& RedHat

Red Hat OpenStack Platform 15

Quick Start Guide

Creating an all-in-one OpenStack cloud for test and proof-of-concept environments

Last Updated: 2020-07-10

Red Hat OpenStack Platform 15 Quick Start Guide

Creating an all-in-one OpenStack cloud for test and proof-of-concept environments

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains information about installing, configuring, and deploying Red Hat OpenStack
Platform 15 in a test environment with the Red Hat OpenStack Platform standalone environment.
Use this guide to deploy a simple single-node OpenStack environment.

Table of Contents

Table of Contents

o L 3
CHAPTER 1. ALL-IN-ONE RED HAT OPENSTACK PLATFORM INSTALLATION oo, 4

11. PREREQUISITES 4
CHAPTER 2. OVERVIEW OF THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT 5
CHAPTER 3. INSTALLING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT 6
CHAPTER 4. CONFIGURING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT 8

4.1. GENERATING YAML FILES FOR THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT 8

CHAPTER 5. DEPLOYING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT 10

CHAPTER 6. CREATING ANSIBLE PLAYBOOKS WITH THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM

ENVIRONMENT Lottt ettt ettt et e e ettt e e e eanneeeeeaannneeeseennneeeseannnneess n
CHAPTER 7. WORKING WITHHEAT TEMPLATES ...ttt et ee et eneeraneennneenneenns 12
7.1. CORE HEAT TEMPLATES 12
CHAPTER 8. WORKING WITH CUSTOM ROLES AND SERVICESiitiiiiiiiiiiiiieennnennnnenns 14
8.1. ENABLING AND DISABLING SERVICES IN THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM
ENVIRONMENT 15
Procedure 15
CHAPTER O. EXAMPLLES ..ttt ettt et ettt e eaeteeeaaneeeesaennneeeesennnneesennns 16
9.1. EXAMPLE 1: LAUNCHING A COMPUTE NODE WITH ONE NIC ON THE TENANT AND PROVIDER
NETWORKS 16
Prerequisites 16
Procedure 16
Network Architecture 18
9.2. EXAMPLE 2: LAUNCHING A COMPUTE NODE WITH ONE NIC ON THE PROVIDER NETWORK 18
Prerequisites 18
Procedure 18
Network Architecture 20
9.3. EXAMPLE 3: LAUNCHING A COMPUTE NODE WITH TWO NICS ON THE TENANT AND PROVIDER
NETWORKS 20
Prerequisites 20
Procedure 21
Network Architecture 22

Red Hat OpenStack Platform 15 Quick Start Guide

PREFACE

PREFACE

This feature is available in this release as a Technology Preview, and therefore is not fully supported by
Red Hat. It should only be used for testing, and should not be deployed in a production environment. For
more information about Technology Preview features, see Scope of Coverage Details.

https://access.redhat.com/support/offerings/production/scope_moredetail

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 1. ALL-IN-ONE RED HAT OPENSTACK PLATFORM
INSTALLATION

The all-in-one installation method uses TripleO to deploy Red Hat OpenStack Platform and related
services with a simple, single-node environment. Use this installation to enable proof-of-concept,
development, and test deployments on a single node with limited or no follow-up operations.

1.1. PREREQUISITES

Your system must have two network interfaces and a base operating system installed.

Example network configuration
e |nterface eth0 assigned to the default network 192.168.122.0/24

e |nterface eth1 assigned to the management network 192.168.25.0/24

CHAPTER 2. OVERVIEW OF THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT

CHAPTER 2. OVERVIEW OF THE ALL-IN-ONE RED HAT
OPENSTACK PLATFORM ENVIRONMENT

This section contains information about installing, configuring, and deploying a simple, single-node Red
Hat OpenStack Platform environment. In this scenario, there is no pre-existing undercloud dependency.
Instead, the installer runs an inline heat-all instance to bootstrap the deployment process and convert
the selected heat templates into Ansible playbooks that you can execute on a local machine.

Use the all-in-one installation for basic testing and development. The all-in-one installation is a good
starting point and test environment for Red Hat OpenStack Platform, but if you want to perform
complex operations, you must deploy a production-level scaled cloud.

Workflow

To install, configure, and deploy a simple, single-node Red Hat OpenStack Platform environment,
complete the tasks in the following basic workflow:

1. Prepare your environment.
2. Install packages for the all-in-one environment.
3. Configure the all-in-one environment.

4. Deploy the all-in-one environment.

Benefits of the all-in-one installation

® Composable services.
® Pre-defined roles.
® Condensed single-node environment.

® Playbooks that you can use to run the small-footprint installer in a container and generate
Ansible playbooks.
Configuration
If you want to experiment with configuring roles and services, see Chapter 8, Working with custom roles
and services and Section 7.1, “Core heat templates”.
Composable roles

You can create custom composable roles and deploy specific services for each role.

Ansible

This installation applies Ansible playbooks automatically with the deployment command. You can also
direct the deployment command to output Ansible playbooks that you can use on other instances. For
example, you can complete testing in the all-in-one installation, and then apply the verified Ansible
playbook to other instances.

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 3. INSTALLING THE ALL-IN-ONE RED HAT
OPENSTACK PLATFORM ENVIRONMENT

Before you can begin configuring, deploying, and testing your all-in-one environment, you must
configure a non-root user and install the necessary packages and dependencies:

1. Create a non-root user on the all-in-one host:

I [root@all-in-onel# useradd stack

2. Set the password for the stack user:

I [root@all-in-one]# passwd stack

3. Disable password requirements when using sudo as the stack user:

[root@all-in-onel# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@all-in-onel# chmod 0440 /etc/sudoers.d/stack

4. Login as the non-root user on the all-in-one host:
I $ ssh stack@<all-in-one>

5. Register the machine with Red Hat Subscription Manager. Enter your Red Hat subscription
credentials at the prompt:

I [stack@all-in-one]$ sudo subscription-manager register

6. Attach your Red Hat subscription to the entitlement server:

I [stack@all-in-one]$ sudo subscription-manager attach --auto

NOTE

The --auto option might not subscribe you to the correct subscription pool.
Ensure that you subscribe to the correct pool, otherwise you might not be able to
enable all of the repositories necessary for this installation. Use the
subscription-manager list --all --available command to identify the correct
pool ID.

7. Run the following commands to install dnf-utils, disable all default repositories, and then enable
the necessary repositories:

[stack@all-in-one]$ sudo dnf install -y dnf-utils
[stack@all-in-one]$ sudo subscription-manager repos --disable=*
[stack@all-in-one]$ sudo subscription-manager repos \
--enable=rhel-8-for-x86_64-baseos-rpms \
--enable=rhel-8-for-x86_64-appstream-rpms \
--enable=rhel-8-for-x86_64-highavailability-rpms \
--enable=ansible-2.8-for-rhel-8-x86_64-rpms \
--enable=openstack-15-for-rhel-8-x86_64-rpms \
--enable=fast-datapath-for-rhel-8-x86_64-rpms

CHAPTER 3. INSTALLING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT

NOTE

The all-in-one environment is a Technology Preview feature in Red Hat
OpenStack Platform 15.

8. Install the TripleO command line interface (CLI):

I [stack@all-in-one]$ sudo dnf install -y python3-tripleoclient

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 4. CONFIGURING THE ALL-IN-ONE RED HAT
OPENSTACK PLATFORM ENVIRONMENT

You must create the following configuration files manually before you can deploy the all-in-one Red Hat
OpenStack Platform environment:

e S$HOME/containers-prepare-parameters.yaml
e $HOME/standalone_parameters.yaml

If you want to customize the all-in-one environment for development or testing, edit the following
configuration files:

e /usr/share/openstack-tripleo-heat-templates/environments/standalone/standalone-
tripleo.yaml

e /usr/share/openstack-tripleo-heat-templates/roles/Standalone.yaml

4.1. GENERATING YAML FILES FOR THE ALL-IN-ONE RED HAT
OPENSTACK PLATFORM ENVIRONMENT

To generate the containers-prepare-parameters.yaml and standalone_parameters.yaml files,
complete the following steps:

1. Generate the containers-prepare-parameters.yaml file that contains the default
ContainerlmagePrepare parameters:

[stack@all-in-one]$ openstack tripleo container image prepare default --output-env-file
$HOME/containers-prepare-parameters.yami

2. Edit the containers-prepare-parameters.yaml file and include your Red Hat credentials in the
ContainerlmageRegistryCredentials parameter so that the deployment process can
authenticate with registry.redhat.io and pull container images successfully:

ContainerlmageRegistryCredentials:
registry.redhat.io:
<USERNAME>: "<PASSWORD>"

NOTE

To avoid entering your password in plain text, create a Red Hat Service Account.
For more information, see Red Hat Container Registry Authentication :

3. Set the ContainerimageRegistryLogin parameter to true in the containers-prepare-
parameters.yaml:

I ContainerlmageRegistryLogin: true

4. Create the $HOME/standalone_parameters.yaml file and configure basic parameters for your
all-in-one Red Hat OpenStack Platform environment, including network configuration and some
deployment options. In this example, network interface eth1 is the interface on the
management network that you use to deploy OpenStack. eth1 has the IP address 192.168.25.2:

https://access.redhat.com/RegistryAuthentication

CHAPTER 4. CONFIGURING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT

[stack@all-in-one]$ export IP=192.168.25.2
[stack@all-in-one]$ export NETMASK=24
[stack@all-in-one]$ export INTERFACE=eth1

[stack@all-in-one]$ cat <<EOF > $HOME/standalone_parameters.yaml
parameter_defaults:
CloudName: $IP
ControlPlaneStaticRoutes:]
Debug: true
DeploymentUser: $USER
DnsServers:
-1.1.14
-8.8.8.8
DockerlnsecureRegistryAddress:
- $1P:8787
NeutronPublicinterface: SINTERFACE
NeutronDnsDomain: localdomain
NeutronBridgeMappings: datacentre:br-ctlplane
NeutronPhysicalBridge: br-ctlplane
StandaloneEnableRoutedNetworks: false
StandaloneHomeDir: $HOME
StandaloneLocalMtu: 1500
EOF

You must configure the DnsServers parameter with your DNS address. You can find this

address in the /etc/resolv.conf file:

[stack@all-in-one]$ cat /etc/resolv.conf
192.168.122.1

If you have an internal time source, or if your environment blocks access to external time
sources, use the NtpServer parameter to define the time source that you want to use:

I NtpServer: clock.example.com

If you want to use the all-in-one Red Hat OpenStack Platform installation in a virtual
environment, you must define the virtualization type with the StandaloneExtraConfig
parameter:

StandaloneExtraConfig:
NovaComputeLibvirtType: gemu

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 5. DEPLOYING THE ALL-IN-ONE RED HAT
OPENSTACK PLATFORM ENVIRONMENT

Before you deploy your all-in-one Red Hat OpenStack Platform environment, ensure that your system
is up to date:

[stack@all-in-one]$ sudo dnf update
[stack@all-in-one]$ sudo reboot

To deploy your all-in-one environment, complete the following steps:

1. Login to registry.redhat.io with your Red Hat credentials:

I [stack@all-in-one]$ sudo podman login registry.redhat.io

2. Export the environment variables that the deployment command uses. In this example, deploy
the all-in-one environment with the eth1 interface that has the IP address 192.168.25.2 on the
management network:

[stack@all-in-one]$ export IP=192.168.25.2
[stack@all-in-one]$ export NETMASK=24
[stack@all-in-one]$ export INTERFACE=eth1

3. Run the deploy command. Ensure that you include all .yaml files relevant to your environment:

[stack@all-in-one]$ sudo openstack tripleo deploy \

--templates \

--local-ip=$IP/$NETMASK \

-e /usr/share/openstack-tripleo-heat-templates/environments/standalone/standalone-
tripleo.yaml \

-r /usr/share/openstack-tripleo-heat-templates/roles/Standalone.yaml \

-e $HOME/containers-prepare-parameters.yaml \

-e $HOME/standalone_parameters.yaml \

--output-dir SHOME \

--standalone

After a successful deployment, you can use the clouds.yaml configuration file in the
/home/$USER)/.config/openstack directory to query and verify the OpenStack services:

[stack@all-in-one]$ export OS_CLOUD=standalone
[stack@all-in-one]$ openstack endpoint list

To access the dashboard, use the default username admin and the undercloud_admin_password
from the ~/undercloud-passwords.conf file:

I [stack@all-in-one]$ cat undercloud-passwords.conf | grep undercloud_admin_password:

10

6. CREATING ANSIBLE PLAYBOOKS WITH THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT

CHAPTER 6. CREATING ANSIBLE PLAYBOOKS WITH THE
ALL-IN-ONE RED HAT OPENSTACK PLATFORM
ENVIRONMENT

The deployment command applies Ansible playbooks to the environment automatically. However, you
can modify the deployment command to generate Ansible playbooks without applying them to the
deployment, and run the playbooks later.

Include the --output-only option in the deploy command to generate the undercloud-ansible-XXXXX
directory. This directory contains a set of Ansible playbooks that you can run on other hosts.

1. To generate the Ansible playbook directory, run the deploy command with the option --output-
only:

[stack@all-in-one]$ sudo openstack tripleo deploy \

--templates \

--local-ip=$IP/$NETMASK \

-e /usr/share/openstack-tripleo-heat-templates/environments/standalone/standalone-
tripleo.yaml \

-r /usr/share/openstack-tripleo-heat-templates/roles/Standalone.yaml \

-e $HOME/containers-prepare-parameters.yaml \

-e $HOME/standalone_parameters.yaml \

--output-dir SHOME \

--standalone

--output-only

2. Torun the Ansible playbooks, run the ansible-playbook command, and include the
inventory.yaml file and the deploy_steps_playbook.yaml file:

[stack@all-in-one]$ cd undercloud-ansible-XXXXX
[stack@all-in-one]$ sudo ansible-playbook -i inventory.yaml deploy_steps_playbook.yaml

1

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 7. WORKING WITH HEAT TEMPLATES

The custom configurations in this guide use heat templates and environment files to define certain
aspects of the overcloud. This chapter contains a basic introduction to the structure of heat templates
in the context of Red Hat OpenStack Platform. The purpose of a template is to define and create a
stack, which is a collection of resources that heat creates, and the configuration of the resources.
Resources are objects in OpenStack and can include compute resources, network configurations,
security groups, scaling rules, and custom resources.

The structure of a heat template has three main sections:

Parameters

Parameters are settings passed to heat. Use these parameters to define and customize both default
and non-default values. Define these parameters in the parameters section of a template.

Resources

Resources are the specific objects that you want to create and configure as part of a stack. OpenStack
contains a set of core resources that span across all components. Define resources in the resources
section of a template.

Output

These are values passed from heat after the stack creation. You can access these values either through
the heat API or through the client tools. Define these values in the output section of a template.

When heat processes a template, it creates a stack for the template and a set of child stacks for
resource templates. This hierarchy of stacks descends from the main stack that you define with your
template. You can view the stack hierarchy with the following command:

I $ heat stack-list --show-nested

7.1. CORE HEAT TEMPLATES

Red Hat OpenStack Platform contains a core heat template collection for the overcloud. You can find
this collection in the /usr/share/openstack-tripleo-heat-templates directory.

There are many heat templates and environment files in this collection. This section contains
information about the main files and directories that you can use to customize your deployment.

overcloud.j2.yaml

This file is the main template file used to create the overcloud environment. This file uses Jinja2 syntax
and iterates over certain sections in the template to create custom roles. The Jinja2 formatting is
rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This file is the main environment file that you use to create the overcloud environment. This file contains
a set of configurations for Puppet modules on the overcloud image. After the director writes the
overcloud image to each node, heat starts the Puppet configuration for each node using the resources
registered in this environment file. This file uses Jinja2 syntax and iterates over certain sections in the
template to create custom roles. The Jinja2 formatting is rendered into YAML during the overcloud
deployment process.

roles_data.yaml

12

CHAPTER 7. WORKING WITH HEAT TEMPLATES

This file contains definitions of the roles in an overcloud, and maps services to each role.

network_data.yaml

This file contains definitions of the networks in an overcloud and their properties, including subnets,
allocation pools, and VIP status. The default network_data.yaml file contains only the default networks:
External, Internal Api, Storage, Storage Management, Tenant, and Management. You can create a
custom network_data.yaml file and include it in the openstack overcloud deploy command with the -
n option.

plan-environment.yaml

This file contains definitions of the metadata for your overcloud plan, including the plan name, the main
template that you want to use, and environment files that you want to apply to the overcloud.
capabilities-map.yaml

This file contains a mapping of environment files for an overcloud plan. Use this file to describe and
enable environment files in the director web UL. If you include custom environment files in the
environments directory but do not define these files in the capabilities-map.yaml file, you can find
these environment files in the Other sub-tab of the Overall Settings page on the web Ul.

environments

This directory contains additional heat environment files that you can use with your overcloud creation.
These environment files enable extra functions for your Red Hat OpenStack Platform environment. For
example, you can use the cinder-netapp-config.yaml environment file to enable NetApp back end
storage for the Block Storage service (cinder). If you include custom environment files in the
environments directory but do not define these files in the capabilities-map.yaml file, you can find
these environment files in the Other sub-tab of the Overall Settings page on the web Ul.

network

This directory contains a set of heat templates that you can use to create isolated networks and ports.

puppet

This directory contains puppet templates. The overcloud-resource-registry-puppet.j2.yaml
environment file uses the files in the puppet directory to drive the application of the Puppet
configuration on each node.

puppet/services

This directory contains heat templates for all services in the composable service architecture.

extraconfig

This directory contains templates that you can use to enable extra functionality. For example, you can
use the extraconfig/pre_deploy/rhel-registration directory to register your nodes with the Red Hat
Content Delivery network, or with your own Red Hat Satellite server.

13

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 8. WORKING WITH CUSTOM ROLES AND SERVICES

Red Hat OpenStack Platform usually consists of nodes in pre-defined roles, for example, nodes in
Controller roles, Compute roles, and different storage role types. Each of these default roles contains a
set of services that you define in the core heat template collection. However, the all-in-one Red Hat
OpenStack Platform installation runs on a single node that contains all of the OpenStack services. The
Standalone.yaml role file in the /usr/share/openstack-tripleo-heat-templates/roles directory is the
configuration file that contains all of the services in the all-in-one installation. You can duplicate and
modify the Standalone.yaml role file to enable and disable services in your installation.

The Standalone.yaml file contains a list of services in a role Standalone. Use the following example to
understand the syntax of this file:

- name: Standalone
description: |
A standalone role that includes a minimal set of services. Use this role for testing in a single node
configuration with the 'openstack tripleo deploy --standalone' command, or with the 'openstack
overcloud deploy' command.
CountDefault: 1
tags:
- primary
- controller
disable constraints: True
ServicesDefault:
- OS::TripleO::Services::Aide
- OS::TripleO::Services::AodhApi
- OS::TripleO::Services::AodhEvaluator

- OS::TripleO::Services::Tuned
- OS::TripleO::Services::Vpp
- OS::TripleO::Services::Zagar

Include this role file in the deployment command to configure your stack with the Standalone role that
contains the services that you include in the ServicesDefault: section of the role file:

[stack@all-in-one]$ sudo openstack tripleo deploy --templates -r /usr/share/openstack-tripleo-heat-
templates/roles/Standalone.yaml

However, in a production, multi-node Red Hat OpenStack Platform environment, you assign each node
with a role that contains a portion of the OpenStack services, rather than including all services on a single
node. For example, the default Controller role includes administration, networking, and high availability
services, and the default Compute role includes computing services. The default role file in a multi-node
environment is the /usr/share/openstack-tripleo-heat-templates/roles_data.yaml file. This file defines
the following role types:

e Controller

e Compute

BlockStorage

ObjectStorage

CephStorage

14

CHAPTER 8. WORKING WITH CUSTOM ROLES AND SERVICES

Use the following example to understand role syntax in a multi-node environment:

- name: Controller
description: |
Controller role that contains all of the services for database, messaging and network functions.
ServicesDefault:
- OS::TripleO::Services::AuditD
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::CephClient

- name: Compute
description: |
Basic Compute Node role
ServicesDefault:
- OS::TripleO::Services::AuditD
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::CephClient

You must include the role file each time you run the deployment command. You can use the -r argument
in the deployment command to override this file and use a custom role file:

I [stack@all-in-one]$ sudo openstack tripleo deploy --templates -r ~/templates/roles_data-custom.yaml

8.1. ENABLING AND DISABLING SERVICES IN THE ALL-IN-ONE RED
HAT OPENSTACK PLATFORM ENVIRONMENT

The Standalone.yaml role file in the /usr/share/openstack-tripleo-heat-templates/roles directory is
the configuration file that contains all of the services in the all-in-one installation. To enable or disable
services in your environment, complete the following steps:

Procedure

1. To disable a service, edit the /usr/share/openstack-tripleo-heat-
templates/roles/Standalone.yaml file and add the value OS::Heat::None to the service that
you want to disable:

I - OS::TripleO::Services::Aide: OS::Heat::None

2. To enable a service, edit the /usr/share/openstack-tripleo-heat-
templates/roles/Standalone.yaml file and remove the value OS::Heat::None from the service
that you want to enable:

I - OS::TripleO::Services::Aide

15

Red Hat OpenStack Platform 15 Quick Start Guide

CHAPTER 9. EXAMPLES

Use the following examples to understand how to launch a compute instance post-deployment with
various network configurations.

9.1. EXAMPLE 1: LAUNCHING A COMPUTE NODE WITH ONE NIC ON
THE TENANT AND PROVIDER NETWORKS

Use this example to understand how to launch a Compute node with the private tenant network and the
provider network after you deploy the all-in-one Red Hat OpenStack Platform environment. This
example is based on a single NIC configuration and requires at least three IP addresses.

Prerequisites
To complete this example successfully, you must have the following IP addresses available in your
environment:

® One IP address for the OpenStack services.

® One IP address for the virtual router to provide connectivity to the tenant network. This IP
address is assigned automatically in this example.

® Atleast one IP address for floating IPs on the provider network.

Procedure

1. Create configuration helper variables:

standalone with tenant networking and provider networking
export OS_CLOUD=standalone

export GATEWAY=192.168.24.1

export STANDALONE_HOST=192.168.24.2

export PUBLIC_NETWORK_CIDR=192.168.24.0/24

export PRIVATE_NETWORK_CIDR=192.168.100.0/24
export PUBLIC_NET_START=192.168.24.4

export PUBLIC_NET_END=192.168.24.5

export DNS_SERVER=1.1.1.1

2. Create a basic flavor:

I $ openstack flavor create --ram 512 --disk 1 --vcpu 1 --public tiny

3. Download CirrOS and create an OpenStack image:
$ wget https://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img

$ openstack image create cirros --container-format bare --disk-format gcow2 --public --file
cirros-0.4.0-x86_64-disk.img

4. Configure SSH:

$ ssh-keygen
$ openstack keypair create --public-key ~/.ssh/id_rsa.pub default

5. Create a simple network security group:

16

CHAPTER 9. EXAMPLES

I $ openstack security group create basic

6. Configure the new network security group:

a. Enable SSH:

I $ openstack security group rule create basic --protocol tcp --dst-port 22:22 --remote-ip
0.0.0.0/0

b. Enable ping:

I $ openstack security group rule create --protocol icmp basic

c. Enable DNS:

I $ openstack security group rule create --protocol udp --dst-port 53:53 basic

7. Create Neutron networks:

$ openstack network create --external --provider-physical-network datacentre --provider-
network-type flat public
$ openstack network create --internal private
$ openstack subnet create public-net \
--subnet-range $PUBLIC_NETWORK_CIDR\
--no-dhcp \
--gateway SGATEWAY \
--allocation-pool start=$PUBLIC_NET_START,end=$PUBLIC_NET_END \
--network public
$ openstack subnet create private-net \
--subnet-range $PRIVATE_NETWORK_CIDR\
--network private

8. Create a virtual router:

NOTE: In this case an IP will be automatically assigned
from the allocation pool for the subnet.

$ openstack router create vrouter

$ openstack router set vrouter --external-gateway public
$ openstack router add subnet vrouter private-net

9. Create a floating IP:

I $ openstack floating ip create public

10. Launch the instance:

$ openstack server create --flavor tiny --image cirros --key-name default --network private --
security-group basic myserver

11. Assign the floating IP:

I $ openstack server add floating ip myserver <FLOATING_IP>

17

Red Hat OpenStack Platform 15 Quick Start Guide

Replace FLOATING_IP with the address of the floating IP that you create in a previous step.

12. Test SSH:
I ssh cirros@<FLOATING_IP>

Replace FLOATING_IP with the address of the floating IP that you create in a previous step.

Network Architecture

STANDALONE HOST

br-tun vrouter
T 192.168.24.4
|—’ 192.168.24.3
e br-ctlplane e
Switch
192.168.100.1
. myserver
T 192.168.100.2

9.2. EXAMPLE 2: LAUNCHING A COMPUTE NODE WITH ONE NIC ON
THE PROVIDER NETWORK

Use this example to understand how to launch a Compute node with the provider network after you
deploy the all-in-one Red Hat OpenStack Platform environment. This example is based on a single NIC
configuration and requires at least four IP addresses.

Prerequisites
To complete this example successfully, you must have the following IP addresses available in your
environment:

® One IP address for the OpenStack services.

® One IP address for the virtual router to provide connectivity to the tenant network. This IP
address is assigned automatically in this example.

® One IP address for DHCP on the provider network.
® Atleast one IP address for floating IPs on the provider network.
Procedure

1. Create configuration helper variables:

standalone with tenant networking and provider networking
export OS_CLOUD=standalone
export GATEWAY=192.168.24.1

18

CHAPTER 9. EXAMPLES

export STANDALONE_HOST=192.168.24.2

export VROUTER_IP=192.168.24.3

export PUBLIC_NETWORK_CIDR=192.168.24.0/24
export PUBLIC_NET_START=192.168.24.4

export PUBLIC_NET_END=192.168.24.5

export DNS_SERVER=1.1.1.1

2. Create a basic flavor:

I $ openstack flavor create --ram 512 --disk 1 --vcpu 1 --public tiny

3. Download CirrOS and create an OpenStack image:

$ wget https://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img
$ openstack image create cirros --container-format bare --disk-format gcow2 --public --file
cirros-0.4.0-x86_64-disk.img

4. Configure SSH:
$ ssh-keygen
$ openstack keypair create --public-key ~/.ssh/id_rsa.pub default

5. Create a simple network security group:

I $ openstack security group create basic

6. Configure the new network security group:

a. Enable SSH:

I $ openstack security group rule create basic --protocol tcp --dst-port 22:22 --remote-ip
0.0.0.0/0

b. Enable ping:

I $ openstack security group rule create --protocol icmp basic

c. Enable DNS:

I $ openstack security group rule create --protocol udp --dst-port 53:53 basic

7. Create Neutron networks:

$ openstack network create --external --provider-physical-network datacentre --provider-
network-type flat public
$ openstack network create --internal private
$ openstack subnet create public-net \
--subnet-range $PUBLIC_NETWORK_CIDR\
--gateway SGATEWAY \
--allocation-pool start=$PUBLIC_NET_START,end=$PUBLIC_NET_END \
--network public \

19

Red Hat OpenStack Platform 15 Quick Start Guide

--host-route destination=169.254.169.254/32,gateway=$VROUTER_IP \
--host-route destination=0.0.0.0/0,gateway=$GATEWAY \
--dns-nameserver $DNS_SERVER

8. Create a virtual router:

NOTE: In this case an IP will be automatically assigned

from the allocation pool for the subnet.

$ openstack router create vrouter

$ openstack port create --network public --fixed-ip subnet=public-net,ip-
address=$VROUTER_IP vrouter-port

$ openstack router add port vrouter vrouter-port

9. Launch the instance:

$ openstack server create --flavor tiny --image cirros --key-name default --network public --
security-group basic myserver

10. Test SSH:
I ssh cirros@<VM_IP>

Replace VM_IP with the address of the virtual machine that you create in the previous step.

Network Architecture

STANDALONE HOST

br-tun

vrouter

cnoon br-CtIpIane .

Switch

myserver
192.168.24.2

v

9.3. EXAMPLE 3: LAUNCHING A COMPUTE NODE WITH TWO NICS ON
THE TENANT AND PROVIDER NETWORKS

Use this example to understand how to launch a Compute node with the private tenant network and the
provider network after you deploy the all-in-one Red Hat OpenStack Platform environment. This
example is based on a dual NIC configuration and requires at least three IP addresses on the provider
network.

Prerequisites

® One IP address for a gateway on the provider network.

20

CHAPTER 9. EXAMPLES

® One IP address for OpenStack endpoints.

® One IP address for the virtual router to provide connectivity to the tenant network. This IP
address is assigned automatically in this example.

® Atleast one IP address for floating IPs on the provider network.

Procedure

1. Create configuration helper variables:

standalone with tenant networking and provider networking
export OS_CLOUD=standalone

export GATEWAY=192.168.24.1

export STANDALONE_HOST=192.168.0.2

export PUBLIC_NETWORK_CIDR=192.168.24.0/24

export PRIVATE_NETWORK_CIDR=192.168.100.0/24
export PUBLIC_NET_START=192.168.0.3

export PUBLIC_NET_END=192.168.24.254

export DNS_SERVER=1.1.1.1

2. Create a basic flavor:
I $ openstack flavor create --ram 512 --disk 1 --vcpu 1 --public tiny
3. Download CirrOS and create an OpenStack image:

$ wget https://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img
$ openstack image create cirros --container-format bare --disk-format gcow2 --public --file
cirros-0.4.0-x86_64-disk.img

4. Configure SSH:

$ ssh-keygen
$ openstack keypair create --public-key ~/.ssh/id_rsa.pub default

5. Create a simple network security group:

I $ openstack security group create basic

6. Configure the new network security group:

a. Enable SSH:

I $ openstack security group rule create basic --protocol tcp --dst-port 22:22 --remote-ip
0.0.0.0/0

b. Enable ping:
I $ openstack security group rule create --protocol icmp basic
c. Enable DNS:

I $ openstack security group rule create --protocol udp --dst-port 53:53 basic

21

Red Hat OpenStack Platform 15 Quick Start Guide

7. Create Neutron networks:

1.

12.

$ openstack network create --external --provider-physical-network datacentre --provider-
network-type flat public
$ openstack network create --internal private
$ openstack subnet create public-net \
--subnet-range $PUBLIC_NETWORK_CIDR\
--no-dhcp \
--gateway SGATEWAY \
--allocation-pool start=$PUBLIC_NET_START,end=$PUBLIC_NET_END \
--network public
$ openstack subnet create private-net \
--subnet-range $PRIVATE_NETWORK_CIDR\
--network private

Create a virtual router:

NOTE: In this case an IP will be automatically assigned
from the allocation pool for the subnet.

$ openstack router create vrouter

$ openstack router set vrouter --external-gateway public
$ openstack router add subnet vrouter private-net

Create a floating IP:

I $ openstack floating ip create public

. Launch the instance:

$ openstack server create --flavor tiny --image cirros --key-name default --network private --
security-group basic myserver

Assign the floating IP:
I $ openstack server add floating ip myserver <FLOATING_IP>

Replace FLOATING_IP with the address of the floating IP that you create in a previous step.

Test SSH:
I ssh cirros@<FLOATING_IP>

Replace FLOATING_IP with the address of the floating IP that you create in a previous step.

Network Architecture

22

CHAPTER 9. EXAMPLES

STANDALONE HOST

br-tun vrouter

T

.
Switch br-ctiplane ‘
m 192.168.24.2 —> br-int _L

192.168.100.1

192.168.24.4
192.168.24.3

myserver
192.168.100.2

v

23

	Table of Contents
	PREFACE
	CHAPTER 1. ALL-IN-ONE RED HAT OPENSTACK PLATFORM INSTALLATION
	1.1. PREREQUISITES

	CHAPTER 2. OVERVIEW OF THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	CHAPTER 3. INSTALLING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	CHAPTER 4. CONFIGURING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	4.1. GENERATING YAML FILES FOR THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT

	CHAPTER 5. DEPLOYING THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	CHAPTER 6. CREATING ANSIBLE PLAYBOOKS WITH THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	CHAPTER 7. WORKING WITH HEAT TEMPLATES
	7.1. CORE HEAT TEMPLATES

	CHAPTER 8. WORKING WITH CUSTOM ROLES AND SERVICES
	8.1. ENABLING AND DISABLING SERVICES IN THE ALL-IN-ONE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	Procedure

	CHAPTER 9. EXAMPLES
	9.1. EXAMPLE 1: LAUNCHING A COMPUTE NODE WITH ONE NIC ON THE TENANT AND PROVIDER NETWORKS
	Prerequisites
	Procedure
	Network Architecture

	9.2. EXAMPLE 2: LAUNCHING A COMPUTE NODE WITH ONE NIC ON THE PROVIDER NETWORK
	Prerequisites
	Procedure
	Network Architecture

	9.3. EXAMPLE 3: LAUNCHING A COMPUTE NODE WITH TWO NICS ON THE TENANT AND PROVIDER NETWORKS
	Prerequisites
	Procedure
	Network Architecture

