
Red Hat Process Automation Manager
7.2

Designing a decision service using guided
decision tables

Last Updated: 2020-05-04

Red Hat Process Automation Manager 7.2 Designing a decision service
using guided decision tables

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to design a decision service using guided decision tables in Red Hat
Process Automation Manager 7.2.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

CHAPTER 2. GUIDED DECISION TABLES

CHAPTER 3. DATA OBJECTS
3.1. CREATING DATA OBJECTS

CHAPTER 4. CREATING GUIDED DECISION TABLES

CHAPTER 5. HIT POLICIES FOR GUIDED DECISION TABLES
5.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS

5.1.1. Types of guided decision tables

CHAPTER 6. ADDING COLUMNS TO GUIDED DECISION TABLES

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES
7.1. "ADD A CONDITION"

7.1.1. Inserting an any other value in condition column cells
7.2. "ADD A CONDITION BRL FRAGMENT"
7.3. "ADD A METADATA COLUMN"
7.4. "ADD AN ACTION BRL FRAGMENT"
7.5. "ADD AN ATTRIBUTE COLUMN"
7.6. "DELETE AN EXISTING FACT"
7.7. "EXECUTE A WORK ITEM"
7.8. "SET THE VALUE OF A FIELD"
7.9. "SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT"

CHAPTER 8. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES

CHAPTER 9. ADDING ROWS AND DEFINING RULES IN GUIDED DECISION TABLES

CHAPTER 10. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES
10.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES
10.2. TYPES OF NOTIFICATIONS
10.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

CHAPTER 11. EXECUTING RULES
11.1. EXECUTABLE RULE MODELS

11.1.1. Embedding an executable rule model in a Maven project
11.1.2. Embedding an executable rule model in a Java application

CHAPTER 12. NEXT STEPS

APPENDIX A. VERSIONING INFORMATION

3

4

6

7
7

9

12
13
15

17

19
19
21
21

24
24
27
28
28
28
29

31

32

33
33
34
34

36
41
41

43

46

47

Table of Contents

1

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

2

PREFACE
As a business analyst or business rules developer, you can use guided decision tables to define business
rules in a wizard-led tabular format. These rules are compiled into Drools Rule Language (DRL) and
form the core of the decision service for your project.

Prerequisite

The team and project for the guided decision tables have been created in Business Central. Each asset
is associated with a project assigned to a team. For details, see Getting started with decision services .

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/getting_started_with_decision_services

CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT
PROCESS AUTOMATION MANAGER

Red Hat Process Automation Manager provides several assets that you can use to create business rules
for your decision service. Each rule-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights each rule-authoring asset in Business Central to help you decide or
confirm the best method for creating rules in your decision service.

Table 1.1. Rule-authoring assets in Business Central

Asset Highlights Documentation

Guided decision tables
Are tables of rules that you create in a
UI-based table designer in Business
Central

Are a wizard-led alternative to
uploaded decision table spreadsheets

Provide fields and options for
acceptable input

Support template keys and values for
creating rule templates

Support hit policies, real-time
validation, and other additional
features not supported in other assets

Are optimal for creating rules in a
controlled tabular format to minimize
compilation errors

Designing a decision service
using guided decision tables

Uploaded decision tables
Are XLS or XLSX decision table
spreadsheets that you upload into
Business Central

Support template keys and values for
creating rule templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements for
rules to be compiled properly when
uploaded

Designing a decision service
using uploaded decision tables

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

4

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/designing_a_decision_service_using_guided_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/designing_a_decision_service_using_uploaded_decision_tables

Guided rules
Are individual rules that you create in
a UI-based rule designer in Business
Central

Provide fields and options for
acceptable input

Are optimal for creating single rules in
a controlled format to minimize
compilation errors

Designing a decision service
using guided rules

Guided rule templates
Are reusable rule structures that you
create in a UI-based template
designer in Business Central

Provide fields and options for
acceptable input

Support template keys and values for
creating rule templates (fundamental
to the purpose of this asset)

Are optimal for creating many rules
with the same rule structure but with
different defined field values

Designing a decision service
using guided rule templates

DRL rules
Are individual rules that you define
directly in .drl text files

Provide the most flexibility for
defining rules and other technicalities
of rule behavior

Can be created in certain standalone
environments and integrated with Red
Hat Process Automation Manager

Are optimal for creating rules that
require advanced DRL options

Have strict syntax requirements for
rules to be compiled properly

Designing a decision service
using DRL rules

Asset Highlights Documentation

CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

5

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/designing_a_decision_service_using_guided_rules
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/designing_a_decision_service_using_guided_rule_templates
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/designing_a_decision_service_using_drl_rules

CHAPTER 2. GUIDED DECISION TABLES
Guided decision tables are a wizard-led alternative to uploaded decision table spreadsheets for defining
business rules in a tabular format. With guided decision tables, you are led by a UI-based wizard in
Business Central that helps you define rule attributes, metadata, conditions, and actions based on
specified data objects in your project. After you create your guided decision tables, the rules you defined
are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided decision table must be in the same project package as the guided
decision table. Assets in the same package are imported by default. After you create the necessary data
objects and the guided decision table, you can use the Data Objects tab of the guided decision tables
designer to verify that all required data objects are listed or to import other existing data objects by
adding a New item.

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

6

CHAPTER 3. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

3.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business process.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designer. Select the relevant rule asset within the project and in the asset
designer, go to Data Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: Select this check box to enable the field to hold multiple items for the specified type.

Figure 3.1. Add data fields to a data object

CHAPTER 3. DATA OBJECTS

7

Figure 3.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

8

CHAPTER 4. CREATING GUIDED DECISION TABLES
You can use guided decision tables to define rule attributes, metadata, conditions, and actions in a
tabular format that can be added to your business rules project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Decision Table.

3. Enter an informative Guided Decision Table name and select the appropriate Package. The
package that you specify must be the same package where the required data objects have been
assigned or will be assigned.

4. Select Use Wizard to finish setting up the table in the wizard, or leave this option unselected to
finish creating the table and specify remaining configurations in the guided decision tables
designer.

5. Select the hit policy that you want your rows of rules in the table to conform to. For details, see
Chapter 5, Hit policies for guided decision tables .

6. Specify whether you want the Extended entry or Limited entry table. For details, see
Section 5.1.1, “Types of guided decision tables” .

7. Click Ok to complete the setup. If you have selected Use Wizard, the Guided Decision Table
wizard is displayed. If you did not select the Use Wizard option, this prompt does not appear and
you are taken directly to the table designer.

Figure 4.1. Create guided decision table

CHAPTER 4. CREATING GUIDED DECISION TABLES

9

Figure 4.1. Create guided decision table

8. If you are using the wizard, add any available imports, fact patterns, constraints, and actions, and
select whether table columns should expand. Click Finish to close the wizard and view the table
designer.

Figure 4.2. Guided Decision Table wizard

In the guided decision tables designer, you can add or edit columns and rows, and make other final
adjustments.

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

10

For information about adding columns, see Chapter 6, Adding columns to guided decision tables .

For information about adding rows, see Chapter 9, Adding rows and defining rules in guided decision
tables.

CHAPTER 4. CREATING GUIDED DECISION TABLES

11

CHAPTER 5. HIT POLICIES FOR GUIDED DECISION TABLES
Hit policies determine the order in which rules (rows) in a guided decision table are applied, whether top
to bottom, per specified priority, or other options.

The following hit policies are available:

None: (Default hit policy) Multiple rows can be executed and the verification warns about rows
that conflict. Any decision tables that have been uploaded (using a non-guided decision table
spreadsheet) will adopt this hit policy.

Resolved Hit: Only one row at a time can be executed according to specified priority, regardless
of list order (you can give row 10 priority over row 5, for example). This means you can keep the
order of the rows you want for visual readability, but specify priority exceptions.

Unique Hit: Only one row at a time can be executed, and each row must be unique, with no
overlap of conditions being met. If more than one row is executed, then the verification
produces a warning at development time.

First Hit: Only one row at a time can be executed in the order listed in the table, top to bottom.

Rule Order: Multiple rows can be executed and verification does not report conflicts between
the rows since they are expected to happen.

Figure 5.1. Available hit policies

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

12

Figure 5.1. Available hit policies

5.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON
MOVIE TICKETS

The following is part of a decision table for discounts on movie tickets based on customer age, student
status, or military status, or all three.

Table 5.1. Decision table for available discounts on movie tickets

Row Number Discount Type Discount

1 Senior citizen (age 60+) 10%

2 Student 10%

3 Military 10%

The total discount to be applied in the end will vary depending on the hit policy specified for the table, as
follows.

CHAPTER 5. HIT POLICIES FOR GUIDED DECISION TABLES

13

None/Rule Order: With both None and Rule Order hit policies, all applicable rules are
incorporated, in this case allowing discounts to be stacked for each customer.
Example: A senior citizen who is also a student and a military veteran will receive all three
discounts, totaling 30%.

Key difference: With None, warnings are created for multiple rows applied. With Rule Order,
those warnings are not created.

First Hit/Resolved Hit: With both First Hit and Resolved Hit policies, only one of the discounts
can be applied.
For First Hit, the discount that is satisfied first in the list is applied and the others are ignored.

Example: A senior citizen who is also a student and a military veteran will receive only the senior
citizen discount of 10%, since that is listed first in the table.

For Resolved Hit, a modified table is required. The discount that you assign a priority exception
to in the table, regardless of listed order, will be applied first. To assign this exception, include a
new column that specifies the priority of one discount (row) over others.

Example: If military discounts are prioritized higher than age or student discounts, despite the
listed order, then a senior citizen who is also a student and a military veteran will receive only the
military discount of 10%, regardless of age or student status.

Consider the following modified decision table that accommodates a Resolved Hit policy:

Table 5.2. Modified decision table that accommodates a Resolved Hit policy

Row Number Discount Type Has Priority over Row Discount

1 Senior citizen (age
60+)

 10%

2 Student 10%

3 Military 1 10%

In this modified table, the military discount is essentially the new row 1 and therefore takes
priority over both age and student discounts, and any other discounts added later. You do not
need to specify priority over rows "1 and 2", only over row "1". This changes the row hit order to 3
→ 1 → 2 → … and so on as the table grows.

NOTE

The row order would be changed in the same way if you actually moved the
military discount to row 1 and applied a First Hit policy to the table instead.
However, if you want the rules listed in a certain way and applied differently, such
as in an alphabetized table, the Resolved Hit policy is useful.

Key difference: With First Hit, rules are applied strictly in the listed order. With Resolved Hit,
rules are applied in the listed order unless priority exceptions are specified.

Unique Hit: A modified table is required. With a Unique Hit policy, rows must be created in a
way that it is impossible to satisfy multiple rules at one time. However, you can still specify row-
by-row whether to apply one rule or multiple. In this way, with a Unique Hit policy you can make

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

14

decision tables more granular and prevent overlap warnings.
Consider the following modified decision table that accommodates a Unique Hit policy:

Table 5.3. Modified decision table that accommodates a Unique Hit policy

Row Number Is Senior Citizen
(age 65+)

Is Student Is Military Discount

1 yes no no 10%

2 no yes no 10%

3 no no yes 10%

4 yes yes no 20%

5 yes no yes 20%

6 no yes yes 20%

7 yes yes yes 30%

In this modified table, each row is unique, with no allowance of overlap, and any single discount
or any combination of discounts is accommodated.

5.1.1. Types of guided decision tables

Two types of decision tables are supported in Red Hat Process Automation Manager: Extended entry
and Limited entry tables.

Extended entry: An Extended Entry decision table is one for which the column definitions
specify Pattern, Field, and Operator but not value. The values, or states, are themselves held in
the body of the decision table.

Limited entry: A Limited Entry decision table is one for which the column definitions specify
value in addition to Pattern, Field, and Operator. The decision table states, held in the body of
the table, are boolean where a positive value (a marked check box) has the effect of meaning
the column should apply, or be matched. A negative value (a cleared check box) means the
column does not apply.

CHAPTER 5. HIT POLICIES FOR GUIDED DECISION TABLES

15

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

16

CHAPTER 6. ADDING COLUMNS TO GUIDED DECISION
TABLES

After you have created the guided decision table, you can define and add various types of columns
within the guided decision tables designer.

Prerequisite

Any data objects that will be used for column parameters, such as Facts and Fields, have been created
within the same package where the guided decision table is found, or have been imported from another
package in Data Objects → New item of the guided decision tables designer.

For descriptions of these column parameters, see the "Required column parameters" segments for each
column type in Chapter 7, Types of columns in guided decision tables .

For details about creating data objects, see Section 3.1, “Creating data objects” .

Procedure

1. In the guided decision tables designer, click Columns → Insert Column.

2. Click Include advanced options to view the full list of column options.

Figure 6.1. Add columns

3. Select the column type that you want to add, click Next, and follow the steps in the wizard to
specify the data required to add the column.
For descriptions of each column type and required parameters for setup, see Chapter 7, Types
of columns in guided decision tables.

4. Click Finish to add the configured column.

After all columns are added, you can begin adding rows of rules correlating to your columns to complete

CHAPTER 6. ADDING COLUMNS TO GUIDED DECISION TABLES

17

After all columns are added, you can begin adding rows of rules correlating to your columns to complete
the decision table. For details, see Chapter 9, Adding rows and defining rules in guided decision tables .

Figure 6.2. Example of complete guided decision table

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

18

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION
TABLES

The Add a new column wizard for guided decision tables provides the following column options. (Select
Include advanced options to view all options.)

Add a Condition

Add a Condition BRL fragment

Add a Metadata column

Add an Action BRL fragment

Add an Attribute column

Delete an existing fact

Execute a Work Item

Set the value of a field

Set the value of a field with a Work Item result

These column types and the parameters required for each in the Add a new column wizard are
described in the sections that follow.

IMPORTANT: REQUIRED DATA OBJECTS FOR COLUMN PARAMETERS

Some of the column parameters described in this section, such as Fact Patterns and
Fields, provide drop-down options consisting only of data objects already defined within
the same package where the guided decision table is found. Available data objects for the
package are listed in the Data Objects panel of the Project Explorer and in the Data
Objects tab of the guided decision tables designer. You can create additional data
objects within the package as needed, or import them from another package in Data
Objects → New item of the guided decision tables designer. For details about creating
data objects, see Section 3.1, “Creating data objects” .

7.1. "ADD A CONDITION"

Conditions represent fact patterns defined in the left ("WHEN") portion of a rule. With this column
option, you can define one or more condition columns that check for the presence or absence of data
objects with certain field values, and that affect the action ("THEN") portion of the rule. You can define
a binding for the fact in the condition table, or select one that has previously been defined. You can also
choose to negate the pattern.

Example:

when
 $i : IncomeSource(type == "Asset") // Binds the IncomeSource object to the $i variable
then
 ...
end

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES

19

After a binding is specified, you can define field constraints. If two or more columns are defined using the
same fact pattern binding, the field constraints become composite field constraints on the same
pattern. If you define multiple bindings for a single model class, each binding becomes a separate model
class in the condition ("WHEN") side of the rule.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Pattern: Select from the list of fact patterns already used in conditions in your table or create a
new fact pattern. A fact pattern is a combination of an available data object in the package (see
the note on Required data objects for details) and a model class binding that you specify.
(Examples: LoanApplication [application] or IncomeSource [income] where the bracketed
portion is the binding to the given fact type)

Entry point: Define the entry point for the fact pattern, if applicable. An entry point is a gate or
stream through which facts enter the Red Hat Process Automation Manager process engine, if
specified. (Examples: Application Stream, Credit Check Stream)

Calculation type: Select one of the following calculation types:

Literal value: The value in the cell will be compared with the field using the operator.

Formula: The expression in the cell will be evaluated and then compared with the field.

Predicate: No field is needed; the expression will be evaluated to true or false.

Field: Select a field from the previously specified fact pattern. The field options are defined in
the fact file in the Data Objects panel of your project. (Examples: amount or lengthYears
fields within the LoanApplication fact type)

Binding (optional): Define a binding for the previously selected field, if needed. (Example: For
pattern LoanApplication [application], field amount, and operator equal to, if binding is set to
$amount, the end condition will be application : LoanAppplication($amount : amount ==
[value]).)

Operator: Select the operator to be applied to the fact pattern and field previously specified.

Value list (optional): Enter a list of value options, delimited by a comma and space, to limit table
input data for the condition ("WHEN") portion of the rule. When this value list is defined, the
values will be provided in the table cells for that column as a drop-down list, from which users
can select only one option. (Example list: Monday, Wednesday, Friday to specify only these
three options)

Default value (optional): Select one of the previously defined value options as the default
value that will appear in the cell automatically in a new row. If the default value is not specified,
the table cell will be blank by default. You can also select a default value from any previously
configured data enumerations in the project, listed in the Enumeration Definitions panel of the
Project Explorer. (You can create enumerations in Menu → Design → Projects → [select
project] → Add Asset → Enumeration.)

when
 not IncomeSource(type == "Asset") // Negates matching pattern
then
 ...
end

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

20

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

7.1.1. Inserting an any other value in condition column cells

For simple condition columns in guided decision tables, you can apply an any other value to table cells
within the column if the following parameters are set:

Calculation type for the condition column has been set to Literal value.

Operator has been set as equality == or inequality !=.

The any other value enables a rule to be defined for any other field values not explicitly defined in the
rules already in the table.

Example:

Procedure

1. Select a cell of a condition column that uses the == or != operator.

2. In the upper-right toolbar of the table designer, click Edit → Insert "any other" value.

7.2. "ADD A CONDITION BRL FRAGMENT"

A Business Rule Language (BRL) fragment is a section of a rule created using the guided rules designer.
The condition BRL fragment is the "WHEN" portion of the rule, and the action BRL fragment is the
"THEN" portion of the rule. With this column option, you can define a condition BRL fragment to be used
in the left ("WHEN") side of a rule. Simpler column types can refer to Facts and Fact fields bound in the
BRL fragment and vice-versa.

Example condition BRL fragment for a loan application:

Figure 7.1. Add a condition BRL fragment with the embedded guided rules designer

when
 IncomeSource(type not in ("Asset", "Job"))
 ...
then
 ...
end

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES

21

Figure 7.1. Add a condition BRL fragment with the embedded guided rules designer

You can also select Free form DRL from the list of condition options to define the condition BRL
fragment without the embedded guided rules designer.

Figure 7.2. Add a condition BRL fragment with free form DRL

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

22

Figure 7.2. Add a condition BRL fragment with free form DRL

TEMPLATE KEYS

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES

23

TEMPLATE KEYS

When you add a field for a condition BRL fragment, one of the value options is Template
key (as opposed to Literal or Formula). Template keys are placeholder variables that
are interchanged with a specified value when the guided decision table is generated, and
form separate columns in the table for each template key value specified. While Literal
and Formula values are static in a decision table, Template key values can be modified as
needed.

In the embedded guided rules designer, you can add a template key value to a field by
selecting the Template key field option and entering the value in the editor in the format
$key. For example, $age creates an $age column in the decision table.

In free form DRL, you can add a template key value to facts in the format @{key}. For
example, Person(age > @{age}) creates an $age column in the decision table.

The data type is String for new columns added using template keys.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Rule Modeller: Define the condition BRL fragment ("WHEN" portion) for the rule.

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

7.3. "ADD A METADATA COLUMN"

With this column option, you can define a metadata element as a column in your decision table. Each
column represents the normal metadata annotation in DRL rules. By default, the metadata column is
hidden. To display the column, click Edit Columns in the guided decision tables designer and clear the
Hide column check box.

Required column parameter

The following parameter is required in the Add a new column wizard to set up this column type:

Metadata: Enter the name of the metadata item in Java variable form (that is, it cannot start
with a number or contain spaces or special characters).

7.4. "ADD AN ACTION BRL FRAGMENT"

A Business Rule Language (BRL) fragment is a section of a rule created using the guided rules designer.
The condition BRL fragment is the "WHEN" portion of the rule, and the action BRL fragment is the
"THEN" portion of the rule. With this column option you can define an action BRL fragment to be used in
the right ("THEN") side of a rule. Simpler column types can refer to Facts and Fact fields bound in the
BRL fragment and vice-versa.

Example action BRL fragment for a loan application:

Figure 7.3. Add an action BRL fragment with the embedded guided rules designer

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

24

Figure 7.3. Add an action BRL fragment with the embedded guided rules designer

You can also select Add free form DRL from the list of action options to define the action BRL
fragment without the embedded guided rules designer.

Figure 7.4. Add an action BRL fragment with free form DRL

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES

25

Figure 7.4. Add an action BRL fragment with free form DRL

TEMPLATE KEYS

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

26

TEMPLATE KEYS

When you add a field for an action BRL fragment, one of the value options is Template
key (as opposed to Literal or Formula). Template keys are placeholder variables that
are interchanged with a specified value when the guided decision table is generated, and
form separate columns in the table for each template key value specified. While Literal
and Formula values are static in a decision table, Template key values can be modified as
needed.

In the embedded guided rules designer, you can add a template key value to a field by
selecting the Template key field option and entering the value in the editor in the format
$key. For example, $age creates an $age column in the decision table.

In free form DRL, you can add a template key value to facts in the format @{key}. For
example, Person(age > @{age}) creates an $age column in the decision table.

The data type is String for new columns added using template keys.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Rule Modeller: Define the action BRL fragment ("THEN" portion) for the rule.

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

7.5. "ADD AN ATTRIBUTE COLUMN"

With this column option, you can add one or more attribute columns representing any of the DRL rule
attributes, such as Saliance, Enabled, Date-Effective, and others.

Example:

For descriptions of each attribute, select the attribute from the list in the wizard.

HIT POLICIES AND ATTRIBUTES

Note that depending on the hit policy that you have defined for the decision table, some
attributes may be disabled because they are internally used by the hit policy. For example,
if you have assigned the Resolved Hit policy to this table so that rows (rules) are applied
according to a priority order specified in the table, then the Salience attribute would be
obsolete. The reason is that the Salience attribute escalates rule priority according to a
defined salience value, and that value would be overridden by the Resolved Hit policy in
the table.

rule "Rule1"
salience 100 // This rule has the highest priority
when
 $i : IncomeSource(type == "Asset")
then
 ...
end

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES

27

Required Column Parameter

The following parameter is required in the Add a new column wizard to set up this column type:

Attribute: Select the attribute to be applied to the column.

7.6. "DELETE AN EXISTING FACT"

With this column option, you can implement an action to delete a fact that was added previously as a
fact pattern in the table. When this column is created, the fact types are provided in the table cells for
that column as a drop-down list, from which users can select only one option.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

7.7. "EXECUTE A WORK ITEM"

With this column option, you can execute a work item handler, based on your predefined work item
definitions in Business Central. (You can create work items in Menu → Design → Projects → [select
project] → Add Asset → Work Item definition.)

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Work Item: Select from the list of your predefined work items.

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

7.8. "SET THE VALUE OF A FIELD"

With this column option, you can implement an action to set the value of a field on a previously bound
fact for the "THEN" portion of the rule. You have the option to notify the process engine of the modified
values which could lead to other rules being reactivated.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Pattern: Select from the list of fact patterns already used in conditions or condition BRL
fragments in your table or create a new fact pattern. A fact pattern is a combination of an
available data object in the package (see the note on Required data objects for details) and a
model class binding that you specify. (Examples: LoanApplication [application] or
IncomeSource [income] where the bracketed portion is the binding to the given fact type)

Field: Select a field from the previously specified fact pattern. The field options are defined in
the fact file in the Data Objects panel of your project. (Examples: amount or lengthYears
fields within the LoanApplication fact type)

Value list (optional): Enter a list of value options, delimited by a comma and space, to limit table

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

28

input data for the action ("THEN") portion of the rule. When this value list is defined, the values
will be provided in the table cells for that column as a drop-down list, from which users can
select only one option. (Example list: Accepted, Declined, Pending)

Default value (optional): Select one of the previously defined value options as the default
value that will appear in the cell automatically in a new row. If the default value is not specified,
the table cell will be blank by default. You can also select a default value from any previously
configured data enumerations in the project, listed in the Enumeration Definitions panel of the
Project Explorer. (You can create enumerations in Menu → Design → Projects → [select
project] → Add Asset → Enumeration.)

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

Logically insert: This option appears when the selected Fact Pattern is not currently used in
another column in the guided decision table (see the next field description). Select this to insert
the fact pattern logically into the process engine, or clear this to insert it regularly. The Red Hat
Process Automation Manager process engine is responsible for logical decisions on insertions
and retractions of facts. After regular or stated insertions, facts have to be retracted explicitly.
After logical insertions, facts are automatically retracted when the conditions that asserted the
facts in the first place are no longer true.

Update engine with changes: This option appears when the selected Fact Pattern is already
used in another column in the guided decision table. Select this to update the process engine
with the modified field values, or clear this to not update the process engine.

7.9. "SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT"

With this column option, you can implement an action to set the value of a previously defined fact field
to the value of a result of a work item handler for the "THEN" portion of the rule. The work item must
define a result parameter of the same data type as a field on a bound fact in order for you to set the field
to the return parameter. (You can create work items in Menu → Design → Projects → [select project]
→ Add Asset → Work Item definition.)

An Execute a Work Item column must already be created in the table for this column option to be
created.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Pattern: Select from the list of fact patterns already used in your table or create a new fact
pattern. A fact pattern is a combination of an available data object in the package (see the note
on Required data objects for details) and a model class binding that you specify. (Examples:
LoanApplication [application] or IncomeSource [income] where the bracketed portion is the
binding to the given fact type)

Field: Select a field from the previously specified fact pattern. The field options are defined in
the fact file in the Data Objects panel of your project. (Examples: amount or lengthYears
fields within the LoanApplication fact type)

Work Item: Select from the list of your predefined work items. (The work item must define a
result parameter of the same data type as a field on a bound fact in order for you to set the field
to the return parameter.)

Header (description): Add header text for the column.

CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES

29

Hide column: Select this to hide the column, or clear this to display the column.

Logically insert: This option appears when the selected Fact Pattern is not currently used in
another column in the guided decision table (see the next field description). Select this to insert
the fact pattern logically into the process engine, or clear this to insert it regularly. The Red Hat
Process Automation Manager process engine is responsible for logical decisions on insertions
and retractions of facts. After regular or stated insertions, facts have to be retracted explicitly.
After logical insertions, facts are automatically retracted when the conditions that asserted the
facts in the first place are no longer true.

Update engine with changes: This option appears when the selected Fact Pattern is already
used in another column in the guided decision table. Select this to update the process engine
with the modified field values, or clear this to not update the process engine.

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

30

CHAPTER 8. EDITING OR DELETING COLUMNS IN GUIDED
DECISION TABLES

You can edit or delete the columns you have created at any time in the guided decision tables designer.

Procedure

1. In the guided decision tables designer, click Columns.

2. Expand the appropriate section and click Edit or Delete next to the column name.

Figure 8.1. Edit or delete columns

NOTE

A condition column cannot be deleted if an existing action column uses the same
pattern-matching parameters as the condition column.

3. After any column changes, click Finish in the wizard to save.

CHAPTER 8. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES

31

CHAPTER 9. ADDING ROWS AND DEFINING RULES IN GUIDED
DECISION TABLES

After you have created your columns in the guided decision table, you can add rows and define rules
within the guided decision tables designer.

Prerequisite

Columns for the guided decision table have been added as described in Chapter 6, Adding columns to
guided decision tables.

Procedure

1. In the guided decision tables designer, click Insert → Append row or one of the Insert row
options. (You can also click Insert column to open the column wizard and define a new column.)

Figure 9.1. Add Rows

2. Double-click each cell and enter data. For cells with specified values, select from the cell drop-
down options.

Figure 9.2. Enter input data in each cell

3. After you define all rows of data in the guided decision table, click Validate in the upper-right
toolbar of the guided decision tables designer to validate the table. If the table validation fails,
address any problems described in the error message, review all components in the table, and
try again to validate the table until the table passes.

NOTE

Although guided decision tables have real-time verification and validation, you
should still manually validate the completed decision table to ensure optimal
results.

4. Click Save in the table designer to save your changes.

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

32

CHAPTER 10. REAL-TIME VERIFICATION AND VALIDATION OF
GUIDED DECISION TABLES

Business Central provides a real-time verification and validation feature for guided decision tables to
ensure that your tables are complete and error free. Guided decision tables are validated after each cell
change. If a problem in logic is detected, an error notification appears and describes the problem.

10.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES

The validation and verification feature detects the following types of problems:

Redundancy

Redundancy occurs when two rows in a decision table execute the same consequences for the same
set of facts. For example, two rows checking a client’s birthday and providing a birthday discount may
result in double discount.

Subsumption

Subsumption is similar to redundancy and occurs when two rules execute the same consequences,
but one executes on a subset of facts of the other. For example, consider these two rules:

when Person age > 10 then Increase Counter

when Person age > 20 then Increase Counter

In this case, if a person is 15 years old, only one rule fires and if a person is 20 years old, both rules fire.
Such cases cause similar trouble during runtime as redundancy.

Conflicts

A conflicting situation occurs when two similar conditions have different consequences. Conflicts can
occur between two rows (rules) or two cells in a decision table.
The following example illustrates conflict between two rows in a decision table:

when Deposit > 20000 then Approve Loan

when Deposit > 20000 then Refuse Loan

In this case, there is no way to know if the loan will be approved or not.

The following example illustrates conflict between two cells in a decision table:

when Age > 25

when Age < 25

A row with conflicting cells never executes.

Broken Unique Hit Policy

When the Unique Hit policy is applied to a decision table, only one row at a time can be executed and
each row must be unique, with no overlap of conditions being met. If more than one row is executed,
then the verification report identifies the broken hit policy. For example, consider the following
conditions in a table that determines eligibility for a price discount:

when Is Student = true

CHAPTER 10. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

33

when Is Military = true

If a customer is both a student and in the military, both conditions apply and break the Unique Hit
policy. Rows in this type of table must therefore be created in a way that does not allow multiple rules
to fire at one time. For details about hit policies, see Chapter 5, Hit policies for guided decision
tables.

Deficiency

Deficiency is similar to a conflict and occurs the logic of a rule in a decision table is incomplete. For
example, consider the following two deficient rules:

when Age > 20 then Approve Loan

when Deposit < 20000 then Refuse Loan

These two rules may lead to confusion for a person who is over 20 years old and has deposited less
than 20000. You can add more constraints to avoid the conflict.

Missing Columns

When deleted columns result in incomplete or incorrect logic, rules cannot fire properly. This is
detected so that you can address the missing columns, or adjust the logic to not rely on intentionally
deleted conditions or actions.

Incomplete Ranges

Ranges of field values are incomplete if a table contains constraints against possible field values but
does not define all possible values. The verification report identifies any incomplete ranges provided.
For example, if your table has a check for if an application is approved, the verification report reminds
you to make sure you also handle situations where the application was not approved.

10.2. TYPES OF NOTIFICATIONS

The verification and validation feature uses three types of notifications:

 Error: A serious problem that may lead to the guided decision table failing to work as
designed at run time. Conflicts, for example, are reported as errors.

 Warning: Likely a serious problem that may not prevent the guided decision table from
working but requires attention. Subsumptions, for example, are reported as warnings.

 Information: A moderate or minor problem that may not prevent the guided decision table
from working but requires attention. Missing columns, for example, are reported as information.

NOTE

Business Central verification and validation does not prevent you from saving an incorrect
change. The feature only reports issues while editing and you can still continue to
overlook those and save your changes.

10.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED
DECISION TABLES

The decision table verification and validation feature of Business Central is enabled by default. You can

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

34

The decision table verification and validation feature of Business Central is enabled by default. You can
disable it by setting the org.kie.verification.disable-dtable-realtime-verification system property
value to true in your Red Hat JBoss EAP directory.

Procedure

Navigate to your $EAP_HOME directory in a terminal application and run the following command:

./standalone.sh -Dorg.kie.verification.disable-dtable-realtime-verification=true

Alternatively, add the following to your Red Hat JBoss EAP standalone.xml file:

<property name="org.kie.verification.disable-dtable-realtime-verification" value="true"/>

CHAPTER 10. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

35

CHAPTER 11. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on Process Server to test the rules.

Prerequisites

Business Central and Process Server are installed and running. For installation options, see
Planning a Red Hat Process Automation Manager installation .

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to Process Server. If the build fails, address any problems described in the Alerts panel
at the bottom of the screen.
For more information about deploying projects, see Packaging and deploying a Red Hat Process
Automation Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
Process Server. The project must contain a pom.xml file and any other required components
for executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on
Process Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with Process Server

Example dependencies for Red Hat Process Automation Manager 7.2 in a client application
pom.xml file:

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.14.0.Final-redhat-00002</version>
</dependency>

<!-- For remote execution on Process Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.14.0.Final-redhat-00002</version>
</dependency>

<!-- For debug logging (optional) -->

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

36

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/designing_a_decision_service_using_drl_rules#drl-rules-other-con

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Process Automation Manager and the Maven
library version?.

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.2.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

CHAPTER 11. EXECUTING RULES

37

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3405361

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of Process Server (if desired), configure the .java class to import
KIE services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseId();
 rid.setGroupId("com.myspace");
 rid.setArtifactId("MyProject");
 rid.setVersion("1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

38

To test this rule on Process Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on Process Server

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";

CHAPTER 11. EXECUTING RULES

39

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat JBoss Developer Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

40

11.1. EXECUTABLE RULE MODELS

Executable rule models are embeddable models that provide a Java-based representation of a rule set
for execution at build time. The executable model is a more efficient alternative to the standard asset
packaging in Red Hat Process Automation Manager and enables KIE containers and KIE bases to be
created more quickly, especially when you have large lists of DRL (Drools Rule Language) files and other
Red Hat Process Automation Manager assets. The model is low level and enables you to provide all
necessary execution information, such as the lambda expressions for the index evaluation.

Executable rule models provide the following specific advantages for your projects:

Compile time: Traditionally, a packaged Red Hat Process Automation Manager project (KJAR)
contains a list of DRL files and other Red Hat Process Automation Manager artifacts that define
the rule base together with some pre-generated classes implementing the constraints and the
consequences. Those DRL files must be parsed and compiled when the KJAR is downloaded
from the Maven repository and installed in a KIE container. This process can be slow, especially
for large rule sets. With an executable model, you can package within the project KJAR the Java
classes that implement the executable model of the project rule base and re-create the KIE
container and its KIE bases out of it in a much faster way. In Maven projects, you use the kie-
maven-plugin to automatically generate the executable model sources from the DRL files
during the compilation process.

Run time: In an executable model, all constraints are defined as Java lambda expressions. The
same lambda expressions are also used for constraints evaluation, so you no longer need to use
mvel expressions for interpreted evaluation nor the just-in-time (JIT) process to transform the
mvel-based constraints into bytecode. This creates a quicker and more efficient run time.

Development time: An executable model enables you to develop and experiment with new
features of the process engine without needing to encode elements directly in the DRL format
or modify the DRL parser to support them.

NOTE

For query definitions in executable rule models, you can use up to 10 arguments only.

For variables within rule consequences in executable rule models, you can use up to 12
bound variables only (including the built-in drools variable). For example, the following
rule consequence uses more than 12 bound variables and creates a compilation error:

...
then
 $input.setNo13Count(functions.sumOf(new Object[]{$no1Count_1, $no2Count_1,
$no3Count_1, ..., $no13Count_1}).intValue());
 $input.getFirings().add("fired");
 update($input);

11.1.1. Embedding an executable rule model in a Maven project

You can embed an executable rule model in your Maven project to compile your rule assets more
efficiently at build time.

Prerequisite

You have a Mavenized project that contains Red Hat Process Automation Manager business assets.

CHAPTER 11. EXECUTING RULES

41

Procedure

1. In the pom.xml file of your Maven project, ensure that the packaging type is set to kjar and add
the kie-maven-plugin build component:

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <version> is the Maven artifact version for Red Hat Process
Automation Manager currently used in your project (for example, 7.14.0.Final-redhat-00002).
These settings are required to properly package the Maven project.

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHPAM product and maven library version?.

2. Add the following dependencies to the pom.xml file to enable rule assets to be built from an
executable model:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Process Automation Manager

drools-model-compiler: Compiles the executable model into Red Hat Process Automation
Manager internal data structures so that it can be executed by the process engine

<packaging>kjar</packaging>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>${rhpam.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.2.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

42

https://access.redhat.com/solutions/3405361

3. In a command terminal, navigate to your Maven project directory and run the following
command to build the project from an executable model:

mvn clean install -DgenerateModel=<VALUE>

The -DgenerateModel=<VALUE> property enables the project to be built as a model-based
KJAR instead of a DRL-based KJAR.

Replace <VALUE> with one of three values:

YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

WITHDRL: Generates the executable model corresponding to the DRL files in the original
project and also adds the DRL files to the generated KJAR for documentation purposes
(the KIE base is built from the executable model regardless).

NO: Does not generate the executable model.

Example build command:

mvn clean install -DgenerateModel=YES

For more information about packaging Maven projects, see Packaging and deploying a Red Hat Process
Automation Manager project.

11.1.2. Embedding an executable rule model in a Java application

You can embed an executable rule model programmatically within your Java application to compile your
rule assets more efficiently at build time.

Prerequisite

You have a Java application that contains Red Hat Process Automation Manager business assets.

Procedure

1. Add the following dependencies to the relevant classpath for your Java project:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Process Automation Manager

drools-model-compiler: Compiles the executable model into Red Hat Process Automation

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhpam.version}</version>
</dependency>

CHAPTER 11. EXECUTING RULES

43

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project#project-build-deploy-maven-proc_packaging-deploying

drools-model-compiler: Compiles the executable model into Red Hat Process Automation
Manager internal data structures so that it can be executed by the process engine

The <version> is the Maven artifact version for Red Hat Process Automation Manager
currently used in your project (for example, 7.14.0.Final-redhat-00002).

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHPAM product and maven library version?.

2. Add rule assets to the KIE virtual file system KieFileSystem and use KieBuilder with buildAll(
ExecutableModelProject.class) specified to build the assets from an executable model:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.2.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;

 KieServices ks = KieServices.Factory.get();
 KieFileSystem kfs = ks.newKieFileSystem()
 kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
 .write("src/main/resources/dtable.xls",
 kieServices.getResources().newInputStreamResource(dtableFileStream));

 KieBuilder kieBuilder = ks.newKieBuilder(kfs);

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

44

https://access.redhat.com/solutions/3405361

After KieFileSystem is built from the executable model, the resulting KieSession uses
constraints based on lambda expressions instead of less-efficient mvel expressions. If buildAll()
contains no arguments, the project is built in the standard method without an executable model.

As a more manual alternative to using KieFileSystem for creating executable models, you can
define a Model with a fluent API and create a KieBase from it:

For more information about packaging projects programmatically within a Java application, see
Packaging and deploying a Red Hat Process Automation Manager project .

 // Build from an executable model
 kieBuilder.buildAll(ExecutableModelProject.class)
 assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

Model model = new ModelImpl().addRule(rule);
KieBase kieBase = KieBaseBuilder.createKieBaseFromModel(model);

CHAPTER 11. EXECUTING RULES

45

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project#project-build-deploy-java-proc_packaging-deploying

CHAPTER 12. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Process Automation Manager project

Red Hat Process Automation Manager 7.2 Designing a decision service using guided decision tables

46

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/testing_a_decision_service_using_test_scenarios
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.2/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Tuesday, May 28, 2019.

APPENDIX A. VERSIONING INFORMATION

47

	Table of Contents
	PREFACE
	CHAPTER 1. RULE-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 2. GUIDED DECISION TABLES
	CHAPTER 3. DATA OBJECTS
	3.1. CREATING DATA OBJECTS

	CHAPTER 4. CREATING GUIDED DECISION TABLES
	CHAPTER 5. HIT POLICIES FOR GUIDED DECISION TABLES
	5.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS
	5.1.1. Types of guided decision tables

	CHAPTER 6. ADDING COLUMNS TO GUIDED DECISION TABLES
	CHAPTER 7. TYPES OF COLUMNS IN GUIDED DECISION TABLES
	7.1. "ADD A CONDITION"
	7.1.1. Inserting an any other value in condition column cells

	7.2. "ADD A CONDITION BRL FRAGMENT"
	7.3. "ADD A METADATA COLUMN"
	7.4. "ADD AN ACTION BRL FRAGMENT"
	7.5. "ADD AN ATTRIBUTE COLUMN"
	7.6. "DELETE AN EXISTING FACT"
	7.7. "EXECUTE A WORK ITEM"
	7.8. "SET THE VALUE OF A FIELD"
	7.9. "SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT"

	CHAPTER 8. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES
	CHAPTER 9. ADDING ROWS AND DEFINING RULES IN GUIDED DECISION TABLES
	CHAPTER 10. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES
	10.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES
	10.2. TYPES OF NOTIFICATIONS
	10.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

	CHAPTER 11. EXECUTING RULES
	11.1. EXECUTABLE RULE MODELS
	11.1.1. Embedding an executable rule model in a Maven project
	11.1.2. Embedding an executable rule model in a Java application

	CHAPTER 12. NEXT STEPS
	APPENDIX A. VERSIONING INFORMATION

