
Red Hat Quay 3.7

Manage Red Hat Quay

Manage Red Hat Quay

Last Updated: 2023-11-09

Red Hat Quay 3.7 Manage Red Hat Quay

Manage Red Hat Quay

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Manage Red Hat Quay

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY

1.1.1. Running the Config Tool from the Red Hat Quay Operator
1.1.2. Running the Config Tool from the command line
1.1.3. Deploying the config tool using TLS certificates

1.2. USING THE API TO MODIFY RED HAT QUAY
1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY

1.3.1. Add name and company to Red Hat Quay sign-in
1.3.2. Disable TLS Protocols
1.3.3. Rate limit API calls
1.3.4. Adjust database connection pooling

1.3.4.1. Database connection arguments
1.3.4.2. Database SSL configuration

1.3.4.2.1. PostgreSQL SSL connection arguments
1.3.4.2.2. MySQL SSL connection arguments

1.3.4.3. HTTP connection counts
1.3.4.4. Dynamic process counts
1.3.4.5. Environment variables
1.3.4.6. Turning off connection pooling

CHAPTER 2. USING THE CONFIGURATION API
2.1. RETRIEVING THE DEFAULT CONFIGURATION
2.2. RETRIEVING THE CURRENT CONFIGURATION
2.3. VALIDATING CONFIGURATION USING THE API
2.4. DETERMINING THE REQUIRED FIELDS

CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
4.1. INTRODUCTION TO USING SSL
4.2. CREATE A CERTIFICATE AUTHORITY AND SIGN A CERTIFICATE

4.2.1. Create a Certificate Authority
4.2.2. Sign a certificate

4.3. CONFIGURING SSL USING THE COMMAND LINE
4.4. CONFIGURING SSL USING THE UI
4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE
4.6. TESTING SSL CONFIGURATION USING THE BROWSER
4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE AUTHORITY
4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE AUTHORITY

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
5.1. ADD TLS CERTIFICATES TO RED HAT QUAY
5.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH

CHAPTER 7. CLAIR SECURITY SCANNING
7.1. SETTING UP CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT

7.1.1. Deploying Via the Quay Operator
7.1.2. Manually Deploying Clair

7.2. SETTING UP CLAIR ON A NON-OPENSHIFT RED HAT QUAY DEPLOYMENT

6

7
7
7
8
9
9

10
10
10
10
10
11
11
11

12
12
12
13
14

15
15
15
16
17

18

19
19
19
19
19

20
21
21
22
22
23

25
25
25

27

29
29
29
29
34

Table of Contents

1

. .

. .

. .

. .

7.3. ADVANCED CLAIR CONFIGURATION
7.3.1. Unmanaged Clair configuration

7.3.1.1. Unmanaging a Clair database
7.3.1.2. Configuring a custom Clair database

7.3.2. Running a custom Clair configuration with a managed database
7.4. CLAIR CRDA CONFIGURATION

7.4.1. Enabling Clair CRDA
7.5. USING CLAIR
7.6. CVE RATINGS FROM THE NATIONAL VULNERABILITY DATABASE
7.7. CONFIGURING CLAIR FOR DISCONNECTED ENVIRONMENTS

7.7.1. Mapping repositories to Common Product Enumeration (CPE) information
7.8. CLAIR UPDATER URLS
7.9. ADDITIONAL INFORMATION

CHAPTER 8. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR
8.1. DOWNLOADING AND RUNNING THE CONTAINER SECURITY OPERATOR IN OPENSHIFT CONTAINER
PLATFORM
8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

CHAPTER 9. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY
BRIDGE OPERATOR

9.1. SETTING UP RED HAT QUAY FOR THE QUAY BRIDGE OPERATOR
9.2. INSTALLING THE QUAY BRIDGE OPERATOR ON OPENSHIFT CONTAINER PLATFORM
9.3. CREATING AN OPENSHIFT CONTAINER PLATFORM SECRET FOR THE OAUTH TOKEN
9.4. CREATING THE QUAYINTEGRATION CUSTOM RESOURCE

9.4.1. Optional: Creating the QuayIntegration custom resource using the CLI
9.4.2. Optional: Creating the QuayIntegration custom resource using the web console

9.5. QUAYINTEGRATION CONFIGURATION FIELDS

CHAPTER 10. REPOSITORY MIRRORING
10.1. REPOSITORY MIRRORING
10.2. REPOSITORY MIRRORING VERSUS GEO-REPLICATION
10.3. USING REPOSITORY MIRRORING
10.4. MIRRORING CONFIGURATION UI
10.5. MIRRORING CONFIGURATION FIELDS
10.6. MIRRORING WORKER
10.7. CREATING A MIRRORED REPOSITORY

10.7.1. Repository mirroring settings
10.7.2. Advanced settings
10.7.3. Synchronize now

10.8. EVENT NOTIFICATIONS FOR MIRRORING
10.9. MIRRORING TAG PATTERNS

10.9.1. Pattern syntax
10.9.2. Example tag patterns

10.10. WORKING WITH MIRRORED REPOSITORIES
10.11. REPOSITORY MIRRORING RECOMMENDATIONS

CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
11.1. CONSIDERATIONS PRIOR TO ENABLING LDAP

11.1.1. Existing Quay deployments
11.1.2. Manual User Creation and LDAP authentication

11.2. SET UP LDAP CONFIGURATION
11.2.1. Full LDAP URI
11.2.2. Team Synchronization

35
35
35
36
37
37
37
38
38
39
40
40
41

42

42
44

45
45
46
46
47
47
48
49

50
50
50
51
52
52
53
53
54
55
55
56
57
57
57
57
59

61
61
61
61
61
61

62

Red Hat Quay 3.7 Manage Red Hat Quay

2

. .

. .

. .

11.2.3. Base and Relative Distinguished Names
11.2.4. Additional User Filters
11.2.5. Administrator DN
11.2.6. UID and Mail attributes
11.2.7. Validation

11.3. COMMON ISSUES
11.4. CONFIGURE AN LDAP USER AS SUPERUSER

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
12.1. EXPOSING THE PROMETHEUS ENDPOINT

12.1.1. Standalone Red Hat Quay
12.1.2. Red Hat Quay Operator
12.1.3. Setting up Prometheus to consume metrics
12.1.4. DNS configuration under Kubernetes
12.1.5. DNS configuration for a manual cluster

12.2. INTRODUCTION TO METRICS
12.2.1. General registry statistics
12.2.2. Queue items
12.2.3. Garbage collection metrics

12.2.3.1. Multipart uploads metrics
12.2.4. Image push / pull metrics

12.2.4.1. Image pulls total
12.2.4.2. Image bytes pulled
12.2.4.3. Image pushes total
12.2.4.4. Image bytes pushed

12.2.5. Authentication metrics

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT
13.1. QUOTA MANAGEMENT CONFIGURATION

13.1.1. Default quota
13.2. QUOTA MANAGEMENT ARCHITECTURE
13.3. ESTABLISHING QUOTA IN RED HAT QUAY UI
13.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

13.4.1. Setting the quota
13.4.2. Viewing the quota
13.4.3. Modifying the quota
13.4.4. Pushing images

13.4.4.1. Pushing ubuntu:18.04
13.4.4.2. Using the API to view quota usage
13.4.4.3. Pushing another image

13.4.5. Rejecting pushes using quota limits
13.4.5.1. Setting reject and warning limits
13.4.5.2. Viewing reject and warning limits
13.4.5.3. Pushing an image when the reject limit is exceeded
13.4.5.4. Notifications for limits exceeded

13.5. QUOTA MANAGEMENT LIMITATIONS

CHAPTER 14. GEO-REPLICATION
14.1. GEO-REPLICATION FEATURES
14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS
14.3. GEO-REPLICATION USING STANDALONE RED HAT QUAY

14.3.1. Enable storage replication - standalone Quay
14.3.2. Run Red Hat Quay with storage preferences

14.4. GEO-REPLICATION USING THE RED HAT QUAY OPERATOR

62
63
64
64
65
65
65

67
67
67
67
68
68
68
68
68
69
70
71
72
72
73
73
73
73

75
75
75
76
76
82
83
83
83
84
84
84
85
86
86
87
87
88
89

90
90
90
91

92
93
93

Table of Contents

3

. .

. .

. .

. .

. .

. .

14.4.1. Setting up geo-replication on Openshift
14.4.1.1. Configuration

14.4.2. Mixed storage for geo-replication

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY
OPERATOR

15.1. BACKING UP RED HAT QUAY
15.1.1. Red Hat Quay configuration backup
15.1.2. Scale down your Red Hat Quay deployment
15.1.3. Red Hat Quay managed database backup

15.1.3.1. Red Hat Quay managed object storage backup
15.1.4. Scale the Red Hat Quay deployment back up

15.2. RESTORING RED HAT QUAY
15.2.1. Restoring Red Hat Quay and its configuration from a backup
15.2.2. Scale down your Red Hat Quay deployment
15.2.3. Restore your Red Hat Quay database
15.2.4. Restore your Red Hat Quay object storage data
15.2.5. Scale up your Red Hat Quay deployment

CHAPTER 16. MIGRATING A STANDALONE QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR
MANAGED DEPLOYMENT

16.1. BACKING UP A STANDALONE DEPLOYMENT OF RED HAT QUAY
16.2. USING BACKED UP STANDALONE CONTENT TO MIGRATE TO OPENSHIFT CONTAINER PLATFORM.

CHAPTER 17. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT
17.1. BACKING UP RED HAT QUAY ON STANDALONE DEPLOYMENTS
17.2. RESTORING RED HAT QUAY ON STANDALONE DEPLOYMENTS

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION
18.1. ABOUT RED HAT QUAY GARBAGE COLLECTION
18.2. RED HAT QUAY GARBAGE COLLECTION IN PRACTICE

18.2.1. Measuring storage reclamation
18.3. GARBAGE COLLECTION CONFIGURATION FIELDS
18.4. DISABLING GARBAGE COLLECTION
18.5. GARBAGE COLLECTION AND QUOTA MANAGEMENT
18.6. GARBAGE COLLECTION IN PRACTICE
18.7. RED HAT QUAY GARBAGE COLLECTION METRICS

CHAPTER 19. RED HAT QUAY TROUBLESHOOTING

CHAPTER 20. SCHEMA FOR RED HAT QUAY CONFIGURATION
ADDITIONAL RESOURCES

94
95
98

99
99
99

100
102
102
103
104
104
105
106
107
108

110
110

111

116
116
118

122
122
122
123
124
125
125
125
126

128

129
129

Red Hat Quay 3.7 Manage Red Hat Quay

4

Table of Contents

5

PREFACE
Once you have deployed a Red Hat Quay registry, there are many ways you can further configure and
manage that deployment. Topics covered here include:

Advanced Red Hat Quay configuration

Setting notifications to alert you of a new Red Hat Quay release

Securing connections with SSL and TLS certificates

Directing action logs storage to Elasticsearch

Configuring image security scanning with Clair

Scan pod images with the Container Security Operator

Integrate Red Hat Quay into OpenShift with the Quay Bridge Operator

Mirroring images with repository mirroring

Sharing Quay images with a BitTorrent service

Authenticating users with LDAP

Enabling Quay for Prometheus and Grafana metrics

Setting up geo-replication

Troubleshooting Quay

Red Hat Quay 3.7 Manage Red Hat Quay

6

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
You can configure your Red Hat Quay after initial deployment using one of the following interfaces:

The Red Hat Quay Config Tool. With this tool, a web-based interface for configuring the Red
Hat Quay cluster is provided when running the Quay container in config mode. This method is
recommended for configuring the Red Hat Quay service.

Editing the config.yaml. The config.yaml file contains most configuration information for the
Red Hat Quay cluster. Editing the config.yaml file directly is possible, but it is only
recommended for advanced tuning and performance features that are not available through
the Config Tool.

Red Hat Quay API. Some Red Hat Quay features can be configured through the API.

This content in this section describes how to use each of the aforementioned interfaces and how to
configure your deployment with advanced features.

1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY

The Red Hat Quay Config Tool is made available by running a Quay container in config mode alongside
the regular Red Hat Quay service.

Use the following sections to run the Config Tool from the Red Hat Quay Operator, or to run the Config
Tool on host systems from the command line interface (CLI).

1.1.1. Running the Config Tool from the Red Hat Quay Operator

When running the Red Hat Quay Operator on OpenShift Container Platform, the Config Tool is readily
available to use. Use the following procedure to access the Red Hat Quay Config Tool.

Prerequisites

1. You have deployed the Red Hat Quay Operator on OpenShift Container Platform.

Procedure.

1. On the OpenShift console, select the Red Hat Quay project, for example, quay-enterprise.

2. In the navigation pane, select Networking → Routes. You should see routes to both the Red
Hat Quay application and Config Tool, as shown in the following image:

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

7

3. Select the route to the Config Tool, for example, example-quayecosystem-quay-config. The
Config Tool UI should open in your browser.

4. Select Modify configuration for this cluster to bring up the Config Tool setup, for example:

5. Make the desired changes, and then select Save Configuration Changes.

6. Make any corrections needed by clicking Continue Editing, or, select Next to continue.

7. When prompted, select Download Configuration. This will download a tarball of your new
config.yaml, as well as any certificates and keys used with your Red Hat Quay setup. The
config.yaml can be used to make advanced changes to your configuration or use as a future
reference.

8. Select Go to deployment rollout → Populate the configuration to deployments. Wait for the
Red Hat Quay pods to restart for the changes to take effect.

1.1.2. Running the Config Tool from the command line

If you are running Red Hat Quay from a host system, you can use the following procedure to make

Red Hat Quay 3.7 Manage Red Hat Quay

8

If you are running Red Hat Quay from a host system, you can use the following procedure to make
changes to your configuration after the initial deployment.

1. Prerequisites

You have installed either podman or docker.

2. Start Red Hat Quay in configuration mode.

3. On the first Quay node, enter the following command:

NOTE

To modify an existing config bundle, you can mount your configuration directory
into the Quay container.

4. When the Red Hat Quay configuration tool starts, open your browser and navigate to the URL
and port used in your configuration file, for example, quay-server.example.com:8080.

5. Enter your username and password.

6. Modify your Red Hat Quay cluster as desired.

1.1.3. Deploying the config tool using TLS certificates

You can deploy the config tool with secured TLS certificates by passing environment variables to the
runtime variable. This ensures that sensitive data like credentials for the database and storage backend
are protected.

The public and private keys must contain valid Subject Alternative Names (SANs) for the route that you
deploy the config tool on.

The paths can be specified using CONFIG_TOOL_PRIVATE_KEY and CONFIG_TOOL_PUBLIC_KEY.

If you are running your deployment from a container, the CONFIG_TOOL_PRIVATE_KEY and
CONFIG_TOOL_PUBLIC_KEY values the locations of the certificates inside of the container. For
example:

1.2. USING THE API TO MODIFY RED HAT QUAY

See the Red Hat Quay API Guide for information on how to access Red Hat Quay API.

$ podman run --rm -it --name quay_config -p 8080:8080 \
 -v path/to/config-bundle:/conf/stack \
 {productrepo}/{quayimage}:{productminv} config <my_secret_password>

$ podman run --rm -it --name quay_config -p 7070:8080 \

-v ${PRIVATE_KEY_PATH}:/tls/localhost.key \
-v ${PUBLIC_KEY_PATH}:/tls/localhost.crt \
-e CONFIG_TOOL_PRIVATE_KEY=/tls/localhost.key \
-e CONFIG_TOOL_PUBLIC_KEY=/tls/localhost.crt \
-e DEBUGLOG=true \
-ti config-app:dev

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

9

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index

1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY

Some advanced configuration features that are not available through the Config Tool can be
implemented by editing the config.yaml file directly. Available settings are described in the Schema for
Red Hat Quay configuration

The following examples are settings you can change directly in the config.yaml file.

1.3.1. Add name and company to Red Hat Quay sign-in

By setting the following field, users are prompted for their name and company when they first sign in.
This is an optional field, but can provide your with extra data about your Red Hat Quay users.

1.3.2. Disable TLS Protocols

You can change the SSL_PROTOCOLS setting to remove SSL protocols that you do not want to
support in your Red Hat Quay instance. For example, to remove TLS v1 support from the default
SSL_PROTOCOLS:['TLSv1','TLSv1.1','TLSv1.2'], change it to the following:

1.3.3. Rate limit API calls

Adding the FEATURE_RATE_LIMITS parameter to the config.yaml file causes nginx to limit certain
API calls to 30-per-second. If FEATURE_RATE_LIMITS is not set, API calls are limited to 300-per-
second, effectively making them unlimited.

Rate limiting is important when you must ensure that the available resources are not overwhelmed with
traffic.

Some namespaces might require unlimited access, for example, if they are important to CI/CD and take
priority. In that scenario, those namespaces might be placed in a list in the config.yaml file using the
NON_RATE_LIMITED_NAMESPACES.

1.3.4. Adjust database connection pooling

Red Hat Quay is composed of many different processes which all run within the same container. Many of
these processes interact with the database.

With the DB_CONNECTION_POOLING parameter, each process that interacts with the database will
contain a connection pool These per-process connection pools are configured to maintain a maximum of
20 connections. When under heavy load, it is possible to fill the connection pool for every process within
a Red Hat Quay container. Under certain deployments and loads, this might require analysis to ensure
that Red Hat Quay does not exceed the database’s configured maximum connection count.

Over time, the connection pools will release idle connections. To release all connections immediately,
Red Hat Quay must be restarted.

FEATURE_USER_METADATA: true

SSL_PROTOCOLS : ['TLSv1.1','TLSv1.2']

Red Hat Quay 3.7 Manage Red Hat Quay

10

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/quay-schema

Database connection pooling can be toggled by setting the DB_CONNECTION_POOLING to true or
false. For example:

When DB_CONNECTION_POOLING is enabled, you can change the maximum size of the connection
pool with the DB_CONNECTION_ARGS in your config.yaml. For example:

1.3.4.1. Database connection arguments

You can customize your Red Hat Quay database connection settings within the config.yaml file. These
are dependent on your deployment’s database driver, for example, psycopg2 for Postgres and
pymysql for MySQL. You can also pass in argument used by Peewee’s connection pooling mechanism.
For example:

1.3.4.2. Database SSL configuration

Some key-value pairs defined under the DB_CONNECTION_ARGS field are generic, while others are
specific to the database. In particular, SSL configuration depends on the database that you are
deploying.

1.3.4.2.1. PostgreSQL SSL connection arguments

The following YAML shows a sample PostgreSQL SSL configuration:

The sslmode parameter determines whether, or with, what priority a secure SSL TCP/IP connection will
be negotiated with the server. There are six modes for the sslmode parameter:

disabl:: Only try a non-SSL connection.

allow: Try a non-SSL connection first. Upon failure, try an SSL connection.

prefer: Default. Try an SSL connection first. Upon failure, try a non-SSL connection.

require: Only try an SSL connection. If a root CA file is present, verify the connection in the

DB_CONNECTION_POOLING: true

DB_CONNECTION_ARGS:
 max_connections: 10

DB_CONNECTION_ARGS:
 max_connections: n # Max Connection Pool size. (Connection Pooling only)
 timeout: n # Time to hold on to connections. (Connection Pooling only)
 stale_timeout: n # Number of seconds to block when the pool is full. (Connection Pooling only)

DB_CONNECTION_ARGS:
 sslmode: verify-ca
 sslrootcert: /path/to/cacert

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

11

require: Only try an SSL connection. If a root CA file is present, verify the connection in the
same way as if verify-ca was specified.

verify-ca: Only try an SSL connection, and verify that the server certificate is issued by a trust
certificate authority (CA).

verify-full: Only try an SSL connection. Verify that the server certificate is issued by a trust CA,
and that the requested server host name matches that in the certificate.

For more information about the valid arguments for PostgreSQL, see Database Connection Control
Functions.

1.3.4.2.2. MySQL SSL connection arguments

The following YAML shows a sample MySQL SSL configuration:

For more information about the valid connection arguments for MySQL, see Connecting to the Server
Using URI-Like Strings or Key-Value Pairs.

1.3.4.3. HTTP connection counts

You can specify the quantity of simultaneous HTTP connections using environment variables. The
environment variables can be specified as a whole, or for a specific component. The default for each is
50 parallel connections per process. See the following YAML for example environment variables;

NOTE

Specifying a count for a specific component will override any value set in the
WORKER_CONNECTION_COUNT configuration field.

1.3.4.4. Dynamic process counts

To estimate the quantity of dynamically sized processes, the following calculation is used by default.

NOTE

Red Hat Quay queries the available CPU count from the entire machine. Any limits
applied using kubernetes or other non-virtualized mechanisms will not affect this
behavior. Red Hat Quay makes its calculation based on the total number of processors on
the Node. The default values listed are simply targets, but shall not exceed the maximum
or be lower than the minimum.

DB_CONNECTION_ARGS:
 ssl:
 ca: /path/to/cacert

WORKER_CONNECTION_COUNT_REGISTRY=n
WORKER_CONNECTION_COUNT_WEB=n
WORKER_CONNECTION_COUNT_SECSCAN=n
WORKER_CONNECTION_COUNT=n

Red Hat Quay 3.7 Manage Red Hat Quay

12

https://www.postgresql.org/docs/current/libpq-connect.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Each of the following process quantities can be overridden using the environment variable specified
below:

registry - Provides HTTP endpoints to handle registry action

minimum: 8

maximum: 64

default: $CPU_COUNT x 4

environment variable: WORKER_COUNT_REGISTRY

web - Provides HTTP endpoints for the web-based interface

minimum: 2

maximum: 32

default: $CPU_COUNT x 2

environment_variable: WORKER_COUNT_WEB

secscan - Interacts with Clair

minimum: 2

maximum: 4

default: $CPU_COUNT x 2

environment variable: WORKER_COUNT_SECSCAN

1.3.4.5. Environment variables

Red Hat Quay allows overriding default behavior using environment variables. The following table lists
and describes each variable and the values they can expect.

Table 1.1. Worker count environment variables

Variable Description Values

WORKER_COUNT_REGISTRY Specifies the number of
processes to handle registry
requests within the Quay
container.

Integer between 8 and 64

WORKER_COUNT_WEB Specifies the number of
processes to handle UI/Web
requests within the container.

Integer between 2 and 32

WORKER_COUNT_SECSCAN Specifies the number of
processes to handle Security
Scanning (for example, Clair)
integration within the container.

Integer between 2 and 4

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

13

DB_CONNECTION_POOLING Toggle database connection
pooling.

"true" or "false"

Variable Description Values

1.3.4.6. Turning off connection pooling

Red Hat Quay deployments with a large amount of user activity can regularly hit the 2k maximum
database connection limit. In these cases, connection pooling, which is enabled by default for Red Hat
Quay, can cause database connection count to rise exponentially and require you to turn off connection
pooling.

If turning off connection pooling is not enough to prevent hitting the 2k database connection limit, you
need to take additional steps to deal with the problem. If this happens, you might need to increase the
maximum database connections to better suit your workload.

Red Hat Quay 3.7 Manage Red Hat Quay

14

CHAPTER 2. USING THE CONFIGURATION API
The configuration tool exposes 4 endpoints that can be used to build, validate, bundle and deploy a
configuration. The config-tool API is documented at https://github.com/quay/config-
tool/blob/master/pkg/lib/editor/API.md. In this section, you will see how to use the API to retrieve the
current configuration and how to validate any changes you make.

2.1. RETRIEVING THE DEFAULT CONFIGURATION

If you are running the configuration tool for the first time, and do not have an existing configuration, you
can retrieve the default configuration. Start the container in config mode:

$ sudo podman run --rm -it --name quay_config \
 -p 8080:8080 \
 registry.redhat.io/quay/quay-rhel8:v3.7.13 config secret

Use the config endpoint of the configuration API to get the default:

$ curl -X GET -u quayconfig:secret http://quay-server:8080/api/v1/config | jq

The value returned is the default configuration in JSON format:

2.2. RETRIEVING THE CURRENT CONFIGURATION

If you have already configured and deployed the Quay registry, stop the container and restart it in
configuration mode, loading the existing configuration as a volume:

$ sudo podman run --rm -it --name quay_config \
 -p 8080:8080 \
 -v $QUAY/config:/conf/stack:Z \
 registry.redhat.io/quay/quay-rhel8:v3.7.13 config secret

Use the config endpoint of the API to get the current configuration:

{
 "config.yaml": {
 "AUTHENTICATION_TYPE": "Database",
 "AVATAR_KIND": "local",
 "DB_CONNECTION_ARGS": {
 "autorollback": true,
 "threadlocals": true
 },
 "DEFAULT_TAG_EXPIRATION": "2w",
 "EXTERNAL_TLS_TERMINATION": false,
 "FEATURE_ACTION_LOG_ROTATION": false,
 "FEATURE_ANONYMOUS_ACCESS": true,
 "FEATURE_APP_SPECIFIC_TOKENS": true,

 }

}

CHAPTER 2. USING THE CONFIGURATION API

15

https://github.com/quay/config-tool/blob/master/pkg/lib/editor/API.md

$ curl -X GET -u quayconfig:secret http://quay-server:8080/api/v1/config | jq

The value returned is the current configuration in JSON format, including database and Redis
configuration data:

2.3. VALIDATING CONFIGURATION USING THE API

You can validate a configuration by posting it to the config/validate endpoint:

curl -u quayconfig:secret --header 'Content-Type: application/json' --request POST --data '
{
 "config.yaml": {

 "BROWSER_API_CALLS_XHR_ONLY": false,
 "BUILDLOGS_REDIS": {
 "host": "quay-server",
 "password": "strongpassword",
 "port": 6379
 },
 "DATABASE_SECRET_KEY": "4b1c5663-88c6-47ac-b4a8-bb594660f08b",
 "DB_CONNECTION_ARGS": {
 "autorollback": true,
 "threadlocals": true
 },
 "DB_URI": "postgresql://quayuser:quaypass@quay-server:5432/quay",
 "DEFAULT_TAG_EXPIRATION": "2w",

 }

} http://quay-server:8080/api/v1/config/validate | jq

{
 "config.yaml": {

 "BROWSER_API_CALLS_XHR_ONLY": false,
 "BUILDLOGS_REDIS": {
 "host": "quay-server",
 "password": "strongpassword",
 "port": 6379
 },
 "DATABASE_SECRET_KEY": "4b1c5663-88c6-47ac-b4a8-bb594660f08b",
 "DB_CONNECTION_ARGS": {
 "autorollback": true,
 "threadlocals": true
 },
 "DB_URI": "postgresql://quayuser:quaypass@quay-server:5432/quay",
 "DEFAULT_TAG_EXPIRATION": "2w",

 }

}

Red Hat Quay 3.7 Manage Red Hat Quay

16

The returned value is an array containing the errors found in the configuration. If the configuration is
valid, an empty array [] is returned.

2.4. DETERMINING THE REQUIRED FIELDS

You can determine the required fields by posting an empty configuration structure to the
config/validate endpoint:

curl -u quayconfig:secret --header 'Content-Type: application/json' --request POST --data '
{
 "config.yaml": {
 }

} http://quay-server:8080/api/v1/config/validate | jq

The value returned is an array indicating which fields are required:

[
 {
 "FieldGroup": "Database",
 "Tags": [
 "DB_URI"
],
 "Message": "DB_URI is required."
 },
 {
 "FieldGroup": "DistributedStorage",
 "Tags": [
 "DISTRIBUTED_STORAGE_CONFIG"
],
 "Message": "DISTRIBUTED_STORAGE_CONFIG must contain at least one storage location."
 },
 {
 "FieldGroup": "HostSettings",
 "Tags": [
 "SERVER_HOSTNAME"
],
 "Message": "SERVER_HOSTNAME is required"
 },
 {
 "FieldGroup": "HostSettings",
 "Tags": [
 "SERVER_HOSTNAME"
],
 "Message": "SERVER_HOSTNAME must be of type Hostname"
 },
 {
 "FieldGroup": "Redis",
 "Tags": [
 "BUILDLOGS_REDIS"
],
 "Message": "BUILDLOGS_REDIS is required"
 }
]

CHAPTER 2. USING THE CONFIGURATION API

17

CHAPTER 3. GETTING RED HAT QUAY RELEASE
NOTIFICATIONS

To keep up with the latest Red Hat Quay releases and other changes related to Red Hat Quay, you can
sign up for update notifications on the Red Hat Customer Portal . After signing up for notifications, you
will receive notifications letting you know when there is new a Red Hat Quay version, updated
documentation, or other Red Hat Quay news.

1. Log into the Red Hat Customer Portal with your Red Hat customer account credentials.

2. Select your user name (upper-right corner) to see Red Hat Account and Customer Portal
selections:

3. Select Notifications. Your profile activity page appears.

4. Select the Notifications tab.

5. Select Manage Notifications.

6. Select Follow, then choose Products from the drop-down box.

7. From the drop-down box next to the Products, search for and select Red Hat Quay:

8. Select the SAVE NOTIFICATION button. Going forward, you will receive notifications when
there are changes to the Red Hat Quay product, such as a new release.

Red Hat Quay 3.7 Manage Red Hat Quay

18

https://access.redhat.com
https://access.redhat.com

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED
HAT QUAY

4.1. INTRODUCTION TO USING SSL

To configure Red Hat Quay with a self-signed certificate, you need to create a Certificate Authority
(CA) and then generate the required key and certificate files.

The following examples assume you have configured the server hostname quay-server.example.com
using DNS or another naming mechanism, such as adding an entry in your /etc/hosts file:

$ cat /etc/hosts
...
192.168.1.112 quay-server.example.com

4.2. CREATE A CERTIFICATE AUTHORITY AND SIGN A CERTIFICATE

At the end of this procedure, you will have a certificate file and a primary key file named ssl.cert and
ssl.key, respectively.

4.2.1. Create a Certificate Authority

1. Generate the root CA key:

$ openssl genrsa -out rootCA.key 2048

2. Generate the root CA cert:

$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

Country Name (2 letter code) [XX]:IE
State or Province Name (full name) []:GALWAY
Locality Name (eg, city) [Default City]:GALWAY
Organization Name (eg, company) [Default Company Ltd]:QUAY
Organizational Unit Name (eg, section) []:DOCS
Common Name (eg, your name or your server's hostname) []:quay-server.example.com

4.2.2. Sign a certificate

1. Generate the server key:

$ openssl genrsa -out ssl.key 2048

2. Generate a signing request:

$ openssl req -new -key ssl.key -out ssl.csr

3. Enter the information that will be incorporated into your certificate request, including the server

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

19

https://en.wikipedia.org/wiki/Self-signed_certificate

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

Country Name (2 letter code) [XX]:IE
State or Province Name (full name) []:GALWAY
Locality Name (eg, city) [Default City]:GALWAY
Organization Name (eg, company) [Default Company Ltd]:QUAY
Organizational Unit Name (eg, section) []:DOCS
Common Name (eg, your name or your server's hostname) []:quay-server.example.com

4. Create a configuration file openssl.cnf, specifying the server hostname, for example:

openssl.cnf

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = quay-server.example.com
IP.1 = 192.168.1.112

5. Use the configuration file to generate the certificate ssl.cert:

$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

4.3. CONFIGURING SSL USING THE COMMAND LINE

Another option when configuring SSL is to use the command line interface.

1. Copy the certificate file and primary key file to your configuration directory, ensuring they are
named ssl.cert and ssl.key respectively:

$ cp ~/ssl.cert $QUAY/config
$ cp ~/ssl.key $QUAY/config
$ cd $QUAY/config

2. Edit the config.yaml file and specify that you want Quay to handle TLS:

config.yaml

3. Stop the Quay container and restart the registry:

...
SERVER_HOSTNAME: quay-server.example.com
...
PREFERRED_URL_SCHEME: https
...

Red Hat Quay 3.7 Manage Red Hat Quay

20

$ sudo podman rm -f quay
$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
 --name=quay \
 -v $QUAY/config:/conf/stack:Z \
 -v $QUAY/storage:/datastorage:Z \
 registry.redhat.io/quay/quay-rhel8:v3.7.13

4.4. CONFIGURING SSL USING THE UI

This section configures SSL using the Quay UI. To configure SSL using the command line interface, see
the following section.

1. Start the Quay container in configuration mode:

$ sudo podman run --rm -it --name quay_config -p 80:8080 -p 443:8443
registry.redhat.io/quay/quay-rhel8:v3.7.13 config secret

2. In the Server Configuration section, select Red Hat Quay handles TLS for TLS. Upload the
certificate file and private key file created earlier, ensuring that the Server Hostname matches
the value used when creating the certs. Validate and download the updated configuration.

3. Stop the Quay container and then restart the registry:

$ sudo podman rm -f quay
$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \
-v $QUAY/config:/conf/stack:Z \
-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.7.13

4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE

Use the podman login command to attempt to log in to the Quay registry with SSL enabled:

$ sudo podman login quay-server.example.com
Username: quayadmin
Password:

Error: error authenticating creds for "quay-server.example.com": error pinging docker registry
quay-server.example.com: Get "https://quay-server.example.com/v2/": x509: certificate
signed by unknown authority

Podman does not trust self-signed certificates. As a workaround, use the --tls-verify option:

$ sudo podman login --tls-verify=false quay-server.example.com
Username: quayadmin
Password:

Login Succeeded!

Configuring Podman to trust the root Certificate Authority (CA) is covered in a subsequent section.

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

21

4.6. TESTING SSL CONFIGURATION USING THE BROWSER

When you attempt to access the Quay registry, in this case, https://quay-server.example.com, the
browser warns of the potential risk:

Proceed to the log in screen, and the browser will notify you that the connection is not secure:

Configuring the system to trust the root Certificate Authority (CA) is covered in the subsequent
section.

4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE
AUTHORITY

Podman uses two paths to locate the CA file, namely, /etc/containers/certs.d/ and /etc/docker/certs.d/.

Copy the root CA file to one of these locations, with the exact path determined by the server

Red Hat Quay 3.7 Manage Red Hat Quay

22

https://quay-server.example.com

Copy the root CA file to one of these locations, with the exact path determined by the server
hostname, and naming the file ca.crt:

$ sudo cp rootCA.pem /etc/containers/certs.d/quay-server.example.com/ca.crt

Alternatively, if you are using Docker, you can copy the root CA file to the equivalent Docker
directory:

$ sudo cp rootCA.pem /etc/docker/certs.d/quay-server.example.com/ca.crt

You should no longer need to use the --tls-verify=false option when logging in to the registry:

$ sudo podman login quay-server.example.com

Username: quayadmin
Password:
Login Succeeded!

4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE
AUTHORITY

1. Copy the root CA file to the consolidated system-wide trust store:

$ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/

2. Update the system-wide trust store configuration:

$ sudo update-ca-trust extract

3. You can use the trust list command to ensure that the Quay server has been configured:

$ trust list | grep quay
 label: quay-server.example.com

Now, when you browse to the registry at https://quay-server.example.com, the lock icon
shows that the connection is secure:

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

23

https://quay-server.example.com

4. To remove the root CA from system-wide trust, delete the file and update the configuration:

$ sudo rm /etc/pki/ca-trust/source/anchors/rootCA.pem
$ sudo update-ca-trust extract
$ trust list | grep quay
$

More information can be found in the RHEL 8 documentation in the chapter Using shared system
certificates.

Red Hat Quay 3.7 Manage Red Hat Quay

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-shared-system-certificates_security-hardening

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT
QUAY CONTAINER

To add custom TLS certificates to Red Hat Quay, create a new directory named extra_ca_certs/
beneath the Red Hat Quay config directory. Copy any required site-specific TLS certificates to this new
directory.

5.1. ADD TLS CERTIFICATES TO RED HAT QUAY

1. View certificate to be added to the container

$ cat storage.crt
-----BEGIN CERTIFICATE-----
MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV
[...]
-----END CERTIFICATE-----

2. Create certs directory and copy certificate there

$ mkdir -p quay/config/extra_ca_certs
$ cp storage.crt quay/config/extra_ca_certs/
$ tree quay/config/
├── config.yaml
├── extra_ca_certs
│ ├── storage.crt

3. Obtain the Quay container’s CONTAINER ID with podman ps:

$ sudo podman ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
5a3e82c4a75f <registry>/<repo>/quay:v3.7.13 "/sbin/my_init" 24 hours ago Up
18 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 443/tcp grave_keller

4. Restart the container with that ID:

$ sudo podman restart 5a3e82c4a75f

5. Examine the certificate copied into the container namespace:

$ sudo podman exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem
-----BEGIN CERTIFICATE-----
MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV

5.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

When deployed on Kubernetes, Red Hat Quay mounts in a secret as a volume to store config assets.
Unfortunately, this currently breaks the upload certificate function of the superuser panel.

To get around this error, a base64 encoded certificate can be added to the secret after Red Hat Quay
has been deployed. Here’s how:

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER

25

1. Begin by base64 encoding the contents of the certificate:

$ cat ca.crt
-----BEGIN CERTIFICATE-----
MIIDljCCAn6gAwIBAgIBATANBgkqhkiG9w0BAQsFADA5MRcwFQYDVQQKDA5MQUIu
TElCQ09SRS5TTzEeMBwGA1UEAwwVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTE2
MDExMjA2NTkxMFoXDTM2MDExMjA2NTkxMFowOTEXMBUGA1UECgwOTEFCLkxJQkNP
UkUuU08xHjAcBgNVBAMMFUNlcnRpZmljYXRlIEF1dGhvcml0eTCCASIwDQYJKoZI
[...]
-----END CERTIFICATE-----

$ cat ca.crt | base64 -w 0
[...]
c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1F
TkQgQ0VSVElGSUNBVEUtLS0tLQo=

2. Use the kubectl tool to edit the quay-enterprise-config-secret.

$ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret

3. Add an entry for the cert and paste the full base64 encoded string under the entry:

 custom-cert.crt:
c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1F
TkQgQ0VSVElGSUNBVEUtLS0tLQo=

4. Finally, recycle all Red Hat Quay pods. Use kubectl delete to remove all Red Hat Quay pods.
The Red Hat Quay Deployment will automatically schedule replacement pods with the new
certificate data.

Red Hat Quay 3.7 Manage Red Hat Quay

26

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR
ELASTICSEARCH

By default, the past three months of usage logs are stored in the Red Hat Quay database and exposed
via the web UI on organization and repository levels. Appropriate administrative privileges are required
to see log entries. For deployments with a large amount of logged operations, you can now store the
usage logs in Elasticsearch instead of the Red Hat Quay database backend. To do this, you need to
provide your own Elasticsearch stack, as it is not included with Red Hat Quay as a customizable
component.

Enabling Elasticsearch logging can be done during Red Hat Quay deployment or post-deployment using
the Red Hat Quay Config Tool. The resulting configuration is stored in the config.yaml file. Once
configured, usage log access continues to be provided the same way, via the web UI for repositories and
organizations.

Here’s how to configure action log storage to change it from the default Red Hat Quay database to use
Elasticsearch:

1. Obtain an Elasticsearch account.

2. Open the Red Hat Quay Config Tool (either during or after Red Hat Quay deployment).

3. Scroll to the Action Log Storage Configuration setting and select Elasticsearch instead of
Database. The following figure shows the Elasticsearch settings that appear:

4. Fill in the following information for your Elasticsearch instance:

Elasticsearch hostname: The hostname or IP address of the system providing the
Elasticsearch service.

Elasticsearch port: The port number providing the Elasticsearch service on the host you just
entered. Note that the port must be accessible from all systems running the Red Hat Quay
registry. The default is TCP port 9200.

Elasticsearch access key: The access key needed to gain access to the Elastic search

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH

27

Elasticsearch access key: The access key needed to gain access to the Elastic search
service, if required.

Elasticsearch secret key: The secret key needed to gain access to the Elastic search
service, if required.

AWS region: If you are running on AWS, set the AWS region (otherwise, leave it blank).

Index prefix: Choose a prefix to attach to log entries.

Logs Producer: Choose either Elasticsearch (default) or Kinesis to direct logs to an
intermediate Kinesis stream on AWS. You need to set up your own pipeline to send logs
from Kinesis to Elasticsearch (for example, Logstash). The following figure shows additional
fields you would need to fill in for Kinesis:

5. If you chose Elasticsearch as the Logs Producer, no further configuration is needed. If you chose
Kinesis, fill in the following:

Stream name: The name of the Kinesis stream.

AWS access key: The name of the AWS access key needed to gain access to the Kinesis
stream, if required.

AWS secret key: The name of the AWS secret key needed to gain access to the Kinesis
stream, if required.

AWS region: The AWS region.

6. When you are done, save the configuration. The Config Tool checks your settings. If there is a
problem connecting to the Elasticsearch or Kinesis services, you will see an error and have the
opportunity to continue editing. Otherwise, logging will begin to be directed to your
Elasticsearch configuration after the cluster restarts with the new configuration.

Red Hat Quay 3.7 Manage Red Hat Quay

28

CHAPTER 7. CLAIR SECURITY SCANNING
Clair is a set of micro services that can be used with Red Hat Quay to perform vulnerability scanning of
container images associated with a set of Linux operating systems. The micro services design of Clair
makes it appropriate to run in a highly scalable configuration, where components can be scaled
separately as appropriate for enterprise environments.

Clair uses the following vulnerability databases to scan for issues in your images:

Alpine SecDB database

AWS UpdateInfo

Debian Oval database

Oracle Oval database

RHEL Oval database

SUSE Oval database

Ubuntu Oval database

Pyup.io (python) database

For information on how Clair does security mapping with the different databases, see ClairCore Severity
Mapping.

NOTE

With the release of Red Hat Quay 3.4, the new Clair V4 (image
registry.redhat.io/quay/clair-rhel8 fully replaces the prior Clair V2 (image
quay.io/redhat/clair-jwt). See below for how to run V2 in read-only mode while V4 is
updating.

7.1. SETTING UP CLAIR ON A RED HAT QUAY OPENSHIFT
DEPLOYMENT

7.1.1. Deploying Via the Quay Operator

To set up Clair V4 on a new Red Hat Quay deployment on OpenShift, it is highly recommended to use
the Quay Operator. By default, the Quay Operator will install or upgrade a Clair deployment along with
your Red Hat Quay deployment and configure Clair security scanning automatically.

7.1.2. Manually Deploying Clair

To configure Clair V4 on an existing Red Hat Quay OpenShift deployment running Clair V2, first ensure
Red Hat Quay has been upgraded to at least version 3.4.0. Then use the following steps to manually set
up Clair V4 alongside Clair V2.

1. Set your current project to the name of the project in which Red Hat Quay is running. For
example:

$ oc project quay-enterprise

CHAPTER 7. CLAIR SECURITY SCANNING

29

https://quay.github.io/claircore/concepts/severity_mapping.html

2. Create a Postgres deployment file for Clair v4 (for example, clairv4-postgres.yaml) as follows.

clairv4-postgres.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: clairv4-postgres
 namespace: quay-enterprise
 labels:
 quay-component: clairv4-postgres
spec:
 replicas: 1
 selector:
 matchLabels:
 quay-component: clairv4-postgres
 template:
 metadata:
 labels:
 quay-component: clairv4-postgres
 spec:
 volumes:
 - name: postgres-data
 persistentVolumeClaim:
 claimName: clairv4-postgres
 containers:
 - name: postgres
 image: postgres:11.5
 imagePullPolicy: "IfNotPresent"
 ports:
 - containerPort: 5432
 env:
 - name: POSTGRES_USER
 value: "postgres"
 - name: POSTGRES_DB
 value: "clair"
 - name: POSTGRES_PASSWORD
 value: "postgres"
 - name: PGDATA
 value: "/etc/postgres/data"
 volumeMounts:
 - name: postgres-data
 mountPath: "/etc/postgres"

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: clairv4-postgres
 labels:
 quay-component: clairv4-postgres
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:

Red Hat Quay 3.7 Manage Red Hat Quay

30

3. Deploy the postgres database as follows:

$ oc create -f ./clairv4-postgres.yaml

4. Create a Clair config.yaml file to use for Clair v4. For example:

config.yaml

 storage: "5Gi"
 volumeName: "clairv4-postgres"

apiVersion: v1
kind: Service
metadata:
 name: clairv4-postgres
 labels:
 quay-component: clairv4-postgres
spec:
 type: ClusterIP
 ports:
 - port: 5432
 protocol: TCP
 name: postgres
 targetPort: 5432
 selector:
 quay-component: clairv4-postgres

introspection_addr: :8089
http_listen_addr: :8080
log_level: debug
indexer:
 connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
matcher:
 connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres sslmode=disable
 max_conn_pool: 100
 run: ""
 migrations: true
 indexer_addr: clair-indexer
notifier:
 connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres sslmode=disable
 delivery: 1m
 poll_interval: 5m
 migrations: true
auth:
 psk:
 key: MTU5YzA4Y2ZkNzJoMQ== 1
 iss: ["quay"]
tracing and metrics
trace:

CHAPTER 7. CLAIR SECURITY SCANNING

31

1 To generate a Clair pre-shared key (PSK), enable scanning in the Security Scanner
section of the User Interface and click Generate PSK.

More information about Clair’s configuration format can be found in upstream Clair documentation .

1. Create a secret from the Clair config.yaml:

$ oc create secret generic clairv4-config-secret --from-file=./config.yaml

2. Create the Clair v4 deployment file (for example, clair-combo.yaml) and modify it as
necessary:

clair-combo.yaml

 name: "jaeger"
 probability: 1
 jaeger:
 agent_endpoint: "localhost:6831"
 service_name: "clair"
metrics:
 name: "prometheus"

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 quay-component: clair-combo
 name: clair-combo
spec:
 replicas: 1
 selector:
 matchLabels:
 quay-component: clair-combo
 template:
 metadata:
 labels:
 quay-component: clair-combo
 spec:
 containers:
 - image: registry.redhat.io/quay/clair-rhel8:v3.7.13 1
 imagePullPolicy: IfNotPresent
 name: clair-combo
 env:
 - name: CLAIR_CONF
 value: /clair/config.yaml
 - name: CLAIR_MODE
 value: combo
 ports:
 - containerPort: 8080
 name: clair-http
 protocol: TCP
 - containerPort: 8089
 name: clair-intro

Red Hat Quay 3.7 Manage Red Hat Quay

32

https://quay.github.io/clair/reference/config.html

1

2

1

Change image to latest clair image name and version.

With the Service set to clairv4, the scanner endpoint for Clair v4 is entered later into the
Red Hat Quay config.yaml in the SECURITY_SCANNER_V4_ENDPOINT as http://clairv4.

3. Create the Clair v4 deployment as follows:

$ oc create -f ./clair-combo.yaml

4. Modify the config.yaml file for your Red Hat Quay deployment to add the following entries at
the end:

Identify the Clair v4 service endpoint

5. Redeploy the modified config.yaml to the secret containing that file (for example, quay-
enterprise-config-secret:

 protocol: TCP
 volumeMounts:
 - mountPath: /clair/
 name: config
 imagePullSecrets:
 - name: redhat-pull-secret
 restartPolicy: Always
 volumes:
 - name: config
 secret:
 secretName: clairv4-config-secret

apiVersion: v1
kind: Service
metadata:
 name: clairv4 2
 labels:
 quay-component: clair-combo
spec:
 ports:
 - name: clair-http
 port: 80
 protocol: TCP
 targetPort: 8080
 - name: clair-introspection
 port: 8089
 protocol: TCP
 targetPort: 8089
 selector:
 quay-component: clair-combo
 type: ClusterIP

FEATURE_SECURITY_NOTIFICATIONS: true
FEATURE_SECURITY_SCANNER: true
SECURITY_SCANNER_V4_ENDPOINT: http://clairv4 1

CHAPTER 7. CLAIR SECURITY SCANNING

33

$ oc delete secret quay-enterprise-config-secret
$ oc create secret generic quay-enterprise-config-secret --from-file=./config.yaml

6. For the new config.yaml to take effect, you need to restart the Red Hat Quay pods. Simply
deleting the quay-app pods causes pods with the updated configuration to be deployed.

At this point, images in any of the organizations identified in the namespace whitelist will be scanned by
Clair v4.

7.2. SETTING UP CLAIR ON A NON-OPENSHIFT RED HAT QUAY
DEPLOYMENT

For Red Hat Quay deployments not running on OpenShift, it is possible to configure Clair security
scanning manually. Red Hat Quay deployments already running Clair V2 can use the instructions below
to add Clair V4 to their deployment.

1. Deploy a (preferably fault-tolerant) Postgres database server. Note that Clair requires the
uuid-ossp extension to be added to its Postgres database. If the user supplied in Clair’s
config.yaml has the necessary privileges to create the extension then it will be added
automatically by Clair itself. If not, then the extension must be added before starting Clair. If the
extension is not present, the following error will be displayed when Clair attempts to start.

ERROR: Please load the "uuid-ossp" extension. (SQLSTATE 42501)

2. Create a Clair config file in a specific folder, for example, /etc/clairv4/config/config.yaml).

config.yaml

introspection_addr: :8089
http_listen_addr: :8080
log_level: debug
indexer:
 connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
matcher:
 connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres sslmode=disable
 max_conn_pool: 100
 run: ""
 migrations: true
 indexer_addr: clair-indexer
notifier:
 connstring: host=clairv4-postgres port=5432 dbname=clair user=postgres
password=postgres sslmode=disable
 delivery_interval: 1m
 poll_interval: 5m
 migrations: true

tracing and metrics
trace:
 name: "jaeger"

Red Hat Quay 3.7 Manage Red Hat Quay

34

More information about Clair’s configuration format can be found in upstream Clair documentation .

1. Run Clair via the container image, mounting in the configuration from the file you created.

$ podman run -p 8080:8080 -p 8089:8089 -e CLAIR_CONF=/clair/config.yaml -e
CLAIR_MODE=combo -v /etc/clair4/config:/clair -d registry.redhat.io/quay/clair-rhel8:v3.7.13

2. Follow the remaining instructions from the previous section for configuring Red Hat Quay to use
the new Clair V4 endpoint.

Running multiple Clair containers in this fashion is also possible, but for deployment scenarios beyond a
single container the use of a container orchestrator like Kubernetes or OpenShift is strongly
recommended.

7.3. ADVANCED CLAIR CONFIGURATION

7.3.1. Unmanaged Clair configuration

With Red Hat Quay 3.7, users can run an unmanaged Clair configuration on the Red Hat Quay
OpenShift Container Platform Operator. This feature allows users to create an unmanaged Clair
database, or run their custom Clair configuration without an unmanaged database.

7.3.1.1. Unmanaging a Clair database

An unmanaged Clair database allows the Red Hat Quay Operator to work in a geo-replicated
environment, where multiple instances of the Operator must communicate with the same database. An
unmanaged Clair database can also be used when a user requires a highly-available (HA) Clair database
that exists outside of a cluster.

Procedure

In the Quay Operator, set the clairpostgres component of the QuayRegistry custom resource
to unmanaged:

 probability: 1
 jaeger:
 agent_endpoint: "localhost:6831"
 service_name: "clair"
metrics:
 name: "prometheus"

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay370
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls

CHAPTER 7. CLAIR SECURITY SCANNING

35

https://quay.github.io/clair/reference/config.html
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/georepl-intro

7.3.1.2. Configuring a custom Clair database

The Red Hat Quay Operator for OpenShift Container Platform allows users to provide their own Clair
configuration by editing the configBundleSecret parameter.

Procedure

1. Create a Quay config bundle secret that includes the clair-config.yaml:

Example clair-config.yaml configuration:

NOTE

The database certificate is mounted under /run/certs/rds-ca-2019-root.pem
on the Clair application pod in the clair-config.yaml. It must be specified
when configuring your clair-config.yaml.

An example clair-config.yaml can be found at Clair on OpenShift config .

2. Add the clair-config.yaml to your bundle secret, named configBundleSecret:

 managed: false
 - kind: clairpostgres
 managed: false

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file extra_ca_cert_rds-
ca-2019-root.pem=./rds-ca-2019-root.pem --from-file clair-config.yaml=./clair-config.yaml --
from-file ssl.cert=./ssl.cert --from-file ssl.key=./ssl.key config-bundle-secret

indexer:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 layer_scan_concurrency: 6
 migrations: true
 scanlock_retry: 11
log_level: debug
matcher:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 migrations: true
metrics:
 name: prometheus
notifier:
 connstring: host=quay-server.example.com port=5432 dbname=quay user=quayrdsdb
password=quayrdsdb sslrootcert=/run/certs/rds-ca-2019-root.pem sslmode=verify-ca
 migrations: true

apiVersion: v1
kind: Secret
metadata:
 name: config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: <base64 encoded Quay config>

Red Hat Quay 3.7 Manage Red Hat Quay

36

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

NOTE

When updated, the provided clair-config.yaml is mounted into the Clair pod. Any
fields not provided are automatically populated with defaults using the Clair
configuration module.

After proper configuration, the Clair application pod should return to a Ready state.

7.3.2. Running a custom Clair configuration with a managed database

In some cases, users might want to run a custom Clair configuration with a managed database. This is
useful in the following scenarios:

When a user wants to disable an updater.

When a user is running in an air-gapped environment.

NOTE

If you are running Quay in an air-gapped environment, the airgap parameter
of your clair-config.yaml must be set to true.

If you are running Quay in an air-gapped environment, you should disable all
updaters.

Use the steps in "Configuring a custom Clair database" to configure your database when clairpostgres
is set to managed.

For more information about running Clair in an air-gapped environment, see Configuring access to the
Clair database in the air-gapped OpenShift cluster.

7.4. CLAIR CRDA CONFIGURATION

7.4.1. Enabling Clair CRDA

Java scanning depends on a public, Red Hat provided API service called Code Ready Dependency
Analytics (CRDA). CRDA is only available with internet access and is not enabled by default. Use the
following procedure to integrate the CRDA service with a custom API key and enable CRDA for Java
and Python scanning.

Prerequisites

Red Hat Quay 3.7 or greater

Procedure

1. Submit the API key request form to obtain the Quay-specific CRDA remote matcher.

 clair-config.yaml: <base64 encoded Clair config>
 extra_ca_cert_<name>: <base64 encoded ca cert>
 clair-ssl.crt: >-
 clair-ssl.key: >-

CHAPTER 7. CLAIR SECURITY SCANNING

37

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploy_red_hat_quay_on_openshift_with_the_quay_operator/index#clair-openshift-airgap-database
https://developers.redhat.com/content-gateway/link/3872178

1

2

2. Set the CRDA configuration in your clair-config.yaml file:

Insert the Quay-specific CRDA remote matcher from the API key request form here.

The hostname of your Quay server.

7.5. USING CLAIR

1. Log in to your Red Hat Quay cluster and select an organization for which you have configured
Clair scanning.

2. Select a repository from that organization that holds some images and select Tags from the left
navigation. The following figure shows an example of a repository with two images that have
been scanned:

3. If vulnerabilities are found, select to under the Security Scan column for the image to see either
all vulnerabilities or those that are fixable. The following figure shows information on all
vulnerabilities found:

7.6. CVE RATINGS FROM THE NATIONAL VULNERABILITY DATABASE

With Clair v4.2, enrichment data is now viewable in the Quay UI. Additionally, Clair v4.2 adds CVSS

matchers:
 config:
 crda:
 url: https://gw.api.openshift.io/api/v2/
 key: <CRDA_API_KEY> 1
 source: <QUAY_SERVER_HOSTNAME> 2

Red Hat Quay 3.7 Manage Red Hat Quay

38

https://developers.redhat.com/content-gateway/link/3872178

With Clair v4.2, enrichment data is now viewable in the Quay UI. Additionally, Clair v4.2 adds CVSS
scores from the National Vulnerability Database for detected vulnerabilities.

With this change, if the vulnerability has a CVSS score that is within 2 levels of the distro’s score, the
Quay UI present’s the distro’s score by default. For example:

This differs from the previous interface, which would only display the following information:

7.7. CONFIGURING CLAIR FOR DISCONNECTED ENVIRONMENTS

Clair utilizes a set of components called Updaters to handle the fetching and parsing of data from
various vulnerability databases. These Updaters are set up by default to pull vulnerability data directly
from the internet and work out of the box. For customers in disconnected environments without direct
access to the internet this poses a problem. Clair supports these environments through the ability to
work with different types of update workflows that take into account network isolation. Using the clairctl
command line utility, any process can easily fetch Updater data from the internet via an open host,
securely transfer the data to an isolated host, and then import the Updater data on the isolated host
into Clair itself.

The steps are as follows.

1. First ensure that your Clair configuration has disabled automated Updaters from running.

config.yaml

2. Export out the latest Updater data to a local archive. This requires the clairctl tool which can be
run directly as a binary, or via the Clair container image. Assuming your Clair configuration is in
/etc/clairv4/config/config.yaml, to run via the container image:

$ podman run -it --rm -v /etc/clairv4/config:/cfg:Z -v /path/to/output/directory:/updaters:Z --
entrypoint /bin/clairctl registry.redhat.io/quay/clair-rhel8:v3.7.13 --config /cfg/config.yaml
export-updaters /updaters/updaters.gz

Note that you need to explicitly reference the Clair configuration. This will create the Updater
archive in /etc/clairv4/updaters/updaters.gz. If you want to ensure the archive was created
without any errors from the source databases, you can supply the --strict flag to clairctl. The

matcher:
 disable_updaters: true

CHAPTER 7. CLAIR SECURITY SCANNING

39

archive file should be copied over to a volume that is accessible from the disconnected host
running Clair. From the disconnected host, use the same procedure now to import the archive
into Clair.

$ podman run -it --rm -v /etc/clairv4/config:/cfg:Z -v /path/to/output/directory:/updaters:Z --
entrypoint /bin/clairctl registry.redhat.io/quay/clair-rhel8:v3.7.13 --config /cfg/config.yaml
import-updaters /updaters/updaters.gz

7.7.1. Mapping repositories to Common Product Enumeration (CPE) information

Clair’s RHEL scanner relies on a Common Product Enumeration (CPE) file to properly map RPM
packages to the corresponding security data, in order to produce matching results. This file must be
present, or access to the file must be allowed, for the scanner to properly process RPMs. If the file is not
present, RPMs installed in the container images will not be scanned.

Red Hat publishes the JSON mapping file at
https://www.redhat.com/security/data/metrics/repository-to-cpe.json.

In addition to uploading CVE information to the database for disconnected Clair, you must also make
the mapping file available locally:

For standalone Quay and Clair deployments, the mapping file must be loaded into the Clair pod.

For Operator-based deployments, you must set the Clair component to unmanaged. Then
deploy Clair manually, setting the configuration to load a local copy of the mapping file.

Use the repo2cpe_mapping_file field in the Clair configuration to specify the file:

Further information is available from Red Hat at How to accurately match OVAL security data to
installed RPMs.

7.8. CLAIR UPDATER URLS

The following are the HTTP hosts and paths that Clair will attempt to talk to in a default configuration.
This list is non-exhaustive, as some servers will issue redirects and some request URLs are constructed
dynamically.

https://secdb.alpinelinux.org/

http://repo.us-west-2.amazonaws.com/2018.03/updates/x86_64/mirror.list

https://cdn.amazonlinux.com/2/core/latest/x86_64/mirror.list

https://www.debian.org/security/oval/

https://linux.oracle.com/security/oval/

https://packages.vmware.com/photon/photon_oval_definitions/

indexer:
 scanner:
 repo:
 rhel-repository-scanner:
 repo2cpe_mapping_file: /path/to/repository-to-cpe.json

Red Hat Quay 3.7 Manage Red Hat Quay

40

https://www.redhat.com/security/data/metrics/repository-to-cpe.json
https://www.redhat.com/en/blog/how-accurately-match-oval-security-data-installed-rpms

https://github.com/pyupio/safety-db/archive/

https://catalog.redhat.com/api/containers/

https://www.redhat.com/security/data/

https://support.novell.com/security/oval/

https://people.canonical.com/~ubuntu-security/oval/

7.9. ADDITIONAL INFORMATION

For detailed documentation on the internals of Clair, including how the microservices are structured,
please see the Upstream Clair and ClairCore documentation.

CHAPTER 7. CLAIR SECURITY SCANNING

41

https://quay.github.io/clair
https://quay.github.io/claircore

CHAPTER 8. SCANNING POD IMAGES WITH THE CONTAINER
SECURITY OPERATOR

The Container Security Operator (CSO) is an addon for the Clair security scanner available on
OpenShift Container Platform and other Kubernetes platforms. With the CSO, users can scan container
images associated with active pods for known vulnerabilities.

NOTE

The CSO does not work without Red Hat Quay and Clair.

The Container Security Operator (CSO) performs the following features:

Watches containers associated with pods on either specified or all namespaces.

Queries the container registry where the containers came from for vulnerability information
(provided that an image’s registry supports image scanning, such a a Red Hat Quay registry with
Clair scanning).

Exposes vulnerabilities via the ImageManifestVuln object in the Kubernetes API.

NOTE

To see instructions on installing the CSO on Kubernetes, select the Install button from
the Container Security OperatorHub.io page.

8.1. DOWNLOADING AND RUNNING THE CONTAINER SECURITY
OPERATOR IN OPENSHIFT CONTAINER PLATFORM

Use the following procedure to download the Container Security Operator.

NOTE

In the following procedure, the CSO is installed in the marketplace-operators
namespace. This allows the CSO to be used in all namespaces of your OpenShift
Container Platform cluster.

1. Go to Operators → OperatorHub (select Security) to see the available Container Security
Operator.

2. Select the Container Security Operator, then select Install to go to the Create Operator
Subscription page.

3. Check the settings (all namespaces and automatic approval strategy, by default), and select
Subscribe. The Container Security appears after a few moments on the Installed Operators
screen.

4. Optionally, you can add custom certificates to the CSO. In this example, create a certificate
named quay.crt in the current directory. Then run the following command to add the cert to the
CSO (restart the Operator pod for the new certs to take effect):

$ oc create secret generic container-security-operator-extra-certs --from-file=quay.crt -n
openshift-operators

Red Hat Quay 3.7 Manage Red Hat Quay

42

https://operatorhub.io/operator/container-security-operator
https://operatorhub.io/operator/container-security-operator

5. Open the OpenShift Dashboard (Home → Dashboards). A link to Image Security appears under
the status section, with a listing of the number of vulnerabilities found so far. Select the link to
see a Security breakdown, as shown in the following figure:

6. You can do one of two things at this point to follow up on any detected vulnerabilities:

Select the link to the vulnerability. You are taken to the container registry, Red Hat Quay or
other registry where the container came from, where you can see information about the
vulnerability. The following figure shows an example of detected vulnerabilities from a
Quay.io registry:

Select the namespaces link to go to the ImageManifestVuln screen, where you can see the
name of the selected image and all namespaces where that image is running. The following
figure indicates that a particular vulnerable image is running in two namespaces:

CHAPTER 8. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR

43

At this point, you know what images are vulnerable, what you need to do to fix those vulnerabilities, and
every namespace that the image was run in. So you can:

Alert anyone running the image that they need to correct the vulnerability

Stop the images from running (by deleting the deployment or other object that started the pod
the image is in)

Note that if you do delete the pod, it may take a few minutes for the vulnerability to reset on the
dashboard.

8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

You can query information on security from the command line. To query for detected vulnerabilities,
type:

$ oc get vuln --all-namespaces
NAMESPACE NAME AGE
default sha256.ca90... 6m56s
skynet sha256.ca90... 9m37s

To display details for a particular vulnerability, identify one of the vulnerabilities, along with its
namespace and the describe option. This example shows an active container whose image includes an
RPM package with a vulnerability:

$ oc describe vuln --namespace mynamespace sha256.ac50e3752...
Name: sha256.ac50e3752...
Namespace: quay-enterprise
...
Spec:
 Features:
 Name: nss-util
 Namespace Name: centos:7
 Version: 3.44.0-3.el7
 Versionformat: rpm
 Vulnerabilities:
 Description: Network Security Services (NSS) is a set of libraries...

Red Hat Quay 3.7 Manage Red Hat Quay

44

CHAPTER 9. INTEGRATING RED HAT QUAY INTO OPENSHIFT
CONTAINER PLATFORM WITH THE QUAY BRIDGE

OPERATOR
Using the Quay Bridge Operator, you can replace the integrated container registry in OpenShift
Container Platform with a Red Hat Quay registry. By doing this, your integrated OpenShift Container
Platform registry becomes a highly available, enterprise-grade Red Hat Quay registry with enhanced
role based access control (RBAC) features.

The primary goal of the Quay Bridge Operator is to duplicate the features of the integrated OpenShift
Container Platform registry in the new Red Hat Quay registry. The features enabled with the Quay
Bridge Operator include:

Synchronizing OpenShift Container Platform namespaces as Red Hat Quay organizations.

Creating robot accounts for each default namespace service account.

Creating secrets for each created robot account, and associating each robot secret to a service
account as Mountable and Image Pull Secret.

Synchronizing OpenShift Container Platform image streams as Red Hat Quay repositories.

Automatically rewriting new builds making use of image streams to output to Red Hat Quay.

Automatically importing an image stream tag once a build completes.

By using the following procedures, you will enable bi-directional communication between your Red Hat
Quay and OpenShift Container Platform clusters.

9.1. SETTING UP RED HAT QUAY FOR THE QUAY BRIDGE OPERATOR

In this procedure, you will create a dedicated Red Hat Quay organization, and from a new application
created within that organization you will generate an OAuth token to be used with the Quay Bridge
Operator in OpenShift Container Platform.

Procedure

1. Log in to Red Hat Quay through the web UI.

2. Select the organization for which the external application will be configured.

3. On the navigation pane, select Applications.

4. Select Create New Application and enter a name for the new application, for example,
openshift.

5. On the OAuth Applications page, select your application, for example, openshift.

6. On the navigation pane, select Generate Token.

7. Select the following fields:

Administer Organization

Administer Repositories

CHAPTER 9. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

45

Create Repositories

View all visible repositories

Read/Write to any accessible repositories

Administer User

Read User Information

8. Review the assigned permissions.

9. Select Authorize Application and then confirm confirm the authorization by selecting
Authorize Application.

10. Save the generated access token.

IMPORTANT

Red Hat Quay does not offer token management. You cannot list tokens, delete
tokens, or modify tokens. The generated access token is only shown once and
cannot be re-obtained after closing the page.

9.2. INSTALLING THE QUAY BRIDGE OPERATOR ON OPENSHIFT
CONTAINER PLATFORM

In this procedure, you will install the Quay Bridge Operator on OpenShift Container Platform.

Prerequiites

You have set up Red Hat Quay and obtained an Access Token.

An OpenShift Container Platform 4.6 or greater environment for which you have cluster
administrator permissions.

Procedure

1. Open the Administrator perspective of the web console and navigate to Operators →
OperatorHub on the navigation pane.

2. Search for Quay Bridge Operator, click the Quay Bridge Operator title, and then click Install.

3. Select the version to install, for example, stable-3.7, and then click Install.

4. Click View Operator when the installation finishes to go to the Quay Bridge Operator’s Details
page. Alternatively, you can click Installed Operators → Red Hat Quay Bridge Operator to go
to the Details page.

9.3. CREATING AN OPENSHIFT CONTAINER PLATFORM SECRET FOR
THE OAUTH TOKEN

In this procedure, you will add the previously obtained access token to communicate with your Red Hat
Quay deployment. The access token will be stored within OpenShift Container Platform as a secret.

Prerequisites

Red Hat Quay 3.7 Manage Red Hat Quay

46

Prerequisites

You have set up Red Hat Quay and obtained an access token.

You have deployed the Quay Bridge Operator on OpenShift Container Platform.

An OpenShift Container Platform 4.6 or greater environment for which you have cluster
administrator permissions.

You have installed the OpenShift CLI (oc).

Procedure

Create a secret that contains the access token in the openshift-operators namespace:

9.4. CREATING THE QUAYINTEGRATION CUSTOM RESOURCE

In this procedure, you will create a QuayIntegration custom resource, which can be completed from
either the web console or from the command line.

Prerequisites

You have set up Red Hat Quay and obtained an access token.

You have deployed the Quay Bridge Operator on OpenShift Container Platform.

An OpenShift Container Platform 4.6 or greater environment for which you have cluster
administrator permissions.

Optional: You have installed the OpenShift CLI (oc).

9.4.1. Optional: Creating the QuayIntegration custom resource using the CLI

Follow this procedure to create the QuayIntegration custom resource using the command line.

Procedure

1. Create a quay-integration.yaml:

$ touch quay-integration.yaml

2. Use the following configuration for a minimal deployment of the QuayIntegration custom
resource:

$ oc create secret -n openshift-operators generic <secret-name> --from-literal=token=
<access_token>

 apiVersion: quay.redhat.com/v1
 kind: QuayIntegration
 metadata:
 name: example-quayintegration
 spec:
 clusterID: openshift 1
 credentialsSecret:

CHAPTER 9. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

47

1

2

3

4

The clusterID value should be unique across the entire ecosystem. This value is required
and defaults to openshift.

The credentialsSecret property refers to the namespace and name of the secret
containing the token that was previously created.

Replace the QUAY_URL with the hostname of your Red Hat Quay instance.

If Red Hat Quay is using self signed certificates, set the property to insecureRegistry:
true.

For a list of all configuration fields, see "QuayIntegration configuration fields".

3. Create the QuayIntegration custom resource:

$ oc create -f quay-integration.yaml

9.4.2. Optional: Creating the QuayIntegration custom resource using the web
console

Follow this procedure to create the QuayIntegration custom resource using the web console.

Procedure

1. Open the Administrator perspective of the web console and navigate to Operators →
Installed Operators.

2. Click Red Hat Quay Bridge Operator.

3. On the Details page of the Quay Bridge Operator, click Create Instance on the Quay
Integration API card.

4. On the Create QuayIntegration page, enter the following required information in either Form
view or YAML view:

Name: The name that will refer to the QuayIntegration custom resource object.

Cluster ID: The ID associated with this cluster. This value should be unique across the entire
ecosystem. Defaults to openshift if left unspecified.

Credentials secret: Refers to the namespace and name of the secret containing the token
that was previously created.

Quay hostname: The hostname of the Quay registry.
For a list of all configuration fields, see "QuayIntegration configuration fields".

After the QuayIntegration custom resource is created, your OpenShift Container Platform cluster will
be linked to your Red Hat Quay instance. Organizations within your Red Hat Quay registry should be
created for the related namespace for the OpenShift Container Platform environment.

 namespace: openshift-operators
 name: quay-integration 2
 quayHostname: https://<QUAY_URL> 3
 insecureRegistry: false 4

Red Hat Quay 3.7 Manage Red Hat Quay

48

9.5. QUAYINTEGRATION CONFIGURATION FIELDS

The following configuration fields are available for the QuayIntegration custom resource:

Name Description Schema

allowlistNamespaces
(Optional)

A list of namespaces to
include.

Array

clusterID
(Required)

The ID associated with
this cluster.

String

credentialsSecret.key
(Required)

The secret containing
credentials to
communicate with the
Quay registry.

Object

denylistNamespaces
(Optional)

A list of namespaces to
exclude.

Array

insecureRegistry
(Optional)

Whether to skip TLS
verification to the Quay
registry

Boolean

quayHostname
(Required)

The hostname of the
Quay registry.

String

scheduledImageStreamImport
(Optional)

Whether to enable
image stream importing.

Boolean

CHAPTER 9. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR

49

CHAPTER 10. REPOSITORY MIRRORING

10.1. REPOSITORY MIRRORING

Red Hat Quay repository mirroring lets you mirror images from external container registries (or another
local registry) into your Red Hat Quay cluster. Using repository mirroring, you can synchronize images to
Red Hat Quay based on repository names and tags.

From your Red Hat Quay cluster with repository mirroring enabled, you can:

Choose a repository from an external registry to mirror

Add credentials to access the external registry

Identify specific container image repository names and tags to sync

Set intervals at which a repository is synced

Check the current state of synchronization

To use the mirroring functionality, you need to:

Enable repository mirroring in the Red Hat Quay configuration

Run a repository mirroring worker

Create mirrored repositories

All repository mirroring configuration can be performed using the configuration tool UI or via the Red
Hat Quay API

10.2. REPOSITORY MIRRORING VERSUS GEO-REPLICATION

Red Hat Quay geo-replication mirrors the entire image storage backend data between 2 or more
different storage backends while the database is shared (one Red Hat Quay registry with two different
blob storage endpoints). The primary use cases for geo-replication are:

Speeding up access to the binary blobs for geographically dispersed setups

Guaranteeing that the image content is the same across regions

Repository mirroring synchronizes selected repositories (or subsets of repositories) from one registry to
another. The registries are distinct, with each registry having a separate database and separate image
storage. The primary use cases for mirroring are:

Independent registry deployments in different datacenters or regions, where a certain subset of
the overall content is supposed to be shared across the datacenters / regions

Automatic synchronization or mirroring of selected (whitelisted) upstream repositories from
external registries into a local Red Hat Quay deployment

NOTE

Repository mirroring and geo-replication can be used simultaneously.

Red Hat Quay 3.7 Manage Red Hat Quay

50

Table 10.1. Red Hat Quay Repository mirroring versus geo-replication

Feature / Capability Geo-replication Repository mirroring

What is the feature designed to
do?

A shared, global registry Distinct, different registries

What happens if replication or
mirroring hasn’t been completed
yet?

The remote copy is used (slower) No image is served

Is access to all storage backends
in both regions required?

Yes (all Red Hat Quay nodes) No (distinct storage)

Can users push images from both
sites to the same repository?

Yes No

Is all registry content and
configuration identical across all
regions (shared database)

Yes No

Can users select individual
namespaces or repositories to be
mirrored?

No Yes

Can users apply filters to
synchronization rules?

No Yes

Are individual / different RBAC
configurations allowed in each
region

No Yes

10.3. USING REPOSITORY MIRRORING

Here are some features and limitations of Red Hat Quay repository mirroring:

With repository mirroring, you can mirror an entire repository or selectively limit which images
are synced. Filters can be based on a comma-separated list of tags, a range of tags, or other
means of identifying tags through regular expressions.

Once a repository is set as mirrored, you cannot manually add other images to that repository.

Because the mirrored repository is based on the repository and tags you set, it will hold only the
content represented by the repo / tag pair. In other words, if you change the tag so that some
images in the repository no longer match, those images will be deleted.

Only the designated robot can push images to a mirrored repository, superseding any role-
based access control permissions set on the repository.

With a mirrored repository, a user can pull images (given read permission) from the repository
but can not push images to the repository.

CHAPTER 10. REPOSITORY MIRRORING

51

Changing settings on your mirrored repository can be performed in the Red Hat Quay UI, using
the Repositories → Mirrors tab for the mirrored repository you create.

Images are synced at set intervals, but can also be synced on demand.

10.4. MIRRORING CONFIGURATION UI

1. Start the Quay container in configuration mode and select the Enable Repository Mirroring
check box. If you want to require HTTPS communications and verify certificates during
mirroring, select the HTTPS and cert verification check box.

2. Validate and download the configuration file, and then restart Quay in registry mode using the
updated config file.

10.5. MIRRORING CONFIGURATION FIELDS

Table 10.2. Mirroring configuration

Field Type Description

FEATURE_REPO_MIRROR Boolean Enable or disable repository
mirroring

Default: false

REPO_MIRROR_INTERVAL Number The number of seconds between
checking for repository mirror
candidates

Default: 30

REPO_MIRROR_SERVER_HOSTNAME String Replaces the
SERVER_HOSTNAME as the
destination for mirroring.

Default: None

Example:
openshift-quay-service

Red Hat Quay 3.7 Manage Red Hat Quay

52

REPO_MIRROR_TLS_VERIFY Boolean Require HTTPS and verify
certificates of Quay registry
during mirror.

Default: false

REPO_MIRROR_ROLLBACK Boolean When set to true, the repository
rolls back after a failed mirror
attempt.

Default: false

Field Type Description

10.6. MIRRORING WORKER

Use the following procedure to start the repository mirroring worker.

Procedure

If you have not configured TLS communications using a /root/ca.crt certificate, enter the
following command to start a Quay pod with the repomirror option:

If you have configured TLS communications using a /root/ca.crt certificate, enter the following
command to start the repository mirroring worker:

10.7. CREATING A MIRRORED REPOSITORY

The steps shown in this section assume you already have enabled repository mirroring in the
configuration for your Red Hat Quay cluster and that you have a deployed a mirroring worker.

When mirroring a repository from an external container registry, create a new private repository.
Typically the same name is used as the target repository, for example, quay-rhel8:

$ sudo podman run -d --name mirroring-worker \
 -v $QUAY/config:/conf/stack:Z \
 {productrepo}/{quayimage}:{productminv} repomirror

$ sudo podman run -d --name mirroring-worker \
 -v $QUAY/config:/conf/stack:Z \
 -v /root/ca.crt:/etc/pki/ca-trust/source/anchors/ca.crt:Z \
 {productrepo}/{quayimage}:{productminv} repomirror

CHAPTER 10. REPOSITORY MIRRORING

53

10.7.1. Repository mirroring settings

1. In the Settings tab, set the Repository State to Mirror:

2. In the Mirror tab, enter the details for connecting to the external registry, along with the tags,
scheduling and access information:

3. Enter the details as required in the following fields:

Registry Location: The external repository you want to mirror, for example,
registry.redhat.io/quay/quay-rhel8

Tags: This field is required. You may enter a comma-separated list of individual tags or tag
patterns. (See Tag Patterns section for details.)

NOTE

Red Hat Quay 3.7 Manage Red Hat Quay

54

NOTE

In order for Quay to get the list of tags in the remote repository, one of the
following requirements must be met:

An image with the "latest" tag must exist in the remote repository OR

At least one explicit tag, without pattern matching, must exist in the list
of tags that you specify

Start Date: The date on which mirroring begins. The current date and time is used by
default.

Sync Interval: Defaults to syncing every 24 hours. You can change that based on hours or
days.

Robot User: Create a new robot account or choose an existing robot account to do the
mirroring.

Username: The username for accessing the external registry holding the repository you are
mirroring.

Password: The password associated with the Username. Note that the password cannot
include characters that require an escape character (\).

10.7.2. Advanced settings

In the Advanced Settings section, configure TLS and proxy, if required:

Verify TLS: Check this box if you want to require HTTPS and to verify certificates, when
communicating with the target remote registry.

HTTP Proxy: Identify the HTTP proxy server needed to access the remote site, if one is
required.

HTTPS Proxy: Identify the HTTPS proxy server needed to access the remote site, if one is
required.

No Proxy: List of locations that do not require proxy

10.7.3. Synchronize now

To perform an immediate mirroring operation, press the Sync Now button on the repository’s
Mirroring tab. The logs are available on the Usage Logs tab:

CHAPTER 10. REPOSITORY MIRRORING

55

When the mirroring is complete, the images will appear in the Tags tab:

Below is an example of a completed Repository Mirroring screen:

10.8. EVENT NOTIFICATIONS FOR MIRRORING

There are three notification events for repository mirroring:

Repository Mirror Started

Repository Mirror Success

Repository Mirror Unsuccessful

Red Hat Quay 3.7 Manage Red Hat Quay

56

The events can be configured inside the Settings tab for each repository, and all existing notification
methods such as email, slack, Quay UI and webhooks are supported.

10.9. MIRRORING TAG PATTERNS

As noted above, at least one Tag must be explicitly entered (ie. not a tag pattern) or the tag "latest"
must exist in the report repository. (The tag "latest" will not be synced unless specified in the tag list.).
This is required for Quay to get the list of tags in the remote repository to compare to the specified list
to mirror.

10.9.1. Pattern syntax

Pattern Description

* Matches all characters

? Matches any single character

[seq] Matches any character in seq

[!seq] Matches any character not in seq

10.9.2. Example tag patterns

Example Pattern Example Matches

v3* v32, v3.1, v3.2, v3.2-4beta, v3.3

v3.* v3.1, v3.2, v3.2-4beta

v3.? v3.1, v3.2, v3.3

v3.[12] v3.1, v3.2

v3.[12]* v3.1, v3.2, v3.2-4beta

v3.[!1]* v3.2, v3.2-4beta, v3.3

10.10. WORKING WITH MIRRORED REPOSITORIES

Once you have created a mirrored repository, there are several ways you can work with that repository.
Select your mirrored repository from the Repositories page and do any of the following:

Enable/disable the repository: Select the Mirroring button in the left column, then toggle the
Enabled check box to enable or disable the repository temporarily.

Check mirror logs: To make sure the mirrored repository is working properly, you can check the
mirror logs. To do that, select the Usage Logs button in the left column. Here’s an example:

CHAPTER 10. REPOSITORY MIRRORING

57

Sync mirror now: To immediately sync the images in your repository, select the Sync Now
button.

Change credentials: To change the username and password, select DELETE from the
Credentials line. Then select None and add the username and password needed to log into the
external registry when prompted.

Cancel mirroring: To stop mirroring, which keeps the current images available but stops new
ones from being synced, select the CANCEL button.

Set robot permissions: Red Hat Quay robot accounts are named tokens that hold credentials
for accessing external repositories. By assigning credentials to a robot, that robot can be used
across multiple mirrored repositories that need to access the same external registry.
You can assign an existing robot to a repository by going to Account Settings, then selecting the
Robot Accounts icon in the left column. For the robot account, choose the link under the
REPOSITORIES column. From the pop-up window, you can:

Check which repositories are assigned to that robot.

Assign read, write or Admin privileges to that robot from the PERMISSION field shown in

Red Hat Quay 3.7 Manage Red Hat Quay

58

Assign read, write or Admin privileges to that robot from the PERMISSION field shown in
this figure:

Change robot credentials: Robots can hold credentials such as Kubernetes secrets, Docker
login information, and Mesos bundles. To change robot credentials, select the Options gear on
the robot’s account line on the Robot Accounts window and choose View Credentials. Add the
appropriate credentials for the external repository the robot needs to access.

Check and change general setting: Select the Settings button (gear icon) from the left column
on the mirrored repository page. On the resulting page, you can change settings associated
with the mirrored repository. In particular, you can change User and Robot Permissions, to
specify exactly which users and robots can read from or write to the repo.

10.11. REPOSITORY MIRRORING RECOMMENDATIONS

Best practices for repository mirroring include:

Repository mirroring pods can run on any node. This means you can even run mirroring on nodes
where Red Hat Quay is already running.

Repository mirroring is scheduled in the database and runs in batches. As a result, more workers
should mean faster mirroring, since more batches will be processed.

The optimal number of mirroring pods depends on:

The total number of repositories to be mirrored

The number of images and tags in the repositories and the frequency of changes

Parallel batches

You should balance your mirroring schedule across all mirrored repositories, so that they do not

CHAPTER 10. REPOSITORY MIRRORING

59

You should balance your mirroring schedule across all mirrored repositories, so that they do not
all start up at the same time.

For a mid-size deployment, with approximately 1000 users and 1000 repositories, and with
roughly 100 mirrored repositories, it is expected that you would use 3-5 mirroring pods, scaling
up to 10 pods if required.

Red Hat Quay 3.7 Manage Red Hat Quay

60

CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT
QUAY

The Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard
application protocol for accessing and maintaining distributed directory information services over an
Internet Protocol (IP) network. Red Hat Quay supports using LDAP as an identity provider.

11.1. CONSIDERATIONS PRIOR TO ENABLING LDAP

11.1.1. Existing Quay deployments

Conflicts between user names can arise when you enable LDAP for an existing Quay deployment that
already has users configured. Consider the scenario where a particular user, alice, was manually created
in Quay prior to enabling LDAP. If the user name alice also exists in the LDAP directory, Quay will create
a new user alice-1 when alice logs in for the first time using LDAP, and will map the LDAP credentials to
this account. This might not be want you want, for consistency reasons, and it is recommended that you
remove any potentially conflicting local account names from Quay prior to enabling LDAP.

11.1.2. Manual User Creation and LDAP authentication

When Quay is configured for LDAP, LDAP-authenticated users are automatically created in Quay’s
database on first log in, if the configuration option FEATURE_USER_CREATION is set to true. If this
option is set to false, the automatic user creation for LDAP users will fail and the user is not allowed to
log in. In this scenario, the superuser needs to create the desired user account first. Conversely, if
FEATURE_USER_CREATION is set to true, this also means that a user can still create an account from
the Quay login screen, even if there is an equivalent user in LDAP.

11.2. SET UP LDAP CONFIGURATION

In the config tool, locate the Authentication section and select “LDAP” from the drop-down menu.
Update LDAP configuration fields as required.

Here is an example of the resulting entry in the config.yaml file:

AUTHENTICATION_TYPE: LDAP

11.2.1. Full LDAP URI

CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

61

The full LDAP URI, including the ldap:// or ldaps:// prefix.

A URI beginning with ldaps:// will make use of the provided SSL certificate(s) for TLS setup.

Here is an example of the resulting entry in the config.yaml file:

LDAP_URI: ldaps://ldap.example.org

11.2.2. Team Synchronization

If enabled, organization administrators who are also superusers can set teams to have their
membership synchronized with a backing group in LDAP.

The resynchronization duration is the period at which a team must be re-synchronized. Must be
expressed in a duration string form: 30m, 1h, 1d.

Optionally allow non-superusers to enable and manage team syncing under organizations in
which they are administrators.

Here is an example of the resulting entries in the config.yaml file:

FEATURE_TEAM_SYNCING: true
TEAM_RESYNC_STALE_TIME: 60m
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP: true

11.2.3. Base and Relative Distinguished Names

Red Hat Quay 3.7 Manage Red Hat Quay

62

A Distinguished Name path which forms the base path for looking up all LDAP records. Example:
dc=my,dc=domain,dc=com

Optional list of Distinguished Name path(s) which form the secondary base path(s) for looking
up all user LDAP records, relative to the Base DN defined above. These path(s) will be tried if
the user is not found via the primary relative DN.

User Relative DN is relative to BaseDN. Example: ou=NYC not ou=NYC,dc=example,dc=org

Multiple “Secondary User Relative DNs” may be entered if there are multiple Organizational
Units where User objects are located at. Simply type in the Organizational Units and click on Add
button to add multiple RDNs. Example: ou=Users,ou=NYC and ou=Users,ou=SFO

The "User Relative DN" searches with subtree scope. For example, if your Organization has
Organizational Units NYC and SFO under the Users OU (ou=SFO,ou=Users and
ou=NYC,ou=Users), Red Hat Quay can authenticate users from both the NYC and SFO
Organizational Units if the User Relative DN is set to Users (ou=Users).

Here is an example of the resulting entries in the config.yaml file:

LDAP_BASE_DN:
- dc=example
- dc=com
LDAP_USER_RDN:
- ou=users
LDAP_SECONDARY_USER_RDNS:
- ou=bots
- ou=external

11.2.4. Additional User Filters

If specified, the additional filter used for all user lookup queries. Note that all Distinguished
Names used in the filter must be full paths; the Base DN is not added automatically here. Must
be wrapped in parens. Example: (&(someFirstField=someValue)

CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

63

(someOtherField=someOtherValue))

Here is an example of the resulting entry in the config.yaml file:

LDAP_USER_FILTER: (memberof=cn=developers,ou=groups,dc=example,dc=com)

11.2.5. Administrator DN

The Distinguished Name and password for the administrator account. This account must be able
to login and view the records for all user accounts. Example:
uid=admin,ou=employees,dc=my,dc=domain,dc=com

The password will be stored in plaintext inside the config.yaml, so setting up a dedicated
account or using a password hash is highly recommended.

Here is an example of the resulting entries in the config.yaml file:

LDAP_ADMIN_DN: cn=admin,dc=example,dc=com
LDAP_ADMIN_PASSWD: changeme

11.2.6. UID and Mail attributes

The UID attribute is the name of the property field in LDAP user record to use as the username.
Typically "uid".

The Mail attribute is the name of the property field in LDAP user record that stores user e-mail
address(es). Typically "mail".

Either of these may be used during login.

The logged in username must exist in User Relative DN.

sAMAccountName is the UID attribute for against Microsoft Active Directory setups.

Here is an example of the resulting entries in the config.yaml file:

LDAP_UID_ATTR: uid
LDAP_EMAIL_ATTR: mail

Red Hat Quay 3.7 Manage Red Hat Quay

64

11.2.7. Validation

Once the configuration is completed, click on “Save Configuration Changes” button to validate the
configuration.

All validation must succeed before proceeding, or additional configuration may be performed by
selecting the "Continue Editing" button.

11.3. COMMON ISSUES

Invalid credentials

Administrator DN or Administrator DN Password values are incorrect

Verification of superuser %USERNAME% failed: Username not found The user either does not exist in
the remote authentication system OR LDAP auth is misconfigured.

Red Hat Quay can connect to the LDAP server via Username/Password specified in the Administrator
DN fields however cannot find the current logged in user with the UID Attribute or Mail Attribute fields
in the User Relative DN Path. Either current logged in user does not exist in User Relative DN Path, or
Administrator DN user do not have rights to search/read this LDAP path.

11.4. CONFIGURE AN LDAP USER AS SUPERUSER

Once LDAP is configured, you can log in to your Red Hat Quay instance with a valid LDAP username and
password. You are prompted to confirm your Red Hat Quay username as shown in the following figure:

To attach superuser privilege to an LDAP user, modify the config.yaml file with the username. For
example:

CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

65

SUPER_USERS:
- testadmin

Restart the Red Hat Quay container with the updated config.yaml file. The next time you log in, the user
will have superuser privileges.

Red Hat Quay 3.7 Manage Red Hat Quay

66

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER
RED HAT QUAY

Red Hat Quay exports a Prometheus- and Grafana-compatible endpoint on each instance to allow for
easy monitoring and alerting.

12.1. EXPOSING THE PROMETHEUS ENDPOINT

12.1.1. Standalone Red Hat Quay

When using podman run to start the Quay container, expose the metrics port 9091:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 -p 9091:9091\
 --name=quay \
 -v $QUAY/config:/conf/stack:Z \
 -v $QUAY/storage:/datastorage:Z \
 registry.redhat.io/quay/quay-rhel8:v3.7.13

The metrics will now be available:

See Monitoring Quay with Prometheus and Grafana for details on configuring Prometheus and Grafana
to monitor Quay repository counts.

12.1.2. Red Hat Quay Operator

Determine the cluster IP for the quay-metrics service:

Connect to your cluster and access the metrics using the cluster IP and port for the quay-metrics
service:

$ curl quay.example.com:9091/metrics

$ oc get services -n quay-enterprise
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.61.161 <none> 80/TCP,8089/TCP
18h
example-registry-clair-postgres ClusterIP 172.30.122.136 <none> 5432/TCP
18h
example-registry-quay-app ClusterIP 172.30.72.79 <none>
443/TCP,80/TCP,8081/TCP,55443/TCP 18h
example-registry-quay-config-editor ClusterIP 172.30.185.61 <none> 80/TCP
18h
example-registry-quay-database ClusterIP 172.30.114.192 <none> 5432/TCP
18h
example-registry-quay-metrics ClusterIP 172.30.37.76 <none> 9091/TCP
18h
example-registry-quay-redis ClusterIP 172.30.157.248 <none> 6379/TCP
18h

$ oc debug node/master-0

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

67

https://prometheus.io/
https://access.redhat.com/solutions/3750281

12.1.3. Setting up Prometheus to consume metrics

Prometheus needs a way to access all Red Hat Quay instances running in a cluster. In the typical setup,
this is done by listing all the Red Hat Quay instances in a single named DNS entry, which is then given to
Prometheus.

12.1.4. DNS configuration under Kubernetes

A simple Kubernetes service can be configured to provide the DNS entry for Prometheus.

12.1.5. DNS configuration for a manual cluster

SkyDNS is a simple solution for managing this DNS record when not using Kubernetes. SkyDNS can run
on an etcd cluster. Entries for each Red Hat Quay instance in the cluster can be added and removed in
the etcd store. SkyDNS will regularly read them from there and update the list of Quay instances in the
DNS record accordingly.

12.2. INTRODUCTION TO METRICS

Red Hat Quay provides metrics to help monitor the registry, including metrics for general registry usage,
uploads, downloads, garbage collection, and authentication.

12.2.1. General registry statistics

General registry statistics can indicate how large the registry has grown.

Metric name Description

quay_user_rows Number of users in the database

quay_robot_rows Number of robot accounts in the database

quay_org_rows Number of organizations in the database

quay_repository_rows Number of repositories in the database

quay_security_scanning_unscanned_images_remainin
g_total

Number of images that are not scanned by the latest
security scanner

Sample metrics output

sh-4.4# curl 172.30.37.76:9091/metrics

HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 4.0447e-05
go_gc_duration_seconds{quantile="0.25"} 6.2203e-05
...

HELP quay_user_rows number of users in the database

Red Hat Quay 3.7 Manage Red Hat Quay

68

http://kubernetes.io/docs/user-guide/services/
https://github.com/skynetservices/skydns
https://github.com/coreos/etcd

12.2.2. Queue items

The queue items metrics provide information on the multiple queues used by Quay for managing work.

Metric name Description

quay_queue_items_available Number of items in a specific queue

quay_queue_items_locked Number of items that are running

quay_queue_items_available_unlocked Number of items that are waiting to be processed

Metric labels

queue_name: The name of the queue. One of:

exportactionlogs: Queued requests to export action logs. These logs are then processed
and put in storage. A link is then sent to the requester via email.

namespacegc: Queued namespaces to be garbage collected

notification: Queue for repository notifications to be sent out

repositorygc: Queued repositories to be garbage collected

secscanv4: Notification queue specific for Clair V4

dockerfilebuild: Queue for Quay docker builds

TYPE quay_user_rows gauge
quay_user_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 3

HELP quay_robot_rows number of robot accounts in the database
TYPE quay_robot_rows gauge
quay_robot_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 2

HELP quay_org_rows number of organizations in the database
TYPE quay_org_rows gauge
quay_org_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 2

HELP quay_repository_rows number of repositories in the database
TYPE quay_repository_rows gauge
quay_repository_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 4

HELP quay_security_scanning_unscanned_images_remaining number of images that are not
scanned by the latest security scanner
TYPE quay_security_scanning_unscanned_images_remaining gauge
quay_security_scanning_unscanned_images_remaining{host="example-registry-quay-app-
6df87f7b66-9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 5

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

69

imagestoragereplication: Queued blob to be replicated across multiple storages

chunk_cleanup: Queued blob segments that needs to be deleted. This is only used by some
storage implementations, for example, Swift.

For example, the queue labelled repositorygc contains the repositories marked for deletion by the
repository garbage collection worker. For metrics with a queue_name label of repositorygc:

quay_queue_items_locked is the number of repositories currently being deleted.

quay_queue_items_available_unlocked is the number of repositories waiting to get processed
by the worker.

Sample metrics output

12.2.3. Garbage collection metrics

These metrics show you how many resources have been removed from garbage collection (gc). They
show many times the gc workers have run and how many namespaces, repositories, and blobs were
removed.

Metric name Description

quay_gc_iterations_total Number of iterations by the GCWorker

quay_gc_namespaces_purged_total Number of namespaces purged by the
NamespaceGCWorker

quay_gc_repos_purged_total Number of repositories purged by the
RepositoryGCWorker or NamespaceGCWorker

quay_gc_storage_blobs_deleted_total Number of storage blobs deleted

HELP quay_queue_items_available number of queue items that have not expired
TYPE quay_queue_items_available gauge
quay_queue_items_available{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="63",process_name="exportactionlogsworker.py",queue_name="expo
rtactionlogs"} 0
...

HELP quay_queue_items_available_unlocked number of queue items that have not expired and are
not locked
TYPE quay_queue_items_available_unlocked gauge
quay_queue_items_available_unlocked{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="63",process_name="exportactionlogsworker.py",queue_name="expo
rtactionlogs"} 0
...

HELP quay_queue_items_locked number of queue items that have been acquired
TYPE quay_queue_items_locked gauge
quay_queue_items_locked{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="63",process_name="exportactionlogsworker.py",queue_name="expo
rtactionlogs"} 0

Red Hat Quay 3.7 Manage Red Hat Quay

70

Sample metrics output

12.2.3.1. Multipart uploads metrics

The multipart uploads metrics show the number of blobs uploads to storage (S3, Rados,

TYPE quay_gc_iterations_created gauge
quay_gc_iterations_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189714e+09
...

HELP quay_gc_iterations_total number of iterations by the GCWorker
TYPE quay_gc_iterations_total counter
quay_gc_iterations_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_namespaces_purged_created gauge
quay_gc_namespaces_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189433e+09
...

HELP quay_gc_namespaces_purged_total number of namespaces purged by the
NamespaceGCWorker
TYPE quay_gc_namespaces_purged_total counter
quay_gc_namespaces_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
....

TYPE quay_gc_repos_purged_created gauge
quay_gc_repos_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.631782319018925e+09
...

HELP quay_gc_repos_purged_total number of repositories purged by the RepositoryGCWorker or
NamespaceGCWorker
TYPE quay_gc_repos_purged_total counter
quay_gc_repos_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_storage_blobs_deleted_created gauge
quay_gc_storage_blobs_deleted_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189059e+09
...

HELP quay_gc_storage_blobs_deleted_total number of storage blobs deleted
TYPE quay_gc_storage_blobs_deleted_total counter
quay_gc_storage_blobs_deleted_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

71

The multipart uploads metrics show the number of blobs uploads to storage (S3, Rados,
GoogleCloudStorage, RHOCS). These can help identify issues when Quay is unable to correctly upload
blobs to storage.

Metric name Description

quay_multipart_uploads_started_total Number of multipart uploads to Quay storage that
started

quay_multipart_uploads_completed_total Number of multipart uploads to Quay storage that
completed

Sample metrics output

12.2.4. Image push / pull metrics

A number of metrics are available related to pushing and pulling images.

12.2.4.1. Image pulls total

Metric name Description

quay_registry_image_pulls_total The number of images downloaded from the registry.

Metric labels

TYPE quay_multipart_uploads_completed_created gauge
quay_multipart_uploads_completed_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823308284895e+09
...

HELP quay_multipart_uploads_completed_total number of multipart uploads to Quay storage that
completed
TYPE quay_multipart_uploads_completed_total counter
quay_multipart_uploads_completed_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0

TYPE quay_multipart_uploads_started_created gauge
quay_multipart_uploads_started_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823308284352e+09
...

HELP quay_multipart_uploads_started_total number of multipart uploads to Quay storage that
started
TYPE quay_multipart_uploads_started_total counter
quay_multipart_uploads_started_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

Red Hat Quay 3.7 Manage Red Hat Quay

72

protocol: the registry protocol used (should always be v2)

ref: ref used to pull - tag, manifest

status: http return code of the request

12.2.4.2. Image bytes pulled

Metric name Description

quay_registry_image_pulled_estimated_bytes_total The number of bytes downloaded from the registry

Metric labels

protocol: the registry protocol used (should always be v2)

12.2.4.3. Image pushes total

Metric name Description

quay_registry_image_pushes_total The number of images uploaded from the registry.

Metric labels

protocol: the registry protocol used (should always be v2)

pstatus: http return code of the request

pmedia_type: the uploaded manifest type

12.2.4.4. Image bytes pushed

Metric name Description

quay_registry_image_pushed_bytes_total The number of bytes uploaded to the registry

Sample metrics output

12.2.5. Authentication metrics

The authentication metrics provide the number of authentication requests, labeled by type and whether

HELP quay_registry_image_pushed_bytes_total number of bytes pushed to the registry
TYPE quay_registry_image_pushed_bytes_total counter
quay_registry_image_pushed_bytes_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="221",process_name="registry:application"} 0
...

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

73

The authentication metrics provide the number of authentication requests, labeled by type and whether
it succeeded or not. For example, this metric could be used to monitor failed basic authentication
requests.

Metric name Description

quay_authentication_attempts_total Number of authentication attempts across the
registry and API

Metric labels

auth_kind: The type of auth used, including:

basic

oauth

credentials

success: true or false

Sample metrics output

TYPE quay_authentication_attempts_created gauge
quay_authentication_attempts_created{auth_kind="basic",host="example-registry-quay-app-
6df87f7b66-
9tfn6",instance="",job="quay",pid="221",process_name="registry:application",success="True"}
1.6317843039374158e+09
...

HELP quay_authentication_attempts_total number of authentication attempts across the registry
and API
TYPE quay_authentication_attempts_total counter
quay_authentication_attempts_total{auth_kind="basic",host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="221",process_name="registry:application",success="True"} 2
...

Red Hat Quay 3.7 Manage Red Hat Quay

74

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND
ENFORCEMENT

With Red Hat Quay 3.7, users have the ability to report storage consumption and to contain registry
growth by establishing configured storage quota limits. On-premise Quay users are now equipped with
the following capabilities to manage the capacity limits of their environment:

Quota reporting: With this feature, a superuser can track the storage consumption of all their
organizations. Additionally, users can track the storage consumption of their assigned
organization.

Quota management: With this feature, a superuser can define soft and hard checks for Red Hat
Quay users. Soft checks tell users if the storage consumption of an organization reaches their
configured threshold. Hard checks prevent users from pushing to the registry when storage
consumption reaches the configured limit.

Together, these features allow service owners of a Quay registry to define service level agreements and
support a healthy resource budget.

13.1. QUOTA MANAGEMENT CONFIGURATION

Quota management is now supported under the FEATURE_QUOTA_MANAGEMENT property and is
turned off by default. To enable quota management, set the feature flag in your config.yaml to true:

NOTE

In Red Hat Quay 3.7, superuser privileges are required to create, update and delete
quotas. While quotas can be set for users as well as organizations, you cannot reconfigure
the user quota using the Red Hat Quay UI and you must use the API instead.

13.1.1. Default quota

To specify a system-wide default storage quota that is applied to every organization and user, use the
DEFAULT_SYSTEM_REJECT_QUOTA_BYTES configuration flag.

Table 13.1. Default quota configuration

Field Type Description

DEFAULT_SYSTEM_REJECT_QUOTA_BYTES String The quota size to apply to all
organizations and users.

By default, no limit is set.

If you configure a specific quota for an organization or user, and then delete that quota, the system-
wide default quota will apply if one has been set. Similarly, if you have configured a specific quota for an
organization or user, and then modify the system-wide default quota, the updated system-wide default
will override any specific settings.

FEATURE_QUOTA_MANAGEMENT: true

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

75

13.2. QUOTA MANAGEMENT ARCHITECTURE

The RepositorySize database table holds the storage consumption, in bytes, of a Red Hat Quay
repository within an organization. The sum of all repository sizes for an organization defines the current
storage size of a Red Hat Quay organization. When an image push is initialized, the user’s organization
storage is validated to check if it is beyond the configured quota limits. If an image push exceeds defined
quota limitations, a soft or hard check occurs:

For a soft check, users are notified.

For a hard check, the push is stopped.

If storage consumption is within configured quota limits, the push is allowed to proceed.

Image manifest deletion follows a similar flow, whereby the links between associated image tags and the
manifest are deleted. Additionally, after the image manifest is deleted, the repository size is
recalculated and updated in the RepositorySize table.

13.3. ESTABLISHING QUOTA IN RED HAT QUAY UI

The following procedure describes how you can report storage consumption and establish storage quota
limits.

Prerequisites

A Red Hat Quay registry.

A superuser account.

Enough storage to meet the demands of quota limitations.

Procedure

1. Create a new organization or choose an existing one. Initially, no quota is configured, as can be
seen on the Organization Settings tab:

Red Hat Quay 3.7 Manage Red Hat Quay

76

2. Log in to the registry as a superuser and navigate to the Manage Organizations tab on the
Super User Admin Panel. Click the Options icon of the organization for which you want to
create storage quota limits:

3. Click Configure Quota and enter the initial quota, for example, 10 MB. Then click Apply and
Close:

4. Check that the quota consumed shows 0 of 10 MB on the Manage Organizations tab of the
superuser panel:

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

77

The consumed quota information is also available directly on the Organization page:

Initial consumed quota

5. To increase the quota to 100MB, navigate to the Manage Organizations tab on the superuser
panel. Click the Options icon and select Configure Quota, setting the quota to 100 MB. Click
Apply and then Close:

6. Push a sample image to the organization from the command line:

Sample commands

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

Red Hat Quay 3.7 Manage Red Hat Quay

78

7. On the superuser panel, the quota consumed per organization is displayed:

8. The Organization page shows the total proportion of the quota used by the image:

Total Quota Consumed for first image

9. Pull, tag, and push a second image, for example, nginx:

Sample commands

10. The Organization page shows the total proportion of the quota used by each repository in that
organization:

Total Quota Consumed for each repository

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

79

11. Create reject and warning limits:
From the superuser panel, navigate to the Manage Organizations tab. Click the Options icon
for the organization and select Configure Quota. In the Quota Policy section, with the Action
type set to Reject, set the Quota Threshold to 80 and click Add Limit:

12. To create a warning limit, select Warning as the Action type, set the Quota Threshold to 70
and click Add Limit:

13. Click Close on the quota popup. The limits are viewable, but not editable, on the Settings tab of
the Organization page:

Red Hat Quay 3.7 Manage Red Hat Quay

80

14. Push an image where the reject limit is exceeded:
Because the reject limit (80%) has been set to below the current repository size (~83%), the
next push is rejected automatically.

Sample image push

Sample output when quota exceeded

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer
upload to /v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer
upload to /v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

81

15. When limits are exceeded, notifications are displayed in the UI:

Quota notifications

13.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

When an organization is first created, it does not have a quota applied. Use the
/api/v1/organization/{organization}/quota endpoint:

Sample command

Sample output

Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer
upload to /v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in
example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been
exceeded on namespace

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[]

Red Hat Quay 3.7 Manage Red Hat Quay

82

13.4.1. Setting the quota

To set a quota for an organization, POST data to the /api/v1/organization/{orgname}/quota
endpoint: .Sample command

Sample output

13.4.2. Viewing the quota

To see the applied quota, GET data from the /api/v1/organization/{orgname}/quota endpoint:

Sample command

Sample output

13.4.3. Modifying the quota

To change the existing quota, in this instance from 10 MB to 100 MB, PUT data to the
/api/v1/organization/{orgname}/quota/{quota_id} endpoint:

Sample command

Sample output

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 10485760}' https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/testorg/quota | jq

"Created"

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 10485760,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
 }
]

$ curl -k -X PUT -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 104857600}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1 | jq

{
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

83

13.4.4. Pushing images

To see the storage consumed, push various images to the organization.

13.4.4.1. Pushing ubuntu:18.04

Push ubuntu:18.04 to the organization from the command line:

Sample commands

13.4.4.2. Using the API to view quota usage

To view the storage consumed, GET data from the /api/v1/repository endpoint:

Sample command

Sample output

 "limits": [],
 "default_config_exists": false
}

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true' | jq

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 }
]
}

Red Hat Quay 3.7 Manage Red Hat Quay

84

13.4.4.3. Pushing another image

1. Pull, tag, and push a second image, for example, nginx:

Sample commands

2. To view the quota report for the repositories in the organization, use the /api/v1/repository
endpoint:

Sample command

Sample output

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true'

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 },
 {
 "namespace": "testorg",
 "name": "nginx",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 59231659,
 "configured_quota": 104857600
 },
 "last_modified": 1651229507,
 "popularity": 0,

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

85

3. To view the quota information in the organization details, use the
/api/v1/organization/{orgname} endpoint:

Sample command

Sample output

13.4.5. Rejecting pushes using quota limits

If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, or warning, users are notified.

For a hard check, or reject, the push is terminated.

13.4.5.1. Setting reject and warning limits

To set reject and warning limits, POST data to the
/api/v1/organization/{orgname}/quota/{quota_id}/limit endpoint:

Sample reject limit command

Sample warning limit command

 "is_starred": false
 }
]
}

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg' | jq

{
 "name": "testorg",
 ...
 "quotas": [
 {
 "id": 1,
 "limit_bytes": 104857600,
 "limits": []
 }
],
 "quota_report": {
 "quota_bytes": 87190725,
 "configured_quota": 104857600
 }
}

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Reject","threshold_percent":80}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

Red Hat Quay 3.7 Manage Red Hat Quay

86

13.4.5.2. Viewing reject and warning limits

To view the reject and warning limits, use the /api/v1/organization/{orgname}/quota endpoint:

View quota limits

Sample output for quota limits

13.4.5.3. Pushing an image when the reject limit is exceeded

In this example, the reject limit (80%) has been set to below the current repository size (~83%), so the
next push should automatically be rejected.

Push a sample image to the organization from the command line:

Sample image push

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Warning","threshold_percent":50}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [
 {
 "id": 2,
 "type": "Warning",
 "limit_percent": 50
 },
 {
 "id": 1,
 "type": "Reject",
 "limit_percent": 80
 }
],
 "default_config_exists": false
 }
]

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

87

Sample output when quota exceeded

13.4.5.4. Notifications for limits exceeded

When limits are exceeded, a notification appears:

Quota notifications

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in example-
registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on
namespace

Red Hat Quay 3.7 Manage Red Hat Quay

88

13.5. QUOTA MANAGEMENT LIMITATIONS

Quota management helps organizations to maintain resource consumption. One limitation of quota
management is that calculating resource consumption on push results in the calculation becoming part
of the push’s critical path. Without this, usage data might drift.

The maximum storage quota size is dependent on the selected database:

Table 13.2. Worker count environment variables

Variable Description

Postgres 8388608 TB

MySQL 8388608 TB

SQL Server 16777216 TB

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT

89

CHAPTER 14. GEO-REPLICATION
Geo-replication allows multiple, geographically distributed Red Hat Quay deployments to work as a
single registry from the perspective of a client or user. It significantly improves push and pull
performance in a globally-distributed Red Hat Quay setup. Image data is asynchronously replicated in
the background with transparent failover / redirect for clients.

With Red Hat Quay 3.7, deployments of Red Hat Quay with geo-replication is supported by standalone
and Operator deployments.

14.1. GEO-REPLICATION FEATURES

When geo-replication is configured, container image pushes will be written to the preferred
storage engine for that Red Hat Quay instance (typically the nearest storage backend within
the region).

After the initial push, image data will be replicated in the background to other storage engines.

The list of replication locations is configurable and those can be different storage backends.

An image pull will always use the closest available storage engine, to maximize pull performance.

If replication hasn’t been completed yet, the pull will use the source storage backend instead.

14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS

In geo-replicated setups, Red Hat Quay requires that all regions are able to read/write to all
other region’s object storage. Object storage must be geographically accessible by all other
regions.

In case of an object storage system failure of one geo-replicating site, that site’s Red Hat Quay
deployment must be shut down so that clients are redirected to the remaining site with intact
storage systems by a global load balancer. Otherwise, clients will experience pull and push
failures.

Red Hat Quay has no internal awareness of the health or availability of the connected object
storage system. If the object storage system of one site becomes unavailable, there will be no
automatic redirect to the remaining storage system, or systems, of the remaining site, or sites.

Geo-replication is asynchronous. The permanent loss of a site incurs the loss of the data that
has been saved in that sites' object storage system but has not yet been replicated to the
remaining sites at the time of failure.

A single database, and therefore all metadata and Quay configuration, is shared across all
regions.
Geo-replication does not replicate the database. In the event of an outage, Red Hat Quay with
geo-replication enabled will not failover to another database.

A single Redis cache is shared across the entire Quay setup and needs to accessible by all Quay
pods.

The exact same configuration should be used across all regions, with exception of the storage
backend, which can be configured explicitly using the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environment variable.

Geo-Replication requires object storage in each region. It does not work with local storage or

Red Hat Quay 3.7 Manage Red Hat Quay

90

Geo-Replication requires object storage in each region. It does not work with local storage or
NFS.

Each region must be able to access every storage engine in each region (requires a network
path).

Alternatively, the storage proxy option can be used.

The entire storage backend, for example, all blobs, is replicated. Repository mirroring, by
contrast, can be limited to a repository, or an image.

All Quay instances must share the same entrypoint, typically via load balancer.

All Quay instances must have the same set of superusers, as they are defined inside the
common configuration file.

Geo-replication requires your Clair configuration to be set to unmanaged. An unmanaged Clair
database allows the Red Hat Quay Operator to work in a geo-replicated environment, where
multiple instances of the Operator must communicate with the same database. For more
information, see Advanced Clair configuration .

Geo-Replication requires SSL/TSL certificates and keys. For more information, see Using SSL
to protect connections to Red Hat Quay.

If the above requirements cannot be met, you should instead use two or more distinct Quay
deployments and take advantage of repository mirroring functionality.

14.3. GEO-REPLICATION USING STANDALONE RED HAT QUAY

CHAPTER 14. GEO-REPLICATION

91

https://access.redhat.com/documentation/en-us/red_hat_quay/3.7/html-single/deploy_red_hat_quay_on_openshift_with_the_quay_operator/index#clair-unmanaged
https://access.redhat.com/documentation/en-us/red_hat_quay/3.7/html-single/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/index#using_ssl_to_protect_connections_to_red_hat_quay

In the example shown above, Quay is running standalone in two separate regions, with a common
database and a common Redis instance. Localized image storage is provided in each region and image
pulls are served from the closest available storage engine. Container image pushes are written to the
preferred storage engine for the Quay instance, and will then be replicated, in the background, to the
other storage engines.

NOTE

In the event that Clair fails in one cluster, for example, the US cluster, US users would not
see vulnerability reports in Quay for the second cluster (EU). This is because all Clair
instances have the same state. When Clair fails, it is usually because of a problem within
the cluster.

14.3.1. Enable storage replication - standalone Quay

1. Scroll down to the section entitled Registry Storage.

2. Click Enable Storage Replication.

Red Hat Quay 3.7 Manage Red Hat Quay

92

3. Add each of the storage engines to which data will be replicated. All storage engines to be used
must be listed.

4. If complete replication of all images to all storage engines is required, under each storage
engine configuration click Replicate to storage engine by default. This will ensure that all
images are replicated to that storage engine. To instead enable per-namespace replication,
please contact support.

5. When you are done, click Save Configuration Changes. Configuration changes will take effect
the next time Red Hat Quay restarts.

6. After adding storage and enabling “Replicate to storage engine by default” for Georeplications,
you need to sync existing image data across all storage. To do this, you need to oc exec (or
docker/kubectl exec) into the container and run:

scl enable python27 bash
python -m util.backfillreplication

This is a one time operation to sync content after adding new storage.

14.3.2. Run Red Hat Quay with storage preferences

1. Copy the config.yaml to all machines running Red Hat Quay

2. For each machine in each region, add a QUAY_DISTRIBUTED_STORAGE_PREFERENCE
environment variable with the preferred storage engine for the region in which the machine is
running.
For example, for a machine running in Europe with the config directory on the host available
from $QUAY/config:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
 --name=quay \
 -v $QUAY/config:/conf/stack:Z \
 -e QUAY_DISTRIBUTED_STORAGE_PREFERENCE=europestorage \
 registry.redhat.io/quay/quay-rhel8:v3.7.13

NOTE

The value of the environment variable specified must match the name of a
Location ID as defined in the config panel.

3. Restart all Red Hat Quay containers

14.4. GEO-REPLICATION USING THE RED HAT QUAY OPERATOR

CHAPTER 14. GEO-REPLICATION

93

In the example shown above, the Red Hat Quay Operator is deployed in two separate regions, with a
common database and a common Redis instance. Localized image storage is provided in each region
and image pulls are served from the closest available storage engine. Container image pushes are
written to the preferred storage engine for the Quay instance, and will then be replicated, in the
background, to the other storage engines.

Because the Operator now manages the Clair security scanner and its database separately, geo-
replication setups can be leveraged so that they do not manage the Clair database. Instead, an external
shared database would be used. Red Hat Quay and Clair support several providers and vendors of
PostgreSQL, which can be found in the Red Hat Quay 3.x test matrix. Additionally, the Operator also
supports custom Clair configurations that can be injected into the deployment, which allows users to
configure Clair with the connection credentials for the external database.

14.4.1. Setting up geo-replication on Openshift

Procedure

1. Deploy Quay postgres instance:

a. Login to the database

b. Create a database for Quay

Red Hat Quay 3.7 Manage Red Hat Quay

94

https://access.redhat.com/articles/4067991

c. Enable pg_trm extension inside the database

2. Deploy a Redis instance:

NOTE

Deploying a Redis instance might be unnecessary if your cloud provider has
its own service.

Deploying a Redis instance is required if you are leveraging Builders.

a. Deploy a VM for Redis

b. Make sure that it is accessible from the clusters where Quay is running

c. Port 6379/TCP must be open

d. Run Redis inside the instance

3. Create two object storage backends, one for each cluster
Ideally one object storage bucket will be close to the 1st cluster (primary) while the other will run
closer to the 2nd cluster (secondary).

4. Deploy the clusters with the same config bundle, using environment variable overrides to select
the appropriate storage backend for an individual cluster

5. Configure a load balancer, to provide a single entry point to the clusters

14.4.1.1. Configuration

The config.yaml file is shared between clusters, and will contain the details for the common
PostgreSQL, Redis and storage backends:

config.yaml

CREATE DATABASE quay;

\c quay;
CREATE EXTENSION IF NOT EXISTS pg_trgm;

sudo dnf install -y podman
podman run -d --name redis -p 6379:6379 redis

SERVER_HOSTNAME: <georep.quayteam.org or any other name> 1
DB_CONNECTION_ARGS:
 autorollback: true
 threadlocals: true
DB_URI: postgresql://postgres:password@10.19.0.1:5432/quay 2
BUILDLOGS_REDIS:
 host: 10.19.0.2
 port: 6379
USER_EVENTS_REDIS:
 host: 10.19.0.2

CHAPTER 14. GEO-REPLICATION

95

1

2

A proper SERVER_HOSTNAME must be used for the route and must match the hostname of the
global load balancer.

To retrieve the configuration file for a Clair instance deployed using the OpenShift Operator, see
Retrieving the Clair config .

Create the configBundleSecret:

In each of the clusters, set the configBundleSecret and use the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environmental variable override to configure the
appropriate storage for that cluster:

NOTE

The config.yaml file between both deployments must match. If making a change to one
cluster, it must also be changed in the other.

US cluster

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: georep-config-bundle
 components:
 - kind: objectstorage
 managed: false
 - kind: route

 port: 6379
DISTRIBUTED_STORAGE_CONFIG:
 usstorage:
 - GoogleCloudStorage
 - access_key: GOOGQGPGVMASAAMQABCDEFG
 bucket_name: georep-test-bucket-0
 secret_key: AYWfEaxX/u84XRA2vUX5C987654321
 storage_path: /quaygcp
 eustorage:
 - GoogleCloudStorage
 - access_key: GOOGQGPGVMASAAMQWERTYUIOP
 bucket_name: georep-test-bucket-1
 secret_key: AYWfEaxX/u84XRA2vUX5Cuj12345678
 storage_path: /quaygcp
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS:
 - usstorage
 - eustorage
DISTRIBUTED_STORAGE_PREFERENCE:
 - usstorage
 - eustorage
FEATURE_STORAGE_REPLICATION: true

$ oc create secret generic --from-file config.yaml=./config.yaml georep-config-bundle

Red Hat Quay 3.7 Manage Red Hat Quay

96

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

 managed: true
 - kind: tls
 managed: false
 - kind: postgres
 managed: false
 - kind: clairpostgres
 managed: false
 - kind: redis
 managed: false
 - kind: quay
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: usstorage
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: usstorage

+

NOTE

Because TLS is unmanaged, and the route is managed, you must supply the certificates
with either with the config tool or directly in the config bundle. For more information, see
Configuring TLS and routes.

European cluster

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: georep-config-bundle
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: postgres
 managed: false
 - kind: clairpostgres
 managed: false
 - kind: redis
 managed: false
 - kind: quay
 managed: true
 overrides:

CHAPTER 14. GEO-REPLICATION

97

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-preconfigure#operator-preconfig-tls-routes

 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: eustorage
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: eustorage

+

NOTE

Because TLS is unmanaged, and the route is managed, you must supply the certificates
with either with the config tool or directly in the config bundle. For more information, see
Configuring TLS and routes.

14.4.2. Mixed storage for geo-replication

Red Hat Quay geo-replication supports the use of different and multiple replication targets, for
example, using AWS S3 storage on public cloud and using Ceph storage on-prem. This complicates the
key requirement of granting access to all storage backends from all Red Hat Quay pods and cluster
nodes. As a result, it is recommended that you:

Use a VPN to prevent visibility of the internal storage or

Use a token pair that only allows access to the specified bucket used by Quay

This will result in the public cloud instance of Red Hat Quay having access to on-prem storage but the
network will be encrypted, protected, and will use ACLs, thereby meeting security requirements.

If you cannot implement these security measures, it may be preferable to deploy two distinct Red Hat
Quay registries and to use repository mirroring as an alternative to geo-replication.

Red Hat Quay 3.7 Manage Red Hat Quay

98

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-preconfigure#operator-preconfig-tls-routes

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY
MANAGED BY THE RED HAT QUAY OPERATOR

Use the content within this section to back up and restore Red Hat Quay when managed by the Red Hat
Quay Operator on OpenShift Container Platform.

15.1. BACKING UP RED HAT QUAY

This procedure describes how to create a backup of Red Hat Quay deployed on OpenShift Container
Platform using the Red Hat Quay Operator

Prerequisites

A healthy Red Hat Quay deployment on OpenShift Container Platform using the Red Hat Quay
Operator (status condition Available is set to true)

The components quay, postgres and objectstorage are set to managed: true

If the component clair is set to managed: true the component clairpostgres is also set to
managed: true (starting with Red Hat Quay Operator v3.7 or later)

NOTE

If your deployment contains partially unmanaged database or storage components and
you are using external services for Postgres or S3-compatible object storage to run your
Red Hat Quay deployment, you must refer to the service provider or vendor
documentation to create a backup of the data. You can refer to the tools described in this
guide as a starting point on how to backup your external Postgres database or object
storage.

15.1.1. Red Hat Quay configuration backup

1. Backup the QuayRegistry custom resource by exporting it:

2. Edit the resulting quayregistry.yaml and remove the status section and the following metadata
fields:

3. Backup the managed keys secret:

NOTE

$ oc get quayregistry <quay-registry-name> -n <quay-namespace> -o yaml > quay-
registry.yaml

 metadata.creationTimestamp
 metadata.finalizers
 metadata.generation
 metadata.resourceVersion
 metadata.uid

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

99

NOTE

If you are running a version older than Red Hat Quay 3.7.0, this step can be
skipped. Some secrets are automatically generated while deploying Quay for the
first time. These are stored in a secret called <quay-registry-name>-quay-
registry-managed-secret-keys in the namespace of the QuayRegistry
resource.

4. Edit the the resulting managed-secret-keys.yaml file and remove the entry
metadata.ownerReferences. Your managed-secret-keys.yaml file should look similar to the
following:

All information under the data property should remain the same.

5. Backup the current Quay configuration:

6. Backup the /conf/stack/config.yaml file mounted inside of the Quay pods:

15.1.2. Scale down your Red Hat Quay deployment

IMPORTANT

This step is needed to create a consistent backup of the state of your Red Hat Quay
deployment. Do not omit this step, including in setups where Postgres databases and/or
S3-compatible object storage are provided by external services (unmanaged by the
Operator).

1. For Operator version 3.7 and newer: Scale down the Red Hat Quay deployment by disabling
auto scaling and overriding the replica count for Red Hat Quay, mirror workers, and Clair (if
managed). Your QuayRegistry resource should look similar to the following:

$ oc get secret -n <quay-namespace> <quay-registry-name>-quay-registry-managed-secret-
keys -o yaml > managed-secret-keys.yaml

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: <quayname>-quay-registry-managed-secret-keys
 namespace: <quay-namespace>
data:
 CONFIG_EDITOR_PW: <redacted>
 DATABASE_SECRET_KEY: <redacted>
 DB_ROOT_PW: <redacted>
 DB_URI: <redacted>
 SECRET_KEY: <redacted>
 SECURITY_SCANNER_V4_PSK: <redacted>

$ oc get secret -n <quay-namespace> $(oc get quayregistry <quay-registry-name> -n
<quay-namespace> -o jsonpath='{.spec.configBundleSecret}') -o yaml > config-bundle.yaml

$ oc exec -it quay-pod-name -- cat /conf/stack/config.yaml > quay-config.yaml

Red Hat Quay 3.7 Manage Red Hat Quay

100

1

2

Disable auto scaling of Quay, Clair and Mirroring workers

Set the replica count to 0 for components accessing the database and objectstorage

2. For Operator version 3.6 and earlier: Scale down the Red Hat Quay deployment by scaling
down the Red Hat Quay Operator first and then the managed Red Hat Quay resources:

3. Wait for the registry-quay-app, registry-quay-mirror and registry-clair-app pods (depending
on which components you set to be managed by the Red Hat Quay Operator) to disappear. You
can check their status by running the following command:

Example output:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: false 1
 - kind: quay
 managed: true
 overrides: 2
 replicas: 0
 - kind: clair
 managed: true
 overrides:
 replicas: 0
 - kind: mirror
 managed: true
 overrides:
 replicas: 0
 …

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-
namespace>|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>
$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk '/quay-
app/ {print $1}') -n <quay-namespace>
$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk '/quay-
mirror/ {print $1}') -n <quay-namespace>
$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk '/clair-
app/ {print $1}') -n <quay-namespace>

$ oc get pods -n <quay-namespace>

$ oc get pod

quay-operator.v3.7.1-6f9d859bd-p5ftc 1/1 Running 0 12m
quayregistry-clair-postgres-7487f5bd86-xnxpr 1/1 Running 1 (12m ago) 12m
quayregistry-quay-app-upgrade-xq2v6 0/1 Completed 0 12m

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

101

15.1.3. Red Hat Quay managed database backup

NOTE

If your Red Hat Quay deployment is configured with external (unmanged) Postgres
database(s), refer to your vendor’s documentation on how to create a consistent backup
of these databases.

1. Identify the Quay PostgreSQL pod name:

Example output:

2. Obtain the Quay database name:

3. Download a backup database:

15.1.3.1. Red Hat Quay managed object storage backup

The instructions in this section apply to the following configurations:

Standalone, multi-cloud object gateway configurations

OpenShift Data Foundations storage requires that the Red Hat Quay Operator provisioned an
S3 object storage bucket from, through the ObjectStorageBucketClaim API

NOTE

If your Red Hat Quay deployment is configured with external (unmanged) object storage,
refer to your vendor’s documentation on how to create a copy of the content of Quay’s
storage bucket.

1. Decode and export the AWS_ACCESS_KEY_ID:

quayregistry-quay-config-editor-6dfdcfc44f-hlvwm 1/1 Running 0 73s
quayregistry-quay-database-859d5445ff-cqthr 1/1 Running 0 12m
quayregistry-quay-redis-84f888776f-hhgms 1/1 Running 0 12m

$ oc get pod -l quay-component=postgres -n <quay-namespace> -o
jsonpath='{.items[0].metadata.name}'

quayregistry-quay-database-59f54bb7-58xs7

$ oc -n <quay-namespace> rsh $(oc get pod -l app=quay -o NAME -n <quay-namespace>
|head -n 1) cat /conf/stack/config.yaml|awk -F"/" '/^DB_URI/ {print $4}'
quayregistry-quay-database

$ oc exec quayregistry-quay-database-59f54bb7-58xs7 -- /usr/bin/pg_dump -C quayregistry-
quay-database > backup.sql

$ export AWS_ACCESS_KEY_ID=$(oc get secret -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

Red Hat Quay 3.7 Manage Red Hat Quay

102

1

2

2. Decode and export the AWS_SECRET_ACCESS_KEY_ID:

3. Create a new directory and copy all blobs to it:

NOTE

You can also use rclone or sc3md instead of the AWS command line utility.

15.1.4. Scale the Red Hat Quay deployment back up

1. For Operator version 3.7 and newer: Scale up the Red Hat Quay deployment by re-enabling
auto scaling, if desired, and removing the replica overrides for Quay, mirror workers and Clair as
applicable. Your QuayRegistry resource should look similar to the following:

Re-enables auto scaling of Quay, Clair and Mirroring workers again (if desired)

Replica overrides are removed again to scale the Quay components back up

2. For Operator version 3.6 and earlier: Scale up the Red Hat Quay deployment by scaling up the
Red Hat Quay Operator again:

3. Check the status of the Red Hat Quay deployment:

$ export AWS_SECRET_ACCESS_KEY=$(oc get secret -l app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

$ mkdir blobs

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath='{.spec.host}') s3://$(oc get cm -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.BUCKET_NAME}') ./blobs

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: true 1
 - kind: quay 2
 managed: true
 - kind: clair
 managed: true
 - kind: mirror
 managed: true
 …

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace> |
awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

103

https://rclone.org/
https://s3tools.org/s3cmd

Example output:

15.2. RESTORING RED HAT QUAY

This procedure is used to restore Red Hat Quay when the Red Hat Quay Operator manages the
database. It should be performed after a backup of your Red Hat Quay registry has been performed. See
Backing up Red Hat Quay for more information.

Prerequisites

Red Hat Quay is deployed on OpenShift Container Platform using the Red Hat Quay Operator.

A backup of the Red Hat Quay configuration managed by the Red Hat Quay Operator has been
created following the instructions in the Backing up Red Hat Quay section

Your Red Hat Quay database has been backed up.

The object storage bucket used by Red Hat Quay has been backed up.

The components quay, postgres and objectstorage are set to managed: true

If the component clair is set to managed: true, the component clairpostgres is also set to
managed: true (starting with Red Hat Quay Operator v3.7 or later)

There is no running Red Hat Quay deployment managed by the Red Hat Quay Operator in the
target namespace on your OpenShift Container Platform cluster

NOTE

If your deployment contains partially unmanaged database or storage components and
you are using external services for Postgres or S3-compatible object storage to run your
Red Hat Quay deployment, you must refer to the service provider or vendor
documentation to restore their data from a backup prior to restore Red Hat Quay

15.2.1. Restoring Red Hat Quay and its configuration from a backup

$ oc wait quayregistry registry --for=condition=Available=true -n <quay-namespace>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...
 name: registry
 namespace: <quay-namespace>
 ...
spec:
 ...
status:
 - lastTransitionTime: '2022-06-20T05:31:17Z'
 lastUpdateTime: '2022-06-20T17:31:13Z'
 message: All components reporting as healthy
 reason: HealthChecksPassing
 status: 'True'
 type: Available

Red Hat Quay 3.7 Manage Red Hat Quay

104

NOTE

These instructions assume you have followed the process in the Backing up Red Hat
Quay guide and create the backup files with the same names.

1. Restore the backed up Red Hat Quay configuration and the generated keys from the backup:

IMPORTANT

If you receive the error Error from server (AlreadyExists): error when creating
"./config-bundle.yaml": secrets "config-bundle-secret" already exists, you
must delete your existing resource with $ oc delete Secret config-bundle-
secret -n <quay-namespace> and recreate it with $ oc create -f ./config-
bundle.yaml.

2. Restore the QuayRegistry custom resource:

3. Check the status of the Red Hat Quay deployment and wait for it to be available:

15.2.2. Scale down your Red Hat Quay deployment

1. For Operator version 3.7 and newer: Scale down the Red Hat Quay deployment by disabling
auto scaling and overriding the replica count for Quay, mirror workers and Clair (if managed).
Your QuayRegistry resource should look similar to the following:

$ oc create -f ./config-bundle.yaml

$ oc create -f ./managed-secret-keys.yaml

$ oc create -f ./quay-registry.yaml

$ oc wait quayregistry registry --for=condition=Available=true -n <quay-namespace>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: false 1
 - kind: quay
 managed: true
 overrides: 2
 replicas: 0
 - kind: clair
 managed: true
 overrides:
 replicas: 0
 - kind: mirror
 managed: true

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

105

1

2

Disable auto scaling of Quay, Clair and Mirroring workers

Set the replica count to 0 for components accessing the database and objectstorage

2. For Operator version 3.6 and earlier: Scale down the Red Hat Quay deployment by scaling
down the Red Hat Quay Operator first and then the managed Red Hat Quay resources:

3. Wait for the registry-quay-app, registry-quay-mirror and registry-clair-app pods (depending
on which components you set to be managed by Operator) to disappear. You can check their
status by running the following command:

Example output:

15.2.3. Restore your Red Hat Quay database

1. Identify your Quay database pod:

Example output:

quayregistry-quay-database-59f54bb7-58xs7

2. Upload the backup by copying it from the local environment and into the pod:

$ oc cp ./backup.sql -n <quay-namespace> registry-quay-database-66969cd859-
n2ssm:/tmp/backup.sql

3. Open a remote terminal to the database:

 overrides:
 replicas: 0
 …

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-
namespace>|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk '/quay-
app/ {print $1}') -n <quay-namespace>
$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk '/quay-
mirror/ {print $1}') -n <quay-namespace>
$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace>|awk '/clair-
app/ {print $1}') -n <quay-namespace>

$ oc get pods -n <quay-namespace>

registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pod -l quay-component=postgres -n <quay-namespace> -o
jsonpath='{.items[0].metadata.name}'

$ oc rsh -n <quay-namespace> registry-quay-database-66969cd859-n2ssm

Red Hat Quay 3.7 Manage Red Hat Quay

106

4. Enter psql:

5. You can list the database by running the following command:

postgres=# \l

Example output:

6. Drop the database:

postgres=# DROP DATABASE "quayregistry-quay-database";

Example output:

DROP DATABASE

7. Exit the postgres CLI to re-enter bash-4.4:

\q

8. Redirect your PostgreSQL database to your backup database:

9. Exit bash:

sh-4.4$ exit

15.2.4. Restore your Red Hat Quay object storage data

1. Export the AWS_ACCESS_KEY_ID:

2. Export the AWS_SECRET_ACCESS_KEY:

bash-4.4$ psql

 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access
privileges
----------------------------+----------------------------+----------+------------+------------+---------------

postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
quayregistry-quay-database | quayregistry-quay-database | UTF8 | en_US.utf8 |
en_US.utf8 |

sh-4.4$ psql < /tmp/backup.sql

$ export AWS_ACCESS_KEY_ID=$(oc get secret -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

$ export AWS_SECRET_ACCESS_KEY=$(oc get secret -l app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

107

1

2

3. Upload all blobs to the bucket by running the following command:

NOTE

You can also use rclone or sc3md instead of the AWS command line utility.

15.2.5. Scale up your Red Hat Quay deployment

1. For Operator version 3.7 and newer: Scale up the Red Hat Quay deployment by re-enabling
auto scaling, if desired, and removing the replica overrides for Quay, mirror workers and Clair as
applicable. Your QuayRegistry resource should look similar to the following:

Re-enables auto scaling of Red Hat Quay, Clair and mirroring workers again (if desired)

Replica overrides are removed again to scale the Red Hat Quay components back up

2. For Operator version 3.6 and earlier: Scale up the Red Hat Quay deployment by scaling up the
Red Hat Quay Operator again:

3. Check the status of the Red Hat Quay deployment:

Example output:

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath='{.spec.host}') ./blobs s3://$(oc get cm -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.BUCKET_NAME}')

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: registry
 namespace: ns
spec:
 components:
 …
 - kind: horizontalpodautoscaler
 managed: true 1
 - kind: quay 2
 managed: true
 - kind: clair
 managed: true
 - kind: mirror
 managed: true
 …

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace> |
awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc wait quayregistry registry --for=condition=Available=true -n <quay-namespace>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:

Red Hat Quay 3.7 Manage Red Hat Quay

108

https://rclone.org/
https://s3tools.org/s3cmd

 ...
 name: registry
 namespace: <quay-namespace>
 ...
spec:
 ...
status:
 - lastTransitionTime: '2022-06-20T05:31:17Z'
 lastUpdateTime: '2022-06-20T17:31:13Z'
 message: All components reporting as healthy
 reason: HealthChecksPassing
 status: 'True'
 type: Available

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR

109

CHAPTER 16. MIGRATING A STANDALONE QUAY
DEPLOYMENT TO A RED HAT QUAY OPERATOR MANAGED

DEPLOYMENT
The following procedures allow you to back up a standalone Red Hat Quay deployment and migrate it to
the Red Hat Quay Operator on OpenShift Container Platform.

16.1. BACKING UP A STANDALONE DEPLOYMENT OF RED HAT QUAY

Procedure

1. Back up the Quay config.yaml of your standalone deployment:

2. Create a backup of the database that your standalone Quay deployment is using:

3. Install the AWS CLI if you do not have it already.

4. Create an ~/.aws/ directory:

5. Obtain the access_key and secret_key from the Quay config.yaml of your standalone
deployment:

Example output:

6. Store the access_key and secret_key from the Quay config.yaml file in your ~/.aws directory:

7. Optional: Check that your access_key and secret_key are stored:

$ mkdir /tmp/quay-backup
$ cp /path/to/Quay/config/directory/config.yaml /tmp/quay-backup

$ pg_dump -h DB_HOST -p 5432 -d QUAY_DATABASE_NAME -U
QUAY_DATABASE_USER -W -O > /tmp/quay-backup/quay-database-backup.sql

$ mkdir ~/.aws/

$ grep -i DISTRIBUTED_STORAGE_CONFIG -A10 /tmp/quay-backup/config.yaml

DISTRIBUTED_STORAGE_CONFIG:
 minio-1:
 - RadosGWStorage
 - access_key: ##########
 bucket_name: quay
 hostname: 172.24.10.50
 is_secure: false
 port: "9000"
 secret_key: ##########
 storage_path: /datastorage/registry

$ touch ~/.aws/credentials

Red Hat Quay 3.7 Manage Red Hat Quay

110

https://docs.aws.amazon.com/cli/v1/userguide/install-linux.html#install-linux-bundled-sudo

Example output:

NOTE

If the aws cli does not automatically collect the access_key and secret_key
from the `~/.aws/credentials file, you can, you can configure these by running
aws configure and manually inputting the credentials.

8. In your quay-backup directory, create a bucket_backup directory:

9. Backup all blobs from the S3 storage:

NOTE

The PUBLIC_S3_ENDPOINT can be read from the Quay config.yaml file under
hostname in the DISTRIBUTED_STORAGE_CONFIG. If the endpoint is
insecure, use http instead of https in the endpoint URL.

Up to this point, you should have a complete backup of all Quay data, blobs, the database, and the
config.yaml file stored locally. In the following section, you will migrate the standalone deployment
backup to Red Hat Quay on OpenShift Container Platform.

16.2. USING BACKED UP STANDALONE CONTENT TO MIGRATE TO
OPENSHIFT CONTAINER PLATFORM.

Prerequisites

Your standalone Red Hat Quay data, blobs, database, and config.yaml have been backed up.

Red Hat Quay is deployed on OpenShift Container Platform using the Quay Operator.

A QuayRegistry with all components set to managed.

PROCEDURE

The procedure in this documents uses the following namespace: quay-enterprise.

$ cat > ~/.aws/credentials << EOF
[default]
aws_access_key_id = ACCESS_KEY_FROM_QUAY_CONFIG
aws_secret_access_key = SECRET_KEY_FROM_QUAY_CONFIG
EOF

aws_access_key_id = ACCESS_KEY_FROM_QUAY_CONFIG
aws_secret_access_key = SECRET_KEY_FROM_QUAY_CONFIG

$ mkdir /tmp/quay-backup/bucket-backup

$ aws s3 sync --no-verify-ssl --endpoint-url https://PUBLIC_S3_ENDPOINT:PORT
s3://QUAY_BUCKET/ /tmp/quay-backup/bucket-backup/

CHAPTER 16. MIGRATING A STANDALONE QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR MANAGED DEPLOYMENT

111

1. Scale down the Red Hat Quay Operator:

2. Scale down the application and mirror deployments:

3. Copy the database SQL backup to the Quay PostgreSQL database instance:

4. Obtain the database password from the Operator-created config.yaml file:

Example output:

Example output:

postgresql://QUAY_DATABASE_OWNER:PASSWORD@DATABASE_HOST/QUAY_DATAB
ASE_NAME

5. Execute a shell inside of the database pod:

6. Enter psql:

7. Drop the database:

Example output:

DROP DATABASE

8. Create a new database and set the owner as the same name:

$ oc scale --replicas=0 deployment quay-operator.v3.6.2 -n openshift-operators

$ oc scale --replicas=0 deployment QUAY_MAIN_APP_DEPLOYMENT
QUAY_MIRROR_DEPLOYMENT

$ oc cp /tmp/user/quay-backup/quay-database-backup.sql quay-enterprise/quayregistry-
quay-database-54956cdd54-p7b2w:/var/lib/pgsql/data/userdata

$ oc get deployment quay-quay-app -o json | jq
'.spec.template.spec.volumes[].projected.sources' | grep -i config-secret

 "name": "QUAY_CONFIG_SECRET_NAME"

$ oc get secret quay-quay-config-secret-9t77hb84tb -o json | jq '.data."config.yaml"' | cut -d '"'
-f2 | base64 -d -w0 > /tmp/quay-backup/operator-quay-config-yaml-backup.yaml

cat /tmp/quay-backup/operator-quay-config-yaml-backup.yaml | grep -i DB_URI

oc exec -it quay-postgresql-database-pod -- /bin/bash

bash-4.4$ psql

postgres=# DROP DATABASE "example-restore-registry-quay-database";

Red Hat Quay 3.7 Manage Red Hat Quay

112

Example output:

CREATE DATABASE

9. Connect to the database:

Example output:

10. Create a pg_trmg extension of your Quay database:

Example output:

11. Exit the postgres CLI to re-enter bash-4.4:

12. Set the password for your PostgreSQL deployment:

Example output:

SET
SET
SET
SET
SET

13. Exit bash mode:

14. Create a new configuration bundle for the Red Hat Quay Operator.

15. In your new config-bundle.yaml, include all of the information that the registry requires, such as

postgres=# CREATE DATABASE "example-restore-registry-quay-database" OWNER
"example-restore-registry-quay-database";

postgres=# \c "example-restore-registry-quay-database";

You are now connected to database "example-restore-registry-quay-database" as user
"postgres".

example-restore-registry-quay-database=# create extension pg_trgm ;

CREATE EXTENSION

\q

bash-4.4$ psql -h localhost -d "QUAY_DATABASE_NAME" -U QUAY_DATABASE_OWNER
-W < /var/lib/pgsql/data/userdata/quay-database-backup.sql

bash-4.4$ exit

$ touch config-bundle.yaml

CHAPTER 16. MIGRATING A STANDALONE QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR MANAGED DEPLOYMENT

113

15. In your new config-bundle.yaml, include all of the information that the registry requires, such as
LDAP configuration, keys, and other modifications that your old registry had. Run the following
command to move the secret_key to your config-bundle.yaml:

NOTE

You must manually copy all the LDAP, OIDC and other information and add it to
the /tmp/quay-backup/config-bundle.yaml file.

16. Create a configuration bundle secret inside of your OpenShift cluster:

17. Scale up the Quay pods:

$ oc scale --replicas=1 deployment quayregistry-quay-app
deployment.apps/quayregistry-quay-app scaled

18. Scale up the mirror pods:

$ oc scale --replicas=1 deployment quayregistry-quay-mirror
deployment.apps/quayregistry-quay-mirror scaled

19. Patch the QuayRegistry CRD so that it contains the reference to the new custom configuration
bundle:

$ oc patch quayregistry QUAY_REGISTRY_NAME --type=merge -p '{"spec":
{"configBundleSecret":"new-custom-config-bundle"}}'

NOTE

If Quay returns a 500 internal server error, you might have to update the location
of your DISTRIBUTED_STORAGE_CONFIG to default.

20. Create a new AWS credentials.yaml in your /.aws/ directory and include the access_key and
secret_key from the Operator-created config.yaml file:

$ cat /tmp/quay-backup/config.yaml | grep SECRET_KEY > /tmp/quay-backup/config-
bundle.yaml

$ oc create secret generic new-custom-config-bundle --from-file=config.yaml=/tmp/quay-
backup/config-bundle.yaml

$ touch credentials.yaml

$ grep -i DISTRIBUTED_STORAGE_CONFIG -A10 /tmp/quay-backup/operator-quay-config-
yaml-backup.yaml

$ cat > ~/.aws/credentials << EOF
[default]
aws_access_key_id = ACCESS_KEY_FROM_QUAY_CONFIG
aws_secret_access_key = SECRET_KEY_FROM_QUAY_CONFIG
EOF

Red Hat Quay 3.7 Manage Red Hat Quay

114

NOTE

If the aws cli does not automatically collect the access_key and secret_key
from the `~/.aws/credentials file, you can configure these by running aws
configure and manually inputting the credentials.

21. Record the NooBaa’s publicly available endpoint:

22. Sync the backup data to the NooBaa backend storage:

23. Scale the Operator back up to 1 pod:

The Operator will use the custom configuration bundle provided and will reconcile all secrets and
deployments. Your new Quay deployment on OpenShift Container Platform should contain all of the
information that the old deployment had. All images should be pull-able.

$ oc get route s3 -n openshift-storage -o yaml -o jsonpath="{.spec.host}{'\n'}"

$ aws s3 sync --no-verify-ssl --endpoint-url https://NOOBAA_PUBLIC_S3_ROUTE
/tmp/quay-backup/bucket-backup/* s3://QUAY_DATASTORE_BUCKET_NAME

$ oc scale –replicas=1 deployment quay-operator.v3.6.4 -n openshift-operators

CHAPTER 16. MIGRATING A STANDALONE QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR MANAGED DEPLOYMENT

115

CHAPTER 17. BACKING UP AND RESTORING RED HAT QUAY
ON A STANDALONE DEPLOYMENT

Use the content within this section to back up and restore Red Hat Quay in standalone deployments.

17.1. BACKING UP RED HAT QUAY ON STANDALONE DEPLOYMENTS

This procedure describes how to create a backup of Red Hat Quay on standalone deployments.

Procedure

1. Create a temporary backup directory, for example, quay-backup:

2. The following example command denotes the local directory that the Red Hat Quay was started
in, for example, /opt/quay-install:

Change into the directory that bind-mounts to /conf/stack inside of the container, for example,
/opt/quay-install, by running the following command:

3. Compress the contents of your Red Hat Quay deployment into an archive in the quay-backup
directory by entering the following command:

Example output:

4. Back up the Quay container service by entering the following command:

5. Redirect the contents of your conf/stack/config.yaml file to your temporary quay-config.yaml

$ mkdir /tmp/quay-backup

$ podman run --name quay-app \
 -v /opt/quay-install/config:/conf/stack:Z \
 -v /opt/quay-install/storage:/datastorage:Z \
 {productrepo}/{quayimage}:{productminv}

$ cd /opt/quay-install

$ tar cvf /tmp/quay-backup/quay-backup.tar.gz *

config.yaml
config.yaml.bak
extra_ca_certs/
extra_ca_certs/ca.crt
ssl.cert
ssl.key

$ podman inspect quay-app | jq -r '.[0].Config.CreateCommand | .[]' | paste -s -d ' ' -

 /usr/bin/podman run --name quay-app \
 -v /opt/quay-install/config:/conf/stack:Z \
 -v /opt/quay-install/storage:/datastorage:Z \
 {productrepo}/{quayimage}:{productminv}

Red Hat Quay 3.7 Manage Red Hat Quay

116

5. Redirect the contents of your conf/stack/config.yaml file to your temporary quay-config.yaml
file by entering the following command:

6. Obtain the DB_URI located in your temporary quay-config.yaml by entering the following
command:

Example output:

$ postgresql://<username>:test123@172.24.10.50/quay

7. Extract the PostgreSQL contents to your temporary backup directory in a backup .sql file by
entering the following command:

8. Print the contents of your DISTRIBUTED_STORAGE_CONFIG by entering the following
command:

9. Export the AWS_ACCESS_KEY_ID by using the access_key credential obtained in Step 7:

10. Export the AWS_SECRET_ACCESS_KEY by using the secret_key obtained in Step 7:

11. Sync the quay bucket to the /tmp/quay-backup/blob-backup/ directory from the hostname of
your DISTRIBUTED_STORAGE_CONFIG:

Example output:

download:
s3://<user_name>/registry/sha256/9c/9c3181779a868e09698b567a3c42f3744584ddb1398efe2
c4ba569a99b823f7a to
registry/sha256/9c/9c3181779a868e09698b567a3c42f3744584ddb1398efe2c4ba569a99b823f
7a

$ podman exec -it quay cat /conf/stack/config.yaml > /tmp/quay-backup/quay-config.yaml

$ grep DB_URI /tmp/quay-backup/quay-config.yaml

$ pg_dump -h 172.24.10.50 -p 5432 -d quay -U <username> -W -O > /tmp/quay-
backup/quay-backup.sql

DISTRIBUTED_STORAGE_CONFIG:
 default:
 - S3Storage
 - s3_bucket: <bucket_name>
 storage_path: /registry
 s3_access_key: <s3_access_key>
 s3_secret_key: <s3_secret_key>
 host: <host_name>

$ export AWS_ACCESS_KEY_ID=<access_key>

$ export AWS_SECRET_ACCESS_KEY=<secret_key>

$ aws s3 sync s3://<bucket_name> /tmp/quay-backup/blob-backup/ --source-region us-east-
2

CHAPTER 17. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT

117

download:
s3://<user_name>/registry/sha256/e9/e9c5463f15f0fd62df3898b36ace8d15386a6813ffb470f33
2698ecb34af5b0d to
registry/sha256/e9/e9c5463f15f0fd62df3898b36ace8d15386a6813ffb470f332698ecb34af5b0d

It is recommended that you delete the quay-config.yaml file after syncing the quay bucket because it
contains sensitive information. The quay-config.yaml file will not be lost because it is backed up in the
quay-backup.tar.gz file.

17.2. RESTORING RED HAT QUAY ON STANDALONE DEPLOYMENTS

This procedure describes how to restore Red Hat Quay on standalone deployments.

Prerequisites

You have backed up your Red Hat Quay deployment.

Procedure

1. Create a new directory that will bind-mount to /conf/stack inside of the Red Hat Quay
container:

2. Copy the contents of your temporary backup directory created in Backing up Red Hat Quay on
standalone deployments to the new-quay-install1 directory created in Step 1:

3. Change into the new-quay-install directory by entering the following command:

4. Extract the contents of your Red Hat Quay directory:

Example output:

config.yaml
config.yaml.bak
extra_ca_certs/
extra_ca_certs/ca.crt
ssl.cert
ssl.key

5. Recall the DB_URI from your backed-up config.yaml file by entering the following command:

Example output:

$ mkdir /opt/new-quay-install

$ cp /tmp/quay-backup/quay-backup.tar.gz /opt/new-quay-install/

$ cd /opt/new-quay-install/

$ tar xvf /tmp/quay-backup/quay-backup.tar.gz *

$ grep DB_URI config.yaml

Red Hat Quay 3.7 Manage Red Hat Quay

118

6. Run the following command to enter the PostgreSQL database server:

7. Enter psql and create a new database in 172.24.10.50 to restore the quay databases, for
example, example_restore_registry_quay_database, by entering the following command:

Example output:

CREATE DATABASE

8. Connect to the database by running the following command:

Example output:

9. Create a pg_trmg extension of your Quay database by running the following command:

Example output:

10. Exit the postgres CLI by entering the following command:

11. Import the database backup to your new database by running the following command:

Example output:

SET
SET
SET
SET
SET

postgresql://<username>:test123@172.24.10.50/quay

$ sudo postgres

$ psql "host=172.24.10.50 port=5432 dbname=postgres user=<username>
password=test123"
postgres=> CREATE DATABASE example_restore_registry_quay_database;

postgres=# \c "example-restore-registry-quay-database";

You are now connected to database "example-restore-registry-quay-database" as user
"postgres".

example_restore_registry_quay_database=> CREATE EXTENSION IF NOT EXISTS
pg_trgm;

CREATE EXTENSION

\q

$ psql "host=172.24.10.50 port=5432 dbname=example_restore_registry_quay_database
user=<username> password=test123" -W < /tmp/quay-backup/quay-backup.sql

CHAPTER 17. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT

119

Update the value of DB_URI in your config.yaml from
postgresql://<username>:test123@172.24.10.50/quay to
postgresql://<username>:test123@172.24.10.50/example-restore-registry-quay-database
before restarting the Red Hat Quay deployment.

NOTE

The DB_URI format is DB_URI postgresql://<login_user_name>:
<login_user_password>@<postgresql_host>/<quay_database>. If you are
moving from one PostgreSQL server to another PostgreSQL server, update the
value of <login_user_name>, <login_user_password> and
<postgresql_host> at the same time.

12. In the /opt/new-quay-install directory, print the contents of your
DISTRIBUTED_STORAGE_CONFIG bundle:

Example output:

NOTE

Your DISTRIBUTED_STORAGE_CONFIG in /opt/new-quay-install must be
updated before restarting your Red Hat Quay deployment.

13. Export the AWS_ACCESS_KEY_ID by using the access_key credential obtained in Step 13:

14. Export the AWS_SECRET_ACCESS_KEY by using the secret_key obtained in Step 13:

15. Create a new s3 bucket by entering the following command:

Example output:

$ cat config.yaml | grep DISTRIBUTED_STORAGE_CONFIG -A10

DISTRIBUTED_STORAGE_CONFIG:
 default:
DISTRIBUTED_STORAGE_CONFIG:
 default:
 - S3Storage
 - s3_bucket: <bucket_name>
 storage_path: /registry
 s3_access_key: <s3_access_key>
 s3_secret_key: <s3_secret_key>
 host: <host_name>

$ export AWS_ACCESS_KEY_ID=<access_key>

$ export AWS_SECRET_ACCESS_KEY=<secret_key>

$ aws s3 mb s3://<new_bucket_name> --region us-east-2

$ make_bucket: quay

Red Hat Quay 3.7 Manage Red Hat Quay

120

1

16. Upload all blobs to the new s3 bucket by entering the following command:

The Red Hat Quay registry endpoint must be the same before backup and after restore.

Example output:

17. Before restarting your Red Hat Quay deployment, update the storage settings in your
config.yaml:

$ aws s3 sync --no-verify-ssl \
--endpoint-url <example_endpoint_url> 1
/tmp/quay-backup/blob-backup/. s3://quay/

upload: ../../tmp/quay-backup/blob-
backup/datastorage/registry/sha256/50/505edb46ea5d32b5cbe275eb766d960842a52ee77ac2
25e4dc8abb12f409a30d to
s3://quay/datastorage/registry/sha256/50/505edb46ea5d32b5cbe275eb766d960842a52ee77ac
225e4dc8abb12f409a30d
upload: ../../tmp/quay-backup/blob-
backup/datastorage/registry/sha256/27/27930dc06c2ee27ac6f543ba0e93640dd21eea458eac4
7355e8e5989dea087d0 to
s3://quay/datastorage/registry/sha256/27/27930dc06c2ee27ac6f543ba0e93640dd21eea458ea
c47355e8e5989dea087d0
upload: ../../tmp/quay-backup/blob-
backup/datastorage/registry/sha256/8c/8c7daf5e20eee45ffe4b36761c4bb6729fb3ee60d4f588f
712989939323110ec to
s3://quay/datastorage/registry/sha256/8c/8c7daf5e20eee45ffe4b36761c4bb6729fb3ee60d4f58
8f712989939323110ec
...

DISTRIBUTED_STORAGE_CONFIG:
 default:
DISTRIBUTED_STORAGE_CONFIG:
 default:
 - S3Storage
 - s3_bucket: <new_bucket_name>
 storage_path: /registry
 s3_access_key: <s3_access_key>
 s3_secret_key: <s3_secret_key>
 host: <host_name>

CHAPTER 17. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT

121

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

18.1. ABOUT RED HAT QUAY GARBAGE COLLECTION

Red Hat Quay includes automatic and continuous image garbage collection. Garbage collection ensures
efficient use of resources for active objects by removing objects that occupy sizeable amounts of disk
space, such as dangling or untagged images, repositories, and blobs, including layers and manifests.
Garbage collection performed by Red Hat Quay can reduce downtime in your organization’s
environment.

18.2. RED HAT QUAY GARBAGE COLLECTION IN PRACTICE

Currently, all garbage collection happens discreetly; there are no commands to manually run garbage
collection. Red Hat Quay provides metrics that track the status of the different garbage collection
workers.

For namespace and repository garbage collection, the progress is tracked based on the size of their
respective queues. Namespace and repository garbage collection workers require a global lock to work.
As a result, and for performance reasons, only one worker runs at a time.

NOTE

Red Hat Quay shares blobs between namespaces and repositories in order to conserve
disk space. For example, if the same image is pushed 10 times, only one copy of that
image will be stored.

It is possible that tags can share their layers with different images already stored
somewhere in Red Hat Quay. In that case, blobs will stay in storage, because deleting
shared blobs would make other images unusable.

Blob expiration is independent of the time machine. If you push a tag to Red Hat Quay
and the time machine is set to 0 seconds, and then you delete a tag immediately, garbage
collection deletes the tag and everything related to that tag, but will not delete the blob
storage until the blob expiration time is reached.

Garbage collecting tagged images works differently than garbage collection on namespaces or
repositories. Rather than having a queue of items to work with, the garbage collection workers for
tagged images actively search for a repository with inactive or expired tags to clean up. Each instance of
garbage collection workers will grab a repository lock, which results in one worker per repository.

NOTE

Red Hat Quay 3.7 Manage Red Hat Quay

122

NOTE

In Red Hat Quay, inactive or expired tags are manifests without tags because the
last tag was deleted or it expired. The manifest stores information about how the
image is composed and stored in the database for each individual tag. When a
tag is deleted and the allotted time from Time Machine has been met, Red Hat
Quay garbage collects the blobs that are not connected to any other manifests in
the registry. If a particular blob is connected to a manifest, then it is preserved in
storage and only its connection to the manifest that is being deleted is removed.

Expired images will disappear after the allotted time, but are still stored in Red
Hat Quay. The time in which an image is completely deleted, or collected,
depends on the Time Machine setting of your organization. The default time for
garbage collection is 14 days unless otherwise specified. Until that time, tags can
be pointed to an expired or deleted images.

For each type of garbage collection, Red Hat Quay provides metrics for the number of rows per table
deleted by each garbage collection worker. The following image shows an example of how Red Hat
Quay monitors garbage collection with the same metrics:

18.2.1. Measuring storage reclamation

Red Hat Quay does not have a way to track how much space is freed up by garbage collection. Currently,
the best indicator of this is by checking how many blobs have been deleted in the provided metrics.

NOTE

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

123

NOTE

The UploadedBlob table in the Red Hat Quay metrics tracks the various blobs that are
associated with a repository. When a blob is uploaded, it will not be garbage collected
before the time designated by the PUSH_TEMP_TAG_EXPIRATION_SEC parameter.
This is to avoid prematurely deleting blobs that are part of an ongoing push. For example,
if garbage collection is set to run often, and a tag is deleted in the span of less than one
hour, then it is possible that the associated blobs will not get cleaned up immediately.
Instead, and assuming that the time designated by the
PUSH_TEMP_TAG_EXPIRATION_SEC parameter has passed, the associated blobs will
be removed the next time garbage collection runs on that same repository.

18.3. GARBAGE COLLECTION CONFIGURATION FIELDS

The following configuration fields are available to customize what is garbage collected, and the
frequency at which garbage collection occurs:

Name Description Schema

FEATURE_GARBAGE_COLLECTION Whether garbage
collection is enabled for
image tags. Defaults to
true.

Boolean

FEATURE_NAMESPACE_GARBAGE_COLLECTIO
N

Whether garbage
collection is enabled for
namespaces. Defaults to
true.

Boolean

FEATURE_REPOSITORY_GARBAGE_COLLECTIO
N

Whether garbage
collection is enabled for
repositories. Defaults to
true.

Boolean

GARBAGE_COLLECTION_FREQUENCY The frequency, in
seconds, at which the
garbage collection
worker runs. Affects only
garbage collection
workers. Defaults to 30
seconds.

String

PUSH_TEMP_TAG_EXPIRATION_SEC The number of seconds
that blobs will not be
garbage collected after
being uploaded. This
feature prevents
garbage collection from
cleaning up blobs that
are not referenced yet,
but still used as part of
an ongoing push.

String

Red Hat Quay 3.7 Manage Red Hat Quay

124

TAG_EXPIRATION_OPTIONS List of valid tag
expiration values.

String

DEFAULT_TAG_EXPIRATION Tag expiration time for
time machine.

String

CLEAN_BLOB_UPLOAD_FOLDER Automatically cleans
stale blobs left over
from an S3 multipart
upload. By default, blob
files older than two days
are cleaned up every
hour.

Boolean

+ Default: true

Name Description Schema

18.4. DISABLING GARBAGE COLLECTION

The garbage collection features for image tags, namespaces, and repositories are stored in the
config.yaml file. These features default to true.

In rare cases, you might want to disable garbage collection, for example, to control when garbage
collection is performed. You can disable garbage collection by setting the GARBAGE_COLLECTION
features to false. When disabled, dangling or untagged images, repositories, namespaces, layers, and
manifests are not removed. This might increase the downtime of your environment.

NOTE

There is no command to manually run garbage collection. Instead, you would disable, and
then re-enable, the garbage collection feature.

18.5. GARBAGE COLLECTION AND QUOTA MANAGEMENT

Red Hat Quay introduced quota management in 3.7. With quota management, users have the ability to
report storage consumption and to contain registry growth by establishing configured storage quota
limits.

As of Red Hat Quay 3.7, garbage collection reclaims memory that was allocated to images, repositories,
and blobs after deletion. Because the garbage collection feature reclaims memory after deletion, there
is a discrepancy between what is stored in an environment’s disk space and what quota management is
reporting as the total consumption. There is currently no workaround for this issue.

18.6. GARBAGE COLLECTION IN PRACTICE

Use the following procedure to check your Red Hat Quay logs to ensure that garbage collection is
working.

Procedure

1. Enter the following command to ensure that garbage collection is properly working:

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

125

Example output:

gcworker stdout | 2022-11-14 18:46:52,458 [63] [INFO] [apscheduler.executors.default] Job
"GarbageCollectionWorker._garbage_collection_repos (trigger: interval[0:00:30], next run at: 2022-
11-14 18:47:22 UTC)" executed successfully

1. Delete an image tag.

2. Enter the following command to ensure that the tag was deleted:

Example output:

gunicorn-web stdout | 2022-11-14 19:23:44,574 [233] [INFO] [gunicorn.access] 192.168.0.38 - -
[14/Nov/2022:19:23:44 +0000] "DELETE /api/v1/repository/quayadmin/busybox/tag/test HTTP/1.0"
204 0 "http://quay-server.example.com/repository/quayadmin/busybox?tab=tags" "Mozilla/5.0 (X11;
Linux x86_64; rv:102.0) Gecko/20100101 Firefox/102.0"

18.7. RED HAT QUAY GARBAGE COLLECTION METRICS

The following metrics show how many resources have been removed by garbage collection. These
metrics show how many times the garbage collection workers have run and how many namespaces,
repositories, and blobs were removed.

Metric name Description

quay_gc_iterations_total Number of iterations by the GCWorker

quay_gc_namespaces_purged_total Number of namespaces purged by the
NamespaceGCWorker

quay_gc_repos_purged_total Number of repositories purged by the
RepositoryGCWorker or NamespaceGCWorker

quay_gc_storage_blobs_deleted_total Number of storage blobs deleted

Sample metrics output

$ sudo podman logs <container_id>

$ podman logs quay-app

TYPE quay_gc_iterations_created gauge
quay_gc_iterations_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189714e+09
...

HELP quay_gc_iterations_total number of iterations by the GCWorker
TYPE quay_gc_iterations_total counter
quay_gc_iterations_total{host="example-registry-quay-app-6df87f7b66-

Red Hat Quay 3.7 Manage Red Hat Quay

126

9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_namespaces_purged_created gauge
quay_gc_namespaces_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189433e+09
...

HELP quay_gc_namespaces_purged_total number of namespaces purged by the
NamespaceGCWorker
TYPE quay_gc_namespaces_purged_total counter
quay_gc_namespaces_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
....

TYPE quay_gc_repos_purged_created gauge
quay_gc_repos_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.631782319018925e+09
...

HELP quay_gc_repos_purged_total number of repositories purged by the RepositoryGCWorker or
NamespaceGCWorker
TYPE quay_gc_repos_purged_total counter
quay_gc_repos_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_storage_blobs_deleted_created gauge
quay_gc_storage_blobs_deleted_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189059e+09
...

HELP quay_gc_storage_blobs_deleted_total number of storage blobs deleted
TYPE quay_gc_storage_blobs_deleted_total counter
quay_gc_storage_blobs_deleted_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

127

CHAPTER 19. RED HAT QUAY TROUBLESHOOTING
Common failure modes and best practices for recovery.

I’m receiving HTTP Status Code 429

I’m authorized but I’m still getting 403s

Base image pull in Dockerfile fails with 403

Cannot add a build trigger

Build logs are not loading

I’m receiving "Cannot locate specified Dockerfile" * Could not reach any registry endpoint

Cannot access private repositories using EC2 Container Service

Docker is returning an i/o timeout

Docker login is failing with an odd error

Pulls are failing with an odd error

I just pushed but the timestamp is wrong

Pulling Private Quay.io images with Marathon/Mesos fails

Red Hat Quay 3.7 Manage Red Hat Quay

128

http://docs.quay.io/issues/429.html
http://docs.quay.io/issues/auth-failure.html
http://docs.quay.io/issues/base-pull-issue.html
http://docs.quay.io/issues/cannot-add-trigger.html
http://docs.quay.io/issues/cannot-load-build-logs.html
http://docs.quay.io/issues/cannot-locate-dockerfile.html
http://docs.quay.io/issues/could-not-reach-any-registry-endpoint.html
http://docs.quay.io/issues/ecs-auth-failure.html
http://docs.quay.io/issues/iotimeout.html
http://docs.quay.io/issues/odd-login-failure.html
http://docs.quay.io/issues/odd-pull-failure.html
http://docs.quay.io/issues/push-timestamp-wrong.html
http://docs.quay.io/issues/quay-mesos.html

CHAPTER 20. SCHEMA FOR RED HAT QUAY
CONFIGURATION

Most Red Hat Quay configuration information is stored in the config.yaml file that is created using the
browser-based config tool when Red Hat Quay is first deployed.

The configuration options are described in the Red Hat Quay Configuration Guide.

ADDITIONAL RESOURCES

CHAPTER 20. SCHEMA FOR RED HAT QUAY CONFIGURATION

129

	Table of Contents
	PREFACE
	CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
	1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY
	1.1.1. Running the Config Tool from the Red Hat Quay Operator
	1.1.2. Running the Config Tool from the command line
	1.1.3. Deploying the config tool using TLS certificates

	1.2. USING THE API TO MODIFY RED HAT QUAY
	1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY
	1.3.1. Add name and company to Red Hat Quay sign-in
	1.3.2. Disable TLS Protocols
	1.3.3. Rate limit API calls
	1.3.4. Adjust database connection pooling
	1.3.4.1. Database connection arguments
	1.3.4.2. Database SSL configuration
	1.3.4.3. HTTP connection counts
	1.3.4.4. Dynamic process counts
	1.3.4.5. Environment variables
	1.3.4.6. Turning off connection pooling

	CHAPTER 2. USING THE CONFIGURATION API
	2.1. RETRIEVING THE DEFAULT CONFIGURATION
	2.2. RETRIEVING THE CURRENT CONFIGURATION
	2.3. VALIDATING CONFIGURATION USING THE API
	2.4. DETERMINING THE REQUIRED FIELDS

	CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS
	CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
	4.1. INTRODUCTION TO USING SSL
	4.2. CREATE A CERTIFICATE AUTHORITY AND SIGN A CERTIFICATE
	4.2.1. Create a Certificate Authority
	4.2.2. Sign a certificate

	4.3. CONFIGURING SSL USING THE COMMAND LINE
	4.4. CONFIGURING SSL USING THE UI
	4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE
	4.6. TESTING SSL CONFIGURATION USING THE BROWSER
	4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE AUTHORITY
	4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE AUTHORITY

	CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
	5.1. ADD TLS CERTIFICATES TO RED HAT QUAY
	5.2. ADD CERTS WHEN DEPLOYED ON KUBERNETES

	CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH
	CHAPTER 7. CLAIR SECURITY SCANNING
	7.1. SETTING UP CLAIR ON A RED HAT QUAY OPENSHIFT DEPLOYMENT
	7.1.1. Deploying Via the Quay Operator
	7.1.2. Manually Deploying Clair

	7.2. SETTING UP CLAIR ON A NON-OPENSHIFT RED HAT QUAY DEPLOYMENT
	7.3. ADVANCED CLAIR CONFIGURATION
	7.3.1. Unmanaged Clair configuration
	7.3.1.1. Unmanaging a Clair database
	7.3.1.2. Configuring a custom Clair database

	7.3.2. Running a custom Clair configuration with a managed database

	7.4. CLAIR CRDA CONFIGURATION
	7.4.1. Enabling Clair CRDA

	7.5. USING CLAIR
	7.6. CVE RATINGS FROM THE NATIONAL VULNERABILITY DATABASE
	7.7. CONFIGURING CLAIR FOR DISCONNECTED ENVIRONMENTS
	7.7.1. Mapping repositories to Common Product Enumeration (CPE) information

	7.8. CLAIR UPDATER URLS
	7.9. ADDITIONAL INFORMATION

	CHAPTER 8. SCANNING POD IMAGES WITH THE CONTAINER SECURITY OPERATOR
	8.1. DOWNLOADING AND RUNNING THE CONTAINER SECURITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	8.2. QUERY IMAGE VULNERABILITIES FROM THE CLI

	CHAPTER 9. INTEGRATING RED HAT QUAY INTO OPENSHIFT CONTAINER PLATFORM WITH THE QUAY BRIDGE OPERATOR
	9.1. SETTING UP RED HAT QUAY FOR THE QUAY BRIDGE OPERATOR
	9.2. INSTALLING THE QUAY BRIDGE OPERATOR ON OPENSHIFT CONTAINER PLATFORM
	9.3. CREATING AN OPENSHIFT CONTAINER PLATFORM SECRET FOR THE OAUTH TOKEN
	9.4. CREATING THE QUAYINTEGRATION CUSTOM RESOURCE
	9.4.1. Optional: Creating the QuayIntegration custom resource using the CLI
	9.4.2. Optional: Creating the QuayIntegration custom resource using the web console

	9.5. QUAYINTEGRATION CONFIGURATION FIELDS

	CHAPTER 10. REPOSITORY MIRRORING
	10.1. REPOSITORY MIRRORING
	10.2. REPOSITORY MIRRORING VERSUS GEO-REPLICATION
	10.3. USING REPOSITORY MIRRORING
	10.4. MIRRORING CONFIGURATION UI
	10.5. MIRRORING CONFIGURATION FIELDS
	10.6. MIRRORING WORKER
	10.7. CREATING A MIRRORED REPOSITORY
	10.7.1. Repository mirroring settings
	10.7.2. Advanced settings
	10.7.3. Synchronize now

	10.8. EVENT NOTIFICATIONS FOR MIRRORING
	10.9. MIRRORING TAG PATTERNS
	10.9.1. Pattern syntax
	10.9.2. Example tag patterns

	10.10. WORKING WITH MIRRORED REPOSITORIES
	10.11. REPOSITORY MIRRORING RECOMMENDATIONS

	CHAPTER 11. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
	11.1. CONSIDERATIONS PRIOR TO ENABLING LDAP
	11.1.1. Existing Quay deployments
	11.1.2. Manual User Creation and LDAP authentication

	11.2. SET UP LDAP CONFIGURATION
	11.2.1. Full LDAP URI
	11.2.2. Team Synchronization
	11.2.3. Base and Relative Distinguished Names
	11.2.4. Additional User Filters
	11.2.5. Administrator DN
	11.2.6. UID and Mail attributes
	11.2.7. Validation

	11.3. COMMON ISSUES
	11.4. CONFIGURE AN LDAP USER AS SUPERUSER

	CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
	12.1. EXPOSING THE PROMETHEUS ENDPOINT
	12.1.1. Standalone Red Hat Quay
	12.1.2. Red Hat Quay Operator
	12.1.3. Setting up Prometheus to consume metrics
	12.1.4. DNS configuration under Kubernetes
	12.1.5. DNS configuration for a manual cluster

	12.2. INTRODUCTION TO METRICS
	12.2.1. General registry statistics
	12.2.2. Queue items
	12.2.3. Garbage collection metrics
	12.2.3.1. Multipart uploads metrics

	12.2.4. Image push / pull metrics
	12.2.4.1. Image pulls total
	12.2.4.2. Image bytes pulled
	12.2.4.3. Image pushes total
	12.2.4.4. Image bytes pushed

	12.2.5. Authentication metrics

	CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT
	13.1. QUOTA MANAGEMENT CONFIGURATION
	13.1.1. Default quota

	13.2. QUOTA MANAGEMENT ARCHITECTURE
	13.3. ESTABLISHING QUOTA IN RED HAT QUAY UI
	13.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API
	13.4.1. Setting the quota
	13.4.2. Viewing the quota
	13.4.3. Modifying the quota
	13.4.4. Pushing images
	13.4.4.1. Pushing ubuntu:18.04
	13.4.4.2. Using the API to view quota usage
	13.4.4.3. Pushing another image

	13.4.5. Rejecting pushes using quota limits
	13.4.5.1. Setting reject and warning limits
	13.4.5.2. Viewing reject and warning limits
	13.4.5.3. Pushing an image when the reject limit is exceeded
	13.4.5.4. Notifications for limits exceeded

	13.5. QUOTA MANAGEMENT LIMITATIONS

	CHAPTER 14. GEO-REPLICATION
	14.1. GEO-REPLICATION FEATURES
	14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS
	14.3. GEO-REPLICATION USING STANDALONE RED HAT QUAY
	14.3.1. Enable storage replication - standalone Quay
	14.3.2. Run Red Hat Quay with storage preferences

	14.4. GEO-REPLICATION USING THE RED HAT QUAY OPERATOR
	14.4.1. Setting up geo-replication on Openshift
	14.4.1.1. Configuration

	14.4.2. Mixed storage for geo-replication

	CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY MANAGED BY THE RED HAT QUAY OPERATOR
	15.1. BACKING UP RED HAT QUAY
	15.1.1. Red Hat Quay configuration backup
	15.1.2. Scale down your Red Hat Quay deployment
	15.1.3. Red Hat Quay managed database backup
	15.1.3.1. Red Hat Quay managed object storage backup

	15.1.4. Scale the Red Hat Quay deployment back up

	15.2. RESTORING RED HAT QUAY
	15.2.1. Restoring Red Hat Quay and its configuration from a backup
	15.2.2. Scale down your Red Hat Quay deployment
	15.2.3. Restore your Red Hat Quay database
	15.2.4. Restore your Red Hat Quay object storage data
	15.2.5. Scale up your Red Hat Quay deployment

	CHAPTER 16. MIGRATING A STANDALONE QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR MANAGED DEPLOYMENT
	16.1. BACKING UP A STANDALONE DEPLOYMENT OF RED HAT QUAY
	16.2. USING BACKED UP STANDALONE CONTENT TO MIGRATE TO OPENSHIFT CONTAINER PLATFORM.

	CHAPTER 17. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT
	17.1. BACKING UP RED HAT QUAY ON STANDALONE DEPLOYMENTS
	17.2. RESTORING RED HAT QUAY ON STANDALONE DEPLOYMENTS

	CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION
	18.1. ABOUT RED HAT QUAY GARBAGE COLLECTION
	18.2. RED HAT QUAY GARBAGE COLLECTION IN PRACTICE
	18.2.1. Measuring storage reclamation

	18.3. GARBAGE COLLECTION CONFIGURATION FIELDS
	18.4. DISABLING GARBAGE COLLECTION
	18.5. GARBAGE COLLECTION AND QUOTA MANAGEMENT
	18.6. GARBAGE COLLECTION IN PRACTICE
	18.7. RED HAT QUAY GARBAGE COLLECTION METRICS

	CHAPTER 19. RED HAT QUAY TROUBLESHOOTING
	CHAPTER 20. SCHEMA FOR RED HAT QUAY CONFIGURATION
	ADDITIONAL RESOURCES

