& RedHat

Red Hat OpenStack Platform 16.2

Spine Leaf Networking

Configuring routed spine-leaf networks using Red Hat OpenStack Platform director

Last Updated: 2023-11-09

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

Configuring routed spine-leaf networks using Red Hat OpenStack Platform director

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides a basic scenario about how to configure a routed spine-leaf network on the
overcloud. This includes configuring the undercloud, writing the main configuration files, and
creating roles for your nodes.

Table of Contents

MAKING OPEN SOURCEMORE INCLUSIVE i

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER LLINTRODUCTION . i i e it

1.1. SPINE-LEAF NETWORKING

1.2. SPINE-LEAF NETWORK TOPOLOGY
1.3. SPINE-LEAF REQUIREMENTS

1.4. SPINE-LEAF LIMITATIONS

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

2.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS

2.2. CONFIGURING A DHCP RELAY

2.3. CREATING FLAVORS AND TAGGING NODES FOR LEAF NETWORKS

2.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
2.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

CHAPTER 3. ALTERNATIVE PROVISIONING NETWORKMETHODScovitt.

3.1. VLAN PROVISIONING NETWORK
3.2. VXLAN PROVISIONING NETWORK

CHAPTER 4. CONFIGURING THEOVERCLOUD i

4.1. CREATING ANETWORK DATA FILE

4.2. CREATING A ROLES DATAFILE

4.3. CREATING A CUSTOM NIC CONFIGURATION

4.4. SETTING CONTROL PLANE PARAMETERS
45.SETTING THE SUBNET FOR VIRTUAL IP ADDRESSES
4.6. MAPPING SEPARATE NETWORKS

4.7. DEPLOYING A SPINE-LEAF ENABLED OVERCLOUD
4.8. ADDING A NEW LEAF TO A SPINE-LEAF DEPLOYMENT

Table of Contents

o N o1 U

.............. 20

20

21
22
25
25
26
27
28

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue
3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not

modify any other fields in the form.

4. Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

This guide provides information about constructing a spine-leaf network topology for your Red Hat
OpenStack Platform environment. This includes a full end-to-end scenario and example files to help
replicate a more extensive network topology within your own environment.

1.1. SPINE-LEAF NETWORKING

Red Hat OpenStack Platform has a composable network architecture that you can use to adapt your
networking to the routed spine-leaf data center topology. In a practical application of routed spine-leaf,
a leaf is represented as a composable Compute or Storage role usually in a data center rack, as shown in
Figure 1.1, "Routed spine-leaf example". The Leaf O rack has an undercloud node, Controller nodes, and
Compute nodes. The composable networks are presented to the nodes, which have been assigned to
composable roles. The following diagram contains the following configuration:

® The Storageleaf networks are presented to the Ceph storage and Compute nodes.
® The NetworkLeaf represents an example of any network you might want to compose.

Figure 1.1. Routed spine-leaf example

Spine switch Spine switch Spine switch

ToR leaf switch \ LeafO Leaf1 Leaf2
Undercloud r— Compute O Leaf1 — — Compute O Leaf 2 —
Composable
roles \
Controller O | Compute1Leaf1 — — Compute 1Leaf 2 —
Controller1 — Compute 2 Leaf1 — — Compute 2 Leaf 2 —
Controller 2 — Ceph Storage O Leaf1 — — Ceph Storage O Leaf 2 —
Compute O Leaf O — Ceph Storage 1Leaf1 — — Ceph Storage 1Leaf 2 —
Composable e e ettt
networks \’\ h
i \ StorageLeaf 0 — StorageLeaf1 '— StorageLeaf2 i
! |
H i
H NetworkLeaf O NetworkLeaf 1 — NetworkLeaf 2 —
1
1
1

1.2. SPINE-LEAF NETWORK TOPOLOGY

The spine-leaf scenario takes advantage of OpenStack Networking (neutron) functionality to define
multiple subnets within segments of a single network. Each network uses a base network which acts as
Leaf O. Director creates Leaf 1and Leaf 2 subnets as segments of the main network.

This scenario uses the following networks:

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

Table 1.1. Leaf O Networks (base networks)

Network

Provisioning / Ctlplane / LeafO

Storage

StorageMgmt

Internal Api

Tenant [1]

External

Roles attached

Controller, ComputeleafO,
CephStoragelLeafO

Controller, ComputeleafO,
CephStoragelLeafO

Controller, CephStoragelLeafO

Controller, ComputeleafO

Controller, ComputeleafO

Controller

[1] Tenant networks are also known as project networks.

Table 1.2. Leaf 1 Networks

Network

Provisioning / Ctlplane / Leafl

Storagel eafl

StorageMgmtLeafl

InternalApiLeafl

TenantLeafl [1]

Roles attached

Computeleafl,
CephStoragelL eafl

Computeleafl,
CephStorageleafl

CephStorageleafl

Computeleafl

Computeleafl

[1] Tenant networks are also known as project networks.

Table 1.3. Leaf 2 Networks

Network

Provisioning / Ctlplane / Leaf2

Storagel eaf2

Roles attached

Computeleaf?,
CephStorageleaf2

Computeleaf?,
CephStoragelLeaf2

Subnet

192.168.10.0/24

172.16.0.0/24

17217.0.0/24

172.18.0.0/24

172.19.0.0/24

10.11.0/24

Subnet

192.168.11.0/24

172.16.1.0/24

172.17.1.0/24

172.18.1.0/24

172.19.1.0/24

Subnet

192.168.12.0/24

172.16.2.0/24

CHAPTER 1. INTRODUCTION

Network Roles attached Subnet

StorageMgmtLeaf2 CephStorageleaf2 172.17.2.0/24
InternalApiLeaf2 ComputelLeaf? 172.18.2.0/24
TenantLeaf2 [1] ComputelLeaf? 172.19.2.0/24

[1] Tenant networks are also known as project networks.

Figure 1.2. Spine-leaf network topology

Provisioning network

LeafO Leaf1 Leaf2

Undercloud —

— ~—— Controller O —

— —— Controller1 —

— —— Controller 2 —

— —— Compute O — — Compute 1-0 — — Compute 2-0 —

. Ceph] Ceph] Ceph]
Storage O Storage 1-0 Storage 2-0

- Storage Storage 1 Storage 2
Storage Mgmt Storage Mgmt 1 Storage Mgmt 2
Internal API Internal API1 Internal API 2
Tenant = Tenant 1 e Tenant 2
External

1.3. SPINE-LEAF REQUIREMENTS

To deploy the overcloud on a network with a L3 routed architecture, complete the following prerequisite
steps:

Layer-3 routing

Configure the routing of the network infrastructure to enable traffic between the different L2
segments. You can configure this routing statically or dynamically.

DHCP-Relay

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

Each L2 segment not local to the undercloud must provide dhep-relay. You must forward DHCP
requests to the undercloud on the provisioning network segment where the undercloud is connected.

NOTE

The undercloud uses two DHCP servers. One for baremetal node introspection, and
another for deploying overcloud nodes. Ensure that you read DHCP relay configuration to
understand the requirements when you configure dhcp-relay.

1.4. SPINE-LEAF LIMITATIONS

® Some roles, such as the Controller role, use virtual IP addresses and clustering. The mechanism
behind this functionality requires L2 network connectivity between these nodes. You must place
these nodes within the same leaf.

® Similar restrictions apply to Networker nodes. The network service implements highly-available
default paths in the network with Virtual Router Redundancy Protocol (VRRP). Because VRRP
uses a virtual router IP address, you must connect master and backup nodes to the same L2
network segment.

® When you use tenant or provider networks with VLAN segmentation, you must share the
particular VLANs between all Networker and Compute nodes.

NOTE

Itis possible to configure the network service with multiple sets of Networker nodes.
Each set of Networker nodes share routes for their networks, and VRRP provides highly-
available default paths within each set of Networker nodes. In this type of configuration,
all Networker nodes that share networks must be on the same L2 network segment.

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE
UNDERCLOUD

This section describes a use case about how to configure the undercloud to accommodate routed
spine-leaf with composable networks.

2.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS

To configure the provisioning networks for your spine leaf infrastructure, edit the undercloud.conf file
and set the relevant parameters included in the following procedure.

Procedure

1. Login to the undercloud as the stack user.

2. If you do not already have an undercloud.conf file, copy the sample template file:

[stack@director ~]$ cp /usr/share/python-tripleoclient/undercloud.conf.sample
~/undercloud.conf

3. Edit the undercloud.conf file.

4. Set the following values in the [DEFAULT] section:

a. Set local_ip to the undercloud IP on leaf0:
I local_ip = 192.168.10.1/24
b. Set undercloud_public_host to the externally facing IP address of the undercloud:

I undercloud_public_host = 10.1.1.1

c. Set undercloud_admin_host to the administration IP address of the undercloud. This IP
address is usually on leafO:

I undercloud_admin_host = 192.168.10.2

d. Set local_interface to the interface to bridge for the local network:
I local_interface = eth1

e. Set enable_routed_networks to true:
I enable_routed networks = true

f. Define your list of subnets using the subnets parameter. Define one subnet for each L2
segment in the routed spine and leaf:

I subnets = leaf0,leaf1,leaf2

g. Specify the subnet associated with the physical L2 segment local to the undercloud using
the local_subnet parameter:

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

I local_subnet = leaf0

h. Set the value of undercloud_nameservers.

I undercloud_nameservers = 10.11.5.19,10.11.5.20

TIP

You can find the current IP addresses of the DNS servers that are used for the undercloud
nameserver by looking in /etc/resolv.conf.

5. Create a new section for each subnet that you define in the subnets parameter:

[leaf0]

cidr = 192.168.10.0/24

dhcp_start = 192.168.10.10

dhcp_end = 192.168.10.90

inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1

masquerade = False

[leafi]

cidr = 192.168.11.0/24

dhcp_start = 192.168.11.10

dhcp_end = 192.168.11.90

inspection_iprange = 192.168.11.100,192.168.11.190
gateway = 192.168.11.1

masquerade = False

[leaf2]

cidr = 192.168.12.0/24

dhcp_start = 192.168.12.10

dhcp_end = 192.168.12.90

inspection_iprange = 192.168.12.100,192.168.12.190

gateway = 192.168.12.1
masquerade = False

6. Save the undercloud.conf file.
7. Run the undercloud installation command:

I [stack@director ~]$ openstack undercloud install

This configuration creates three subnets on the provisioning network or control plane. The overcloud
uses each network to provision systems within each respective leaf.

To ensure proper relay of DHCP requests to the undercloud, you might need to configure a DHCP relay.

2.2. CONFIGURING A DHCP RELAY

You run the DHCP relay service on a switch, router, or server that is connected to the remote network
segment you want to forward the requests from.

10

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

NOTE

Do not run the DHCP relay service on the undercloud.

The undercloud uses two DHCP servers on the provisioning network:
® Anintrospection DHCP server.
® A provisioning DHCP server.

You must configure the DHCP relay to forward DHCP requests to both DHCP servers on the
undercloud.

You can use UDP broadcast with devices that support it to relay DHCP requests to the L2 network
segment where the undercloud provisioning network is connected. Alternatively, you can use UDP
unicast, which relays DHCP requests to specific IP addresses.

NOTE

Configuration of DHCP relay on specific device types is beyond the scope of this
document. As a reference, this document provides a DHCP relay configuration example
using the implementation in ISC DHCP software. For more information, see manual page
dhcrelay(8).

IMPORTANT

DHCP option 79 is required for some relays, particularly relays that serve DHCPv6
addresses, and relays that do not pass on the originating MAC address. For more
information, see RFC6939.

Broadcast DHCP relay

This method relays DHCP requests using UDP broadcast traffic onto the L2 network segment where the
DHCP server or servers reside. All devices on the network segment receive the broadcast traffic. When
using UDP broadcast, both DHCP servers on the undercloud receive the relayed DHCP request.
Depending on the implementation, you can configure this by specifying either the interface or IP
network address:

Interface

Specify an interface that is connected to the L2 network segment where the DHCP requests are
relayed.

IP network address

Specify the network address of the IP network where the DHCP requests are relayed.

Unicast DHCP relay

This method relays DHCP requests using UDP unicast traffic to specific DHCP servers. When you use
UDP unicast, you must configure the device that provides the DHCP relay to relay DHCP requests to
both the IP address that is assigned to the interface used for introspection on the undercloud and the
IP address of the network namespace that the OpenStack Networking (neutron) service creates to host
the DHCP service for the ctlplane network.

The interface used for introspection is the one defined as inspection_interface in the undercloud.conf
file. If you have not set this parameter, the default interface for the undercloud is br-ctlplane.

1

https://www.rfc-editor.org/rfc/rfc6939

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

NOTE

It is common to use the br-ctlplane interface for introspection. The IP address that you
define as the local_ip in the undercloud.conf file is on the br-ctlplane interface.

The IP address allocated to the Neutron DHCP namespace is the first address available in the IP range
that you configure for the local_subnet in the undercloud.conf file. The first address in the IP range is
the one that you define as dhep_start in the configuration. For example, 192.168.10.10 is the IP address
if you use the following configuration:

[DEFAULT]
local_subnet = leaf0
subnets = leaf0,leaf1,leaf2

[leaf0]

cidr = 192.168.10.0/24

dhcp_start = 192.168.10.10

dhcp_end = 192.168.10.90

inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1

masquerade = False

' WARNING
A The IP address for the DHCP namespace is automatically allocated. In most cases,

this address is the first address in the IP range. To verify that this is the case, run the
following commands on the undercloud:

$ openstack port list --device-owner network:dhcp -c "Fixed IP Addresses”

S eSS +

| Fixed IP Addresses |
S eSS +

| ip_address='192.168.10.10", subnet_id="7526fbe3-f52a-4b39-a828-
ec59f4ed12b2' |

S eSS +

$ openstack subnet show 7526fbe3-f52a-4b39-a828-ec59f4ed12b2 -c name
+---—--- {pmmmmes +

| Field | Value |

+---—--- {pmmmmes +

| name | leafQ |

+---—--- {pmmmmes +

Example dhcrelay configuration

In the following examples, the dhcrelay command in the dhep package uses the following configuration:
® |nterfaces to relay incoming DHCP request: eth1, eth2, and eth3.

® |nterface the undercloud DHCP servers on the network segment are connected to: eth0.

12

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

® The DHCP server used for introspection is listening on IP address: 192.168.10.1.
® The DHCP server used for provisioning is listening on IP address 192.168.10.10.
This results in the following dherelay command:

e dhcrelay version 4.2.x:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
-i eth0 -i eth1 -i eth2 -i eth3

e dhcrelay version 4.3.x and later:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
-iu ethO -id eth1 -id eth2 -id eth3

Example Cisco IOS routing switch configuration

This example uses the following Cisco IOS configuration to perform the following tasks:
e Configure a VLAN to use for the provisioning network.
® Add the IP address of the leaf.

® Forward UDP and BOOTP requests to the introspection DHCP server that listens on IP
address: 192.168.10.1.

® Forward UDP and BOOTP requests to the provisioning DHCP server that listens on IP address
192.168.10.10.

interface vlan 2
ip address 192.168.24.254 255.255.255.0
ip helper-address 192.168.10.1

ip helper-address 192.168.10.10
I

Now that you have configured the provisioning network, you can configure the remaining overcloud leaf
networks.

2.3. CREATING FLAVORS AND TAGGING NODES FOR LEAF
NETWORKS

Each role in each leaf network requires a flavor and role assignment so that you can tag nodes into their
respective leaf. Complete the following steps to create and assign each flavor to a role.

Procedure

1. Source the stackrc file:

I [stack@director ~]$ source ~/stackrc

2. Create flavors for each custom role:

I $ ROLES="control compute_leaf0 compute_leaf1 compute_leaf2 ceph-storage_leaf0 ceph-

13

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

14

storage_leaf1 ceph-storage leaf2"

$ for ROLE in $ROLES; do openstack flavor create --id auto --ram <ram_size_mb> --disk
<disk_size_gb> --vcpus <no_vcpus> $ROLE ; done

$ for ROLE in $ROLES; do openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property resources:DISK_GB='0" --property
resources:MEMORY_MB='0" --property resources:VCPU='0' $ROLE ; done

® Replace <ram_size_mb> with the RAM of the bare metal node, in MB.
® Replace <disk_size_gb> with the size of the disk on the bare metal node, in GB.

® Replace <no_vcepuss> with the number of CPUs on the bare metal node.

3. Retrieve a list of your nodes to identify their UUIDs:

I (undercloud)$ openstack baremetal node list

4. Tag each bare metal node to its leaf network and role by using a custom resource class:

(undercloud)$ openstack baremetal node set \
--resource-class baremetal.LEAF-ROLE <node>

Replace <node> with the ID of the bare metal node.

For example, enter the following command to tag a node with UUID 58c3d07e-24f2-48a7-bbb6-
6843f0e8ee13 to the Compute role on Leaf2:

(undercloud)$ openstack baremetal node set \
--resource-class baremeta. COMPUTE-LEAF2 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13

. Associate each leaf network role flavor with the custom resource class:

(undercloud)$ openstack flavor set \
--property resources:CUSTOM_BAREMETAL_LEAF_ROLE=1\
<custom_role>

To determine the name of a custom resource class that corresponds to a resource class of a

Bare Metal Provisioning service node, convert the resource class to uppercase, replace each
punctuation mark with an underscore, and prefix with CUSTOM._.

NOTE

A flavor can request only one instance of a bare metal resource class.

. In the node-info.yaml file, specify the flavor that you want to use for each custom leaf role, and

the number of nodes to allocate for each custom leaf role. For example, the following
configuration specifies the flavor to use, and the number of nodes to allocate for the custom
leaf roles compute_leaf0, compute_leaf1, compute_leaf2, ceph-storage leaf0, ceph-
storage_leaf1, and ceph-storage_leaf2:

parameter_defaults:
OvercloudControllerFlavor: control
OvercloudComputelLeafOFlavor: compute_leaf0
OvercloudComputelLeafiFlavor: compute_leaf1

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

OvercloudComputelLeaf2Flavor: compute_leaf2
OvercloudCephStorageleafOFlavor: ceph-storage leaf0
OvercloudCephStoragelLeafiFlavor: ceph-storage_leaft
OvercloudCephStoragelLeaf2Flavor: ceph-storage_leaf2
ControllerLeaf0Count: 3

ComputeLeaf0Count: 3

ComputeLeaf1Count: 3

ComputeLeaf2Count: 3

CephStoragelLeaf0Count: 3

CephStoragelLeaf1Count: 3

CephStoragelLeaf2Count: 3

2.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE
NETWORK SEGMENTS

To enable deployment on a L3 routed network, you must configure the physical_network field on the
bare metal ports. Each bare metal port is associated with a bare metal node in the OpenStack Bare

Metal (ironic) service. The physical network names are the names that you include in the subnets option
in the undercloud configuration.

NOTE

The physical network name of the subnet specified as local_subnet in the
undercloud.conf file is always named ctlplane.

Procedure

1. Source the stackrc file:

I $ source ~/stackrc

. Check the bare metal nodes:

I $ openstack baremetal node list

. Ensure that the bare metal nodes are either in enroll or manageable state. If the bare metal
node is not in one of these states, the command that sets the physical_network property on
the baremetal port fails. To set all nodes to manageable state, run the following command:

$ for node in $(openstack baremetal node list -f value -c Name); do openstack baremetal
node manage $node --wait; done

. Check which baremetal ports are associated with which baremetal node:

I $ openstack baremetal port list --node <node-uuid>

. Set the physical-network parameter for the ports. In the example below, three subnets are
defined in the configuration: leaf0, leaf1, and leaf2. The local_subnet is leaf0. Because the
physical network for the local_subnet is always ctlplane, the baremetal port connected to
leaf0 uses ctlplane. The remaining ports use the other leaf names:

15

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

$ openstack baremetal port set --physical-network ctlplane <port-uuid>
$ openstack baremetal port set --physical-network leaf1 <port-uuid>
$ openstack baremetal port set --physical-network leaf2 <port-uuid>

6. Introspect the nodes before you deploy the overcloud. Include the --all-manageable and --
provide options to set the nodes as available for deployment:

I $ openstack overcloud node introspect --all-manageable --provide

2.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING
NETWORK

When increasing network capacity which can include adding new physical sites, you might need to add a
new leaf and a corresponding subnet to your Red Hat OpenStack Platform spine-leaf provisioning
network. When provisioning a leaf on the overcloud, the corresponding undercloud leaf is used.

Prerequisites

® Your RHOSP deployment uses a spine-leaf network topology.

Procedure

1. Login to the undercloud host as the stack user.

2. Source the undercloud credentials file:

I $ source ~/stackrc

3. In the /home/stack/undercloud.conf file, do the following:

a. Locate the subnets parameter, and add a new subnet for the leaf that you are adding.
A subnet represents an L2 segment in the routed spine and leaf:

Example

In this example, a new subnet (leaf3) is added for the new leaf (leaf3):
I subnets = leaf0,leaf1,leaf2,leaf3

b. Create a section for the subnet that you added.

Example

In this example, the section [leaf3] is added for the new subnet (leaf3):

[leaf0]

cidr = 192.168.10.0/24

dhcp_start = 192.168.10.10

dhecp_end = 192.168.10.90

inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1

masquerade = False

16

CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

[leafi]

cidr = 192.168.11.0/24

dhep_start = 192.168.11.10

dhecp_end = 192.168.11.90

inspection_iprange = 192.168.11.100,192.168.11.190
gateway = 192.168.11.1

masquerade = False

[leaf2]

cidr = 192.168.12.0/24

dhcp_start = 192.168.12.10

dhcp_end = 192.168.12.90

inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1

masquerade = False

[leaf3]

cidr = 192.168.13.0/24

dhcp_start = 192.168.13.10

dhcp_end = 192.168.13.90

inspection_iprange = 192.168.13.100,192.168.13.190
gateway = 192.168.13.1

masquerade = False

4. Save the undercloud.conf file.

5. Reinstall your undercloud:

I $ openstack undercloud install

Additional resources

® Adding a new leaf to a spine-leaf deployment

17

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/spine_leaf_networking/index#proc_add-new-leaf_spine-leaf

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK
METHODS

This section contains information about other methods that you can use to configure the provisioning
network to accommodate routed spine-leaf with composable networks.

3.1. VLAN PROVISIONING NETWORK

In this example, the director deploys new overcloud nodes through the provisioning network and uses a
VLAN tunnel across the L3 topology. For more information, see Figure 3.1, "VLAN provisioning network
topology"”. If you use a VLAN provisioning network, the director DHCP servers can send DHCPOFFER
broadcasts to any leaf. To establish this tunnel, trunk a VLAN between the Top-of-Rack (ToR) leaf
switches. In the following diagram, the StorageLeaf networks are presented to the Ceph storage and
Compute nodes; the NetworkLeaf represents an example of any network that you want to compose.

Figure 3.1. VLAN provisioning network topology

Spine switch Spine switch Spine switch

[
ToR leaf switch \ LeafO
Undercloud r— Compute O Leaf1 — — Compute O Leaf 2 —
Composable
roles \
Controller O | Compute 1Leaf1 — — Compute 1Leaf 2 —
Controller 1 — Compute 2 Leaf1 — — Compute 2 Leaf 2 —
Controller 2 — Ceph Storage O Leaf1 — — Ceph Storage O Leaf 2 —
Compute O Leaf O — Ceph Storage 1Leaf1 — — Ceph Storage 1Leaf 2 —
Composable e e ettt
networks \’\ i
i O StorageLeafO '— StorageLeaf1 '— StorageLeaf 2 ;
! |
H NetworkLeaf O NetworkLeaf 1 — NetworkLeaf 2 —
i

= Provisioning VLAN

3.2. VXLAN PROVISIONING NETWORK

In this example, the director deploys new overcloud nodes through the provisioning network and uses a
VXLAN tunnel to span across the layer 3 topology. For more information, see Figure 3.2, "VXLAN
provisioning network topology". If you use a VXLAN provisioning network, the director DHCP servers can
send DHCPOFFER broadcasts to any leaf. To establish this tunnel, configure VXLAN endpoints on the
Top-of-Rack (ToR) leaf switches.

18

CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK METHODS

Figure 3.2. VXLAN provisioning network topology

Spine switch Spine switch Spine switch

ToR leaf switch \

Composable Undercloud r— Compute O Leaf1 — — Compute O Leaf 2 —
roles \
Controller O | Compute1Leaf1 — — Compute 1Leaf 2 —
Controller 1 — Compute 2 Leaf1 — — Compute 2 Leaf 2 —
Controller 2 — Ceph Storage O Leaf1 — — Ceph Storage O Leaf 2 —
Compute O Leaf O — Ceph Storage 1Leaf1 — — Ceph Storage 1Leaf2 —
Composable
networks \Q"'""""'"""""""" e
| StorageLeaf0 ‘— StorageLeaf1 '— Storageleaf2 ;
E NetworkLeaf O NetworkLeaf 1 — NetworkLeaf 2 —

== Provisioning VXLAN

19

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

CHAPTER 4. CONFIGURING THE OVERCLOUD

After you configure the undercloud, you can configure the remaining overcloud leaf networks with a
series of configuration files. After you configure the remaining overcloud leaf networks and deploy the
overcloud, the resulting deployment has multiple sets of networks with routing available.

4.1. CREATING ANETWORK DATAFILE

To define the leaf networks, create a network data file that contains a YAML formatted list of each
composable network and its attributes. Use the subnets parameter to define the additional Leaf
subnets with a base network.

Procedure

1. Create a new network_data_spine_leaf.yaml file in the home directory of the stack user. Use
the default network_data_subnets_routed.yaml file as a basis:

$ cp /usr/share/openstack-tripleo-heat-templates/network_data_subnets_routed.yaml
/home/stack/network_data_spine_leaf.yaml

2. In the network_data_spine_leaf.yaml file, edit the YAML list to define each base network and
respective leaf subnets as a composable network item. Use the following example syntax to
define a base leaf and two leaf subnets:

- name: <base name>
name_lower: <lowercase name>
vip: <true/false>
vlan: '<vlan_id>'
ip_subnet: '<network_address>/<prefix>'
allocation_pools: [{'start": '<start_address>', 'end": '<end_address>'}]
gateway_ip: '<router_ip_address>'
subnets:
<leaf _subnet_names>:
vlan: '<vlan_id>'
ip_subnet: '<network_address>/<prefix>'
allocation_pools: [{'start": '<start_address>', 'end": '<end_address>'}]
gateway_ip: '<router_ip_address>'
<leaf _subnet_names>:
vlan: '<vlan_id>'
ip_subnet: '<network_address>/<prefix>'
allocation_pools: [{'start": '<start_address>', 'end": '<end_address>'}]
gateway_ip: '<router_ip_address>'

The following example demonstrates how to define the Internal APl network and its leaf
networks:

- name: InternalApi
name_lower: internal_api
vip: true
vlan: 10
ip_subnet: '172.18.0.0/24"
allocation_pools: [{'start’: '172.18.0.4", 'end": '172.18.0.250']
gateway_ip: '172.18.0.1'
subnets:

20

CHAPTER 4. CONFIGURING THE OVERCLOUD

internal_api_leaf1:
vlan: 11
ip_subnet: '172.18.1.0/24"
allocation_pools: [{'start: '172.18.1.4, 'end": '172.18.1.250'}]
gateway _ip:'172.18.1.1"
internal_api_leaf2:
vlan: 12
ip_subnet: '172.18.2.0/24"
allocation_pools: [{'start: '172.18.2.4', 'end": '172.18.2.250'}]
gateway _ip:'172.18.2.1'

NOTE
You do not define the Control Plane networks in the network data file because the

undercloud has already created these networks. However, you must set the parameters
manually so that the overcloud can configure the NICs accordingly.

NOTE

Define vip: true for the networks that contain the Controller-based services. In this
example, InternalApiLeaf0 contains these services.

4.2. CREATING AROLES DATAFILE

To define each composable role for each leaf and attach the composable networks to each respective
role, complete the following steps.

Procedure

1. Create a custom roles directory in the home directory of the stack user:

I $ mkdir ~/roles

2. Copy the default Controller, Compute, and Ceph Storage roles from the director core template
collection to the roles directory. Rename the files for Compute and Ceph Storage to suit Leaf O:

$ cp /usr/share/openstack-tripleo-heat-templates/roles/Controller.yaml ~/roles/Controller.yaml
$ cp /usr/share/openstack-tripleo-heat-templates/roles/Compute.yaml ~/roles/Compute0.yaml
$ cp /usr/share/openstack-tripleo-heat-templates/roles/CephStorage.yaml
~/roles/CephStorage0.yaml

3. Copy the Leaf O Compute and Ceph Storage files as a basis for your Leaf 1and Leaf 2 files:

$ cp ~/roles/Compute0.yaml ~/roles/Compute1.yaml
$ cp ~/roles/Compute0.yaml ~/roles/Compute2.yaml
$ cp ~/roles/CephStorage0.yaml ~/roles/CephStorage.yaml
$ cp ~/roles/CephStorage0.yaml ~/roles/CephStorage2.yami

4. Edit the name, HosthameFormatDefault, and deprecated_nic_config_name parametersin
the Leaf O, Leaf 1, and Leaf 2 files so that they align with the respective Leaf parameters. For
example, the parameters in the Leaf O Compute file have the following values:

21

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

- name: ComputeLeaf0
HostnameFormatDefault: 'Yostackname%-compute-leaf0-%index%'
deprecated_nic_config_name: 'computeleaf0.yam!'

The Leaf O Ceph Storage parameters have the following values:

- name: CephStoragelLeaf0
HostnameFormatDefault: 'Yostackname%-cephstorage-leaf0-%index%'
deprecated_nic_config_name: 'ceph-strorageleaf0.yaml'

5. Edit the network parameter in the Leaf 1and Leaf 2 files so that they align with the respective
Leaf network parameters. For example, the parameters in the Leaf 1 Compute file have the
following values:

- name: ComputeLeafi
networks:

Internal Api:

subnet: internal_api_leaf1
Tenant:

subnet: tenant_leaf1
Storage:

subnet: storage_leaf1

The Leaf 1 Ceph Storage parameters have the following values:

- name: CephStorageleaf1
networks:
Storage:
subnet: storage_leaf1
StorageMgmt:
subnet: storage_mgmt_leaf1

NOTE
This applies only to Leaf 1and Leaf 2. The network parameter for Leaf O retains
the base subnet values, which are the lowercase names of each subnet combined

with a _subnet suffix. For example, the Internal APl for Leaf O is
internal_api_subnet.

6. When your role configuration is complete, run the following command to generate the full roles
data file:

$ openstack overcloud roles generate --roles-path ~/roles -o roles_data_spine_leaf.yaml
Controller Compute Compute1 Compute2 CephStorage CephStorage1 CephStorage2

This creates a full roles_data_spine_leaf.yaml file that includes all of the custom roles for each
respective leaf network.

Each role has its own NIC configuration. Before you configure the spine-leaf configuration, you must
create a base set of NIC templates to suit your current NIC configuration.

4.3. CREATING A CUSTOM NIC CONFIGURATION

22

CHAPTER 4. CONFIGURING THE OVERCLOUD

Each role requires a unique NIC configuration. Complete the following steps to create a copy of the base
set of NIC templates and map the new templates to the respective NIC configuration resources.

Procedure

1. Change to the core heat template directory:

I $ cd /usr/share/openstack-tripleo-heat-templates

2. Render the Jinja2 templates with the tools/process-templates.py script, your custom
network_data file, and custom roles_data file:

$ tools/process-templates.py \
-n /home/stack/network_data_spine_leaf.yaml \
-r /home/stack/roles_data_spine_leaf.yaml\
-0 /home/stack/openstack-tripleo-heat-templates-spine-leaf

3. Change to the home directory:

I $ cd /home/stack

4. Copy the content from one of the default NIC templates to use as a basis for your spine-leaf
templates. For example, copy the single-nic-vlans NIC template:

$ cp -r openstack-tripleo-heat-templates-spine-leaf/network/config/single-nic-vlans/*
/home/stack/templates/spine-leaf-nics/.

5. Edit each NIC configuration in /home/stack/templates/spine-leaf-nics/ and change the
location of the configuration script to an absolute location. Scroll to the network configuration
section, which resembles the following snippet:

resources:
OsNetConfigimpl:
type: OS::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template:
get_file: ../../scripts/run-os-net-config.sh
params:
$network_config:
network_config:

Change the location of the script to the absolute path:

resources:
OsNetConfigimpl:
type: OS::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template:

23

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

get_file: /Jusr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-
config.sh
params:
$network_config:
network_config:

Make this change in each file for each Leaf and save the changes.

NOTE

For further NIC changes, see Custom network interface templates in the
Advanced Overcloud Customization guide.

6. Create afile called spine-leaf-nics.yaml and edit the file.

7. Create a resource_registry section in the file and add a set of ::Net::SoftwareConfig
resources that map to the respective NIC templates:

resource_registry:

OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/controller.yam|

OS::TripleO::ComputeLeaf0::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/computeleaf0.yaml

OS::TripleO::ComputeLeafi::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/computeleaf1.yaml

OS::TripleO::ComputeLeaf2::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/computeleaf2.yaml

OS::TripleO::CephStorageleaf0::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/ceph-storageleaf0.yaml

OS::TripleO::CephStorageleafi::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/ceph-storageleaf1.yaml

OS::TripleO::CephStorageleaf2::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/ceph-storageleaf2.yaml

These resources mappings override the default resource mappings during deployment.
8. Save the spine-leaf-nics.yaml file.

9. Remove the rendered template directory:
I $ rm -rf openstack-tripleo-heat-templates-spine-leaf

As a result of this procedure, you now have a set of NIC templates and an environment file that
maps the required ::Net::SoftwareConfig resources to them.

10. When you eventually run the openstack overcloud deploy command, ensure that you include
the environment files in the following order:

a. /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yami,
which enables network isolation. Note that the director renders this file from the network-
isolation.j2.yaml Jinja2 template.

b. /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml,

which is the default network environment file, including default NIC resource mappings.
Note that the director renders this file from the network-environment.j2.yaml Jinja2

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_custom-network-interface-templates

CHAPTER 4. CONFIGURING THE OVERCLOUD

template.

c. /home/stack/templates/spine-leaf-nics.yaml, which contains your custom NIC resource
mappings and overrides the default NIC resource mappings.
The following command snippet demonstrates the ordering:

$ openstack overcloud deploy --templates

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
environment.yaml \

-e /home/stack/templates/spine-leaf-nics.yaml \

1. Complete the procedures in the following sections to add details to your network environment
file, and define certain aspects of the spine leaf architecture. After you complete this
configuration, include this file in the openstack overcloud deploy command.

Additional resources

® Custom network interface templates in the Advanced Overcloud Customization guide

4.4. SETTING CONTROL PLANE PARAMETERS

You usually define networking details for isolated spine-leaf networks using a network_data file. The
exception is the control plane network, which the undercloud creates. However, the overcloud requires
access to the control plane for each leaf. To enable this access, you must define additional parameters in
your deployment.

In this example, define the IP, subnet, and default route for the respective Control Plane network on
Leaf O.

Procedure
1. Create a file called spine-leaf-ctlplane.yaml and edit the file.

2. Create a parameter_defaults section in the file and add the control plane subnet mapping for
each spine-leaf network:

parameter_defaults:

ControllerControlPlaneSubnet: leaf0
Compute0ControlPlaneSubnet: leaf0
Compute1ControlPlaneSubnet: leaf1
Compute2ControlPlaneSubnet: leaf2
CephStorage0ControlPlaneSubnet: leaf0
CephStorage1ControlPlaneSubnet: leaft
CephStorage2ControlPlaneSubnet: leaf2

3. Save the spine-leaf-ctlplane.yaml file.

4.5.SETTING THE SUBNET FOR VIRTUAL IP ADDRESSES

The Controller role typically hosts virtual IP (VIP) addresses for each network. By default, the overcloud

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_custom-network-interface-templates

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

takes the VIPs from the base subnet of each network except for the control plane. The control plane
uses ctlplane-subnet, which is the default subnet name created during a standard undercloud
installation.

In this spine leaf scenario, the default base provisioning network is leaf0 instead of ctlplane-subnet.
This means that you must add overriding values to the VipSubnetMap parameter to change the subnet
that the control plane VIP uses.

Additionally, if the VIPs for each network do not use the base subnet of one or more networks, you must
add additional overrides to the VipSubnetMap parameter to ensure that the director creates VIPs on
the subnet associated with the L2 network segment that connects the Controller nodes.

Procedure:

1. Create a file called spine-leaf-vips.yaml and edit the file.

2. Create a parameter_defaults section in the file and add the VipSubnetMap parameter based
on your requirements:

® |f you use leaf0 for the provisioning / control plane network, set the ctlplane VIP remapping
to leafO:

parameter_defaults:
VipSubnetMap:
ctlplane: leaf0

® |f you use a different Leaf for multiple VIPs, set the VIP remapping to suit these
requirements. For example, use the following snippet to configure the VipSubnetMap
parameter to use leaf1 for all VIPs:

parameter_defaults:
VipSubnetMap:
ctlplane: leaf1
redis: internal_api_leaf1
InternalApi: internal_api_leaft
Storage: storage_leaf1
StorageMgmt: storage_mgmt_leaf1

3. Save the spine-leaf-vips.yaml file.

4.6. MAPPING SEPARATE NETWORKS

By default, OpenStack Platform uses Open Virtual Network (OVN), which requires that all Controller

and Compute nodes connect to a single L2 network for external network access. This means that both
Controller and Compute network configurations use a br-ex bridge, which director maps to the
datacentre network in the overcloud by default. This mapping is usually either for a flat network mapping
or a VLAN network mapping. In a spine leaf architecture, you can change these mappings so that each
Leaf routes traffic through the specific bridge or VLAN on that Leaf, which is often the case with edge
computing scenarios.

Procedure

1. Create a file called spine-leaf-separate.yaml and edit the file.

26

2.

3.

CHAPTER 4. CONFIGURING THE OVERCLOUD

Create a parameter_defaults section in the spine-leaf-separate.yaml file and include the
external network mapping for each spine-leaf network:

e For flat network mappings, list each Leaf in the NeutronFlatNetworks parameter and set
the NeutronBridgeMappings parameter for each Leaf:

parameter_defaults:
NeutronFlatNetworks: leaf0,leaf1,leaf2
ControllerOParameters:
NeutronBridgeMappings: "leaf0:br-ex"
ComputeOParameters:
NeutronBridgeMappings: "leaf0:br-ex"
Compute1Parameters:
NeutronBridgeMappings: "leaf1:br-ex"
Compute2Parameters:
NeutronBridgeMappings: "leaf2:br-ex"

® For VLAN network mappings, additionally set the NeutronNetworkVLANRanges to map
VLANSs for all three Leaf networks:

NeutronNetworkType: 'geneve,vlan’
NeutronNetworkVLANRanges: 'leaf0:1:1000,leaf1:1:1000,leaf2:1:1000'

Save the spine-leaf-separate.yaml file.

4.7. DEPLOYING A SPINE-LEAF ENABLED OVERCLOUD

When you have completed your spine-leaf overcloud configuration, complete the following steps to
review each file and then run the deployment command:

Procedure

1.

Review the /home/stack/template/network_data_spine_leaf.yaml file and ensure that it
contains each network and subnet for each leaf.

NOTE

There is currently no automatic validation for the network subnet and
allocation_pools values. Ensure that you define these values consistently and
that there is no conflict with existing networks.

Review the /home/stack/templates/roles_data_spine_leaf.yaml values and ensure that you
define a role for each leaf.

Review the NIC templates in the ~/templates/spine-leaf-nics/ directory and ensure that you
define the interfaces for each role on each leaf correctly.

Review the custom spine-leaf-nics.yaml environment file and ensure that it contains a
resource_registry section that references the custom NIC templates for each role.

Review the /home/stack/templates/nodes_data.yaml file and ensure that all roles have an

assigned flavor and a node count. Also check that you have correctly tagged all nodes for each
leaf.

27

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

6. Run the openstack overcloud deploy command to apply the spine leaf configuration. For
example:

$ openstack overcloud deploy --templates \
-n /home/stack/templates/network_data_spine_leaf.yaml\
-r /home/stack/templates/roles_data_spine_leaf.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /home/stack/templates/spine-leaf-nics.yaml \
-e /home/stack/templates/spine-leaf-ctiplane.yaml \
-e /home/stack/templates/spine-leaf-vips.yaml \
-e /home/stack/templates/spine-leaf-separate.yaml \
-e /home/stack/templates/nodes_data.yaml \
-e [OTHER ENVIRONMENT FILES]

The network-isolation.yaml is the rendered name of the Jinja2 file in the same location
(network-isolation.j2.yaml). Include this file in the deployment command to ensure that
the director isolates each networks to the correct leaf. This ensures that the networks are
created dynamically during the overcloud creation process.

Include the network-environment.yaml file after the network-isolation.yaml. The
network-environment.yaml file provides the default network configuration for composable
network parameters.

Include the spine-leaf-nics.yaml file after the network-environment.yaml. The spine-
leaf-nics.yaml file overrides the default NIC template mappings from the network-
environment.yaml file.

If you created any other spine leaf network environment files, include these environment
files after the spine-leaf-nics.yaml file.

Add any additional environment files. For example, an environment file with your container
image locations or Ceph cluster configuration.

7. Wait until the spine-leaf enabled overcloud deploys.

4.8. ADDING A NEW LEAF TO A SPINE-LEAF DEPLOYMENT

When increasing network capacity or adding a new physical site, you might need to a new leaf to your
Red Hat OpenStack Platform (RHOSP) spine-leaf network.

Prerequisites

Procedure

28

® Your RHOSP deployment uses a spine-leaf network topology.

1. Login to the undercloud host as the stack user.

2. Source the undercloud credentials file:

I $ source ~/stackrc

CHAPTER 4. CONFIGURING THE OVERCLOUD

3. In the /usr/share/openstack-tripleo-heat-templates/network_data_spine_leaf.yaml file,
under the appropriate base network, add a leaf subnet as a composable network item for the
new leaf that you are adding.

Example

In this example, a subnet entry for the new leaf (leaf3) has been added:

- name: InternalApi
name_lower: internal_api
vip: true
vlan: 10
ip_subnet: '172.18.0.0/24"
allocation_pools: [{'start’: '172.18.0.4", 'end": '172.18.0.250']
gateway_ip: '172.18.0.1'
subnets:
internal_api_leaf1:
vlan: 11
ip_subnet: '172.18.1.0/24'
allocation_pools: [{'start: '172.18.1.4, 'end": '172.18.1.250'}]
gateway _ip:'172.18.1.1"
internal_api_leaf2:
vlan: 12
ip_subnet: '172.18.2.0/24'
allocation_pools: [{'start’: '172.18.2.4', 'end": '172.18.2.250'}]
gateway _ip:'172.18.2.1'
internal_api_leaf3:
vlan: 13
ip_subnet: '172.18.3.0/24"
allocation_pools: [{'start’: '172.18.3.4', 'end": '172.18.3.250']
gateway_ip: '172.18.3.1"

4. Create aroles data file for the new leaf that you are adding.
a. Copy aleaf Compute and a leaf Ceph Storage file for the new leaf that you are adding.

Example

In this example, Compute1.yaml and CephStorage1.yaml are copied for the new leaf,
Compute3.yaml and CephStorage3.yaml, repectively:

$ cp ~/roles/Compute1.yaml ~/roles/Compute3.yaml
$ cp ~/roles/CephStoragei.yaml ~/roles/CephStorage3.yaml

b. Edit the name, HosthameFormatDefault, and deprecated_nic_config_name parameters
in the new leaf files so that they align with the respective Leaf parameters.

Example

For example, the parameters in the Leaf 1 Compute file have the following values:

- name: ComputeLeafi
HostnameFormatDefault: 'Y%estackname%-compute-leaf1-%index%'
deprecated_nic_config_name: 'computeleaf1.yaml'

Example

29

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

The Leaf 1 Ceph Storage parameters have the following values:

- name: CephStorageleaf1
HostnameFormatDefault: 'Yostackname%-cephstorage-leaf1-%index%'
deprecated_nic_config_name: 'ceph-strorageleafi.yaml'

c. Edit the network parameter in the new leaf files so that they align with the respective Leaf
network parameters.

Example

For example, the parameters in the Leaf 1 Compute file have the following values:

- name: ComputeLeafi
networks:

Internal Api:

subnet: internal_api_leaf1
Tenant:

subnet: tenant_leaf1
Storage:

subnet: storage_leaf1

Example
The Leaf 1 Ceph Storage parameters have the following values:
- name: CephStorageleaft
networks:
Storage:
subnet: storage_leaf1

StorageMgmt:
subnet: storage_mgmt_leaf1

d. When your role configuration is complete, run the following command to generate the full
roles data file. Include all of the leafs in your network and the new leaf that you are adding.

Example

In this example, leaf3 is added to leafO, leafl, and leaf2:

$ openstack overcloud roles generate --roles-path ~/roles -o roles_data_spine_leaf.yaml
Controller Compute Compute1 Compute2 Compute3 CephStorage CephStorage1
CephStorage2 CephStorage3

This creates a full roles_data_spine_leaf.yaml file that includes all of the custom roles for
each respective leaf network.

5. Create a custom NIC configuration for the leaf that you are adding.

a. Copy aleaf Compute and a leaf Ceph Storage NIC configuration file for the new leaf that
you are adding.

Example

In this example, computeleaf1.yaml and ceph-storageleafi.yaml are copied for the new
leaf, computeleaf3.yaml and ceph-storageleaf3.yaml, repectively:

30

CHAPTER 4. CONFIGURING THE OVERCLOUD

$ cp ~/templates/spine-leaf-nics/computeleaf1.yaml ~/templates/spine-leaf-
nics/computeleaf3.yaml

$ cp ~/templates/spine-leaf-nics/ceph-storageleafi.yaml ~/templates/spine-leaf-
nics/ceph-storageleaf3.yaml

b. In/usr/share/openstack-tripleo-heat-templates/network_data_spine_leaf.yaml, under
the resource_registry section in the file, add a set of ::Net::SoftwareConfig resources
that map to the respective NIC templates:

Example

In this example, the new leaf NIC configuration files (computeleaf3.yaml and ceph-
storageleaf3.yaml) have been added:

resource_registry:

OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/controller.yaml

OS::TripleO::ComputeLeaf0::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/computeleaf0.yaml

OS::TripleO::ComputeLeafi::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/computeleaf1.yaml

OS::TripleO::ComputeLeaf2::Net::SoftwareConfig: /home/stack/templates/spine-leaf-
nics/computeleaf2.yaml

OS::TripleO::ComputeLeaf3::Net::SoftwareConfig: /lhome/stack/templates/spine-leaf-
nics/computeleaf3.yaml

OS::TripleO::CephStorageleaf0::Net::SoftwareConfig: /home/stack/templates/spine-
leaf-nics/ceph-storageleaf0.yaml

OS::TripleO::CephStorageleafi::Net::SoftwareConfig: /home/stack/templates/spine-
leaf-nics/ceph-storageleafi.yaml

OS::TripleO::CephStorageleaf2::Net::SoftwareConfig: /home/stack/templates/spine-
leaf-nics/ceph-storageleaf2.yaml

OS::TripleO::CephStorageleaf3::Net::SoftwareConfig: /home/stack/templates/spine-
leaf-nics/ceph-storageleaf3.yaml

These resources mappings override the default resource mappings during deployment.

As a result of this procedure, you now have a set of NIC templates and an environment file
that maps the required ::Net::SoftwareConfig resources to them. When you eventually run
the openstack overcloud deploy command, ensure that you include the environment files
in the following order:

c. /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yamli,
which enables network isolation.
Note that the director renders this file from the network-isolation.j2.yaml Jinja2 template.

d. /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml,
which is the default network environment file, including default NIC resource mappings.
Note that the director renders this file from the network-environment.j2.yaml Jinja2
template.

e. /home/stack/templates/spine-leaf-nics.yaml, which contains your custom NIC resource
mappings and overrides the default NIC resource mappings.
The following command snippet demonstrates the ordering:

I $ openstack overcloud deploy --templates

31

Red Hat OpenStack Platform 16.2 Spine Leaf Networking

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
environment.yaml \

-e /home/stack/templates/spine-leaf-nics.yaml \

6. Update the control plane parameters.
In ~/templates/spine-leaf-ctlplane.yaml, under the parameter_defaults section, add the
control plane subnet mapping for the new leaf network:

Example

In this example, the new leaf (leaf3) entries are added:

parameter_defaults:

ControllerControlPlaneSubnet: leaf0
Compute0ControlPlaneSubnet: leaf0
Compute1ControlPlaneSubnet: leaf1
Compute2ControlPlaneSubnet: leaf2
Compute3ControlPlaneSubnet: leaf3
CephStorage0ControlPlaneSubnet: leaf0
CephStorage1ControlPlaneSubnet: leafi
CephStorage2ControlPlaneSubnet: leaf2
CephStorage3ControlPlaneSubnet: leaf3

7. Map the new leaf network.
In ~/templates/spine-leaf-separate.yaml, under the parameter_defaults section, include the
external network mapping for the new leaf network.

e For flat network mappings, list the new leaf (leaf3) in the NeutronFlatNetworks parameter
and set the NeutronBridgeMappings parameter for the new leaf:

parameter_defaults:
NeutronFlatNetworks: leaf0,leaf1,leaf2, leaf3
ControllerOParameters:
NeutronBridgeMappings: "leaf0:br-ex"
ComputeOParameters:
NeutronBridgeMappings: "leaf0:br-ex"
Compute1Parameters:
NeutronBridgeMappings: "leaf1:br-ex"
Compute2Parameters:
NeutronBridgeMappings: "leaf2:br-ex"
Compute3Parameters:
NeutronBridgeMappings: "leaf3:br-ex"

® For VLAN network mappings, additionally set the NeutronNetworkVLANRanges to map
VLANSs for the new leaf (leaf3) network:

NeutronNetworkType: 'geneve,vlan’
NeutronNetworkVLANRanges: 'leaf0:1:1000,leaf1:1:1000,leaf2:1:1000,leaf3:1:1000'

8. Redeploy your spine-leaf enabled overcloud, by following the steps in Section 4.7, “Deploying a
spine-leaf enabled overcloud”.

32

CHAPTER 4. CONFIGURING THE OVERCLOUD

® Adding a new leaf to a spine-leaf provisioning network

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/spine_leaf_networking/index#proc_add-new-leaf-provision-network_spine-leaf

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION
	1.1. SPINE-LEAF NETWORKING
	1.2. SPINE-LEAF NETWORK TOPOLOGY
	1.3. SPINE-LEAF REQUIREMENTS
	1.4. SPINE-LEAF LIMITATIONS

	CHAPTER 2. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
	2.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
	2.2. CONFIGURING A DHCP RELAY
	2.3. CREATING FLAVORS AND TAGGING NODES FOR LEAF NETWORKS
	2.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
	2.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

	CHAPTER 3. ALTERNATIVE PROVISIONING NETWORK METHODS
	3.1. VLAN PROVISIONING NETWORK
	3.2. VXLAN PROVISIONING NETWORK

	CHAPTER 4. CONFIGURING THE OVERCLOUD
	4.1. CREATING A NETWORK DATA FILE
	4.2. CREATING A ROLES DATA FILE
	4.3. CREATING A CUSTOM NIC CONFIGURATION
	4.4. SETTING CONTROL PLANE PARAMETERS
	4.5. SETTING THE SUBNET FOR VIRTUAL IP ADDRESSES
	4.6. MAPPING SEPARATE NETWORKS
	4.7. DEPLOYING A SPINE-LEAF ENABLED OVERCLOUD
	4.8. ADDING A NEW LEAF TO A SPINE-LEAF DEPLOYMENT

