
Red Hat Process Automation Manager
7.2

Managing and monitoring Process Server

Last Updated: 2021-06-09

Red Hat Process Automation Manager 7.2 Managing and monitoring
Process Server

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document explains how install, configure, and performance tune Red Hat Process Automation
Manager 7.2.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. RED HAT PROCESS AUTOMATION MANAGER COMPONENTS

CHAPTER 2. SYSTEM INTEGRATION WITH MAVEN
2.1. PREEMPTIVE AUTHENTICATION FOR LOCAL PROJECTS
2.2. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL
2.3. MANAGING DUPLICATE GAV DETECTION SETTINGS IN BUSINESS CENTRAL

CHAPTER 3. APPLYING PATCH UPDATES AND MINOR RELEASE UPGRADES TO RED HAT PROCESS
AUTOMATION MANAGER

CHAPTER 4. CONFIGURING AND STARTING PROCESS SERVER

CHAPTER 5. CONFIGURING JDBC DATA SOURCES FOR PROCESS SERVER

CHAPTER 6. CONFIGURING PROCESS SERVER WITH THE INTEGRATED PROCESS AUTOMATION
MANAGER CONTROLLER

CHAPTER 7. INSTALLING AND RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER
CONTROLLER

7.1. USING THE INSTALLER TO CONFIGURE PROCESS SERVER WITH THE PROCESS AUTOMATION
MANAGER CONTROLLER
7.2. INSTALLING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER

7.2.1. Creating a headless Process Automation Manager controller user
7.2.2. Configuring Process Server and the headless Process Automation Manager controller

7.3. RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER
7.4. CLUSTERING WITH THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER

CHAPTER 8. CONFIGURING A PROCESS SERVER TO CONNECT TO BUSINESS CENTRAL

CHAPTER 9. CONFIGURING PROCESS SERVER MANAGED BY BUSINESS CENTRAL
9.1. CONFIGURING SMART ROUTER FOR TLS SUPPORT

CHAPTER 10. MANAGED PROCESS SERVER

CHAPTER 11. UNMANAGED PROCESS SERVER

CHAPTER 12. ACTIVATING OR DEACTIVATING A KIE CONTAINER ON PROCESS SERVER

CHAPTER 13. DEPLOYMENT DESCRIPTORS
13.1. DEPLOYMENT DESCRIPTOR CONFIGURATION

What Can You Configure?
13.2. MANAGING DEPLOYMENT DESCRIPTORS
13.3. RESTRICTING ACCESS TO THE RUNTIME ENGINE

CHAPTER 14. ACCESSING RUNTIME DATA FROM BUSINESS CENTRAL

CHAPTER 15. EXECUTION ERROR MANAGEMENT
15.1. MANAGE EXECUTION ERRORS
15.2. THE EXECUTIONERRORHANDLER
15.3. EXECUTION ERROR STORAGE
15.4. ERROR TYPES AND FILTERS
15.5. AUTO ACKNOWLEDGING EXECUTION ERRORS
15.6. CLEANING UP THE ERROR LIST

CHAPTER 16. CONFIGURING OPENSHIFT CONNECTION TIMEOUT

4

5

6
6
7
7

8

12

14

16

18

18
19

20
20
22
23

25

27
29

30

31

32

33
33
33
35
35

36

37
37
38
38
38
39
41

43

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

CHAPTER 17. PERSISTENCE
17.1. CONFIGURING PROCESS SERVER PERSISTENCE
17.2. CONFIGURING SAFE POINTS
17.3. SESSION PERSISTENCE ENTITIES
17.4. PROCESS INSTANCE PERSISTENCE ENTITIES
17.5. WORK ITEM PERSISTENCE ENTITIES
17.6. CORRELATION KEY ENTITIES
17.7. CONTEXT MAPPING ENTITY
17.8. PESSIMISTIC LOCKING SUPPORT

CHAPTER 18. DEFINE THE LDAP LOGIN DOMAIN

CHAPTER 19. AUTHENTICATING THIRD-PARTY CLIENTS THROUGH RH-SSO
19.1. BASIC AUTHENTICATION

CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS
21.1. EXTENDING AN EXISTING PROCESS SERVER CAPABILITY WITH A CUSTOM REST API ENDPOINT
21.2. EXTENDING PROCESS SERVER TO USE A CUSTOM DATA TRANSPORT
21.3. EXTENDING THE PROCESS SERVER CLIENT WITH A CUSTOM CLIENT API

CHAPTER 22. ADDITIONAL RESOURCES

APPENDIX A. VERSIONING INFORMATION

44
44
45
46
46
47
48
48
49

50

51
51

52

60
61

67
74

80

81

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

2

Table of Contents

3

PREFACE
As a systems administrator, you can install, configure, and upgrade Red Hat Process Automation
Manager for production environments, quickly and easily troubleshoot system failures, and ensure that
systems are running optimally.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.2 is installed. For more information, see Red
Hat JBoss EAP 7.2 Installation Guide.

Red Hat Process Automation Manager is installed. For more information, see Planning a Red
Hat Process Automation Manager installation.

Red Hat Process Automation Manager is running and you can log in to Business Central with
the admin role. For more information, see Planning a Red Hat Process Automation Manager
installation.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

4

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/planning_a_red_hat_process_automation_manager_installation

CHAPTER 1. RED HAT PROCESS AUTOMATION MANAGER
COMPONENTS

Red Hat Process Automation Manager is made up of Business Central and Process Server.

Business Central is the graphical user interface where you create and manage business rules.
You can install Business Central in a Red Hat JBoss EAP instance or on the Red Hat OpenShift
Container Platform (OpenShift).
Business Central is also available as a standalone JAR file. You can use the Business Central
standalone JAR file to run Business Central without needing to deploy it to an application
server.

Process Server is the server where processes, rules, and other artifacts are executed. It is used
to instantiate and execute processes and rules and solve planning problems. You can install
Process Server in a Red Hat JBoss EAP instance, on OpenShift, in an Oracle WebLogic server
instance, in an IBM WebSphere Application Server instance, or as a part of Spring Boot
application.
You can configure Process Server to run in managed or unmanaged mode. If Process Server is
unmanaged, you must manually create and maintain KIE containers (deployment units). A KIE
container is a specific version of a project. If Process Server is managed, the Process
Automation Manager controller manages the Process Server configuration and you interact
with the Process Automation Manager controller to create and maintain KIE containers.

CHAPTER 1. RED HAT PROCESS AUTOMATION MANAGER COMPONENTS

5

CHAPTER 2. SYSTEM INTEGRATION WITH MAVEN
Red Hat Process Automation Manager is designed to be used with Red Hat JBoss Middleware Maven
Repository and Maven Central repository as dependency sources. Ensure that both the dependencies
are available for projects builds.

Ensure that your project depends on specific versions of an artifact. LATEST or RELEASE are
commonly used to specify and manage dependency versions in your application.

LATEST refers to the latest deployed (snapshot) version of an artifact.

RELEASE refers to the last non-snapshot version release in the repository.

By using LATEST or RELEASE, you do not have to update version numbers when a new release of a
third-party library is released, however, you lose control over your build being affected by a software
release.

2.1. PREEMPTIVE AUTHENTICATION FOR LOCAL PROJECTS

If your environment does not have access to the internet, set up an in-house Nexus and use it instead of
Maven Central or other public repositories. To import JARs from the remote Maven repository of Red
Hat Process Automation Manager server to a local Maven project, turn on pre-emptive authentication
for the repository server. You can do this by configuring authentication for guvnor-m2-repo in the
pom.xml file as shown below:

Alternatively, you can set Authorization HTTP header with Base64 encoded credentials:

<server>
 <id>guvnor-m2-repo</id>
 <username>admin</username>
 <password>admin</password>
 <configuration>
 <wagonProvider>httpclient</wagonProvider>
 <httpConfiguration>
 <all>
 <usePreemptive>true</usePreemptive>
 </all>
 </httpConfiguration>
 </configuration>
</server>

<server>
 <id>guvnor-m2-repo</id>
 <configuration>
 <httpHeaders>
 <property>
 <name>Authorization</name>
 <!-- Base64-encoded "admin:admin" -->
 <value>Basic YWRtaW46YWRtaW4=</value>
 </property>
 </httpHeaders>
 </configuration>
</server>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

6

https://maven.repository.redhat.com/ga/

2.2. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL

In Business Central, all Maven repositories are checked for any duplicated GroupId, ArtifactId, and
Version (GAV) values in a project. If a GAV duplicate exists, the performed operation is canceled.

Duplicate GAV detection is executed every time you perform the following operations:

Save a project definition for the project.

Save the pom.xml file.

Install, build, or deploy a project.

The following Maven repositories are checked for duplicate GAVs:

Repositories specified in the <repositories> and <distributionManagement> elements of the
pom.xml file.

Repositories specified in the Maven settings.xml configuration file.

2.3. MANAGING DUPLICATE GAV DETECTION SETTINGS IN BUSINESS
CENTRAL

Business Central users with the admin role can modify the list of repositories that are checked for
duplicate GroupId, ArtifactId, and Version (GAV) values for a project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click the project Settings tab and then click Validation to open the list of repositories.

3. Select or clear any of the listed repository options to enable or disable duplicate GAV detection.
In the future, duplicate GAVs will be reported for only the repositories you have enabled for
validation.

NOTE

To disable this feature, set the org.guvnor.project.gav.check.disabled system
property to true for Business Central at system startup:

$ ~/EAP_HOME/bin/standalone.sh -c standalone-full.xml
-Dorg.guvnor.project.gav.check.disabled=true

CHAPTER 2. SYSTEM INTEGRATION WITH MAVEN

7

CHAPTER 3. APPLYING PATCH UPDATES AND MINOR
RELEASE UPGRADES TO RED HAT PROCESS AUTOMATION

MANAGER
Automated update tools are often provided with both patch updates and new minor versions of Red Hat
Process Automation Manager to facilitate updating certain components of Red Hat Process
Automation Manager, such as Business Central, Process Server, and the headless Process Automation
Manager controller. Other Red Hat Process Automation Manager artifacts, such as the process engine
and standalone Business Central, are released as new artifacts with each minor release and you must re-
install them to apply the update.

You can use the same automated update tool to apply both patch updates and minor release upgrades
to Red Hat Process Automation Manager 7.2. Patch updates of Red Hat Process Automation Manager,
such as an update from version 7.2 to 7.2.1, include the latest security updates and bug fixes. Minor
release upgrades of Red Hat Process Automation Manager, such as an upgrade from version 7.2.x to 7.3,
include enhancements, security updates, and bug fixes.

Before you upgrade to a new minor release, apply the latest patch update to your current version of Red
Hat Process Automation Manager to ensure that the minor release upgrade is successful.

IMPORTANT

To upgrade from Red Hat Process Automation Manager 7.1 to 7.2, first update to Red Hat
Process Automation Manager 7.1.1 (latest patch update) and then follow this procedure
again to upgrade to Red Hat Process Automation Manager 7.2. Adjust the example
upgrade versions provided in this section as needed.

NOTE

Only updates for Red Hat Process Automation Manager are included in Red Hat Process
Automation Manager update tools. Updates to Red Hat JBoss EAP must be applied using
Red Hat JBoss EAP patch distributions. For more information about Red Hat JBoss EAP
patching, see the Red Hat JBoss EAP Patching and upgrading guide .

Prerequisites

Your Red Hat Process Automation Manager and Process Server instances are not running. Do
not apply updates while you are running an instance of Red Hat Process Automation Manager or
Process Server.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options.
Example:

Product: Process Automation Manager

Version: 7.2.1

If you are upgrading to a new minor release of Red Hat Process Automation Manager, such as an
upgrade from version 7.2.x to 7.3, first apply the latest patch update to your current version of
Red Hat Process Automation Manager and then follow this procedure again to upgrade to the
new minor release.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

8

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html/patching_and_upgrading_guide/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Click Patches, download the Red Hat Process Automation Manager [VERSION] Update Tool,
and extract the downloaded rhpam-$VERSION-update.zip file to a temporary directory.
This update tool automates the update of certain components of Red Hat Process Automation
Manager, such as Business Central, Process Server, and the headless Process Automation
Manager controller. Use this update tool first to apply updates and then install any other updates
or new release artifacts that are relevant to your Red Hat Process Automation Manager
distribution.

3. If you want to preserve any files from being updated by the update tool, navigate to the
extracted rhpam-$VERSION-update folder, open the blacklist.txt file, and add the relative
paths to the files that you do not want to be updated.
When a file is listed in the blacklist.txt file, the update script does not replace the file with the
new version but instead leaves the file in place and in the same location adds the new version
with a .new suffix. If you blacklist files that are no longer being distributed, the update tool
creates an empty marker file with a .removed suffix. You can then choose to retain, merge, or
delete these new files manually.

Example files to be excluded in blacklist.txt file:

WEB-INF/web.xml // Custom file
styles/base.css // Obsolete custom file kept for record

The contents of the blacklisted file directories after the update:

$ ls WEB-INF
web.xml web.xml.new

$ ls styles
base.css base.css.removed

4. In your command terminal, navigate to the temporary directory where you extracted the rhpam-
$VERSION-update.zip file and run the apply-updates script in the following format:

IMPORTANT

Make sure that your Red Hat Process Automation Manager and Process Server
instances are not running before you apply updates. Do not apply updates while
you are running an instance of Red Hat Process Automation Manager or Process
Server.

On Linux or Unix-based systems:

$./apply-updates.sh $DISTRO_PATH $DISTRO_TYPE

On Windows:

$.\apply-updates.bat $DISTRO_PATH $DISTRO_TYPE

The $DISTRO_PATH portion is the path to the relevant distribution directory and the
$DISTRO_TYPE portion is the type of distribution that you are updating with this update.

The following distribution types are supported in Red Hat Process Automation Manager update
tool:

CHAPTER 3. APPLYING PATCH UPDATES AND MINOR RELEASE UPGRADES TO RED HAT PROCESS AUTOMATION MANAGER

9

rhpam-business-central-eap7-deployable: Updates Business Central (business-
central.war)

rhpam-kie-server-ee8: Updates Process Server (kie-server.war)

NOTE

The update tool will update Red Hat JBoss EAP EE7 to Red Hat JBoss EAP
EE8.

rhpam-controller-ee7: Updates the headless Process Automation Manager controller
(controller.war)

Example update to Business Central and Process Server for a full Red Hat Process Automation
Manager distribution on Red Hat JBoss EAP:

./apply-updates.sh ~EAP_HOME/standalone/deployments/business-central.war rhpam-
business-central-eap7-deployable

./apply-updates.sh ~EAP_HOME/standalone/deployments/kie-server.war rhpam-kie-server-
ee7

Example update to headless Process Automation Manager controller, if used:

./apply-updates.sh ~EAP_HOME/standalone/deployments/controller.war rhpam-controller-
ee7

The update script creates a backup folder in the extracted rhpam-$VERSION-update folder
with a copy of the specified distribution, and then proceeds with the update.

5. After the update tool completes, return to the Software Downloads page of the Red Hat
Customer Portal where you downloaded the update tool and install any other updates or new
release artifacts that are relevant to your Red Hat Process Automation Manager distribution.
For files that already exist in your Red Hat Process Automation Manager distribution, such as
.jar files for the process engine or other add-ons, replace the existing version of the file with the
new version from the Red Hat Customer Portal.

6. If you use the standalone Red Hat Process Automation Manager 7.2.0 Maven Repository
artifact (rhpam-7.2.0-maven-repository.zip), such as in air-gap environments, download Red
Hat Process Automation Manager [VERSION] Incremental Maven Repository and extract
the downloaded rhpam-$VERSION-incremental-maven-repository.zip file to your existing
~/maven-repository directory to update the relevant contents.
Example Maven repository update:

$ unzip -o rhpam-7.2.1-incremental-maven-repository.zip -d $REPO_PATH/rhpam-7.2.0-
maven-repository/maven-repository/

7. After you finish applying all relevant updates, start Red Hat Process Automation Manager and
Process Server and log in to Business Central.

8. Verify that all project data is present and accurate in Business Central, and in the top-right
corner of the Business Central window, click your profile name and click About to verify the
updated product version number.
If you encounter errors or notice any missing data in Business Central, you can restore the

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

10

contents in the backup folder within the rhpam-$VERSION-update folder to revert the update
tool changes. You can also re-install the relevant release artifacts from your previous version of
Red Hat Process Automation Manager in the Red Hat Customer Portal. After restoring your
previous distribution, you can try again to run the update.

CHAPTER 3. APPLYING PATCH UPDATES AND MINOR RELEASE UPGRADES TO RED HAT PROCESS AUTOMATION MANAGER

11

1

2

3

4

5

6

7

8

9

10

CHAPTER 4. CONFIGURING AND STARTING PROCESS
SERVER

You can configure your Process Server location, user name, password, and other related properties by
defining the necessary configurations when you start Process Server.

Procedure

Navigate to the Red Hat Process Automation Manager 7.2 bin directory and start the new Process
Server with the following properties. Adjust the specific properties according to your environment.

$ ~/EAP_HOME/bin/standalone.sh --server-config=standalone-full.xml 1
-Dorg.kie.server.id=myserver 2
-Dorg.kie.server.user=process_server_username 3
-Dorg.kie.server.pwd=process_server_password 4
-Dorg.kie.server.controller=http://localhost:8080/business-central/rest/controller 5
-Dorg.kie.server.controller.user=controller_username 6
-Dorg.kie.server.controller.pwd=controller_password 7
-Dorg.kie.server.location=http://localhost:8080/kie-server/services/rest/server 8
-Dorg.kie.server.persistence.dialect=org.hibernate.dialect.PostgreSQLDialect 9
-Dorg.kie.server.persistence.ds=java:jboss/datasources/psjbpmDS 10

Start command with standalone-full.xml server profile

Server ID that must match the server configuration name defined in Business Central

User name to connect with Process Server from the Process Automation Manager controller

Password to connect with Process Server from the Process Automation Manager controller

Process Automation Manager controller location, Business Central URL with /rest/controller suffix

User name to connect to the Process Automation Manager controller REST API

Password to connect to the Process Automation Manager controller REST API

Process Server location (on the same instance as Business Central in this example)

Hibernate dialect to be used

JNDI name of the data source used for your previous Red Hat JBoss BPM Suite database

NOTE

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

12

NOTE

If Business Central and Process Server are installed on separate application server
instances (Red Hat JBoss EAP or other), use a separate port for the Process Server
location to avoid port conflicts with Business Central. If a separate Process Server port
has not already been configured, you can add a port offset and adjust the Process Server
port value accordingly in the Process Server properties.

Example:

-Djboss.socket.binding.port-offset=150
-Dorg.kie.server.location=http://localhost:8230/kie-server/services/rest/server

If the Business Central port is 8080, as in this example, then the Process Server port, with
a defined offset of 150, is 8230.

Process Server connects to the new Business Central and collects the list of deployment units (KIE
containers) to be deployed.

NOTE

When you use a class inside a dependency JAR file to access Process Server from
Process Server client, you get the ConversionException and
ForbiddenClassException in Business Central. To avoid generating these exceptions in
Business Central, do one of the following:

If the exceptions are generated on the client-side, add following system property
to the kie-server client:

System.setProperty("org.kie.server.xstream.enabled.packages", "org.example.**");

If the exceptions are generated on the server-side, open standalone-full.xml
from the Red Hat Process Automation Manager installation directory, set the
following property under the <system-properties> tag:

<property name="org.kie.server.xstream.enabled.packages" value="org.example.**"/>

Set the following JVM property:

-Dorg.kie.server.xstream.enabled.packages=org.example.**

It is expected that you do not configure the classes that exists in KJAR using these
system property. Ensure that only known classes are used in the system property to avoid
any vulnerabilities.

The org.example is an example package, you can define any package that you want to
use. You can specify multiple packages separated by comma , for example,
org.example1.* * , org.example2.* * , org.example3.* *.

You can also add specific classes , for example, org.example1.Mydata1,
org.example2.Mydata2.

CHAPTER 4. CONFIGURING AND STARTING PROCESS SERVER

13

CHAPTER 5. CONFIGURING JDBC DATA SOURCES FOR
PROCESS SERVER

A data source is an object that enables a Java Database Connectivity (JDBC) client, such as an
application server, to establish a connection with a database. Applications look up the data source on the
Java Naming and Directory Interface (JNDI) tree or in the local application context and request a
database connection to retrieve data. You must configure data sources for Process Server to ensure
proper data exchange between the servers and the designated database.

Prerequisites

The JDBC providers that you want to use to create database connections are configured on all
servers on which you want to deploy Process Server, as described in the "Creating Datasources"
and "JDBC Drivers" sections of the Red Hat JBoss Enterprise Application Server Configuration
Guide.

The Red Hat Process Automation Manager 7.2.0 Add Ons (rhpam-7.2.0-add-ons.zip) file is
downloaded from the Software Downloads page in the Red Hat Customer Portal.

Procedure

1. Open EAP_HOME/standalone/configuration/standalone-full.xml in a text editor and locate
the <system-properties> tag.

2. Add the following properties to the <system-properties> tag where <DATASOURCE> is the
name of your data source and <HIBERNATE_DIALECT> is the hibernate dialect for your
database.

NOTE

The default value of the org.kie.server.persistence.ds property is
java:jboss/datasources/ExampleDS. The default value of the
org.kie.server.persistence.dialect property is org.hibernate.dialect.H2Dialect.

For example:

<property name="org.kie.server.persistence.ds" value="<DATASOURCE>"/>
<property name="org.kie.server.persistence.dialect" value="<HIBERNATE_DIALECT>"/>

<system-properties>
 <property name="org.kie.server.repo" value="${jboss.server.data.dir}"/>
 <property name="org.kie.example" value="true"/>
 <property name="org.jbpm.designer.perspective" value="full"/>
 <property name="designerdataobjects" value="false"/>
 <property name="org.kie.server.user" value="rhpamUser"/>
 <property name="org.kie.server.pwd" value="rhpam123!"/>
 <property name="org.kie.server.location" value="http://localhost:8080/kie-
server/services/rest/server"/>
 <property name="org.kie.server.controller" value="http://localhost:8080/business-
central/rest/controller"/>
 <property name="org.kie.server.controller.user" value="kieserver"/>
 <property name="org.kie.server.controller.pwd" value="kieserver1!"/>
 <property name="org.kie.server.id" value="local-server-123"/>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html/configuration_guide/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

The following dialects are supported:

DB2: org.hibernate.dialect.DB2Dialect

MSSQL: org.hibernate.dialect.SQLServer2012Dialect

MySQL: org.hibernate.dialect.MySQL5InnoDBDialect

MariaDB: org.hibernate.dialect.MySQL5InnoDBDialect

Oracle: org.hibernate.dialect.Oracle10gDialect

PostgreSQL: org.hibernate.dialect.PostgreSQL82Dialect

PostgreSQL plus: org.hibernate.dialect.PostgresPlusDialect

Sybase: org.hibernate.dialect.SybaseASE157Dialect

 <!-- Data source properties. -->
 <property name="org.kie.server.persistence.ds"
value="java:jboss/datasources/KieServerDS"/>
 <property name="org.kie.server.persistence.dialect"
value="org.hibernate.dialect.PostgreSQLDialect"/>
</system-properties>

CHAPTER 5. CONFIGURING JDBC DATA SOURCES FOR PROCESS SERVER

15

CHAPTER 6. CONFIGURING PROCESS SERVER WITH THE
INTEGRATED PROCESS AUTOMATION MANAGER

CONTROLLER

NOTE

Only make the changes described in this section if Process Server will be managed by
Business Central and you installed Red Hat Process Automation Manager from the ZIP
files. If you did not install Business Central, you can use the headless Process Automation
Manager controller to manage Process Server, as described in Chapter 7, Installing and
running the headless Process Automation Manager controller.

Process Server can be managed or it can be unmanaged. If Process Server is unmanaged, you must
manually create and maintain KIE containers (deployment units). If Process Server is managed, the
Process Automation Manager controller manages the Process Server configuration and you interact
with the Process Automation Manager controller to create and maintain KIE containers.

The Process Automation Manager controller is integrated with Business Central. If you install Business
Central, you can use the Execution Server page in Business Central to interact with the Process
Automation Manager controller.

If you installed Red Hat Process Automation Manager from the ZIP files, you must edit the standalone-
full.xml file in both the Process Server and Business Central installations to configure Process Server
with the integrated Process Automation Manager controller.

Prerequisites

Business Central and Process Server are installed in the base directory of the Red Hat JBoss
EAP installation (EAP_HOME).

NOTE

You should install Business Central and Process Server on different servers in
production environments. However, if you install Process Server and Business
Central on the same server, for example in a development environment, make the
changes described in this section in the shared standalone-full.xml file.

On Business Central server nodes, a user with the rest-all role exists.

Procedure

1. In the Business Central EAP_HOME/standalone/configuration/standalone-full.xml file,
uncomment the following properties in the <system-properties> section and replace
<USERNAME> and <USER_PWD> with the credentials of a user with the kie-server role:

2. In the Process Server EAP_HOME/standalone/configuration/standalone-full.xml file,
uncomment the following properties in the <system-properties> section.

 <property name="org.kie.server.user" value="<USERNAME>"/>
 <property name="org.kie.server.pwd" value="<USER_PWD>"/>

 <property name="org.kie.server.controller.user" value="<CONTROLLER_USER>"/>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

16

3. Replace the following values:

Replace <CONTROLLER_USER> and <CONTROLLER_PWD> with the credentials of a user
with the rest-all role.

Replace <KIE_SERVER_ID> with the ID or name of the Process Server installation, for
example, rhpam-7.2.0-process_server-1.

Replace <HOST> with the ID or name of the Process Server host, for example, localhost or
192.7.8.9.

Replace <PORT> with the port of the Process Server host, for example, 8080.

NOTE

The org.kie.server.location property specifies the location of Process Server.

Replace <CONTROLLER_URL> with the URL of Business Central. Process Server connects to
this URL during startup.

If you installed Business Central using the installer or Red Hat JBoss EAP zip installations,
<CONTROLLER_URL> has this format:
http://<HOST>:<PORT>/business-central/rest/controller

If you are running Business Central using the standalone.jar file, <CONTROLLER_URL>
has this format:
http://<HOST>:<PORT>/rest/controller

 <property name="org.kie.server.controller.pwd" value="<CONTROLLER_PWD>"/>
 <property name="org.kie.server.id" value="<KIE_SERVER_ID>"/>
 <property name="org.kie.server.location" value="http://<HOST>:<PORT>/kie-
server/services/rest/server"/>
 <property name="org.kie.server.controller" value="<CONTROLLER_URL>"/>

CHAPTER 6. CONFIGURING PROCESS SERVER WITH THE INTEGRATED PROCESS AUTOMATION MANAGER CONTROLLER

17

CHAPTER 7. INSTALLING AND RUNNING THE HEADLESS
PROCESS AUTOMATION MANAGER CONTROLLER

You can configure Process Server to run in managed or unmanaged mode. If Process Server is
unmanaged, you must manually create and maintain KIE containers (deployment units). If Process
Server is managed, the Process Automation Manager controller manages the Process Server
configuration and you interact with the Process Automation Manager controller to create and maintain
KIE containers.

Business Central has an embedded Process Automation Manager controller. If you install Business
Central, use the Execution Server page to create and maintain KIE containers. If you want to automate
Process Server management without Business Central, you can use the headless Process Automation
Manager controller.

7.1. USING THE INSTALLER TO CONFIGURE PROCESS SERVER WITH
THE PROCESS AUTOMATION MANAGER CONTROLLER

Process Server can be managed by the Process Automation Manager controller or it can be unmanaged.
If Process Server is unmanaged, you must manually create and maintain KIE containers (deployment
units). If Process Server is managed, the Process Automation Manager controller manages the Process
Server configuration and you interact with the Process Automation Manager controller to create and
maintain KIE containers.

The Process Automation Manager controller is integrated with Business Central. If you install Business
Central, you can use the Execution Server page in Business Central to interact with the Process
Automation Manager controller.

You can use the installer in interactive or CLI mode to install Business Central and Process Server, and
then configure Process Server with the Process Automation Manager controller.

NOTE

If you do not install Business Central, see Chapter 7, Installing and running the headless
Process Automation Manager controller for information about using the headless Process
Automation Manager controller.

Prerequisites

Two computers with backed-up Red Hat JBoss EAP 7.2 or higher server installations are
available.

Sufficient user permissions to complete the installation are granted.

Procedure

1. On the first computer, run the installer in interactive mode or CLI mode. See Installing and
configuring Red Hat Process Automation Manager on Red Hat JBoss EAP for more information.

2. On the Component Selection page, clear the Process Server box.

3. Complete the Business Central installation.

4. On the second computer, run the installer in interactive mode or CLI mode.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

18

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/installing_and_configuring_red_hat_process_automation_manager_on_red_hat_jboss_eap

5. On the Component Selection page, clear the Business Central box.

6. On the Configure Runtime Environment page, select Perform Advanced Configuration.

7. Select Customize Process Server properties and click Next.

8. On the Process Server Properties Configuration page, click New Server Configuration to
add a Process Server and specify a unique name for that Process Server. This name will appear
in Business Central and enable you to distinguish between different Process Servers.

7.2. INSTALLING THE HEADLESS PROCESS AUTOMATION MANAGER
CONTROLLER

You can install the headless Process Automation Manager controller and use the REST API or the
Process Server Java Client API to interact with it.

Prerequisites

A backed-up Red Hat JBoss EAP installation version 7.2 or higher is available. The base
directory of the Red Hat JBoss EAP installation is referred to as EAP_HOME.

Sufficient user permissions to complete the installation are granted.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Process Automation Manager

Version: 7.2

2. Download Red Hat Process Automation Manager 7.2.0 Add Ons (the rhpam-7.2.0-add-
ons.zip file).

3. Unzip the rhpam-7.2.0-add-ons.zip file. The rhpam-7.2-controller-ee7.zip file is in the
unzipped directory.

4. Extract the rhpam-7.2-controller-ee7 archive to a temporary directory. In the following
examples this directory is called TEMP_DIR.

5. Copy the TEMP_DIR/rhpam-7.2-controller-ee7/controller.war directory to
EAP_HOME/standalone/deployments/.

WARNING

Ensure that the names of the headless Process Automation Manager
controller deployments you are copying do not conflict with your existing
deployments in the Red Hat JBoss EAP instance.

6. Copy the contents of the TEMP_DIR/rhpam-7.2-controller-ee7/SecurityPolicy/ directory to



CHAPTER 7. INSTALLING AND RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER

19

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

6. Copy the contents of the TEMP_DIR/rhpam-7.2-controller-ee7/SecurityPolicy/ directory to
EAP_HOME/bin. When asked to overwrite files, select Yes.

7. In the EAP_HOME/standalone/deployments/ directory, create an empty file named
controller.war.dodeploy. This file ensures that the headless Process Automation Manager
controller is automatically deployed when the server starts.

7.2.1. Creating a headless Process Automation Manager controller user

Before you can use the headless Process Automation Manager controller, you must create a user that
has the kie-server role.

Prerequisites

The headless Process Automation Manager controller is installed in the base directory of the
Red Hat JBoss EAP installation (EAP_HOME).

Procedure

1. In a terminal application, navigate to the EAP_HOME/bin directory.

2. Enter the following command and replace <USER_NAME> and <PASSWORD> with the user
name and password of your choice.

NOTE

Make sure that the specified user name is not the same as an existing user, role,
or group. For example, do not create a user with the user name admin.

The password must have at least eight characters and must contain at least one
number and one non-alphanumeric character, but not & (ampersand).

3. Make a note of your user name and password.

7.2.2. Configuring Process Server and the headless Process Automation Manager
controller

If Process Server will be managed by the headless Process Automation Manager controller, you must
edit the standalone-full.xml file in Process Server installation and the standalone.xml file in the
headless Process Automation Manager controller installation, as described in this section.

Prerequisites

Process Server is installed in the base directory of the Red Hat JBoss EAP installation
(EAP_HOME).

The headless Process Automation Manager controller is installed in an EAP_HOME.

NOTE

$./add-user.sh -a --user <USER_NAME> --password <PASSWORD> --role kie-server

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

20

NOTE

You should install Process Server and the headless Process Automation Manager
controller on different servers in production environments. However, if you install
Process Server and the headless Process Automation Manager controller on the
same server, for example in a development environment, make these changes in
the shared standalone-full.xml file.

On Process Server nodes, a user with the kie-server role exists.

On the server nodes, a user with the kie-server role exists.

Procedure

1. In the EAP_HOME/standalone/configuration/standalone-full.xml file, add the following
properties to the <system-properties> section and replace <USERNAME> and
<USER_PWD> with the credentials of a user with the kie-server role:

2. In the Process Server EAP_HOME/standalone/configuration/standalone-full.xml file, add
the following properties to the <system-properties> section:

3. In this file, replace the following values:

Replace <CONTROLLER_USER> and <CONTROLLER_PWD> with the credentials of a user
with the kie-server role.

Replace <KIE_SERVER_ID> with the ID or name of the Process Server installation, for
example, rhpam-7.2.0-process_server-1.

Replace <HOST> with the ID or name of the Process Server host, for example, localhost or
192.7.8.9.

Replace <PORT> with the port of the Process Server host, for example, 8080.

NOTE

The org.kie.server.location property specifies the location of Process Server.

Replace <CONTROLLER_URL> with the URL of the headless Process Automation Manager
controller.

1. Process Server connects to this URL during startup.

7.3. RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER

 <property name="org.kie.server.user" value="<USERNAME>"/>
 <property name="org.kie.server.pwd" value="<USER_PWD>"/>

 <property name="org.kie.server.controller.user" value="<CONTROLLER_USER>"/>
 <property name="org.kie.server.controller.pwd" value="<CONTROLLER_PWD>"/>
 <property name="org.kie.server.id" value="<KIE_SERVER_ID>"/>
 <property name="org.kie.server.location" value="http://<HOST>:<PORT>/kie-
server/services/rest/server"/>
 <property name="org.kie.server.controller" value="<CONTROLLER_URL>"/>

CHAPTER 7. INSTALLING AND RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER

21

7.3. RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER
CONTROLLER

After you have installed the headless Process Automation Manager controller on Red Hat JBoss EAP,
use this procedure to run the headless Process Automation Manager controller.

Prerequisites

The headless Process Automation Manager controller is installed and configured in the base
directory of the Red Hat JBoss EAP installation (EAP_HOME).

Procedure

1. In a terminal application, navigate to EAP_HOME/bin.

2. If you installed the headless Process Automation Manager controller on the same Red Hat
JBoss EAP instance as the Red Hat JBoss EAP instance where you installed the Process Server,
enter one of the following commands:

On Linux or UNIX-based systems:

On Windows:

3. If you installed the headless Process Automation Manager controller on a separate Red Hat
JBoss EAP instance from the Red Hat JBoss EAP instance where you installed the Process
Server, you can start the headless Process Automation Manager controller with the
standalone.sh script:

NOTE

In this case, ensure that you made all required configuration changes to the
standalone.xml file.

On Linux or UNIX-based systems:

On Windows:

4. To verify that the headless Process Automation Manager controller is working on Red Hat
JBoss EAP, enter the following command where <CONTROLLER> and
<CONTROLLER_PWD> is the user name and password. The output of this command provides
information about the Process Server instance.

curl -X GET "http://<HOST>:<PORT>/controller/rest/controller/management/servers" -H
"accept: application/xml" -u '<CONTROLLER>:<CONTROLLER_PWD>'

$./standalone.sh -c standalone-full.xml

standalone.bat -c standalone-full.xml

$./standalone.sh

standalone.bat

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

22

NOTE

Alternatively, you can use the Process Server Java API Client to access the headless
Process Automation Manager controller.

7.4. CLUSTERING WITH THE HEADLESS PROCESS AUTOMATION
MANAGER CONTROLLER

The Process Automation Manager controller is integrated with Business Central. However, if you do not
install Business Central, you can install the headless Process Automation Manager controller and use the
REST API or the Process Server Java Client API to interact with it.

Prerequisites

A backed-up Red Hat JBoss EAP installation version 7.2 or later is available. The base directory
of the Red Hat JBoss EAP installation is referred to as EAP_HOME.

Sufficient user permissions to complete the installation are granted.

An NFS server with a mounted partition is available.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Process Automation Manager

Version: 7.2

2. Download Red Hat Process Automation Manager 7.2.0 Add Ons (the rhpam-7.2.0-add-
ons.zip file).

3. Unzip the rhpam-7.2.0-add-ons.zip file. The rhpam-7.2-controller-ee7.zip file is in the
unzipped directory.

4. Extract the rhpam-7.2-controller-ee7 archive to a temporary directory. In the following
examples this directory is called TEMP_DIR.

5. Copy the TEMP_DIR/rhpam-7.2-controller-ee7/controller.war directory to
EAP_HOME/standalone/deployments/.

WARNING

Ensure that the names of the headless Process Automation Manager
controller deployments you are copying do not conflict with your existing
deployments in the Red Hat JBoss EAP instance.

6. Copy the contents of the TEMP_DIR/rhpam-7.2-controller-ee7/SecurityPolicy/ directory to
EAP_HOME/bin. When asked to overwrite files, select Yes.



CHAPTER 7. INSTALLING AND RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER

23

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

7. In the EAP_HOME/standalone/deployments/ directory, create an empty file named
controller.war.dodeploy. This file ensures that the headless Process Automation Manager
controller is automatically deployed when the server starts.

8. Open the EAP_HOME/standalone/configuration/standalone.xml file in a text editor.

9. Add the following properties to the <system-properties> element and replace
<NFS_STORAGE> with the absolute path to the NFS storage where the template configuration
is stored:

<system-properties>
 <property name="org.kie.server.controller.templatefile.watcher.enabled" value="true"/>
 <property name="org.kie.server.controller.templatefile" value="<NFS_STORAGE>"/>
</system-properties>

If the value of the org.kie.server.controller.templatefile.watcher.enabled property is set to
true, a separate thread is started to watch for modifications of the template file. The default
interval for these checks is 30000 milliseconds and can be further controlled by the
org.kie.server.controller.templatefile.watcher.interval system property. If the value of this
property is set to false, changes to the template file are detected only when the server restarts.

10. To start the headless Process Automation Manager controller, navigate to EAP_HOME/bin and
enter the following command:

On Linux or UNIX-based systems:

On Windows:

For more information about running Red Hat Process Automation Manager in a Red Hat JBoss
Enterprise Application Platform clustered environment, see Installing and configuring Red Hat Process
Automation Manager in a Red Hat JBoss EAP clustered environment.

$./standalone.sh

standalone.bat

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

24

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/installing_and_configuring_red_hat_process_automation_manager_in_a_red_hat_jboss_eap_clustered_environment

CHAPTER 8. CONFIGURING A PROCESS SERVER TO
CONNECT TO BUSINESS CENTRAL

If a Process Server is not already configured in your Red Hat Process Automation Manager environment,
or if you require additional Process Servers in your Red Hat Process Automation Manager environment,
you must configure a Process Server to connect to Business Central.

NOTE

If you are deploying Process Server on Red Hat OpenShift Container Platform, see
Deploying a Red Hat Process Automation Manager managed server environment on Red
Hat OpenShift Container Platform for instructions about configuring it to connect to
Business Central.

Prerequisite

Process Server is installed. For installation options, see Planning a Red Hat Process Automation Manager
installation.

Procedure

1. In your Red Hat Process Automation Manager installation directory, navigate to the
standalone-full.xml file. For example, if you use a Red Hat JBoss EAP installation for Red Hat
Process Automation Manager, go to $EAP_HOME/standalone/configuration/standalone-
full.xml.

2. Open standalone-full.xml and under the <system-properties> tag, set the following
properties:

org.kie.server.controller.user: The user name of a user who can log in to the Business
Central.

org.kie.server.controller.pwd: The password of the user who can log in to the Business
Central.

org.kie.server.controller: The URL for connecting to the API of Business Central. Normally,
the URL is http://<centralhost>:<centralport>/business-central/rest/controller, where
<centralhost> and <centralport> are the host name and port for Business Central. If
Business Central is deployed on OpenShift, remove business-central/ from the URL.

org.kie.server.location: The URL for connecting to the API of Process Server. Normally, the
URL is http://<serverhost>:<serverport>/kie-server/services/rest/server, where
<serverhost> and <serverport> are the host name and port for Process Server.

org.kie.server.id: The name of a server configuration. If this server configuration does not
exist in Business Central, it is created automatically when Process Server connects to
Business Central.

Example:

<property name="org.kie.server.controller.user" value="central_user"/>
<property name="org.kie.server.controller.pwd" value="central_password"/>
<property name="org.kie.server.controller" value="http://central.example.com:8080/business-
central/rest/controller"/>

CHAPTER 8. CONFIGURING A PROCESS SERVER TO CONNECT TO BUSINESS CENTRAL

25

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/deploying_a_red_hat_process_automation_manager_managed_server_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/planning_a_red_hat_process_automation_manager_installation

3. Start or restart the Process Server.

<property name="org.kie.server.location" value="http://kieserver.example.com:8080/kie-
server/services/rest/server"/>
<property name="org.kie.server.id" value="production-servers"/>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

26

CHAPTER 9. CONFIGURING PROCESS SERVER MANAGED BY
BUSINESS CENTRAL

WARNING

This section provides a sample setup that you can use for testing purposes. Some of
the values are unsuitable for a production environment, and are marked as such.

Use this procedure to configure Business Central to manage a Process Server instance.

Prerequisite

Users with the following roles exist:

In Business Central, a user with the role rest-all.

On the Process Server, a user with the role kie-server.

NOTE

In production environments, use two distinct users, each with one role. In this sample
situation, we use only one user named controllerUser that has both the rest-all and the
kie-server roles.

Procedure

1. Set the following JVM properties.
The location of Business Central and the Process Server may be different. In such case, ensure
you set the properties on the correct server instances.

On Red Hat JBoss EAP, modify the <system-properties> section in:

EAP_HOME/standalone/configuration/standalone*.xml for standalone mode.

EAP_HOME/domain/configuration/domain.xml for domain mode.

Table 9.1. JVM Properties for Process Server Instance

Property Value Note

org.kie.server.id default-kie-server The Process Server ID.

org.kie.server.controller http://localhost:8080/decis
ion-central/rest/controller

The location of Business
Central.

org.kie.server.controller.u
ser

controllerUser The user name with the role
rest-all as mentioned in the
previous step.



CHAPTER 9. CONFIGURING PROCESS SERVER MANAGED BY BUSINESS CENTRAL

27

org.kie.server.controller.p
wd

controllerUser1234; The password of the user
mentioned in the previous step.

org.kie.server.location http://localhost:8080/kie-
server/services/rest/server

The location of the Process
Server.

Property Value Note

Table 9.2. JVM Properties for Business Central Instance

Property Value Note

org.kie.server.user controllerUser The user name with the role
kie-server as mentioned in
the previous step.

org.kie.server.pwd controllerUser1234; The password of the user
mentioned in the previous step.

2. Verify the successful start of the Process Server by sending a GET request to
http://SERVER:PORT/kie-server/services/rest/server/. Once authenticated, you get an XML
response similar to this:

3. Verify successful registration:

a. Log in to Business Central.

<response type="SUCCESS" msg="Kie Server info">
 <kie-server-info>
 <capabilities>KieServer</capabilities>
 <capabilities>BRM</capabilities>
 <capabilities>BPM</capabilities>
 <capabilities>CaseMgmt</capabilities>
 <capabilities>BPM-UI</capabilities>
 <capabilities>BRP</capabilities>
 <capabilities>DMN</capabilities>
 <capabilities>Swagger</capabilities>
 <location>http://localhost:8230/kie-server/services/rest/server</location>
 <messages>
 <content>Server KieServerInfo{serverId='first-kie-server', version='7.5.1.Final-redhat-
1', location='http://localhost:8230/kie-server/services/rest/server', capabilities=[KieServer,
BRM, BPM, CaseMgmt, BPM-UI, BRP, DMN, Swagger]}started successfully at Mon Feb 05
15:44:35 AEST 2018</content>
 <severity>INFO</severity>
 <timestamp>2018-02-05T15:44:35.355+10:00</timestamp>
 </messages>
 <name>first-kie-server</name>
 <id>first-kie-server</id>
 <version>7.5.1.Final-redhat-1</version>
 </kie-server-info>
</response>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

28

b. Click Menu → Deploy → Execution Servers.
If registration is successful, you can see the registered server ID.

9.1. CONFIGURING SMART ROUTER FOR TLS SUPPORT

You can now configure Smart Router (previously, KIE Server Router) for TLS support to allow HTTPS
traffic.

Procedure

Open a terminal and enter the following command to start the smart router with TLS support:

Replace PATH_TO_YOUR_KEYSTORE, YOUR_KEYSTORE_PASSWD,
YOUR_KEYSTORE_ALIAS, and YOUR_VERSION with the relevant data.

java -Dorg.kie.server.router.tls.keystore=PATH_TO_YOUR_KEYSTORE
 -Dorg.kie.server.router.tls.keystore.password=YOUR_KEYSTORE_PASSWD
 -Dorg.kie.server.router.tls.keystore.keyalias=YOUR_KEYSTORE_ALIAS
 -jar kie-server-router-proxy-YOUR_VERSION.jar

CHAPTER 9. CONFIGURING PROCESS SERVER MANAGED BY BUSINESS CENTRAL

29

CHAPTER 10. MANAGED PROCESS SERVER
A managed instance requires an available Process Automation Manager controller to start the Process
Server.

A Process Automation Manager controller manages the Process Server configuration in a centralized
way. Each Process Automation Manager controller can manage multiple configurations at once, and
there can be multiple Process Automation Manager controllers in the environment. Managed Process
Server can be configured with a list of Process Automation Manager controllers, but will only connect to
one at a time.

IMPORTANT

All Process Automation Manager controllers should be synchronized to ensure that the
same set of configuration is provided to the server, regardless of the Process Automation
Manager controller to which it connects.

When the Process Server is configured with a list of Process Automation Manager controllers, it will
attempt to connect to each of them at startup until a connection is successfully established with one of
them. If a connection cannot be established, the server will not start, even if there is a local storage
available with configuration. This ensures consistence and prevents the server from running with
redundant configuration.

NOTE

To run the Process Server in standalone mode without connecting to Process
Automation Manager controllers, see Chapter 11, Unmanaged Process Server.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

30

CHAPTER 11. UNMANAGED PROCESS SERVER
An unmanaged Process Server is a standalone instance, and therefore must be configured individually
using REST/JMS API from the Process Server itself. The configuration is automatically persisted by the
server into a file and that is used as the internal server state, in case of restarts.

The configuration is updated during the following operations:

Deploy KIE container

Undeploy KIE container

Start KIE container

Stop KIE container

NOTE

If the Process Server is restarted, it will attempt to re-establish the same state that was
persisted before shutdown. Therefore, KIE containers (deployment units) that were
running will be started, but the ones that were stopped will not.

CHAPTER 11. UNMANAGED PROCESS SERVER

31

CHAPTER 12. ACTIVATING OR DEACTIVATING A KIE
CONTAINER ON PROCESS SERVER

You can now stop the creation of new process instances from a given container by deactivating it but at
the same time continue working on its existing process instances and tasks. In case the deactivation is
temporary, you can activate the container again later. The activation or deactivation of KIE containers
do not require restarting of KIE server.

Prerequisite

A container has been created and configured in Business Central.

Procedure

1. Log in to Business Central.

2. In the main menu, click Menu → Deploy → Execution Servers.

3. From the Server Configurations pane, which is on the left of the page, select your server.

4. From the Deployment Units pane, select the deployment unit you want to activate or
deactivate.

5. Click Activate or Deactivate in the upper-right corner of the deployment unit pane.
Once you deactivate a given KIE container, you cannot create new process instances from it.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

32

CHAPTER 13. DEPLOYMENT DESCRIPTORS
Processes and rules are stored in Apache Maven based packaging and are known as knowledge archives,
or KJAR. The rules, processes, assets, and other project artifacts are part of a JAR file built and
managed by Maven. A file kept inside the META-INF directory of the KJAR called kmodule.xml can be
used to define the KIE bases and sessions. This kmodule.xml file, by default, is empty.

Whenever a runtime component such as Business Central is about to process the KJAR, it looks up
kmodule.xml to build the runtime representation.

Deployment descriptors supplement the kmodule.xml file and provide granular control over your
deployment. The presence of these descriptors is optional and your deployment will proceed
successfully without them. You can set purely technical properties using these descriptors, including
meta values such as persistence, auditing, and runtime strategy.

These descriptors allow you to configure the Process Server on multiple levels (server level default,
different deployment descriptor per KJAR, and other server configurations). This allows you to make
simple customizations to the default Process Server configuration (possibly per KJAR).

You can define these descriptors in a file called kie-deployment-descriptor.xml and place this file next
to your kmodule.xml file in the META-INF folder. You can change this default location and the file
name by specifying it as a system parameter:

-Dorg.kie.deployment.desc.location=file:/path/to/file/company-deployment-descriptor.xml

13.1. DEPLOYMENT DESCRIPTOR CONFIGURATION

Deployment descriptors allow the user to configure the execution server on multiple levels:

Server level: The main level and the one that applies to all KJARs deployed on the server.

KJAR level: This allows you to configure descriptors on a per KJAR basis.

Deploy time level : Descriptors that apply while a KJAR is being deployed.

The granular configuration items specified by the deployment descriptors take precedence over the
server level ones, except in case of configuration items that are collection based, which are merged. The
hierarchy works like this: deploy time configuration > KJAR configuration > server configuration .

NOTE

The deploy time configuration applies to deployments done via the REST API.

For example, if the persistence mode (one of the items you can configure) defined at the server level is
NONE but the same mode is specified as JPA at the KJAR level, the actual mode will be JPA for that
KJAR. If nothing is specified for the persistence mode in the deployment descriptor for that KJAR (or if
there is no deployment descriptor), it will fall back to the server level configuration, which in this case is
NONE (or to JPA if there is no server level deployment descriptor).

What Can You Configure?
High level technical configuration details can be configured via deployment descriptors. The following
table lists these along with the permissible and default values for each.

Table 13.1. Deployment Descriptors

CHAPTER 13. DEPLOYMENT DESCRIPTORS

33

Configuration XML Entry Permissible Values Default Value

Persistence unit name
for runtime data

persistence-unit Any valid persistence
package name

org.jbpm.domain

Persistence unit name
for audit data

audit-persistence-unit Any valid persistence
package name

org.jbpm.domain

Persistence mode persistence-mode JPA, NONE JPA

Audit mode audit-mode JPA, JMS or NONE JPA

Runtime Strategy runtime-strategy SINGLETON,
PER_REQUEST or
PER_PROCESS_INSTA
NCE

SINGLETON

List of Event Listeners
to be registered

event-listeners Valid listener class
names as ObjectModel

No default value

List of Task Event
Listeners to be
registered

task-event-listeners Valid listener class
names as ObjectModel

No default value

List of Work Item
Handlers to be
registered

work-item-handlers Valid Work Item Handler
classes given as
NamedObjectHandle
r

No default value

List of Globals to be
registered

globals Valid Global variables
given as
NamedObjectModel

No default value

Marshalling strategies to
be registered (for
pluggable variable
persistence)

marshalling-strategies Valid ObjectModel
classes

No default value

Required Roles to be
granted access to the
resources of the KJAR

required-roles String role names No default value

Additional Environment
Entries for KIE session

environment-entries Valid
NamedObjectModel

No default value

Additional configuration
options of KIE session

configurations Valid
NamedObjectModel

No default value

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

34

Classes used for
serialization in the
remote services

remoteable-class Valid CustomClass No default value

Configuration XML Entry Permissible Values Default Value

13.2. MANAGING DEPLOYMENT DESCRIPTORS

Deployment descriptors can be configured in Business Central in Menu → Design →
$PROJECT_NAME → Settings → Deployments.

Every time a project is created, a stock kie-deployment-descriptor.xml file is generated with default
values.

It is not necessary to provide a full deployment descriptor for all KJARs. Providing partial deployment
descriptors is possible and recommended. For example, if you need to use a different audit mode, you
can specify that for the KJAR only, all other properties will have the default value defined at the server
level.

When using OVERRIDE_ALL merge mode, all configuration items must be specified, because the
relevant KJAR will always use specified configuration and will not merge with any other deployment
descriptor in the hierarchy.

13.3. RESTRICTING ACCESS TO THE RUNTIME ENGINE

The required-roles configuration item can be edited in the deployment descriptors. This property
restricts access to the runtime engine on a per-KJAR or per-server level by ensuring that access to
certain processes is only granted to users that belong to groups defined by this property.

The security role can be used to restrict access to process definitions or restrict access at run time.

The default behavior is to add required roles to this property based on repository restrictions. You can
edit these properties manually if required by providing roles that match actual roles defined in the
security realm.

Procedure

1. To open the project deployment descriptors configuration in Business Central, open Menu →
Design → $PROJECT_NAME → Settings → Deployments.

2. From the list of configuration settings, click Required Roles, then click Add Required Role.

3. In the Add Required Role window, type the name of the role that you want to have permission
to access this deployment, then click Add.

4. To add more roles with permission to access the deployment, repeat the previous steps.

5. When you have finished adding all required roles, click Save.

CHAPTER 13. DEPLOYMENT DESCRIPTORS

35

CHAPTER 14. ACCESSING RUNTIME DATA FROM BUSINESS
CENTRAL

The following pages in Business Central allow you to view the runtime data of the Process Server:

Process Reports

Task Reports

Process Definitions

Process Instances

Execution Errors

Jobs

Tasks

These pages use the credentials of the currently logged in user to load data from the Process Server.
Therefore, to be able to view the runtime data in Business Central, ensure that the following conditions
are met:

The user exists in the KIE container (deployment unit) running the Business Central application.
This user must have admin, analyst, or developer roles assigned, in addition to the kie-server
role, with full access to the runtime data. The manager and process_admin roles also allow
access to runtime data pages in Business Central.

The user exists in the KIE container (deployment unit) running the Process Server and has kie-
server role assigned.

Communication between Business Central and the Process Server is established. That is, the
Process Server is registered in the Process Automation Manager controller, which is part of
Business Central.

The deployment.business-central.war login module is present in the standalone.xml
configuration of the server running Business Central:

 <login-module code="org.kie.security.jaas.KieLoginModule" flag="optional"
module="deployment.business-central.war"/>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

36

CHAPTER 15. EXECUTION ERROR MANAGEMENT
When an execution error occurs the process stops and rolls back to the most recent stable state (the
closest safe point) and continues its execution. If an error of any kind is not handled by the process the
entire transaction rolls back, leaving the process instance in the previous wait state. Any trace of this is
only visible in the logs, and usually displayed to the caller who sent the request to the process engine.

Users with process administrator (process-admin) or administrator (admin) roles are able to access
error messages in Business Central, which has the following features:

Better traceability

Visibility in case of critical processes

Reporting and analytics based on error situations

External system error handling and compensation

Configurable error handling is responsible for receiving any technical errors thrown throughout the
process engine execution (including task service). The following technical exceptions apply:

Anything that extends java.lang.Throwable.

Process level error handling and any other exceptions not previously handled.

There are several components that make up the error handling mechanism and allow a pluggable
approach to extend its capabilities.

The process engine entry point for error handling is the ExecutionErrorManager. This is integrated with
RuntimeManager, which is then responsible for providing it to underlying components - KieSession and
TaskService. From the API point of view, ExecutionErrorManager gives access to:

ExecutionErrorHandler - the primary mechanism for error handling.

ExecutionErrorStorage - pluggable storage for execution error information.

15.1. MANAGE EXECUTION ERRORS

By definition, every error that is caught and stored is unacknowledged, meaning that it is to be handled
by someone or something (in case of automatic error recovery). Errors are filtered on the basis of
whether or not they have been acknowledged. Acknowledging an error saves the user information and
time stamp for traceability.

You can access the Error Management view at any time.

1. In Business Central, click Menu → Manage → Execution Errors.

2. Select an error from the list to open the Details tab. This displays information about the error or
errors.

3. Click the Acknowledge button to acknowledge and clear the error. The error can still be viewed
later by selecting Yes on the Acknowledged filter in the Manage Execution Errors page.

4. If the error was related to a task, a Go to Task button is displayed.
Click the Go to Task button to view the associated job information in the Manage Tasks page.

CHAPTER 15. EXECUTION ERROR MANAGEMENT

37

The Manage Tasks page allows you to restart, reschedule, or retry the corresponding task.

15.2. THE EXECUTIONERRORHANDLER

The ExecutionErrorHandler is the primary mechanism for all process error handling. It is bound to the
life cycle of RuntimeEngine; meaning it is created when a new runtime engine is created, and is
destroyed when RuntimeEngine is disposed. A single instance of the ExecutionErrorHandler is used
within a given execution context or transaction. Both KieSession and TaskService use that instance to
inform the error handling about processed nodes/tasks. ExecutionErrorHandler is informed about:

Starting of processing of a given node instance.

Completion of processing of a given node instance.

Starting of processing of a given task instance.

Completion of processing of a given task instance.

This information is mainly used for errors that are of unknown type; that is, errors that do not provide
information about the process context. For example, upon commit time, database exceptions do not
carry any process information.

15.3. EXECUTION ERROR STORAGE

ExecutionErrorStorage is a pluggable strategy that permits various ways of persisting information
about execution errors. Storage is used directly by the handler that gets an instance of the store when it
is created (when RuntimeEngine is created). Default storage implementation is based on the database
table, which stores every error and includes all of the available information. Some errors may not contain
details, as this depends on the type of error and whether or not it is possible to extract specific
information.

15.4. ERROR TYPES AND FILTERS

Error handling attempts to catch and handle any kind of error, therefore it needs a way to categorize
errors. By doing this, it is able to properly extract information from the error and make it pluggable, as
some users may require specific types of errors to be thrown and handled in different ways than what is
provided by default.

Error categorization and filtering is based on ExecutionErrorFilters. This interface is solely responsible
for building instances of ExecutionError, which are later stored by way of the ExecutionErrorStorage
strategy. It has following methods:

accept: indicates if given error can be handled by the filter.

filter: where the actual filtering, handling, and so on happens.

getPriority: indicates the priority that is used when calling filters.

As only one filter can process given error, filters use a priority system to avoid having multiple filters
returning alternative “views” of the same error. Priority allows more specialized filters to see if the error
can be accepted, or otherwise allow another filter to handle it.

ExecutionErrorFilter can be provided using the ServiceLoader mechanism, which allows the capability
of error handling to be easily extended.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

38

Red Hat Process Automation Manager ships with the following ExecutionErrorFilters :

Table 15.1. ExecutionErrorFilters

Class name Type Priority

org.jbpm.runtime.manager.impl.error.filters.ProcessExecutionErr
orFilter

Process 100

org.jbpm.runtime.manager.impl.error.filters.TaskExecutionErrorF
ilter

Task 80

org.jbpm.runtime.manager.impl.error.filters.DBExecutionErrorFilt
er

DB 200

org.jbpm.executor.impl.error.JobExecutionErrorFilter Job 100

Filters are given a higher execution order based on the lowest value of the priority. In above table, filters
are invoked in following order:

1. Task

2. Process

3. Job

4. DB

15.5. AUTO ACKNOWLEDGING EXECUTION ERRORS

When executions errors occur they are unacknowledged by default, and require a manual
acknowledgment to be performed otherwise they are always seen as information that requires attention.
In case of larger volumes, manual actions can be time consuming and not suitable in some situations.

Auto acknowledgment resolves this issue. It is based on scheduled jobs by way of the jbpm-executor,
with the following three types of jobs available:

org.jbpm.executor.commands.error.JobAutoAckErrorCommand

Responsible for finding jobs that previously failed but now are either canceled, completed, or
rescheduled for another execution. This job only acknowledges execution errors of type Job.

org.jbpm.executor.commands.error.TaskAutoAckErrorCommand

Responsible for auto acknowledgment of user task execution errors for tasks that previously failed
but now are in one of the exit states (completed, failed, exited, obsolete). This job only
acknowledges execution errors of type Task.

org.jbpm.executor.commands.error.ProcessAutoAckErrorCommand

Responsible for auto acknowledgment of process instances that have errors attached. It
acknowledges errors where the process instance is already finished (completed or aborted), or the
task that the error originated from is already finished. This is based on init_activity_id value. This job
acknowledges any type of execution error that matches the above criteria.

Jobs can be registered on the Process Server. In Business Central you can configure auto acknowledge
jobs for errors:

CHAPTER 15. EXECUTION ERROR MANAGEMENT

39

Prerequisite

1. Execution errors of one or more type have accumulated during processes execution but require
no further attention.

Procedure

1. In Business Central, click Menu → Manage → Jobs.

2. In the top right of the screen, click New Job.

3. Type the process correlation key into the Business Key field.

4. In the Type field, add type of the auto acknowledge job type from the list above.

5. Select a Due On time for the job to be completed:

a. To run the job immediately, select the Run now option.

b. To run the job at a specific time, select Run later. A date and time field appears next to the
Run later option. Click the field to open the calendar and schedule a specific time and date
for the job.

6. Click Create to create the job and return to the Manage Jobs page.

The following steps are optional, and allow you to configure auto acknowledge jobs to run either once
(SingleRun), on specific time intervals (NextRun), or using the custom name of an entity manager
factory to search for jobs to acknowledge (EmfName).

1. Click on the Advanced tab.

2. Click the Add Parameter button.

3. Enter the configuration parameter you want to apply to the job:

a. SingleRun: true or false

b. NextRun: time expression, such as 2h, 5d, 1m, and so on.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

40

c. EmfName: custom entity manager factory name.

15.6. CLEANING UP THE ERROR LIST

The ExecutionErrorInfo error list table can be cleaned up to remove redundant information. Depending
on the life cycle of the process, errors may remain in the list for some time, and there is no direct API
with which to clean up the list. Instead, the ExecutionErrorCleanupCommand command can be
scheduled to periodically clean up errors.

The following parameters can be set for the clean up command. The command is restricted to deleting
execution errors of already completed or aborted process instances:

DateFormat

Date format for further date related parameters - if not given yyyy-MM-dd is used (pattern
of SimpleDateFormat class).

EmfName

Name of the entity manager factory to be used for queries (valid persistence unit name).

SingleRun

Indicates if execution should be single run only (true|false).

NextRun

Provides next execution time (valid time expression, for example: 1d, 5h, and so on)

OlderThan

Indicates what errors should be deleted - older than given date.

CHAPTER 15. EXECUTION ERROR MANAGEMENT

41

OlderThanPeriod

Indicated what errors should be deleted older than given time expression (valid time
expression e.g. 1d, 5h, and so on)

ForProcess

Indicates errors to be deleted only for given process definition.

ForProcessInstance

Indicates errors to be deleted only for given process instance.

ForDeployment

Indicates errors to be deleted that are from given deployment ID.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

42

CHAPTER 16. CONFIGURING OPENSHIFT CONNECTION
TIMEOUT

By default, the OpenShift route is configured to time out HTTP requests that are longer than 30
seconds. This may cause session timeout issues in Business Central resulting in the following behaviors:

"Unable to complete your request. The following exception occurred: (TypeError) : Cannot read
property 'indexOf' of null."

"Unable to complete your request. The following exception occurred: (TypeError) : b is null."

A blank page is displayed when clicking the Project or Server links in Business Central.

All Business Central templates already include extended timeout configuration.

To configure longer timeout on Business Central OpenShift routes, add the
haproxy.router.openshift.io/timeout: 60s annotation on the target route:

For a full list of global route-specific timeout annotations, see the OpenShift Documentation.

 - kind: Route
 apiVersion: v1
 id: "$APPLICATION_NAME-rhdmcentr-http"
 metadata:
 name: "$APPLICATION_NAME-rhdmcentr"
 labels:
 application: "$APPLICATION_NAME"
 annotations:
 description: Route for Decision Central's http service.
 haproxy.router.openshift.io/timeout: 60s
 spec:
 host: "$DECISION_CENTRAL_HOSTNAME_HTTP"
 to:
 name: "$APPLICATION_NAME-rhdmcentr"

CHAPTER 16. CONFIGURING OPENSHIFT CONNECTION TIMEOUT

43

https://docs.openshift.com/container-platform/3.3/architecture/core_concepts/routes.html#route-specific-timeouts

CHAPTER 17. PERSISTENCE
Binary persistence, or marshaling, converts the state of the process instance into a binary data set.
Binary persistence is a mechanism used to store and retrieve information persistently. The same
mechanism is also applied to the session state and work item states.

When you enable persistence of a process instance:

Red Hat Process Automation Manager transforms the process instance information into binary
data. Custom serialization is used instead of Java serialization for performance reasons.

The binary data is stored together with other process instance metadata, such as process
instance ID, process ID, and the process start date.

The session can also store other forms of state, such as the state of timer jobs, or data required for
business rules evaluation. Session state is stored separately as a binary data set along with the ID of the
session and metadata. You can restore the session state by reloading a session with given ID. Use
ksession.getId() to get the session ID.

Red Hat Process Automation Manager will persist the following when persistence is configured:

Session state : This includes the session ID, date of last modification, the session data that
business rules would need for evaluation, state of timer jobs.

Process instance state: This includes the process instance ID, process ID, date of last
modification, date of last read access, process instance start date, runtime data (the execution
status including the node being executed, variable values, and other process instance data) and
the event types.

Work item runtime state : This includes the work item ID, creation date, name, process instance
ID, and the work item state itself.

Based on the persisted data, you can restore the state of execution of all running process instances in
case of failure or to temporarily remove running instances from memory and restore them later.

17.1. CONFIGURING PROCESS SERVER PERSISTENCE

You can configure the Process Server persistence by passing Hibernate or JPA parameters as system
properties.

The Process Server can acknowledge the system properties with the following prefixes and you can use
every Hibernate or JPA parameters with these prefixes:

javax.persistence

hibernate

Procedure

1. To configure Process Server persistence, complete any of the following tasks:
If you want to configure Process Server persistence using Red Hat JBoss EAP configuration file,
complete the following tasks:

i. In your Red Hat Process Automation Manager installation directory, navigate to the
standalone-full.xml file. For example, if you use Red Hat JBoss EAP installation for Red
Hat Process Automation Manager, go to

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

44

$EAP_HOME/standalone/configuration/standalone-full.xml file.

ii. Open the standalone-full.xml file and under the <system-properties> tag, set your
Hibernate or JPA parameters as system properties.

Example of configuring Process Server persistence using Hibernate parameters

Example of configuring Process Server persistence using JPA parameters

If you want to configure Process Server persistence using command line, complete the following
tasks:

i. Pass the parameters directly from the command line using -Dkey=value as follows:

Example of configuring Process Server persistence using Hibernate parameters:

$EAP_HOME/bin/standalone.sh -Dhibernate.hbm2ddl.auto=create-drop

Example of configuring Process Server persistence using JPA parameters:

$EAP_HOME/bin/standalone.sh -
Djavax.persistence.jdbc.url=jdbc:mysql://mysql.db.server:3306/my_database?
useSSL=false&serverTimezone=UTC

17.2. CONFIGURING SAFE POINTS

To allow persistence, add the jbpm-persistence JAR files to the classpath of your application and
configure the process engine to use persistence. The process engine automatically stores the runtime
state in the storage when the process engine reaches a safe point.

Safe points are points where the process instance has paused. When a process instance invocation
reaches a safe point in the process engine, the process engine stores any changes to the process
instance as a snapshot of the process runtime data. However, when a process instance is completed, the
persisted snapshot of process instance runtime data is automatically deleted.

If a failure occurs and you need to restore the process engine runtime from the storage, the process
instances are automatically restored and their execution resumes so there is no need to reload and
trigger the process instances manually.

The runtime persistence data is to be considered internal to the process engine. You should not access

<system-properties>
 ...
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 ...
<system-properties>

<system-properties>
 ...
 <property name="javax.persistence.jdbc.url"
value="jdbc:mysql://mysql.db.server:3306/my_database?
useSSL=false&serverTimezone=UTC"/>
 ...
<system-properties>

CHAPTER 17. PERSISTENCE

45

The runtime persistence data is to be considered internal to the process engine. You should not access
persisted runtime data or modify them directly as this might have unexpected side effects.

For more information about the current execution state, refer to the history log. Query the database for
runtime data only if absolutely necessary.

17.3. SESSION PERSISTENCE ENTITIES

Sessions are persisted as SessionInfo entities. These persist the state of the runtime KIE session, and
store the following data:

Table 17.1. SessionInfo

Field Description Nullable

id The primary key. NOT NULL

lastModificationDate The last time that entity was saved
to a database.

rulesByteArray The state of a session. NOT NULL

startDate The session start time.

OPTLOCK A version field containing a lock
value.

17.4. PROCESS INSTANCE PERSISTENCE ENTITIES

Process instances are persisted as ProcessInstanceInfo entities, which persist the state of a process
instance on runtime and store the following data:

Table 17.2. ProcessInstanceInfo

Field Description Nullable

instanceId The primary key. NOT NULL

lastModificationDate The last time that the entity was
saved to a database.

lastReadDate The last time that the entity was
retrieved from the database.

processId The ID of the process.

processInstanceByteArray The state of a process instance in
form of a binary data set.

NOT NULL

startDate The start time of the process.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

46

state An integer representing the state of
a process instance.

NOT NULL

OPTLOCK A version field containing a lock
value.

Field Description Nullable

ProcessInstanceInfo has a 1:N relationship to the EventTypes entity.

The EventTypes entity contains the following data:

Table 17.3. EventTypes

Field Description Nullable

instanceId A reference to the
ProcessInstanceInfo primary key
and foreign key constraint on this
column.

NOT NULL

element A finished event in the process.

17.5. WORK ITEM PERSISTENCE ENTITIES

Work items are persisted as workiteminfo entities, which persist the state of the particular work item
instance on runtime and store the following data:

Table 17.4. WorkItemInfo

Field Description Nullable

workItemId The primary key. NOT NULL

name The name of the work item.

processInstanceId The (primary key) ID of the process.
There is no foreign key constraint
on this field.

NOT NULL

state The state of a work item. NOT NULL

OPTLOCK A version field containing a lock
value.

workitembytearay The work item state in as a binary
data set.

NOT NULL

CHAPTER 17. PERSISTENCE

47

17.6. CORRELATION KEY ENTITIES

The CorrelationKeyInfo entity contains information about the correlation key assigned to the given
process instance. This table is optional. Use it only when you require correlation capabilities.

Table 17.5. CorrelationKeyInfo

Field Description Nullable

keyId The primary key. NOT NULL

name The assigned name of the
correlation key.

processInstanceId The ID of the process instance
which is assigned to the correlation
key.

NOT NULL

OPTLOCK A version field containing a lock
value.

The CorrelationPropertyInfo entity contains information about correlation properties for a correlation
key assigned the process instance.

Table 17.6. CorrelationPropertyInfo

Field Description Nullable

propertyId The primary key. NOT NULL

name The name of the property.

value The value of the property. NOT NULL

OPTLOCK A version field containing a lock
value.

correlationKey_keyId A foreign key mapped to the
correlation key.

NOT NULL

17.7. CONTEXT MAPPING ENTITY

The ContextMappingInfo entity contains information about the contextual information mapped to a
KieSession. This is an internal part of RuntimeManager and can be considered optional when
RuntimeManager is not used.

Table 17.7. ContextMappingInfo

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

48

1

2

Field Description Nullable

mappingId The primary key. NOT NULL

CONTEXT_ID The context identifier. NOT NULL

KSESSION_ID The KieSession identifier. NOT NULL

OPTLOCK A version field containing a lock
value.

OWNER_ID Holds the identifier of the
deployment unit that the given
mapping is associated with

17.8. PESSIMISTIC LOCKING SUPPORT

The default locking mechanism for persistence of processes is optimistic. With multi-thread high
concurrency to the same process instance, this locking strategy can result in bad performance.

This can be changed at runtime to allow the user to set locking on a per process basis and to allow it to
be pessimistic (the change can be made at a per KIE Session level or Runtime Manager level as well and
not just at the process level).

To set a process to use pessimistic locking, use the following configuration in the runtime environment:

import org.kie.api.runtime.Environment;
import org.kie.api.runtime.EnvironmentName;
import org.kie.api.runtime.manager.RuntimeManager;
import org.kie.api.runtime.manager.RuntimeManagerFactory;

...

env.set(EnvironmentName.USE_PESSIMISTIC_LOCKING, true); 1

RuntimeManager manager =
RuntimeManagerFactory.Factory.get().newPerRequestRuntimeManager(environment); 2

env is an instance of org.kie.api.runtime.Environment.

Create your Runtime Manager by using this environment.

CHAPTER 17. PERSISTENCE

49

CHAPTER 18. DEFINE THE LDAP LOGIN DOMAIN
When you are setting up Red Hat Process Automation Manager to use LDAP for authentication and
authorization, define the LDAP login domain. This is because the Git SSH authentication may be using
another security domain, in which case you may face authentication failure.

To define the LDAP login domain, use the org.uberfire.domain system property. For example, on Red
Hat JBoss Enterprise Application Platform, add this property in the standalone.xml file as shown below:

 <system-properties>
 <!-- other system properties -->
 <property name="org.uberfire.domain" value="LDAPAuth"/>
 </system-properties>

Ensure that the authenticated user has appropriate roles (admin,analyst,reviewer) associated with it in
LDAP.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

50

CHAPTER 19. AUTHENTICATING THIRD-PARTY CLIENTS
THROUGH RH-SSO

To use the different remote services provided by Business Central or by Process Server, your client,
such as curl, wget, web browser, or a custom REST client, must authenticate through the RH-SSO server
and have a valid token to perform the requests. To use the remote services, the authenticated user
must have the following roles:

rest-all for using Business Central remote services.

kie-server for using the Process Server remote services.

Use the RH-SSO Admin Console to create these roles and assign them to the users that will consume
the remote services.

Your client can authenticate through RH-SSO using one of these options:

Basic authentication, if it is supported by the client

Token-based authentication

19.1. BASIC AUTHENTICATION

If you enabled basic authentication in the RH-SSO client adapter configuration for both Business
Central and Process Server, you can avoid the token grant and refresh calls and call the services as
shown in the following examples:

For web based remote repositories endpoint:

curl http://admin:password@localhost:8080/business-central/rest/repositories

For Process Server:

curl http://admin:password@localhost:8080/kie-execution-server/services/rest/server/

CHAPTER 19. AUTHENTICATING THIRD-PARTY CLIENTS THROUGH RH-SSO

51

CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES
The Process Server accepts the following system properties (bootstrap switches) to configure the
behavior of the server:

Table 20.1. System properties for disabling Process Server extensions

Property Values Default Description

org.drools.server.ext.dis
abled

true, false false If set to true, disables the Business Rule
Management (BRM) support (for example,
rules support).

org.jbpm.server.ext.disa
bled

true, false false If set to true, disables the Red Hat Process
Automation Manager support (for example,
processes support).

org.jbpm.ui.server.ext.di
sabled

true, false false If set to true, disables the Red Hat Process
Automation Manager UI extension.

org.jbpm.case.server.ext
.disabled

true, false false If set to true, disables the Red Hat Process
Automation Manager case management
extension.

org.optaplanner.server.e
xt.disabled

true, false false If set to true, disables the Red Hat Business
Optimizer support.

org.kie.dmn.server.ext.di
sabled

true, false false If set to true, disables the Process Server
DMN support.

org.kie.swagger.server.e
xt.disabled

true, false false If set to true, disables the Process Server
swagger documentation support

NOTE

Some Process Automation Manager controller properties listed in the following table are
marked as required. Set these properties when you create or remove Process Server
containers in Business Central. If you use the Process Server separately without any
interaction with Business Central, you do not need to set the required properties.

Table 20.2. System properties required for Process Automation Manager controller

Property Values Default Description

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

52

org.kie.server.id String N/A An arbitrary ID to be assigned to the server.
If a headless Process Automation Manager
controller is configured outside of Business
Central, this is the ID under which the server
connects to the headless Process
Automation Manager controller to fetch the
KIE container configurations. If not provided,
the ID is automatically generated.

org.kie.server.user String kieserver The user name used to connect with the
Process Server from the Process
Automation Manager controller, required
when running in managed mode. Set this
property in Business Central system
properties. Set this property when using a
Process Automation Manager controller.

org.kie.server.pwd String kieserver1
!

The password used to connect with the
Process Server from the Process
Automation Manager controller, required
when running in managed mode. Set this
property in Business Central system
properties. Set this property when using a
Process Automation Manager controller.

org.kie.server.token String N/A A property that enables you to use token-
based authentication between the Process
Automation Manager controller and the
Process Server instead of the basic user
name and password authentication. The
Process Automation Manager controller
sends the token as a parameter in the
request header. The server requires long-
lived access tokens because the tokens are
not refreshed.

org.kie.server.location URL N/A The URL of the Process Server instance
used by the Process Automation Manager
controller to call back on this server, for
example, http://localhost:8230/kie-
server/services/rest/server. Setting this
property is required when using a Process
Automation Manager controller.

Property Values Default Description

CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES

53

http://localhost:8230/kie-server/services/rest/server

org.kie.server.controller Comma-
separated
list

N/A A comma-separated list of URLs to the
Process Automation Manager controller
REST endpoints, for example,
http://localhost:8080/business-
central/rest/controller. Setting this
property is required when using a Process
Automation Manager controller.

org.kie.server.controller.
user

String kieserver The user name to connect to the Process
Automation Manager controller REST API.
Setting this property is required when using a
Process Automation Manager controller.

org.kie.server.controller.
pwd

String kieserver1
!

The password to connect to the Process
Automation Manager controller REST API.
Setting this property is required when using a
Process Automation Manager controller.

org.kie.server.controller.
token

String N/A A property that enables you to use token-
based authentication between the Process
Server and the Process Automation Manager
controller instead of the basic user name and
password authentication. The server sends
the token as a parameter in the request
header. The server requires long-lived access
tokens because the tokens are not refreshed.

org.kie.server.controller.
connect

Long 10000 The waiting time in milliseconds between
repeated attempts to connect the Process
Server to the Process Automation Manager
controller when the server starts.

Property Values Default Description

Table 20.3. Persistence system properties

Property Values Default Description

org.kie.server.persistenc
e.ds

String N/A A data source JNDI name. Set this property
when enabling the BPM support.

org.kie.server.persistenc
e.tm

String N/A A transaction manager platform for
Hibernate properties. Set this property when
enabling the BPM support.

org.kie.server.persistenc
e.dialect

String N/A The Hibernate dialect to be used. Set this
property when enabling the BPM support.

org.kie.server.persistenc
e.schema

String N/A The database schema to be used.

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

54

http://localhost:8080/business-central/rest/controller

Table 20.4. Executor system properties

Property Values Default Description

org.kie.executor.interval Integer 0 The time between the moment the Red Hat
Process Automation Manager executor
finishes a job and the moment it starts a new
one, in a time unit specified in the
org.kie.executor.timeunit property.

org.kie.executor.timeunit java.util.c
oncurrent.
TimeUnit
constant

SECONDS The time unit in which the
org.kie.executor.interval property is
specified.

org.kie.executor.pool.siz
e

Integer 1 The number of threads used by the Red Hat
Process Automation Manager executor.

org.kie.executor.retry.co
unt

Integer 3 The number of retries the Red Hat Process
Automation Manager executor attempts on
a failed job.

org.kie.executor.jms.que
ue

String queue/KIE
.SERVER.
EXECUTO
R

Job executor JMS queue for Process Server.

org.kie.executor.disable
d

true, false false If set to true, disables the Process Server
executor.

Table 20.5. Human task system properties

Property Values Default Description

CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES

55

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/TimeUnit.html

org.jbpm.ht.callback mvel

ldap

db

jaas

props

custom

jaas A property that specifies the implementation
of user group callback to be used:

mvel: Default; mostly used for
testing.

ldap: LDAP; requires additional
configuration in the
jbpm.usergroup.callback.prop
erties file.

db: Database; requires additional
configuration in the
jbpm.usergroup.callback.prop
erties file.

jaas: JAAS; delegates to the
container to fetch information
about user data.

props: A simple property file;
requires additional file that keeps all
information (users and groups).

custom: A custom implementation;
specify the fully qualified name of
the class in the
org.jbpm.ht.custom.callback
property.

org.jbpm.ht.custom.callb
ack

Fully
qualified
name

N/A A custom implementation of the
UserGroupCallback interface in case the
org.jbpm.ht.callback property is set to
custom.

org.jbpm.task.cleanup.e
nabled

true, false true Enables task cleanup job listener to remove
tasks once the process instance is
completed.

org.jbpm.task.bam.enabl
ed

true, false true Enables task BAM module to store task
related information.

org.jbpm.ht.admin.user String Administr
ator

User who can access all the tasks from
Process Server.

org.jbpm.ht.admin.group String Administr
ators

The group that users must belong to in order
to view all the tasks from Process Server.

Property Values Default Description

Table 20.6. System properties for loading keystore

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

56

Property Values Default Description

kie.keystore.keyStoreUR
L

URL N/A The URL is used to load a Java Cryptography
Extension KeyStore (JCEKS). For example,
file:///home/kie/keystores/keystore.jce
ks.

kie.keystore.keyStorePw
d

String N/A The password is used for the JCEKS.

kie.keystore.key.server.al
ias

String N/A The alias name of the key for REST services
where the password is stored.

kie.keystore.key.server.p
wd

String N/A The password of an alias for REST services.

kie.keystore.key.ctrl.alias String N/A The alias of the key for default REST Process
Automation Manager controller.

kie.keystore.key.ctrl.pwd String N/A The password of an alias for default REST
Process Automation Manager controller.

Table 20.7. Other system properties

Property Values Default Description

kie.maven.settings.custo
m

Path N/A The location of a custom
settings.xml file for Maven
configuration.

kie.server.jms.queues.res
ponse

String queue/KIE.SER
VER.RESPONS
E

The response queue JNDI
name for JMS.

org.drools.server.filter.cla
sses

true, false false When set to true, the Drools
Process Server extension
accepts custom classes
annotated by the
XmlRootElement or
Remotable annotations only.

org.kie.server.bypass.aut
h.user

true, false false A property that enables you
to bypass the authenticated
user for task-related
operations, for example
queries.

CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES

57

file:///home/kie/keystores/keystore.jceks

org.jbpm.rule.task.firelimi
t

Integer 10000 This property specifies the
maximum number of
executed rules to avoid
situations where rules run into
an infinite loop and make the
server completely
unresponsive.

org.kie.server.domain String N/A The JAAS LoginContext
domain used to authenticate
users when using JMS.

org.kie.server.repo Path . The location where Process
Server state files are stored.

org.kie.server.sync.deplo
y

true, false false A property that instructs the
Process Server to hold the
deployment until the Process
Automation Manager
controller provides the
container deployment
configuration. This property
only affects servers running in
managed mode. The following
options are available:

* false: The connection to the
Process Automation Manager
controller is asynchronous.
The application starts,
connects to the Process
Automation Manager
controller, and once
successful, deploys the
containers. The application
accepts requests even before
the containers are available. *
true: The deployment of the
server application joins the
Process Automation Manager
controller connection thread
with the main deployment and
awaits its completion. This
option can lead to a potential
deadlock in case more
applications are on the same
server. Use only one
application on one server
instance.

Property Values Default Description

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

58

org.kie.server.startup.stra
tegy

ControllerBased
StartupStrategy,
LocalContainer
sStartupStrateg
y

ControllerBase
dStartupStrateg
y

The Startup strategy of
Process Server used to
control the KIE containers
that are deployed and the
order in which they are
deployed.

org.kie.server.mgmt.api.d
isabled

true, false false When set to true, disables
Process Server management
API.

org.kie.server.xstream.en
abled.packages

Java packages like
org.kie.example.
You can also
specify wildcard
expressions like
org.kie.example
.*.

N/A A property that specifies
additional packages to
whitelist for marshalling using
XStream.

org.kie.store.services.clas
s

String org.drools.persi
stence.jpa.Kno
wledgeStoreSer
viceImpl

Fully qualified name of the
class that implements
KieStoreServices that are
responsible for bootstraping
KieSession instances.

Property Values Default Description

CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES

59

CHAPTER 21. PROCESS SERVER CAPABILITIES AND
EXTENSIONS

The capabilities in Process Server are determined by plug-in extensions that you can enable, disable, or
further extend to meet your business needs. Process Server supports the following default capabilities
and extensions:

Table 21.1. Process Server capabilities and extensions

Capability name Extension name Description

KieServer KieServer Provides the core capabilities of Process Server, such as
creating and disposing KIE containers on your server instance

BRM Drools Provides the Business Rule Management (BRM) capabilities,
such as inserting facts and executing business rules

BPM jBPM Provides the Business Process Management (BPM) capabilities,
such as managing user tasks and executing business processes

BPM-UI jBPM-UI Provides additional user-interface capabilities related to
business processes, such as rendering XML forms and SVG
images in process diagrams

CaseMgmt Case-Mgmt Provides the case management capabilities for business
processes, such as managing case definitions and milestones

BRP OptaPlanner Provides the Business Resource Planning (BRP) capabilities,
such as implementing solvers

DMN DMN Provides the Decision Model and Notation (DMN) capabilities,
such as managing DMN data types and executing DMN models

Swagger Swagger Provides the Swagger web-interface capabilities for interacting
with the Process Server REST API

To view the supported extensions of a running Process Server instance, send a GET request to the
following REST API endpoint and review the XML or JSON server response:

Base URL for GET request for Process Server information

http://SERVER:PORT/kie-server/services/rest/server

Example JSON response with Process Server information

{
 "type": "SUCCESS",
 "msg": "Kie Server info",
 "result": {
 "kie-server-info": {

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

60

To enable or disable Process Server extensions, configure the related *.server.ext.disabled Process
Server system property. For example, to disable the BRM capability, set the system property
org.drools.server.ext.disabled=true. For all Process Server system properties, see Chapter 20,
Process Server system properties .

By default, Process Server extensions are exposed through REST or JMS data transports and use
predefined client APIs. You can extend existing Process Server capabilities with additional REST
endpoints, extend supported transport methods beyond REST or JMS, or extend functionality in the
Process Server client.

This flexibility in Process Server functionality enables you to adapt your Process Server instances to your
business needs, instead of adapting your business needs to the default Process Server capabilities.

IMPORTANT

If you extend Process Server functionality, Red Hat does not support the custom code
that you use as part of your custom implementations and extensions.

21.1. EXTENDING AN EXISTING PROCESS SERVER CAPABILITY WITH A
CUSTOM REST API ENDPOINT

The Process Server REST API enables you to interact with your KIE containers and business assets

 "id": "test-kie-server",
 "version": "7.26.0.20190818-050814",
 "name": "test-kie-server",
 "location": "http://localhost:8080/kie-server/services/rest/server",
 "capabilities": [
 "KieServer",
 "BRM",
 "BPM",
 "CaseMgmt",
 "BPM-UI",
 "BRP",
 "DMN",
 "Swagger"
],
 "messages": [
 {
 "severity": "INFO",
 "timestamp": {
 "java.util.Date": 1566169865791
 },
 "content": [
 "Server KieServerInfo{serverId='test-kie-server', version='7.26.0.20190818-050814',
name='test-kie-server', location='http:/localhost:8080/kie-server/services/rest/server', capabilities=
[KieServer, BRM, BPM, CaseMgmt, BPM-UI, BRP, DMN, Swagger]', messages=null',
mode=DEVELOPMENT}started successfully at Sun Aug 18 23:11:05 UTC 2019"
]
 }
],
 "mode": "DEVELOPMENT"
 }
 }
}

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

61

(such as business rules, processes, and solvers) in Red Hat Process Automation Manager without using
the Business Central user interface. The available REST endpoints are determined by the capabilities
enabled in your Process Server system properties (for example, org.drools.server.ext.disabled=false
for the BRM capability). You can extend an existing Process Server capability with a custom REST API
endpoint to further adapt the Process Server REST API to your business needs.

As an example, this procedure extends the Drools Process Server extension (for the BRM capability)
with the following custom REST API endpoint:

Example custom REST API endpoint

/server/containers/instances/{containerId}/ksession/{ksessionId}

This example custom endpoint accepts a list of facts to be inserted into the working memory of the
{DECISION_ENGINE}, automatically executes all rules, and retrieves all objects from the KIE session in
the specified KIE container.

Procedure

1. Create an empty Maven project and define the following packaging type and dependencies in
the pom.xml file for the project:

Example pom.xml file in the sample project

<packaging>jar</packaging>

<properties>
 <version.org.kie>7.14.0.Final-redhat-00002</version.org.kie>
</properties>

<dependencies>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-internal</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-api</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-services-common</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-services-drools</artifactId>
 <version>${version.org.kie}</version>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

62

2. Implement the org.kie.server.services.api.KieServerApplicationComponentsService
interface in a Java class in your project, as shown in the following example:

Sample implementation of the KieServerApplicationComponentsService interface

 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-rest-common</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.25</version>
 </dependency>
</dependencies>

public class CusomtDroolsKieServerApplicationComponentsService implements
KieServerApplicationComponentsService { 1

 private static final String OWNER_EXTENSION = "Drools"; 2

 public Collection<Object> getAppComponents(String extension, SupportedTransports
type, Object... services) { 3
 // Do not accept calls from extensions other than the owner extension:
 if (!OWNER_EXTENSION.equals(extension)) {
 return Collections.emptyList();
 }

 RulesExecutionService rulesExecutionService = null; 4
 KieServerRegistry context = null;

 for(Object object : services) {
 if(RulesExecutionService.class.isAssignableFrom(object.getClass())) {
 rulesExecutionService = (RulesExecutionService) object;
 continue;
 } else if(KieServerRegistry.class.isAssignableFrom(object.getClass())) {
 context = (KieServerRegistry) object;
 continue;
 }
 }

 List<Object> components = new ArrayList<Object>(1);
 if(SupportedTransports.REST.equals(type)) {

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

63

1

2

3

4

5

Delivers REST endpoints to the Process Server infrastructure that is deployed when the
application starts.

Specifies the extension that you are extending, such as the Drools extension in this
example.

Returns all resources that the REST container must deploy. Each extension that is enabled
in your Process Server instance calls the getAppComponents method, so the if (
!OWNER_EXTENSION.equals(extension)) call returns an empty collection for any
extensions other than the specified OWNER_EXTENSION extension.

Lists the services from the specified extension that you want to use, such as the
RulesExecutionService and KieServerRegistry services from the Drools extension in
this example.

Specifies the transport type for the extension, either REST or JMS (REST in this
example), and the CustomResource class that returns the resource as part of the
components list.

3. Implement the CustomResource class that the Process Server can use to provide the
additional functionality for the new REST resource, as shown in the following example:

Sample implementation of the CustomResource class

 components.add(new CustomResource(rulesExecutionService, context)); 5
 }

 return components;
 }

}

// Custom base endpoint:
@Path("server/containers/instances/{containerId}/ksession")
public class CustomResource {

 private static final Logger logger = LoggerFactory.getLogger(CustomResource.class);

 private KieCommands commandsFactory = KieServices.Factory.get().getCommands();

 private RulesExecutionService rulesExecutionService;
 private KieServerRegistry registry;

 public CustomResource() {

 }

 public CustomResource(RulesExecutionService rulesExecutionService, KieServerRegistry
registry) {
 this.rulesExecutionService = rulesExecutionService;
 this.registry = registry;
 }

 // Supported HTTP method, path parameters, and data formats:
 @POST

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

64

In this example, the CustomResource class for the custom endpoint specifies the following
data and behavior:

Uses the base endpoint server/containers/instances/{containerId}/ksession

 @Path("/{ksessionId}")
 @Consumes({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
 @Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
 public Response insertFireReturn(@Context HttpHeaders headers,
 @PathParam("containerId") String id,
 @PathParam("ksessionId") String ksessionId,
 String cmdPayload) {

 Variant v = getVariant(headers);
 String contentType = getContentType(headers);

 // Marshalling behavior and supported actions:
 MarshallingFormat format = MarshallingFormat.fromType(contentType);
 if (format == null) {
 format = MarshallingFormat.valueOf(contentType);
 }
 try {
 KieContainerInstance kci = registry.getContainer(id);

 Marshaller marshaller = kci.getMarshaller(format);

 List<?> listOfFacts = marshaller.unmarshall(cmdPayload, List.class);

 List<Command<?>> commands = new ArrayList<Command<?>>();
 BatchExecutionCommand executionCommand =
commandsFactory.newBatchExecution(commands, ksessionId);

 for (Object fact : listOfFacts) {
 commands.add(commandsFactory.newInsert(fact, fact.toString()));
 }
 commands.add(commandsFactory.newFireAllRules());
 commands.add(commandsFactory.newGetObjects());

 ExecutionResults results = rulesExecutionService.call(kci, executionCommand);

 String result = marshaller.marshall(results);

 logger.debug("Returning OK response with content '{}'", result);
 return createResponse(result, v, Response.Status.OK);
 } catch (Exception e) {
 // If marshalling fails, return the `call-container` response to maintain backward
compatibility:
 String response = "Execution failed with error : " + e.getMessage();
 logger.debug("Returning Failure response with content '{}'", response);
 return createResponse(response, v,
Response.Status.INTERNAL_SERVER_ERROR);
 }

 }
}

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

65

Uses POST HTTP method

Expects the following data to be given in REST requests:

The containerId as a path argument

The ksessionId as a path argument

List of facts as a message payload

Supports all Process Server data formats:

XML (JAXB, XStream)

JSON

Unmarshals the payload into a List<?> collection and, for each item in the list, creates an
InsertCommand instance followed by FireAllRules and GetObject commands.

Adds all commands to the BatchExecutionCommand instance that calls to the
{DECISION_ENGINE}.

4. To make the new endpoint discoverable for Process Server, create a META-
INF/services/org.kie.server.services.api.KieServerApplicationComponentsService file in
your Maven project and add the fully qualified class name of the
KieServerApplicationComponentsService implementation class within the file. For this
example, the file contains the single line
org.kie.server.ext.drools.rest.CusomtDroolsKieServerApplicationComponentsService.

5. Build your project and copy the resulting JAR file into the ~/kie-server.war/WEB-INF/lib
directory of your project. For example, on Red Hat JBoss EAP, the path to this directory is
EAP_HOME/standalone/deployments/kie-server.war/WEB-INF/lib.

6. Start the Process Server and deploy the built project to the running Process Server. You can
deploy the project using either the Business Central interface or the Process Server REST API
(a PUT request to http://SERVER:PORT/kie-
server/services/rest/server/containers/{containerId}).
After your project is deployed on a running Process Server, you can start interacting with your
new REST endpoint.

For this example, you can use the following information to invoke the new endpoint:

Example request URL: http://localhost:8080/kie-
server/services/rest/server/containers/instances/demo/ksession/defaultKieSession

HTTP method: POST

HTTP headers:

Content-Type: application/json

Accept: application/json

Example message payload:

[
 {
 "org.jbpm.test.Person": {

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

66

Example server response: 200 (success)

Example server log output:

13:37:20,347 INFO [stdout] (default task-24) Hello mary
13:37:20,348 INFO [stdout] (default task-24) Hello john

21.2. EXTENDING PROCESS SERVER TO USE A CUSTOM DATA
TRANSPORT

By default, Process Server extensions are exposed through REST or JMS data transports. You can
extend Process Server to support a custom data transport to adapt Process Server transport protocols
to your business needs.

As an example, this procedure adds a custom data transport to Process Server that uses the Drools
extension and that is based on Apache MINA, an open-source Java network-application framework. The
example custom MINA transport exchanges string-based data that relies on existing marshalling
operations and supports only JSON format.

Procedure

1. Create an empty Maven project and define the following packaging type and dependencies in
the pom.xml file for the project:

Example pom.xml file in the sample project

 "name": "john",
 "age": 25
 }
 },
 {
 "org.jbpm.test.Person": {
 "name": "mary",
 "age": 22
 }
 }
]

<packaging>jar</packaging>

<properties>
 <version.org.kie>7.14.0.Final-redhat-00002</version.org.kie>
</properties>

<dependencies>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-internal</artifactId>
 <version>${version.org.kie}</version>

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

67

2. Implement the org.kie.server.services.api.KieServerExtension interface in a Java class in
your project, as shown in the following example:

Sample implementation of the KieServerExtension interface

 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-api</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-services-common</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-services-drools</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.25</version>
 </dependency>
 <dependency>
 <groupId>org.apache.mina</groupId>
 <artifactId>mina-core</artifactId>
 <version>2.1.3</version>
 </dependency>
</dependencies>

public class MinaDroolsKieServerExtension implements KieServerExtension {

 private static final Logger logger =
LoggerFactory.getLogger(MinaDroolsKieServerExtension.class);

 public static final String EXTENSION_NAME = "Drools-Mina";

 private static final Boolean disabled =
Boolean.parseBoolean(System.getProperty("org.kie.server.drools-mina.ext.disabled",
"false"));
 private static final String MINA_HOST = System.getProperty("org.kie.server.drools-
mina.ext.port", "localhost");
 private static final int MINA_PORT =

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

68

Integer.parseInt(System.getProperty("org.kie.server.drools-mina.ext.port", "9123"));

 // Taken from dependency on the `Drools` extension:
 private KieContainerCommandService batchCommandService;

 // Specific to MINA:
 private IoAcceptor acceptor;

 public boolean isActive() {
 return disabled == false;
 }

 public void init(KieServerImpl kieServer, KieServerRegistry registry) {

 KieServerExtension droolsExtension = registry.getServerExtension("Drools");
 if (droolsExtension == null) {
 logger.warn("No Drools extension available, quiting...");
 return;
 }

 List<Object> droolsServices = droolsExtension.getServices();
 for(Object object : droolsServices) {
 // If the given service is null (not configured), continue to the next service:
 if (object == null) {
 continue;
 }
 if(KieContainerCommandService.class.isAssignableFrom(object.getClass())) {
 batchCommandService = (KieContainerCommandService) object;
 continue;
 }
 }
 if (batchCommandService != null) {
 acceptor = new NioSocketAcceptor();
 acceptor.getFilterChain().addLast("codec", new ProtocolCodecFilter(new
TextLineCodecFactory(Charset.forName("UTF-8"))));

 acceptor.setHandler(new TextBasedIoHandlerAdapter(batchCommandService));
 acceptor.getSessionConfig().setReadBufferSize(2048);
 acceptor.getSessionConfig().setIdleTime(IdleStatus.BOTH_IDLE, 10);
 try {
 acceptor.bind(new InetSocketAddress(MINA_HOST, MINA_PORT));

 logger.info("{} -- Mina server started at {} and port {}", toString(), MINA_HOST,
MINA_PORT);
 } catch (IOException e) {
 logger.error("Unable to start Mina acceptor due to {}", e.getMessage(), e);
 }

 }
 }

 public void destroy(KieServerImpl kieServer, KieServerRegistry registry) {
 if (acceptor != null) {
 acceptor.dispose();
 acceptor = null;
 }

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

69

The KieServerExtension interface is the main extension interface that Process Server can use
to provide the additional functionality for the new MINA transport. The interface consists of the
following components:

Overview of the KieServerExtension interface

 logger.info("{} -- Mina server stopped", toString());
 }

 public void createContainer(String id, KieContainerInstance kieContainerInstance,
Map<String, Object> parameters) {
 // Empty, already handled by the `Drools` extension

 }

 public void disposeContainer(String id, KieContainerInstance kieContainerInstance,
Map<String, Object> parameters) {
 // Empty, already handled by the `Drools` extension

 }

 public List<Object> getAppComponents(SupportedTransports type) {
 // Nothing for supported transports (REST or JMS)
 return Collections.emptyList();
 }

 public <T> T getAppComponents(Class<T> serviceType) {

 return null;
 }

 public String getImplementedCapability() {
 return "BRM-Mina";
 }

 public List<Object> getServices() {
 return Collections.emptyList();
 }

 public String getExtensionName() {
 return EXTENSION_NAME;
 }

 public Integer getStartOrder() {
 return 20;
 }

 @Override
 public String toString() {
 return EXTENSION_NAME + " KIE Server extension";
 }
}

public interface KieServerExtension {

 boolean isActive();

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

70

1

2

3

Specifies the capability that is covered by this extension. The capability must be unique
within Process Server.

Defines a human-readable name for the extension.

Determines when the specified extension should be started. For extensions that have
dependencies on other extensions, this setting must not conflict with the parent setting.
For example, in this case, this custom extension depends on the Drools extension, which
has StartOrder set to 0, so this custom add-on extension must be greater than 0 (set to 20
in the sample implementation).

In the previous MinaDroolsKieServerExtension sample implementation of this interface, the
init method is the main element for collecting services from the Drools extension and for
bootstrapping the MINA server. All other methods in the KieServerExtension interface can
remain with the standard implementation to fulfill interface requirements.

The TextBasedIoHandlerAdapter class is the handler on the MINA server that reacts to
incoming requests.

3. Implement the TextBasedIoHandlerAdapter handler for the MINA server, as shown in the
following example:

Sample implementation of the TextBasedIoHandlerAdapter handler

 void init(KieServerImpl kieServer, KieServerRegistry registry);

 void destroy(KieServerImpl kieServer, KieServerRegistry registry);

 void createContainer(String id, KieContainerInstance kieContainerInstance, Map<String,
Object> parameters);

 void disposeContainer(String id, KieContainerInstance kieContainerInstance, Map<String,
Object> parameters);

 List<Object> getAppComponents(SupportedTransports type);

 <T> T getAppComponents(Class<T> serviceType);

 String getImplementedCapability(); 1

 List<Object> getServices();

 String getExtensionName(); 2

 Integer getStartOrder(); 3
}

public class TextBasedIoHandlerAdapter extends IoHandlerAdapter {

 private static final Logger logger =
LoggerFactory.getLogger(TextBasedIoHandlerAdapter.class);

 private KieContainerCommandService batchCommandService;

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

71

In this example, the handler class receives text messages and executes them in the Drools
service.

Consider the following handler requirements and behavior when you use the
TextBasedIoHandlerAdapter handler implementation:

Anything that you submit to the handler must be a single line because each incoming
transport request is a single line.

You must pass a KIE container ID in this single line so that the handler expects the format
containerID|payload.

You can set a response in the way that it is produced by the marshaller. The response can be
multiple lines.

The handler supports a stream mode that enables you to send commands without
disconnecting from a Process Server session. To end a Process Server session in stream
mode, send either an exit or quit command to the server.

4. To make the new data transport discoverable for Process Server, create a META-
INF/services/org.kie.server.services.api.KieServerExtension file in your Maven project and
add the fully qualified class name of the KieServerExtension implementation class within the

 public TextBasedIoHandlerAdapter(KieContainerCommandService
batchCommandService) {
 this.batchCommandService = batchCommandService;
 }

 @Override
 public void messageReceived(IoSession session, Object message) throws Exception {
 String completeMessage = message.toString();
 logger.debug("Received message '{}'", completeMessage);
 if(completeMessage.trim().equalsIgnoreCase("quit") ||
completeMessage.trim().equalsIgnoreCase("exit")) {
 session.close(false);
 return;
 }

 String[] elements = completeMessage.split("\\|");
 logger.debug("Container id {}", elements[0]);
 try {
 ServiceResponse<String> result = batchCommandService.callContainer(elements[0],
elements[1], MarshallingFormat.JSON, null);

 if (result.getType().equals(ServiceResponse.ResponseType.SUCCESS)) {
 session.write(result.getResult());
 logger.debug("Successful message written with content '{}'", result.getResult());
 } else {
 session.write(result.getMsg());
 logger.debug("Failure message written with content '{}'", result.getMsg());
 }
 } catch (Exception e) {

 }
 }
}

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

72

file. For this example, the file contains the single line
org.kie.server.ext.mina.MinaDroolsKieServerExtension.

5. Build your project and copy the resulting JAR file and the mina-core-2.0.9.jar file (which the
extension depends on in this example) into the ~/kie-server.war/WEB-INF/lib directory of your
project. For example, on Red Hat JBoss EAP, the path to this directory is
EAP_HOME/standalone/deployments/kie-server.war/WEB-INF/lib.

6. Start the Process Server and deploy the built project to the running Process Server. You can
deploy the project using either the Business Central interface or the Process Server REST API
(a PUT request to http://SERVER:PORT/kie-
server/services/rest/server/containers/{containerId}).
After your project is deployed on a running Process Server, you can view the status of the new
data transport in your Process Server log and start using your new data transport:

New data transport in the server log

Drools-Mina KIE Server extension -- Mina server started at localhost and port 9123
Drools-Mina KIE Server extension has been successfully registered as server extension

For this example, you can use Telnet to interact with the new MINA-based data transport in
Process Server:

Starting Telnet and connecting to Process Server on port 9123 in a command
terminal

Example interactions with Process Server in a command terminal

telnet 127.0.0.1 9123

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Request body:
demo|{"lookup":"defaultKieSession","commands":[{"insert":{"object":{"org.jbpm.test.Person":
{"name":"john","age":25}}}},{"fire-all-rules":""}]}

Server response:
{
 "results" : [{
 "key" : "",
 "value" : 1
 }],
 "facts" : []
}

demo|{"lookup":"defaultKieSession","commands":[{"insert":{"object":{"org.jbpm.test.Person":
{"name":"mary","age":22}}}},{"fire-all-rules":""}]}
{
 "results" : [{
 "key" : "",
 "value" : 1
 }],
 "facts" : []

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

73

Example server log output

16:33:40,206 INFO [stdout] (NioProcessor-2) Hello john
16:34:03,877 INFO [stdout] (NioProcessor-2) Hello mary
16:34:19,800 INFO [stdout] (NioProcessor-2) Hello james

21.3. EXTENDING THE PROCESS SERVER CLIENT WITH A CUSTOM
CLIENT API

Process Server uses predefined client APIs that you can interact with to use Process Server services.
You can extend the Process Server client with a custom client API to adapt Process Server services to
your business needs.

As an example, this procedure adds a custom client API to Process Server to accommodate a custom
data transport (configured previously for this scenario) that is based on Apache MINA, an open-source
Java network-application framework.

Procedure

1. Create an empty Maven project and define the following packaging type and dependencies in
the pom.xml file for the project:

Example pom.xml file in the sample project

}

demo|{"lookup":"defaultKieSession","commands":[{"insert":{"object":{"org.jbpm.test.Person":
{"name":"james","age":25}}}},{"fire-all-rules":""}]}
{
 "results" : [{
 "key" : "",
 "value" : 1
 }],
 "facts" : []
}
exit
Connection closed by foreign host.

<packaging>jar</packaging>

<properties>
 <version.org.kie>7.14.0.Final-redhat-00002</version.org.kie>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-api</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 <dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>${version.org.kie}</version>

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

74

2. Implement the relevant ServicesClient interface in a Java class in your project, as shown in the
following example:

Sample RulesMinaServicesClient interface

A specific interface is required because you must register client implementations based on the
interface, and you can have only one implementation for a given interface.

For this example, the custom MINA-based data transport uses the Drools extension, so this
example RulesMinaServicesClient interface extends the existing RuleServicesClient client
API from the Drools extension.

3. Implement the RulesMinaServicesClient interface that the Process Server can use to provide
the additional client functionality for the new MINA transport, as shown in the following example:

Sample implementation of the RulesMinaServicesClient interface

 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>${version.org.kie}</version>
 </dependency>
 </dependencies>

public interface RulesMinaServicesClient extends RuleServicesClient {

}

public class RulesMinaServicesClientImpl implements RulesMinaServicesClient {

 private String host;
 private Integer port;

 private Marshaller marshaller;

 public RulesMinaServicesClientImpl(KieServicesConfiguration configuration, ClassLoader
classloader) {
 String[] serverDetails = configuration.getServerUrl().split(":");

 this.host = serverDetails[0];
 this.port = Integer.parseInt(serverDetails[1]);

 this.marshaller = MarshallerFactory.getMarshaller(configuration.getExtraJaxbClasses(),
MarshallingFormat.JSON, classloader);
 }

 public ServiceResponse<String> executeCommands(String id, String payload) {

 try {
 String response = sendReceive(id, payload);
 if (response.startsWith("{")) {
 return new ServiceResponse<String>(ResponseType.SUCCESS, null, response);
 } else {
 return new ServiceResponse<String>(ResponseType.FAILURE, response);

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

75

This example implementation specifies the following data and behavior:

Uses socket-based communication for simplicity

 }
 } catch (Exception e) {
 throw new KieServicesException("Unable to send request to KIE Server", e);
 }
 }

 public ServiceResponse<String> executeCommands(String id, Command<?> cmd) {
 try {
 String response = sendReceive(id, marshaller.marshall(cmd));
 if (response.startsWith("{")) {
 return new ServiceResponse<String>(ResponseType.SUCCESS, null, response);
 } else {
 return new ServiceResponse<String>(ResponseType.FAILURE, response);
 }
 } catch (Exception e) {
 throw new KieServicesException("Unable to send request to KIE Server", e);
 }
 }

 protected String sendReceive(String containerId, String content) throws Exception {

 // Flatten the content to be single line:
 content = content.replaceAll("\\n", "");

 Socket minaSocket = null;
 PrintWriter out = null;
 BufferedReader in = null;

 StringBuffer data = new StringBuffer();
 try {
 minaSocket = new Socket(host, port);
 out = new PrintWriter(minaSocket.getOutputStream(), true);
 in = new BufferedReader(new InputStreamReader(minaSocket.getInputStream()));

 // Prepare and send data:
 out.println(containerId + "|" + content);
 // Wait for the first line:
 data.append(in.readLine());
 // Continue as long as data is available:
 while (in.ready()) {
 data.append(in.readLine());
 }

 return data.toString();
 } finally {
 out.close();
 in.close();
 minaSocket.close();
 }
 }
}

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

76

1

2

3

Relies on default configurations from the Process Server client and uses ServerUrl for
providing the host and port of the MINA server

Specifies JSON as the marshalling format

Requires received messages to be JSON objects that start with an open bracket {

Uses direct socket communication with a blocking API while waiting for the first line of the
response and then reads all lines that are available

Does not use stream mode and therefore disconnects the Process Server session after
invoking a command

4. Implement the org.kie.server.client.helper.KieServicesClientBuilder interface in a Java class
in your project, as shown in the following example:

Sample implementation of the KieServicesClientBuilder interface

Enables you to provide additional client APIs to the generic Process Server client
infrastructure

Defines the Process Server capability (extension) that the client uses

Provides a map of the client implementations, where the key is the interface and the value
is the fully initialized implementation

5. To make the new client API discoverable for the Process Server client, create a META-
INF/services/org.kie.server.client.helper.KieServicesClientBuilder file in your Maven project
and add the fully qualified class name of the KieServicesClientBuilder implementation class
within the file. For this example, the file contains the single line
org.kie.server.ext.mina.client.MinaClientBuilderImpl.

6. Build your project and copy the resulting JAR file into the ~/kie-server.war/WEB-INF/lib
directory of your project. For example, on Red Hat JBoss EAP, the path to this directory is
EAP_HOME/standalone/deployments/kie-server.war/WEB-INF/lib.

7. Start the Process Server and deploy the built project to the running Process Server. You can

public class MinaClientBuilderImpl implements KieServicesClientBuilder { 1

 public String getImplementedCapability() { 2
 return "BRM-Mina";
 }

 public Map<Class<?>, Object> build(KieServicesConfiguration configuration, ClassLoader
classLoader) { 3
 Map<Class<?>, Object> services = new HashMap<Class<?>, Object>();

 services.put(RulesMinaServicesClient.class, new
RulesMinaServicesClientImpl(configuration, classLoader));

 return services;
 }

}

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

77

deploy the project using either the Business Central interface or the Process Server REST API
(a PUT request to http://SERVER:PORT/kie-
server/services/rest/server/containers/{containerId}).
After your project is deployed on a running Process Server, you can start interacting with your
new Process Server client. You use your new client in the same way as the standard Process
Server client, by creating the client configuration and client instance, retrieving the service client
by type, and invoking client methods.

For this example, you can create a RulesMinaServiceClient client instance and invoke
operations on Process Server through the MINA transport:

Sample implementation to create the RulesMinaServiceClient client

Sample configuration to invoke operations on Process Server through the MINA
transport

protected RulesMinaServicesClient buildClient() {
 KieServicesConfiguration configuration =
KieServicesFactory.newRestConfiguration("localhost:9123", null, null);
 List<String> capabilities = new ArrayList<String>();
 // Explicitly add capabilities (the MINA client does not respond to `get-server-info`
requests):
 capabilities.add("BRM-Mina");

 configuration.setCapabilities(capabilities);
 configuration.setMarshallingFormat(MarshallingFormat.JSON);

 configuration.addJaxbClasses(extraClasses);

 KieServicesClient kieServicesClient =
KieServicesFactory.newKieServicesClient(configuration);

 RulesMinaServicesClient rulesClient =
kieServicesClient.getServicesClient(RulesMinaServicesClient.class);

 return rulesClient;
}

RulesMinaServicesClient rulesClient = buildClient();

List<Command<?>> commands = new ArrayList<Command<?>>();
BatchExecutionCommand executionCommand =
commandsFactory.newBatchExecution(commands, "defaultKieSession");

Person person = new Person();
person.setName("mary");
commands.add(commandsFactory.newInsert(person, "person"));
commands.add(commandsFactory.newFireAllRules("fired"));

ServiceResponse<String> response = rulesClient.executeCommands(containerId,
executionCommand);
Assert.assertNotNull(response);

Assert.assertEquals(ResponseType.SUCCESS, response.getType());

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

78

String data = response.getResult();

Marshaller marshaller = MarshallerFactory.getMarshaller(extraClasses,
MarshallingFormat.JSON, this.getClass().getClassLoader());

ExecutionResultImpl results = marshaller.unmarshall(data, ExecutionResultImpl.class);
Assert.assertNotNull(results);

Object personResult = results.getValue("person");
Assert.assertTrue(personResult instanceof Person);

Assert.assertEquals("mary", ((Person) personResult).getName());
Assert.assertEquals("JBoss Community", ((Person) personResult).getAddress());
Assert.assertEquals(true, ((Person) personResult).isRegistered());

CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS

79

CHAPTER 22. ADDITIONAL RESOURCES
Installing and configuring Red Hat Process Automation Manager on Red Hat JBoss EAP

Planning a Red Hat Process Automation Manager installation

Installing and configuring Red Hat Process Automation Manager on Red Hat JBoss EAP

Deploying a Red Hat Process Automation Manager immutable server environment on Red Hat
OpenShift Container Platform

Deploying a Red Hat Process Automation Manager authoring environment on Red Hat OpenShift
Container Platform

Deploying a Red Hat Process Automation Manager managed server environment on Red Hat
OpenShift Container Platform

Red Hat Process Automation Manager 7.2 Managing and monitoring Process Server

80

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/installing_and_configuring_red_hat_process_automation_manager_on_red_hat_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/installing_and_configuring_red_hat_process_automation_manager_on_red_hat_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/deploying_a_red_hat_process_automation_manager_immutable_server_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/deploying_a_red_hat_process_automation_manager_authoring_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/deploying_a_red_hat_process_automation_manager_managed_server_environment_on_red_hat_openshift_container_platform

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Monday, June 07, 2021.

APPENDIX A. VERSIONING INFORMATION

81

	Table of Contents
	PREFACE
	CHAPTER 1. RED HAT PROCESS AUTOMATION MANAGER COMPONENTS
	CHAPTER 2. SYSTEM INTEGRATION WITH MAVEN
	2.1. PREEMPTIVE AUTHENTICATION FOR LOCAL PROJECTS
	2.2. DUPLICATE GAV DETECTION IN BUSINESS CENTRAL
	2.3. MANAGING DUPLICATE GAV DETECTION SETTINGS IN BUSINESS CENTRAL

	CHAPTER 3. APPLYING PATCH UPDATES AND MINOR RELEASE UPGRADES TO RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 4. CONFIGURING AND STARTING PROCESS SERVER
	CHAPTER 5. CONFIGURING JDBC DATA SOURCES FOR PROCESS SERVER
	CHAPTER 6. CONFIGURING PROCESS SERVER WITH THE INTEGRATED PROCESS AUTOMATION MANAGER CONTROLLER
	CHAPTER 7. INSTALLING AND RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER
	7.1. USING THE INSTALLER TO CONFIGURE PROCESS SERVER WITH THE PROCESS AUTOMATION MANAGER CONTROLLER
	7.2. INSTALLING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER
	7.2.1. Creating a headless Process Automation Manager controller user
	7.2.2. Configuring Process Server and the headless Process Automation Manager controller

	7.3. RUNNING THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER
	7.4. CLUSTERING WITH THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER

	CHAPTER 8. CONFIGURING A PROCESS SERVER TO CONNECT TO BUSINESS CENTRAL
	CHAPTER 9. CONFIGURING PROCESS SERVER MANAGED BY BUSINESS CENTRAL
	9.1. CONFIGURING SMART ROUTER FOR TLS SUPPORT

	CHAPTER 10. MANAGED PROCESS SERVER
	CHAPTER 11. UNMANAGED PROCESS SERVER
	CHAPTER 12. ACTIVATING OR DEACTIVATING A KIE CONTAINER ON PROCESS SERVER
	CHAPTER 13. DEPLOYMENT DESCRIPTORS
	13.1. DEPLOYMENT DESCRIPTOR CONFIGURATION
	What Can You Configure?

	13.2. MANAGING DEPLOYMENT DESCRIPTORS
	13.3. RESTRICTING ACCESS TO THE RUNTIME ENGINE

	CHAPTER 14. ACCESSING RUNTIME DATA FROM BUSINESS CENTRAL
	CHAPTER 15. EXECUTION ERROR MANAGEMENT
	15.1. MANAGE EXECUTION ERRORS
	15.2. THE EXECUTIONERRORHANDLER
	15.3. EXECUTION ERROR STORAGE
	15.4. ERROR TYPES AND FILTERS
	15.5. AUTO ACKNOWLEDGING EXECUTION ERRORS
	15.6. CLEANING UP THE ERROR LIST

	CHAPTER 16. CONFIGURING OPENSHIFT CONNECTION TIMEOUT
	CHAPTER 17. PERSISTENCE
	17.1. CONFIGURING PROCESS SERVER PERSISTENCE
	17.2. CONFIGURING SAFE POINTS
	17.3. SESSION PERSISTENCE ENTITIES
	17.4. PROCESS INSTANCE PERSISTENCE ENTITIES
	17.5. WORK ITEM PERSISTENCE ENTITIES
	17.6. CORRELATION KEY ENTITIES
	17.7. CONTEXT MAPPING ENTITY
	17.8. PESSIMISTIC LOCKING SUPPORT

	CHAPTER 18. DEFINE THE LDAP LOGIN DOMAIN
	CHAPTER 19. AUTHENTICATING THIRD-PARTY CLIENTS THROUGH RH-SSO
	19.1. BASIC AUTHENTICATION

	CHAPTER 20. PROCESS SERVER SYSTEM PROPERTIES
	CHAPTER 21. PROCESS SERVER CAPABILITIES AND EXTENSIONS
	21.1. EXTENDING AN EXISTING PROCESS SERVER CAPABILITY WITH A CUSTOM REST API ENDPOINT
	21.2. EXTENDING PROCESS SERVER TO USE A CUSTOM DATA TRANSPORT
	21.3. EXTENDING THE PROCESS SERVER CLIENT WITH A CUSTOM CLIENT API

	CHAPTER 22. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION

