
Red Hat OpenStack Platform 17.0

Transitioning to Containerized Services

A basic guide to working with OpenStack Platform containerized services

Last Updated: 2024-03-21

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

A basic guide to working with OpenStack Platform containerized services

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides some basic information to help users get accustomed working with OpenStack
Platform services running in containers.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION
1.1. CONTAINERIZED SERVICES AND KOLLA

CHAPTER 2. CONTAINERIZED SERVICES
2.1. CONTAINERIZED SERVICE ARCHITECTURE
2.2. CONTAINERIZED SERVICE PARAMETERS
2.3. DEPLOYING A VENDOR PLUGIN

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES
3.1. PREPARING CONTAINER IMAGES
3.2. CONTAINER IMAGE PREPARATION PARAMETERS
3.3. GUIDELINES FOR CONTAINER IMAGE TAGGING
3.4. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
3.5. LAYERING IMAGE PREPARATION ENTRIES
3.6. MODIFYING IMAGES DURING PREPARATION
3.7. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
3.8. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
3.9. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
3.10. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

CHAPTER 4. INSTALLING THE UNDERCLOUD WITH CONTAINERS
4.1. CONFIGURING DIRECTOR
4.2. DIRECTOR CONFIGURATION PARAMETERS
4.3. INSTALLING DIRECTOR
4.4. PERFORMING A MINOR UPDATE OF A CONTAINERIZED UNDERCLOUD

CHAPTER 5. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS
5.1. DEPLOYING AN OVERCLOUD
5.2. UPDATING AN OVERCLOUD

CHAPTER 6. WORKING WITH CONTAINERIZED SERVICES
6.1. MANAGING CONTAINERIZED SERVICES
6.2. TROUBLESHOOTING CONTAINERIZED SERVICES

CHAPTER 7. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES
7.1. SYSTEMD SERVICES AND CONTAINERIZED SERVICES
7.2. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG LOCATIONS
7.3. SYSTEMD CONFIGURATION VS CONTAINERIZED CONFIGURATION

3

4
4

5
5
5
6

9
9
9

13
14
16
17
18
18
19
19

24
24
24
30
31

32
32
32

33
33
36

38
38
40
42

Table of Contents

1

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION
Past versions of Red Hat OpenStack Platform used services managed with Systemd. However, more
recent version of OpenStack Platform now use containers to run services. Some administrators might
not have a good understanding of how containerized OpenStack Platform services operate, and so this
guide aims to help you understand OpenStack Platform container images and containerized services.
This includes:

How to obtain and modify container images

How to manage containerized services in the overcloud

Understanding how containers differ from Systemd services

The main goal is to help you gain enough knowledge of containerized OpenStack Platform services to
transition from a Systemd-based environment to a container-based environment.

1.1. CONTAINERIZED SERVICES AND KOLLA

Each of the main Red Hat OpenStack Platform (RHOSP) services run in containers. This provides a
method to keep each service within its own isolated namespace separated from the host. This has the
following effects:

During deployment, RHOSP pulls and runs container images from the Red Hat Customer Portal.

The podman command operates management functions, like starting and stopping services.

To upgrade containers, you must pull new container images and replace the existing containers
with newer versions.

Red Hat OpenStack Platform uses a set of containers built and managed with the Kolla toolset.

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

4

CHAPTER 2. CONTAINERIZED SERVICES
Director installs the core OpenStack Platform services as containers on the overcloud. This section
provides some background information on how containerized services work.

2.1. CONTAINERIZED SERVICE ARCHITECTURE

Director installs the core OpenStack Platform services as containers on the overcloud. The templates
for the containerized services are located in the /usr/share/openstack-tripleo-heat-
templates/deployment/.

You must enable the OS::TripleO::Services::Podman service in the role for all nodes that use
containerized services. When you create a roles_data.yaml file for your custom roles configuration,
include the OS::TripleO::Services::Podman service along with the base composable services. For
example, the IronicConductor role uses the following role definition:

- name: IronicConductor
 description: |
 Ironic Conductor node role
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 HostnameFormatDefault: '%stackname%-ironic-%index%'
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::IronicPxe
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned

2.2. CONTAINERIZED SERVICE PARAMETERS

CHAPTER 2. CONTAINERIZED SERVICES

5

Each containerized service template contains an outputs section that defines a data set passed to the
OpenStack Orchestration (heat) service. In addition to the standard composable service parameters,
the template contains a set of parameters specific to the container configuration.

puppet_config

Data to pass to Puppet when configuring the service. In the initial overcloud deployment steps,
director creates a set of containers used to configure the service before the actual containerized
service runs. This parameter includes the following sub-parameters:

config_volume - The mounted volume that stores the configuration.

puppet_tags - Tags to pass to Puppet during configuration. OpenStack uses these tags to
restrict the Puppet run to the configuration resource of a particular service. For example, the
OpenStack Identity (keystone) containerized service uses the keystone_config tag to
ensure that all require only the keystone_config Puppet resource run on the configuration
container.

step_config - The configuration data passed to Puppet. This is usually inherited from the
referenced composable service.

config_image - The container image used to configure the service.

kolla_config

A set of container-specific data that defines configuration file locations, directory permissions, and
the command to run on the container to launch the service.

docker_config

Tasks to run on the configuration container for the service. All tasks are grouped into the following
steps to help director perform a staged deployment:

Step 1 - Load balancer configuration

Step 2 - Core services (Database, Redis)

Step 3 - Initial configuration of OpenStack Platform service

Step 4 - General OpenStack Platform services configuration

Step 5 - Service activation

host_prep_tasks

Preparation tasks for the bare metal node to accommodate the containerized service.

2.3. DEPLOYING A VENDOR PLUGIN

To use some third-party hardware as a Block Storage back end, you must deploy a vendor plugin. The
following example demonstrates how to deploy a vendor plugin to use Dell EMC hardware as a Block
Storage back end.

Procedure

1. Create a new container images file for your overcloud:

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

6

$ sudo openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter-dellemc.yaml

2. Edit the containers-prepare-parameter-dellemc.yaml file.

3. Add an exclude parameter to the strategy for the main Red Hat OpenStack Platform container
images. Use this parameter to exclude the container image that the vendor container image will
replace. In the example, the container image is the cinder-volume image:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 excludes:
 - cinder-volume
 set:
 namespace: registry.redhat.io/rhosp-rhel9
 name_prefix: openstack-
 name_suffix: ''
 tag: 16.2
 ...
 tag_from_label: "{version}-{release}"

4. Add a new strategy to the ContainerImagePrepare parameter that includes the replacement
container image for the vendor plugin:

parameter_defaults:
 ContainerImagePrepare:
 ...
 - push_destination: true
 includes:
 - cinder-volume
 set:
 namespace: registry.connect.redhat.com/dellemc
 name_prefix: openstack-
 name_suffix: -dellemc-rhosp16
 tag: 16.2-2
 ...

5. Add the authentication details for the registry.connect.redhat.com registry to the
ContainerImageRegistryCredentials parameter:

parameter_defaults:
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 [service account username]: [service account password]
 registry.connect.redhat.com:
 [service account username]: [service account password]

6. Save the containers-prepare-parameter-dellemc.yaml file.

7. Include the containers-prepare-parameter-dellemc.yaml file with any deployment commands,
such as as openstack overcloud deploy:

CHAPTER 2. CONTAINERIZED SERVICES

7

$ openstack overcloud deploy --templates
 ...
 -e containers-prepare-parameter-dellemc.yaml
 ...

When director deploys the overcloud, the overcloud uses the vendor container image instead of
the standard container image.

IMPORTANT

The containers-prepare-parameter-dellemc.yaml file replaces the standard containers-
prepare-parameter.yaml file in your overcloud deployment. Do not include the standard
containers-prepare-parameter.yaml file in your overcloud deployment. Retain the standard
containers-prepare-parameter.yaml file for your undercloud installation and updates.

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

8

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER
IMAGES

A containerized overcloud requires access to a registry with the required container images. This chapter
provides information on how to prepare the registry and your undercloud and overcloud configuration to
use container images for Red Hat OpenStack Platform.

3.1. PREPARING CONTAINER IMAGES

The overcloud installation requires an environment file to determine where to obtain container images
and how to store them. Generate and customize this environment file that you can use to prepare your
container images.

NOTE

If you need to configure specific container image versions for your overcloud, you must
pin the images to a specific version. For more information, see Pinning container images
for the overcloud.

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means that director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. Director uses this registry as
the container image source. To pull directly from the Red Hat Container Catalog, omit this
option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is
containers-prepare-parameter.yaml.

NOTE

You can use the same containers-prepare-parameter.yaml file to define a
container image source for both the undercloud and the overcloud.

3. Modify the containers-prepare-parameter.yaml to suit your requirements.

3.2. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerImagePrepare heat parameter. This parameter defines a list of strategies for preparing a set
of images:

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#ref_pinning-container-images-for-the-overcloud_assembly_performing-advanced-overcloud-container-image-management

parameter_defaults:
 ContainerImagePrepare:
 - (strategy one)
 - (strategy two)
 - (strategy three)
 ...

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the
images. The following table contains information about the sub-parameters that you can use with each
ContainerImagePrepare strategy:

Parameter Description

excludes List of regular expressions to exclude image names
from a strategy.

includes List of regular expressions to include in a strategy. At
least one image name must match an existing image.
All excludes are ignored if includes is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 17.0.0-
5.161 and set the modify_append_tag to -hotfix,
the director tags the final image as 17.0.0-5.161-
hotfix.

modify_only_with_labels A dictionary of image labels that filter the images
that you want to modify. If an image matches the
labels defined, the director includes the image in the
modification process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

10

push_destination Defines the namespace of the registry that you want
to push images to during the upload process.

If set to true, the push_destination is set
to the undercloud registry namespace using
the hostname, which is the recommended
method.

If set to false, the push to a local registry
does not occur and nodes pull images
directly from the source.

If set to a custom value, director pushes
images to an external local registry.

If you set this parameter to false in production
environments while pulling images directly from Red
Hat Container Catalog, all overcloud nodes will
simultaneously pull the images from the Red Hat
Container Catalog over your external connection,
which can cause bandwidth issues. Only use false to
pull directly from a Red Hat Satellite Server hosting
the container images.

If the push_destination parameter is set to false
or is not defined and the remote registry requires
authentication, set the
ContainerImageRegistryLogin parameter to
true and include the credentials with the
ContainerImageRegistryCredentials
parameter.

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Use the value of specified container image metadata
labels to create a tag for every image and pull that
tagged image. For example, if you set
tag_from_label: {version}-{release}, director
uses the version and release labels to construct a
new tag. For one container, version might be set to
17.0.0 and release might be set to 5.161, which
results in the tag 17.0.0-5.161. Director uses this
parameter only if you have not defined tag in the set
dictionary.

Parameter Description

IMPORTANT

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

11

IMPORTANT

When you push images to the undercloud, use push_destination: true instead of
push_destination: UNDERCLOUD_IP:PORT. The push_destination: true method
provides a level of consistency across both IPv4 and IPv6 addresses.

The set parameter accepts a set of key: value definitions:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

ceph_alertmanager_image

ceph_alertmanager_namespace

ceph_alertmanager_tag

The name, namespace, and tag of the Ceph Storage
Alert Manager container image.

ceph_grafana_image

ceph_grafana_namespace

ceph_grafana_tag

The name, namespace, and tag of the Ceph Storage
Grafana container image.

ceph_node_exporter_image

ceph_node_exporter_namespace

ceph_node_exporter_tag

The name, namespace, and tag of the Ceph Storage
Node Exporter container image.

ceph_prometheus_image

ceph_prometheus_namespace

ceph_prometheus_tag

The name, namespace, and tag of the Ceph Storage
Prometheus container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

12

tag Sets a specific tag for all images from the source. If
not defined, director uses the Red Hat OpenStack
Platform version number as the default value. This
parameter takes precedence over the
tag_from_label value.

Key Description

NOTE

The container images use multi-stream tags based on the Red Hat OpenStack Platform
version. This means that there is no longer a latest tag.

3.3. GUIDELINES FOR CONTAINER IMAGE TAGGING

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform
container images. This format follows the label metadata for each container, which is version-release.

version

Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as
streams that contain one or more releases.

release

Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 17.0.0 and the release for the
container image is 5.161, then the resulting tag for the container image is 17.0.0-5.161.

The Red Hat Container Registry also uses a set of major and minor version tags that link to the latest
release for that container image version. For example, both 17.0 and 17.0.0 link to the latest release in
the 17.0.0 container stream. If a new minor release of 17.0 occurs, the 17.0 tag links to the latest release
for the new minor release stream while the 17.0.0 tag continues to link to the latest release within the
17.0.0 stream.

The ContainerImagePrepare parameter contains two sub-parameters that you can use to determine
which container image to download. These sub-parameters are the tag parameter within the set
dictionary, and the tag_from_label parameter. Use the following guidelines to determine whether to use
tag or tag_from_label.

The default value for tag is the major version for your OpenStack Platform version. For this
version it is 17.0. This always corresponds to the latest minor version and release.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 17.0
 ...

To change to a specific minor version for OpenStack Platform container images, set the tag to a
minor version. For example, to change to 17.0.2, set tag to 17.0.2.

parameter_defaults:

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

13

 ContainerImagePrepare:
 - set:
 ...
 tag: 17.0.2
 ...

When you set tag, director always downloads the latest container image release for the version
set in tag during installation and updates.

If you do not set tag, director uses the value of tag_from_label in conjunction with the latest
major version.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 # tag: 17.0
 ...
 tag_from_label: '{version}-{release}'

The tag_from_label parameter generates the tag from the label metadata of the latest
container image release it inspects from the Red Hat Container Registry. For example, the labels
for a certain container might use the following version and release metadata:

 "Labels": {
 "release": "5.161",
 "version": "17.0.0",
 ...
 }

The default value for tag_from_label is {version}-{release}, which corresponds to the version
and release metadata labels for each container image. For example, if a container image has
17.0.0 set for version and 5.161 set for release, the resulting tag for the container image is
17.0.0-5.161.

The tag parameter always takes precedence over the tag_from_label parameter. To use
tag_from_label, omit the tag parameter from your container preparation configuration.

A key difference between tag and tag_from_label is that director uses tag to pull an image only
based on major or minor version tags, which the Red Hat Container Registry links to the latest
image release within a version stream, while director uses tag_from_label to perform a
metadata inspection of each container image so that director generates a tag and pulls the
corresponding image.

3.4. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES

The registry.redhat.io registry requires authentication to access and pull images. To authenticate with
registry.redhat.io and other private registries, include the ContainerImageRegistryCredentials and
ContainerImageRegistryLogin parameters in your containers-prepare-parameter.yaml file.

ContainerImageRegistryCredentials

Some container image registries require authentication to access images. In this situation, use the
ContainerImageRegistryCredentials parameter in your containers-prepare-parameter.yaml
environment file. The ContainerImageRegistryCredentials parameter uses a set of keys based on the

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

14

private registry URL. Each private registry URL uses its own key and value pair to define the username
(key) and password (value). This provides a method to specify credentials for multiple private registries.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and
using those credentials to access registry.redhat.io content.

To specify authentication details for multiple registries, set multiple key-pair values for each registry in
ContainerImageRegistryCredentials:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 - push_destination: true
 set:
 namespace: registry.internalsite.com/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 registry.internalsite.com:
 myuser2: '0th3rp@55w0rd!'
 '192.0.2.1:8787':
 myuser3: '@n0th3rp@55w0rd!'

IMPORTANT

The default ContainerImagePrepare parameter pulls container images from
registry.redhat.io, which requires authentication.

For more information, see Red Hat Container Registry Authentication .

ContainerImageRegistryLogin

The ContainerImageRegistryLogin parameter is used to control whether an overcloud node system
needs to log in to the remote registry to fetch the container images. This situation occurs when you
want the overcloud nodes to pull images directly, rather than use the undercloud to host images.

You must set ContainerImageRegistryLogin to true if push_destination is set to false or not used for
a given strategy.

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

15

https://access.redhat.com/RegistryAuthentication

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: true

However, if the overcloud nodes do not have network connectivity to the registry hosts defined in
ContainerImageRegistryCredentials and you set ContainerImageRegistryLogin to true, the
deployment might fail when trying to perform a login. If the overcloud nodes do not have network
connectivity to the registry hosts defined in the ContainerImageRegistryCredentials, set
push_destination to true and ContainerImageRegistryLogin to false so that the overcloud nodes
pull images from the undercloud.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: false

3.5. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means that you can specify
multiple entries.

The following example demonstrates two entries where director uses the latest version of all images
except for the nova-api image, which uses the version tagged with 17.0-hotfix:

parameter_defaults:
 ContainerImagePrepare:
 - tag_from_label: "{version}-{release}"
 push_destination: true
 excludes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel9
 name_prefix: openstack-
 name_suffix: ''
 tag:17.0
 - push_destination: true
 includes:
 - nova-api

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

16

 set:
 namespace: registry.redhat.io/rhosp-rhel9
 tag: 17.0-hotfix

The includes and excludes parameters use regular expressions to control image filtering for each
entry. The images that match the includes strategy take precedence over excludes matches. The
image name must match the includes or excludes regular expression value to be considered a match.

3.6. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, and then immediately deploy the overcloud
with modified images.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying images during
preparation for RHOSP containers, not for Ceph containers.

Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes must be deployed for testing and
development.

When changes must be deployed but are not available through an image build pipeline. For
example, adding proprietary add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface and provides the
behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. Change modify_append_tag
whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, run the image
prepare command without any additional options to confirm that the image is modified as you expect:

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

17

IMPORTANT

To use the openstack tripleo container image prepare command, your undercloud
must contain a running image-serve registry. As a result, you cannot run this command
before a new undercloud installation because the image-serve registry will not be
installed. You can run this command after a successful undercloud installation.

3.7. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

NOTE

Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on
container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry updates in all packages on the container
images by using the dnf repository configuration of the undercloud host:

ContainerImagePrepare:
- push_destination: true
 ...
 modify_role: tripleo-modify-image
 modify_append_tag: "-updated"
 modify_vars:
 tasks_from: yum_update.yml
 compare_host_packages: true
 yum_repos_dir_path: /etc/yum.repos.d
 ...

3.8. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package that is not available through a package repository.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files
to container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry installs some hotfix packages on only the
nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

18

 tasks_from: rpm_install.yml
 rpms_path: /home/stack/nova-hotfix-pkgs
 ...

3.9. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

You can specify a directory that contains a Dockerfile to make the required changes. When you invoke
the tripleo-modify-image role, the role generates a Dockerfile.modified file that changes the FROM
directive and adds extra LABEL directives.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying container images
with a custom Dockerfile for RHOSP containers, not for Ceph containers.

Procedure

1. The following example runs the custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: modify_image.yml
 modify_dir_path: /home/stack/nova-custom
 ...

2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any
USER root directives, you must switch back to the original image default user:

FROM registry.redhat.io/rhosp-rhel9/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

3.10. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more information about managing
container images, see Managing Container Images in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

19

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html/content_management_guide/managing_container_images

NOTE

This procedure requires authentication credentials to access container images from
registry.redhat.io. Instead of using your individual user credentials, Red Hat
recommends creating a registry service account and using those credentials to access
registry.redhat.io content. For more information, see "Red Hat Container Registry
Authentication".

Procedure

1. Create a list of all container images:

$ sudo podman search --limit 1000 "registry.redhat.io/rhosp-rhel9" --format="{{ .Name }}" |
sort > satellite_images
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-5-dashboard-
rhel8
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-5-rhel8
$ sudo podman search --limit 1000 "registry.redhat.io/openshift" | grep ose-prometheus

If you plan to install Ceph and enable the Ceph Dashboard, you need the following ose-
prometheus containers:

registry.redhat.io/openshift4/ose-prometheus-node-exporter:v4.6
registry.redhat.io/openshift4/ose-prometheus:v4.6
registry.redhat.io/openshift4/ose-prometheus-alertmanager:v4.6

2. Copy the satellite_images file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product (OSP Containers) in your
Satellite organization:

$ hammer product create \
 --organization "ACME" \
 --name "OSP Containers"

This custom product will contain your images.

4. Add the overcloud container images from the satellite_images file:

$ while read IMAGE; do \
 IMAGE_NAME=$(echo $IMAGE | cut -d"/" -f3 | sed "s/openstack-//g") ; \
 IMAGE_NOURL=$(echo $IMAGE | sed "s/registry.redhat.io\///g") ; \
 hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name $IMAGE_NOURL \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name $IMAGE_NAME ; done < satellite_images

5. Add the Ceph Storage container image:

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

20

https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/rhceph-5-rhel8 \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name rhceph-5-rhel8

NOTE

If you want to install the Ceph dashboard, include --name rhceph-5-dashboard-
rhel8 in the hammer repository create command:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/rhceph-5-dashboard-rhel8 \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name rhceph-5-dashboard-rhel8

6. Synchronize the container images:

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the Authentication section in the
Hammer CLI Guide .

7. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images to be
available in that environment, create a content view that includes the container images and
promote that content view to the production environment. For more information, see
Managing Content Views.

8. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --lifecycle-environment "production" \

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

21

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/content_management_guide/index#Managing_Content_Views

 --product "OSP Containers"

This command displays tags for the OpenStack Platform container images within a content view
for a particular environment.

9. Return to the undercloud and generate a default environment file that prepares images using
your Satellite server as a source. Run the following example command to generate the
environment file:

$ sudo openstack tripleo container image prepare default \
 --output-env-file containers-prepare-parameter.yaml

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yaml.

10. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

push_destination - Set this to true or false depending on your chosen container image
management strategy. If you set this parameter to false, the overcloud nodes pull images
directly from the Satellite. If you set this parameter to true, the director pulls the images
from the Satellite to the undercloud registry and the overcloud pulls the images from the
undercloud registry.

namespace - The URL of the registry on the Satellite server.

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp16-osp_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp_containers-.

ceph_namespace, ceph_image, ceph_tag - If you use Ceph Storage, include these
additional parameters to define the Ceph Storage container image location. Note that
ceph_image now includes a Satellite-specific prefix. This prefix is the same value as the
name_prefix option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 ceph_image: acme-production-myosp16_1-osp_containers-rhceph-5
 ceph_namespace: satellite.example.com:5000
 ceph_tag: latest
 name_prefix: acme-production-myosp16_1-osp_containers-
 name_suffix: ''
 namespace: satellite.example.com:5000
 neutron_driver: null
 tag: '17.0'
 ...

NOTE

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

22

NOTE

To use a specific container image version stored on your Red Hat Satellite Server, set the
tag key-value pair to the specific version in the set dictionary. For example, to use the
17.0.2 image stream, set tag: 17.0.2 in the set dictionary.

You must define the containers-prepare-parameter.yaml environment file in the undercloud.conf
configuration file, otherwise the undercloud uses the default values:

container_images_file = /home/stack/containers-prepare-parameter.yaml

CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES

23

CHAPTER 4. INSTALLING THE UNDERCLOUD WITH
CONTAINERS

This chapter provides info on how to create a container-based undercloud and keep it updated.

4.1. CONFIGURING DIRECTOR

The director installation process requires certain settings in the undercloud.conf configuration file,
which director reads from the home directory of the stack user. Complete the following steps to copy
default template as a foundation for your configuration.

Procedure

1. Copy the default template to the home directory of the stack user’s:

[stack@director ~]$ cp \
 /usr/share/python-tripleoclient/undercloud.conf.sample \
 ~/undercloud.conf

2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you
omit or comment out a parameter, the undercloud installation uses the default value.

4.2. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the undercloud.conf file. Keep
all parameters within their relevant sections to avoid errors.

IMPORTANT

At minimum, you must set the container_images_file parameter to the environment file
that contains your container image configuration. Without this parameter properly set to
the appropriate file, director cannot obtain your container image rule set from the
ContainerImagePrepare parameter nor your container registry authentication details
from the ContainerImageRegistryCredentials parameter.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud
supports only the x86_64 architecture.

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Use this option only if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the
certificate to the trust chain.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

cleanup

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

24

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in
place after you run the deployment command. This is useful for debugging the generated files or if
errors occur.

container_cli

The CLI tool for container management. Leave this parameter set to podman. Red Hat Enterprise
Linux 9.0 only supports podman.

container_healthcheck_disabled

Disables containerized service health checks. Red Hat recommends that you enable health checks
and leave this option set to false.

container_images_file

Heat environment file with container image information. This file can contain the following entries:

Parameters for all required container images

The ContainerImagePrepare parameter to drive the required image preparation. Usually
the file that contains this parameter is named containers-prepare-parameter.yaml.

container_insecure_registries

A list of insecure registries for podman to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, podman has the certificates to
pull container images from either the Red Hat Container Catalog or from your Satellite Server if the
undercloud is registered to Satellite.

container_registry_mirror

An optional registry-mirror configured that podman uses.

custom_env_files

Additional environment files that you want to add to the undercloud installation.

deployment_user

The user who installs the undercloud. Leave this parameter unset to use the current default user
stack.

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires the enable_node_discovery
parameter to be enabled and you must include the driver in the enabled_hardware_types list.

enable_ironic; enable_ironic_inspector; enable_tempest; enable_validations

Defines the core services that you want to enable for director. Leave these parameters set to true.

enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use
the fake driver as a default but you can set discovery_default_driver to override. You can also use
introspection rules to specify driver information for newly enrolled nodes.

enable_routed_networks

Defines whether to enable support for routed control plane networks.

enabled_hardware_types

A list of hardware types that you want to enable for the undercloud.

generate_service_certificate

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the
certificate_generation_ca parameter signs this certificate.

CHAPTER 4. INSTALLING THE UNDERCLOUD WITH CONTAINERS

25

heat_container_image

URL for the heat container image to use. Leave unset.

heat_native

Run host-based undercloud configuration using heat-all. Leave as true.

hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation
copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. For
more information about using this feature, see Configuring hieradata on the undercloud.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. This parameter
requires the python-hardware or python-hardware-detect packages on the introspection image.

inspection_interface

The bridge that director uses for node introspection. This is a custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default
br-ctlplane.

inspection_runbench

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the
benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting
the hardware of registered nodes.

ipv6_address_mode

IPv6 address configuration mode for the undercloud provisioning network. The following list contains
the possible values for this parameter:

dhcpv6-stateless - Address configuration using router advertisement (RA) and optional
information using DHCPv6.

dhcpv6-stateful - Address configuration and optional information using DHCPv6.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set this
parameter to false to use standard PXE. For PowerPC deployments, or for hybrid PowerPC and x86
deployments, set this value to false.

local_interface

The chosen interface for the director Provisioning NIC. This is also the device that director uses for
DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: em0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic em0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#configuring-hieradata-on-the-undercloud

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not
configured. In this case, set the local_interface to em1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

local_ip

The IP address defined for the director Provisioning NIC. This is also the IP address that director
uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless you
use a different subnet for the Provisioning network, for example, if this IP address conflicts with an
existing IP address or subnet in your environment.
For IPv6, the local IP address prefix length must be /64 to support both stateful and stateless
connections.

local_mtu

The maximum transmission unit (MTU) that you want to use for the local_interface. Do not exceed
1500 for the undercloud.

local_subnet

The local subnet that you want to use for PXE boot and DHCP interfaces. The local_ip address
should reside in this subnet. The default is ctlplane-subnet.

net_config_override

Path to network configuration override template. If you set this parameter, the undercloud uses a
JSON or YAML format template to configure the networking with os-net-config and ignores the
network parameters set in undercloud.conf. Use this parameter when you want to configure
bonding or add an option to the interface. For more information about customizing undercloud
network interfaces, see Configuring undercloud network interfaces.

networks_file

Networks file to override for heat.

output_dir

Directory to output state, processed heat templates, and Ansible deployment files.

overcloud_domain_name

The DNS domain name that you want to use when you deploy the overcloud.

NOTE

When you configure the overcloud, you must set the CloudDomain parameter to a
matching value. Set this parameter in an environment file when you configure your
overcloud.

roles_file

The roles file that you want to use to override the default roles file for undercloud installation. It is
highly recommended to leave this parameter unset so that the director installation uses the default
roles file.

scheduler_max_attempts

The maximum number of times that the scheduler attempts to deploy an instance. This value must
be greater or equal to the number of bare metal nodes that you expect to deploy at once to avoid
potential race conditions when scheduling.

service_principal

The Kerberos principal for the service using the certificate. Use this parameter only if your CA
requires a Kerberos principal, such as in FreeIPA.

CHAPTER 4. INSTALLING THE UNDERCLOUD WITH CONTAINERS

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

subnets

List of routed network subnets for provisioning and introspection. The default value includes only the
ctlplane-subnet subnet. For more information, see Subnets.

templates

Heat templates file to override.

undercloud_admin_host

The IP address or hostname defined for director admin API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.
If the undercloud_admin_host is not in the same IP network as the local_ip, you must configure
the interface on which you want the admin APIs on the undercloud to listen. By default, the admin
APIs listen on the br-ctlplane interface. For information about how to configure undercloud network
interfaces, see Configuring undercloud network interfaces.

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable DEBUG log
level.

undercloud_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to
true unless you are debugging an issue.

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but you must
configure all system host name settings appropriately.

undercloud_log_file

The path to a log file to store the undercloud install and upgrade logs. By default, the log file is
install-undercloud.log in the home directory. For example, /home/stack/install-undercloud.log.

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud date and time.

undercloud_public_host

The IP address or hostname defined for director public API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.
If the undercloud_public_host is not in the same IP network as the local_ip, you must set the
PublicVirtualInterface parameter to the public-facing interface on which you want the public APIs
on the undercloud to listen. By default, the public APIs listen on the br-ctlplane interface. Set the
PublicVirtualInterface parameter in a custom environment file, and include the custom environment
file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud
network interfaces.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

undercloud_timezone

Host timezone for the undercloud. If you do not specify a timezone, director uses the existing
timezone configuration.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a
subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

IMPORTANT

Director cannot change the IP addresses for a subnet after director creates the subnet.

cidr

The network that director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you
use a different subnet for the Provisioning network.

masquerade

Defines whether to masquerade the network defined in the cidr for external access. This provides
the Provisioning network with a degree of network address translation (NAT) so that the
Provisioning network has external access through director.

NOTE

The director configuration also enables IP forwarding automatically using the relevant
sysctl kernel parameter.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure that this range contains
enough IP addresses to allocate to your nodes. If not specified for the subnet, director determines
the allocation pools by removing the values set for the local_ip, gateway, undercloud_admin_host,
undercloud_public_host, and inspection_iprange parameters from the subnets full IP range.
You can configure non-contiguous allocation pools for undercloud control plane subnets by
specifying a list of start and end address pairs. Alternatively, you can use the dhcp_exclude option to
exclude IP addresses within an IP address range. For example, the following configurations both
create allocation pools 172.20.0.100-172.20.0.150 and 172.20.0.200-172.20.0.250:

Option 1

CHAPTER 4. INSTALLING THE UNDERCLOUD WITH CONTAINERS

29

dhcp_start = 172.20.0.100,172.20.0.200
dhcp_end = 172.20.0.150,172.20.0.250

Option 2

dhcp_start = 172.20.0.100
dhcp_end = 172.20.0.250
dhcp_exclude = 172.20.0.151-172.20.0.199

dhcp_exclude

IP addresses to exclude in the DHCP allocation range. For example, the following configuration
excludes the IP address 172.20.0.105 and the IP address range 172.20.0.210-172.20.0.219:

dhcp_exclude = 172.20.0.105,172.20.0.210-172.20.0.219

dns_nameservers

DNS nameservers specific to the subnet. If no nameservers are defined for the subnet, the subnet
uses nameservers defined in the undercloud_nameservers parameter.

gateway

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you use a different IP address for
director or want to use an external gateway directly.

host_routes

Host routes for the Neutron-managed subnet for the overcloud instances on this network. This also
configures the host routes for the local_subnet on the undercloud.

inspection_iprange

Temporary IP range for nodes on this network to use during the inspection process. This range must
not overlap with the range defined by dhcp_start and dhcp_end but must be in the same IP subnet.

Modify the values for these parameters to suit your configuration. When complete, save the file.

4.3. INSTALLING DIRECTOR

Complete the following steps to install director and perform some basic post-installation tasks.

Procedure

1. Run the following command to install director on the undercloud:

[stack@director ~]$ openstack undercloud install

This command launches the director configuration script. Director installs additional packages
and configures its services according to the configuration in the undercloud.conf. This script
takes several minutes to complete.

The script generates two files:

/home/stack/tripleo-deploy/undercloud/tripleo-undercloud-passwords.yaml - A list of
all passwords for the director services.

/home/stack/stackrc - A set of initialization variables to help you access the director

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

30

/home/stack/stackrc - A set of initialization variables to help you access the director
command line tools.

2. The script also starts all OpenStack Platform service containers automatically. You can check
the enabled containers with the following command:

[stack@director ~]$ sudo podman ps

3. To initialize the stack user to use the command line tools, run the following command:

[stack@director ~]$ source ~/stackrc

The prompt now indicates that OpenStack commands authenticate and execute against the
undercloud;

(undercloud) [stack@director ~]$

The director installation is complete. You can now use the director command line tools.

4.4. PERFORMING A MINOR UPDATE OF A CONTAINERIZED
UNDERCLOUD

Director provides commands to update the main packages on the undercloud node. Use director to
perform a minor update within the current version of your RHOSP environment.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Update the director main packages with the dnf update command:

$ sudo dnf update -y python3-tripleoclient ansible-*

4. Update the undercloud environment:

$ openstack undercloud upgrade

5. Wait until the undercloud update process completes.

6. Reboot the undercloud to update the operating system’s kernel and other system packages:

$ sudo reboot

7. Wait until the node boots.

CHAPTER 4. INSTALLING THE UNDERCLOUD WITH CONTAINERS

31

CHAPTER 5. DEPLOYING AND UPDATING AN OVERCLOUD
WITH CONTAINERS

This chapter provides info on how to create a container-based overcloud and keep it updated.

5.1. DEPLOYING AN OVERCLOUD

This procedure demonstrates how to deploy an overcloud with minimum configuration. The result will be
a basic two-node overcloud (1 Controller node, 1 Compute node).

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deploy command and include the file containing your overcloud image locations
(usually overcloud_images.yaml):

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/overcloud_images.yaml \
 --ntp-server pool.ntp.org

3. Wait until the overcloud completes deployment.

5.2. UPDATING AN OVERCLOUD

For information on updating a containerized overcloud, see the Keeping Red Hat OpenStack Platform
Updated guide.

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.0/html/keeping_red_hat_openstack_platform_updated/

CHAPTER 6. WORKING WITH CONTAINERIZED SERVICES
This chapter provides some examples of commands to manage containers and how to troubleshoot your
OpenStack Platform containers

6.1. MANAGING CONTAINERIZED SERVICES

Red Hat OpenStack Platform (RHOSP) runs services in containers on the undercloud and overcloud
nodes. In certain situations, you might need to control the individual services on a host. This section
contains information about some common commands you can run on a node to manage containerized
services.

Listing containers and images

To list running containers, run the following command:

$ sudo podman ps

To include stopped or failed containers in the command output, add the --all option to the command:

$ sudo podman ps --all

To list container images, run the following command:

$ sudo podman images

Inspecting container properties

To view the properties of a container or container images, use the podman inspect command. For
example, to inspect the keystone container, run the following command:

$ sudo podman inspect keystone

Managing containers with Systemd services

Previous versions of OpenStack Platform managed containers with Docker and its daemon. Now, the
Systemd services interface manages the lifecycle of the containers. Each container is a service and you
run Systemd commands to perform specific operations for each container.

NOTE

It is not recommended to use the Podman CLI to stop, start, and restart containers
because Systemd applies a restart policy. Use Systemd service commands instead.

To check a container status, run the systemctl status command:

$ sudo systemctl status tripleo_keystone
● tripleo_keystone.service - keystone container
 Loaded: loaded (/etc/systemd/system/tripleo_keystone.service; enabled; vendor preset: disabled)
 Active: active (running) since Fri 2019-02-15 23:53:18 UTC; 2 days ago
 Main PID: 29012 (podman)
 CGroup: /system.slice/tripleo_keystone.service
 └─29012 /usr/bin/podman start -a keystone

CHAPTER 6. WORKING WITH CONTAINERIZED SERVICES

33

To stop a container, run the systemctl stop command:

$ sudo systemctl stop tripleo_keystone

To start a container, run the systemctl start command:

$ sudo systemctl start tripleo_keystone

To restart a container, run the systemctl restart command:

$ sudo systemctl restart tripleo_keystone

Because no daemon monitors the containers status, Systemd automatically restarts most containers in
these situations:

Clean exit code or signal, such as running podman stop command.

Unclean exit code, such as the podman container crashing after a start.

Unclean signals.

Timeout if the container takes more than 1m 30s to start.

For more information about Systemd services, see the systemd.service documentation.

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
on files on the local file system of the node in /var/lib/config-data/puppet-generated/.
For example, if you edit /etc/keystone/keystone.conf within the keystone container and
restart the container, the container regenerates the configuration using /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf on the local file system
of the node, which overwrites any the changes that were made within the container
before the restart.

Monitoring podman containers with Systemd timers

The Systemd timers interface manages container health checks. Each container has a timer that runs a
service unit that executes health check scripts.

To list all OpenStack Platform containers timers, run the systemctl list-timers command and limit the
output to lines containing tripleo:

$ sudo systemctl list-timers | grep tripleo
Mon 2019-02-18 20:18:30 UTC 1s left Mon 2019-02-18 20:17:26 UTC 1min 2s ago
tripleo_nova_metadata_healthcheck.timer tripleo_nova_metadata_healthcheck.service
Mon 2019-02-18 20:18:34 UTC 5s left Mon 2019-02-18 20:17:23 UTC 1min 5s ago
tripleo_keystone_healthcheck.timer tripleo_keystone_healthcheck.service
Mon 2019-02-18 20:18:35 UTC 6s left Mon 2019-02-18 20:17:13 UTC 1min 15s ago
tripleo_memcached_healthcheck.timer tripleo_memcached_healthcheck.service
(...)

To check the status of a specific container timer, run the systemctl status command for the

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

34

https://www.freedesktop.org/software/systemd/man/systemd.service.html

To check the status of a specific container timer, run the systemctl status command for the
healthcheck service:

$ sudo systemctl status tripleo_keystone_healthcheck.service
● tripleo_keystone_healthcheck.service - keystone healthcheck
 Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.service; disabled; vendor
preset: disabled)
 Active: inactive (dead) since Mon 2019-02-18 20:22:46 UTC; 22s ago
 Process: 115581 ExecStart=/usr/bin/podman exec keystone /openstack/healthcheck (code=exited,
status=0/SUCCESS)
 Main PID: 115581 (code=exited, status=0/SUCCESS)

Feb 18 20:22:46 undercloud.localdomain systemd[1]: Starting keystone healthcheck...
Feb 18 20:22:46 undercloud.localdomain podman[115581]: {"versions": {"values": [{"status": "stable",
"updated": "2019-01-22T00:00:00Z", "..."}]}]}}
Feb 18 20:22:46 undercloud.localdomain podman[115581]: 300 192.168.24.1:35357 0.012 seconds
Feb 18 20:22:46 undercloud.localdomain systemd[1]: Started keystone healthcheck.

To stop, start, restart, and show the status of a container timer, run the relevant systemctl command
against the .timer Systemd resource. For example, to check the status of the
tripleo_keystone_healthcheck.timer resource, run the following command:

$ sudo systemctl status tripleo_keystone_healthcheck.timer
● tripleo_keystone_healthcheck.timer - keystone container healthcheck
 Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.timer; enabled; vendor preset:
disabled)
 Active: active (waiting) since Fri 2019-02-15 23:53:18 UTC; 2 days ago

If the healthcheck service is disabled but the timer for that service is present and enabled, it means that
the check is currently timed out, but will be run according to timer. You can also start the check manually.

NOTE

The podman ps command does not show the container health status.

Checking container logs

Red Hat OpenStack Platform 17.0 logs all standard output (stdout) from all containers, and standard
errors (stderr) consolidated inone single file for each container in /var/log/containers/stdout.

The host also applies log rotation to this directory, which prevents huge files and disk space issues.

In case a container is replaced, the new container outputs to the same log file, because podman uses
the container name instead of container ID.

You can also check the logs for a containerized service with the podman logs command. For example,
to view the logs for the keystone container, run the following command:

$ sudo podman logs keystone

Accessing containers

To enter the shell for a containerized service, use the podman exec command to launch /bin/bash. For
example, to enter the shell for the keystone container, run the following command:

CHAPTER 6. WORKING WITH CONTAINERIZED SERVICES

35

$ sudo podman exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user, run the following command:

$ sudo podman exec --user 0 -it <NAME OR ID> /bin/bash

To exit the container, run the following command:

exit

6.2. TROUBLESHOOTING CONTAINERIZED SERVICES

If a containerized service fails during or after overcloud deployment, use the following recommendations
to determine the root cause for the failure:

NOTE

Before running these commands, check that you are logged into an overcloud node and
not running these commands on the undercloud.

Checking the container logs

Each container retains standard output from its main process. This output acts as a log to help
determine what actually occurs during a container run. For example, to view the log for the keystone
container, use the following command:

$ sudo podman logs keystone

In most cases, this log provides the cause of a container’s failure.

Inspecting the container

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo podman inspect keystone

This provides a JSON object containing low-level configuration data. You can pipe the output to the jq
command to parse specific data. For example, to view the container mounts for the keystone container,
run the following command:

$ sudo podman inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands
against sets of container data. For example, to recreate the options used to run the keystone container,
use the following inspect command with the --format option:

$ sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v
{{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone

NOTE

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

36

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the podman run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$(sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range
.Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}'
keystone)
$ sudo podman run --rm $OPTIONS /bin/bash

Running commands in the container

In some cases, you might need to obtain information from within a container through a specific Bash
command. In this situation, use the following podman command to execute commands within a running
container. For example, to run a command in the keystone container:

$ sudo podman exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with your desired command. For example, each container has a health check
script to verify the service connection. You can run the health check script for keystone with the
following command:

$ sudo podman exec -ti keystone /openstack/healthcheck

To access the container’s shell, run podman exec using /bin/bash as the command:

$ sudo podman exec -ti keystone /bin/bash

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone
container’s file system, run the following command:

$ sudo podman export keystone -o keystone.tar

This command create the keystone.tar archive, which you can extract and explore.

CHAPTER 6. WORKING WITH CONTAINERIZED SERVICES

37

CHAPTER 7. COMPARING SYSTEMD SERVICES TO
CONTAINERIZED SERVICES

This chapter provides reference material to show how containerized services differ from Systemd
services.

7.1. SYSTEMD SERVICES AND CONTAINERIZED SERVICES

The following table shows the correlation between Systemd-based services and the podman containers
controlled with the Systemd services.

Component Systemd service Containers

OpenStack
Image Storage
(glance)

tripleo_glance_api.service glance_api

HAProxy tripleo_haproxy.service haproxy

OpenStack
Orchestration
(heat)

tripleo_heat_api.service

tripleo_heat_api_cfn.service

tripleo_heat_api_cron.service

tripleo_heat_engine.service

heat_api

heat_api_cfn

heat_api_cron

heat_engine

OpenStack
Bare Metal
(ironic)

tripleo_ironic_api.service

tripleo_ironic_conductor.service

tripleo_ironic_inspector.service

tripleo_ironic_inspector_dnsmasq.service

tripleo_ironic_neutron_agent.service

tripleo_ironic_pxe_http.service

tripleo_ironic_pxe_tftp.service

tripleo_iscsid.service

ironic_api

ironic_conductor

ironic_inspector

ironic_inspector_dnsmasq

ironic_neutron_agent

ironic_pxe_http

ironic_pxe_tftp

iscsid

Keepalived tripleo_keepalived.service keepalived

OpenStack
Identity
(keystone)

tripleo_keystone.service

tripleo_keystone_cron.service

keystone

keystone_cron

Logrotate tripleo_logrotate_crond.service logrotate_crond

Memcached tripleo_memcached.service memcached

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

38

MySQL tripleo_mysql.service mysql

OpenStack
Networking
(neutron)

tripleo_neutron_api.service

tripleo_neutron_dhcp.service

tripleo_neutron_l3_agent.service

tripleo_neutron_ovs_agent.service

neutron_api

neutron_dhcp

neutron_l3_agent

neutron_ovs_agent

OpenStack
Compute
(nova)

tripleo_nova_api.service

tripleo_nova_api_cron.service

tripleo_nova_compute.service

tripleo_nova_conductor.service

tripleo_nova_metadata.service

tripleo_nova_placement.service

tripleo_nova_scheduler.service

nova_api

nova_api_cron

nova_compute

nova_conductor

nova_metadata

nova_placement

nova_scheduler

RabbitMQ tripleo_rabbitmq.service rabbitmq

OpenStack
Object Storage
(swift)

tripleo_swift_account_reaper.service

tripleo_swift_account_server.service

tripleo_swift_container_server.service

tripleo_swift_container_updater.service

tripleo_swift_object_expirer.service

tripleo_swift_object_server.service

tripleo_swift_object_updater.service

tripleo_swift_proxy.service

tripleo_swift_rsync.service

swift_account_reaper

swift_account_server

swift_container_server

swift_container_updater

swift_object_expirer

swift_object_server

swift_object_updater

swift_proxy

swift_rsync

OpenStack
Messaging
(zaqar)

tripleo_zaqar.service

tripleo_zaqar_websocket.service

zaqar

zaqar_websocket

Component Systemd service Containers

CHAPTER 7. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

39

Aodh tripleo_aodh_api.service

tripleo_aodh_evaluator.service

tripleo_aodh_api_cron.service

tripleo_aodh_listener.service

tripleo_aodh_notifier.service

aodh_api

aodh_listener

aodh_evaluator

aodh_api_cron

aodh_notifier

Gnocchi tripleo_gnocchi_api.service

tripleo_gnocchi_metricd.service

tripleo_gnocchi_statsd.service

gnocchi_api

gnocchi_metricd

gnocchi_statsd

Ceilometer tripleo_ceilometer_agent_central.service

tripleo_ceilometer_agent_compute.service

tripleo_ceilometer_agent_notification.service

ceilometer_agent_central

ceilometer_agent_compute

ceilometer_agent_notificatio
n

Component Systemd service Containers

7.2. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG
LOCATIONS

The following table shows Systemd-based OpenStack logs and their equivalents for containers. All
container-based log locations are available on the physical host and are mounted to the container.

OpenStack service Systemd service logs Container logs

aodh /var/log/aodh/ /var/log/containers/aodh/

/var/log/containers/httpd/aod
h-api/

ceilometer /var/log/ceilometer/ /var/log/containers/ceilomete
r/

cinder /var/log/cinder/ /var/log/containers/cinder/

/var/log/containers/httpd/cin
der-api/

glance /var/log/glance/ /var/log/containers/glance/

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

40

gnocchi /var/log/gnocchi/ /var/log/containers/gnocchi/

/var/log/containers/httpd/gno
cchi-api/

heat /var/log/heat/ /var/log/containers/heat/

/var/log/containers/httpd/hea
t-api/

/var/log/containers/httpd/hea
t-api-cfn/

horizon /var/log/horizon/ /var/log/containers/horizon/

/var/log/containers/httpd/hori
zon/

keystone /var/log/keystone/ /var/log/containers/keystone

/var/log/containers/httpd/key
stone/

databases /var/log/mariadb/

/var/log/mongodb/

/var/log/mysqld.log

/var/log/containers/mysql/

neutron /var/log/neutron/ /var/log/containers/neutron/

/var/log/containers/httpd/neu
tron-api/

nova /var/log/nova/ /var/log/containers/nova/

/var/log/containers/httpd/nov
a-api/

/var/log/containers/httpd/pla
cement/

rabbitmq /var/log/rabbitmq/ /var/log/containers/rabbitmq/

redis /var/log/redis/ /var/log/containers/redis/

swift /var/log/swift/ /var/log/containers/swift/

OpenStack service Systemd service logs Container logs

7.3. SYSTEMD CONFIGURATION VS CONTAINERIZED

CHAPTER 7. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

41

7.3. SYSTEMD CONFIGURATION VS CONTAINERIZED
CONFIGURATION

The following table shows Systemd-based OpenStack configuration and their equivalents for
containers. All container-based configuration locations are available on the physical host, are mounted
to the container, and are merged (via kolla) into the configuration within each respective container.

OpenStack service Systemd service configuration Container configuration

aodh /etc/aodh/ /var/lib/config-data/puppet-
generated/aodh/

ceilometer /etc/ceilometer/ /var/lib/config-data/puppet-
generated/ceilometer/etc/ceil
ometer/

cinder /etc/cinder/ /var/lib/config-data/puppet-
generated/cinder/etc/cinder/

glance /etc/glance/ /var/lib/config-data/puppet-
generated/glance_api/etc/gla
nce/

gnocchi /etc/gnocchi/ /var/lib/config-data/puppet-
generated/gnocchi/etc/gnocc
hi/

haproxy /etc/haproxy/ /var/lib/config-data/puppet-
generated/haproxy/etc/hapro
xy/

heat /etc/heat/ /var/lib/config-data/puppet-
generated/heat/etc/heat/

/var/lib/config-data/puppet-
generated/heat_api/etc/heat/

/var/lib/config-data/puppet-
generated/heat_api_cfn/etc/h
eat/

horizon /etc/openstack-dashboard/ /var/lib/config-data/puppet-
generated/horizon/etc/opens
tack-dashboard/

keystone /etc/keystone/ /var/lib/config-data/puppet-
generated/keystone/etc/keys
tone/

Red Hat OpenStack Platform 17.0 Transitioning to Containerized Services

42

databases /etc/my.cnf.d/

/etc/my.cnf

/var/lib/config-data/puppet-
generated/mysql/etc/my.cnf.
d/

neutron /etc/neutron/ /var/lib/config-data/puppet-
generated/neutron/etc/neutr
on/

nova /etc/nova/ /var/lib/config-data/puppet-
generated/nova/etc/nova/

/var/lib/config-data/puppet-
generated/etc/placement/

rabbitmq /etc/rabbitmq/ /var/lib/config-data/puppet-
generated/rabbitmq/etc/rabbi
tmq/

redis /etc/redis/

/etc/redis.conf

/var/lib/config-data/puppet-
generated/redis/etc/redis/

/var/lib/config-data/puppet-
generated/redis/etc/redis.co
nf

swift /etc/swift/ /var/lib/config-data/puppet-
generated/swift/etc/swift/

/var/lib/config-data/puppet-
generated/swift_ringbuilder/
etc/swift/

OpenStack service Systemd service configuration Container configuration

CHAPTER 7. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

43

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION
	1.1. CONTAINERIZED SERVICES AND KOLLA

	CHAPTER 2. CONTAINERIZED SERVICES
	2.1. CONTAINERIZED SERVICE ARCHITECTURE
	2.2. CONTAINERIZED SERVICE PARAMETERS
	2.3. DEPLOYING A VENDOR PLUGIN

	CHAPTER 3. OBTAINING AND MODIFYING CONTAINER IMAGES
	3.1. PREPARING CONTAINER IMAGES
	3.2. CONTAINER IMAGE PREPARATION PARAMETERS
	3.3. GUIDELINES FOR CONTAINER IMAGE TAGGING
	3.4. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
	3.5. LAYERING IMAGE PREPARATION ENTRIES
	3.6. MODIFYING IMAGES DURING PREPARATION
	3.7. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	3.8. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	3.9. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
	3.10. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

	CHAPTER 4. INSTALLING THE UNDERCLOUD WITH CONTAINERS
	4.1. CONFIGURING DIRECTOR
	4.2. DIRECTOR CONFIGURATION PARAMETERS
	4.3. INSTALLING DIRECTOR
	4.4. PERFORMING A MINOR UPDATE OF A CONTAINERIZED UNDERCLOUD

	CHAPTER 5. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS
	5.1. DEPLOYING AN OVERCLOUD
	5.2. UPDATING AN OVERCLOUD

	CHAPTER 6. WORKING WITH CONTAINERIZED SERVICES
	6.1. MANAGING CONTAINERIZED SERVICES
	6.2. TROUBLESHOOTING CONTAINERIZED SERVICES

	CHAPTER 7. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES
	7.1. SYSTEMD SERVICES AND CONTAINERIZED SERVICES
	7.2. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG LOCATIONS
	7.3. SYSTEMD CONFIGURATION VS CONTAINERIZED CONFIGURATION

