to call other kerberos-secured services
GSSContext context = gssManager.createContext(serviceName, krb5Oid,
 deserializedGssCredential, GSSContext.DEFAULT_LIFETIME);

Note that you also need to configure forwardable kerberos tickets in krb5.conf file and add support
for delegated credentials to your browser.

WARNING

Credential delegation has some security implications so only use it if you really need
it. It’s highly recommended to use it together with HTTPS. See for example this
article for more details.

6.4.5. Cross-realm trust

In the Kerberos V5 protocol, the realm is a set of Kerberos principals defined in the Kerberos database
(typically LDAP server). The Kerberos protocol has a concept of cross-realm trust. For example, if there
are 2 kerberos realms A and B, the cross-realm trust will allow the users from realm A to access
resources (services) of realm B. This means that realm B trusts the realm A.

Kerberos cross-realm trust

Red Hat Single Sign-On 7.2 Server Administration Guide

48

http://www.microhowto.info/howto/configure_firefox_to_authenticate_using_spnego_and_kerberos.html

The Red Hat Single Sign-On server has support for cross-realm trust. There are few things which need
to be done to achieve this:

Configure the Kerberos servers for the cross-realm trust. This step is dependent on the concrete
Kerberos server implementations used. In general, it is needed to add the Kerberos principal
krbtgt/B@A to both Kerberos databases of realm A and B. It is needed that this principal has
same keys on both Kerberos realms. This is usually achieved when the principals have same
password, key version number and there are same ciphers used in both realms. It is
recommended to consult the Kerberos server documentation for more details.

NOTE

The cross-realm trust is unidirectional by default. If you want bidirectional trust to have
realm A also trust realm B, you must also add the principal krbtgt/A@B to both Kerberos
databases. However, trust is transitive by default. If realm B trusts realm A and realm C
trusts realm B, then realm C automatically trusts realm A without a need to have principal
krbtgt/C@A available. Some additional configuration (for example capaths) may be
needed to configure on Kerberos client side, so that the clients are able to find the trust
path. Consult the Kerberos documentation for more details.

Configure Red Hat Single Sign-On server

If you use an LDAP storage provider with Kerberos support, you need to configure the
server principal for realm B as in this example: HTTP/mydomain.com@B. The LDAP server
must be able to find the users from realm A if you want users from realm A to successfully
authenticate to Red Hat Single Sign-On, as Red Hat Single Sign-On server must be able to
do SPNEGO flow and then find the users. For example, kerberos principal user john@A
must be available as a user in the LDAP under an LDAP DN such as
uid=john,ou=People,dc=example,dc=com. If you want both users from realm A and B
to authenticate, you need to ensure that LDAP is able to find users from both realms A and
B. We want to improve this limitation in future versions, so you can potentially create more
separate LDAP providers for separate realms and ensure that SPNEGO works for both of
them.

If you use a Kerberos user storage provider (typically the Kerberos without LDAP
integration), you need to configure the server principal as HTTP/mydomain.com@B and
users from both Kerberos realms A and B should be able to authenticate.

CHAPTER 6. AUTHENTICATION

49

WARNING

For the Kerberos user storage provider, it is recommended that there are no
conflicting users among kerberos realms. If conflicting users exist, they will be
mapped to the same Red Hat Single Sign-On user. This is also something, which
we want to improve in future versions and provide some more flexible mappings
from Kerberos principals to Red Hat Single Sign-On usernames.

6.4.6. Troubleshooting

If you have issues, we recommend that you enable additional logging to debug the problem:

Enable Debug flag in admin console for Kerberos or LDAP federation providers

Enable TRACE logging for category org.keycloak in logging section of
standalone/configuration/standalone.xml to receive more info
standalone/log/server.log

Add system properties -Dsun.security.krb5.debug=true and -
Dsun.security.spnego.debug=true

6.5. X.509 CLIENT CERTIFICATE USER AUTHENTICATION

Red Hat Single Sign-On supports login with a X.509 client certificate if the server is configured for
mutual SSL authentication.

A typical workflow is as follows:

A client sends an authentication request over SSL/TLS channel

During SSL/TLS handshake, the server and the client exchange their x.509/v3 certificates

The container (WildFly) validates the certificate PKIX path and the certificate expiration

The x.509 client certificate authenticator validates the client certificate as follows:

Optionally checks the certificate revocation status using CRL and/or CRL Distribution Points

Optionally checks the Certificate revocation status using OCSP (Online Certificate Status
Protocol)

Optionally validates whether the key usage in the certificate matches the expected key
usage

Optionally validates whether the extended key usage in the certificate matches the expected
extended key usage

If any of the above checks fails, the x.509 authentication fails

Otherwise, the authenticator extracts the certificate identity and maps it to an existing user

Red Hat Single Sign-On 7.2 Server Administration Guide

50

Once the certificate is mapped to an existing user, the behavior diverges depending on the
authentication flow:

In the Browser Flow, the server prompts the user to confirm identity or to ignore it and
instead sign in with username/password

In the case of the Direct Grant Flow, the server signs in the user

6.5.1. Features

Supported Certificate Identity Sources

Match SubjectDN using regular expression

X500 Subject’s e-mail attribute

X500 Subject’s e-mail from Subject Alternative Name Extension (RFC822Name General
Name)

X500 Subject’s Common Name attribute

Match IssuerDN using regular expression

X500 Issuer’s e-mail attribute

X500 Issuer’s Common Name attribute

Certificate Serial Number

Regular Expressions

The certificate identity can be extracted from either Subject DN or Issuer DN using a regular
expression as a filter. For example, the regular expression below will match the e-mail attribute:

emailAddress=(.*?)(?:,|$)

The regular expression filtering is applicable only if the Identity Source is set to either Match
SubjectDN using regular expression or Match IssuerDN using regular expression.

Mapping certificate identity to an existing user

The certificate identity mapping can be configured to map the extracted user identity to an existing
user’s username or e-mail or to a custom attribute which value matches the certificate identity. For
example, setting the Identity source to Subject’s e-mail and User mapping method to
Username or email will have the X.509 client certificate authenticator use the e-mail attribute in the
certificate’s Subject DN as a search criteria to look up an existing user by username or by e-mail.

IMPORTANT

Please notice that if we disable Login with email at realm settings, the same rules
will be applied to certificate authentication. In other words, users won’t be able to log in
using e-mail attribute.

Other Features: Extended Certificate Validation

Revocation status checking using CRL

CHAPTER 6. AUTHENTICATION

51

Revocation status checking using CRL/Distribution Point

Revocation status checking using OCSP/Responder URI

Certificate KeyUsage validation

Certificate ExtendedKeyUsage validation

6.5.2. Enable X.509 Client Certificate User Authentication

The following sections describe how to configure Wildfly/Undertow and the Red Hat Single Sign-On
Server to enable X.509 client certificate authentication.

Enable mutual SSL in WildFly

See Enable SSL and SSL for the instructions how to enable SSL in Wildfly.

Open RHSSO_HOME/standalone/configuration/standalone.xml and add a new realm:

<security-realms>
 <security-realm name="ssl-realm">
 <server-identities>
 <ssl>
 <keystore path="servercert.jks"
 relative-to="jboss.server.config.dir"
 keystore-password="servercert password"/>
 </ssl>
 </server-identities>
 <authentication>
 <truststore path="truststore.jks"
 relative-to="jboss.server.config.dir"
 keystore-password="truststore password"/>
 </authentication>
 </security-realm>
</security-realms>

ssl/keystore

The ssl element contains the keystore element that defines how to load the server public key pair
from a JKS keystore

ssl/keystore/path

A path to a JKS keystore

ssl/keystore/relative-to

Defines a path the keystore path is relative to

ssl/keystore/keystore-password

The password to open the keystore

ssl/keystore/alias (optional)

The alias of the entry in the keystore. Set it if the keystore contains multiple entries

ssl/keystore/key-password (optional)

The private key password, if different from the keystore password.

authentication/truststore

Red Hat Single Sign-On 7.2 Server Administration Guide

52

https://docs.jboss.org/author/display/WFLY10/Admin+Guide#AdminGuide-EnableSSL
https://docs.jboss.org/author/display/WFLY10/Admin+Guide#AdminGuide-%7B%7B%3Cssl%2F%3E%7D%7D

Defines how to load a trust store to verify the certificate presented by the remote side of the
inbound/outgoing connection. Typically, the truststore contains a collection of trusted CA certificates.

authentication/truststore/path

A path to a JKS keystore that contains the certificates of the trusted CAs (certificate authorities)

authentication/truststore/relative-to

Defines a path the truststore path is relative to

authentication/truststore/keystore-password

The password to open the truststore

Enable https listener

See HTTPS Listener for the instructions how to enable HTTPS in Wildfly.

Add the <https-listener> element as shown below:

https-listener/security-realm

The value must match the name of the realm from the previous section

https-listener/verify-client

If set to REQUESTED, the server will optionally ask for a client certificate. Setting the attribute to
REQUIRED will have the server to refuse inbound connections if no client certificate has been
provided.

6.5.3. Adding X.509 Client Certificate Authentication to a Browser Flow

Select a realm, click on Authentication link, select the "Browser" flow

Make a copy of the built-in "Browser" flow. You may want to give the new flow a distinctive
name, i.e. "X.509 Browser"

Using the drop down, select the copied flow, and click on "Add Execution"

Select "X509/Validate User Form" using the drop down and click on "Save"

<subsystem xmlns="urn:jboss:domain:undertow:4.0">

 <server name="default-server">
 <https-listener name="default"
 socket-binding="https"
 security-realm="ssl-realm"
 verify-client="REQUESTED"/>
 </server>
</subsystem>

CHAPTER 6. AUTHENTICATION

53

https://docs.jboss.org/author/display/WFLY10/Admin+Guide#AdminGuide-HTTPSlistener

Using the up/down arrows, change the order of the "X509/Validate Username Form" by moving
it above the "Browser Forms" execution, and set the requirement to "ALTERNATIVE"

Select the "Bindings" tab, find the drop down for "Browser Flow". Select the newly created X509
browser flow from the drop down and click on "Save".

Configuring X.509 Client Certificate Authentication

Red Hat Single Sign-On 7.2 Server Administration Guide

54

User Identity Source

Defines how to extract the user identity from a client certificate.

A regular expression (optional)

Defines a regular expression to use as a filter to extract the certificate identity. The regular expression
must contain a single group.

User Mapping Method

Defines how to match the certificate identity to an existing user. Username or e-mail will search for an
existing user by username or e-mail. Custom Attribute Mapper will search for an existing user with a
custom attribute which value matches the certificate identity. The name of the custom attribute is
configurable.

A name of user attribute (optional)

A custom attribute which value will be matched against the certificate identity.

CRL Checking Enabled (optional)

Defines whether to check the revocation status of the certificate using Certificate Revocation List.

Enable CRL Distribution Point to check certificate revocation status (optional)

Defines whether to use CDP to check the certificate revocation status. Most PKI authorities include
CDP in their certificates.

CRL file path (optional)

Defines a path to a file that contains a CRL list. The value must be a path to a valid file if CRL
Checking Enabled option is turned on.

OCSP Checking Enabled(optional)

Defines whether to check the certificate revocation status using Online Certificate Status Protocol.

CHAPTER 6. AUTHENTICATION

55

OCSP Responder URI (optional)

Allows to override a value of the OCSP responder URI in the certificate.

Validate Key Usage (optional)

Verifies whether the certificate’s KeyUsage extension bits are set. For example,
"digitalSignature,KeyEncipherment" will verify if bits 0 and 2 in the KeyUsage extension are asserted.
Leave the parameter empty to disable the Key Usage validation. See RFC5280, Section-4.2.1.3. The
server will raise an error only when flagged as critical by the issuing CA and there is a key usage
extension mismatch.

Validate Extended Key Usage (optional)

Verifies one or more purposes as defined in the Extended Key Usage extension. See RFC5280,
Section-4.2.1.12. Leave the parameter empty to disable the Extended Key Usage validation. The
server will raise an error only when flagged as critical by the issuing CA and there is a key usage
extension mismatch.

Bypass identity confirmation

If set, X.509 client certificate authentication will not prompt the user to confirm the certificate identity
and will automatically sign in the user upon successful authentication.

6.5.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow

Using Red Hat Single Sign-On admin console, click on "Authentication" and select the "Direct
Grant" flow,

Make a copy of the build-in "Direct Grant" flow. You may want to give the new flow a distinctive
name, i.e. "X509 Direct Grant",

Delete "Validate Username" and "Password" authenticators,

Click on "Execution" and add "X509/Validate Username" and click on "Save" to add the
execution step to the parent flow.

Change the Requirement to REQUIRED.

Set up the x509 authentication configuration by following the steps described earlier in the x.509
Browser Flow section.

Select the "Bindings" tab, find the drop down for "Direct Grant Flow". Select the newly created
X509 direct grant flow from the drop down and click on "Save".

Red Hat Single Sign-On 7.2 Server Administration Guide

56

https://tools.ietf.org/html/rfc5280#section-4.2.1.3
https://tools.ietf.org/html/rfc5280#section-4.2.1.12

6.5.5. Client certificate lookup

When an HTTP request is sent directly to Red Hat Single Sign-On server, the JBoss EAP undertow
subsystem will establish an SSL handshake and extract the client certificate. The client certificate will be
then saved to the attribute javax.servlet.request.X509Certificate of the HTTP request, as
specified in the servlet specification. The Red Hat Single Sign-On X509 authenticator will be then able to
lookup the certificate from this attribute.

However, when the Red Hat Single Sign-On server listens to HTTP requests behind a load balancer or
reverse proxy, it may be the proxy server which extracts the client certificate and establishes the mutual
SSL connection. A reverse proxy usually puts the authenticated client certificate in the HTTP header of
the underlying request and forwards it to the back end Red Hat Single Sign-On server. In this case, Red
Hat Single Sign-On must be able to look up the X.509 certificate chain from the HTTP headers instead of
from the attribute of HTTP request, as is done for Undertow.

If Red Hat Single Sign-On is behind a reverse proxy, you usually need to configure alternative provider
of the x509cert-lookup SPI in RHSSO_HOME/standalone/configuration/standalone.xml. Along with
the default provider, which looks up the certificate from the HTTP header, we also have two additional
built-in providers: haproxy and apache, which are described next.

6.5.5.1. HAProxy certificate lookup provider

You can use this provider when your Red Hat Single Sign-On server is behind an HAProxy reverse
proxy. Configure the server like this:

In this example configuration, the client certificate will be looked up from the HTTP header,

<spi name="x509cert-lookup">
 <default-provider>haproxy</default-provider>
 <provider name="haproxy" enabled="true">
 <properties>
 <property name="sslClientCert" value="SSL_CLIENT_CERT"/>
 <property name="sslCertChainPrefix" value="CERT_CHAIN"/>
 <property name="certificateChainLength" value="10"/>
 </properties>
 </provider>
</spi>

CHAPTER 6. AUTHENTICATION

57

SSL_CLIENT_CERT, and the other certificates from its chain will be looked up from HTTP headers like
CERT_CHAIN_0 , CERT_CHAIN_1, … , CERT_CHAIN_9 . The attribute certificateChainLength is
the maximum length of the chain, so the last one tried attribute would be CERT_CHAIN_9 .

Consult the HAProxy documentation for the details of how the HTTP Headers for the client certificate and
client certificate chain can be configured and their proper names.

6.5.5.2. Apache certificate lookup provider

You can use this provider when your Red Hat Single Sign-On server is behind an Apache reverse proxy.
Configure the server like this:

The configuration is same as for the haproxy provider. Consult the Apache documentation for the
details of how the HTTP Headers for the client certificate and client certificate chain can be configured
and their proper names.

6.5.5.3. Other reverse proxy implementations

We do not have built-in support for other reverse proxy implementations. However, it is possible that
other reverse proxies can be made to behave in a similar way to apache or haproxy and that some of
those providers can be used. If none of those works, you may need to create your own implementation of
the org.keycloak.services.x509.X509ClientCertificateLookupFactory and
org.keycloak.services.x509.X509ClientCertificateLookup provider. See the Server
Developer Guide for the details on how to add your own provider.

6.5.6. Troubleshooting

Direct Grant authentication with X.509

The following template can be used to request a token using the Resource Owner Password
Credentials Grant:

$ curl https://[host][:port]/auth/realms/master/protocol/openid-
connect/token \
 --insecure \
 --data "grant_type=password&scope=openid
profile&username=&password=&client_id=CLIENT_ID&client_secret=CLIENT_SECRE
T" \
 -E /path/to/client_cert.crt \
 --key /path/to/client_cert.key

[host][:port]

<spi name="x509cert-lookup">
 <default-provider>apache</default-provider>
 <provider name="apache" enabled="true">
 <properties>
 <property name="sslClientCert" value="SSL_CLIENT_CERT"/>
 <property name="sslCertChainPrefix" value="CERT_CHAIN"/>
 <property name="certificateChainLength" value="10"/>
 </properties>
 </provider>
</spi>

Red Hat Single Sign-On 7.2 Server Administration Guide

58

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

The host and the port number of a remote Red Hat Single Sign-On server that has been configured to
allow users authenticate with x.509 client certificates using the Direct Grant Flow.

CLIENT_ID

A client id.

CLIENT_SECRET

For confidential clients, a client secret; otherwise, leave it empty.

client_cert.crt

A public key certificate that will be used to verify the identity of the client in mutual SSL authentication.
The certificate should be in PEM format.

client_cert.key

A private key in the public key pair. Also expected in PEM format.

CHAPTER 6. AUTHENTICATION

59

CHAPTER 7. SSO PROTOCOLS
The chapter gives a brief overview of the authentication protocols and how the Red Hat Single Sign-On
authentication server and the applications it secures interact with these protocols.

7.1. OPENID CONNECT

OpenID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0. While OAuth 2.0
is only a framework for building authorization protocols and is mainly incomplete, OIDC is a full-fledged
authentication and authorization protocol. OIDC also makes heavy use of the Json Web Token (JWT) set
of standards. These standards define an identity token JSON format and ways to digitally sign and
encrypt that data in a compact and web-friendly way.

There are really two types of use cases when using OIDC. The first is an application that asks the Red
Hat Single Sign-On server to authenticate a user for them. After a successful login, the application will
receive an identity token and an access token. The identity token contains information about the user
such as username, email, and other profile information. The access token is digitally signed by the realm
and contains access information (like user role mappings) that the application can use to determine what
resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this
case, the client asks Red Hat Single Sign-On to obtain an access token it can use to invoke on other
remote services on behalf of the user. Red Hat Single Sign-On authenticates the user then asks the user
for consent to grant access to the client requesting it. The client then receives the access token. This
access token is digitally signed by the realm. The client can make REST invocations on remote services
using this access token. The REST service extracts the access token, verifies the signature of the token,
then decides based on access information within the token whether or not to process the request.

7.1.1. OIDC Auth Flows

OIDC has different ways for a client or application to authenticate a user and receive an identity and
access token. Which path you use depends greatly on the type of application or client requesting access.
All of these flows are described in the OIDC and OAuth 2.0 specifications so only a brief overview will be
provided here.

7.1.1.1. Authorization Code Flow

This is a browser-based protocol and it is what we recommend you use to authenticate and authorize
browser-based applications. It makes heavy use of browser redirects to obtain an identity and access
token. Here’s a brief summary:

1. Browser visits application. The application notices the user is not logged in, so it redirects the
browser to Red Hat Single Sign-On to be authenticated. The application passes along a callback
URL (a redirect URL) as a query parameter in this browser redirect that Red Hat Single Sign-On
will use when it finishes authentication.

2. Red Hat Single Sign-On authenticates the user and creates a one-time, very short lived,
temporary code. Red Hat Single Sign-On redirects back to the application using the callback
URL provided earlier and additionally adds the temporary code as a query parameter in the
callback URL.

3. The application extracts the temporary code and makes a background out of band REST
invocation to Red Hat Single Sign-On to exchange the code for an identity, access and refresh
token. Once this temporary code has been used once to obtain the tokens, it can never be used
again. This prevents potential replay attacks.

Red Hat Single Sign-On 7.2 Server Administration Guide

60

http://openid.net/connect/
https://tools.ietf.org/html/rfc6749
https://jwt.io

It is important to note that access tokens are usually short lived and often expired after only minutes. The
additional refresh token that was transmitted by the login protocol allows the application to obtain a new
access token after it expires. This refresh protocol is important in the situation of a compromised system.
If access tokens are short lived, the whole system is only vulnerable to a stolen token for the lifetime of
the access token. Future refresh token requests will fail if an admin has revoked access. This makes
things more secure and more scalable.

Another important aspect of this flow is the concept of a public vs. a confidential client. Confidential
clients are required to provide a client secret when they exchange the temporary codes for tokens. Public
clients are not required to provide this client secret. Public clients are perfectly fine so long as HTTPS is
strictly enforced and you are very strict about what redirect URIs are registered for the client.
HTML5/JavaScript clients always have to be public clients because there is no way to transmit the client
secret to them in a secure manner. Again, this is ok so long as you use HTTPS and strictly enforce
redirect URI registration. This guide goes more detail into this in the Managing Clients chapter.

Red Hat Single Sign-On also supports the optional Proof Key for Code Exchange specification.

7.1.1.2. Implicit Flow

This is a browser-based protocol that is similar to Authorization Code Flow except there are fewer
requests and no refresh tokens involved. We do not recommend this flow as there remains the possibility
of access tokens being leaked in the browser history as tokens are transmitted via redirect URIs (see
below). Also, since this flow doesn’t provide the client with a refresh token, access tokens would either
have to be long-lived or users would have to re-authenticate when they expired. This flow is supported
because it is in the OIDC and OAuth 2.0 specification. Here’s a brief summary of the protocol:

1. Browser visits application. The application notices the user is not logged in, so it redirects the
browser to Red Hat Single Sign-On to be authenticated. The application passes along a callback
URL (a redirect URL) as a query parameter in this browser redirect that Red Hat Single Sign-On
will use when it finishes authentication.

2. Red Hat Single Sign-On authenticates the user and creates an identity and access token. Red
Hat Single Sign-On redirects back to the application using the callback URL provided earlier and
additionally adding the identity and access tokens as query parameters in the callback URL.

3. The application extracts the identity and access tokens from the callback URL.

7.1.1.3. Resource Owner Password Credentials Grant (Direct Access Grants)

This is referred to in the Admin Console as Direct Access Grants. This is used by REST clients that want
to obtain a token on behalf of a user. It is one HTTP POST request that contains the credentials of the
user as well as the id of the client and the client’s secret (if it is a confidential client). The user’s
credentials are sent within form parameters. The HTTP response contains identity, access, and refresh
tokens.

7.1.1.4. Client Credentials Grant

This is also used by REST clients, but instead of obtaining a token that works on behalf of an external
user, a token is created based on the metadata and permissions of a service account that is associated
with the client. More info together with example is in Service Accounts chapter.

7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints

Here’s a list of OIDC endpoints that the Red Hat Single Sign-On publishes. These URLs are useful if you
are using a non-Red Hat Single Sign-On client adapter to talk OIDC with the auth server. These are all

CHAPTER 7. SSO PROTOCOLS

61

https://tools.ietf.org/html/rfc7636

relative URLs and the root of the URL being the HTTP(S) protocol, hostname, and usually path prefixed
with /auth: i.e. https://localhost:8080/auth

/realms/{realm-name}/protocol/openid-connect/token

This is the URL endpoint for obtaining a temporary code in the Authorization Code Flow or for
obtaining tokens via the Implicit Flow, Direct Grants, or Client Grants.

/realms/{realm-name}/protocol/openid-connect/auth

This is the URL endpoint for the Authorization Code Flow to turn a temporary code into a token.

/realms/{realm-name}/protocol/openid-connect/logout

This is the URL endpoint for performing logouts.

/realms/{realm-name}/protocol/openid-connect/userinfo

This is the URL endpoint for the User Info service described in the OIDC specification.

In all of these replace {realm-name} with the name of the realm.

7.2. SAML

SAML 2.0 is a similar specification to OIDC but a lot older and more mature. It has its roots in SOAP and
the plethora of WS-* specifications so it tends to be a bit more verbose than OIDC. SAML 2.0 is primarily
an authentication protocol that works by exchanging XML documents between the authentication server
and the application. XML signatures and encryption is used to verify requests and responses.

There is really two types of use cases when using SAML. The first is an application that asks the Red
Hat Single Sign-On server to authenticate a user for them. After a successful login, the application will
receive an XML document that contains something called a SAML assertion that specify various
attributes about the user. This XML document is digitally signed by the realm and contains access
information (like user role mappings) that the application can use to determine what resources the user is
allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this
case, the client asks Red Hat Single Sign-On to obtain an SAML assertion it can use to invoke on other
remote services on behalf of the user.

7.2.1. SAML Bindings

SAML defines a few different ways to exchange XML documents when executing the authentication
protocol. The Redirect and Post bindings cover browser based applications. The ECP binding covers
REST invocations. There are other binding types but Red Hat Single Sign-On only supports those three.

7.2.1.1. Redirect Binding

The Redirect Binding uses a series of browser redirect URIs to exchange information. This is a rough
overview of how it works.

1. The user visits the application and the application finds the user is not authenticated. It generates
an XML authentication request document and encodes it as a query param in a URI that is used
to redirect to the Red Hat Single Sign-On server. Depending on your settings, the application
may also digitally sign this XML document and also stuff this signature as a query param in the
redirect URI to Red Hat Single Sign-On. This signature is used to validate the client that sent
this request.

Red Hat Single Sign-On 7.2 Server Administration Guide

62

http://saml.xml.org/saml-specifications

2. The browser is redirected to Red Hat Single Sign-On. The server extracts the XML auth request
document and verifies the digital signature if required. The user then has to enter in their
credentials to be authenticated.

3. After authentication, the server generates an XML authentication response document. This
document contains a SAML assertion that holds metadata about the user like name, address,
email, and any role mappings the user might have. This document is almost always digitally
signed using XML signatures, and may also be encrypted.

4. The XML auth response document is then encoded as a query param in a redirect URI that
brings the browser back to the application. The digital signature is also included as a query
param.

5. The application receives the redirect URI and extracts the XML document and verifies the
realm’s signature to make sure it is receiving a valid auth response. The information inside the
SAML assertion is then used to make access decisions or display user data.

7.2.1.2. POST Binding

The SAML POST binding works almost the exact same way as the Redirect binding, but instead of GET
requests, XML documents are exchanged by POST requests. The POST Binding uses JavaScript to
trick the browser into making a POST request to the Red Hat Single Sign-On server or application when
exchanging documents. Basically HTTP responses contain an HTML document that contains an HTML
form with embedded JavaScript. When the page is loaded, the JavaScript automatically invokes the form.
You really don’t need to know about this stuff, but it is a pretty clever trick.

7.2.1.3. ECP

ECP stands for "Enhanced Client or Proxy", a SAML v.2.0 profile which allows for the exchange of SAML
attributes outside the context of a web browser. This is used most often for REST or SOAP-based clients.

7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints

Red Hat Single Sign-On really only has one endpoint for all SAML requests.

http(s)://authserver.host/auth/realms/{realm-name}/protocol/saml

All bindings use this endpoint.

7.3. OPENID CONNECT VS. SAML

Choosing between OpenID Connect and SAML is not just a matter of using a newer protocol (OIDC)
instead of the older more mature protocol (SAML).

In most cases Red Hat Single Sign-On recommends using OIDC.

SAML tends to be a bit more verbose than OIDC.

Beyond verbosity of exchanged data, if you compare the specifications you’ll find that OIDC was
designed to work with the web while SAML was retrofitted to work on top of the web. For example, OIDC
is also more suited for HTML5/JavaScript applications because it is easier to implement on the client
side than SAML. As tokens are in the JSON format, they are easier to consume by JavaScript. You will
also find several nice features that make implementing security in your web applications easier. For
example, check out the iframe trick that the specification uses to easily determine if a user is still logged
in or not.

CHAPTER 7. SSO PROTOCOLS

63

http://openid.net/specs/openid-connect-session-1_0.html#ChangeNotification

SAML has its uses though. As you see the OIDC specifications evolve you see they implement more
and more features that SAML has had for years. What we often see is that people pick SAML over OIDC
because of the perception that it is more mature and also because they already have existing
applications that are secured with it.

7.4. DOCKER REGISTRY V2 AUTHENTICATION

NOTE

Docker authentication is disabled by default. To enable see Profiles.

Docker Registry V2 Authentciation is an OIDC-Like protocol used to authenticate users against a Docker
registry. Red Hat Single Sign-On’s implementation of this protocol allows for a Red Hat Single Sign-On
authentication server to be used by a Docker client to authenticate against a registry. While this protocol
uses fairly standard token and signature mechanisms, it has a few wrinkles that prevent it from being
treated as a true OIDC implementation. The largest deviations include a very specific JSON format for
requests and responses as well as the ability to understand how to map repository names and
permissions to the OAuth scope mechanism.

7.4.1. Docker Auth Flow

The Docker API documentation best describes and illustrates this process, however a brief summary will
be given below from the perspective of the Red Hat Single Sign-On authentication server.

NOTE

This flow assumes that a docker login command has already been performed

The flow begins when the Docker client requests a resource from the Docker registry. If the
resource is protected and no auth token is present in the request, the Docker registry server will
respond to the client with a 401 + some information on required permissions and where to find
the authorization server.

The Docker client will construct an authentication request based on the 401 response from the
Docker registry. The client will then use the locally cached credentials (from a previously run
docker login command) as part of a HTTP Basic Authentication request to the Red Hat
Single Sign-On authentication server.

The Red Hat Single Sign-On authentication server will attempt to authenticate the user and
return a JSON body containing an OAuth-style Bearer token.

The Docker client will get the bearer token from the JSON response and use it in the
Authorization header to request the protected resource.

When the Docker registry recieves the new request for the protected resource with the token
from the Red Hat Single Sign-On server, the registry validates the token and grants access to
the requested resource (if appropriate).

7.4.2. Red Hat Single Sign-On Docker Registry v2 Authentication Server URI
Endpoints

Red Hat Single Sign-On really only has one endpoint for all Docker auth v2 requests.

Red Hat Single Sign-On 7.2 Server Administration Guide

64

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_installation_and_configuration_guide/#profiles
https://docs.docker.com/registry/spec/auth/
https://docs.docker.com/registry/spec/auth/token/
https://tools.ietf.org/html/rfc2617

http(s)://authserver.host/auth/realms/{realm-name}/protocol/docker-v2

CHAPTER 7. SSO PROTOCOLS

65

CHAPTER 8. MANAGING CLIENTS
Clients are entities that can request authentication of a user. Clients come in two forms. The first type of
client is an application that wants to participate in single-sign-on. These clients just want Red Hat Single
Sign-On to provide security for them. The other type of client is one that is requesting an access token
so that it can invoke other services on behalf of the authenticated user. This section discusses various
aspects around configuring clients and various ways to do it.

8.1. OIDC CLIENTS

OpenID Connect is the preferred protocol to secure applications. It was designed from the ground up to
be web friendly and work best with HTML5/JavaScript applications.

To create an OIDC client go to the Clients left menu item. On this page you’ll see a Create button on
the right.

Clients

This will bring you to the Add Client page.

Add Client

Enter in the Client ID of the client. This should be a simple alpha-numeric string that will be used in
requests and in the Red Hat Single Sign-On database to identify the client. Next select openid-

Red Hat Single Sign-On 7.2 Server Administration Guide

66

connect in the Client Protocol drop down box. Ignore the Client Template listbox for now,
we’ll go over that later in this chapter. Finally enter in the base URL of your application in the Root URL
field and click Save. This will create the client and bring you to the client Settings tab.

Client Settings

Let’s walk through each configuration item on this page.

Client ID

This specifies an alpha-numeric string that will be used as the client identifier for OIDC requests.

Name

This is the display name for the client whenever it is displayed in a Red Hat Single Sign-On UI screen.
You can localize the value of this field by setting up a replacement string value i.e. ${myapp}. See the
Server Developer Guide for more information.

Description

This specifies the description of the client. This can also be localized.

CHAPTER 8. MANAGING CLIENTS

67

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

Enabled

If this is turned off, the client will not be allowed to request authentication.

Consent Required

If this is on, then users will get a consent page which asks the user if they grant access to that
application. It will also display the metadata that the client is interested in so that the user knows exactly
what information the client is getting access to. If you’ve ever done a social login to Google, you’ll often
see a similar page. Red Hat Single Sign-On provides the same functionality.

Access Type

This defines the type of the OIDC client.

confidential

Confidential access type is for server-side clients that need to perform a browser login and require a
client secret when they turn an access code into an access token, (see Access Token Request in the
OAuth 2.0 spec for more details). This type should be used for server-side applications.

public

Public access type is for client-side clients that need to perform a browser login. With a client-side
application there is no way to keep a secret safe. Instead it is very important to restrict access by
configuring correct redirect URIs for the client.

bearer-only

Bearer-only access type means that the application only allows bearer token requests. If this is turned
on, this application cannot participate in browser logins.

Root URL

If Red Hat Single Sign-On uses any configured relative URLs, this value is prepended to them.

Valid Redirect URIs

This is a required field. Enter in a URL pattern and click the + sign to add. Click the - sign next to URLs
you want to remove. Remember that you still have to click the Save button! Wildcards (*) are only
allowed at the end of a URI, i.e. http://host.com/*

You should take extra precautions when registering valid redirect URI patterns. If you make them too
general you are vulnerable to attacks. See Threat Model Mitigation chapter for more information.

Base URL

If Red Hat Single Sign-On needs to link to the client, this URL is used.

Standard Flow Enabled

If this is on, clients are allowed to use the OIDC Authorization Code Flow.

Implicit Flow Enabled

If this is on, clients are allowed to use the OIDC Implicit Flow.

Direct Grants Enabled

If this is on, clients are allowed to use the OIDC Direct Grants.

Red Hat Single Sign-On 7.2 Server Administration Guide

68

https://tools.ietf.org/html/rfc6749#section-4.1.3

Admin URL

For Red Hat Single Sign-On specific client adapters, this is the callback endpoint for the client. The Red
Hat Single Sign-On server will use this URI to make callbacks like pushing revocation policies,
performing backchannel logout, and other administrative operations. For Red Hat Single Sign-On servlet
adapters, this can be the root URL of the servlet application. For more information see Securing
Applications and Services Guide.

Web Origins

This option centers around CORS which stands for Cross-Origin Resource Sharing. If browser
JavaScript tries to make an AJAX HTTP request to a server whose domain is different from the one the
JavaScript code came from, then the request must use CORS. The server must handle CORS requests
in a special way, otherwise the browser will not display or allow the request to be processed. This
protocol exists to protect against XSS, CSRF and other JavaScript-based attacks.

Red Hat Single Sign-On has support for validated CORS requests. The way it works is that the domains
listed in the Web Origins setting for the client are embedded within the access token sent to the client
application. The client application can then use this information to decide whether or not to allow a
CORS request to be invoked on it. This is an extension to the OIDC protocol so only Red Hat Single
Sign-On client adapters support this feature. See Securing Applications and Services Guide for more
information.

To fill in the Web Origins data, enter in a base URL and click the + sign to add. Click the - sign next to
URLs you want to remove. Remember that you still have to click the Save button!

8.1.1. Confidential Client Credentials

If you’ve set the client’s access type to confidential in the client’s Settings tab, a new
Credentials tab will show up. As part of dealing with this type of client you have to configure the
client’s credentials.

Credentials Tab

CHAPTER 8. MANAGING CLIENTS

69

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/securing_applications_and_services_guide/
http://www.w3.org/TR/cors/
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/securing_applications_and_services_guide/

The Client Authenticator list box specifies the type of credential you are going to use for your
confidential client. It defaults to client ID and secret. The secret is automatically generated for you and
the Regenerate Secret button allows you to recreate this secret if you want or need to.

Alternatively, you can opt to use a signed Json Web Token (JWT) instead of a secret.

Signed JWT

Red Hat Single Sign-On 7.2 Server Administration Guide

70

When choosing this credential type you will have to also generate a private key and certificate for the
client. The private key will be used to sign the JWT, while the certificate is used by the server to verify the
signature. Click on the Generate new keys and certificate button to start this process.

Generate Keys

When you generate these keys, Red Hat Single Sign-On will store the certificate, and you’ll need to
download the private key and certificate for your client to use. Pick the archive format you want and
specify the password for the private key and store.

You can also opt to generate these via an external tool and just import the client’s certificate.

Import Certificate

CHAPTER 8. MANAGING CLIENTS

71

There are multiple formats you can import from, just choose the archive format you have the certificate
stored in, select the file, and click the Import button.

Finally note that you don’t even need to import certificate if you choose to Use JWKS URL . In that case,
you can provide the URL where client publishes it’s public key in JWK format. This is flexible because
when client changes it’s keys, Red Hat Single Sign-On will automatically download them without need to
re-import anything on Red Hat Single Sign-On side.

If you use client secured by Red Hat Single Sign-On adapter, you can configure the JWKS URL like
https://myhost.com/myapp/k_jwks assuming that https://myhost.com/myapp is the root URL of your client
application. See Server Developer Guide for additional details.

WARNING

For the performance purposes, Red Hat Single Sign-On caches the public keys of
the OIDC clients. If you think that private key of your client was compromised, it is
obviously good to update your keys, but it’s also good to clear the keys cache. See
Clearing the cache section for more details.

8.2. SERVICE ACCOUNTS

Each OIDC client has a built-in service account which allows it to obtain an access token. This is
covered in the OAuth 2.0 specifiation under Client Credentials Grant. To use this feature you must set
the Access Type of your client to confidential. When you do this, the Service Accounts
Enabled switch will appear. You need to turn on this switch. Also make sure that you have configured
your client credentials.

To use it you must have registered a valid confidential Client and you need to check the switch
Service Accounts Enabled in Red Hat Single Sign-On admin console for this client. In tab
Service Account Roles you can configure the roles available to the service account retrieved on
behalf of this client. Don’t forget that you need those roles to be available in Scopes of this client as well
(unless you have Full Scope Allowed on). As in normal login, roles from access token are the
intersection of scopes and the service account roles.

The REST URL to invoke on is /auth/realms/{realm-name}/protocol/openid-
connect/token. Invoking on this URL is a POST request and requires you to post the client
credentials. By default, client credentials are represented by clientId and clientSecret of the client in
Authorization: Basic header, but you can also authenticate the client with a signed JWT assertion
or any other custom mechanism for client authentication. You also need to use the parameter
grant_type=client_credentials as per the OAuth2 specification.

For example the POST invocation to retrieve a service account can look like this:

 POST /auth/realms/demo/protocol/openid-connect/token
 Authorization: Basic cHJvZHVjdC1zYS1jbGllbnQ6cGFzc3dvcmQ=
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

The response would be this standard JSON document from the OAuth 2.0 specification.

Red Hat Single Sign-On 7.2 Server Administration Guide

72

https://self-issued.info/docs/draft-ietf-jose-json-web-key.html
https://myhost.com/myapp/k_jwks
https://myhost.com/myapp
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/
https://tools.ietf.org/html/rfc6749#section-4.4.3

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":60,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "refresh_expires_in":600,
 "id_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "not-before-policy":0,
 "session_state":"234234-234234-234234"
}

The retrieved access token can be refreshed or logged out by an out-of-bound request.

8.3. SAML CLIENTS

Red Hat Single Sign-On supports SAML 2.0 for registered applications. Both POST and Redirect
bindings are supported. You can choose to require client signature validation and can have the server
sign and/or encrypt responses as well.

To create a SAML client go to the Clients left menu item. On this page you’ll see a Create button on
the right.

Clients

This will bring you to the Add Client page.

Add Client

CHAPTER 8. MANAGING CLIENTS

73

Enter in the Client ID of the client. This is often a URL and will be the expected issuer value in
SAML requests sent by the application. Next select saml in the Client Protocol drop down box.
Ignore the Client Template listbox for now, we’ll go over that later in this chapter. Finally enter in the
Client SAML Endpoint URL. Enter the URL you want the Red Hat Single Sign-On server to send
SAML requests and responses to. Usually applications have only one URL for processing SAML
requests. If your application has different URLs for its bindings, don’t worry, you can fix this in the
Settings tab of the client. Click Save. This will create the client and bring you to the client Settings
tab.

Client Settings

Red Hat Single Sign-On 7.2 Server Administration Guide

74

Client ID

This value must match the issuer value sent with AuthNRequests. Red Hat Single Sign-On will pull
the issuer from the Authn SAML request and match it to a client by this value.

Name

This is the display name for the client whenever it is displayed in a Red Hat Single Sign-On UI
screen. You can localize the value of this field by setting up a replacement string value i.e. ${myapp}.
See the Server Developer Guide for more information.

Description

This specifies the description of the client. This can also be localized.

Enabled

If this is turned off, the client will not be allowed to request authentication.

Consent Required

If this is on, then users will get a consent page which asks the user if they grant access to that
application. It will also display the metadata that the client is interested in so that the user knows
exactly what information the client is getting access to. If you’ve ever done a social login to Google,
you’ll often see a similar page. Red Hat Single Sign-On provides the same functionality.

Include AuthnStatement

SAML login responses may specify the authentication method used (password, etc.) as well as a
timestamp of the login. Setting this to on will include that statement in the response document.

Sign Documents

CHAPTER 8. MANAGING CLIENTS

75

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

When turned on, Red Hat Single Sign-On will sign the document using the realm’s private key.

Optimize REDIRECT signing key lookup

When turned on, the SAML protocol messages will include Red Hat Single Sign-On native extension
that contains a hint with signing key ID. When the SP understands this extension, it can use it for
signature validation instead of attempting to validate signature with all known keys. This option only
applies to REDIRECT bindings where the signature is transferred in query parameters where there is
no place with this information in the signature information (contrary to POST binding messages where
key ID is always included in document signature). Currently this is relevant to situations where both
IDP and SP are provided by Red Hat Single Sign-On server and adapter. This option is only relevant
when Sign Documents is switched on.

Sign Assertions

The Sign Documents switch signs the whole document. With this setting the assertion is also
signed and embedded within the SAML XML Auth response.

Signature Algorithm

Choose between a variety of algorithms for signing SAML documents.

SAML Signature Key Name

Signed SAML documents sent via POST binding contain identification of signing key in KeyName
element. This by default contains Red Hat Single Sign-On key ID. However various vendors might
expect a different key name or no key name at all. This switch controls whether KeyName contains
key ID (option KEY_ID), subject from certificate corresponding to the realm key (option
CERT_SUBJECT - expected for instance by Microsoft Active Directory Federation Services), or that
the key name hint is completely omitted from the SAML message (option NONE).

Canonicalization Method

Canonicalization method for XML signatures.

Encrypt Assertions

Encrypt assertions in SAML documents with the realm’s private key. The AES algorithm is used with
a key size of 128 bits.

Client Signature Required

Expect that documents coming from a client are signed. Red Hat Single Sign-On will validate this
signature using the client public key or cert set up in the SAML Keys tab.

Force POST Binding

By default, Red Hat Single Sign-On will respond using the initial SAML binding of the original request.
By turning on this switch, you will force Red Hat Single Sign-On to always respond using the SAML
POST Binding even if the original request was the Redirect binding.

Front Channel Logout

If true, this application requires a browser redirect to be able to perform a logout. For example, the
application may require a cookie to be reset which could only be done via a redirect. If this switch is
false, then Red Hat Single Sign-On will invoke a background SAML request to logout the application.

Force Name ID Format

If the request has a name ID policy, ignore it and used the value configured in the admin console
under Name ID Format

Name ID Format

Name ID Format for the subject. If no name ID policy is specified in the request or if the Force Name
ID Format attribute is true, this value is used. Properties used for each of the respective formats are
defined below.

Root URL

If Red Hat Single Sign-On uses any configured relative URLs, this value is prepended to them.

Red Hat Single Sign-On 7.2 Server Administration Guide

76

Valid Redirect URIs

This is an optional field. Enter in a URL pattern and click the + sign to add. Click the - sign next to
URLs you want to remove. Remember that you still have to click the Save button! Wildcards (*) are
only allowed at the end of of a URI, i.e. http://host.com/*. This field is used when the exact SAML
endpoints are not registered and Red Hat Single Sign-On is pull the Assertion Consumer URL from
the request.

Base URL

If Red Hat Single Sign-On needs to link to the client, this URL would be used.

Master SAML Processing URL

This URL will be used for all SAML requests and the response will be directed to the SP. It will be
used as the Assertion Consumer Service URL and the Single Logout Service URL. If a login request
contains the Assertion Consumer Service URL, that will take precedence, but this URL must be
valided by a registered Valid Redirect URI pattern

Assertion Consumer Service POST Binding URL

POST Binding URL for the Assertion Consumer Service.

Assertion Consumer Service Redirect Binding URL

Redirect Binding URL for the Assertion Consumer Service.

Logout Service POST Binding URL

POST Binding URL for the Logout Service.

Logout Service Redirect Binding URL

Redirect Binding URL for the Logout Service.

8.3.1. IDP Initiated Login

IDP Initiated Login is a feature that allows you to set up an endpoint on the Red Hat Single Sign-On
server that will log you into a specific application/client. In the Settings tab for your client, you need to
specify the IDP Initiated SSO URL Name. This is a simple string with no whitespace in it. After this
you can reference your client at the following URL:
root/auth/realms/{realm}/protocol/saml/clients/{url-name}

If your client requires a special relay state, you can also configure this on the Settings tab in the IDP
Initiated SSO Relay State field. Alternatively, browsers can specify the relay state in a
RelayState query parameter, i.e.
root/auth/realms/{realm}/protocol/saml/clients/{url-name}?
RelayState=thestate.

When using identity brokering, it is possible to set up an IDP Initiated Login for a client from an external
IDP. The actual client is set up for IDP Initiated Login at broker IDP as described above. The external
IDP has to set up the client for application IDP Initiated Login that will point to a special URL pointing to
the broker and representing IDP Initiated Login endpoint for a selected client at the brokering IDP. This
means that in client settings at the external IDP:

IDP Initiated SSO URL Name is set to a name that will be published as IDP Initiated Login
initial point,

Assertion Consumer Service POST Binding URL in the Fine Grain SAML
Endpoint Configuration section has to be set to the following URL: broker-
root/auth/realms/{broker-realm}/broker/{idp-
name}/endpoint/clients/{client-id}, where:

broker-root is base broker URL

CHAPTER 8. MANAGING CLIENTS

77

broker-realm is name of the realm at broker where external IDP is declared

idp-name is name of the external IDP at broker

client-id is the value of IDP Initiated SSO URL Name attribute of the SAML client
defined at broker. It is this client, which will be made available for IDP Initiated Login from
the external IDP.

Please note that you can import basic client settings from the brokering IDP into client settings of the
external IDP - just use SP Descriptor available from the settings of the identity provider in the brokering
IDP, and add clients/client-id to the endpoint URL.

8.3.2. SAML Entity Descriptors

Instead of manually registering a SAML 2.0 client, you can import it via a standard SAML Entity
Descriptor XML file. There is an Import option on the Add Client page.

Add Client

Click the Select File button and load your entity descriptor file. You should review all the information
there to make sure everything is set up correctly.

Some SAML client adapters like mod-auth-mellon need the XML Entity Descriptor for the IDP. You can
obtain this by going to this public URL:
root/auth/realms/{realm}/protocol/saml/descriptor

8.4. CLIENT LINKS

For scenarios where one wants to link from one client to another, Red Hat Single Sign-On provides a
special redirect endpoint: /realms/realm_name/clients/{client-id}/redirect.

If a client accesses this endpoint via an HTTP GET request, Red Hat Single Sign-On returns the
configured base URL for the provided Client and Realm in the form of an HTTP 307 (Temporary
Redirect) via the response’s Location header.

Thus, a client only needs to know the Realm name and the Client ID in order to link to them. This
indirection helps avoid hard-coding client base URLs.

Red Hat Single Sign-On 7.2 Server Administration Guide

78

As an example, given the realm master and the client-id account:

http://host:port/auth/realms/master/clients/account/redirect

Would temporarily redirect to: http://host:port/auth/realms/master/account

8.5. OIDC TOKEN AND SAML ASSERTION MAPPINGS

Applications that receive ID Tokens, Access Tokens, or SAML assertions may need or want different
user metadata and roles. Red Hat Single Sign-On allows you to define what exactly is transferred. You
can hardcode roles, claims and custom attributes. You can pull user metadata into a token or assertion.
You can rename roles. Basically you have a lot of control of what exactly goes back to the client.

Within the Admin Console, if you go to an application you’ve registered, you’ll see a Mappers tab.
Here’s one for an OIDC based client.

Mappers Tab

Each client has several built-in mappers that are created for it by default. They map things like, for
example, email address to a specific claim in the identity and access token. Their function should each
be self explanatory from their name. There are additional pre-configured mappers that are not attached
to the client that you can add by clicking the Add Builtin button.

Each mapper has common settings as well as additional ones depending on which type of mapper you
are adding. Click the Edit button next to one of the mappers in the list to get to the config screen.

Mapper Config

CHAPTER 8. MANAGING CLIENTS

79

The best way to learn about a config option is to hover over its tooltip. There are a few config options that
are common to all mappers:

Consent Required

If your client requires consent, this mapper will be displayed on the consent screen shown to the user.

Consent Text

If your client requires consent and the Consent switch is on, this is the text that will be displayed by
the user. The value for this text is localizable by specifying a substitution variable with ${var-name}
strings. The localized value is then configured within property files in your theme. See the Server
Developer Guide for more information on localization.

Most OIDC mappers also allow you to control where the claim gets put. You can opt to include or
exclude the claim from both the id and access tokens by fiddling with the Add to ID token and Add
to access token switches.

Finally, you can also add other mapper types. If you go back to the Mappers tab, click the Create
button.

Add Mapper

Red Hat Single Sign-On 7.2 Server Administration Guide

80

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

Pick a Mapper Type from the list box. If you hover over the tooltip, you’ll see a description of what that
mapper type does. Different config parameters will appear for different mapper types.

8.6. GENERATING CLIENT ADAPTER CONFIG

The Red Hat Single Sign-On can pre-generate configuration files that you can use to install a client
adapter for in your application’s deployment environment. A number of adapter types are supported for
both OIDC and SAML. Go to the Installation tab of the client you want to generate configuration for.

Select the Format Option you want configuration generated for. All Red Hat Single Sign-On client
adapters for OIDC and SAML are supported. The mod-auth-mellon Apache HTTPD adapter for SAML is
supported as well as standard SAML entity descriptor files.

8.7. CLIENT TEMPLATES

If you have a lot of applications you need to secure and register within your organization it can become
quite tedious to configure the protocol mappers and scope for each of these clients. Red Hat Single Sign-
On allows you to define shared client configuration in an entity called a client template.

CHAPTER 8. MANAGING CLIENTS

81

To create a client template, go to the Client Templates left menu item. This initial screen shows you
a list of currently defined templates.

To create a template click the Create button. This brings you to a simple screen in which you name the
template and hit save. A client template will have similar tabs to regular clients. You’ll be able to define
protocol mappers and scope which can be inherited by other clients.

Having a client inherit from a template is as simple as choosing the template from the Client
Template drop down list on either the Add Client or client Settings tab. You will see the Mappers
and Scope tabs get additional switches which allow you to turn on or off inheriting from the parent
template.

Future versions of client templating may get more inheritable configuration options, but for now, that’s all
there is to talk about.

Red Hat Single Sign-On 7.2 Server Administration Guide

82

CHAPTER 9. ROLES
Roles identify a type or category of user. Admin, user, manager, and employee are all typical roles
that may exist in an organization. Applications often assign access and permissions to specific roles
rather than individual users as dealing with users can be too fine grained and hard to manage. For
example, the Admin Console has specific roles which give permission to users to access parts of the
Admin Console UI and perform certain actions. There is a global namespace for roles and each client
also has its own dedicated namespace where roles can be defined.

9.1. REALM ROLES

Realm-level roles are a global namespace to define your roles. You can see the list of built-in and
created roles by clicking the Roles left menu item.

To create a role, click Add Role on this page, enter in the name and description of the role, and click
Save.

Add Role

CHAPTER 9. ROLES

83

The value for the description field is localizable by specifying a substitution variable with ${var-
name} strings. The localized value is then configured within property files in your theme. See the Server
Developer Guide for more information on localization. If a client requires user consent, this description
string is displayed on the consent page for the user.

If the client has to explicitly request for a realm role, set Scope Param Required to true. The role then
has to be specified using the scope parameter when requesting a token. Multiple realm roles are
separated by space:

scope=admin user

9.2. CLIENT ROLES

Client roles are basically a namespace dedicated to a client. Each client gets its own namespace. Client
roles are managed under the Roles tab under each individual client. You interact with this UI the same
way you do for realm-level roles.

If the client has to explicitly request another client’s role, the role has to be prefixed with the client ID
when performing a request using the scope parameter. For example, if the client ID is account and the
role is admin, the scope parameter is:

`scope=account/admin`

As noted in the realm roles section, multiple roles are separated by spaces.

9.3. COMPOSITE ROLES

Any realm or client level role can be turned into a composite role. A composite role is a role that has one
or more additional roles associated with it. When a composite role is mapped to the user, the user also
gains the roles associated with that composite. This inheritance is recursive so any composite of
composites also gets inherited.

To turn a regular role into a composite role, go to the role detail page and flip the Composite Role
switch on.

Composite Role

Red Hat Single Sign-On 7.2 Server Administration Guide

84

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

Once you flip this switch the role selection UI will be displayed lower on the page and you’ll be able to
associate realm level and client level roles to the composite you are creating. In this example, the
employee realm-level role was associated with the developer composite role. Any user with the
developer role will now also inherit the employee role too.

NOTE

When tokens and SAML assertions are created, any composite will also have its
associated roles added to the claims and assertions of the authentication response sent
back to the client.

9.4. USER ROLE MAPPINGS

User role mappings can be assigned individually to each user through the Role Mappings tab for that
single user.

Role Mappings

CHAPTER 9. ROLES

85

In the above example, we are about to assign the composite role developer that was created in the
Composite Roles chapter.

Effective Role Mappings

Once the developer role is assigned, you see that the employee role that is associated with the
developer composite shows up in the Effective Roles. Effective Roles are all roles that are
explicitly assigned to the user as well as any roles that are inherited from composites.

9.4.1. Default Roles

Default roles allow you to automatically assign user role mappings when any user is newly created or
imported through Identity Brokering. To specify default roles go to the Roles left menu item, and click
the Default Roles tab.

Default Roles

Red Hat Single Sign-On 7.2 Server Administration Guide

86

As you can see from the screenshot, there are already a number of default roles set up by default.

9.5. CLIENT SCOPE

When an OIDC access token or SAML assertion is created, all the user role mappings of the user are, by
default, added as claims within the token or assertion. Applications use this information to make access
decisions on the resources controlled by that application. In Red Hat Single Sign-On, access tokens are
digitally signed and can actually be re-used by the application to invoke on other remotely secured REST
services. This means that if an application gets compromised or there is a rogue client registered with
the realm, attackers can get access tokens that have a broad range of permissions and your whole
network is compromised. This is where client scope becomes important.

Client scope is a way to limit the roles that get declared inside an access token. When a client requests
that a user be authenticated, the access token they receive back will only contain the role mappings
you’ve explicitly specified for the client’s scope. This allows you to limit the permissions each individual
access token has rather than giving the client access to all of the user’s permissions. By default, each
client gets all the role mappings of the user. You can view this in the Scope tab of each client.

Full Scope

CHAPTER 9. ROLES

87

You can see from the picture that the effective roles of the scope are every declared role in the realm. To
change this default behavior, you must explicitly turn off the Full Scope Allowed switch and declare
the specific roles you want in each individual client. Alternatively, you can also use client templates to
define the scope for a whole set of clients.

Partial Scope

Red Hat Single Sign-On 7.2 Server Administration Guide

88

CHAPTER 10. GROUPS
Groups in Red Hat Single Sign-On allow you to manage a common set of attributes and role mappings
for a set of users. Users can be members of zero or more groups. Users inherit the attributes and role
mappings assigned to each group. To manage groups go to the Groups left menu item.

Groups

Groups are hierarchical. A group can have many subgroups, but a group can only have one parent.
Subgroups inherit the attributes and role mappings from the parent. This applies to the user as well. So,
if you have a parent group and a child group and a user that only belongs to the child group, the user
inherits the attributes and role mappings of both the parent and child. In this example, we have a top level
Sales group and a child North America subgroup. To add a group, click on the parent you want to
add a new child to and click New button. Select the Groups icon in the tree to make a top-level group.
Entering in a group name in the Create Group screen and hitting Save will bring you to the individual
group management page.

Group

CHAPTER 10. GROUPS

89

The Attributes and Role Mappings tab work exactly as the tabs with similar names under a user.
Any attributes and role mappings you define will be inherited by the groups and users that are members
of this group.

To add a user to a group you need to go all the way back to the user detail page and click on the Groups
tab there.

User Groups

Select a group from the Available Groups tree and hit the join button to add the user to a group.
Vice versa to remove a group. Here we’ve added the user Jim to the North America sales group. If you
go back to the detail page for that group and select the Membership tab, Jim is now displayed there.

Group Membership

10.1. GROUPS VS. ROLES

Red Hat Single Sign-On 7.2 Server Administration Guide

90

In the IT world the concepts of Group and Role are often blurred and interchangeable. In Red Hat Single
Sign-On, Groups are just a collection of users that you can apply roles and attributes to in one place.
Roles define a type of user and applications assign permission and access control to roles

Aren’t Composite Roles also similar to Groups? Logically they provide the same exact functionality, but
the difference is conceptual. Composite roles should be used to apply the permission model to your set
of services and applications. Groups should focus on collections of users and their roles in your
organization. Use groups to manage users. Use composite roles to manage applications and services.

10.2. DEFAULT GROUPS

Default groups allow you to automatically assign group membership whenever any new user is created
or imported through Identity Brokering. To specify default groups go to the Groups left menu item, and
click the Default Groups tab.

Default Groups

CHAPTER 10. GROUPS

91

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND
PERMISSIONS

Each realm created on the Red Hat Single Sign-On has a dedicated Admin Console from which that
realm can be managed. The master realm is a special realm that allows admins to manage more than
one realm on the system. You can also define fine-grained access to users in different realms to manage
the server. This chapter goes over all the scenarios for this.

11.1. MASTER REALM ACCESS CONTROL

The master realm in Red Hat Single Sign-On is a special realm and treated differently than other
realms. Users in the Red Hat Single Sign-On master realm can be granted permission to manage zero
or more realms that are deployed on the Red Hat Single Sign-On server. When a realm is created, Red
Hat Single Sign-On automatically creates various roles that grant fine-grain permissions to access that
new realm. Access to The Admin Console and Admin REST endpoints can be controlled by mapping
these roles to users in the master realm. It’s possible to create multiple super users, as well as users
that can only manage specific realms.

11.1.1. Global Roles

There are two realm-level roles in the master realm. These are:

admin

create-realm

Users with the admin role are super users and have full access to manage any realm on the server.
Users with the create-realm role are allowed to create new realms. They will be granted full access to
any new realm they create.

11.1.2. Realm Specific Roles

Admin users within the master realm can be granted management privileges to one or more other
realms in the system. Each realm in Red Hat Single Sign-On is represented by a client in the master
realm. The name of the client is <realm name>-realm. These clients each have client-level roles
defined which define varying level of access to manage an individual realm.

The roles available are:

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

Red Hat Single Sign-On 7.2 Server Administration Guide

92

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

IMPORTANT

Admins with the manage-users role will only be able to assign admin roles to users that
they themselves have. So, if an admin has the manage-users role but doesn’t have the
manage-realm role, they will not be able to assign this role.

11.2. DEDICATED REALM ADMIN CONSOLES

Each realm has a dedicated Admin Console that can be accessed by going to the url
/auth/admin/{realm-name}/console. Users within that realm can be granted realm management
permissions by assigning specific user role mappings.

Each realm has a built-in client called realm-management. You can view this client by going to the
Clients left menu item of your realm. This client defines client-level roles that specify permissions that
can be granted to manage the realm.

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

11.3. FINE GRAIN ADMIN PERMISSIONS

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

93

NOTE

Fine Grain Admin Permissions is Technology Preview and is not fully supported. This
feature is disabled by default.

To enable start the server with -Dkeycloak.profile=preview. For more details see
Profiles.

Sometimes roles like manage-realm or manage-users are too coarse grain and you want to create
restricted admin accounts that have more fine grain permissions. Red Hat Single Sign-On allows you to
define and assign restricted access policies for managing a realm. Things like:

Managing one specific client

Managing users that belong to a specific group

Managing membership of a group

Limited user management.

Fine grain impersonization control

Being able to assign a specific restricted set of roles to users.

Being able to assign a specific restricted set of roles to a composite role.

Being able to assign a specific restricted set of roles to a client’s scope.

New general policies for viewing and managing users, groups, roles, and clients.

There’s some important things to note about fine grain admin permissions:

Fine grain admin permissions were implemented on top of Authorization Services. It is highly
recommended that you read up on those features before diving into fine grain permissions.

Fine grain permissions are only available within dedicated admin consoles and admins defined
within those realms. You cannot define cross-realm fine grain permissions.

Fine grain permissions are used to grant additional permissions. You cannot override the default
behavior of the built in admin roles.

11.3.1. Managing One Specific Client

Let’s look first at allowing an admin to manage one client and one client only. In our example we have a
realm called test and a client called sales-application. In realm test we will give a user in that
realm permission to only manage that application.

IMPORTANT

You cannot do cross realm fine grain permissions. Admins in the master realm are
limited to the predefined admin roles defined in previous chapters.

11.3.1.1. Permission Setup

The first thing we must do is login to the Admin Console so we can set up permissions for that client. We
navigate to the management section of the client we want to define fine-grain permissions for.

Red Hat Single Sign-On 7.2 Server Administration Guide

94

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_installation_and_configuration_guide/#profiles
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/authorization_services_guide/

Client Management

You should see a tab menu item called Permissions. Click on that tab.

Client Permissions Tab

By default, each client is not enabled to do fine grain permissions. So turn the Permissions Enabled
switch to on to initialize permissions.

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

95

IMPORTANT

If you turn the Permissions Enabled switch to off, it will delete any and all
permissions you have defined for this client.

Client Permissions Tab

When you witch Permissions Enabled to on, it initializes various permission objects behind the
scenes using Authorization Services. For this example, we’re interested in the manage permission for
the client. Clicking on that will redirect you to the permission that handles the manage permission for the
client. All authorization objects are contained in the realm-management client’s Authorization tab.

Client Manage Permission

Red Hat Single Sign-On 7.2 Server Administration Guide

96

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/authorization_services_guide/

When first initialized the manage permission does not have any policies associated with it. You will need
to create one by going to the policy tab. To get there fast, click on the Authorization link shown in the
above image. Then click on the policies tab.

There’s a pull down menu on this page called Create policy. There’s a multitude of policies you can
define. You can define a policy that is associated with a role or a group or even define rules in
Javascript. For this simple example, we’re going to create a User Policy.

User Policy

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

97

This policy will match a hard-coded user in the user database. In this case it is the sales-admin user.
We must then go back to the sales-application client’s manage permission page and assign the
policy to the permission object.

Assign User Policy

The sales-admin user can now has permission to manage the sales-application client.

Red Hat Single Sign-On 7.2 Server Administration Guide

98

There’s one more thing we have to do. Go to the Role Mappings tab and assign the query-clients
role to the sales-admin.

Assign query-clients

Why do you have to do this? This role tells the Admin Console what menu items to render when the
sales-admin visits the Admin Console. The query-clients role tells the Admin Console that it
should render client menus for the sales-admin user.

IMPORTANT If you do not set the query-clients role, restricted admins like sales-admin will not
see any menu options when they log into the Admin Console

11.3.1.2. Testing It Out.

Next we log out of the master realm and re-login to the dedicated admin console for the test realm
using the sales-admin as a username. This is located under /auth/admin/test/console.

Sales Admin Login

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

99

This admin is now able to manage this one client.

11.3.2. Restrict User Role Mapping

Another thing you might want to do is to restrict the set a roles an admin is allowed to assign to a user.
Continuing our last example, let’s expand the permission set of the 'sales-admin' user so that he can also
control which users are allowed to access this application. Through fine grain permissions we can enable
it so that the sales-admin can only assign roles that grant specific access to the sales-
application. We can also restrict it so that the admin can only map roles and not perform any other
types of user administration.

The sales-application has defined three different client roles.

Sales Application Roles

Red Hat Single Sign-On 7.2 Server Administration Guide

100

We want the sales-admin user to be able to map these roles to any user in the system. The first step
to do this is to allow the role to be mapped by the admin. If we click on the viewLeads role, you’ll see
that there is a Permissions tab for this role.

View Leads Role Permission Tab

If we click on that tab and turn the Permissions Enabled on, you’ll see that there are a number of
actions we can apply policies to.

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

101

View Leads Permissions

The one we are interested in is map-role. Click on this permission and add the same User Policy that
was created in the earlier example.

Map-roles Permission

What we’ve done is say that the sales-admin can map the viewLeads role. What we have not done is
specify which users the admin is allowed to map this role too. To do that we must go to the Users

Red Hat Single Sign-On 7.2 Server Administration Guide

102

section of the admin console for this realm. Clicking on the Users left menu item brings us to the users
interface of the realm. You should see a Permissions tab. Click on that and enable it.

Users Permissions

The permission we are interested in is map-roles. This is a restrictive policy in that it only allows
admins the ability to map roles to a user. If we click on the map-roles permission and again add the
User Policy we created for this, our sales-admin will be able to map roles to any user.

The last thing we have to do is add the view-users role to the sales-admin. This will allow the admin
to view users in the realm he wants to add the sales-application roles to.

Add view-users

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

103

11.3.2.1. Testing It Out.

Next we log out of the master realm and re-login to the dedicated admin console for the test realm
using the sales-admin as a username. This is located under /auth/admin/test/console.

You will see that now the sales-admin can view users in the system. If you select one of the users
you’ll see that each user detail page is read only, except for the Role Mappings tab. Going to these tab
you’ll find that there are no Available roles for the admin to map to the user except when we browse
the sales-application roles.

Add viewLeads

Red Hat Single Sign-On 7.2 Server Administration Guide

104

We’ve only specified that the sales-admin can map the viewLeads role.

11.3.2.2. Per Client map-roles Shortcut

It would be tedious if we had to do this for every client role that the sales-application published. to
make things easier, there’s a way to specify that an admin can map any role defined by a client. If we log
back into the admin console to our master realm admin and go back to the sales-application
permissions page, you’ll see the map-roles permission.

Client map-roles Permission

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

105

If you grant access to this particular parmission to an admin, that admin will be able map any role defined
by the client.

11.3.3. Full List of Permissions

You can do a lot more with fine grain permissions beyond managing a specific client or the specific roles
of a client. This chapter defines the whole list of permission types that can be described for a realm.

11.3.3.1. Role

When going to the Permissions tab for a specific role, you will see these permission types listed.

map-role

Policies that decide if an admin can map this role to a user. These policies only specify that the role
can be mapped to a user, not that the admin is allowed to perform user role mapping tasks. The
admin will also have to have manage or role mapping permissions. See Users Permissions for more
information.

map-role-composite

Policies that decide if an admin can map this role as a composite to another role. An admin can define
roles for a client if he has manage permissions for that client but he will not be able to add
composites to those roles unless he has the map-role-composite privileges for the role he wants
to add as a composite.

map-role-client-scope

Policies that decide if an admin can apply this role to the scope of a client. Even if the admin can
manage the client, he will not have permission to create tokens for that client that contain this role
unless this privilege is granted.

11.3.3.2. Client

Red Hat Single Sign-On 7.2 Server Administration Guide

106

When going to the Permissions tab for a specific client, you will see these permission types listed.

view

Policies that decide if an admin can view the client’s configuration.

manage

Policies that decide if an admin can view and manage the client’s configuration. There is some issues
with this in that privileges could be leaked unintentionally. For example, the admin could define a
protocol mapper that hardcoded a role even if the admin does not have privileges to map the role to
the client’s scope. This is currently the limitation of protocol mappers as they don’t have a way to
assign individual permissions to them like roles do.

configure

Reduced set of prileges to manage the client. Its like the manage scope except the admin is not
allowed to define protocol mappers, change the client template, or the client’s scope.

map-roles

Policies that decide if an admin can map any role defined by the client to a user. This is a shortcut,
easy-of-use feature to avoid having to defin policies for each and every role defined by the client.

map-roles-composite

Policies that decide if an admin can map any role defined by the client as a composite to another role.
This is a shortcut, easy-of-use feature to avoid having to define policies for each and every role
defined by the client.

map-roles-client-scope

Policies that decide if an admin can map any role defined by the client to the scope of another client.
This is a shortcut, easy-of-use feature to avoid having to define policies for each and every role
defined by the client.

11.3.3.3. Users

When going to the Permissions tab for all users, you will see these permission types listed.

view

Policies that decide if an admin can view all users in the realm.

manage

Policies that decide if an admin can manage all users in the realm. This permission grants the admin
the privilege to perfor user role mappings, but it does not specify which roles the admin is allowed to
map. You’ll need to define the privilege for each role you want the admin to be able to map.

map-roles

This is a subset of the privileges granted by the manage scope. In this case the admin is only allowed
to map roles. The admin is not allowed to perform any other user management operation. Also, like
manage, the roles that the admin is allowed to apply must be specified per role or per set of roles if
dealing with client roles.

manage-group-membership

Similar to map-roles except that it pertains to group membership: which groups a user can be
added or removed from. These policies just grant the admin permission to manage group
membership, not which groups the admin is allowed to manage membership for. You’ll have to
specify policies for each group’s manage-members permission.

impersonate

Policies that decide if the admin is allowed to impersonate other users. These policies are applied to
the admin’s attributes and role mappings.

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

107

user-impersonated

Policies that decide which users can be impersonated. These policies will be applied to the user being
impersonated. For example, you might want to define a policy that will forbid anybody from
impersonating a user that has admin privileges.

11.3.3.4. Group

When going to the Permissions tab for a specific group, you will see these permission types listed.

view

Policies that decide if the admin can view information about the group.

manage

Policies that decide if the admin can manage the configuration of the group.

view-members

Policies that decide if the admin can view the user details of members of the group.

manage-members

Policies that decide if the admin can manage the users that belong to this group.

manage-membership

Policies that decide if an admin can change the membership of the group. Add or remove members
from the group.

11.4. REALM KEYS

The authentication protocols that are used by Red Hat Single Sign-On require cryptographic signatures
and sometimes encryption. Red Hat Single Sign-On uses asymmetric key pairs, a private and public key,
to accomplish this.

Red Hat Single Sign-On has a single active keypair at a time, but can have several passive keys as well.
The active keypair is used to create new signatures, while the passive keypairs can be used to verify
previous signatures. This makes it possible to regularly rotate the keys without any downtime or
interruption to users.

When a realm is created a key pair and a self-signed certificate is automatically generated.

To view the active keys for a realm select the realm in the admin console click on Realm settings
then Keys. This will show the currently active keys for the realm. Red Hat Single Sign-On currently only
supports RSA signatures so there is only one active keypair. In the future as more signature algorithms
are added there will be more active keypairs.

To view all available keys select All. This will show all active, passive and disabled keys. A keypair can
have the status Active, but still not be selected as the currently active keypair for the realm. The
selected active pair which is used for signatures is selected based on the first key provider sorted by
priority that is able to provide an active keypair.

11.4.1. Rotating keys

It’s recommended to regularly rotate keys. To do so you should start by creating new keys with a higher
priority than the existing active keys. Or create new keys with the same priority and making the previous
keys passive.

Once new keys are available all new tokens and cookies will be signed with the new keys. When a user

Red Hat Single Sign-On 7.2 Server Administration Guide

108

authenticates to an application the SSO cookie is updated with the new signature. When OpenID
Connect tokens are refreshed new tokens are signed with the new keys. This means that over time all
cookies and tokens will use the new keys and after a while the old keys can be removed.

How long you wait to delete old keys is a tradeoff between security and making sure all cookies and
tokens are updated. In general it should be acceptable to drop old keys after a few weeks. Users that
have not been active in the period between the new keys where added and the old keys removed will
have to re-authenticate.

This also applies to offline tokens. To make sure they are updated the applications need to refresh the
tokens before the old keys are removed.

As a guideline it may be a good idea to create new keys every 3-6 months and delete old keys 1-2
months after the new keys where created.

11.4.2. Adding a generated keypair

To add a new generated keypair select Providers and choose rsa-generated from the dropdown.
You can change the priority to make sure the new keypair becomes the active keypair. You can also
change the keysize if you want smaller or larger keys (default is 2048, supported values are 1024,
2048 and 4096).

Click Save to add the new keys. This will generated a new keypair including a self-signed certificate.

Changing the priority for a provider will not cause the keys to be re-generated, but if you want to change
the keysize you can edit the provider and new keys will be generated.

11.4.3. Adding an existing keypair and certificate

To add a keypair and certificate obtained elsewhere select Providers and choose rsa from the
dropdown. You can change the priority to make sure the new keypair becomes the active keypair.

Click on Select file for Private RSA Key to upload your private key. The file should be encoded in
PEM format. You don’t need to upload the public key as it is automatically extracted from the private key.

If you have a signed certificate for the keys click on Select file next to X509 Certificate. If you
don’t have one you can skip this and a self-signed certificate will be generated.

11.4.4. Loading keys from a Java Keystore

To add a keypair and certificate stored in a Java Keystore file on the host select Providers and choose
java-keystore from the dropdown. You can change the priority to make sure the new keypair
becomes the active keypair.

Fill in the values for Keystore, Keystore Password, Key Alias and Key Password and click on
Save.

11.4.5. Making keys passive

Locate the keypair in Active or All then click on the provider in the Provider column. This will take
you to the configuration screen for the key provider for the keys. Click on Active to turn it OFF, then
click on Save. The keys will no longer be active and can only be used for verifying signatures.

11.4.6. Disabling keys

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

109

Locate the keypair in Active or All then click on the provider in the Provider column. This will take
you to the configuration screen for the key provider for the keys. Click on Enabled to turn it OFF, then
click on Save. The keys will no longer be enabled.

Alternatively, you can delete the provider from the Providers table.

11.4.7. Compromised keys

Red Hat Single Sign-On has the signing keys stored just locally and they are never shared with the
client applications, users or other entities. However if you think that your realm signing key was
compromised, you should first generate new keypair as described above and then immediatelly remove
the compromised keypair.

Then to ensure that client applications won’t accept the tokens signed by the compromised key, you
should update and push not-before policy for the realm, which is doable from the admin console.
Pushing new policy will ensure that client applications won’t accept the existing tokens signed by the
compromised key, but also the client application will be forced to download new keypair from the Red Hat
Single Sign-On, hence the tokens signed by the compromised key won’t be valid anymore. Note that
your REST and confidential clients must have set Admin URL, so that Red Hat Single Sign-On is able to
send them the request about pushed not-before policy.

Red Hat Single Sign-On 7.2 Server Administration Guide

110

CHAPTER 12. IDENTITY BROKERING
An Identity Broker is an intermediary service that connects multiple service providers with different
identity providers. As an intermediary service, the identity broker is responsible for creating a trust
relationship with an external identity provider in order to use its identities to access internal services
exposed by service providers.

From a user perspective, an identity broker provides a user-centric and centralized way to manage
identities across different security domains or realms. An existing account can be linked with one or
more identities from different identity providers or even created based on the identity information
obtained from them.

An identity provider is usually based on a specific protocol that is used to authenticate and communicate
authentication and authorization information to their users. It can be a social provider such as Facebook,
Google or Twitter. It can be a business partner whose users need to access your services. Or it can be a
cloud-based identity service that you want to integrate with.

Usually, identity providers are based on the following protocols:

SAML v2.0

OpenID Connect v1.0

OAuth v2.0

In the next sections we’ll see how to configure and use Red Hat Single Sign-On as an identity broker,
covering some important aspects such as:

Social Authentication

OpenID Connect v1.0 Brokering

SAML v2.0 Brokering

Identity Federation

12.1. BROKERING OVERVIEW

When using Red Hat Single Sign-On as an identity broker, users are not forced to provide their
credentials in order to authenticate in a specific realm. Instead, they are presented with a list of identity
providers from which they can authenticate.

You can also configure a default broker. In this case the user will not be given a choice, but instead be
redirected directly to the parent broker.

The following diagram demonstrates the steps involved when using Red Hat Single Sign-On to broker an
external identity provider:

Identity Broker Flow

CHAPTER 12. IDENTITY BROKERING

111

1. User is not authenticated and requests a protected resource in a client application.

2. The client applications redirects the user to Red Hat Single Sign-On to authenticate.

3. At this point the user is presented with the login page where there is a list of identity providers
supported by a realm.

4. User selects one of the identity providers by clicking on its respective button or link.

5. Red Hat Single Sign-On issues an authentication request to the target identity provider asking
for authentication and the user is redirected to the login page of the identity provider. The
connection properties and other configuration options for the identity provider were previously
set by the administrator in the Admin Console.

6. User provides his credentials or consent in order to authenticate in the identity provider.

7. Upon a successful authentication by the identity provider, the user is redirected back to Red Hat
Single Sign-On with an authentication response. Usually this response contains a security token
that will be used by Red Hat Single Sign-On to trust the authentication performed by the identity
provider and retrieve information about the user.

8. Now Red Hat Single Sign-On is going to check if the response from the identity provider is valid.
If valid, it will import and create a new user or just skip that if the user already exists. If it is a new
user, Red Hat Single Sign-On may ask the identity provider for information about the user if that
info doesn’t already exist in the token. This is what we call identity federation. If the user already
exists Red Hat Single Sign-On may ask him to link the identity returned from the identity
provider with his existing account. We call this process account linking. What exactly is done is
configurable and can be specified by setup of First Login Flow . At the end of this step, Red Hat
Single Sign-On authenticates the user and issues its own token in order to access the requested
resource in the service provider.

Red Hat Single Sign-On 7.2 Server Administration Guide

112

9. Once the user is locally authenticated, Red Hat Single Sign-On redirects the user to the service
provider by sending the token previously issued during the local authentication.

10. The service provider receives the token from Red Hat Single Sign-On and allows access to the
protected resource.

There are some variations of this flow that we will talk about later. For instance, instead of presenting a
list of identity providers, the client application can request a specific one. Or you can tell Red Hat Single
Sign-On to force the user to provide additional information before federating his identity.

NOTE

Different protocols may require different authentication flows. At this moment, all the
identity providers supported by Red Hat Single Sign-On use a flow just like described
above. However, despite the protocol in use, user experience should be pretty much the
same.

As you may notice, at the end of the authentication process Red Hat Single Sign-On will always issue its
own token to client applications. What this means is that client applications are completely decoupled
from external identity providers. They don’t need to know which protocol (eg.: SAML, OpenID Connect,
OAuth, etc) was used or how the user’s identity was validated. They only need to know about Red Hat
Single Sign-On.

12.2. DEFAULT IDENTITY PROVIDER

It’s possible to automatically redirect to a identity provider instead of displaying the login form. To enable
this go to Authentication select the Browser flow. Then click on config for the Identity
Provider Redirector authenticator. Set Default Identity Provider to the alias of the identity
provider you want to automatically redirect users to.

If the configured default identity provider is not found the login form will be displayed instead.

This authenticator is also responsible for dealing with the kc_idp_hint query parameter. See client
suggested identity provider section for more details.

12.3. GENERAL CONFIGURATION

The identity broker configuration is all based on identity providers. Identity providers are created for each
realm and by default they are enabled for every single application. That means that users from a realm
can use any of the registered identity providers when signing in to an application.

In order to create an identity provider click the Identity Providers left menu item.

Identity Providers

CHAPTER 12. IDENTITY BROKERING

113

In the drop down list box, choose the identity provider you want to add. This will bring you to the
configuration page for that identity provider type.

Add Identity Provider

Above is an example of configuring a Google social login provider. Once you configure an IDP, it will
appear on the Red Hat Single Sign-On login page as an option.

Red Hat Single Sign-On 7.2 Server Administration Guide

114

IDP login page

Social

Social providers allow you to enable social authentication in your realm. Red Hat Single Sign-On
makes it easy to let users log in to your application using an existing account with a social network.
Currently Facebook, Google, Twitter, GitHub, LinkedIn, Microsoft, and StackOverflow are supported
with more planned for the future.

Protocol-based

Protocol-based providers are those that rely on a specific protocol in order to authenticate and
authorize users. They allow you to connect to any identity provider compliant with a specific protocol.
Red Hat Single Sign-On provides support for SAML v2.0 and OpenID Connect v1.0 protocols. It
makes it easy to configure and broker any identity provider based on these open standards.

Although each type of identity provider has its own configuration options, all of them share some very
common configuration. Regardless the identity provider you are creating, you’ll see the following
configuration options available:

Table 12.1. Common Configuration

Configuration Description

Alias The alias is an unique identifier for an identity
provider. It is used to reference an identity provider
internally. Some protocols such as OpenID Connect
require a redirect URI or callback url in order to
communicate with an identity provider. In this case,
the alias is used to build the redirect URI. Every
single identity provider must have an alias. Examples
are facebook, google, idp.acme.com, etc.

Enabled Turn the provider on/off

CHAPTER 12. IDENTITY BROKERING

115

Hide On Login Page When this switch is on, this provider will not be
shown as a login option on the login page. Clients
can still request to use this provider by using the
'kc_idp_hint' parameter in the URL they use to
request a login.

Link Only When this switch is on, this provider cannot be used
to login users and will not be shown as an option on
the login page. Existing accounts can still be linked
with this provider though.

Store Tokens Whether or not to store the token received from the
identity provider.

Stored Tokens Readable Whether or not users are allowed to retrieve the
stored identity provider token. This also applies to the
broker client-level role read token

Trust email If the identity provider supplies an email address this
email address will be trusted. If the realm required
email validation, users that log in from this IDP will
not have to go through the email verification process.

GUI order The order number that sorts how the available IDPs
are listed on the Red Hat Single Sign-On login page.

First Login Flow This is the authentication flow that will be triggered
for users that log into Red Hat Single Sign-On
through this IDP for the first time ever.

Post Login Flow Authentication flow that is triggered after the user
finishes logging in with the external identity provider.

Configuration Description

12.4. SOCIAL IDENTITY PROVIDERS

For Internet facing applications, it is quite burdensome for users to have to register at your site to obtain
access. It requires them to remember yet another username and password combination. Social identity
providers allow you to delegate authentication to a semi-trusted and respected entity where the user
probably already has an account. Red Hat Single Sign-On provides built-in support for the most
common social networks out there, such as Google, Facebook, Twitter, GitHub, LinkedIn, Microsoft and
StackOverflow.

12.4.1. Bitbucket

There are a number of steps you have to complete to be able to login to Bitbucket.

First, open the Identity Providers left menu item and select Bitbucket from the Add provider
drop down list. This will bring you to the Add identity provider page.

Red Hat Single Sign-On 7.2 Server Administration Guide

116

Add Identity Provider

Before you can click Save, you must obtain a Client ID and Client Secret from Bitbucket.

NOTE

You will the Redirect URI from this page in a later step, which you will provide to
Bitbucket when you register Red Hat Single Sign-On as a client there.

Add a New App

To enable login with Bitbucket you must first register an application project in OAuth on Bitbucket Cloud.

NOTE

Bitbucket often changes the look and feel of application registration, so what you see on
the Bitbucket site may differ. If in doubt, see the Bitbucket documentation.

CHAPTER 12. IDENTITY BROKERING

117

https://confluence.atlassian.com/bitbucket/oauth-on-bitbucket-cloud-238027431.html

Click the Add consumer button.

Register App

Red Hat Single Sign-On 7.2 Server Administration Guide

118

Copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and enter
it into the Authorization callback URL field on the Bitbucket Register a new OAuth
application page.

On the same page, mark the Email and Read boxes under Account to allow your application to read
user email.

Bitbucket App Page

CHAPTER 12. IDENTITY BROKERING

119

When you are done registering, click Save. This will open the application management page in Bitbucket.
Find the client ID and secret from this page so you can enter them into the Red Hat Single Sign-On Add
identity provider page.

+ +To finish, return to Red Hat Single Sign-On and enter them. Click Save.

12.4.2. Facebook

There are a number of steps you have to complete to be able to login to Facebook. First, go to the
Identity Providers left menu item and select Facebook from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.2 Server Administration Guide

120

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Facebook.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
Facebook when you register Red Hat Single Sign-On as a client there, so copy this URI to your
clipboard.

To enable login with Facebook you first have to create a project and a client in the Facebook Developer
Console.

NOTE

Facebook often changes the look and feel of the Facebook Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Once you’ve logged into the console there is a pull down menu in the top right corner of the screen that
says My Apps. Select the Add a New App menu item.

Add a New App

CHAPTER 12. IDENTITY BROKERING

121

https://developers.facebook.com/

Select the Website icon. Click the Skip and Create App ID button.

Create a New App ID

The email address and app category are required fields. Once you’re done with that, you will be brought
to the dashboard for the application. Click the Settings left menu item.

Create a New App ID

Red Hat Single Sign-On 7.2 Server Administration Guide

122

Click on the + Add Platform button at the end of this page and select the Website icon. Copy and
paste the Redirect URI from the Red Hat Single Sign-On Add identity provider page into the
Site URL of the Facebook Website settings block.

Specify Website

After this it is necessary to make the Facebook app public. Click App Review left menu item and switch
button to "Yes".

You will need also to obtain the App ID and App Secret from this page so you can enter them into the

CHAPTER 12. IDENTITY BROKERING

123

Red Hat Single Sign-On Add identity provider page. To obtain this click on the Dashboard left
menu item and click on Show under App Secret. Go back to Red Hat Single Sign-On and specify those
items and finally save your Facebook Identity Provider.

One config option to note on the Add identity provider page for Facebook is the Default
Scopes field. This field allows you to manually specify the scopes that users must authorize when
authenticating with this provider. For a complete list of scopes, please take a look at
https://developers.facebook.com/docs/graph-api. By default, Red Hat Single Sign-On uses the following
scopes: email.

12.4.3. GitHub

There are a number of steps you have to complete to be able to login to GitHub. First, go to the
Identity Providers left menu item and select GitHub from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from GitHub. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to GitHub
when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with GitHub you first have to register an application project in GitHub Developer
applications.

Red Hat Single Sign-On 7.2 Server Administration Guide

124

https://developers.facebook.com/docs/graph-api
https://github.com/settings/developers

NOTE

GitHub often changes the look and feel of application registration, so these directions
might not always be up to date and the configuration steps might be slightly different.

Add a New App

Click the Register a new application button.

Register App

CHAPTER 12. IDENTITY BROKERING

125

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider
page and enter it into the Authorization callback URL field on the GitHub Register a new
OAuth application page. Once you’ve completed this page you will be brought to the application’s
management page.

GitHub App Page

Red Hat Single Sign-On 7.2 Server Administration Guide

126

You will need to obtain the client ID and secret from this page so you can enter them into the Red Hat
Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify
those items.

12.4.4. GitLab

There are a number of steps you have to complete to be able to login to GitLab.

First, go to the Identity Providers left menu item and select GitLab from the Add provider
drop down list. This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

127

Before you can click Save, you must obtain a Client ID and Client Secret from GitLab.

NOTE

You will the Redirect URI from this page in a later step, which you will provide to
GitLab when you register Red Hat Single Sign-On as a client there.

To enable login with GitLab you first have to register an application project in GitLab as OAuth2
authentication service provider.

NOTE

GitLab often changes the look and feel of application registration, so what you see on the
GitLab site may differ. If in doubt, see the GitLab documentation.

Add a New App

Red Hat Single Sign-On 7.2 Server Administration Guide

128

https://docs.gitlab.com/ee/integration/oauth_provider.html

Copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page and enter
it into the Authorization callback URL field on the GitLab Register a new OAuth
application page.

GitLab App Page

When you are done registering, click Save application. This will open the application management
page in GitLab. Find the client ID and secret from this page so you can enter them into the Red Hat
Single Sign-On Add identity provider page.

To finish, return to Red Hat Single Sign-On and enter them. Click Save.

CHAPTER 12. IDENTITY BROKERING

129

12.4.5. Google

There are a number of steps you have to complete to be able to login to Google. First, go to the
Identity Providers left menu item and select Google from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Google. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Google
when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Google you first have to create a project and a client in the Google Developer
Console. Then you need to copy the client id and secret into the Red Hat Single Sign-On Admin
Console.

NOTE

Google often changes the look and feel of the Google Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Let’s see first how to create a project with Google.

Log in to the Google Developer Console.

Red Hat Single Sign-On 7.2 Server Administration Guide

130

https://console.cloud.google.com/project
https://console.cloud.google.com/project

Google Developer Console

Click the Create Project button. Use any value for Project name and Project ID you want,
then click the Create button. Wait for the project to be created (this may take a while). Once created
you will be brought to the project’s dashboard.

Dashboard

Then navigate to the APIs & Services section in the Google Developer Console. On that screen,
navigate to Credentials administration.

When users log into Google from Red Hat Single Sign-On they will see a consent screen from Google
which will ask the user if Red Hat Single Sign-On is allowed to view information about their user profile.
Thus Google requires some basic information about the product before creating any secrets for it. For a
new project, you have first to configure OAuth consent screen.

CHAPTER 12. IDENTITY BROKERING

131

For the very basic setup, filling in the Application name is sufficient. You can also set additional details
like scopes for Google APIs in this page.

Fill in OAuth consent screen details

The next step is to create OAuth client ID and client secret. Back in Credentials administration,
navigate to Credentials tab and select OAuth client ID under the Create credentials
button.

Create credentials

Red Hat Single Sign-On 7.2 Server Administration Guide

132

You will then be brought to the Create OAuth client ID page. Select Web application as the
application type. Specify the name you want for your client. You’ll also need to copy and paste the
Redirect URI from the Red Hat Single Sign-On Add Identity Provider page into the
Authorized redirect URIs field. After you do this, click the Create button.

Create OAuth client ID

After you click Create you will be brought to the Credentials page. Click on your new OAuth 2.0
Client ID to view the settings of your new Google Client.

Google Client Credentials

CHAPTER 12. IDENTITY BROKERING

133

You will need to obtain the client ID and secret from this page so you can enter them into the Red Hat
Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify
those items.

One config option to note on the Add identity provider page for Google is the Default Scopes
field. This field allows you to manually specify the scopes that users must authorize when authenticating
with this provider. For a complete list of scopes, please take a look at
https://developers.google.com/oauthplayground/ . By default, Red Hat Single Sign-On uses the following
scopes: openid profile email.

12.4.6. LinkedIn

There are a number of steps you have to complete to be able to login to LinkedIn. First, go to the
Identity Providers left menu item and select LinkedIn from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.2 Server Administration Guide

134

https://developers.google.com/oauthplayground/

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from LinkedIn.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
LinkedIn when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with LinkedIn you first have to create an application in LinkedIn Developer Network.

NOTE

LinkedIn may change the look and feel of application registration, so these directions may
not always be up to date.

Developer Network

CHAPTER 12. IDENTITY BROKERING

135

https://www.linkedin.com/developer/apps

Click on the Create Application button. This will bring you to the Create a New Application
Page.

Create App

Red Hat Single Sign-On 7.2 Server Administration Guide

136

Fill in the form with the appropriate values, then click the Submit button. This will bring you to the new
application’s settings page.

App Settings

CHAPTER 12. IDENTITY BROKERING

137

Select r_basicprofile and r_emailaddress in the Default Application Permissions
section. You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity
Provider page and enter it into the OAuth 2.0 Authorized Redirect URLs field on the LinkedIn
app settings page. Don’t forget to click the Update button after you do this!

You will then need to obtain the client ID and secret from this page so you can enter them into the Red
Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify
those items.

12.4.7. Microsoft

There are a number of steps you have to complete to be able to login to Microsoft. First, go to the
Identity Providers left menu item and select Microsoft from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.2 Server Administration Guide

138

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Microsoft.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
Microsoft when you register Red Hat Single Sign-On as a client there, so copy this URI to your
clipboard.

To enable login with Microsoft account you first have to register an OAuth application at Microsoft. Go to
the Microsoft Application Registration url.

NOTE

Microsoft often changes the look and feel of application registration, so these directions
might not always be up to date and the configuration steps might be slightly different.

Register Application

CHAPTER 12. IDENTITY BROKERING

139

https://account.live.com/developers/applications/create

Enter in the application name and click Create application. This will bring you to the application
settings page of your new application.

Settings

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider
page and add it to the Redirect URIs field on the Microsoft application page. Be sure to click the Add
Url button and Save your changes.

Finally, you will need to obtain the Application ID and secret from this page so you can enter them back
on the Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On
and specify those items.

Red Hat Single Sign-On 7.2 Server Administration Guide

140

WARNING

From November 2018 onwards, Microsoft is removing support for the Live SDK API
in favor of the new Microsoft Graph API. The Red Hat Single Sign-On Microsoft
identity provider has been updated to use the new endpoints so make sure to
upgrade to Red Hat Single Sign-On version 7.2.5 or later in order to use this
provider. Furthermore, client applications registered with Microsoft under "Live SDK
applications" will need to be re-registered in the Microsoft Application Registration
portal to obtain an application id that is compatible with the Microsoft Graph API.

12.4.8. Openshift

NOTE

Openshift Online is currently in the developer preview mode. This documentation has
been based on on-premise installations and local minishift development environment.

There are a just a few steps you have to complete to be able to login to OpenShift. First, go to the
Identity Providers left menu item and select Openshift from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

141

https://account.live.com/developers/applications/create

1

2

3

Registering OAuth client

You can register your client using oc command line tool.

The name of your OAuth client. Passed as client_id request parameter when making requests to
<openshift_master>/oauth/authorize and <openshift_master>/oauth/token.

secret is used as the client_secret request parameter.

The redirect_uri parameter specified in requests to
<openshift_master>/oauth/authorize and <openshift_master>/oauth/token must
be equal to (or prefixed by) one of the URIs in redirectURIs.

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: v1
metadata:

 name: kc-client 1

secret: "..." 2
redirectURIs:

 - "http://www.example.com/" 3

grantMethod: prompt 4
')

Red Hat Single Sign-On 7.2 Server Administration Guide

142

4 The grantMethod is used to determine what action to take when this client requests tokens and
has not yet been granted access by the user.

Use client ID and secret defined by oc create command to enter them back on the Red Hat Single
Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and specify those
items.

Please refer to official Openshift documentation for more detailed guides.

12.4.9. PayPal

There are a number of steps you have to complete to be able to login to PayPal. First, go to the
Identity Providers left menu item and select PayPal from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from PayPal. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to PayPal
when you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

CHAPTER 12. IDENTITY BROKERING

143

https://docs.openshift.org/latest/architecture/additional_concepts/authentication.html#oauth

To enable login with PayPal you first have to register an application project in PayPal Developer
applications.

Add a New App

Click the Create App button.

Register App

You will now be brought to the app settings page.

Do the following changes:

Choose to configure either Sandbox or Live (choose Live if you haven’t enabled the Target
Sandbox switch on the Add identity provider page)

Copy Client ID and Secret so you can paste them into the Red Hat Single Sign-On Add
identity provider page.

Scroll down to App Settings

Copy the Redirect URI from the Red Hat Single Sign-On Add Identity Provider page
and enter it into the Return URL field.

Check the Log In with PayPal checkbox.

Red Hat Single Sign-On 7.2 Server Administration Guide

144

https://developer.paypal.com/developer/applications

Check the Full name checkbox under the personal information section.

Check the Email address checkbox under the address information section.

Add both a privacy and a user agreement URL pointing to the respective pages on your domain.

12.4.10. StackOverflow

There are a number of steps you have to complete to be able to login to StackOverflow. First, go to the
Identity Providers left menu item and select StackOverflow from the Add provider drop
down list. This will bring you to the Add identity provider page.

Add Identity Provider

To enable login with StackOverflow you first have to register an OAuth application on StackApps. Go to
registering your application on Stack Apps url and login.

NOTE

StackOverflow often changes the look and feel of application registration, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Register Application

CHAPTER 12. IDENTITY BROKERING

145

https://stackapps.com/
https://stackapps.com/apps/oauth/register

Enter in the application name and the OAuth Domain Name of your application and click Register
your Application. Type in anything you want for the other items.

Settings

Red Hat Single Sign-On 7.2 Server Administration Guide

146

Finally, you will need to obtain the client ID, secret, and key from this page so you can enter them back
on the Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On
and specify those items.

12.4.11. Twitter

There are a number of steps you have to complete to be able to login to Twitter. First, go to the
Identity Providers left menu item and select Twitter from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Twitter. One
piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to Twitter when
you register Red Hat Single Sign-On as a client there, so copy this URI to your clipboard.

To enable login with Twtter you first have to create an application in the Twitter Application
Management.

Register Application

CHAPTER 12. IDENTITY BROKERING

147

https://apps.twitter.com

Click on the Create New App button. This will bring you to the Create an Application page.

Register Application

Enter in a Name and Description. The Website can be anything, but cannot have a localhost address.
For the Callback URL you must copy the Redirect URI from the Red Hat Single Sign-On Add
Identity Provider page.

Red Hat Single Sign-On 7.2 Server Administration Guide

148

WARNING

You cannot use localhost in the Callback URL. Instead replace it with
127.0.0.1 if you are trying to testdrive Twitter login on your laptop.

After clicking save you will be brought to the Details page.

App Details

Next go to the Keys and Access Tokens tab.

Keys and Access Tokens

CHAPTER 12. IDENTITY BROKERING

149

Finally, you will need to obtain the API Key and secret from this page and copy them back into the
Client ID and Client Secret fields on the Red Hat Single Sign-On Add identity provider
page.

12.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS

Red Hat Single Sign-On can broker identity providers based on the OpenID Connect protocol. These
IDPs must support the Authorization Code Flow as defined by the specification in order to authenticate
the user and authorize access.

To begin configuring an OIDC provider, go to the Identity Providers left menu item and select
OpenID Connect v1.0 from the Add provider drop down list. This will bring you to the Add
identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.2 Server Administration Guide

150

The initial configuration options on this page are described in General IDP Configuration. You must
define the OpenID Connect configuration options as well. They basically describe the OIDC IDP you are
communicating with.

Table 12.2. OpenID Connect Config

Configuration Description

Authorization URL Authorization URL endpoint required by the OIDC
protocol

Token URL Token URL endpoint required by the OIDC protocol

Logout URL Logout URL endpoint defined in the OIDC protocol.
This value is optional.

CHAPTER 12. IDENTITY BROKERING

151

Backchannel Logout Backchannel logout is a background, out-of-band,
REST invocation to the IDP to logout the user. Some
IDPs can only perform logout through browser
redirects as they may only be able to identity
sessions via a browser cookie.

User Info URL User Info URL endpoint defined by the OIDC
protocol. This is an endpoint from which user profile
information can be downloaded.

Client ID This realm will act as an OIDC client to the external
federation IDP you are configuring here. Your realm
will need a OIDC client ID when using the
Authorization Code Flow to interact with the external
IDP

Client Secret This realm will need a client secret to use when using
the Authorization Code Flow.

Issuer Responses from the IDP may contain an issuer
claim. This config value is optional. If specified, this
claim will be validated against the value you provide.

Default Scopes Space-separated list of OIDC scopes to send with the
authentication request. The default is openid

Prompt Another optional switch. This is the prompt parameter
defined by the OIDC specification. Through it you can
force re-authentication and other options. See the
specification for more details

Validate Signatures Another optional switch. This is to specify if Red Hat
Single Sign-On will verify the signatures on the
external ID Token signed by this Identity provider. If
this is on, the Red Hat Single Sign-On will need to
know the public key of the external OIDC identity
provider. See below for how to setup it. WARNING:
For the performance purposes, Red Hat Single Sign-
On caches the public key of the external OIDC
identity provider. If you think that private key of your
Identity provider was compromised, it is obviously
good to update your keys, but it’s also good to clear
the keys cache. See Clearing the cache section for
more details.

Configuration Description

Red Hat Single Sign-On 7.2 Server Administration Guide

152

Use JWKS URL Applicable if Validate Signatures is on. If the
switch is on, then identity provider public keys will be
downloaded from given JWKS URL. This allows
great flexibility because new keys will be always re-
downloaded again when identity provider generates
new keypair. If the switch is off, then public key (or
certificate) from the Red Hat Single Sign-On DB is
used, so when identity provider keypair changes, you
always need to import new key to the Red Hat Single
Sign-On DB as well.

JWKS URL URL where identity provider keys in JWK format are
stored. See JWK specification for more details. If you
use external Red Hat Single Sign-On identity
provider, then you can use URL like http://broker-
keycloak:8180/auth/realms/test/protocol/openid-
connect/certs assuming your brokered Red Hat
Single Sign-On is running on http://broker-
keycloak:8180 and it’s realm is test .

Validating Public Key Applicable if Use JWKS URL is off. Here is the
public key in PEM format that must be used to verify
external IDP signatures.

Validating Public Key Id Applicable if Use JWKS URL is off. This field
specifies ID of the public key in PEM format. This
config value is optional. As there is no standard way
for computing key ID from key, various external
identity providers might use different algorithm from
Red Hat Single Sign-On. If the value of this field is
not specified, the validating public key specified
above is used for all requests regardless of key ID
sent by external IDP. When set, value of this field
serves as key ID used by Red Hat Single Sign-On for
validating signatures from such providers and must
match the key ID specified by the IDP.

Configuration Description

You can also import all this configuration data by providing a URL or file that points to OpenID Provider
Metadata (see OIDC Discovery specification). If you are connecting to a Red Hat Single Sign-On
external IDP, you can import the IDP settings from the url <root>/auth/realms/{realm-
name}/.well-known/openid-configuration. This link is a JSON document describing metadata
about the IDP.

12.6. SAML V2.0 IDENTITY PROVIDERS

Red Hat Single Sign-On can broker identity providers based on the SAML v2.0 protocol.

To begin configuring an SAML v2.0 provider, go to the Identity Providers left menu item and
select SAML v2.0 from the Add provider drop down list. This will bring you to the Add identity
provider page.

CHAPTER 12. IDENTITY BROKERING

153

https://self-issued.info/docs/draft-ietf-jose-json-web-key.html
http://broker-keycloak:8180/auth/realms/test/protocol/openid-connect/certs
http://broker-keycloak:8180

Add Identity Provider

The initial configuration options on this page are described in General IDP Configuration. You must
define the SAML configuration options as well. They basically describe the SAML IDP you are
communicating with.

Table 12.3. SAML Config

Configuration Description

Single Sign-On Service URL This is a required field and specifies the SAML
endpoint to start the authentication process. If your
SAML IDP publishes an IDP entity descriptor, the
value of this field will be specified there.

Single Logout Service URL This is an optional field that specifies the SAML
logout endpoint. If your SAML IDP publishes an IDP
entity descriptor, the value of this field will be
specified there.

Red Hat Single Sign-On 7.2 Server Administration Guide

154

Backchannel Logout Enable if your SAML IDP supports backchannel
logout

NameID Policy Format Specifies the URI reference corresponding to a name
identifier format. Defaults to
urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent.

HTTP-POST Binding Response When this realm responds to any SAML requests
sent by the external IDP, which SAML binding should
be used? If set to off, then the Redirect Binding will
be used.

HTTP-POST Binding for AuthnRequest When this realm requests authentication from the
external SAML IDP, which SAML binding should be
used? If set to off, then the Redirect Binding will be
used.

Want AuthnRequests Signed If true, it will use the realm’s keypair to sign requests
sent to the external SAML IDP

Signature Algorithm If Want AuthnRequests Signed is on, then
you can also pick the signature algorithm to use.

SAML Signature Key Name Signed SAML documents sent via POST binding
contain identification of signing key in KeyName
element. This by default contains Red Hat Single
Sign-On key ID. However various external SAML
IDPs might expect a different key name or no key
name at all. This switch controls whether KeyName
contains key ID (option KEY_ID), subject from
certificate corresponding to the realm key (option
CERT_SUBJECT - expected for instance by
Microsoft Active Directory Federation Services), or
that the key name hint is completely omitted from the
SAML message (option NONE).

Force Authentication Indicates that the user will be forced to enter in their
credentials at the external IDP even if they are
already logged in.

Validate Signature Whether or not the realm should expect that SAML
requests and responses from the external IDP be
digitally signed. It is highly recommended you turn
this on!

Validating X509 Certificate The public certificate that will be used to validate the
signatures of SAML requests and responses from the
external IDP.

Configuration Description

CHAPTER 12. IDENTITY BROKERING

155

Configuration Description

You can also import all this configuration data by providing a URL or file that points to the SAML IDP
entity descriptor of the external IDP. If you are connecting to a Red Hat Single Sign-On external IDP, you
can import the IDP settings from the url <root>/auth/realms/{realm-
name}/protocol/saml/descriptor. This link is an XML document describing metadata about the
IDP.

You can also import all this configuration data by providing a URL or XML file that points to the entity
descriptor of the external SAML IDP you want to connect to.

12.6.1. SP Descriptor

Once you create a SAML provider, there is an EXPORT button that appears when viewing that provider.
Clicking this button will export a SAML SP entity descriptor which you can use to import into the external
SP.

This metadata is also available publicly by going to the URL

http[s]://{host:port}/auth/realms/{realm-name}/broker/{broker-
alias}/endpoint/descriptor

12.7. CLIENT SUGGESTED IDENTITY PROVIDER

OIDC applications can bypass the Red Hat Single Sign-On login page by specifying a hint on which
identity provider they want to use.

This is done by setting the kc_idp_hint query parameter in the Authorization Code Flow authorization
endpoint.

Red Hat Single Sign-On OIDC client adapters also allow you to specify this query parameter when you
access a secured resource at the application.

For example

In this case, is expected that your realm has an identity provider with an alias facebook. If this provider
doesn’t exist the login form will be displayed.

If you are using keycloak.js adapter, you can also achieve the same behavior:

GET /myapplication.com?kc_idp_hint=facebook HTTP/1.1
Host: localhost:8080

var keycloak = new Keycloak('keycloak.json');

keycloak.createLoginUrl({
 idpHint: 'facebook'
});

Red Hat Single Sign-On 7.2 Server Administration Guide

156

The kc_idp_hint query parameter also allows the client to override the default identity provider if one
is configured for the Identity Provider Redirector authenticator. The client can also disable the
automatic redirecting by setting the kc_idp_hint query parameter to an empty value.

12.8. MAPPING CLAIMS AND ASSERTIONS

You can import the SAML and OpenID Connect metadata provided by the external IDP you are
authenticating with into the environment of the realm. This allows you to extract user profile metadata
and other information so that you can make it available to your applications.

Each new user that logs into your realm via an external identity provider will have an entry for it created
in the local Red Hat Single Sign-On database. The act of importing metadata from the SAML or OIDC
assertions and claims will create this data with the local realm database.

If you click on an identity provider listed in the Identity Providers page for your realm, you will be
brought to the IDPs Settings tab. On this page is also a Mappers tab. Click on that tab to start
mapping your incoming IDP metadata.

There is a Create button on this page. Clicking on this create button allows you to create a broker
mapper. Broker mappers can import SAML attributes or OIDC ID/Access token claims into user
attributes and user role mappings.

CHAPTER 12. IDENTITY BROKERING

157

Select a mapper from the Mapper Type list. Hover over the tooltip to see a description of what the
mapper does. The tooltips also describe what configuration information you need to enter. Click Save
and your new mapper will be added.

For JSON based claims, you can use dot notation for nesting and square brackets to access array fields
by index. For example 'contact.address[0].country'.

To investigate the structure of user profile JSON data provided by social providers you can enable the
DEBUG level logger org.keycloak.social.user_profile_dump. This is done in the server’s app-
server configuration file (domain.xml or standalone.xml).

12.9. AVAILABLE USER SESSION DATA

After a user logs in from the external IDP, there’s some additional user session note data that Red Hat
Single Sign-On stores that you can access. This data can be propagated to the client requesting a login
via the token or SAML assertion being passed back to it by using an appropriate client mapper.

identity_provider

This is the IDP alias of the broker used to perform the login.

identity_provider_identity

This is the IDP username of the currently authenticated user. This is often same like the Red Hat
Single Sign-On username, but doesn’t necessarily needs to be. For example Red Hat Single Sign-On
user john can be linked to the Facebook user john123@gmail.com, so in that case value of user
session note will be john123@gmail.com .

You can use a Protocol Mapper of type User Session Note to propagate this information to your
clients.

12.10. FIRST LOGIN FLOW

When a user logs in through identity brokering some aspects of the user are imported and linked within
the realm’s local database. When Red Hat Single Sign-On successfully authenticates users through an
external identity provider there can be two situations:

There is already a Red Hat Single Sign-On user account imported and linked with the
authenticated identity provider account. In this case, Red Hat Single Sign-On will just
authenticate as the existing user and redirect back to application.

There is not yet an existing Red Hat Single Sign-On user account imported and linked for this
external user. Usually you just want to register and import the new account into Red Hat Single
Sign-On database, but what if there is an existing Red Hat Single Sign-On account with the
same email? Automatically linking the existing local account to the external identity provider is a
potential security hole as you can’t always trust the information you get from the external identity
provider.

Different organizations have different requirements when dealing with some of the conflicts and
situations listed above. For this, there is a First Login Flow option in the IDP settings which allows
you to choose a workflow that will be used after a user logs in from an external IDP the first time. By
default it points to first broker login flow, but you can configure and use your own flow and use
different flows for different identity providers.

The flow itself is configured in admin console under Authentication tab. When you choose First
Broker Login flow, you will see what authenticators are used by default. You can re-configure the
existing flow. (For example you can disable some authenticators, mark some of them as required,

Red Hat Single Sign-On 7.2 Server Administration Guide

158

configure some authenticators, etc).

12.10.1. Default First Login Flow

Let’s describe the default behaviour provided by First Broker Login flow.

Review Profile

This authenticator might display the profile info page, where the user can review his profile retrieved
from an identity provider. The authenticator is configurable. You can set the Update Profile On
First Login option. When On, users will be always presented with the profile page asking for
additional information in order to federate their identities. When missing, users will be presented
with the profile page only if some mandatory information (email, first name, last name) is not provided
by the identity provider. If Off, the profile page won’t be displayed, unless user clicks in later phase
on Review profile info link (page displayed in later phase by Confirm Link Existing
Account authenticator)

Create User If Unique

This authenticator checks if there is already an existing Red Hat Single Sign-On account with same
email or username like the account from the identity provider. If it’s not, then the authenticator just
creates a new local Red Hat Single Sign-On account and links it with the identity provider and the
whole flow is finished. Otherwise it goes to the next Handle Existing Account subflow. If you
always want to ensure that there is no duplicated account, you can mark this authenticator as
REQUIRED . In this case, the user will see the error page if there is existing Red Hat Single Sign-On
account and the user will need to link his identity provider account through Account management.

Confirm Link Existing Account

On the info page, the user will see that there is an existing Red Hat Single Sign-On account with
same email. He can review his profile again and use different email or username (flow is restarted
and goes back to Review Profile authenticator). Or he can confirm that he wants to link the
identity provider account with his existing Red Hat Single Sign-On account. Disable this authenticator
if you don’t want users to see this confirmation page, but go straight to linking identity provider
account by email verification or re-authentication.

Verify Existing Account By Email

This authenticator is ALTERNATIVE by default, so it’s used only if the realm has SMTP setup
configured. It will send mail to the user, where he can confirm that he wants to link the identity
provider with his Red Hat Single Sign-On account. Disable this if you don’t want to confirm linking by
email, but instead you always want users to reauthenticate with their password (and alternatively
OTP).

Verify Existing Account By Re-authentication

This authenticator is used if email authenticator is disabled or non-available (SMTP not configured for
realm). It will display a login screen where the user needs to authenticate with his password to link his
Red Hat Single Sign-On account with the Identity provider. User can also re-authenticate with some
different identity provider, which is already linked to his Red Hat Single Sign-On account. You can
also force users to use OTP. Otherwise it’s optional and used only if OTP is already set for the user
account.

12.11. RETRIEVING EXTERNAL IDP TOKENS

Red Hat Single Sign-On allows you to store tokens and responses from the authentication process with
the external IDP. For that, you can use the Store Token configuration option on the IDP’s settings
page.

Application code can retrieve these tokens and responses to pull in extra user information, or to securely

CHAPTER 12. IDENTITY BROKERING

159

invoke requests on the external IDP. For example, an application might want to use the Google token to
invoke on other Google services and REST APIs. To retrieve a token for a particular identity provider you
need to send a request as follows:

An application must have authenticated with Red Hat Single Sign-On and have received an access
token. This access token will need to have the broker client-level role read-token set. This means
that the user must have a role mapping for this role and the client application must have that role within
its scope. In this case, given that you are accessing a protected service in Red Hat Single Sign-On, you
need to send the access token issued by Red Hat Single Sign-On during the user authentication. In the
broker configuration page you can automatically assign this role to newly imported users by turning on
the Stored Tokens Readable switch.

These external tokens can be re-established by either logging in again through the provider, or using the
client initiated account linking API.

GET /auth/realms/{realm}/broker/{provider_alias}/token HTTP/1.1
Host: localhost:8080
Authorization: Bearer <KEYCLOAK ACCESS TOKEN>

Red Hat Single Sign-On 7.2 Server Administration Guide

160

CHAPTER 13. USER SESSION MANAGEMENT
When a user logs into a realm, Red Hat Single Sign-On maintains a user session for them and
remembers each and every client they have visited within the session. There are a lot of administrative
functions that realm admins can perform on these user sessions. They can view login stats for the entire
realm and dive down into each client to see who is logged in and where. Admins can logout a user or set
of users from the Admin Console. They can revoke tokens and set up all the token and session timeouts
there too.

13.1. ADMINISTERING SESSIONS

If you go to the Sessions left menu item you can see a top level view of the number of sessions that
are currently active in the realm.

Sessions

A list of clients is given and how many active sessions there currently are for that client. You can also
logout all users in the realm by clicking the Logout all button on the right side of this list.

13.1.1. Logout All Limitations

Any SSO cookies set will now be invalid and clients that request authentication in active browser
sessions will now have to re-login. Only certain clients are notified of this logout event, specifically clients
that are using the Red Hat Single Sign-On OIDC client adapter. Other client types (i.e. SAML) will not
receive a backchannel logout request.

It is important to note that any outstanding access tokens are not revoked by clicking Logout all. They
have to expire naturally. You have to push a revocation policy out to clients, but that also only works with
clients using the Red Hat Single Sign-On OIDC client adapter.

13.1.2. Application Drilldown

On the Sessions page, you can also drill down to each client. This will bring you to the Sessions tab
of that client. Clicking on the Show Sessions button there allows you to see which users are logged
into that application.

CHAPTER 13. USER SESSION MANAGEMENT

161

Application Sessions

13.1.3. User Drilldown

If you go to the Sessions tab of an individual user, you can also view the session information.

User Sessions

13.2. REVOCATION POLICIES

If your system is compromised you will want a way to revoke all sessions and access tokens that have
been handed out. You can do this by going to the Revocation tab of the Sessions screen.

Revocation

Red Hat Single Sign-On 7.2 Server Administration Guide

162

You can only set a time-based revocation policy. The console allows you to specify a time and date
where any session or token issued before that time and date is invalid. The Set to now will set the
policy to the current time and date. The Push button will push this revocation policy to any registered
OIDC client that has the Red Hat Single Sign-On OIDC client adapter installed.

13.3. SESSION AND TOKEN TIMEOUTS

Red Hat Single Sign-On gives you fine grain control of session, cookie, and token timeouts. This is all
done on the Tokens tab in the Realm Settings left menu item.

Tokens Tab

CHAPTER 13. USER SESSION MANAGEMENT

163

Let’s walk through each of the items on this page.

Configuration Description

Revoke Refresh Token For OIDC clients that are doing the refresh token
flow, this flag, if on, will revoke that refresh token and
issue another with the request that the client has to
use. This basically means that refresh tokens have a
one time use.

Red Hat Single Sign-On 7.2 Server Administration Guide

164

SSO Session Idle Also pertains to OIDC clients. If the user is not active
for longer than this timeout, the user session will be
invalidated. How is idle time checked? A client
requesting authentication will bump the idle timeout.
Refresh token requests will also bump the idle
timeout.

SSO Session Max Maximum time before a user session is expired and
invalidated. This is a hard number and time. It
controls the maximum time a user session can
remain active, regardless of activity.

Offline Session Idle For offline access, this is the time the session is
allowed to remain idle before the offline token is
revoked.

Access Token Lifespan When an OIDC access token is created, this value
affects the expiration.

Access Token Lifespan For Implicit Flow With the Implicit Flow no refresh token is provided.
For this reason there’s a separate timeout for access
tokens created with the Implicit Flow.

Client login timeout This is the maximum time that a client has to finish
the Authorization Code Flow in OIDC.

Login timeout Total time a login must take. If authentication takes
longer than this time then the user will have to start
the authentication process over.

Login action timeout Maximum time a user can spend on any one page in
the authentication process.

User-Initiated Action Lifespan Maximum time before an action permit sent by a user
(e.g. forgot password e-mail) is expired. This value is
recommended to be short because it is expected that
the user would react to self-created action quickly.

Default Admin-Initiated Action Lifespan Maximum time before an action permit sent to a user
by an admin is expired. This value is recommended
to be long to allow admins send e-mails for users that
are currently offline. The default timeout can be
overridden right before issuing the token.

Configuration Description

CHAPTER 13. USER SESSION MANAGEMENT

165

Override User-Initiated Action Lifespan Permits the possibility of having independent
timeouts per operation (e.g. e-mail verification, forgot
password, user actions and Identity Provider E-mail
Verification). This field is non mandatory and if
nothing is specified it defaults to the value configured
at User-Initiated Action Lifespan.

Configuration Description

13.4. OFFLINE ACCESS

Offline access is a feature described in OpenID Connect specification . The idea is that during login, your
client application will request an Offline token instead of a classic Refresh token. The application can
save this offline token in a database or on disk and can use it later even if user is logged out. This is
useful if your application needs to do some "offline" actions on behalf of user even when the user is not
online. An example is a periodic backup of some data every night.

Your application is responsible for persisting the offline token in some storage (usually a database) and
then using it to manually retrieve new access token from Red Hat Single Sign-On server.

The difference between a classic Refresh token and an Offline token is, that an offline token will never
expire and is not subject of SSO Session Idle timeout . The offline token is valid even after a user
logout or server restart. However by default you do need to use the offline token for a refresh token
action at least once per 30 days (this value, Offline Session Idle timeout, can be changed in
the administration console in the Tokens tab under Realm Settings). Also if you enable the option
Revoke refresh tokens, then each offline token can be used just once. So after refresh, you always
need to store the new offline token from refresh response into your DB instead of the previous one.

Users can view and revoke offline tokens that have been granted by them in the User Account Service.
The admin user can revoke offline tokens for individual users in admin console in the Consents tab of a
particular user. The admin can also view all the offline tokens issued in the Offline Access tab of
each client. Offline tokens can also be revoked by setting a revocation policy.

To be able to issue an offline token, users need to have the role mapping for the realm-level role
offline_access. Clients also need to have that role in their scope.

The client can request an offline token by adding the parameter scope=offline_access when
sending authorization request to Red Hat Single Sign-On. The Red Hat Single Sign-On OIDC client
adapter automatically adds this parameter when you use it to access secured URL of your application
(i.e. http://localhost:8080/customer-portal/secured?scope=offline_access). The Direct Access Grant and
Service Accounts also support offline tokens if you include scope=offline_access in the body of the
authentication request.

Red Hat Single Sign-On 7.2 Server Administration Guide

166

http://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess

CHAPTER 14. USER STORAGE FEDERATION
Many companies have existing user databases that hold information about users and their passwords or
other credentials. In may cases, it is just not possible to migrate off of those existing stores to a pure Red
Hat Single Sign-On deployment. Red Hat Single Sign-On can federate existing external user databases.
Out of the box we have support for LDAP and Active Directory. You can also code your own extension
for any custom user databases you might have using our User Storage SPI.

The way it works is that when a user logs in, Red Hat Single Sign-On will look into its own internal user
store to find the user. If it can’t find it there it will iterate over every User Storage provider you have
configured for the realm until it finds a match. Data from the external store is mapped into a common
user model that is consumed by the Red Hat Single Sign-On runtime. This common user model can then
be mapped to OIDC token claims and SAML assertion attributes.

External user databases rarely have every piece of data need to support all the features that Red Hat
Single Sign-On has. In this case, the User Storage Provider can opt to store some things locally in the
Red Hat Single Sign-On user store. Some providers even import the user locally and sync periodically
with the external store. All this depends on the capabilities of the provider and how its configured. For
example, your external user store may not support OTP. Depending on the provider, this OTP support
can be handled and stored by Red Hat Single Sign-On

14.1. ADDING A PROVIDER

To add a storage provider go to the User Federation left menu item in the Admin Console.

User Federation

On the right side, there is an Add Provider list box. Choose the provider type you want to add and you
will be brought to the configuration page of that provider.

14.2. DEALING WITH PROVIDER FAILURES

If a User Storage Provider fails, that is, if your LDAP server is down, you may have trouble logging in
and may not be able to view users in the admin console. Red Hat Single Sign-On does not catch failures
when using a Storage Provider to lookup a user. It will abort the invocation. So, if you have a Storage
Provider with a higher priority that fails during user lookup, the login or user query will fail entirely with an
exception and abort. It will not fail over to the next configured provider.

CHAPTER 14. USER STORAGE FEDERATION

167

The local Red Hat Single Sign-On user database is always searched first to resolve users before any
LDAP or custom User Storage Provider. You may want to consider creating an admin account that is
stored in the local Red Hat Single Sign-On user database just in case any problems come up in
connecting to your LDAP and custom back ends.

Each LDAP and custom User Storage Provider has an enable switch on its admin console page.
Disabling the User Storage Provider will skip the provider when doing user queries so that you can view
and login with users that might be stored in a different provider with lower priority. If your provider is
using an import strategy and you disable it, imported users are still available for lookup, but only in
read only mode. You will not be able to modify these users until you re-enable the provider.

The reason why Red Hat Single Sign-On does not fail over if a Storage Provider lookup fails is that user
databases often have duplicate usernames or duplicate emails between them. This can cause security
issues and unforeseen problems as the user may be loaded from one external store when the admin is
expecting the user to be loaded from another.

14.3. LDAP AND ACTIVE DIRECTORY

Red Hat Single Sign-On comes with a built-in LDAP/AD provider. It is possible to federate multiple
different LDAP servers in the same Red Hat Single Sign-On realm. You can map LDAP user attributes
into the Red Hat Single Sign-On common user model. By default, it maps username, email, first name,
and last name, but you are free to configure additional mappings. The LDAP provider also supports
password validation via LDAP/AD protocols and different storage, edit, and synchronization modes.

To configure a federated LDAP store go to the Admin Console. Click on the User Federation left
menu option. When you get to this page there is an Add Provider select box. You should see ldap
within this list. Selecting ldap will bring you to the LDAP configuration page.

14.3.1. Storage Mode

By default, Red Hat Single Sign-On will import users from LDAP into the local Red Hat Single Sign-On
user database. This copy of the user is either synchronized on demand, or through a periodic
background task. The one exception to this is passwords. Passwords are not imported and password
validation is delegated to the LDAP server. The benefits to this approach is that all Red Hat Single Sign-
On features will work as any extra per-user data that is needed can be stored locally. This approach also
reduces load on the LDAP server as uncached users are loaded from the Red Hat Single Sign-On
database the 2nd time they are accessed. The only load your LDAP server will have is password
validation. The downside to this approach is that when a user is first queried, this will require a Red Hat
Single Sign-On database insert. The import will also have to be synchronized with your LDAP server as
needed.

Alternatively, you can choose not to import users into the Red Hat Single Sign-On user database. In this
case, the common user model that the Red Hat Single Sign-On runtime uses is backed only by the LDAP
server. This means that if LDAP doesn’t support a piece of data that a Red Hat Single Sign-On feature
needs that feature will not work. The benefit to this approach is that you do not have the overhead of
importing and synchronizing a copy of the LDAP user into the Red Hat Single Sign-On user database.

This storage mode is controled by the Import Enabled switch. Set to On to import users.

14.3.2. Edit Mode

Users, through the User Account Service, and admins through the Admin Console have the ability to
modify user metadata. Depending on your setup you may or may not have LDAP update privileges. The
Edit Mode configuration option defines the edit policy you have with your LDAP store.

Red Hat Single Sign-On 7.2 Server Administration Guide

168

READONLY

Username, email, first name, last name, and other mapped attributes will be unchangeable. Red Hat
Single Sign-On will show an error anytime anybody tries to update these fields. Also, password
updates will not be supported.

WRITABLE

Username, email, first name, last name, and other mapped attributes and passwords can all be
updated and will be synchronized automatically with your LDAP store.

UNSYNCED

Any changes to username, email, first name, last name, and passwords will be stored in Red Hat
Single Sign-On local storage. It is up to you to figure out how to synchronize back to LDAP. This
allows Red Hat Single Sign-On deployments to support updates of user metadata on a read-only
LDAP server. This option only applies when you are importing users from LDAP into the local Red
Hat Single Sign-On user database.

14.3.3. Other config options

Console Display Name

Name used when this provider is referenced in the admin console

Priority

The priority of this provider when looking up users or for adding registrations.

Sync Registrations

Does your LDAP support adding new users? Click this switch if you want new users created by Red
Hat Single Sign-On in the admin console or the registration page to be added to LDAP.

Allow Kerberos authentication

Enable Kerberos/SPNEGO authentication in realm with users data provisioned from LDAP. More info
in Kerberos section.

Other options

The rest of the configuration options should be self explanatory. You can mouseover the tooltips in
Admin Console to see some more details about them.

14.3.4. Connect to LDAP over SSL

When you configure a secured connection URL to your LDAP store(for example
ldaps://myhost.com:636), Red Hat Single Sign-On will use SSL for the communication with LDAP
server. The important thing is to properly configure a truststore on the Red Hat Single Sign-On server
side, otherwise Red Hat Single Sign-On can’t trust the SSL connection to LDAP.

The global truststore for the Red Hat Single Sign-On can be configured with the Truststore SPI. Please
check out the Server Installation and Configuration Guide for more detail. If you don’t configure the
truststore SPI, the truststore will fallback to the default mechanism provided by Java (either the file
provided by system property javax.net.ssl.trustStore or the cacerts file from the JDK if the
system property is not set).

There is a configuration property Use Truststore SPI in the LDAP federation provider configuration,
where you can choose whether the Truststore SPI is used. By default, the value is Only for ldaps,
which is fine for most deployments. The Truststore SPI will only be used if the connection to LDAP starts
with ldaps.

14.3.5. Sync of LDAP users to Red Hat Single Sign-On

CHAPTER 14. USER STORAGE FEDERATION

169

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_installation_and_configuration_guide/

If you have import enabled, the LDAP Provider will automatically take care of synchronization (import) of
needed LDAP users into the Red Hat Single Sign-On local database. As users log in, the LDAP provider
will import the LDAP user into the Red Hat Single Sign-On database and then authenticate against the
LDAP password. This is the only time users will be imported. If you go to the Users left menu item in the
Admin Console and click the View all users button, you will only see those LDAP users that have
been authenticated at least once by Red Hat Single Sign-On. It is implemented this way so that admins
don’t accidentally try to import a huge LDAP DB of users.

If you want to sync all LDAP users into the Red Hat Single Sign-On database, you may configure and
enable the Sync Settings of the LDAP provider you configured. There are 2 types of synchronization:

Periodic Full sync

This will synchronize all LDAP users into Red Hat Single Sign-On DB. Those LDAP users, which
already exist in Red Hat Single Sign-On and were changed in LDAP directly will be updated in Red
Hat Single Sign-On DB (For example if user Mary Kelly was changed in LDAP to Mary Smith).

Periodic Changed users sync

When syncing occurs, only those users that were created or updated after the last sync will be
updated and/or imported.

The best way to handle syncing is to click the Synchronize all users button when you first create
the LDAP provider, then set up a periodic sync of changed users. The configuration page for your LDAP
Provider has several options to support you.

14.3.6. LDAP Mappers

LDAP mappers are listeners, which are triggered by the LDAP Provider at various points, provide
another extension point to LDAP integration. They are triggered when a user logs in via LDAP and needs
to be imported, during Red Hat Single Sign-On initiated registration, or when a user is queried from the
Admin Console. When you create an LDAP Federation provider, Red Hat Single Sign-On will
automatically provide set of built-in mappers for this provider. You are free to change this set and create
a new mapper or update/delete existing ones.

User Attribute Mapper

This allows you to specify which LDAP attribute is mapped to which attribute of Red Hat Single Sign-
On user. So, for example, you can configure that LDAP attribute mail to the attribute email in the
Red Hat Single Sign-On database. For this mapper implementation, there is always a one-to-one
mapping (one LDAP attribute is mapped to one Red Hat Single Sign-On attribute)

FullName Mapper

This allows you to specify that the full name of the user, which is saved in some LDAP attribute
(usually cn) will be mapped to firstName and lastname attributes in the Red Hat Single Sign-On
database. Having cn to contain full name of user is a common case for some LDAP deployments.

Role Mapper

This allows you to configure role mappings from LDAP into Red Hat Single Sign-On role mappings.
One Role mapper can be used to map LDAP roles (usually groups from a particular branch of LDAP
tree) into roles corresponding to either realm roles or client roles of a specified client. It’s not a
problem to configure more Role mappers for the same LDAP provider. So for example you can
specify that role mappings from groups under ou=main,dc=example,dc=org will be mapped to
realm role mappings and role mappings from groups under ou=finance,dc=example,dc=org will
be mapped to client role mappings of client finance .

Hardcoded Role Mapper

This mapper will grant a specified Red Hat Single Sign-On role to each Red Hat Single Sign-On user
linked with LDAP.

Red Hat Single Sign-On 7.2 Server Administration Guide

170

Group Mapper

This allows you to configure group mappings from LDAP into Red Hat Single Sign-On group
mappings. Group mapper can be used to map LDAP groups from a particular branch of an LDAP tree
into groups in Red Hat Single Sign-On. It will also propagate user-group mappings from LDAP into
user-group mappings in Red Hat Single Sign-On.

MSAD User Account Mapper

This mapper is specific to Microsoft Active Directory (MSAD). It’s able to tightly integrate the MSAD
user account state into the Red Hat Single Sign-On account state (account enabled, password is
expired etc). It’s using the userAccountControl and pwdLastSet LDAP attributes. (both are
specific to MSAD and are not LDAP standard). For example if pwdLastSet is 0, the Red Hat Single
Sign-On user is required to update their password and there will be an UPDATE_PASSWORD
required action added to the user. If userAccountControl is 514 (disabled account) the Red Hat
Single Sign-On user is disabled as well.

By default, there are User Attribute mappers that map basic Red Hat Single Sign-On user attributes like
username, firstname, lastname, and email to corresponding LDAP attributes. You are free to extend
these and provide additional attribute mappings. Admin console provides tooltips, which should help with
configuring the corresponding mappers.

14.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION

Red Hat Single Sign-On also comes with a built-in SSSD (System Security Services Daemon) plugin.
SSSD is part of the latest Fedora or Red Hat Enterprise Linux and provides access to multiple identity
and authentication providers. It provides benefits such as failover and offline support. To see
configuration options and for more information see the Red Hat Enterprise Linux Identity Management
documentation.

SSSD also integrates with the FreeIPA identity management (IdM) server, providing authentication and
access control. For Red Hat Single Sign-On, we benefit from this integration authenticating against PAM
services and retrieving user data from SSSD. For more information about using Red Hat Identity
Management in Linux environments, see the Red Hat Enterprise Linux Identity Management
documentation.

Most of the communication between Red Hat Single Sign-On and SSSD occurs through read-only D-Bus
interfaces. For this reason, the only way to provision and update users is to use the FreeIPA/IdM

CHAPTER 14. USER STORAGE FEDERATION

171

https://fedoraproject.org/wiki/Features/SSSD
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/sssd
http://tldp.org/HOWTO/User-Authentication-HOWTO/x115.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/index

administration interface. By default, like the LDAP federation provider, it is set up only to import
username, email, first name, and last name.

NOTE

Groups and roles are automatically registered, but not synchronized, so any changes
made by the Red Hat Single Sign-On administrator directly in Red Hat Single Sign-On is
not synchronized with SSSD.

Information on how to configure the FreeIPA/IdM server follows.

14.4.1. FreeIPA/IdM Server

As a matter of simplicity, a FreeIPA Docker image already available is used. To set up a server, see the
FreeIPA documentation.

Running a FreeIPA server with Docker requires this command:

docker run --name freeipa-server-container -it \
-h server.freeipa.local -e PASSWORD=YOUR_PASSWORD \
-v /sys/fs/cgroup:/sys/fs/cgroup:ro \
-v /var/lib/ipa-data:/data:Z freeipa/freeipa-server

The parameter -h with server.freeipa.local represents the FreeIPA/IdM server hostname. Be
sure to change YOUR_PASSWORD to a password of your choosing.

After the container starts, change /etc/hosts to:

x.x.x.x server.freeipa.local

If you do not make this change, you must set up a DNS server.

So that the SSSD federation provider is started and running on Red Hat Single Sign-On you must enroll
your Linux machine in the IPA domain:

ipa-client-install --mkhomedir -p admin -w password

To ensure that everything is working as expected, on the client machine, run:

kinit admin

You should be prompted for the password. After that, you can add users to the IPA server using this
command:

$ ipa user-add john --first=John --last=Smith --email=john@smith.com --
phone=042424242 --street="Testing street" \ --city="Testing city" --
state="Testing State" --postalcode=0000000000

14.4.2. SSSD and D-Bus

As mentioned previously, the federation provider obtains the data from SSSD using D-BUS and
authentication occurs using PAM.

Red Hat Single Sign-On 7.2 Server Administration Guide

172

https://hub.docker.com/r/freeipa/freeipa-server/
https://www.freeipa.org/page/Quick_Start_Guide
http://tldp.org/HOWTO/User-Authentication-HOWTO/x115.html

First, you have to install the sssd-dbus RPM, which allows information from SSSD to be transmitted over
the system bus.

$ sudo yum install sssd-dbus

You must run this provisioning script:

$.../bin/federation-sssd-setup.sh

This script makes the necessary changes to /etc/sssd/sssd.conf:

[domain/your-hostname.local]
...
ldap_user_extra_attrs = mail:mail, sn:sn, givenname:givenname,
telephoneNumber:telephoneNumber
...
[sssd]
services = nss, sudo, pam, ssh, ifp
...
[ifp]
allowed_uids = root, yourOSUsername
user_attributes = +mail, +telephoneNumber, +givenname, +sn

Also, a keycloak file is included under /etc/pam.d/:

auth required pam_sss.so
account required pam_sss.so

Ensure everything is working as expected by running dbus-send:

sudo dbus-send --print-reply --system --dest=org.freedesktop.sssd.infopipe
/org/freedesktop/sssd/infopipe org.freedesktop.sssd.infopipe.GetUserGroups
string:john

You should be able to see the user’s group. If this command returns a timeout or an error, it means that
the federation provider will also not be able to retrieve anything on Red Hat Single Sign-On.

Most of the time this occurs because the machine was not enrolled in the FreeIPA IdM server or you do
not have permission to access the SSSD service.

If you do not have permission, ensure that the user running Red Hat Single Sign-On is included in the
/etc/sssd/sssd.conf file in the following section:

[ifp]
allowed_uids = root, your_username

14.4.3. Enabling the SSSD Federation Provider

Red Hat Single Sign-On uses DBus-Java to communicate at a low level with D-Bus, which depends on
the Unix Sockets Library.

Before enabling the SSSD Federation provider, you must install the RPM for this library:

CHAPTER 14. USER STORAGE FEDERATION

173

http://www.matthew.ath.cx/projects/java/

$ sudo yum install rh-sso7-libunix-dbus-java

For authentication with PAM Red Hat Single Sign-On uses JNA. Be sure you have this package
installed:

$ sudo yum install jna

Use sssctl user-checks command to validate your setup:

$ sudo sssctl user-checks admin -s keycloak

14.5. CONFIGURING A FEDERATED SSSD STORE

After installation, you need to configure a federated SSSD store.

To configure a federated SSSD store, complete the following steps:

1. Navigate to the Administration Console.

2. From the left menu, select User Federation.

3. From the Add Provider dropdown list, select sssd. The sssd configuration page opens.

4. Click Save.

Now you can authenticate against Red Hat Single Sign-On using FreeIPA/IdM credentials.

14.6. CUSTOM PROVIDERS

Red Hat Single Sign-On does have an SPI for User Storage Federation that you can use to write your
own custom providers. You can find documentation for this in our Server Developer Guide.

Red Hat Single Sign-On 7.2 Server Administration Guide

174

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

CHAPTER 15. AUDITING AND EVENTS
Red Hat Single Sign-On provides a rich set of auditing capabilities. Every single login action can be
recorded and stored in the database and reviewed in the Admin Console. All admin actions can also be
recorded and reviewed. There is also a Listener SPI with which plugins can listen for these events and
perform some action. Built-in listeners include a simple log file and the ability to send an email if an event
occurs.

15.1. LOGIN EVENTS

Login events occur for things like when a user logs in successfully, when somebody enters in a bad
password, or when a user account is updated. Every single event that happens to a user can be
recorded and viewed. By default, no events are stored or viewed in the Admin Console. Only error events
are logged to the console and the server’s log file. To start persisting you’ll need to enable storage. Go to
the Events left menu item and select the Config tab.

Event Configuration

To start storing events you’ll need to turn the Save Events switch to on under the Login Events
Settings.

Save Events

CHAPTER 15. AUDITING AND EVENTS

175

The Saved Types field allows you to specify which event types you want to store in the event store.
The Clear events button allows you to delete all the events in the database. The Expiration field
allows you to specify how long you want to keep events stored. Once you’ve enabled storage of login
events and decided on your settings, don’t forget to click the Save button on the bottom of this page.

To view events, go to the Login Events tab.

Login Events

Red Hat Single Sign-On 7.2 Server Administration Guide

176

As you can see, there’s a lot of information stored and, if you are storing every event, there are a lot of
events stored for each login action. The Filter button on this page allows you to filter which events you
are actually interested in.

Login Event Filter

In this screenshot, we’re filtering only Login events. Clicking the Update button runs the filter.

15.1.1. Event Types

Login events:

Login - A user has logged in.

Register - A user has registered.

CHAPTER 15. AUDITING AND EVENTS

177

Logout - A user has logged out.

Code to Token - An application/client has exchanged a code for a token.

Refresh Token - An application/client has refreshed a token.

Account events:

Social Link - An account has been linked to a social provider.

Remove Social Link - A social provider has been removed from an account.

Update Email - The email address for an account has changed.

Update Profile - The profile for an account has changed.

Send Password Reset - A password reset email has been sent.

Update Password - The password for an account has changed.

Update TOTP - The TOTP settings for an account have changed.

Remove TOTP - TOTP has been removed from an account.

Send Verify Email - An email verification email has been sent.

Verify Email - The email address for an account has been verified.

For all events there is a corresponding error event.

15.1.2. Event Listener

Event listeners listen for events and perform an action based on that event. There are two built-in
listeners that come with Red Hat Single Sign-On: Logging Event Listener and Email Event Listener.

The Logging Event Listener writes to a log file whenever an error event occurs and is enabled by default.
Here’s an example log message:

11:36:09,965 WARN [org.keycloak.events] (default task-51)
type=LOGIN_ERROR, realmId=master,
 clientId=myapp,
 userId=19aeb848-96fc-44f6-b0a3-59a17570d374,
ipAddress=127.0.0.1,
 error=invalid_user_credentials, auth_method=openid-
connect, auth_type=code,
 redirect_uri=http://localhost:8180/myapp,
 code_id=b669da14-cdbb-41d0-b055-0810a0334607,
username=admin

This logging is very useful if you want to use a tool like Fail2Ban to detect if there is a hacker bot
somewhere that is trying to guess user passwords. You can parse the log file for LOGIN_ERROR and pull
out the IP Address. Then feed this information into Fail2Ban so that it can help prevent attacks.

The Email Event Listener sends an email to the user’s account when an event occurs. The Email Event
Listener only supports the following events at the moment:

Login Error

Red Hat Single Sign-On 7.2 Server Administration Guide

178

Update Password

Update TOTP

Remove TOTP

To enable the Email Listener go to the Config tab and click on the Event Listeners field. This will
show a drop down list box where you can select email.

You can exclude one or more events by editing the standalone.xml, standalone-ha.xml, or
domain.xml that comes with your distribution and adding for example:

See the Server Installation and Configuration Guide for more details on where the standalone.xml,
standalone-ha.xml, or domain.xml file lives.

15.2. ADMIN EVENTS

Any action an admin performs within the admin console can be recorded for auditing purposes. The
Admin Console performs administrative functions by invoking on the Red Hat Single Sign-On REST
interface. Red Hat Single Sign-On audits these REST invocations. The resulting events can then be
viewed in the Admin Console.

To enable auditing of Admin actions, go to the Events left menu item and select the Config tab.

Event Configuration

<spi name="eventsListener">
 <provider name="email" enabled="true">
 <properties>
 <property name="exclude-events" value="
["UPDATE_TOTP","REMOVE_TOTP"]"/>
 </properties>
 </provider>
</spi>

CHAPTER 15. AUDITING AND EVENTS

179

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_installation_and_configuration_guide/

In the Admin Events Settings section, turn on the Save Events switch.

Admin Event Configuration

The Include Representation switch will include any JSON document that is sent through the admin
REST API. This allows you to view exactly what an admin has done, but can lead to a lot of information
stored in the database. The Clear admin events button allows you to wipe out the current
information stored.

To view the admin events go to the Admin Events tab.

Admin Events

Red Hat Single Sign-On 7.2 Server Administration Guide

180

If the Details column has a Representation box, you can click on that to view the JSON that was
sent with that operation.

Admin Representation

You can also filter for the events you are interested in by clicking the Filter button.

Admin Event Filter

CHAPTER 15. AUDITING AND EVENTS

181

Red Hat Single Sign-On 7.2 Server Administration Guide

182

CHAPTER 16. EXPORT AND IMPORT
Red Hat Single Sign-On has the ability to export and import the entire database. This can be especially
useful if you want to migrate your whole Red Hat Single Sign-On database from one environment to
another or migrate to a different database (for example from MySQL to Oracle). Export and import is
triggered at server boot time and its parameters are passed in via Java system properties. It is important
to note that because import and export happens at server startup, no other actions should be taken on
the server or the database while this happens.

You can export/import your database either to:

Directory on local filesystem

Single JSON file on your filesystem

When importing using the directory strategy, note that the files need to follow the naming convention
specified below. If you are importing files which were previously exported, the files already follow this
convention.

<REALM_NAME>-realm.json, such as "acme-roadrunner-affairs-realm.json" for the realm
named "acme-roadrunner-affairs"

<REALM_NAME>-users-<INDEX>.json, such as "acme-roadrunner-affairs-users-0.json" for the
first users file of the realm named "acme-roadrunner-affairs"

If you export to a directory, you can also specify the number of users that will be stored in each JSON
file.

NOTE

If you have bigger amount of users in your database (500 or more), it’s highly
recommended to export into directory rather than to single file. Exporting into single file
may lead to the very big file. Also the directory provider is using separate transaction for
each "page" (file with users), which leads to much better performance. Default count of
users per file (and transaction) is 50, which showed us best performance, but you have
possibility to override (See below). Exporting to single file is using one transaction per
whole export and one per whole import, which results in bad performance with large
amount of users.

To export into unencrypted directory you can use:

bin/standalone.sh -Dkeycloak.migration.action=export
-Dkeycloak.migration.provider=dir -Dkeycloak.migration.dir=<DIR TO EXPORT
TO>

And similarly for import just use -Dkeycloak.migration.action=import instead of export . To
export into single JSON file you can use:

bin/standalone.sh -Dkeycloak.migration.action=export
-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=<FILE
TO EXPORT TO>

Here’s an example of importing:

CHAPTER 16. EXPORT AND IMPORT

183

bin/standalone.sh -Dkeycloak.migration.action=import
-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=<FILE
TO IMPORT>
-Dkeycloak.migration.strategy=OVERWRITE_EXISTING

Other available options are:

-Dkeycloak.migration.realmName

This property is used if you want to export just one specified realm instead of all. If not specified, then
all realms will be exported.

-Dkeycloak.migration.usersExportStrategy

This property is used to specify where users are exported. Possible values are:

DIFFERENT_FILES - Users will be exported into different files according to the maximum
number of users per file. This is default value.

SKIP - Exporting of users will be skipped completely.

REALM_FILE - All users will be exported to same file with the realm settings. (The result will
be a file like "foo-realm.json" with both realm data and users.)

SAME_FILE - All users will be exported to same file but different from the realm file. (The
result will be a file like "foo-realm.json" with realm data and "foo-users.json" with users.)

-Dkeycloak.migration.usersPerFile

This property is used to specify the number of users per file (and also per DB transaction). It’s 50 by
default. It’s used only if usersExportStrategy is DIFFERENT_FILES

-Dkeycloak.migration.strategy

This property is used during import. It can be used to specify how to proceed if a realm with same
name already exists in the database where you are going to import data. Possible values are:

IGNORE_EXISTING - Ignore importing if a realm of this name already exists.

OVERWRITE_EXISTING - Remove existing realm and import it again with new data from the
JSON file. If you want to fully migrate one environment to another and ensure that the new
environment will contain the same data as the old one, you can specify this.

When importing realm files that weren’t exported before, the option keycloak.import can be used. If
more than one realm file needs to be imported, a comma separated list of file names can be specified.
This is more appropriate than the cases before, as this will happen only after the master realm has been
initialized. Examples:

-Dkeycloak.import=/tmp/realm1.json

-Dkeycloak.import=/tmp/realm1.json,/tmp/realm2.json

16.1. ADMIN CONSOLE EXPORT/IMPORT

Import of most resources can be performed from the admin console as well as export of most resources.
Export of users is not supported.

Red Hat Single Sign-On 7.2 Server Administration Guide

184

Note: Attributes containing secrets or private information will be masked in export file. Export files
obtained via Admin Console are thus not appropriate for backups or data transfer between servers. Only
boot-time exports are appropriate for that.

The files created during a "startup" export can also be used to import from the admin UI. This way, you
can export from one realm and import to another realm. Or, you can export from one server and import
to another. Note: The admin console export/import allows just one realm per file.

WARNING

The admin console import allows you to "overwrite" resources if you choose. Use
this feature with caution, especially on a production system. Export .json files from
Admin Console Export operation are generally not appropriate for data import since
they contain invalid values for secrets.

WARNING

The admin console export allows you to export clients, groups, and roles. If there is
a great number of any of these assets in your realm, the operation may take some
time to complete. During that time server may not be responsive to user requests.
Use this feature with caution, especially on a production system.

CHAPTER 16. EXPORT AND IMPORT

185

CHAPTER 17. USER ACCOUNT SERVICE
Red Hat Single Sign-On has a built-in User Account Service which every user has access to. This
service allows users to manage their account, change their credentials, update their profile, and view
their login sessions. The URL to this service is <server-root>/auth/realms/{realm-
name}/account.

Account Service

The initial page is the user’s profile, which is the Account left menu item. This is where they specify
basic data about themselves. This screen can be extended to allow the user to manage additional
attributes. See the Server Developer Guide for more details.

The Password left menu item allows the user to change their password.

Password Update

The Authenticator menu item allows the user to set up OTP if they desire. This will only show up if
OTP is a valid authentication mechanism for your realm. Users are given directions to install FreeOTP or
Google Authenticator on their mobile device to be their OTP generator. The QR code you see in the
screen shot can be scanned into the FreeOTP or Google Authenticator mobile application for nice and
easy setup.

OTP Authenticator

Red Hat Single Sign-On 7.2 Server Administration Guide

186

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/
https://freeotp.github.io/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2

The Federated Identity menu item allows the user to link their account with an identity broker (this
is usually used to link social provider accounts together). This will show the list of external identity
providers you have configured for your realm.

Federated Identity

The Sessions menu item allows the user to view and manage which devices are logged in and from
where. They can perform logout of these sessions from this screen too.

Sessions

CHAPTER 17. USER ACCOUNT SERVICE

187

The Applications menu item shows users which applications they have access to.

Applications

17.1. THEMEABLE

Like all UIs in Red Hat Single Sign-On, the User Account Service is completely themeable and
internationalizable. See the Server Developer Guide for more details.

Red Hat Single Sign-On 7.2 Server Administration Guide

188

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/server_developer_guide/

CHAPTER 18. THREAT MODEL MITIGATION
This chapter discusses possible security vulnerabilities any authentication server could have and how
Red Hat Single Sign-On mitigates those vulnerabilities. A good list of potential vulnerabilities and what
security implementations should do to mitigate them can be found in the OAuth 2.0 Threat Model
document put out by the IETF. Many of those vulnerabilities are discussed here.

18.1. HOST

Red Hat Single Sign-On uses the request URL for a number of things. For example, the URL sent in
password reset emails.

By default, the request URL is based on the Host header and there is no check to make sure this URL is
the valid and correct URL.

If you are not using a load balancer or proxy in front of Red Hat Single Sign-On that prevents invalid host
headers, you must explicitly configure what URLs should be accepted.

The following example will only permit requests to localhost.localdomain or localhost:

The changes that have been made from the default config is to add the attribute default-
host="ignore" and update the attribute alias. default-host="ignore" prevents unknown hosts
from being handled, while alias is used to list the accepted hosts.

Here is the equivalent configuration using CLI commands:

18.2. ADMIN ENDPOINTS AND CONSOLE

The Red Hat Single Sign-On administrative REST API and the web console are exposed by default on
the same port as non-admin usage. If you are exposing Red Hat Single Sign-On on the Internet, we
recommend not also exposing the admin endpoints on the Internet.

This can be achieve either directly in Red Hat Single Sign-On or with a proxy such as Apache or nginx.

For the proxy option please follow the documentation for the proxy. You need to control access to any
requests to /auth/admin.

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 <server name="default-server" default-host="ignore">
 ...
 <host name="default-host" alias="localhost.localdomain,
localhost">
 <location name="/" handler="welcome-content"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
 </server>
</subsystem>

/subsystem=undertow/server=default-server:write-attribute(name=default-
host,value=ignore)
/subsystem=undertow/server=default-server/host=default-host:write-
attribute(name=alias,value=[localhost.localdomain, localhost]

:reload

CHAPTER 18. THREAT MODEL MITIGATION

189

https://tools.ietf.org/html/rfc6819

To achieve this directly in Red Hat Single Sign-On there are a few options. This document covers two
options, IP restriction and separate ports.

18.2.1. IP Restriction

It is possible to restrict access to /auth/admin to only specific IP addresses.

The following example restricts access to /auth/admin to IP addresses in the range 10.0.0.1 to
10.0.0.255.

Equivalent configuration using CLI commands:

NOTE

For IP restriction if you are using a proxy it is important to configure it correctly to make
sure Red Hat Single Sign-On receives the client IP address and not the proxy IP address

18.2.2. Port Restriction

It is possible to expose /auth/admin to a different port that is not exposed on the Internet.

The following example exposes /auth/admin on port 8444 while not permitting access with the default
port 8443.

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 ...
 <server name="default-server">
 ...
 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="ipAccess"/>
 </host>
 </server>
 <filters>
 <expression-filter name="ipAccess" expression="path-
prefix('/auth/admin') -> ip-access-control(acl={'10.0.0.0/24 allow'})"/>
 </filters>
 ...
</subsystem>

/subsystem=undertow/configuration=filter/expression-
filter=ipAccess:add(,expression="path-prefix[/auth/admin] -> ip-access-
control(acl={'10.0.0.0/24 allow'})")
/subsystem=undertow/server=default-server/host=default-host/filter-
ref=ipAccess:add()

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 ...
 <server name="default-server">
 ...
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <https-listener name="https-admin" socket-binding="https-admin"
security-realm="ApplicationRealm" enable-http2="true"/>

Red Hat Single Sign-On 7.2 Server Administration Guide

190

Equivalent configuration using CLI commands:

18.2.3. Server version

There are scenarios where it is desirable to hide the Red Hat Single Sign-On version. To do so, create
Undertow filters redirecting all the requests to /auth/version to any page you want, which will then
prevent access to the details about the server. The following example prevents access to
/auth/version:

 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="portAccess"/>
 </host>
 </server>
 <filters>
 <expression-filter name="portAccess" expression="path-
prefix('/auth/admin') and not equals(%p, 8444) -> response-code(403)"/>
 </filters>
 ...
</subsystem>

...

<socket-binding-group name="standard-sockets" default-interface="public"
port-offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="https" port="${jboss.https.port:8443}"/>
 <socket-binding name="https-admin" port="${jboss.https.port:8444}"/>
 ...
</socket-binding-group>

/socket-binding-group=standard-sockets/socket-binding=https-
admin/:add(port=8444)

/subsystem=undertow/server=default-server/https-listener=https-
admin:add(socket-binding=https-admin, security-realm=ApplicationRealm,
enable-http2=true)

/subsystem=undertow/configuration=filter/expression-
filter=portAccess:add(,expression="path-prefix('/auth/admin') and not
equals(%p, 8444) -> response-code(403)")
/subsystem=undertow/server=default-server/host=default-host/filter-
ref=portAccess:add()

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 ...
 <server name="default-server">
 ...
 <http-listener name="default" socket-binding="http" redirect-
socket="https" enable-http2="true"/>
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost">
 ...
 <filter-ref name="hideVersion"/>

CHAPTER 18. THREAT MODEL MITIGATION

191

18.3. PASSWORD GUESS: BRUTE FORCE ATTACKS

A brute force attack happens when an attacker is trying to guess a user’s password. Red Hat Single
Sign-On has some limited brute force detection capabilities. If turned on, a user account will be
temporarily disabled if a threshold of login failures is reached. To enable this feature go to the Realm
Settings left menu item, click on the Security Defenses tab, then additional go to the Brute
Force Detection sub-tab.

Brute Force Detection

There are 2 different configurations for brute force detection; permanent lockout and temporary lockout.
Permanent lockout will disable a user’s account after an attack is detected; the account will be disabled
until an administrator renables it. Temporary lockout will disable a user’s account for a time period after
an attack is detected; the time period for which the account is disabled increases the longer the attack
continues.

Common Parameters

Max Login Failures

Maximum number of login failures permitted. Default value is 30.

Quick Login Check Milli Seconds

Minimum time required between login attempts. Default is 1000.

Minimum Quick Login Wait

 </host>
 </server>
 <filters>
 <expression-filter name="hideVersion" expression="path-
prefix('/auth/version') -> response-code(403)"/>
 </filters>
 ...
</subsystem>

Red Hat Single Sign-On 7.2 Server Administration Guide

192

Minimum amount of time the user will be temporarily disabled if logins attempts are quicker than
Quick Login Check Milli Seconds. Default is 1 minute.

Temporary Lockout Parameters

Wait Increment

Amount of time added to the time a user is temporarily disabled after each time Max Login Failures is
reached. Default is 1 minute.

Max Wait

The maximum amount of time for which a user will be temporarily disabled. Default is 15 minutes.

Failure Reset Time

Time after which the failure count will be reset; timer runs from the last failed login. Default is 12
hours.

Permanent Lockout Algorithm

1. On successful login

a. Reset count

2. On failed login

a. Increment count

b. If count greater than Max Login Failures

i. Permanently disable user

c. Else if time between this failure and the last failure is less than Quick Login Check Milli
Seconds

i. Temporarily disable user for Minimum Quick Login Wait

When a user is disabled they can not login until an administrator enables the user; enabling an account
resets count.

Temporary Lockout Algorithm

1. On successful login

a. Reset count

2. On failed login

a. If time between this failure and the last failure is greater than Failure Reset Time

i. Reset count

b. Increment count

c. Calculate wait using Wait Increment * (count / Max Login Failures). The division is an
integer division so will always be rounded down to a whole number

d. If wait equals 0 and time between this failure and the last failure is less than Quick Login
Check Milli Seconds then set wait to Minimum Quick Login Wait instead

CHAPTER 18. THREAT MODEL MITIGATION

193

i. Temporarily disable the user for the smaller of wait and Max Wait seconds

Login failures when a user is temporarily disabled do not increment count.

The downside of Red Hat Single Sign-On brute force detection is that the server becomes vulnerable to
denial of service attacks. An attacker can simply try to guess passwords for any accounts it knows and
these account will be disabled. Eventually we will expand this functionality to take client IP address into
account when deciding whether to block a user.

A better option might be a tool like Fail2Ban. You can point this service at the Red Hat Single Sign-On
server’s log file. Red Hat Single Sign-On logs every login failure and client IP address that had the
failure. Fail2Ban can be used to modify firewalls after it detects an attack to block connections from
specific IP addresses.

18.3.1. Password Policies

Another thing you should do to prevent password guess is to have a complex enough password policy to
ensure that users pick hard to guess passwords. See the Password Policies chapter for more details.

The best way to prevent password guessing though is to set up the server to use a one-time-password
(OTP).

18.4. CLICKJACKING

With clickjacking, a malicious site loads the target site in a transparent iFrame overlaid on top of a set of
dummy buttons that are carefully constructed to be placed directly under important buttons on the target
site. When a user clicks a visible button, they are actually clicking a button (such as a "login" button) on
the hidden page. An attacker can steal a user’s authentication credentials and access their resources.

By default, every response by Red Hat Single Sign-On sets some specific browser headers that can
prevent this from happening. Specifically, it sets X-FRAME_OPTIONS and Content-Security-Policy. You
should take a look at the definition of both of these headers as there is a lot of fine-grain browser access
you can control. In the admin console you can specify the values these headers will have. Go to the
Realm Settings left menu item and click the Security Defenses tab and make sure you are on the
Headers sub-tab.

By default, Red Hat Single Sign-On only sets up a same-origin policy for iframes.

Red Hat Single Sign-On 7.2 Server Administration Guide

194

http://www.fail2ban.org/wiki/index.php/Main_Page
https://tools.ietf.org/html/rfc7034
http://www.w3.org/TR/CSP/

18.5. SSL/HTTPS REQUIREMENT

If you do not use SSL/HTTPS for all communication between the Red Hat Single Sign-On auth server
and the clients it secures, you will be very vulnerable to man in the middle attacks. OAuth 2.0/OpenID
Connect uses access tokens for security. Without SSL/HTTPS, attackers can sniff your network and
obtain an access token. Once they have an access token they can do any operation that the token has
been given permission for.

Red Hat Single Sign-On has three modes for SSL/HTTPS. SSL can be hard to set up, so out of the box,
Red Hat Single Sign-On allows non-HTTPS communication over private IP addresses like localhost,
192.168.x.x, and other private IP addresses. In production, you should make sure SSL is enabled and
required across the board.

On the adapter/client side, Red Hat Single Sign-On allows you to turn off the SSL trust manager. The
trust manager ensures identity the client is talking to. It checks the DNS domain name against the
server’s certificate. In production you should make sure that each of your client adapters is configured to
use a truststore. Otherwise you are vulnerable to DNS man in the middle attacks.

18.6. CSRF ATTACKS

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP requests are transmitted from a
user that the web site trusts or has authenticated with(e.g. via HTTP redirects or HTML forms). Any site
that uses cookie based authentication is vulnerable to these types of attacks. These attacks are
mitigated by matching a state cookie against a posted form or query parameter.

The OAuth 2.0 login specification requires that a state cookie be used and matched against a transmitted
state parameter. Red Hat Single Sign-On fully implements this part of the specification so all logins are
protected.

The Red Hat Single Sign-On Admin Console is a pure JavaScript/HTML5 application that makes REST
calls to the backend Red Hat Single Sign-On admin REST API. These calls all require bearer token
authentication and are made via JavaScript Ajax calls. CSRF does not apply here. The admin REST API
can also be configured to validate the CORS origins as well.

The only part of Red Hat Single Sign-On that really falls into CSRF is the user account management
pages. To mitigate this Red Hat Single Sign-On sets a state cookie and also embeds the value of this
state cookie within hidden form fields or query parameters in action links. This query or form parameter
is checked against the state cookie to verify that the call was made by the user.

18.7. UNSPECIFIC REDIRECT URIS

For the Authorization Code Flow, if you register redirect URIs that are too general, then it would be
possible for a rogue client to impersonate a different client that has a broader scope of access. This
could happen for instance if two clients live under the same domain. So, it’s a good idea to make your
registered redirect URIs as specific as feasible.

18.8. COMPROMISED ACCESS AND REFRESH TOKENS

There are a few things you can do to mitigate access tokens and refresh tokens from being stolen. The
most important thing is to enforce SSL/HTTPS communication between Red Hat Single Sign-On and its
clients and applications. It might seem obvious, but since Red Hat Single Sign-On does not have SSL
enabled by default, an administrator might not realize that it is necessary.

Another thing you can do to mitigate leaked access tokens is to shorten their lifespans. You can specify
this within the timeouts page. Short lifespans (minutes) for access tokens for clients and applications to

CHAPTER 18. THREAT MODEL MITIGATION

195

refresh their access tokens after a short amount of time. If an admin detects a leak, they can logout all
user sessions to invalidate these refresh tokens or set up a revocation policy. Making sure refresh tokens
always stay private to the client and are never transmitted ever is very important as well.

If an access token or refresh token is compromised, the first thing you should do is go to the admin
console and push a not-before revocation policy to all applications. This will enforce that any tokens
issued prior to that date are now invalid. Pushing new not-before policy will also ensure that application
will be forced to download new public keys from Red Hat Single Sign-On, hence it is also useful for the
case, when you think that realm signing key was compromised. More info in the keys chapter.

You can also disable specific applications, clients, and users if you feel that any one of those entities is
completely compromised.

18.9. COMPROMISED AUTHORIZATION CODE

For the OIDC Auth Code Flow, it would be very hard for an attacker to compromise Red Hat Single Sign-
On authorization codes. Red Hat Single Sign-On generates a cryptographically strong random value for
its authorization codes so it would be very hard to guess an access token. An authorization code can
only be used once to obtain an access token. In the admin console you can specify how long an
authorization code is valid for on the timeouts page. This value should be really short, as short as a few
seconds and just long enough for the client to make the request to obtain a token from the code.

18.10. OPEN REDIRECTORS

An attacker could use the end-user authorization endpoint and the redirect URI parameter to abuse the
authorization server as an open redirector. An open redirector is an endpoint using a parameter to
automatically redirect a user agent to the location specified by the parameter value without any
validation. An attacker could utilize a user’s trust in an authorization server to launch a phishing attack.

Red Hat Single Sign-On requires that all registered applications and clients register at least one
redirection URI pattern. Any time a client asks Red Hat Single Sign-On to perform a redirect (on login or
logout for example), Red Hat Single Sign-On will check the redirect URI vs. the list of valid registered
URI patterns. It is important that clients and applications register as specific a URI pattern as possible to
mitigate open redirector attacks.

18.11. PASSWORD DATABASE COMPROMISED

Red Hat Single Sign-On does not store passwords in raw text. It stores a hash of them using the
PBKDF2 algorithm. It actually uses a default of 20,000 hashing iterations! This is the security
community’s recommended number of iterations. This can be a rather large performance hit on your
system as PBKDF2, by design, gobbles up a significant amount of CPU. It is up to you to decide how
serious you want to be to protect your password database.

18.12. LIMITING SCOPE

By default, each new client application has an unlimited scope. This means that every access token that
is created for that client will contain all the permissions the user has. If the client gets compromised and
the access token is leaked, then each system that the user has permission to access is now also
compromised. It is highly suggested that you limit the roles an access token is assigned by using the
Scope menu for each client.

18.13. SQL INJECTION ATTACKS

Red Hat Single Sign-On 7.2 Server Administration Guide

196

At this point in time, there is no knowledge of any SQL injection vulnerabilities in Red Hat Single Sign-
On.

CHAPTER 18. THREAT MODEL MITIGATION

197

CHAPTER 19. THE ADMIN CLI
In previous chapters, we described how to use the Red Hat Single Sign-On Admin Console to perform
administrative tasks. You can also perform those tasks from the command-line interface (CLI) by using
the Admin CLI command-line tool.

19.1. INSTALLING THE ADMIN CLI

The Admin CLI is packaged inside Red Hat Single Sign-On Server distribution. You can find execution
scripts inside the bin directory.

The Linux script is called kcadm.sh, and the script for Windows is called kcadm.bat.

You can add the Red Hat Single Sign-On server directory to your PATH to use the client from any
location on your file system.

For example, on:

Linux:

$ export PATH=$PATH:$KEYCLOAK_HOME/bin
$ kcadm.sh

Windows:

c:\> set PATH=%PATH%;%KEYCLOAK_HOME%\bin
c:\> kcadm

We assume the KEYCLOAK_HOME environment (env) variable is set to the path where you extracted the
Red Hat Single Sign-On Server distribution.

NOTE

To avoid repetition, the rest of this document only gives Windows examples in places
where the difference in the CLI is more than just in the kcadm command name.

19.2. USING THE ADMIN CLI

The Admin CLI works by making HTTP requests to Admin REST endpoints. Access to them is protected
and requires authentication.

NOTE

Consult the Admin REST API documentation for details about JSON attributes for specific
endpoints.

1. Start an authenticated session by providing credentials, that is, logging in. You are ready to
perform create, read, update, and delete (CRUD) operations.
For example, on

Linux:

$ kcadm.sh config credentials --server http://localhost:8080/auth

Red Hat Single Sign-On 7.2 Server Administration Guide

198

--realm demo --user admin --client admin
$ kcadm.sh create realms -s realm=demorealm -s enabled=true -o
$ C=$(kcadm.sh create clients -r demorealm -s clientId=my_client
-s 'redirectUris=["http://localhost:8980/myapp/*"]' -i)
$ kcadm.sh get clients/$CID/installation/providers/keycloak-oidc-
keycloak-json

Windows:

c:\> kcadm config credentials --server http://localhost:8080/auth
--realm demo --user admin --client admin
c:\> kcadm create realms -s realm=demorealm -s enabled=true -o
c:\> kcadm create clients -r demorealm -s clientId=my_client -s
"redirectUris=[\"http://localhost:8980/myapp/*\"]" -i >
clientid.txt
c:\> set /p CID=<clientid.txt
c:\> kcadm get clients/%CID%/installation/providers/keycloak-
oidc-keycloak-json

2. In a production environment, you must access Red Hat Single Sign-On with https: to avoid
exposing tokens to network sniffers. If a server’s certificate is not issued by one of the trusted
certificate authorities (CAs) that are included in Java’s default certificate truststore, prepare a
truststore.jks file and instruct the Admin CLI to use it.
For example, on:

Linux:

$ kcadm.sh config truststore --trustpass $PASSWORD
~/.keycloak/truststore.jks

Windows:

c:\> kcadm config truststore --trustpass %PASSWORD%
%HOMEPATH%\.keycloak\truststore.jks

19.3. AUTHENTICATING

When you log in with the Admin CLI, you specify a server endpoint URL and a realm, and then you
specify a user name. Another option is to specify only a clientId, which results in using a special "service
account." When you log in using a user name, you must use a password for the specified user. When
you log in using a clientId, you only need the client secret, not the user password. You could also use
Signed JWT instead of the client secret.

Make sure the account used for the session has the proper permissions to invoke Admin REST API
operations. For example, the realm-admin role of the realm-management client allows the user to
administer the realm within which the user is defined.

There are two primary mechanisms for authentication. One mechanism uses kcadm config
credentials to start an authenticated session.

$ kcadm.sh config credentials --server http://localhost:8080/auth --realm
master --user admin --password admin

CHAPTER 19. THE ADMIN CLI

199

This approach maintains an authenticated session between the kcadm command invocations by saving
the obtained access token and the associated refresh token. It may also maintain other secrets in a
private configuration file. See next chapter for more information on the configuration file.

The second approach only authenticates each command invocation for the duration of that invocation.
This approach increases the load on the server and the time spent with roundtrips obtaining tokens. The
benefit of this approach is not needing to save any tokens between invocations, which means nothing is
saved to disk. This mode is used when the --no-config argument is specified.

For example, when performing an operation, we specify all the information required for authentication.

$ kcadm.sh get realms --no-config --server http://localhost:8080/auth --
realm master --user admin --password admin

Run the kcadm.sh help command for more information on using the Admin CLI.

Run the kcadm.sh config credentials --help command for more information about starting an
authenticated session.

19.4. WORKING WITH ALTERNATIVE CONFIGURATIONS

By default, the Admin CLI automatically maintains a configuration file called [filename]kcadm.config
located under the user’s home directory. In Linux-based systems, the full path name is
[filename]$HOME/.keycloak/kcadm.config. On Windows, the full path name is
[filename]%HOMEPATH%\.keycloak\kcadm.config. You can use the --config option to point to a
different file or location so you can maintain multiple authenticated sessions in parallel.

NOTE

It is best to perform operations tied to a single configuration file from a single thread.

Make sure you do not make the configuration file visible to other users on the system. It contains access
tokens and secrets that should be kept private. By default, the ~/.keycloak directory and its content
are created automatically with proper access limits. If the directory already exists, its permissions are not
updated.

If your unique circumstances require you to avoid storing secrets inside a configuration file, you can do
so. It will be less convenient and you will have to make more token requests. To not store secrets, use
the --no-config option with all your commands and specify all the authentication information needed
by the config credentials command with each kcadm invocation.

19.5. BASIC OPERATIONS AND RESOURCE URIS

The Admin CLI allows you to generically perform CRUD operations against Admin REST API endpoints
with additional commands that simplify performing certain tasks.

The main usage pattern is listed below, where the create, get, update, and delete commands are
mapped to the HTTP verbs POST, GET, PUT, and DELETE, respectively.

$ kcadm.sh create ENDPOINT [ARGUMENTS]
$ kcadm.sh get ENDPOINT [ARGUMENTS]
$ kcadm.sh update ENDPOINT [ARGUMENTS]
$ kcadm.sh delete ENDPOINT [ARGUMENTS]

Red Hat Single Sign-On 7.2 Server Administration Guide

200

ENDPOINT is a target resource URI and can either be absolute (starting with http: or https:) or
relative, used to compose an absolute URL of the following format:

SERVER_URI/admin/realms/REALM/ENDPOINT

For example, if you authenticate against the server http://localhost:8080/auth and realm is master, then
using users as ENDPOINT results in the resource URL
http://localhost:8080/auth/admin/realms/master/users.

If you set ENDPOINT to clients, the effective resource URI would be
http://localhost:8080/auth/admin/realms/master/clients.

There is a realms endpoint that is treated slightly differently because it is the container for realms. It
resolves to:

SERVER_URI/admin/realms

There is also a serverinfo endpoint, which is treated the same way because it is independent of
realms.

When you authenticate as a user with realm-admin powers, you might need to perform commands on
multiple realms. In that case, specify the -r option to tell explicitly which realm the command should be
executed against. Instead of using REALM as specified via the --realm option of kcadm.sh config
credentials, the TARGET_REALM is used.

SERVER_URI/admin/realms/TARGET_REALM/ENDPOINT

For example,

$ kcadm.sh config credentials --server http://localhost:8080/auth --realm
master --user admin --password admin
$ kcadm.sh create users -s username=testuser -s enabled=true -r demorealm

In this example, you start a session authenticated as the admin user in the master realm. You then
perform a POST call against the resource URL
http://localhost:8080/auth/admin/realms/demorealm/users.

The create and update commands send a JSON body to the server by default. You can use -f
FILENAME to read a premade document from a file. When you can use -f - option, the message body
is read from standard input. You can also specify individual attributes and their values as seen in the
previous create users example. They are composed into a JSON body and sent to the server.

There are several ways to update a resource using the update command. You can first determine the
current state of a resource and save it to a file, and then edit that file and send it to the server for
updating.

For example:

$ kcadm.sh get realms/demorealm > demorealm.json
$ vi demorealm.json
$ kcadm.sh update realms/demorealm -f demorealm.json

This method updates the resource on the server with all the attributes in the sent JSON document.

CHAPTER 19. THE ADMIN CLI

201

http://localhost:8080/auth
http://localhost:8080/auth/admin/realms/master/users
http://localhost:8080/auth/admin/realms/master/clients
http://localhost:8080/auth/admin/realms/demorealm/users

Another option is to perform an on-the-fly update using the -s, --set options to set new values.

For example:

$ kcadm.sh update realms/demorealm -s enabled=false

That method only updates the enabled attribute to false.

By default, the update command first performs a get and then merges the new attribute values with
existing values. This is the preferred behavior. In some cases, the endpoint may support the PUT
command but not the GET command. You can use the -n option to perform a "no-merge" update, which
performs a PUT command without first running a GET command.

19.6. REALM OPERATIONS

Creating a new realm
Use the create command on the realms endpoint to create a new enabled realm, and set the
attributes to realm and enabled.

$ kcadm.sh create realms -s realm=demorealm -s enabled=true

A realm is not enabled by default. By enabling it, you can use a realm immediately for authentication.

A description for a new object can also be in a JSON format.

$ kcadm.sh create realms -f demorealm.json

You can send a JSON document with realm attributes directly from a file or piped to a standard input.

For example, on:

Linux:

$ kcadm.sh create realms -f - << EOF
{ "realm": "demorealm", "enabled": true }
EOF

Windows:

c:\> echo { "realm": "demorealm", "enabled": true } | kcadm create realms
-f -

Listing existing realms
The following command returns a list of all realms.

$ kcadm.sh get realms

NOTE

A list of realms is additionally filtered on the server to return only realms a user can see.

Red Hat Single Sign-On 7.2 Server Administration Guide

202

Returning the entire realm description often provides too much information. Most users are interested
only in a subset of attributes, such as realm name and whether the realm is enabled. You can specify
which attributes to return by using the --fields option.

$ kcadm.sh get realms --fields realm,enabled

You can also display the result as comma separated values.

$ kcadm.sh get realms --fields realm --format csv --noquotes

Getting a specific realm
You append a realm name to a collection URI to get an individual realm.

$ kcadm.sh get realms/master

Updating a realm

1. Use the -s option to set new values for the attributes when you want to change only some of the
realm’s attributes.
For example:

$ kcadm.sh update realms/demorealm -s enabled=false

2. If you want to set all writable attributes with new values, run a get command, edit the current
values in the JSON file, and resubmit.
For example:

$ kcadm.sh get realms/demorealm > demorealm.json
$ vi demorealm.json
$ kcadm.sh update realms/demorealm -f demorealm.json

Deleting a realm
Run the following command to delete a realm.

$ kcadm.sh delete realms/demorealm

Turning on all login page options for the realm
Set the attributes controlling specific capabilities to true.

For example:

$ kcadm.sh update realms/demorealm -s registrationAllowed=true -s
registrationEmailAsUsername=true -s rememberMe=true -s verifyEmail=true -s
resetPasswordAllowed=true -s editUsernameAllowed=true

Listing the realm keys
Use the get operation on the keys endpoint of the target realm.

$ kcadm.sh get keys -r demorealm

Generating new realm keys

1. Get the ID of the target realm before adding a new RSA-generated key pair.

CHAPTER 19. THE ADMIN CLI

203

1. Get the ID of the target realm before adding a new RSA-generated key pair.
For example:

$ kcadm.sh get realms/demorealm --fields id --format csv --noquotes

2. Add a new key provider with a higher priority than the existing providers as revealed by
kcadm.sh get keys -r demorealm.
For example, on:

Linux:

$ kcadm.sh create components -r demorealm -s name=rsa-generated -
s providerId=rsa-generated -s
providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-
d149-41d7-8359-6aa527fca0b0 -s 'config.priority=["101"]' -s
'config.enabled=["true"]' -s 'config.active=["true"]' -s
'config.keySize=["2048"]'

Windows:

c:\> kcadm create components -r demorealm -s name=rsa-generated -
s providerId=rsa-generated -s
providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-
d149-41d7-8359-6aa527fca0b0 -s "config.priority=[\"101\"]" -s
"config.enabled=[\"true\"]" -s "config.active=[\"true\"]" -s
"config.keySize=[\"2048\"]"

3. Set the parentId attribute to the value of the target realm’s ID.
The newly added key should now become the active key as revealed by kcadm.sh get keys
-r demorealm.

Adding new realm keys from a Java Key Store file

1. Add a new key provider to add a new key pair already prepared as a JKS file on the server.
For example, on:

Linux:

$ kcadm.sh create components -r demorealm -s name=java-keystore -
s providerId=java-keystore -s
providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-
d149-41d7-8359-6aa527fca0b0 -s 'config.priority=["101"]' -s
'config.enabled=["true"]' -s 'config.active=["true"]' -s
'config.keystore=["/opt/keycloak/keystore.jks"]' -s
'config.keystorePassword=["secret"]' -s 'config.keyPassword=
["secret"]' -s 'config.alias=["localhost"]'

Windows:

c:\> kcadm create components -r demorealm -s name=java-keystore -
s providerId=java-keystore -s
providerType=org.keycloak.keys.KeyProvider -s parentId=959844c1-
d149-41d7-8359-6aa527fca0b0 -s "config.priority=[\"101\"]" -s
"config.enabled=[\"true\"]" -s "config.active=[\"true\"]" -s

Red Hat Single Sign-On 7.2 Server Administration Guide

204

"config.keystore=[\"/opt/keycloak/keystore.jks\"]" -s
"config.keystorePassword=[\"secret\"]" -s "config.keyPassword=
[\"secret\"]" -s "config.alias=[\"localhost\"]"

2. Make sure to change the attribute values for keystore, keystorePassword, keyPassword,
and alias to match your specific keystore.

3. Set the parentId attribute to the value of the target realm’s ID.

Making the key passive or disabling the key

1. Identify the key you want to make passive

$ kcadm.sh get keys -r demorealm

2. Use the key’s providerId attribute to construct an endpoint URI, such as
components/PROVIDER_ID.

3. Perform an update.
For example, on:

Linux:

$ kcadm.sh update components/PROVIDER_ID -r demorealm -s
'config.active=["false"]'

Windows:

c:\> kcadm update components/PROVIDER_ID -r demorealm -s
"config.active=[\"false\"]"

You can update other key attributes.

4. Set a new enabled value to disable the key, for example, config.enabled=["false"].

5. Set a new priority value to change the key’s priority, for example, config.priority=
["110"].

Deleting an old key

1. Make sure the key you are deleting has been passive and disabled to prevent any existing
tokens held by applications and users from abruptly failing to work.

2. Identify the key you want to make passive.

$ kcadm.sh get keys -r demorealm

3. Use the providerId of that key to perform a delete.

$ kcadm.sh delete components/PROVIDER_ID -r demorealm

Configuring event logging for a realm
Use the update command on the events/config endpoint.

CHAPTER 19. THE ADMIN CLI

205

The eventsListeners attribute contains a list of EventListenerProviderFactory IDs that specify all
event listeners receiving events. Separately, there are attributes that control a built-in event storage,
which allows querying past events via the Admin REST API. There is separate control over logging of
service calls (eventsEnabled) and auditing events triggered during Admin Console or Admin REST
API (adminEventsEnabled). You may want to set up expiry of old events so that your database does
not fill up; eventsExpiration is set to time-to-live expressed in seconds.

Here is an example of setting up a built-in event listener that receives all the events and logs them
through jboss-logging. (Using a logger called org.keycloak.events, error events are logged as
WARN, and others are logged as DEBUG.)

For example, on:

Linux:

$ kcadm.sh update events/config -r demorealm -s 'eventsListeners=["jboss-
logging"]'

Windows:

c:\> kcadm update events/config -r demorealm -s "eventsListeners=[\"jboss-
logging\"]"

Here is an example of turning on storage of all available ERROR events—not including auditing events—
for 2 days so they can be retrieved via Admin REST.

For example, on:

Linux:

$ kcadm.sh update events/config -r demorealm -s eventsEnabled=true -s
'enabledEventTypes=
["LOGIN_ERROR","REGISTER_ERROR","LOGOUT_ERROR","CODE_TO_TOKEN_ERROR","CLIE
NT_LOGIN_ERROR","FEDERATED_IDENTITY_LINK_ERROR","REMOVE_FEDERATED_IDENTITY
_ERROR","UPDATE_EMAIL_ERROR","UPDATE_PROFILE_ERROR","UPDATE_PASSWORD_ERROR
","UPDATE_TOTP_ERROR","VERIFY_EMAIL_ERROR","REMOVE_TOTP_ERROR","SEND_VERIF
Y_EMAIL_ERROR","SEND_RESET_PASSWORD_ERROR","SEND_IDENTITY_PROVIDER_LINK_ER
ROR","RESET_PASSWORD_ERROR","IDENTITY_PROVIDER_FIRST_LOGIN_ERROR","IDENTIT
Y_PROVIDER_POST_LOGIN_ERROR","CUSTOM_REQUIRED_ACTION_ERROR","EXECUTE_ACTIO
NS_ERROR","CLIENT_REGISTER_ERROR","CLIENT_UPDATE_ERROR","CLIENT_DELETE_ERR
OR"]' -s eventsExpiration=172800

Windows:

c:\> kcadm update events/config -r demorealm -s eventsEnabled=true -s
"enabledEventTypes=
[\"LOGIN_ERROR\",\"REGISTER_ERROR\",\"LOGOUT_ERROR\",\"CODE_TO_TOKEN_ERROR
\",\"CLIENT_LOGIN_ERROR\",\"FEDERATED_IDENTITY_LINK_ERROR\",\"REMOVE_FEDER
ATED_IDENTITY_ERROR\",\"UPDATE_EMAIL_ERROR\",\"UPDATE_PROFILE_ERROR\",\"UP
DATE_PASSWORD_ERROR\",\"UPDATE_TOTP_ERROR\",\"VERIFY_EMAIL_ERROR\",\"REMOV
E_TOTP_ERROR\",\"SEND_VERIFY_EMAIL_ERROR\",\"SEND_RESET_PASSWORD_ERROR\",\
"SEND_IDENTITY_PROVIDER_LINK_ERROR\",\"RESET_PASSWORD_ERROR\",\"IDENTITY_P
ROVIDER_FIRST_LOGIN_ERROR\",\"IDENTITY_PROVIDER_POST_LOGIN_ERROR\",\"CUSTO

Red Hat Single Sign-On 7.2 Server Administration Guide

206

M_REQUIRED_ACTION_ERROR\",\"EXECUTE_ACTIONS_ERROR\",\"CLIENT_REGISTER_ERRO
R\",\"CLIENT_UPDATE_ERROR\",\"CLIENT_DELETE_ERROR\"]" -s
eventsExpiration=172800

Here is an example of how to reset stored event types to all available event types; setting to empty list
is the same as enumerating all.

$ kcadm.sh update events/config -r demorealm -s enabledEventTypes=[]

Here is an example of how to enable storage of auditing events.

$ kcadm.sh update events/config -r demorealm -s adminEventsEnabled=true -s
adminEventsDetailsEnabled=true

Here is an example of how to get the last 100 events; they are ordered from newest to oldest.

$ kcadm.sh get events --offset 0 --limit 100

Here is an example of how to delete all saved events.

$ kcadm delete events

Flushing the caches

1. Use the create command and one of the following endpoints: clear-realm-cache, clear-
user-cache, or clear-keys-cache.

2. Set realm to the same value as the target realm.
For example:

$ kcadm.sh create clear-realm-cache -r demorealm -s realm=demorealm
$ kcadm.sh create clear-user-cache -r demorealm -s realm=demorealm
$ kcadm.sh create clear-keys-cache -r demorealm -s realm=demorealm

19.7. ROLE OPERATIONS

Creating a realm role
Use the roles endpoint to create a realm role.

$ kcadm.sh create roles -r demorealm -s name=user -s 'description=Regular
user with limited set of permissions'

Creating a client role

1. Identify the client first and then use the get command to list available clients when creating a
client role.

$ kcadm.sh get clients -r demorealm --fields id,clientId

2. Create a new role by using the clientId attribute to construct an endpoint URI, such as
clients/ID/roles.
For example:

CHAPTER 19. THE ADMIN CLI

207

$ kcadm.sh create clients/a95b6af3-0bdc-4878-ae2e-6d61a4eca9a0/roles
-r demorealm -s name=editor -s 'description=Editor can edit, and
publish any article'

Listing realm roles
Use the get command on the roles endpoint to list existing realm roles.

$ kcadm.sh get roles -r demorealm

You can also use the get-roles command.

$ kcadm.sh get-roles -r demorealm

Listing client roles
There is a dedicated get-roles command to simplify listing realm and client roles. It is an extension of
the get command and behaves the same with additional semantics for listing roles.

Use the get-roles command, passing it either the clientId attribute (via the --cclientid option) or
id (via the --cid option) to identify the client to list client roles.

For example:

$ kcadm.sh get-roles -r demorealm --cclientid realm-management

Getting a specific realm role
Use the get command and the role name to construct an endpoint URI for a specific realm role:
roles/ROLE_NAME, where user is the name of the existing role.

For example:

$ kcadm.sh get roles/user -r demorealm

You can also use the special get-roles command, passing it a role name (via the --rolename
option) or ID (via the --roleid option).

For example:

$ kcadm.sh get-roles -r demorealm --rolename user

Getting a specific client role
Use a dedicated get-roles command, passing it either the clientId attribute (via the --cclientid
option) or ID (via the --cid option) to identify the client, and passing it either the role name (via the --
rolename option) or ID (via the --roleid) to identify a specific client role.

For example:

$ kcadm.sh get-roles -r demorealm --cclientid realm-management --rolename
manage-clients

Updating a realm role
Use the update command with the same endpoint URI that you used to get a specific realm role.

Red Hat Single Sign-On 7.2 Server Administration Guide

208

For example:

$ kcadm.sh update roles/user -r demorealm -s 'description=Role
representing a regular user'

Updating a client role
Use the update command with the same endpoint URI that you used to get a specific client role.

For example:

$ kcadm.sh update clients/a95b6af3-0bdc-4878-ae2e-
6d61a4eca9a0/roles/editor -r demorealm -s 'description=User that can edit,
and publish articles'

Deleting a realm role
Use the delete command with the same endpoint URI that you used to get a specific realm role.

For example:

$ kcadm.sh delete roles/user -r demorealm

Deleting a client role
Use the delete command with the same endpoint URI that you used to get a specific client role.

For example:

$ kcadm.sh delete clients/a95b6af3-0bdc-4878-ae2e-
6d61a4eca9a0/roles/editor -r demorealm

Listing assigned, available, and effective realm roles for a composite role
Use a dedicated get-roles command to list assigned, available, and effective realm roles for a
composite role.

1. To list assigned realm roles for the composite role, you can specify the target composite role by
either name (via the --rname option) or ID (via the --rid option).
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --effective

3. Use the --available option to list realm roles that can still be added to the composite role.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --available

Listing assigned, available, and effective client roles for a composite role
Use a dedicated get-roles command to list assigned, available, and effective client roles for a
composite role.

CHAPTER 19. THE ADMIN CLI

209

1. To list assigned client roles for the composite role, you can specify the target composite role by
either name (via the --rname option) or ID (via the --rid option) and client by either the
clientId attribute (via the --cclientid option) or ID (via the --cid option).
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid
realm-management

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid
realm-management --effective

3. Use the --available option to list realm roles that can still be added to the target composite
role.
For example:

$ kcadm.sh get-roles -r demorealm --rname testrole --cclientid
realm-management --available

Adding realm roles to a composite role
There is a dedicated add-roles command that can be used for adding realm roles and client roles.

The following example adds the user role to the composite role testrole.

$ kcadm.sh add-roles --rname testrole --rolename user -r demorealm

Removing realm roles from a composite role
There is a dedicated remove-roles command that can be used to remove realm roles and client roles.

The following example removes the user role from the target composite role testrole.

$ kcadm.sh remove-roles --rname testrole --rolename user -r demorealm

Adding client roles to a realm role
Use a dedicated add-roles command that can be used for adding realm roles and client roles.

The following example adds the roles defined on the client realm-management - create-client role
and the view-users role to the testrole composite role.

$ kcadm.sh add-roles -r demorealm --rname testrole --cclientid realm-
management --rolename create-client --rolename view-users

Adding client roles to a client role

1. Determine the ID of the composite client role by using the get-roles command.
For example:

$ kcadm.sh get-roles -r demorealm --cclientid test-client --rolename
operations

Red Hat Single Sign-On 7.2 Server Administration Guide

210

2. Assume that there is a client with a clientId attribute of test-client, a client role called
support, and another client role called operations, which becomes a composite role, that
has an ID of "fc400897-ef6a-4e8c-872b-1581b7fa8a71".

3. Use the following example to add another role to the composite role.

$ kcadm.sh add-roles -r demorealm --cclientid test-client --rid
fc400897-ef6a-4e8c-872b-1581b7fa8a71 --rolename support

4. List the roles of a composite role by using the get-roles --all command.
For example:

$ kcadm.sh get-roles --rid fc400897-ef6a-4e8c-872b-1581b7fa8a71 --
all

Removing client roles from a composite role
Use a dedicated remove-roles command to remove client roles from a composite role.

Use the following example to remove two roles defined on the client realm management - create-
client role and the view-users role from the testrole composite role.

$ kcadm.sh remove-roles -r demorealm --rname testrole --cclientid realm-
management --rolename create-client --rolename view-users

19.8. CLIENT OPERATIONS

Creating a client

1. Run the create command on a clients endpoint to create a new client.
For example:

$ kcadm.sh create clients -r demorealm -s clientId=myapp -s
enabled=true

2. Specify a secret if you want to set a secret for adapters to authenticate.
For example:

$ kcadm.sh create clients -r demorealm -s clientId=myapp -s
enabled=true -s clientAuthenticatorType=client-secret -s
secret=d0b8122f-8dfb-46b7-b68a-f5cc4e25d000

Listing clients
Use the get command on the clients endpoint to list clients.

For example:

$ kcadm.sh get clients -r demorealm --fields id,clientId

This example filters the output to list only the id and clientId attributes.

Getting a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as clients/ID.

CHAPTER 19. THE ADMIN CLI

211

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r demorealm

Getting the current secret for a specific client
Use a client’s ID to construct an endpoint URI, such as clients/ID/client-secret.

For example:

$ kcadm.sh get clients/$CID/client-secret

Getting an adapter configuration file (keycloak.json) for a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/keycloak-oidc-keycloak-json.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-
410b76b3f4a3/installation/providers/keycloak-oidc-keycloak-json -r
demorealm

Getting a Wildfly subsystem adapter configuration for a specific client
Use a client’s ID to construct an endpoint URI that targets a specific client, such as
clients/ID/installation/providers/keycloak-oidc-jboss-subsystem.

For example:

$ kcadm.sh get clients/c7b8547f-e748-4333-95d0-
410b76b3f4a3/installation/providers/keycloak-oidc-jboss-subsystem -r
demorealm

Updating a client
Use the update command with the same endpoint URI that you used to get a specific client.

For example, on:

Linux:

$ kcadm.sh update clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r
demorealm -s enabled=false -s publicClient=true -s 'redirectUris=
["http://localhost:8080/myapp/*"]' -s baseUrl=http://localhost:8080/myapp
-s adminUrl=http://localhost:8080/myapp

Windows:

c:\> kcadm update clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r
demorealm -s enabled=false -s publicClient=true -s "redirectUris=
[\"http://localhost:8080/myapp/*\"]" -s
baseUrl=http://localhost:8080/myapp -s
adminUrl=http://localhost:8080/myapp

Deleting a client
Use the delete command with the same endpoint URI that you used to get a specific client.

Red Hat Single Sign-On 7.2 Server Administration Guide

212

For example:

$ kcadm.sh delete clients/c7b8547f-e748-4333-95d0-410b76b3f4a3 -r
demorealm

19.9. USER OPERATIONS

Creating a user
Run the create command on the users endpoint to create a new user.

For example:

$ kcadm.sh create users -r demorealm -s username=testuser -s enabled=true

Listing users
Use the users endpoint to list users. The target user will have to change the password the next time
they log in.

For example:

$ kcadm.sh get users -r demorealm --offset 0 --limit 1000

You can filter users by username, firstName, lastName, or email.

For example:

$ kcadm.sh get users -r demorealm -q email=google.com
$ kcadm.sh get users -r demorealm -q username=testuser

NOTE

Filtering does not use exact matching. For example, the above example would match the
value of the username attribute against the *testuser* pattern.

You can also filter across multiple attributes by specifying multiple -q options, which return only users
that match the condition for all the attributes.

Getting a specific user
Use a user’s ID to compose an endpoint URI, such as users/USER_ID.

For example:

$ kcadm.sh get users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm

Updating a user
Use the update command with the same endpoint URI that you used to get a specific user.

For example, on:

Linux:

CHAPTER 19. THE ADMIN CLI

213

$ kcadm.sh update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm
-s 'requiredActions=
["VERIFY_EMAIL","UPDATE_PROFILE","CONFIGURE_TOTP","UPDATE_PASSWORD"]'

Windows:

c:\> kcadm update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm
-s "requiredActions=
[\"VERIFY_EMAIL\",\"UPDATE_PROFILE\",\"CONFIGURE_TOTP\",\"UPDATE_PASSWORD\
"]"

Deleting a user
Use the delete command with the same endpoint URI that you used to get a specific user.

For example:

$ kcadm.sh delete users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2 -r demorealm

Resetting a user’s password
Use the dedicated set-password command to reset a user’s password.

For example:

$ kcadm.sh set-password -r demorealm --username testuser --new-password
NEWPASSWORD --temporary

That command sets a temporary password for the user. The target user will have to change the password
the next time they log in.

You can use --userid if you want to specify the user by using the id attribute.

You can achieve the same result using the update command on an endpoint constructed from the one
you used to get a specific user, such as users/USER_ID/reset-password.

For example:

$ kcadm.sh update users/0ba7a3fd-6fd8-48cd-a60b-2e8fd82d56e2/reset-
password -r demorealm -s type=password -s value=NEWPASSWORD -s
temporary=true -n

The last parameter (-n) ensures that only the PUT command is performed without a prior GET command.
It is necessary in this instance because the reset-password endpoint does not support GET.

Listing assigned, available, and effective realm roles for a user
You can use a dedicated get-roles command to list assigned, available, and effective realm roles for
a user.

1. Specify the target user by either user name or ID to list assigned realm roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser

1. Use the additional --effective option to list effective realm roles.

Red Hat Single Sign-On 7.2 Server Administration Guide

214

For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --effective

2. Use the --available option to list realm roles that can still be added to the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --available

Listing assigned, available, and effective client roles for a user
Use a dedicated get-roles command to list assigned, available, and effective client roles for a user.

1. Specify the target user by either a user name (via the --uusername option) or an ID (via the --
uid option) and client by either a clientId attribute (via the --cclientid option) or an ID (via
the --cid option) to list assigned client roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid
realm-management

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid
realm-management --effective

3. Use the --available option to list realm roles that can still be added to the user.
For example:

$ kcadm.sh get-roles -r demorealm --uusername testuser --cclientid
realm-management --available

Adding realm roles to a user
Use a dedicated add-roles command to add realm roles to a user.

Use the following example to add the user role to user testuser.

$ kcadm.sh add-roles --username testuser --rolename user -r demorealm

Removing realm roles from a user
Use a dedicated remove-roles command to remove realm roles from a user.

Use the following example to remove the user role from the user testuser.

$ kcadm.sh remove-roles --username testuser --rolename user -r demorealm

Adding client roles to a user
Use a dedicated add-roles command to add client roles to a user.

Use the following example to add two roles defined on the client realm management - create-
client role and the view-users role to the user testuser.

CHAPTER 19. THE ADMIN CLI

215

$ kcadm.sh add-roles -r demorealm --uusername testuser --cclientid realm-
management --rolename create-client --rolename view-users

Removing client roles from a user
Use a dedicated remove-roles command to remove client roles from a user.

Use the following example to remove two roles defined on the realm management client.

$ kcadm.sh remove-roles -r demorealm --uusername testuser --cclientid
realm-management --rolename create-client --rolename view-users

Listing a user’s sessions

1. Identify the user’s ID, and then use it to compose an endpoint URI, such as
users/ID/sessions.

2. Use the get command to retrieve a list of the user’s sessions.
For example:

$kcadm get users/6da5ab89-3397-4205-afaa-e201ff638f9e/sessions

Logging out a user from a specific session

1. Determine the session’s ID as described above.

2. Use the session’s ID to compose an endpoint URI, such as sessions/ID.

3. Use the delete command to invalidate the session.
For example:

$ kcadm.sh delete sessions/d0eaa7cc-8c5d-489d-811a-69d3c4ec84d1

Logging out a user from all sessions
You need a user’s ID to construct an endpoint URI, such as users/ID/logout.

Use the create command to perform POST on that endpoint URI.

For example:

$ kcadm.sh create users/6da5ab89-3397-4205-afaa-e201ff638f9e/logout -r
demorealm -s realm=demorealm -s user=6da5ab89-3397-4205-afaa-e201ff638f9e

19.10. GROUP OPERATIONS

Creating a group
Use the create command on the groups endpoint to create a new group.

For example:

$ kcadm.sh create groups -r demorealm -s name=Group

Listing groups

Red Hat Single Sign-On 7.2 Server Administration Guide

216

Use the get command on the groups endpoint to list groups.

For example:

$ kcadm.sh get groups -r demorealm

Getting a specific group
Use the group’s ID to construct an endpoint URI, such as groups/GROUP_ID.

For example:

$ kcadm.sh get groups/51204821-0580-46db-8f2d-27106c6b5ded -r demorealm

Updating a group
Use the update command with the same endpoint URI that you used to get a specific group.

For example:

$ kcadm.sh update groups/51204821-0580-46db-8f2d-27106c6b5ded -s
'attributes.email=["group@example.com"]' -r demorealm

Deleting a group
Use the delete command with the same endpoint URI that you used to get a specific group.

For example:

$ kcadm.sh delete groups/51204821-0580-46db-8f2d-27106c6b5ded -r demorealm

Creating a subgroup
Find the ID of the parent group by listing groups, and then use that ID to construct an endpoint URI, such
as groups/GROUP_ID/children.

For example:

$ kcadm.sh create groups/51204821-0580-46db-8f2d-27106c6b5ded/children -r
demorealm -s name=SubGroup

Moving a group under another group

1. Find the ID of an existing parent group and of an existing child group.

2. Use the parent group’s ID to construct an endpoint URI, such as
groups/PARENT_GROUP_ID/children.

3. Run the create command on this endpoint and pass the child group’s ID as a JSON body.

For example:

$ kcadm.sh create groups/51204821-0580-46db-8f2d-27106c6b5ded/children -r
demorealm -s id=08d410c6-d585-4059-bb07-54dcb92c5094

Get groups for a specific user

CHAPTER 19. THE ADMIN CLI

217

Use a user’s ID to determine a user’s membership in groups to compose an endpoint URI, such as
users/USER_ID/groups.

For example:

$ kcadm.sh get users/b544f379-5fc4-49e5-8a8d-5cfb71f46f53/groups -r
demorealm

Adding a user to a group
Use the update command with an endpoint URI composed from user’s ID and a group’s ID, such as
users/USER_ID/groups/GROUP_ID, to add a user to a group.

For example:

$ kcadm.sh update users/b544f379-5fc4-49e5-8a8d-
5cfb71f46f53/groups/ce01117a-7426-4670-a29a-5c118056fe20 -r demorealm -s
realm=demorealm -s userId=b544f379-5fc4-49e5-8a8d-5cfb71f46f53 -s
groupId=ce01117a-7426-4670-a29a-5c118056fe20 -n

Removing a user from a group
Use the delete command on the same endpoint URI as used for adding a user to a group, such as
users/USER_ID/groups/GROUP_ID, to remove a user from a group.

For example:

$ kcadm.sh delete users/b544f379-5fc4-49e5-8a8d-
5cfb71f46f53/groups/ce01117a-7426-4670-a29a-5c118056fe20 -r demorealm

Listing assigned, available, and effective realm roles for a group
Use a dedicated get-roles command to list assigned, available, and effective realm roles for a group.

1. Specify the target group by name (via the --gname option), path (via the [command] --gpath
option), or ID (via the --gid option) to list assigned realm roles for the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --effective

3. Use the --available option to list realm roles that can still be added to the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --available

Listing assigned, available, and effective client roles for a group
Use a dedicated get-roles command to list assigned, available, and effective client roles for a group.

Red Hat Single Sign-On 7.2 Server Administration Guide

218

1. Specify the target group by either name (via the --gname option) or ID (via the --gid option),
and client by either the clientId attribute (via the [command] --cclientid option) or ID (via the
--id option) to list assigned client roles for the user.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-
management

2. Use the additional --effective option to list effective realm roles.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-
management --effective

3. Use the --available option to list realm roles that can still be added to the group.
For example:

$ kcadm.sh get-roles -r demorealm --gname Group --cclientid realm-
management --available

19.11. IDENTITY PROVIDER OPERATIONS

Listing available identity providers
Use the serverinfo endpoint to list available identity providers.

For example:

$ kcadm.sh get serverinfo -r demorealm --fields 'identityProviders(*)'

NOTE

The serverinfo endpoint is handled similarly to the realms endpoint in that it is not
resolved relative to a target realm because it exists outside any specific realm.

Listing configured identity providers
Use the identity-provider/instances endpoint.

For example:

$ kcadm.sh get identity-provider/instances -r demorealm --fields
alias,providerId,enabled

Getting a specific configured identity provider
Use the alias attribute of the identity provider to construct an endpoint URI, such as identity-
provider/instances/ALIAS, to get a specific identity provider.

For example:

$ kcadm.sh get identity-provider/instances/facebook -r demorealm

Removing a specific configured identity provider

CHAPTER 19. THE ADMIN CLI

219

Use the delete command with the same endpoint URI that you used to get a specific configured
identity provider to remove a specific configured identity provider.

For example:

$ kcadm.sh delete identity-provider/instances/facebook -r demorealm

Configuring a Keycloak OpenID Connect identity provider

1. Use keycloak-oidc as the providerId when creating a new identity provider instance.

2. Provide the config attributes: authorizationUrl, tokenUrl, clientId, and
clientSecret.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=keycloak-oidc -s providerId=keycloak-oidc -s enabled=true -s
'config.useJwksUrl="true"' -s
config.authorizationUrl=http://localhost:8180/auth/realms/demorealm/
protocol/openid-connect/auth -s
config.tokenUrl=http://localhost:8180/auth/realms/demorealm/protocol
/openid-connect/token -s config.clientId=demo-oidc-provider -s
config.clientSecret=secret

Configuring an OpenID Connect identity provider
Configure the generic OpenID Connect provider the same way you configure the Keycloak OpenID
Connect provider, except that you set the providerId attribute value to oidc.

Configuring a SAML 2 identity provider

1. Use saml as the providerId.

2. Provide the config attributes: singleSignOnServiceUrl, nameIDPolicyFormat, and
signatureAlgorithm.

For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s alias=saml -
s providerId=saml -s enabled=true -s 'config.useJwksUrl="true"' -s
config.singleSignOnServiceUrl=http://localhost:8180/auth/realms/saml-
broker-realm/protocol/saml -s
config.nameIDPolicyFormat=urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent -s config.signatureAlgorithm=RSA_SHA256

Configuring a Facebook identity provider

1. Use facebook as the providerId.

2. Provide the config attributes: clientId and clientSecret. You can find these attributes in
the Facebook Developers application configuration page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=facebook -s providerId=facebook -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=FACEBOOK_CLIENT_ID -s

Red Hat Single Sign-On 7.2 Server Administration Guide

220

config.clientSecret=FACEBOOK_CLIENT_SECRET

Configuring a Google identity provider

1. Use google as the providerId.

2. Provide the config attributes: clientId and clientSecret. You can find these attributes in
the Google Developers application configuration page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=google -s providerId=google -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=GOOGLE_CLIENT_ID -s
config.clientSecret=GOOGLE_CLIENT_SECRET

Configuring a Twitter identity provider

1. Use twitter as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in
the Twitter Application Management application configuration page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=google -s providerId=google -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=TWITTER_API_KEY -s
config.clientSecret=TWITTER_API_SECRET

Configuring a GitHub identity provider

1. Use github as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in
the GitHub Developer Application Settings page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=github -s providerId=github -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=GITHUB_CLIENT_ID -s
config.clientSecret=GITHUB_CLIENT_SECRET

Configuring a LinkedIn identity provider

1. Use linkedin as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in
the LinkedIn Developer Console application page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=linkedin -s providerId=linkedin -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=LINKEDIN_CLIENT_ID -s
config.clientSecret=LINKEDIN_CLIENT_SECRET

CHAPTER 19. THE ADMIN CLI

221

Configuring a Microsoft Live identity provider

1. Use microsoft as the providerId.

2. Provide the config attributes clientId and clientSecret. You can find these attributes in
the Microsoft Application Registration Portal page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=microsoft -s providerId=microsoft -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=MICROSOFT_APP_ID -s
config.clientSecret=MICROSOFT_PASSWORD

Configuring a StackOverflow identity provider

1. Use stackoverflow command as the providerId.

2. Provide the config attributes clientId, clientSecret, and key. You can find these
attributes in the Stack Apps OAuth page for your application.
For example:

$ kcadm.sh create identity-provider/instances -r demorealm -s
alias=stackoverflow -s providerId=stackoverflow -s enabled=true -s
'config.useJwksUrl="true"' -s config.clientId=STACKAPPS_CLIENT_ID -s
config.clientSecret=STACKAPPS_CLIENT_SECRET -s
config.key=STACKAPPS_KEY

19.12. STORAGE PROVIDER OPERATIONS

Configuring a Kerberos storage provider

1. Use the create command against the user-federation/instances endpoint.

2. Specify kerberos as a value of the providerName attribute.
For example:

$ kcadm.sh create user-federation/instances -r demorealm -s
providerName=kerberos -s priority=0 -s config.debug=false -s
config.allowPasswordAuthentication=true -s
'config.editMode="UNSYNCED"' -s config.updateProfileFirstLogin=true
-s config.allowKerberosAuthentication=true -s
'config.kerberosRealm="KEYCLOAK.ORG"' -s
'config.keyTab="http.keytab"' -s
'config.serverPrincipal="HTTP/localhost@KEYCLOAK.ORG"'

Configuring an LDAP user storage provider

1. Use the create command against the components endpoint.

2. Specify ldap as a value of the providerId attribute, and
org.keycloak.storage.UserStorageProvider as the value of the providerType
attribute.

3. Provide the realm ID as the value of the parentId attribute.

Red Hat Single Sign-On 7.2 Server Administration Guide

222

4. Use the following example to create a Kerberos-integrated LDAP provider.

$ kcadm.sh create components -r demorealm -s name=kerberos-ldap-
provider -s providerId=ldap -s
providerType=org.keycloak.storage.UserStorageProvider -s
parentId=3d9c572b-8f33-483f-98a6-8bb421667867 -s 'config.priority=
["1"]' -s 'config.fullSyncPeriod=["-1"]' -s
'config.changedSyncPeriod=["-1"]' -s 'config.cachePolicy=
["DEFAULT"]' -s config.evictionDay=[] -s config.evictionHour=[] -s
config.evictionMinute=[] -s config.maxLifespan=[] -s
'config.batchSizeForSync=["1000"]' -s 'config.editMode=["WRITABLE"]'
-s 'config.syncRegistrations=["false"]' -s 'config.vendor=["other"]'
-s 'config.usernameLDAPAttribute=["uid"]' -s
'config.rdnLDAPAttribute=["uid"]' -s 'config.uuidLDAPAttribute=
["entryUUID"]' -s 'config.userObjectClasses=["inetOrgPerson,
organizationalPerson"]' -s 'config.connectionUrl=
["ldap://localhost:10389"]' -s 'config.usersDn=
["ou=People,dc=keycloak,dc=org"]' -s 'config.authType=["simple"]' -s
'config.bindDn=["uid=admin,ou=system"]' -s 'config.bindCredential=
["secret"]' -s 'config.searchScope=["1"]' -s
'config.useTruststoreSpi=["ldapsOnly"]' -s
'config.connectionPooling=["true"]' -s 'config.pagination=["true"]'
-s 'config.allowKerberosAuthentication=["true"]' -s
'config.serverPrincipal=["HTTP/localhost@KEYCLOAK.ORG"]' -s
'config.keyTab=["http.keytab"]' -s 'config.kerberosRealm=
["KEYCLOAK.ORG"]' -s 'config.debug=["true"]' -s
'config.useKerberosForPasswordAuthentication=["true"]'

Removing a user storage provider instance

1. Use the storage provider instance’s id attribute to compose an endpoint URI, such as
components/ID.

2. Run the delete command against this endpoint.
For example:

$ kcadm.sh delete components/3d9c572b-8f33-483f-98a6-8bb421667867 -r
demorealm

Triggering synchronization of all users for a specific user storage provider

1. Use the storage provider’s id attribute to compose an endpoint URI, such as user-
storage/ID_OF_USER_STORAGE_INSTANCE/sync.

2. Add the action=triggerFullSync query parameter and run the create command.
For example:

$ kcadm.sh create user-storage/b7c63d02-b62a-4fc1-977c-
947d6a09e1ea/sync?action=triggerFullSync

Triggering synchronization of changed users for a specific user storage provider

1. Use the storage provider’s id attribute to compose an endpoint URI, such as user-
storage/ID_OF_USER_STORAGE_INSTANCE/sync.

CHAPTER 19. THE ADMIN CLI

223

2. Add the action=triggerChangedUsersSync query parameter and run the create
command.
For example:

$ kcadm.sh create user-storage/b7c63d02-b62a-4fc1-977c-
947d6a09e1ea/sync?action=triggerChangedUsersSync

Test LDAP user storage connectivity

1. Run the get command on the testLDAPConnection endpoint.

2. Provide query parameters bindCredential, bindDn, connectionUrl, and
useTruststoreSpi, and then set the action query parameter to testConnection.
For example:

$ kcadm.sh get testLDAPConnection -q action=testConnection -q
bindCredential=secret -q bindDn=uid=admin,ou=system -q
connectionUrl=ldap://localhost:10389 -q useTruststoreSpi=ldapsOnly

Test LDAP user storage authentication

1. Run the get command on the testLDAPConnection endpoint.

2. Provide the query parameters bindCredential, bindDn, connectionUrl, and
useTruststoreSpi, and then set the action query parameter to testAuthentication.
For example:

$ kcadm.sh get testLDAPConnection -q action=testAuthentication -q
bindCredential=secret -q bindDn=uid=admin,ou=system -q
connectionUrl=ldap://localhost:10389 -q useTruststoreSpi=ldapsOnly

19.13. ADDING MAPPERS

Adding a hardcoded role LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to hardcoded-ldap-role-mapper. Make sure to provide a
value of role configuration parameter.
For example:

$ kcadm.sh create components -r demorealm -s name=hardcoded-ldap-
role-mapper -s providerId=hardcoded-ldap-role-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s 'config.role=
["realm-management.create-client"]'

Adding an MS Active Directory mapper

Red Hat Single Sign-On 7.2 Server Administration Guide

224

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to msad-user-account-control-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=msad-user-account-
control-mapper -s providerId=msad-user-account-control-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea

Adding an user attribute LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to user-attribute-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=user-attribute-
ldap-mapper -s providerId=user-attribute-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s
'config."user.model.attribute"=["email"]' -s
'config."ldap.attribute"=["mail"]' -s 'config."read.only"=["false"]'
-s 'config."always.read.value.from.ldap"=["false"]' -s
'config."is.mandatory.in.ldap"=["false"]'

Adding a group LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to group-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=group-ldap-mapper
-s providerId=group-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s
'config."groups.dn"=[]' -s 'config."group.name.ldap.attribute"=
["cn"]' -s 'config."group.object.classes"=["groupOfNames"]' -s
'config."preserve.group.inheritance"=["true"]' -s

CHAPTER 19. THE ADMIN CLI

225

'config."membership.ldap.attribute"=["member"]' -s
'config."membership.attribute.type"=["DN"]' -s
'config."groups.ldap.filter"=[]' -s 'config.mode=["LDAP_ONLY"]' -s
'config."user.roles.retrieve.strategy"=
["LOAD_GROUPS_BY_MEMBER_ATTRIBUTE"]' -s
'config."mapped.group.attributes"=["admins-group"]' -s
'config."drop.non.existing.groups.during.sync"=["false"]' -s
'config.roles=["admins"]' -s 'config.groups=["admins-group"]' -s
'config.group=[]' -s 'config.preserve=["true"]' -s
'config.membership=["member"]'

Adding a full name LDAP mapper

1. Run the create command on the components endpoint.

2. Set the providerType attribute to
org.keycloak.storage.ldap.mappers.LDAPStorageMapper.

3. Set the parentId attribute to the ID of the LDAP provider instance.

4. Set the providerId attribute to full-name-ldap-mapper.
For example:

$ kcadm.sh create components -r demorealm -s name=full-name-ldap-
mapper -s providerId=full-name-ldap-mapper -s
providerType=org.keycloak.storage.ldap.mappers.LDAPStorageMapper -s
parentId=b7c63d02-b62a-4fc1-977c-947d6a09e1ea -s
'config."ldap.full.name.attribute"=["cn"]' -s 'config."read.only"=
["false"]' -s 'config."write.only"=["true"]'

19.14. AUTHENTICATION OPERATIONS

Setting a password policy

1. Set the realm’s passwordPolicy attribute to an enumeration expression that includes the
specific policy provider ID and optional configuration.

2. Use the following example to set a password policy to default values. The default values include:

27,500 hashing iterations

at least one special character

at least one uppercase character

at least one digit character

not be equal to a user’s username

be at least eight characters long

$ kcadm.sh update realms/demorealm -s
'passwordPolicy="hashIterations and specialChars and upperCase
and digits and notUsername and length"'

Red Hat Single Sign-On 7.2 Server Administration Guide

226

3. If you want to use values different from defaults, pass the configuration in brackets.

4. Use the following example to set a password policy to:

25,000 hash iterations

at least two special characters

at least two uppercase characters

at least two lowercase characters

at least two digits

be at least nine characters long

not be equal to a user’s username

not repeat for at least four changes back

$ kcadm.sh update realms/demorealm -s
'passwordPolicy="hashIterations(25000) and specialChars(2) and
upperCase(2) and lowerCase(2) and digits(2) and length(9) and
notUsername and passwordHistory(4)"'

Getting the current password policy
Get the current realm configuration and filter everything but the passwordPolicy attribute.

Use the following example to display passwordPolicy for demorealm.

$ kcadm.sh get realms/demorealm --fields passwordPolicy

Listing authentication flows
Run the get command on the authentication/flows endpoint.

For example:

$ kcadm.sh get authentication/flows -r demorealm

Getting a specific authentication flow
Run the get command on the authentication/flows/FLOW_ID endpoint.

For example:

$ kcadm.sh get authentication/flows/febfd772-e1a1-42fb-b8ae-00c0566fafb8 -
r demorealm

Listing executions for a flow
Run the get command on the authentication/flows/FLOW_ALIAS/executions endpoint.

For example:

$ kcadm.sh get authentication/flows/Copy%20of%20browser/executions -r
demorealm

CHAPTER 19. THE ADMIN CLI

227

Adding configuration to an execution

1. Get execution for a flow, and take note of its ID

2. Run the create command on the
authentication/executions/{executionId}/config endpoint.

For example:

$ kcadm create "authentication/executions/a3147129-c402-4760-86d9-
3f2345e401c7/config" -r examplerealm -b '{"config":{"x509-cert-
auth.mapping-source-selection":"Match SubjectDN using regular
expression","x509-cert-auth.regular-expression":"(.*?)(?:$)","x509-cert-
auth.mapper-selection":"Custom Attribute Mapper","x509-cert-auth.mapper-
selection.user-attribute-name":"usercertificate","x509-cert-auth.crl-
checking-enabled":"","x509-cert-auth.crldp-checking-enabled":false,"x509-
cert-auth.crl-relative-path":"crl.pem","x509-cert-auth.ocsp-checking-
enabled":"","x509-cert-auth.ocsp-responder-uri":"","x509-cert-
auth.keyusage":"","x509-cert-auth.extendedkeyusage":"","x509-cert-
auth.confirmation-page-disallowed":""},"alias":"my_otp_config"}'

Getting configuration for an execution

1. Get execution for a flow, and get its authenticationConfig attribute, containing the config
ID.

2. Run the get command on the authentication/config/ID endpoint.

For example:

$ kcadm get "authentication/config/dd91611a-d25c-421a-87e2-227c18421833" -
r examplerealm

Updating configuration for an execution

1. Get execution for a flow, and get its authenticationConfig attribute, containing the config
ID.

2. Run the update command on the authentication/config/ID endpoint.

For example:

$ kcadm update "authentication/config/dd91611a-d25c-421a-87e2-
227c18421833" -r examplerealm -b '{"id":"dd91611a-d25c-421a-87e2-
227c18421833","alias":"my_otp_config","config":{"x509-cert-
auth.extendedkeyusage":"","x509-cert-auth.mapper-selection.user-attribute-
name":"usercertificate","x509-cert-auth.ocsp-responder-uri":"","x509-cert-
auth.regular-expression":"(.*?)(?:$)","x509-cert-auth.crl-checking-
enabled":"true","x509-cert-auth.confirmation-page-disallowed":"","x509-
cert-auth.keyusage":"","x509-cert-auth.mapper-selection":"Custom Attribute
Mapper","x509-cert-auth.crl-relative-path":"crl.pem","x509-cert-
auth.crldp-checking-enabled":"false","x509-cert-auth.mapping-source-
selection":"Match SubjectDN using regular expression","x509-cert-
auth.ocsp-checking-enabled":""}}'

Red Hat Single Sign-On 7.2 Server Administration Guide

228

Deleting configuration for an execution

1. Get execution for a flow, and get its authenticationConfig attribute, containing the config
ID.

2. Run the delete command on the authentication/config/ID endpoint.

For example:

$ kcadm delete "authentication/config/dd91611a-d25c-421a-87e2-
227c18421833" -r examplerealm

CHAPTER 19. THE ADMIN CLI

229

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. FEATURES
	1.2. HOW DOES SECURITY WORK?
	1.3. CORE CONCEPTS AND TERMS

	CHAPTER 2. SERVER INITIALIZATION
	CHAPTER 3. ADMIN CONSOLE
	3.1. THE MASTER REALM
	3.2. CREATE A NEW REALM
	3.3. SSL MODE
	3.4. CLEARING SERVER CACHES
	3.5. EMAIL SETTINGS
	3.6. THEMES AND INTERNATIONALIZATION
	3.6.1. Internationalization

	CHAPTER 4. USER MANAGEMENT
	4.1. SEARCHING FOR USERS
	4.2. CREATING NEW USERS
	4.3. USER ATTRIBUTES
	4.4. USER CREDENTIALS
	4.4.1. Changing Passwords
	4.4.2. Changing OTPs

	4.5. REQUIRED ACTIONS
	4.5.1. Default Required Actions
	4.5.2. Terms and Conditions

	4.6. IMPERSONATION
	4.7. USER REGISTRATION
	4.7.1. reCAPTCHA Support

	CHAPTER 5. LOGIN PAGE SETTINGS
	5.1. FORGOT PASSWORD
	5.2. REMEMBER ME

	CHAPTER 6. AUTHENTICATION
	6.1. PASSWORD POLICIES
	6.1.1. Password Policy Types

	6.2. OTP POLICIES
	6.2.1. TOTP vs. HOTP
	6.2.2. TOTP Configuration Options
	6.2.3. HOTP Configuration Options

	6.3. AUTHENTICATION FLOWS
	6.4. KERBEROS
	6.4.1. Setup of Kerberos server
	6.4.2. Setup and configuration of Red Hat Single Sign-On server
	6.4.2.1. Enable SPNEGO Processing
	6.4.2.2. Configure Kerberos User Storage Federation Provider

	6.4.3. Setup and configuration of client machines
	6.4.4. Credential Delegation
	6.4.5. Cross-realm trust
	6.4.6. Troubleshooting

	6.5. X.509 CLIENT CERTIFICATE USER AUTHENTICATION
	6.5.1. Features
	6.5.2. Enable X.509 Client Certificate User Authentication
	6.5.3. Adding X.509 Client Certificate Authentication to a Browser Flow
	6.5.4. Adding X.509 Client Certificate Authentication to a Direct Grant Flow
	6.5.5. Client certificate lookup
	6.5.5.1. HAProxy certificate lookup provider
	6.5.5.2. Apache certificate lookup provider
	6.5.5.3. Other reverse proxy implementations

	6.5.6. Troubleshooting

	CHAPTER 7. SSO PROTOCOLS
	7.1. OPENID CONNECT
	7.1.1. OIDC Auth Flows
	7.1.1.1. Authorization Code Flow
	7.1.1.2. Implicit Flow
	7.1.1.3. Resource Owner Password Credentials Grant (Direct Access Grants)
	7.1.1.4. Client Credentials Grant

	7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints

	7.2. SAML
	7.2.1. SAML Bindings
	7.2.1.1. Redirect Binding
	7.2.1.2. POST Binding
	7.2.1.3. ECP

	7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints

	7.3. OPENID CONNECT VS. SAML
	7.4. DOCKER REGISTRY V2 AUTHENTICATION
	7.4.1. Docker Auth Flow
	7.4.2. Red Hat Single Sign-On Docker Registry v2 Authentication Server URI Endpoints

	CHAPTER 8. MANAGING CLIENTS
	8.1. OIDC CLIENTS
	8.1.1. Confidential Client Credentials

	8.2. SERVICE ACCOUNTS
	8.3. SAML CLIENTS
	8.3.1. IDP Initiated Login
	8.3.2. SAML Entity Descriptors

	8.4. CLIENT LINKS
	8.5. OIDC TOKEN AND SAML ASSERTION MAPPINGS
	8.6. GENERATING CLIENT ADAPTER CONFIG
	8.7. CLIENT TEMPLATES

	CHAPTER 9. ROLES
	9.1. REALM ROLES
	9.2. CLIENT ROLES
	9.3. COMPOSITE ROLES
	9.4. USER ROLE MAPPINGS
	9.4.1. Default Roles

	9.5. CLIENT SCOPE

	CHAPTER 10. GROUPS
	10.1. GROUPS VS. ROLES
	10.2. DEFAULT GROUPS

	CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS
	11.1. MASTER REALM ACCESS CONTROL
	11.1.1. Global Roles
	11.1.2. Realm Specific Roles

	11.2. DEDICATED REALM ADMIN CONSOLES
	11.3. FINE GRAIN ADMIN PERMISSIONS
	11.3.1. Managing One Specific Client
	11.3.1.1. Permission Setup
	11.3.1.2. Testing It Out.

	11.3.2. Restrict User Role Mapping
	11.3.2.1. Testing It Out.
	11.3.2.2. Per Client map-roles Shortcut

	11.3.3. Full List of Permissions
	11.3.3.1. Role
	11.3.3.2. Client
	11.3.3.3. Users
	11.3.3.4. Group

	11.4. REALM KEYS
	11.4.1. Rotating keys
	11.4.2. Adding a generated keypair
	11.4.3. Adding an existing keypair and certificate
	11.4.4. Loading keys from a Java Keystore
	11.4.5. Making keys passive
	11.4.6. Disabling keys
	11.4.7. Compromised keys

	CHAPTER 12. IDENTITY BROKERING
	12.1. BROKERING OVERVIEW
	12.2. DEFAULT IDENTITY PROVIDER
	12.3. GENERAL CONFIGURATION
	12.4. SOCIAL IDENTITY PROVIDERS
	12.4.1. Bitbucket
	12.4.2. Facebook
	12.4.3. GitHub
	12.4.4. GitLab
	12.4.5. Google
	12.4.6. LinkedIn
	12.4.7. Microsoft
	12.4.8. Openshift
	12.4.9. PayPal
	12.4.10. StackOverflow
	12.4.11. Twitter

	12.5. OPENID CONNECT V1.0 IDENTITY PROVIDERS
	12.6. SAML V2.0 IDENTITY PROVIDERS
	12.6.1. SP Descriptor

	12.7. CLIENT SUGGESTED IDENTITY PROVIDER
	12.8. MAPPING CLAIMS AND ASSERTIONS
	12.9. AVAILABLE USER SESSION DATA
	12.10. FIRST LOGIN FLOW
	12.10.1. Default First Login Flow

	12.11. RETRIEVING EXTERNAL IDP TOKENS

	CHAPTER 13. USER SESSION MANAGEMENT
	13.1. ADMINISTERING SESSIONS
	13.1.1. Logout All Limitations
	13.1.2. Application Drilldown
	13.1.3. User Drilldown

	13.2. REVOCATION POLICIES
	13.3. SESSION AND TOKEN TIMEOUTS
	13.4. OFFLINE ACCESS

	CHAPTER 14. USER STORAGE FEDERATION
	14.1. ADDING A PROVIDER
	14.2. DEALING WITH PROVIDER FAILURES
	14.3. LDAP AND ACTIVE DIRECTORY
	14.3.1. Storage Mode
	14.3.2. Edit Mode
	14.3.3. Other config options
	14.3.4. Connect to LDAP over SSL
	14.3.5. Sync of LDAP users to Red Hat Single Sign-On
	14.3.6. LDAP Mappers

	14.4. SSSD AND FREEIPA IDENTITY MANAGEMENT INTEGRATION
	14.4.1. FreeIPA/IdM Server
	14.4.2. SSSD and D-Bus
	14.4.3. Enabling the SSSD Federation Provider

	14.5. CONFIGURING A FEDERATED SSSD STORE
	14.6. CUSTOM PROVIDERS

	CHAPTER 15. AUDITING AND EVENTS
	15.1. LOGIN EVENTS
	15.1.1. Event Types
	15.1.2. Event Listener

	15.2. ADMIN EVENTS

	CHAPTER 16. EXPORT AND IMPORT
	16.1. ADMIN CONSOLE EXPORT/IMPORT

	CHAPTER 17. USER ACCOUNT SERVICE
	17.1. THEMEABLE

	CHAPTER 18. THREAT MODEL MITIGATION
	18.1. HOST
	18.2. ADMIN ENDPOINTS AND CONSOLE
	18.2.1. IP Restriction
	18.2.2. Port Restriction
	18.2.3. Server version

	18.3. PASSWORD GUESS: BRUTE FORCE ATTACKS
	18.3.1. Password Policies

	18.4. CLICKJACKING
	18.5. SSL/HTTPS REQUIREMENT
	18.6. CSRF ATTACKS
	18.7. UNSPECIFIC REDIRECT URIS
	18.8. COMPROMISED ACCESS AND REFRESH TOKENS
	18.9. COMPROMISED AUTHORIZATION CODE
	18.10. OPEN REDIRECTORS
	18.11. PASSWORD DATABASE COMPROMISED
	18.12. LIMITING SCOPE
	18.13. SQL INJECTION ATTACKS

	CHAPTER 19. THE ADMIN CLI
	19.1. INSTALLING THE ADMIN CLI
	19.2. USING THE ADMIN CLI
	19.3. AUTHENTICATING
	19.4. WORKING WITH ALTERNATIVE CONFIGURATIONS
	19.5. BASIC OPERATIONS AND RESOURCE URIS
	19.6. REALM OPERATIONS
	Creating a new realm
	Listing existing realms
	Getting a specific realm
	Updating a realm
	Deleting a realm
	Turning on all login page options for the realm
	Listing the realm keys
	Generating new realm keys
	Adding new realm keys from a Java Key Store file
	Making the key passive or disabling the key
	Deleting an old key
	Configuring event logging for a realm
	Flushing the caches

	19.7. ROLE OPERATIONS
	Creating a realm role
	Creating a client role
	Listing realm roles
	Listing client roles
	Getting a specific realm role
	Getting a specific client role
	Updating a realm role
	Updating a client role
	Deleting a realm role
	Deleting a client role
	Listing assigned, available, and effective realm roles for a composite role
	Listing assigned, available, and effective client roles for a composite role
	Adding realm roles to a composite role
	Removing realm roles from a composite role
	Adding client roles to a realm role
	Adding client roles to a client role
	Removing client roles from a composite role

	19.8. CLIENT OPERATIONS
	Creating a client
	Listing clients
	Getting a specific client
	Getting the current secret for a specific client
	Getting an adapter configuration file (keycloak.json) for a specific client
	Getting a Wildfly subsystem adapter configuration for a specific client
	Updating a client
	Deleting a client

	19.9. USER OPERATIONS
	Creating a user
	Listing users
	Getting a specific user
	Updating a user
	Deleting a user
	Resetting a user’s password
	Listing assigned, available, and effective realm roles for a user
	Listing assigned, available, and effective client roles for a user
	Adding realm roles to a user
	Removing realm roles from a user
	Adding client roles to a user
	Removing client roles from a user
	Listing a user’s sessions
	Logging out a user from a specific session
	Logging out a user from all sessions

	19.10. GROUP OPERATIONS
	Creating a group
	Listing groups
	Getting a specific group
	Updating a group
	Deleting a group
	Creating a subgroup
	Moving a group under another group
	Get groups for a specific user
	Adding a user to a group
	Removing a user from a group
	Listing assigned, available, and effective realm roles for a group
	Listing assigned, available, and effective client roles for a group

	19.11. IDENTITY PROVIDER OPERATIONS
	Listing available identity providers
	Listing configured identity providers
	Getting a specific configured identity provider
	Removing a specific configured identity provider
	Configuring a Keycloak OpenID Connect identity provider
	Configuring an OpenID Connect identity provider
	Configuring a SAML 2 identity provider
	Configuring a Facebook identity provider
	Configuring a Google identity provider
	Configuring a Twitter identity provider
	Configuring a GitHub identity provider
	Configuring a LinkedIn identity provider
	Configuring a Microsoft Live identity provider
	Configuring a StackOverflow identity provider

	19.12. STORAGE PROVIDER OPERATIONS
	Configuring a Kerberos storage provider
	Configuring an LDAP user storage provider
	Removing a user storage provider instance
	Triggering synchronization of all users for a specific user storage provider
	Triggering synchronization of changed users for a specific user storage provider
	Test LDAP user storage connectivity
	Test LDAP user storage authentication

	19.13. ADDING MAPPERS
	Adding a hardcoded role LDAP mapper
	Adding an MS Active Directory mapper
	Adding an user attribute LDAP mapper
	Adding a group LDAP mapper
	Adding a full name LDAP mapper

	19.14. AUTHENTICATION OPERATIONS
	Setting a password policy
	Getting the current password policy
	Listing authentication flows
	Getting a specific authentication flow
	Listing executions for a flow
	Adding configuration to an execution
	Getting configuration for an execution
	Updating configuration for an execution
	Deleting configuration for an execution

