
Red Hat OpenStack Platform 10

Instances and Images Guide

Managing Instances and Images

Last Updated: 2019-09-11

Red Hat OpenStack Platform 10 Instances and Images Guide

Managing Instances and Images

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Instances and Images guide provides procedures for the management of instances, images of a
Red Hat OpenStack Platform environment.

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. IMAGE SERVICE
1.1. UNDERSTANDING THE IMAGE SERVICE

1.1.1. Image conversion
1.1.2. Image introspection
1.1.3. Harden the Image Service

1.1.3.1. Diagnose Vulnerability
1.1.3.2. Mitigate Vulnerability

1.1.3.2.1. Partial Mitigation
1.2. MANAGING IMAGES

1.2.1. Creating an image
1.2.1.1. Using a KVM guest image with Red Hat OpenStack Platform
1.2.1.2. Creating custom Red Hat Enterprise Linux or Windows images

1.2.1.2.1. Creating a Red Hat Enterprise Linux 7 image
1.2.1.2.2. Creating a Red Hat Enterprise Linux 6 image
1.2.1.2.3. Creating a Windows image

1.2.1.3. Using libosinfo
1.2.2. Uploading an image
1.2.3. Updating an image
1.2.4. Deleting an image
1.2.5. Converting an image to RAW format

1.2.5.1. Configuring Image Service to accept RAW and ISO only

CHAPTER 2. CONFIGURING OPENSTACK COMPUTE STORAGE
2.1. ARCHITECTURE OVERVIEW
2.2. CONFIGURATION

CHAPTER 3. VIRTUAL MACHINE INSTANCES
3.1. MANAGING INSTANCES

3.1.1. Adding components
3.1.2. Creating an instance
3.1.3. Updating an instance
3.1.4. Resizing an instance
3.1.5. Connecting to an instance

3.1.5.1. Accessing an instance console using the dashboard
3.1.5.2. Connecting directly to a VNC console
3.1.5.3. Connecting directly to a serial console

3.1.5.3.1. Installing and configuring nova-serialproxy
3.1.6. Viewing instance usage
3.1.7. Deleting an instance
3.1.8. Managing multiple instances simultaneously

3.2. CUSTOMIZING AN INSTANCE USING CLOUD-INIT
3.2.1. Example user-data files

3.2.1.1. Example user-data file to manage users and groups
3.2.1.2. Example user-data file to configure SSH keys for user accounts

3.3. MANAGING INSTANCE SECURITY
3.3.1. Managing key pairs

3.3.1.1. Creating a key pair
3.3.1.2. Importing a key pair
3.3.1.3. Deleting a key pair

3.3.2. Creating a security group

4

5
5
5
6
6
6
7
7
7
7
8
8
9

13
18
19
19

20
21
21
21

23
23
24

27
27
27
27
29
31
31
31
32
33
33
34
35
35
35
36
36
37
38
38
38
39
39
39

Table of Contents

1

. .

. .

3.3.3. Creating, assigning, and releasing floating IP addresses
3.3.3.1. Allocating a floating IP to the project
3.3.3.2. Assigning a floating IP
3.3.3.3. Releasing a floating IP

3.3.4. Logging in to an instance
3.3.5. Injecting an admin password into an instance

3.4. MANAGING FLAVORS
3.4.1. Updating configuration permissions
3.4.2. Creating a flavor
3.4.3. Updating general attributes
3.4.4. Updating flavor metadata

3.4.4.1. Viewing metadata
3.4.4.2. Adding metadata

3.5. MANAGING HOST AGGREGATES
3.5.1. Enabling host aggregate scheduling
3.5.2. Viewing availability zones or host aggregates
3.5.3. Adding a host aggregate
3.5.4. Updating a host aggregate
3.5.5. Deleting a host aggregate

3.6. SCHEDULING HOSTS AND CELLS
3.6.1. Configuring scheduling filters
3.6.2. Configuring scheduling weights

3.6.2.1. Configure Weight Options for Hosts
3.6.2.2. Configure Weight Options for Cells

3.7. EVACUATING INSTANCES
3.7.1. Evacuating one instance
3.7.2. Evacuating all instances
3.7.3. Configuring shared storage

3.8. MANAGING INSTANCE SNAPSHOTS
3.8.1. Creating an instance snapshot
3.8.2. Managing a snapshot
3.8.3. Rebuilding an instance to a state in a snapshot
3.8.4. Consistent Snapshots

3.9. USING RESCUE MODE FOR INSTANCES
3.9.1. Preparing an image for a rescue mode instance

3.9.1.1. Rescuing image if using ext4 filesystem
3.9.2. Adding the rescue image to the OpenStack Image Service
3.9.3. Launching an instance in rescue mode
3.9.4. Unrescuing an instance

3.10. SETTING A CONFIGURATION DRIVE FOR INSTANCES
3.10.1. Configuration drive options
3.10.2. Using a configuration drive

CHAPTER 4. CONFIGURING CPU PINNING WITH NUMA
4.1. COMPUTE NODE CONFIGURATION
4.2. SCHEDULER CONFIGURATION
4.3. AGGREGATE AND FLAVOR CONFIGURATION

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

39
39
40
40
40
41

42
43
43
44
44
44
44
49
49
50
50
50
51
52
52
55
56
57
58
59
59
60
61
61

62
63
63
63
63
64
64
65
65
65
65
66

67
68
69
70

72

Red Hat OpenStack Platform 10 Instances and Images Guide

2

Table of Contents

3

PREFACE
Red Hat OpenStack Platform (Red Hat OpenStack Platform) provides the foundation to build a private
or public Infrastructure-as-a-Service (IaaS) cloud on top of Red Hat Enterprise Linux. It offers a
massively scalable, fault-tolerant platform for the development of cloud-enabled workloads.

This guide discusses procedures for creating and managing images, and instances. It also mentions the
procedure for configuring the storage for instances for Red Hat OpenStack Platform.

You can manage the cloud using either the OpenStack dashboard or the command-line clients. Most
procedures can be carried out using either method; some of the more advanced procedures can only be
executed on the command line. This guide provides procedures for the dashboard where possible.

NOTE

For the complete suite of documentation for Red Hat OpenStack Platform, see Red Hat
OpenStack Platform Documentation Suite.

Red Hat OpenStack Platform 10 Instances and Images Guide

4

https://access.redhat.com/documentation/en/red-hat-openstack-platform

CHAPTER 1. IMAGE SERVICE
This chapter discusses the steps you can follow to manage images and storage in Red Hat OpenStack
Platform.

A virtual machine image is a file that contains a virtual disk which has a bootable operating system
installed on it. Virtual machine images are supported in different formats. The following are the formats
available on Red Hat OpenStack Platform:

RAW - Unstructured disk image format.

QCOW2 - Disk format supported by QEMU emulator.

ISO - Sector-by-sector copy of the data on a disk, stored in a binary file.

AKI - Indicates an Amazon Kernel Image.

AMI - Indicates an Amazon Machine Image.

ARI - Indicates an Amazon RAMDisk Image.

VDI - Disk format supported by VirtualBox virtual machine monitor and the QEMU emulator.

VHD - Common disk format used by virtual machine monitors from VMware, VirtualBox, and
others.

VMDK - Disk format supported by many common virtual machine monitors.

While ISO is not normally considered a virtual machine image format, since ISOs contain bootable
filesystems with an installed operating system, you can treat them the same as you treat other virtual
machine image files.

To download the official Red Hat Enterprise Linux cloud images, your account must have a valid Red Hat
Enterprise Linux subscription:

Red Hat Enterprise Linux 7 KVM Guest Image

Red Hat Enterprise Linux 6 KVM Guest Image

You will be prompted to enter your Red Hat account credentials if you are not logged in to the
Customer Portal.

1.1. UNDERSTANDING THE IMAGE SERVICE

The following notable OpenStack Image service (glance) features are available.

1.1.1. Image conversion

Image conversion converts images by calling the task API while importing an image.

As part of the import workflow, a plugin provides the image conversion. This plugin can be activated or
deactivated based on the deployer configuration. Therefore, the deployer needs to specify the
preferred format of images for the deployment.

Internally, the Image service receives the bits of the image in a particular format. These bits are stored in
a temporary location. The plugin is then triggered to convert the image to the target format, and moved

CHAPTER 1. IMAGE SERVICE

5

https://access.redhat.com/downloads/content/69/ver=/rhel---7
https://access.redhat.com/downloads/content/69/ver=/rhel---6

to a final destination. When the task is finished, the temporary location is deleted. As a result, the format
uploaded initially is not retained by the Image service.

NOTE

The conversion can be triggered only when importing an image (the old copy-from). It
does not run when uploading an image. For example:

$ glance task-create --type import --input '{"import_from_format": "qcow2",
"import_from": "http://127.0.0.1:8000/test.qcow2", "image_properties": {"disk_format":
"qcow2", "container_format": "bare"}}'

1.1.2. Image introspection

Every image format comes with a set of metadata embedded inside the image itself. For example, a
stream optimized vmdk would contain the following parameters:

$ head -20 so-disk.vmdk

Disk DescriptorFile
version=1
CID=d5a0bce5
parentCID=ffffffff
createType="streamOptimized"

Extent description
RDONLY 209714 SPARSE "generated-stream.vmdk"

The Disk Data Base
#DDB

ddb.adapterType = "buslogic"
ddb.geometry.cylinders = "102"
ddb.geometry.heads = "64"
ddb.geometry.sectors = "32"
ddb.virtualHWVersion = "4"

By introspecting this vmdk, you can easily know that the disk_type is streamOptimized, and the
adapter_type is buslogic. These metadata parameters are useful for the consumer of the image. In
Compute, the workflow to instantiate a streamOptimized disk is different from the one to instantiate a
flat disk. This feature allows metadata extraction. You can achieve image introspection by calling the
task API while importing the image. An administrator can override metadata settings.

1.1.3. Harden the Image Service

The copy_from feature in the Image Service API v1 allows an attacker to perform masked network port
scans. It is possible to create images with a URL such as http://localhost:22. This could allow an attacker
to enumerate internal network details, because the scan appears to originate from the Image Service.
This is classified as a Server-Side Request Forgery (SSRF).

1.1.3.1. Diagnose Vulnerability

All copy_from calls are logged by the Image Service. This makes it possible to link the abuser of this

Red Hat OpenStack Platform 10 Instances and Images Guide

6

http://localhost:22

All copy_from calls are logged by the Image Service. This makes it possible to link the abuser of this
vulnerability to the cloud user exploiting it. For this flaw to be exploited, image creation must be enabled
and non-admin users must be able to use the copy_from function.

To diagnose this vulnerability, review the /etc/glance/policy.json file. If the file has the following
settings, your deployment is vulnerable:

 "add_image": "",
 "copy_from": "",

1.1.3.2. Mitigate Vulnerability

To prevent attackers from exploiting this flaw, restrict the policy for the copy_from function to the
admin role.

Add the following setting to the copy_from line of the /etc/glance/policy.json file:

"copy_from": "role:admin",

WARNING

Limiting the copy_from function to admin users impacts Orchestration and
dashboard usage. For example: Any Orchestration stacks for non-admin users that
create images will break. Non-admin users will not be able to create images in the
dashboard by providing an image-data URI.

1.1.3.2.1. Partial Mitigation

Optionally, instead of restricting the copy_from function, you can partially mitigate the vulnerability by:

Rate-limiting calls to the Image Service, which makes network probing extremely slow and may
deter attacks.

Limiting connections from the control-plane node that runs the glance-api server to the ports
required for the services and ports 80 and 443 towards the external network. This action would
significantly limit the scope of an attack without affecting the majority of users.

1.2. MANAGING IMAGES

The OpenStack Image service (glance) provides discovery, registration, and delivery services for disk
and server images. It provides the ability to copy or snapshot a server image, and immediately store it
away. Stored images can be used as a template to get new servers up and running quickly and more
consistently, than installing a server operating system and individually configuring additional services.

1.2.1. Creating an image

This section provides you with the steps to manually create OpenStack-compatible images in the
QCOW2 format using Red Hat Enterprise Linux 7 ISO files, Red Hat Enterprise Linux 6 ISO files, or
Windows ISO files.



CHAPTER 1. IMAGE SERVICE

7

1.2.1.1. Using a KVM guest image with Red Hat OpenStack Platform

You can use a ready RHEL KVM guest QCOW2 image:

RHEL 7.2 KVM Guest Image

RHEL 6.8 KVM Guest Image

These images are configured with cloud-init and must take advantage of ec2-compatible metadata
services for provisioning SSH keys in order to function properly.

Ready Windows KVM guest QCOW2 images are not available.

NOTE

For the KVM guest images:

The root account in the image is disabled, but sudo access is granted to a special
user named cloud-user.

There is no root password set for this image.

The root password is locked in /etc/shadow by placing !! in the second field.

For an OpenStack instance, it is recommended that you generate an ssh keypair from the OpenStack
dashboard or command line and use that key combination to perform an SSH public authentication to
the instance as root.

When the instance is launched, this public key will be injected to it. You can then authenticate using the
private key downloaded while creating the keypair.

If you do not want to use keypairs, you can use the admin password that has been set using the Inject an
admin Password Into an Instance procedure.

If you want to create custom Red Hat Enterprise Linux or Windows images, see Create a Red Hat
Enterprise Linux 7 Image, Create a Red Hat Enterprise Linux 6 Image , or Create a Windows Image .

1.2.1.2. Creating custom Red Hat Enterprise Linux or Windows images

Prerequisites:

Linux host machine to create an image. This can be any machine on which you can install and run
the Linux packages.

libvirt, virt-manager (run command yum groupinstall -y @virtualization). This installs all
packages necessary for creating a guest operating system.

Libguestfs tools (run command yum install -y libguestfs-tools-c). This installs a set of tools
for accessing and modifying virtual machine images.

A Red Hat Enterprise Linux 7 or 6 ISO file (see RHEL 7.2 Binary DVD or RHEL 6.8 Binary DVD)
or a Windows ISO file. If you do not have a Windows ISO file, visit the Microsoft TechNet
Evaluation Center and download an evaluation image.

Text editor, if you want to change the kickstart files (RHEL only).

NOTE

Red Hat OpenStack Platform 10 Instances and Images Guide

8

https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.2/x86_64/product-software
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.8/x86_64/product-software
https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.2/x86_64/product-software/
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.8/x86_64/product-software/
http://www.microsoft.com/en-us/evalcenter/

NOTE

In the following procedures, all commands with the [root@host]# prompt should be run
on your host machine.

1.2.1.2.1. Creating a Red Hat Enterprise Linux 7 image

This section provides you with the steps to manually create an OpenStack-compatible image in the
QCOW2 format using a Red Hat Enterprise Linux 7 ISO file.

1. Start the installation using virt-install as shown below:

[root@host]# qemu-img create -f qcow2 rhel7.qcow2 8G
[root@host]# virt-install --virt-type kvm --name rhel7 --ram 2048 \
--cdrom /tmp/rhel-server-7.2-x86_64-dvd.iso \
--disk rhel7.qcow2,format=qcow2 \
--network=bridge:virbr0 --graphics vnc,listen=0.0.0.0 \
--noautoconsole --os-type=linux --os-variant=rhel7

This launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command to
view the console:

[root@host]# virt-viewer rhel7

2. Set up the virtual machine as follows:

a. At the initial Installer boot menu, choose the Install Red Hat Enterprise Linux 7.X option.

CHAPTER 1. IMAGE SERVICE

9

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, choose Auto-detected
installation media.

d. When prompted about which type of installation destination, choose Local Standard Disks.

For other storage options, choose Automatically configure partitioning.

Red Hat OpenStack Platform 10 Instances and Images Guide

10

e. For software selection, choose Minimal Install.

f. For network and host name, choose eth0 for network and choose a hostname for your
device. The default host name is localhost.localdomain.

g. Choose the root password.

The installation process completes and the Complete! screen appears.

3. After the installation is complete, reboot the instance and log in as the root user.

4. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so it only contains the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

5. Reboot the machine.

6. Register the machine with the Content Delivery Network. For details, see Subscribe to the
Required Channels in Manual Installation Procedures.

7. Update the system:

yum -y update

8. Install the cloud-init packages:

yum install -y cloud-utils-growpart cloud-init

CHAPTER 1. IMAGE SERVICE

11

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/manual-installation-procedures/chapter-1-introduction#sect-Subscribing_to_Required_Channels

9. Edit the /etc/cloud/cloud.cfg configuration file and under cloud_init_modules add:

- resolv-conf

The resolv-conf option automatically configures the resolv.conf when an instance boots for
the first time. This file contains information related to the instance such as nameservers,
domain and other options.

10. Add the following line to /etc/sysconfig/network to avoid problems accessing the EC2
metadata service:

NOZEROCONF=yes

11. To ensure the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/default/grub file:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8"

Run the grub2-mkconfig command:

grub2-mkconfig -o /boot/grub2/grub.cfg

The output is as follows:

Generating grub configuration file ...
Found linux image: /boot/vmlinuz-3.10.0-229.7.2.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.7.2.el7.x86_64.img
Found linux image: /boot/vmlinuz-3.10.0-121.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-121.el7.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-b82a3044fb384a3f9aeacf883474428b
Found initrd image: /boot/initramfs-0-rescue-b82a3044fb384a3f9aeacf883474428b.img
done

12. Un-register the virtual machine so that the resulting image does not contain the same
subscription details for every instance cloned based on it:

subscription-manager repos --disable=*
subscription-manager unregister
yum clean all

13. Power off the instance:

poweroff

14. Reset and clean the image using the virt-sysprep command so it can be used to create
instances without issues:

[root@host]# virt-sysprep -d rhel7

15. Reduce image size using the virt-sparsify command. This command converts any free space
within the disk image back to free space within the host:

[root@host]# virt-sparsify --compress /tmp/rhel7.qcow2 rhel7-cloud.qcow2

Red Hat OpenStack Platform 10 Instances and Images Guide

12

This creates a new rhel7-cloud.qcow2 file in the location from where the command is run.

The rhel7-cloud.qcow2 image file is ready to be uploaded to the Image service. For more information
on uploading this image to your OpenStack deployment using the dashboard, see Upload an Image.

1.2.1.2.2. Creating a Red Hat Enterprise Linux 6 image

This section provides you with the steps to manually create an OpenStack-compatible image in the
QCOW2 format using a Red Hat Enterprise Linux 6 ISO file.

1. Start the installation using virt-install:

[root@host]# qemu-img create -f qcow2 rhel6.qcow2 4G
[root@host]# virt-install --connect=qemu:///system --network=bridge:virbr0 \
--name=rhel6 --os-type linux --os-variant rhel6 \
--disk path=rhel6.qcow2,format=qcow2,size=10,cache=none \
--ram 4096 --vcpus=2 --check-cpu --accelerate \
--hvm --cdrom=rhel-server-6.8-x86_64-dvd.iso

This launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command to
view the console:

[root@host]# virt-viewer rhel6

2. Set up the virtual machines as follows:

a. At the initial Installer boot menu, choose the Install or upgrade an existing system option.

CHAPTER 1. IMAGE SERVICE

13

a. At the initial Installer boot menu, choose the Install or upgrade an existing system option.

Step through the installation prompts. Accept the defaults.
The installer checks for the disc and lets you decide whether you want to test your
installation media before installation. Select OK to run the test or Skip to proceed without
testing.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, choose Basic Storage

Red Hat OpenStack Platform 10 Instances and Images Guide

14

c. When prompted about which type of devices your installation uses, choose Basic Storage
Devices.

d. Choose a hostname for your device. The default host name is localhost.localdomain.

e. Set timezone and root password.

f. Based on the space on the disk, choose the type of installation.

CHAPTER 1. IMAGE SERVICE

15

g. Choose the Basic Server install, which installs an SSH server.

h. The installation process completes and Congratulations, your Red Hat Enterprise Linux
installation is complete screen appears.

3. Reboot the instance and log in as the root user.

4. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so it only contains the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

5. Reboot the machine.

6. Register the machine with the Content Delivery Network. For details, see Subscribe to the
Required Channels in the Manual Installation Procedures guide.

7. Update the system:

yum -y update

8. Install the cloud-init packages:

yum install -y cloud-utils-growpart cloud-init

9. Edit the /etc/cloud/cloud.cfg configuration file and under cloud_init_modules add:

Red Hat OpenStack Platform 10 Instances and Images Guide

16

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/manual-installation-procedures/#sect-Subscribing_to_Required_Channels

- resolv-conf

The resolv-conf option automatically configures the resolv.conf configuration file when an
instance boots for the first time. This file contains information related to the instance such as
nameservers, domain, and other options.

10. To prevent network issues, create the /etc/udev/rules.d/75-persistent-net-generator.rules file
as follows:

echo "#" > /etc/udev/rules.d/75-persistent-net-generator.rules

This prevents /etc/udev/rules.d/70-persistent-net.rules file from being created. If
/etc/udev/rules.d/70-persistent-net.rules is created, networking may not function properly
when booting from snapshots (the network interface is created as "eth1" rather than "eth0" and
IP address is not assigned).

11. Add the following line to /etc/sysconfig/network to avoid problems accessing the EC2
metadata service:

NOZEROCONF=yes

12. To ensure the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/grub.conf:

console=tty0 console=ttyS0,115200n8

13. Un-register the virtual machine so that the resulting image does not contain the same
subscription details for every instance cloned based on it:

subscription-manager repos --disable=*
subscription-manager unregister
yum clean all

14. Power off the instance:

poweroff

15. Reset and clean the image using the virt-sysprep command so it can be used to create
instances without issues:

[root@host]# virt-sysprep -d rhel6

16. Reduce image size using the virt-sparsify command. This command converts any free space
within the disk image back to free space within the host:

[root@host]# virt-sparsify --compress rhel6.qcow2 rhel6-cloud.qcow2

This creates a new rhel6-cloud.qcow2 file in the location from where the command is run.

NOTE

You will need to manually resize the partitions of instances based on the image in
accordance with the disk space in the flavor that is applied to the instance.

CHAPTER 1. IMAGE SERVICE

17

The rhel6-cloud.qcow2 image file is ready to be uploaded to the Image service. For more information
on uploading this image to your OpenStack deployment using the dashboard, see Upload an Image

1.2.1.2.3. Creating a Windows image

This section provides you with the steps to manually create an OpenStack-compatible image in the
QCOW2 format using a Windows ISO file.

1. Start the installation using virt-install as shown below:

[root@host]# virt-install --name=name \
--disk size=size \
--cdrom=path \
--os-type=windows \
--network=bridge:virbr0 \
--graphics spice \
--ram=RAM

Replace the values of the virt-install parameters as follows:

name — the name that the Windows guest should have.

size — disk size in GB.

path — the path to the Windows installation ISO file.

RAM — the requested amount of RAM in MB.

NOTE

The --os-type=windows parameter ensures that the clock is set up correctly
for the Windows guest, and enables its Hyper-V enlightenment features.

Note that virt-install saves the guest image as /var/lib/libvirt/images/name.qcow2 by
default. If you want to keep the guest image elsewhere, change the parameter of the --disk
option as follows:

--disk path=filename,size=size

Replace filename with the name of the file which should store the guest image (and
optionally its path); for example path=win8.qcow2,size=8 creates an 8 GB file named
win8.qcow2 in the current working directory.

TIP

If the guest does not launch automatically, run the virt-viewer command to view the
console:

[root@host]# virt-viewer name

2. Installation of Windows systems is beyond the scope of this document. For instructions on how
to install Windows, see the relevant Microsoft documentation.

3. To allow the newly installed Windows system to use the virtualized hardware, you may need to

Red Hat OpenStack Platform 10 Instances and Images Guide

18

3. To allow the newly installed Windows system to use the virtualized hardware, you may need to
install virtio drivers in it. To so do, first install the virtio-win package on the host system. This
package contains the virtio ISO image, which is to be attached as a CD-ROM drive to the
Windows guest. See Chapter 8. KVM Para-virtualized (virtio) Drivers in the Virtualization
Deployment and Administration Guide for detailed instructions on how to install the virtio-win
package, add the virtio ISO image to the guest, and install the virtio drivers.

4. To complete the setup, download and execute Cloudbase-Init on the Windows system. At the
end of the installation of Cloudbase-Init, select the Run Sysprep and Shutdown check boxes.
The Sysprep tool makes the guest unique by generating an OS ID, which is used by certain
Microsoft services.

IMPORTANT

Red Hat does not provide technical support for Cloudbase-Init. If you encounter
an issue, contact Cloudbase Solutions .

When the Windows system shuts down, the name.qcow2 image file is ready to be uploaded to the Image
service. For more information on uploading this image to your OpenStack deployment using the
dashboard or the command line, see Upload an Image.

1.2.1.3. Using libosinfo

Image Service (glance) can process libosinfo data for images, making it easier to configure the optimal
virtual hardware for an instance. This can be done by adding the libosinfo-formatted operating system
name to the glance image.

1. This example specifies that the image with ID 654dbfd5-5c01-411f-8599-a27bd344d79b uses
the libosinfo value of rhel7.2:

$ openstack image set 654dbfd5-5c01-411f-8599-a27bd344d79b --property
os_name=rhel7.2

As a result, Compute will supply virtual hardware optimized for rhel7.2 whenever an instance is
built using the 654dbfd5-5c01-411f-8599-a27bd344d79b image.

NOTE

For a complete list of libosinfo values, refer to the libosinfo project:
https://gitlab.com/libosinfo/osinfo-db/tree/master/data/os

1.2.2. Uploading an image

1. In the dashboard, select Project > Compute > Images.

2. Click Create Image.

3. Fill out the values, and click Create Image when finished.

Table 1.1. Image Options

CHAPTER 1. IMAGE SERVICE

19

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Virtualization_Deployment_and_Administration_Guide/index.html#sect-KVM_Para_virtualized_virtio_Drivers-Installing_the_KVM_Windows_virtio_drivers
http://www.cloudbase.it/cloudbase-init/
https://cloudbase.it/about/#contact
https://gitlab.com/libosinfo/osinfo-db/tree/master/data/os

Field Notes

Name Name for the image. The name must be unique within the project.

Description Brief description to identify the image.

Image Source Image source: Image Location or Image File. Based on your selection, the
next field is displayed.

Image Location or Image File
Select Image Location option to specify the image location URL.

Select Image File option to upload an image from the local disk.

Format Image format (for example, qcow2).

Architecture Image architecture. For example, use i686 for a 32-bit architecture or
x86_64 for a 64-bit architecture.

Minimum Disk (GB) Minimum disk size required to boot the image. If this field is not specified, the
default value is 0 (no minimum).

Minimum RAM (MB) Minimum memory size required to boot the image. If this field is not
specified, the default value is 0 (no minimum).

Public If selected, makes the image public to all users with access to the project.

Protected If selected, ensures only users with specific permissions can delete this
image.

When the image has been successfully uploaded, its status is changed to active, which indicates that the
image is available for use. Note that the Image service can handle even large images that take a long
time to upload — longer than the lifetime of the Identity service token which was used when the upload
was initiated. This is due to the fact that the Image service first creates a trust with the Identity service
so that a new token can be obtained and used when the upload is complete and the status of the image
is to be updated.

NOTE

You can also use the glance image-create command with the property option to upload
an image. More values are available on the command line. For a complete listing, see
Image Configuration Parameters.

1.2.3. Updating an image

1. In the dashboard, select Project > Compute > Images.

2. Click Edit Image from the dropdown list.

NOTE

Red Hat OpenStack Platform 10 Instances and Images Guide

20

NOTE

The Edit Image option is available only when you log in as an admin user. When
you log in as a demo user, you have the option to Launch an instance or Create
Volume.

3. Update the fields and click Update Image when finished. You can update the following values -
name, description, kernel ID, ramdisk ID, architecture, format, minimum disk, minimum RAM,
public, protected.

4. Click the drop-down menu and select Update Metadata option.

5. Specify metadata by adding items from the left column to the right one. In the left column, there
are metadata definitions from the Image Service Metadata Catalog. Select Other to add
metadata with the key of your choice and click Save when finished.

NOTE

You can also use the glance image-update command with the property option to
update an image. More values are available on the command line; for a complete listing,
see Image Configuration Parameters.

1.2.4. Deleting an image

1. In the dashboard, select Project > Compute > Images.

2. Select the image you want to delete and click Delete Images.

1.2.5. Converting an image to RAW format

Red Hat Ceph can store, but does not support using, QCOW2 images to host virtual machine (VM) disks.

When you upload a QCOW2 image and create a VM from it, the compute node downloads the image,
converts the image to RAW, and uploads it back into Ceph, which can then use it. This process affects
the time it takes to create VMs, especially during parallel VM creation.

For example, when you create multiple VMs simultaneously, uploading the converted image to the Ceph
cluster may impact already running workloads. The upload process can starve those workloads of IOPS
and impede storage responsiveness.

To boot VMs in Ceph more efficiently (ephemeral back end or boot from volume), the glance image
format must be RAW.

Converting an image to RAW may yield an image that is larger in size than the original QCOW2 image
file. Run the following command before the conversion to determine the final RAW image size:

qemu-img info <image>.qcow2

To convert an image from QCOW2 to RAW format, do the following:

qemu-img convert -p -f qcow2 -O raw <original qcow2 image>.qcow2 <new raw image>.raw

1.2.5.1. Configuring Image Service to accept RAW and ISO only

Optionally, to configure the Image Service to accept only RAW and ISO image formats, deploy using an

CHAPTER 1. IMAGE SERVICE

21

Optionally, to configure the Image Service to accept only RAW and ISO image formats, deploy using an
additional environment file that contains the following:

parameter_defaults:
 ExtraConfig:
 glance::config::api_config:
 image_format/disk_formats:
 value: "raw,iso"

Red Hat OpenStack Platform 10 Instances and Images Guide

22

CHAPTER 2. CONFIGURING OPENSTACK COMPUTE
STORAGE

This chapter describes the architecture for the back-end storage of images in OpenStack Compute
(nova), and provides basic configuration options.

2.1. ARCHITECTURE OVERVIEW

In Red Hat OpenStack Platform, the OpenStack Compute service uses the KVM hypervisor to execute
compute workloads. The libvirt driver handles all interactions with KVM, and enables the creation of
virtual machines.

Two types of libvirt storage must be considered for Compute:

Base image, which is a cached and formatted copy of the Image service image.

Instance disk, which is created using the libvirt base and is the back end for the virtual machine
instance. Instance disk data can be stored either in Compute’s ephemeral storage (using the
libvirt base) or in persistent storage (for example, using Block Storage).

The steps that Compute takes to create a virtual machine instance are:

1. Cache the Image service’s backing image as the libvirt base.

2. Convert the base image to the raw format (if configured).

3. Resize the base image to match the VM’s flavor specifications.

4. Use the base image to create the libvirt instance disk.

In the diagram above, the #1 instance disk uses ephemeral storage; the #2 disk uses a block-storage
volume.

Ephemeral storage is an empty, unformatted, additional disk available to an instance. This storage value
is defined by the instance flavor. The value provided by the user must be less than or equal to the
ephemeral value defined for the flavor. The default value is 0, meaning no ephemeral storage is created.

The ephemeral disk appears in the same way as a plugged-in hard drive or thumb drive. It is available as
a block device which you can check using the lsblk command. You can format it, mount it, and use it
however you normally would a block device. There is no way to preserve or reference that disk beyond

CHAPTER 2. CONFIGURING OPENSTACK COMPUTE STORAGE

23

the instance it is attached to.

Block storage volume is persistant storage available to an instance regardless of the state of the running
instance.

2.2. CONFIGURATION

Compute configuration for handling the libvirt base and instance disks can determine both
performance and security aspects of your environment; parameters are configured in the
/etc/nova/nova.conf file.

Table 2.1. Compute Image Parameters

Section Parameter Description Default

[DEFAULT] force_raw_im
ages

Whether to convert a non-raw cached base
image to be raw (boolean). If a non-raw image
is converted to raw, Compute:

Disallows backing files (which might be
a security issue).

Removes existing compression (to
avoid CPU bottlenecks).

Converting the base to raw uses more space for
any image that could have been used directly by
the hypervisor (for example, a qcow2 image). If
you have a system with slower I/O or less
available space, you might want to specify
'false', trading the higher CPU requirements of
compression for that of minimized input
bandwidth.

Raw base images are always used with
libvirt_images_type=lvm.

true

[DEFAULT] use_cow_ima
ges

Whether to use CoW (Copy on Write) images for
libvirt instance disks (boolean):

false - The raw format is used. Without
CoW, more space is used for common
parts of the disk image

true - The cqow2 format is used. With
CoW, depending on the backing store
and host caching, there may be better
concurrency achieved by having each
VM operate on its own copy.

true

Red Hat OpenStack Platform 10 Instances and Images Guide

24

[DEFAULT] preallocate_i
mages

Preallocation mode for libvirt instance disks.
Value can be:

none - No storage is provisioned at
instance start.

space - Storage is fully allocated at
instance start (using fallocate), which
can help with both space guarantees
and I/O performance.

Even when not using CoW instance disks, the
copy each VM gets is sparse and so the VM may
fail unexpectedly at run time with ENOSPC. By
running fallocate(1) on the instance disk
images, Compute immediately and efficiently
allocates the space for them in the file system (if
supported). Run time performance should also
be improved because the file system does not
have to dynamically allocate blocks at run time
(reducing CPU overhead and more importantly
file fragmentation).

none

[DEFAULT] resize_fs_usin
g_block_devi
ce

Whether to enable direct resizing of the base
image by accessing the image over a block
device (boolean). This is only necessary for
images with older versions of cloud-init (that
cannot resize themselves).

Because this parameter enables the direct
mounting of images which might otherwise be
disabled for security reasons, it is not enabled by
default.

false

[DEFAULT] default_ephe
meral_format

The default format that is used for a new
ephemeral volume. Value can be: ext2, ext3, or
ext4. The ext4 format provides much faster
initialization times than ext3 for new, large disks.
You can also override per instance using the
guest_format configuration option.

ext4

[DEFAULT] image_cache_
manager_inte
rval

Number of seconds to wait between runs of the
image cache manager, which impacts base
caching on libvirt compute nodes. This period is
used in the auto removal of unused cached
images (see remove_unused_base_images
and
remove_unused_original_minimum_age_
seconds).

2400

Section Parameter Description Default

CHAPTER 2. CONFIGURING OPENSTACK COMPUTE STORAGE

25

[DEFAULT] remove_unus
ed_base_ima
ges

Whether to enable the automatic removal of
unused base images (checked every
image_cache_manager_interval seconds).
Images are defined as unused if they have not
been accessed in
remove_unused_original_minimum_age_
seconds seconds.

true

[DEFAULT] remove_unus
ed_original_m
inimum_age_
seconds

How old an unused base image must be before
being removed from the libvirt cache (see
remove_unused_base_images).

86400

[libvirt] images_type Image type to use for libvirt instance disks
(deprecates use_cow_images). Value can be:
raw, qcow2, lvm, rbd, or default. If default is
specified, the value used for the
use_cow_images parameter is used.

default

Section Parameter Description Default

Red Hat OpenStack Platform 10 Instances and Images Guide

26

CHAPTER 3. VIRTUAL MACHINE INSTANCES
OpenStack Compute is the central component that provides virtual machines on demand. Compute
interacts with the Identity service for authentication, Image service for images (used to launch
instances), and the dashboard service for the user and administrative interface.

Red Hat OpenStack Platform allows you to easily manage virtual machine instances in the cloud. The
Compute service creates, schedules, and manages instances, and exposes this functionality to other
OpenStack components. This chapter discusses these procedures along with procedures to add
components like key pairs, security groups, host aggregates and flavors. The term instance is used by
OpenStack to mean a virtual machine instance.

3.1. MANAGING INSTANCES

Before you can create an instance, you need to ensure certain other OpenStack components (for
example, a network, key pair and an image or a volume as the boot source) are available for the instance.

This section discusses the procedures to add these components, create and manage an instance.
Managing an instance refers to updating, and logging in to an instance, viewing how the instances are
being used, resizing or deleting them.

3.1.1. Adding components

Use the following sections to create a network, key pair and upload an image or volume source. These
components are used in the creation of an instance and are not available by default. You will also need to
create a new security group to allow SSH access to the user.

1. In the dashboard, select Project.

2. Select Network > Networks, and ensure there is a private network to which you can attach the
new instance (to create a network, see Create a Network section in the Networking Guide).

3. Select Compute > Access & Security > Key Pairs, and ensure there is a key pair (to create a key
pair, see Section 3.3.1.1, “Creating a key pair”).

4. Ensure that you have either an image or a volume that can be used as a boot source:

To view boot-source images, select the Images tab (to create an image, see Section 1.2.1,
“Creating an image”).

To view boot-source volumes, select the Volumes tab (to create a volume, see Create a
Volume in the Storage Guide).

5. Select Compute > Access & Security > Security Groups, and ensure you have created a
security group rule (to create a security group, see Project Security Management in the Users
and Identity Management Guide).

3.1.2. Creating an instance

1. In the dashboard, select Project > Compute > Instances.

2. Click Launch Instance.

3. Fill out instance fields (those marked with '* ' are required), and click Launch when finished.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

27

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/networking-guide/#create_a_network
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/storage-guide/#section-create-volume
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/users-and-identity-management-guide/#project-security

Table 3.1. Instance Options

Tab Field Notes

Project and User Project Select the project from the dropdown list.

 User Select the user from the dropdown list.

Details Availability Zone Zones are logical groupings of cloud resources in which your
instance can be placed. If you are unsure, use the default
zone (for more information, see Section 3.5, “Managing host
aggregates”).

 Instance Name A name to identify your instance.

 Flavor The flavor determines what resources the instance is given
(for example, memory). For default flavor allocations and
information on creating new flavors, see Section 3.4,
“Managing flavors”.

 Instance Count The number of instances to create with these parameters.
"1" is preselected.

 Instance Boot
Source

Depending on the item selected, new fields are displayed
allowing you to select the source:

Image sources must be compatible with
OpenStack (see Section 1.2, “Managing images”).

If a volume or volume source is selected, the
source must be formatted using an image (see
Basic Volume Usage and Configuration in the
Storage Guide).

Access and Security Key Pair The specified key pair is injected into the instance and is
used to remotely access the instance using SSH (if neither a
direct login information or a static key pair is provided).
Usually one key pair per project is created.

 Security Groups Security groups contain firewall rules which filter the type
and direction of the instance’s network traffic (for more
information on configuring groups, see Project Security
Management in the Users and Identity Management Guide).

Networking Selected Networks You must select at least one network. Instances are
typically assigned to a private network, and then later given
a floating IP address to enable external access.

Red Hat OpenStack Platform 10 Instances and Images Guide

28

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/storage-guide/#section-volumes_basic
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/users-and-identity-management-guide/#project-security

Post-Creation Customization Script
Source

You can provide either a set of commands or a script file,
which will run after the instance is booted (for example, to
set the instance host name or a user password). If 'Direct
Input' is selected, write your commands in the Script Data
field; otherwise, specify your script file.

NOTE

Any script that starts with '#cloud-config' is
interpreted as using the cloud-config
syntax (for information on the syntax, see
http://cloudinit.readthedocs.org/en/latest/
topics/examples.html).

Advanced Options Disk Partition By default, the instance is built as a single partition and
dynamically resized as needed. However, you can choose to
manually configure the partitions yourself.

 Configuration Drive If selected, OpenStack writes metadata to a read-only
configuration drive that is attached to the instance when it
boots (instead of to Compute’s metadata service). After the
instance has booted, you can mount this drive to view its
contents (enables you to provide files to the instance).

Tab Field Notes

3.1.3. Updating an instance

You can update an instance by selecting Project > Compute > Instances, and selecting an action for
that instance in the Actions column. Actions allow you to manipulate the instance in a number of ways:

Table 3.2. Update Instance Options

Action Description

Create Snapshot Snapshots preserve the disk state of a running
instance. You can create a snapshot to migrate the
instance, as well as to preserve backup copies.

Associate/Disassociate Floating IP You must associate an instance with a floating IP
(external) address before it can communicate with
external networks, or be reached by external users.
Because there are a limited number of external
addresses in your external subnets, it is
recommended that you disassociate any unused
addresses.

Edit Instance Update the instance’s name and associated security
groups.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

29

http://cloudinit.readthedocs.org/en/latest/topics/examples.html

Edit Security Groups Add and remove security groups to or from this
instance using the list of available security groups (for
more information on configuring groups, see Project
Security Management in the Users and Identity
Management Guide).

Console View the instance’s console in the browser (allows
easy access to the instance).

View Log View the most recent section of the instance’s
console log. Once opened, you can view the full log
by clicking View Full Log.

Pause/Resume Instance Immediately pause the instance (you are not asked
for confirmation); the state of the instance is stored
in memory (RAM).

Suspend/Resume Instance Immediately suspend the instance (you are not asked
for confirmation); like hibernation, the state of the
instance is kept on disk.

Resize Instance Bring up the Resize Instance window (see
Section 3.1.4, “Resizing an instance”).

Soft Reboot Gracefully stop and restart the instance. A soft
reboot attempts to gracefully shut down all
processes before restarting the instance.

Hard Reboot Stop and restart the instance. A hard reboot
effectively just shuts down the instance’s power and
then turns it back on.

Shut Off Instance Gracefully stop the instance.

Rebuild Instance Use new image and disk-partition options to rebuild
the image (shut down, re-image, and re-boot the
instance). If encountering operating system issues,
this option is easier to try than terminating the
instance and starting over.

Terminate Instance Permanently destroy the instance (you are asked for
confirmation).

Action Description

You can create and allocate an external IP address, see Section 3.3.3, “Creating, assigning, and releasing
floating IP addresses”

Red Hat OpenStack Platform 10 Instances and Images Guide

30

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/users-and-identity-management-guide/#project-security

3.1.4. Resizing an instance

To resize an instance (memory or CPU count), you must select a new flavor for the instance that has the
correct capacity. Before you increase the size of an instance, ensure that there is at least one compute
node with the requested capacity (based on the new flavor).

1. Ensure communication between hosts by setting up each host with SSH key authentication so
that Compute can use SSH to move disks to other hosts (for example, compute nodes can
share the same SSH key).
For more information about setting up SSH key authentication, see Configure SSH Tunneling
Between Nodes in the Migrating Instances guide.

2. Enable resizing on the original host by setting the following parameter in the
/etc/nova/nova.conf file:

[DEFAULT] allow_resize_to_same_host = True

NOTE

The allow_resize_to_same_host parameter does not resize the instance on the
same host. Even if the parameter equals true on all compute nodes, the
scheduler does not force the instance to resize on the same host. This is the
expected behavior.

3. In the dashboard, select Project > Compute > Instances.

4. Click the instance’s Actions arrow, and select Resize Instance.

5. Select a new flavor in the New Flavor field.

6. If you want to manually partition the instance when it launches (results in a faster build time):

a. Select Advanced Options.

b. In the Disk Partition field, select Manual.

7. Click Resize.

3.1.5. Connecting to an instance

This section discusses the different methods you can use to access an instance console using the
dashboard or the command-line interface. You can also directly connect to an instance’s serial port
allowing you to debug even if the network connection fails.

3.1.5.1. Accessing an instance console using the dashboard

The console allows you a way to directly access your instance within the dashboard.

1. In the dashboard, select Compute > Instances.

2. Click the instance’s More button and select Console.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

31

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/migrating-instances/#configure_ssh_tunneling_between_nodes

2. Click the instance’s More button and select Console.

3. Log in using the image’s user name and password (for example, a CirrOS image uses
cirros/cubswin:)).

3.1.5.2. Connecting directly to a VNC console

You can directly access an instance’s VNC console using a URL returned by nova get-vnc-console
command.

Browser

To obtain a browser URL, use:

$ nova get-vnc-console INSTANCE_ID novnc

Java Client

To obtain a Java-client URL, use:

$ nova get-vnc-console INSTANCE_ID xvpvnc

NOTE

Red Hat OpenStack Platform 10 Instances and Images Guide

32

NOTE

nova-xvpvncviewer provides a simple example of a Java client. To download the client,
use:

git clone https://github.com/cloudbuilders/nova-xvpvncviewer
cd nova-xvpvncviewer/viewer
make

Run the viewer with the instance’s Java-client URL:

java -jar VncViewer.jar URL

This tool is provided only for customer convenience, and is not officially supported by Red
Hat.

3.1.5.3. Connecting directly to a serial console

You can directly access an instance’s serial port using a websocket client. Serial connections are typically
used as a debugging tool (for example, instances can be accessed even if the network configuration
fails). To obtain a serial URL for a running instance, use:

$ nova get-serial-console INSTANCE_ID

NOTE

novaconsole provides a simple example of a websocket client. To download the client,
use:

git clone https://github.com/larsks/novaconsole/
cd novaconsole

Run the client with the instance’s serial URL:

python console-client-poll.py

This tool is provided only for customer convenience, and is not officially supported by Red
Hat.

However, depending on your installation, the administrator may need to first set up the nova-serialproxy
service. The proxy service is a websocket proxy that allows connections to OpenStack Compute serial
ports.

3.1.5.3.1. Installing and configuring nova-serialproxy

1. Install the nova-serialproxy service:

yum install openstack-nova-serialproxy

2. Update the serial_console section in /etc/nova/nova.conf:

a. Enable the nova-serialproxy service:

CHAPTER 3. VIRTUAL MACHINE INSTANCES

33

$ openstack-config --set /etc/nova/nova.conf serial_console enabled true

b. Specify the string used to generate URLS provided by the nova get-serial-console
command.

$ openstack-config --set /etc/nova/nova.conf serial_console base_url
ws://PUBLIC_IP:6083/

Where PUBLIC_IP is the public IP address of the host running the nova-serialproxy
service.

c. Specify the IP address on which the instance serial console should listen (string).

$ openstack-config --set /etc/nova/nova.conf serial_console listen 0.0.0.0

d. Specify the address to which proxy clients should connect (string).

$ openstack-config --set /etc/nova/nova.conf serial_console proxyclient_address
ws://HOST_IP:6083/

Where HOST_IP is the IP address of your Compute host. For example, an enabled nova-
serialproxy service is as following:

[serial_console]
enabled=true
base_url=ws://192.0.2.0:6083/
listen=0.0.0.0
proxyclient_address=192.0.2.3

3. Restart Compute services:

openstack-service restart nova

4. Start the nova-serialproxy service:

systemctl enable openstack-nova-serialproxy
systemctl start openstack-nova-serialproxy

5. Restart any running instances, to ensure that they are now listening on the right sockets.

6. Open the firewall for serial-console port connections. Serial ports are set using [serial_console]
port_range in /etc/nova/nova.conf; by default, the range is 10000:20000. Update iptables with:

iptables -I INPUT 1 -p tcp --dport 10000:20000 -j ACCEPT

3.1.6. Viewing instance usage

The following usage statistics are available:

Per Project
To view instance usage per project, select Project > Compute > Overview. A usage summary is
immediately displayed for all project instances.

Red Hat OpenStack Platform 10 Instances and Images Guide

34

You can also view statistics for a specific period of time by specifying the date range and
clicking Submit.

Per Hypervisor
If logged in as an administrator, you can also view information for all projects. Click Admin >
System and select one of the tabs. For example, the Resource Usage tab offers a way to view
reports for a distinct time period. You might also click Hypervisors to view your current vCPU,
memory, or disk statistics.

NOTE

The vCPU Usage value (x of y) reflects the number of total vCPUs of all virtual
machines (x) and the total number of hypervisor cores (y).

3.1.7. Deleting an instance

1. In the dashboard, select Project > Compute > Instances, and select your instance.

2. Click Terminate Instance.

NOTE

Deleting an instance does not delete its attached volumes; you must do this separately
(see Delete a Volume in the Storage Guide).

3.1.8. Managing multiple instances simultaneously

If you need to start multiple instances at the same time (for example, those that were down for compute
or controller maintenance) you can do so easily at Project > Compute > Instances:

1. Click the check boxes in the first column for the instances that you want to start. If you want to
select all of the instances, click the check box in the first row in the table.

2. Click More Actions above the table and select Start Instances.

Similarly, you can shut off or soft reboot multiple instances by selecting the respective actions.

3.2. CUSTOMIZING AN INSTANCE USING CLOUD-INIT

The cloud-init package uses the user data file from the metadata service to perform an action based
on the metadata. For example, you can configure the virtual machine image to create instances on boot.
The cloud-init package also provides other functionality, such as copying a public key to an account.
The process changes based on the format of the information in the user data file.

cloud-init supports different input formats for the user data file. The most commonly used are shell
scripts beginning with #! and cloud configuration files beginning with #cloud-config. The cloud-config
files use special scripts that cloud-init runs at first boot of a server.

You can pass information in a local file or a shell script using the user-data configuration file.

The following section describes the procedure to create a virtual machine in Red Hat OpenStack
Platform using a script at the first boot with the user data file. This allows you to automate the
configuration of virtual machine instances. For example, installing packages, starting certain services or
managing an instance using the puppet service.

NOTE

CHAPTER 3. VIRTUAL MACHINE INSTANCES

35

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/storage-guide/#section-delete-volume

NOTE

Make sure you install the cloud-init package and that the service is running on the image.

This section includes an example script that you can use with cloud-init to create instances using the
command line.

Example

The following example uses the contents of the user_data.file to launch an instance using a cirros
image:

nova boot --image cirros --key-name key-osp10 --flavor m1.small \ --availability-zone internal --
user-data user_data.file "Test instance"

A sample user_data.file contents are as follows:

#!/bin/bash
Example script to run at first boot via OpenStack
using the user_data and cloud-init.
KEY="key-osp10.pem"
BOOTIMG="d79afca0-ecae-4015-9255-8606bf86a3ec"
ZONE="internal"
FLAVOR="m1.small"

source ~/keystonerc_admin

for RUN in {1..2}; do
 echo "Creating VM ${RUN}""
 VMUUID=$(nova boot \
 --image "${BOOTIMG}" \
 --flavor "${FLAVOR}" \
 --availability-zone "${ZONE}" \
 --nic net-id=00000000-0000-0000-0000-000000000000 \
 --key-name "${KEY}" \
 --user-data user_data.file \
 "VPS-${RUN}-${ZONE}" | awk '/id/ {print $4}' | head -n 1);

 until [["$(nova show ${VMUUID} | awk '/status/ {print $4}')" == "ACTIVE"]]; do
 :
 done

 echo "VM ${RUN} (${VMUUID}) is active."
done

3.2.1. Example user-data files

The following section provides examples of common user-data files that you can use with the cloud-
init package.

3.2.1.1. Example user-data file to manage users and groups

To define new users on a server, use the users option as follows:

Red Hat OpenStack Platform 10 Instances and Images Guide

36

#cloud-config
users:
 - name: first_user_name
 groups: first_user_group
 passwd: first_user_password
 ...
 ...
 - name: second_user_name
 groups: second_user_group
 passwd: second_user_password
 ...
 ...

Each new user begins with a dash. Each user defines parameters in key-value pairs.

To define groups, use the groups directive:

#cloud-config
groups:
 - group1
 - group2: [user1, user2]

This directive lists a group of users you can create. You can add a sub-list of the users you want to add
to a group.

Example

The following example creates two groups - rhel and cloud-users. The rhel group includes the root
and sys users.

#cloud-config
groups:
 - rhel: [root,sys]
 - cloud-users

3.2.1.2. Example user-data file to configure SSH keys for user accounts

To configure SSH keys, use the users directive or specify the keys in the ssh_authorized_keys section
of your cloud config file as shown in the following example. The general format is as follows:

#cloud-config
ssh_authorized_keys:
 - ssh_key_1
 - ssh_key_2

You can also generate SSH keys by using the ssh_keys parameter and place them on the file system.
Using the ssh_keys parameter allows the client machine to trust a server as soon as it comes online. The
ssh_keys parameter accepts the key pairs for Rivest–Shamir–Adleman (RSA), Digital Signature
Algorithm (DSA), or Elliptic Curve Digital Signature Algorithm (ECDSA) keys using the rsa_private,
rsa_public, dsa_private, dsa_public, ecdsa_private, and ecdsa_public sub-items. For example:

#cloud-config
ssh_authorized_keys:
 - ssh-rsa your_example_key1

CHAPTER 3. VIRTUAL MACHINE INSTANCES

37

 - ssh-rsa your_example_key2

ssh_keys:
 rsa_private: |
 -----BEGIN RSA PRIVATE KEY-----
 your_rsa_private_key
 -----END RSA PRIVATE KEY-----

 rsa_public: your_rsa_public_key

 dsa_private: |
 -----BEGIN DSA PRIVATE KEY-----
 your_dsa_private_key
 -----END DSA PRIVATE KEY-----

 dsa_public: your_dsa_public_key

IMPORTANT

Formatting and line breaks are important in a private key. Make sure to use a block with a
pipe key when specifying the values. You must include the BEGIN and END key lines for
the keys to be valid.

For more examples on using Cloud config, see Cloud config examples.

3.3. MANAGING INSTANCE SECURITY

You can manage access to an instance by assigning it the correct security group (set of firewall rules)
and key pair (enables SSH user access). Further, you can assign a floating IP address to an instance to
enable external network access. The sections below outline how to create and manage key pairs,
security groups, floating IP addresses and logging in to an instance using SSH. There is also a procedure
for injecting an admin password into an instance.

For information on managing security groups, see Project Security Management in the Users and
Identity Management Guide.

3.3.1. Managing key pairs

Key pairs provide SSH access to the instances. Each time a key pair is generated, its certificate is
downloaded to the local machine and can be distributed to users. Typically, one key pair is created for
each project (and used for multiple instances).

You can also import an existing key pair into OpenStack.

3.3.1.1. Creating a key pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click Create Key Pair.

3. Specify a name in the Key Pair Name field, and click Create Key Pair.

When the key pair is created, a key pair file is automatically downloaded through the browser. Save this

Red Hat OpenStack Platform 10 Instances and Images Guide

38

http://cloudinit.readthedocs.io/en/latest/topics/examples.html
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/users-and-identity-management-guide/#project-security

When the key pair is created, a key pair file is automatically downloaded through the browser. Save this
file for later connections from external machines. For command-line SSH connections, you can load this
file into SSH by executing:

ssh-add ~/.ssh/os-key.pem

3.3.1.2. Importing a key pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click Import Key Pair.

3. Specify a name in the Key Pair Name field, and copy and paste the contents of your public key
into the Public Key field.

4. Click Import Key Pair.

3.3.1.3. Deleting a key pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click the key’s Delete Key Pair button.

3.3.2. Creating a security group

Security groups are sets of IP filter rules that can be assigned to project instances, and which define
networking access to the instance. Security group are project specific; project members can edit the
default rules for their security group and add new rule sets.

1. In the dashboard, select the Project tab, and click Compute > Access & Security.

2. On the Security Groups tab, click + Create Security Group.

3. Provide a name and description for the group, and click Create Security Group.

For more information on managing project security, see Project Security Management in the Users and
Identity Management Guide.

3.3.3. Creating, assigning, and releasing floating IP addresses

By default, an instance is given an internal IP address when it is first created. However, you can enable
access through the public network by creating and assigning a floating IP address (external address).
You can change an instance’s associated IP address regardless of the instance’s state.

Projects have a limited range of floating IP address that can be used (by default, the limit is 50), so you
should release these addresses for reuse when they are no longer needed. Floating IP addresses can
only be allocated from an existing floating IP pool, see Create Floating IP Pools in the Networking Guide.

3.3.3.1. Allocating a floating IP to the project

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click Allocate IP to Project.

3. Select a network from which to allocate the IP address in the Pool field.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

39

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/users-and-identity-management-guide/#project-security
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/networking-guide/#create_floating_ip_pools

4. Click Allocate IP.

3.3.3.2. Assigning a floating IP

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click the address' Associate button.

3. Select the address to be assigned in the IP address field.

NOTE

If no addresses are available, you can click the + button to create a new address.

4. Select the instance to be associated in the Port to be Associated field. An instance can only be
associated with one floating IP address.

5. Click Associate.

3.3.3.3. Releasing a floating IP

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click the address' menu arrow (next to the Associate/Disassociate
button).

3. Select Release Floating IP.

3.3.4. Logging in to an instance

Prerequisites:

Ensure that the instance’s security group has an SSH rule (see Project Security Management in
the Users and Identity Management Guide).

Ensure the instance has a floating IP address (external address) assigned to it (see
Section 3.3.3, “Creating, assigning, and releasing floating IP addresses”).

Obtain the instance’s key-pair certificate. The certificate is downloaded when the key pair is
created; if you did not create the key pair yourself, ask your administrator (see Section 3.3.1,
“Managing key pairs”).

To first load the key pair file into SSH, and then use ssh without naming it:

1. Change the permissions of the generated key-pair certificate.

$ chmod 600 os-key.pem

2. Check whether ssh-agent is already running:

ps -ef | grep ssh-agent

3. If not already running, start it up with:

Red Hat OpenStack Platform 10 Instances and Images Guide

40

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/users-and-identity-management-guide/#project-security

eval `ssh-agent`

4. On your local machine, load the key-pair certificate into SSH. For example:

$ ssh-add ~/.ssh/os-key.pem

5. You can now SSH into the file with the user supplied by the image.

The following example command shows how to SSH into the Red Hat Enterprise Linux guest image with
the user cloud-user:

$ ssh cloud-user@192.0.2.24

NOTE

You can also use the certificate directly. For example:

$ ssh -i /myDir/os-key.pem cloud-user@192.0.2.24

3.3.5. Injecting an admin password into an instance

You can inject an admin (root) password into an instance using the following procedure.

1. In the /etc/openstack-dashboard/local_settings file, set the change_set_password
parameter value to True.

can_set_password: True

2. In the /etc/nova/nova.conf file, set the inject_password parameter to True.

inject_password=true

3. Restart the Compute service.

service nova-compute restart

When you use the nova boot command to launch a new instance, the output of the command displays
an adminPass parameter. You can use this password to log into the instance as the root user.

The Compute service overwrites the password value in the /etc/shadow file for the root user. This
procedure can also be used to activate the root account for the KVM guest images. For more
information on how to use KVM guest images, see Section 1.2.1.1, “Using a KVM guest image with Red
Hat OpenStack Platform”

You can also set a custom password from the dashboard. To enable this, run the following command
after you have set can_set_password parameter to true.

systemctl restart httpd.service

The newly added admin password fields are as follows:

CHAPTER 3. VIRTUAL MACHINE INSTANCES

41

These fields can be used when you launch or rebuild an instance.

3.4. MANAGING FLAVORS

Each created instance is given a flavor (resource template), which determines the instance’s size and
capacity. Flavors can also specify secondary ephemeral storage, swap disk, metadata to restrict usage,
or special project access (none of the default flavors have these additional attributes defined).

Table 3.3. Default Flavors

Name vCPUs RAM Root Disk Size

m1.tiny 1 512 MB 1 GB

m1.small 1 2048 MB 20 GB

m1.medium 2 4096 MB 40 GB

m1.large 4 8192 MB 80 GB

m1.xlarge 8 16384 MB 160 GB

The majority of end users will be able to use the default flavors. However, you can create and manage
specialized flavors. For example, you can:

Red Hat OpenStack Platform 10 Instances and Images Guide

42

Change default memory and capacity to suit the underlying hardware needs.

Add metadata to force a specific I/O rate for the instance or to match a host aggregate.

NOTE

Behavior set using image properties overrides behavior set using flavors (for more
information, see Section 1.2, “Managing images”).

3.4.1. Updating configuration permissions

By default, only administrators can create flavors or view the complete flavor list (select Admin > System
> Flavors). To allow all users to configure flavors, specify the following in the /etc/nova/policy.json file
(nova-api server):

"compute_extension:flavormanage": "",

3.4.2. Creating a flavor

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click Create Flavor, and specify the following fields:

Table 3.4. Flavor Options

Tab Field Description

Flavor Information Name Unique name.

 ID Unique ID. The default value,
auto, generates a UUID4
value, but you can also
manually specify an integer or
UUID4 value.

 VCPUs Number of virtual CPUs.

 RAM (MB) Memory (in megabytes).

 Root Disk (GB) Ephemeral disk size (in
gigabytes); to use the native
image size, specify 0. This disk
is not used if Instance Boot
Source=Boot from Volume.

 Epehemeral Disk (GB) Secondary ephemeral disk size
(in gigabytes) available to an
instance. This disk is destroyed
when an instance is deleted.

The default value is 0, which
implies that no ephemeral disk
is created.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

43

 Swap Disk (MB) Swap disk size (in megabytes).

Flavor Access Selected Projects Projects which can use the
flavor. If no projects are
selected, all projects have
access (Public=Yes).

Tab Field Description

3. Click Create Flavor.

3.4.3. Updating general attributes

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Edit Flavor button.

3. Update the values, and click Save.

3.4.4. Updating flavor metadata

In addition to editing general attributes, you can add metadata to a flavor (extra_specs), which can help
fine-tune instance usage. For example, you might want to set the maximum-allowed bandwidth or disk
writes.

Pre-defined keys determine hardware support or quotas. Pre-defined keys are limited by the
hypervisor you are using (for libvirt, see Table 3.5, “Libvirt Metadata”).

Both pre-defined and user-defined keys can determine instance scheduling. For example, you
might specify SpecialComp=True; any instance with this flavor can then only run in a host
aggregate with the same key-value combination in its metadata (see Section 3.5, “Managing
host aggregates”).

3.4.4.1. Viewing metadata

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Metadata link (Yes or No). All current values are listed on the right-hand side
under Existing Metadata.

3.4.4.2. Adding metadata

You specify a flavor’s metadata using a key/value pair.

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Metadata link (Yes or No). All current values are listed on the right-hand side
under Existing Metadata.

3. Under Available Metadata, click on the Other field, and specify the key you want to add (see
Table 3.5, “Libvirt Metadata”).

4. Click the + button; you can now view the new key under Existing Metadata.

Red Hat OpenStack Platform 10 Instances and Images Guide

44

5. Fill in the key’s value in its right-hand field.

6. When finished with adding key-value pairs, click Save.

Table 3.5. Libvirt Metadata

Key Description

hw:action Action that configures support limits per instance. Valid actions are:

cpu_max_sockets - Maximum supported CPU sockets.

cpu_max_cores - Maximum supported CPU cores.

cpu_max_threads - Maximum supported CPU threads.

cpu_sockets - Preferred number of CPU sockets.

cpu_cores - Preferred number of CPU cores.

cpu_threads - Preferred number of CPU threads.

serial_port_count - Maximum serial ports per instance.

Example: hw:cpu_max_sockets=2

CHAPTER 3. VIRTUAL MACHINE INSTANCES

45

hw:NUMA_def Definition of NUMA topology for the instance. For flavors whose RAM and
vCPU allocations are larger than the size of NUMA nodes in the compute
hosts, defining NUMA topology enables hosts to better utilize NUMA and
improve performance of the guest OS. NUMA definitions defined through the
flavor override image definitions. Valid definitions are:

numa_nodes - Number of NUMA nodes to expose to the instance.
Specify '1' to ensure image NUMA settings are overridden.

numa_mempolicy - Memory allocation policy. Valid policies are:

strict - Mandatory for the instance’s RAM allocations to come
from the NUMA nodes to which it is bound (default if
numa_nodes is specified).

preferred - The kernel can fall back to using an alternative
node. Useful when the numa_nodes is set to '1'.

numa_cpus.0 - Mapping of vCPUs N-M to NUMA node 0 (comma-
separated list).

numa_cpus.1 - Mapping of vCPUs N-M to NUMA node 1 (comma-
separated list).

numa_mem.0 - Mapping N MB of RAM to NUMA node 0.

numa_mem.1 - Mapping N MB of RAM to NUMA node 1.

numa_cpu.N and numa_mem.N are only valid if numa_nodes is
set. Additionally, they are only required if the instance’s NUMA nodes
have an asymetrical allocation of CPUs and RAM (important for some
NFV workloads).

NOTE

If the values of numa_cpu or numa_mem.N specify more
than that available, an exception is raised.

Example when the instance has 8 vCPUs and 4GB RAM:

hw:numa_nodes=2

hw:numa_cpus.0=0,1,2,3,4,5

hw:numa_cpus.1=6,7

hw:numa_mem.0=3072

hw:numa_mem.1=1024

The scheduler looks for a host with 2 NUMA nodes with the ability to run 6
CPUs + 3072 MB, or 3 GB, of RAM on one node, and 2 CPUS + 1024 MB, or 1
GB, of RAM on another node. If a host has a single NUMA node with capability
to run 8 CPUs and 4 GB of RAM, it will not be considered a valid match. The
same logic is applied in the scheduler regardless of the numa_mempolicy
setting.

Key Description

Red Hat OpenStack Platform 10 Instances and Images Guide

46

hw:watchdog_action An instance watchdog device can be used to trigger an action if the instance
somehow fails (or hangs). Valid actions are:

disabled - The device is not attached (default value).

pause - Pause the instance.

poweroff - Forcefully shut down the instance.

reset - Forcefully reset the instance.

none - Enable the watchdog, but do nothing if the instance fails.

Example: hw:watchdog_action=poweroff

hw_rng:action A random-number generator device can be added to an instance using its
image properties (see hw_rng_model in the "Command-Line Interface
Reference" in Red Hat OpenStack Platform documentation).

If the device has been added, valid actions are:

allowed - If True, the device is enabled; if False, disabled. By
default, the device is disabled.

rate_bytes - Maximum number of bytes the instance’s kernel can
read from the host to fill its entropy pool every rate_period (integer).

rate_period - Duration of the read period in seconds (integer).

Example: hw_rng:allowed=True.

hw_video:ram_max_mb Maximum permitted RAM to be allowed for video devices (in MB).

Example: hw:ram_max_mb=64

quota:option Enforcing limit for the instance. Valid options are:

cpu_period - Time period for enforcing cpu_quota (in
microseconds). Within the specified cpu_period, each vCPU cannot
consume more than cpu_quota of runtime. The value must be in
range [1000, 1000000]; '0' means 'no value'.

cpu_quota - Maximum allowed bandwidth (in
microseconds) for the vCPU in each `cpu_period. The value
must be in range [1000, 18446744073709551]. '0' means 'no value';
a negative value means that the vCPU is not controlled. cpu_quota
and cpu_period can be used to ensure that all vCPUs run at the
same speed.

cpu_shares - Share of CPU time for the domain. The value only has
meaning when weighted against other machine values in the same
domain. That is, an instance with a flavor with '200' will get twice as
much machine time as an instance with '100'.

disk_read_bytes_sec - Maximum disk reads in bytes per second.

disk_read_iops_sec - Maximum read I/O operations per second.

Key Description

CHAPTER 3. VIRTUAL MACHINE INSTANCES

47

disk_write_bytes_sec - Maximum disk writes in bytes per second.

disk_write_iops_sec - Maximum write I/O operations per second.

disk_total_bytes_sec - Maximum total throughput limit in bytes
per second.

disk_total_iops_sec - Maximum total I/O operations per second.

vif_inbound_average - Desired average of incoming traffic.

vif_inbound_burst - Maximum amount of traffic that can be
received at vif_inbound_peak speed.

vif_inbound_peak - Maximum rate at which incoming traffic can
be received.

vif_outbound_average - Desired average of outgoing traffic.

vif_outbound_burst - Maximum amount of traffic that can be
sent at vif_outbound_peak speed.

vif_outbound_peak - Maximum rate at which outgoing traffic can
be sent.

Example: quota:vif_inbound_average=10240

In addition, the VMware driver supports the following quota options, which
control upper and lower limits for CPUs, RAM, disks, and networks, as well as
shares, which can be used to control relative allocation of available resources
among tenants:

cpu_limit - Maximum CPU frequency available to a virtual machine
(in MHz).

cpu_reservation - Guaranteed minimum amount of CPU
resources available to a virtual machine (in MHz).

cpu_shares_level - CPU allocation level (shares) in the case of
contention. Possible values are high, normal, low, and custom.

cpu_shares_share - The number of allocated CPU shares.
Applicable when cpu_shares_level is set to custom.

memory_limit - Maximum amount of RAM available to a virtual
machine (in MB).

memory_reservation - Guaranteed minimum amount of RAM
available to a virtual machine (in MB).

memory_shares_level - RAM allocation level (shares) in the case
of contention. Possible values are high, normal, low, and custom.

memory_shares_share - The number of allocated RAM shares.
Applicable when memory_shares_level is set to custom.

disk_io_limit - Maximum I/O utilization by a virtual machine (in I/O
operations per second).

disk_io_reservation - Guaranteed minimum amount of disk
resources available to a virtual machine (in I/O operations per
second).

disk_io_shares_level - I/O allocation level (shares) in the case of
contention. Possible values are high, normal, low, and custom.

Key Description

Red Hat OpenStack Platform 10 Instances and Images Guide

48

disk_io_shares_share - The number of allocated I/O shares.
Applicable when disk_io_shares_level is set to custom.

vif_limit - Maximum network bandwidth available to a virtual
network adapter (in Mbps).

vif_reservation - Guaranteed minimum network bandwidth
available to a virtual network adapter (in Mbps).

vif_shares_level - Network bandwidth allocation level (shares) in
the case of contention. Possible values are high, normal, low, and
custom.

vif_shares_share - The number of allocated network bandwidth
shares. Applicable when vif_shares_level is set to custom.

Key Description

3.5. MANAGING HOST AGGREGATES

A single Compute deployment can be partitioned into logical groups for performance or administrative
purposes. OpenStack uses the following terms:

Host aggregates - A host aggregate creates logical units in a OpenStack deployment by
grouping together hosts. Aggregates are assigned Compute hosts and associated metadata; a
host can be in more than one host aggregate. Only administrators can see or create host
aggregates.
An aggregate’s metadata is commonly used to provide information for use with the Compute
scheduler (for example, limiting specific flavors or images to a subset of hosts). Metadata
specified in a host aggregate will limit the use of that host to any instance that has the same
metadata specified in its flavor.

Administrators can use host aggregates to handle load balancing, enforce physical isolation (or
redundancy), group servers with common attributes, or separate out classes of hardware. When
you create an aggregate, a zone name must be specified, and it is this name which is presented
to the end user.

Availability zones - An availability zone is the end-user view of a host aggregate. An end user
cannot view which hosts make up the zone, nor see the zone’s metadata; the user can only see
the zone’s name.
End users can be directed to use specific zones which have been configured with certain
capabilities or within certain areas.

3.5.1. Enabling host aggregate scheduling

By default, host-aggregate metadata is not used to filter instance usage. You must update the Compute
scheduler’s configuration to enable metadata usage:

1. Edit the /etc/nova/nova.conf file (you must have either root or nova user permissions).

2. Ensure that the scheduler_default_filters parameter contains:

AggregateInstanceExtraSpecsFilter for host aggregate metadata. For example:

scheduler_default_filters=AggregateInstanceExtraSpecsFilter,RetryFilter,RamFilter,Comput
eFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,CoreFilter

NOTE

CHAPTER 3. VIRTUAL MACHINE INSTANCES

49

NOTE

Scoped specifications must be used for setting flavor extra_specs when
specifying both AggregateInstanceExtraSpecsFilter and
ComputeCapabilitiesFilter filters as values of the same
scheduler_default_filters parameter, otherwise the
ComputeCapabilitiesFilter will fail to select a suitable host. See Table 3.7,
“Scheduling Filters” for further details.

AvailabilityZoneFilter for availability zone host specification when launching an instance.
For example:

scheduler_default_filters=AvailabilityZoneFilter,RetryFilter,RamFilter,ComputeFilter,Comput
eCapabilitiesFilter,ImagePropertiesFilter,CoreFilter

3. Save the configuration file.

3.5.2. Viewing availability zones or host aggregates

As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently defined
aggregates are listed in the Host Aggregates section; all zones are in the Availability Zones section.

3.5.3. Adding a host aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. Click Create Host Aggregate.

3. Add a name for the aggregate in the Name field, and a name by which the end user should see it
in the Availability Zone field.

4. Click Manage Hosts within Aggregate.

5. Select a host for use by clicking its + icon.

6. Click Create Host Aggregate.

3.5.4. Updating a host aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. To update the instance’s Name or Availability zone:

Click the aggregate’s Edit Host Aggregate button.

Update the Name or Availability Zone field, and click Save.

3. To update the instance’s Assigned hosts:

Click the aggregate’s arrow icon under Actions.

Click Manage Hosts.

Red Hat OpenStack Platform 10 Instances and Images Guide

50

Change a host’s assignment by clicking its + or - icon.

When finished, click Save.

4. To update the instance’s Metatdata:

Click the aggregate’s arrow icon under Actions.

Click the Update Metadata button. All current values are listed on the right-hand side under
Existing Metadata.

Under Available Metadata, click on the Other field, and specify the key you want to add.
Use predefined keys (see Table 3.6, “Host Aggregate Metadata”) or add your own (which
will only be valid if exactly the same key is set in an instance’s flavor).

Click the + button; you can now view the new key under Existing Metadata.

NOTE

Remove a key by clicking its - icon.

Click Save.

Table 3.6. Host Aggregate Metadata

Key Description

cpu_allocation_ratio Sets allocation ratio of virtual CPU to physical CPU. Depends on the
AggregateCoreFilter filter being set for the Compute scheduler.

disk_allocation_ratio Sets allocation ratio of Virtual disk to physical disk. Depends on the
AggregateDiskFilter filter being set for the Compute scheduler.

filter_tenant_id If specified, the aggregate only hosts this tenant (project). Depends
on the AggregateMultiTenancyIsolation filter being set for the
Compute scheduler.

ram_allocation_ratio Sets allocation ratio of virtual RAM to physical RAM. Depends on the
AggregateRamFilter filter being set for the Compute scheduler.

3.5.5. Deleting a host aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. Remove all assigned hosts from the aggregate:

a. Click the aggregate’s arrow icon under Actions.

b. Click Manage Hosts.

c. Remove all hosts by clicking their - icon.

d. When finished, click Save.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

51

3. Click the aggregate’s arrow icon under Actions.

4. Click Delete Host Aggregate in this and the next dialog screen.

3.6. SCHEDULING HOSTS AND CELLS

The Compute scheduling service determines on which cell or host (or host aggregate), an instance will
be placed. As an administrator, you can influence where the scheduler will place an instance. For
example, you might want to limit scheduling to hosts in a certain group or with the right RAM.

You can configure the following components:

Filters - Determine the initial set of hosts on which an instance might be placed (see
Section 3.6.1, “Configuring scheduling filters”).

Weights - When filtering is complete, the resulting set of hosts are prioritized using the
weighting system. The highest weight has the highest priority (see Section 3.6.2, “Configuring
scheduling weights”).

Scheduler service - There are a number of configuration options in the /etc/nova/nova.conf file
(on the scheduler host), which determine how the scheduler executes its tasks, and handles
weights and filters. There is both a host and a cell scheduler. For a list of these options, see the
Configuration Reference guide.

In the following diagram, both host 1 and 3 are eligible after filtering. Host 1 has the highest weight and
therefore has the highest priority for scheduling.

3.6.1. Configuring scheduling filters

You define which filters you would like the scheduler to use in the scheduler_default_filters option
(/etc/nova/nova.conf file; you must have either root or nova user permissions). Filters can be added or
removed.

By default, the following filters are configured to run in the scheduler:

scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,ComputeFilter,ComputeCapabilities
Filter,ImagePropertiesFilter,ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter

Some filters use information in parameters passed to the instance in:

Red Hat OpenStack Platform 10 Instances and Images Guide

52

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/configuration-reference/

The nova boot command, see Command-Line Interface Reference guide.

The instance’s flavor (see Section 3.4.4, “Updating flavor metadata”)

The instance’s image (see Appendix A, Image Configuration Parameters).

The following table lists all the available filters.

Table 3.7. Scheduling Filters

Filter Description

AggregateCoreFilter Uses the host-aggregate metadata key cpu_allocation_ratio to filter out
hosts exceeding the over-commit ratio (virtual CPU to physical CPU allocation
ratio); only valid if a host aggregate is specified for the instance.

 If this ratio is not set, the filter uses the cpu_allocation_ratio value in the
`/etc/nova/nova.conf file. The default value is 16.0 (16 virtual CPU can be
allocated per physical CPU).

AggregateDiskFilter Uses the host-aggregate metadata key disk_allocation_ratio to filter out
hosts exceeding the over-commit ratio (virtual disk to physical disk allocation
ratio); only valid if a host aggregate is specified for the instance.

 If this ratio is not set, the filter uses the disk_allocation_ratio value in the
/etc/nova/nova.conf file. The default value is 1.0 (one virtual disk can be
allocated for each physical disk).

AggregateImagePropertiesI
solation

Only passes hosts in host aggregates whose metadata matches the instance’s
image metadata; only valid if a host aggregate is specified for the instance.
For more information, see Section 1.2.1, “Creating an image”.

AggregateInstanceExtraSp
ecsFilter

Metadata in the host aggregate must match the host’s flavor metadata. For
more information, see Section 3.4.4, “Updating flavor metadata”.

This filter can only be specified in the same scheduler_default_filters
parameter as ComputeCapabilitiesFilter when you scope your flavor
extra_specs keys by prefixing them with the correct namespace:

ComputeCapabilitiesFilter namespace = "capabilities:"

AggregateInstanceExtraSpecsFilter namespace =
"aggregate_instance_extra_specs:"

AggregateMultiTenancyIsol
ation

A host with the specified filter_tenant_id can only contain instances from
that tenant (project).

NOTE

The tenant can still place instances on other hosts.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

53

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/command-line-interface-reference/

AggregateRamFilter Uses the host-aggregate metadata key ram_allocation_ratio to filter out
hosts exceeding the over commit ratio (virtual RAM to physical RAM allocation
ratio); only valid if a host aggregate is specified for the instance.

 If this ratio is not set, the filter uses the ram_allocation_ratio value in the
/etc/nova/nova.conf file. The default value is 1.5 (1.5 RAM can be allocated
for each physical RAM).

AllHostsFilter Passes all available hosts (however, does not disable other filters).

AvailabilityZoneFilter Filters using the instance’s specified availability zone.

ComputeCapabilitiesFilter Ensures Compute metadata is read correctly. Anything before the : is read as a
namespace. For example, quota:cpu_period uses quota as the namespace
and cpu_period as the key.

ComputeFilter Passes only hosts that are operational and enabled.

CoreFilter Uses the cpu_allocation_ratio in the /etc/nova/nova.conf file to filter out
hosts exceeding the over commit ratio (virtual CPU to physical CPU allocation
ratio). The default value is 16.0 (16 virtual CPU can be allocated per physical
CPU).

DifferentHostFilter Enables an instance to build on a host that is different from one or more
specified hosts. Specify different hosts using the nova boot option --
different_host option.

DiskFilter Uses disk_allocation_ratio in the /etc/nova/nova.conf file to filter out hosts
exceeding the over commit ratio (virtual disk to physical disk allocation ratio).
The default value is 1.0 (one virtual disk can be allocated for each physical
disk).

ImagePropertiesFilter Only passes hosts that match the instance’s image properties. For more
information, see Section 1.2.1, “Creating an image”.

IsolatedHostsFilter Passes only isolated hosts running isolated images that are specified in the
/etc/nova/nova.conf file using isolated_hosts and isolated_images
(comma-separated values).

JsonFilter Recognises and uses an instance’s custom JSON filters:

Valid operators are: =, <, >, in, ⇐, >=, not, or, and

Recognised variables are: $free_ram_mb, $free_disk_mb,
$total_usable_ram_mb, $vcpus_total, $vcpus_used

Filter Description

Red Hat OpenStack Platform 10 Instances and Images Guide

54

 The filter is specfied as a query hint in the nova boot command. For example:

--hint query='['>=', '$free_disk_mb', 200 * 1024]'

MetricFilter Filters out hosts with unavailable metrics.

NUMATopologyFilter Filters out hosts based on its NUMA topology; if the instance has no topology
defined, any host can be used. The filter tries to match the exact NUMA
topology of the instance to those of the host (it does not attempt to pack the
instance onto the host). The filter also looks at the standard over-subscription
limits for each NUMA node, and provides limits to the compute host
accordingly.

RamFilter Uses ram_allocation_ratio in the /etc/nova/nova.conf file to filter out
hosts exceeding the over commit ratio (virtual RAM to physical RAM allocation
ratio). The default value is 1.5 (1.5 RAM can be allocated for each physical
RAM).

RetryFilter Filters out hosts that have failed a scheduling attempt; valid if
scheduler_max_attempts is greater than zero (by
default,scheduler_max_attempts=3).

SameHostFilter Passes one or more specified hosts; specify hosts for the instance using the --
hint same_host option for nova boot.

ServerGroupAffinityFilter Only passes hosts for a specific server group:

Give the server group the affinity policy (nova server-group-create -
-policy affinity groupName).

Build the instance with that group (nova boot option --hint
group=UUID)

ServerGroupAntiAffinityFilt
er

Only passes hosts in a server group that do not already host an instance:

Give the server group the anti-affinity policy (nova server-group-
create --policy anti-affinity groupName).

Build the instance with that group (nova boot option --hint
group=UUID).

SimpleCIDRAffinityFilter Only passes hosts on the specified IP subnet range specified by the instance’s
cidr and build_new_host_ip hints. Example:

--hint build_near_host_ip=192.0.2.0 --hint cidr=/24

Filter Description

3.6.2. Configuring scheduling weights

Both cells and hosts can be weighted for scheduling; the host or cell with the largest weight (after

CHAPTER 3. VIRTUAL MACHINE INSTANCES

55

Both cells and hosts can be weighted for scheduling; the host or cell with the largest weight (after
filtering) is selected. All weighers are given a multiplier that is applied after normalising the node’s
weight. A node’s weight is calculated as:

w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...

You can configure weight options in the scheduler host’s /etc/nova/nova.conf file (must have either
root or nova user permissions).

3.6.2.1. Configure Weight Options for Hosts

You can define the host weighers you would like the scheduler to use in the [DEFAULT]
scheduler_weight_classes option. Valid weighers are:

nova.scheduler.weights.ram - Weighs the host’s available RAM.

nova.scheduler.weights.metrics - Weighs the host’s metrics.

nova.scheduler.weights.affinity - Weighs the host’s proximity to other hosts in the given
server group.

nova.scheduler.weights.all_weighers - Uses all host weighers (default).

Table 3.8. Host Weight Options

Weigher Option Description

All [DEFAULT]
scheduler_host_subset
_size

Defines the subset size from which a host is selected
(integer); must be at least 1. A value of 1 selects the first
host returned by the weighing functions. Any value less than
1 is ignored and 1 is used instead (integer value).

affinity [default]
soft_affinity_weig
ht_multiplier

Used for weighing hosts for group soft-affinity. Should be a
positive floating-point number, because a negative value
results in the opposite behavior, which is normally controlled
by soft_anti_affinity_weight_multiplier.

affinity [default]
soft_anti_affinity_
weight_multiplier

Used for weighing hosts for group soft-anti-affinity. Should
be a positive floating-point number, because a negative
value results in the opposite behavior, which is normally
controlled by soft_affinity_weight_multiplier.

metrics [metrics] required Specifies how to handle metrics in [metrics]
weight_setting that are unavailable:

True- Metrics are required; if unavailable, an
exception is raised. To avoid the exception, use the
MetricFilter filter in the
scheduler_default_filters option.

False - The unavailable metric is treated as a
negative factor in the weighing process; the
returned value is set by weight_of_unavailable.

Red Hat OpenStack Platform 10 Instances and Images Guide

56

metrics [metrics]
weight_of_unavail
able

Used as the weight if any metric in [metrics]
weight_setting is unavailable; valid if required=False.

metrics [metrics]
weight_multiplier

Mulitplier used for weighing metrics. By default,
weight_multiplier=1.0 and spreads instances across
possible hosts. If this value is negative, the host with lower
metrics is prioritized, and instances are stacked in hosts.

metrics [metrics]
weight_setting

Specifies metrics and the ratio with which they are weighed;
use a comma-separated list of metric=ratio pairs. Valid
metric names are:

cpu.frequency - Current CPU frequency

cpu.user.time - CPU user mode time

cpu.kernel.time - CPU kernel time

cpu.idle.time - CPU idle time

cpu.iowait.time - CPU I/O wait time

cpu.user.percent - CPU user mode percentage

cpu.kernel.percent - CPU kernel percentage

cpu.idle.percent - CPU idle percentage

cpu.iowait.percent - CPU I/O wait percentage

cpu.percent - Generic CPU utilization

Example: weight_setting=cpu.user.time=1.0

ram [DEFAULT]
ram_weight_multi
plier

Multiplier for RAM (floating point). By default,
ram_weight_multiplier=1.0 and spreads instances
across possible hosts. If this value is negative, the host with
less RAM is prioritized, and instances are stacked in hosts.

Weigher Option Description

3.6.2.2. Configure Weight Options for Cells

You define which cell weighers you would like the scheduler to use in the [cells]
scheduler_weight_classes option (/etc/nova/nova.conf file; you must have either root or nova user
permissions).

NOTE

The use of cells is available in this release as a Technology Preview , and therefore is not
fully supported by Red Hat. It should only be used for testing, and should not be deployed
in a production environment. For more information about Technology Preview features,
see Scope of Coverage Details.

CHAPTER 3. VIRTUAL MACHINE INSTANCES

57

https://access.redhat.com/support/offerings/production/scope_moredetail

Valid weighers are:

nova.cells.weights.all_weighers - Uses all cell weighers(default).

nova.cells.weights.mute_child - Weighs whether a child cell has not sent capacity or capability
updates for some time.

nova.cells.weights.ram_by_instance_type - Weighs the cell’s available RAM.

nova.cells.weights.weight_offset - Evaluates a cell’s weight offset.

NOTE

A cell’s weight offset is specified using --woffset `in the `nova-manage cell
create command.

Table 3.9. Cell Weight Options

Weighers Option Description

mute_child [cells] mute_weight_multiplier Multiplier for hosts which have
been silent for some time
(negative floating point). By
default, this value is -10.0.

mute_child [cells] mute_weight_value Weight value given to silent hosts
(positive floating point). By
default, this value is 1000.0.

ram_by_instance_type [cells] ram_weight_multiplier Multiplier for weighing RAM
(floating point). By default, this
value is 1.0, and spreads instances
across possible cells. If this value
is negative, the cell with fewer
RAM is prioritized, and instances
are stacked in cells.

weight_offset [cells]
offset_weight_multiplier

Multiplier for weighing cells
(floating point). Enables the
instance to specify a preferred
cell (floating point) by setting its
weight offset to
999999999999999 (highest
weight is prioritized). By default,
this value is 1.0.

3.7. EVACUATING INSTANCES

If you want to move an instance from a dead or shut-down compute node to a new host server in the
same environment (for example, because the server needs to be swapped out), you can evacuate it
using nova evacuate.

An evacuation is only useful if the instance disks are on shared storage or if the instance disks

Red Hat OpenStack Platform 10 Instances and Images Guide

58

An evacuation is only useful if the instance disks are on shared storage or if the instance disks
are Block Storage volumes. Otherwise, the disks will not be accessible and cannot be accessed
by the new compute node.

An instance can only be evacuated from a server if the server is shut down; if the server is not
shut down, the evacuate command will fail.

NOTE

If you have a functioning compute node, and you want to:

Make a static copy (not running) of an instance for backup purposes or to copy
the instance to a different environment, make a snapshot using nova image-
create (see Chapter 2. How to Migrate a Static Instance). Images created using
nova image-create are only usable by nova (and not glance).

Move an instance in a static state (not running) to a host in the same
environment (shared storage not needed), migrate it using nova migrate (see
Migrate a Static Instance).

Move an instance in a live state (running) to a host in the same environment,
migrate it using nova live-migration (see Migrate a Live (running) Instance).

3.7.1. Evacuating one instance

1. Evacuate an instance using:

nova evacuate [--password pass] instance_name [target_host]

Where:

--password - Admin password to set for the evacuated instance. If a password is not
specified, a random password is generated and output when evacuation is complete.

instance_name - Name of the instance to be evacuated.

target_host - Host to which the instance is evacuated; if you do not specify the host, the
Compute scheduler selects one for you. You can find possible hosts using:

nova host-list | grep compute

For example:

nova evacuate myDemoInstance Compute2_OnEL7.myDomain

3.7.2. Evacuating all instances

Evacuate all instances on a specified host using:

nova host-evacuate [--target_host <target_host>] [--force] <host>

Where:

<target_host> - The host the instance is evacuated to. If you do not specify the host, the

CHAPTER 3. VIRTUAL MACHINE INSTANCES

59

https://access.redhat.com/documentation/en/red-hat-openstack-platform/9/paged/migrating-instances/chapter-2-how-to-migrate-a-static-instance
https://access.redhat.com/articles/1265613
https://access.redhat.com/articles/1258893

<target_host> - The host the instance is evacuated to. If you do not specify the host, the
Compute scheduler selects one for you. You can find possible hosts using the following
command:

nova host-list | grep compute

<host> - Name of the host to be evacuated.

For example:

nova host-evacuate --target_host Compute2_OnEL7.localdomain myDemoHost.localdomain

3.7.3. Configuring shared storage

If you are using shared storage, this procedure exports the instances directory for the Compute service
to the two nodes, and ensures the nodes have access. The directory path is set in the state_path and
instances_path parameters in the /etc/nova/nova.conf file. This procedure uses the default value,
which is /var/lib/nova/instances. Only users with root access can set up shared storage.

1. On the controller host:

a. Ensure the /var/lib/nova/instances directory has read-write access by the Compute service
user (this user must be the same across controller and nodes). For example:

drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 instances

b. Add the following lines to the /etc/exports file; switch out node1_IP and node2_IP for the IP
addresses of the two compute nodes:

/var/lib/nova/instances (rw,sync,fsid=0,no_root_squash)
/var/lib/nova/instances (rw,sync,fsid=0,no_root_squash)

c. Export the /var/lib/nova/instances directory to the compute nodes.

exportfs -avr

d. Restart the NFS server:

systemctl restart nfs-server

2. On each compute node:

a. Ensure the /var/lib/nova/instances directory exists locally.

b. Add the following line to the /etc/fstab file:

:/var/lib/nova/instances /var/lib/nova/instances nfs4 defaults 0 0

c. Mount the controller’s instance directory (all devices listed in /etc/fstab):

mount -a -v

d. Ensure qemu can access the directory’s images:

Red Hat OpenStack Platform 10 Instances and Images Guide

60

ls -ld /var/lib/nova/instances
drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 /var/lib/nova/instances

e. Ensure that the node can see the instances directory with:

drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 /var/lib/nova/instances

NOTE

You can also run the following to view all mounted devices:

df -k

3.8. MANAGING INSTANCE SNAPSHOTS

An instance snapshot allows you to create a new image from an instance. This is very convenient for
upgrading base images or for taking a published image and customizing it for local use.

The difference between an image that you upload directly to the Image Service and an image that you
create by snapshot is that an image created by snapshot has additional properties in the Image Service
database. These properties are found in the image_properties table and include the following
parameters:

Table 3.10. Snapshot Options

Name Value

image_type snapshot

instance_uuid <uuid of instance that was snapshotted>

base_image_ref <uuid of original image of instance that was snapshotted>

image_location snapshot

Snapshots allow you to create new instances based on that snapshot, and potentially restore an instance
to that state. Moreover, this can be performed while the instance is running.

By default, a snapshot is accessible to the users and projects that were selected while launching an
instance that the snapshot is based on.

3.8.1. Creating an instance snapshot

NOTE

CHAPTER 3. VIRTUAL MACHINE INSTANCES

61

NOTE

If you intend to use an instance snapshot as a template to create new instances, you must
ensure that the disk state is consistent. Before you create a snapshot, set the snapshot
image metadata property os_require_quiesce=yes. For example,

$ glance image-update IMAGE_ID --property os_require_quiesce=yes

For this to work, the guest should have the qemu-guest-agent package installed, and the
image should be created with the metadata property parameter
hw_qemu_guest_agent=yes set. For example,

$ glance image-create --name NAME \
--disk-format raw \
--container-format bare \
--file FILE_NAME \
--is-public True \
--property hw_qemu_guest_agent=yes \
--progress

If you unconditionally enable the hw_qemu_guest_agent=yes parameter, then you are
adding another device to the guest. This consumes a PCI slot, and will limit the number of
other devices you can allocate to the guest. It also causes Windows guests to display a
warning message about an unknown hardware device.

For these reasons, setting the hw_qemu_guest_agent=yes parameter is optional, and
the parameter should be used for only those images that require the QEMU guest agent.

1. In the dashboard, select Project > Compute > Instances.

2. Select the instance from which you want to create a snapshot.

3. In the Actions column, click Create Snapshot.

4. In the Create Snapshot dialog, enter a name for the snapshot and click Create Snapshot.
The Images category now shows the instance snapshot.

To launch an instance from a snapshot, select the snapshot and click Launch.

3.8.2. Managing a snapshot

1. In the dashboard, select Project > Images.

2. All snapshots you created, appear under the Project option.

3. For every snapshot you create, you can perform the following functions, using the dropdown list:

a. Use the Create Volume option to create a volume and entering the values for volume name,
description, image source, volume type, size and availability zone. For more information, see
Create a Volume in the Storage Guide.

b. Use the Edit Image option to update the snapshot image by updating the values for name,
description, Kernel ID, Ramdisk ID, Architecture, Format, Minimum Disk (GB), Minimum RAM
(MB), public or private. For more information, see Section 1.2.3, “Updating an image” .

Red Hat OpenStack Platform 10 Instances and Images Guide

62

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/storage-guide/#section-create-volume

c. Use the Delete Image option to delete the snapshot.

3.8.3. Rebuilding an instance to a state in a snapshot

In an event that you delete an instance on which a snapshot is based, the snapshot still stores the
instance ID. You can check this information using the nova image-list command and use the snapshot to
restore the instance.

1. In the dashboard, select Project > Compute > Images.

2. Select the snapshot from which you want to restore the instance.

3. In the Actions column, click Launch Instance.

4. In the Launch Instance dialog, enter a name and the other details for the instance and click
Launch.

For more information on launching an instance, see Section 3.1.2, “Creating an instance”.

3.8.4. Consistent Snapshots

Previously, file systems had to be quiesced manually (fsfreeze) before taking a snapshot of active
instances for consistent backups.

Compute’s libvirt driver automatically requests the QEMU Guest Agent to freeze the file systems (and
applications if fsfreeze-hook is installed) during an image snapshot. Support for quiescing file systems
enables scheduled, automatic snapshots at the block device level.

This feature is only valid if the QEMU Guest Agent is installed (qemu-ga) and the image metadata
enables the agent (hw_qemu_guest_agent=yes)

NOTE

Snapshots should not be considered a substitute for an actual system backup.

3.9. USING RESCUE MODE FOR INSTANCES

Compute has a method to reboot a virtual machine in rescue mode. Rescue mode provides a mechanism
for access when the virtual machine image renders the instance inaccessible. A rescue virtual machine
allows a user to fix their virtual machine by accessing the instance with a new root password. This feature
is useful if an instance’s filesystem is corrupted. By default, rescue mode starts an instance from the
initial image attaching the current boot disk as a secondary one.

3.9.1. Preparing an image for a rescue mode instance

Due to the fact that both the boot disk and the disk for rescue mode have same UUID, sometimes the
virtual machine can be booted from the boot disk instead of the disk for rescue mode.

To avoid this issue, you should create a new image as rescue image based on the procedure in
Section 1.2.1, “Creating an image” :

NOTE

CHAPTER 3. VIRTUAL MACHINE INSTANCES

63

NOTE

The rescue image is stored in glance and configured in the nova.conf as a default, or
you can select when you do the rescue.

3.9.1.1. Rescuing image if using ext4 filesystem

When the base image uses ext4 filesystem, you can create a rescue image from it using the following
procedure:

1. Change the UUID to a random value using the tune2fs command:

tune2fs -U random /dev/DEVICE_NODE

Here DEVICE_NODE is the root device node (for example, sda, vda, and so on).

2. Verify the details of the filesystem, including the new UUID:

tune2fs -l

3. Update the /etc/fstab to use the new UUID. You may need to repeat this for any additional
partitions you have, that are mounted in the fstab by UUID.

4. Update the /boot/grub2/grub.conf file and update the UUID parameter with the new UUID of
the root disk.

5. Shut down and use this image as your rescue image. This will cause the rescue image to have a
new random UUID that will not conflict with the instance that you are rescuing.

NOTE

The XFS filesystem cannot change the UUID of the root device on the running virtual
machine. Reboot the virtual machine until the virtual machine is launched from the disk
for rescue mode.

3.9.2. Adding the rescue image to the OpenStack Image Service

When you have completed modifying the UUID of your image, use the following commands to add the
generated rescue image to the OpenStack Image service:

1. Add the rescue image to the Image service:

glance image-create --name IMAGE_NAME --disk-format qcow2 \
 --container-format bare --is-public True --file IMAGE_PATH

Here IMAGE_NAME is the name of the image, IMAGE_PATH is the location of the image.

2. Use the image-list command to obtain the IMAGE_ID required for launching an instace in the
rescue mode.

glance image-list

You can also upload an image using the OpenStack Dashboard, see Section 1.2.2, “Uploading an image” .

Red Hat OpenStack Platform 10 Instances and Images Guide

64

3.9.3. Launching an instance in rescue mode

1. Since you need to rescue an instance with a specific image, rather than the default one, use the
--image parameter:

nova rescue --image IMAGE_ID VIRTUAL_MACHINE_ID

Here IMAGE_ID is the ID of the image you want to use and VIRTUAL_MACHINE_ID is ID of a
virtual machine that you want to rescue.

NOTE

The nova rescue command allows an instance to perform a soft shut down. This
allows the guest operating system to perform a controlled shutdown before the
instance is powered off. The shut down behavior is configured by the
shutdown_timeout parameter that can be set in the nova.conf file. The value
stands for the overall period (in seconds) a guest operation system is allowed to
complete the shutdown. The default timeout is 60 seconds.

The timeout value can be overridden on a per image basis by means of
os_shutdown_timeout that is an image metadata setting allowing different
types of operating systems to specify how much time they need to shut down
cleanly.

2. Reboot the virtual machine.

3. Confirm the status of the virtual machine is RESCUE on the controller node by using nova list
command or by using dashboard.

4. Log in to the new virtual machine dashboard by using the password for rescue mode.

You can now make the necessary changes to your instance to fix any issues.

3.9.4. Unrescuing an instance

You can unrescue the fixed instance to restart it from the boot disk.

1. Execute the following commands on the controller node.

nova unrescue VIRTUAL_MACHINE_ID

Here VIRTUAL_MACHINE_ID is ID of a virtual machine that you want to unrescue.

The status of your instance returns to ACTIVE once the unrescue operation has completed successfully.

3.10. SETTING A CONFIGURATION DRIVE FOR INSTANCES

You can use the config-drive parameter to present a read-only drive to your instances. This drive can
contain selected files that are then accessible to the instance. The configuration drive is attached to the
instance at boot, and is presented to the instance as a partition. Configuration drives are useful when
combined with cloud-init (for server bootstrapping), and when you want to pass large files to your
instances.

3.10.1. Configuration drive options

CHAPTER 3. VIRTUAL MACHINE INSTANCES

65

Set the initial configuration drive options under [DEFAULT] in nova.conf:

config_drive_format - sets the format of the drive, and accepts the options iso9660 and vfat.
By default, it uses iso9660.

force_config_drive=true - this forces the configuration drive to be presented to all instances.

mkisofs_cmd=genisoimage - specifies the command to use for ISO file creation. This value
must not be changed, as only genisoimage is supported.

3.10.2. Using a configuration drive

An instance attaches its configuration drive at boot time. This is enabled by the --config-drive option.
For example, this command creates a new instance named test-instance01 and attaches a drive
containing a file named /root/user-data.txt:

nova boot --flavor m1.tiny --config-drive true --file /root/user-data.txt=/root/user-data.txt --image
cirros test-instance01

Once the instance has booted, you can log in to it and see a file named /root/user-data.txt.

NOTE

You can use the configuration drive as a source for cloud-init information. During the
initial instance boot, cloud-init can automatically mount the configuration drive and run
the setup scripts.

Red Hat OpenStack Platform 10 Instances and Images Guide

66

CHAPTER 4. CONFIGURING CPU PINNING WITH NUMA
This chapter concerns NUMA topology awareness and the configuration of an OpenStack environment
on systems supporting this technology. With this setup, virtual machine instances are pinned to
dedicated CPU cores, which enables smarter scheduling and therefore improves guest performance.

TIP

Background information about NUMA is available in the following article: What is NUMA and how does it
work on Linux ?

The following diagram provides an example of a two-node NUMA system and the way the CPU cores
and memory pages are made available:

NOTE

Remote memory available via Interconnect is accessed only if VM1 from NUMA node 0
has a CPU core in NUMA node 1. In this case, the memory of NUMA node 1 will act as local
for the third CPU core of VM1 (for example, if VM1 is allocated with CPU 4 in the diagram
above), but at the same time, it will act as remote memory for the other CPU cores of the
same VM.

For more details on NUMA tuning with libvirt, see the Virtualization Tuning and Optimization Guide .

CHAPTER 4. CONFIGURING CPU PINNING WITH NUMA

67

https://access.redhat.com/solutions/700683
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/sect-Virtualization_Tuning_Optimization_Guide-NUMA-NUMA_and_libvirt.html

WARNING

At present, it is impossible to migrate an instance which has been configured to use
CPU pinning. For more information about this issue, see the following solution:
Instance migration fails when using cpu-pinning from a numa-cell and flavor-
property "hw:cpu_policy=dedicated".

4.1. COMPUTE NODE CONFIGURATION

The exact configuration depends on the NUMA topology of your host system; however, you must
reserve some CPU cores across all the NUMA nodes for host processes and let the rest of the CPU
cores handle your guest virtual machine instances. For example, with eight CPU cores evenly spread
across two NUMA nodes, the layout can be illustrated as follows:

Table 4.1. Example of NUMA Topology

 Node 0 Node 1

Host processes Core 0 Core 1 Core 4 Core 5

Guest processes Core 2 Core 3 Core 6 Core 7

NOTE

The number of cores to reserve for host processes should be determined by observing
the performance of the host under typical workloads.

The configuration of the Compute nodes consists of the following steps:

1. Set the vcpu_pin_set option in the /etc/nova/nova.conf file to the list of CPU cores reserved
for guest processes. Using the example above, you would set:

vcpu_pin_set=2,3,6,7

The vcpu_pin_set option will also ensure that a cpuset attribute similar to the following will be
added to the XML configuration file for libvirt:

<vcpu placement='static' cpuset='2-3,6-7'>1</vcpu>

This will pin the guest vCPUs to the listed physical CPU cores and allow the scheduler to see
only these cores.

2. Set the reserved_host_memory_mb option in the same file to the amount of RAM to reserve
for host processes. If you want to reserve 512 MB, use:

reserved_host_memory_mb=512

3. Restart the Compute service on the Compute nodes by running the following command:



Red Hat OpenStack Platform 10 Instances and Images Guide

68

https://access.redhat.com/solutions/2191071

systemctl restart openstack-nova-compute.service

4. Ensure that host processes do not run on the CPU cores reserved for guest processes by
adding the isolcpus argument to the system’s boot configuration. Use the list of CPU cores
reserved for guest processes as a parameter of this argument. Using the topology from the
example above, you would run the following command:

grubby --update-kernel=ALL --args="isolcpus=2,3,6,7"

NOTE

The cpuset option along with the isolcpus kernel argument will ensure that the
underlying compute node will not be able to use the corresponding pCPUs for
itself. The pCPUs will be dedicated to instances.

WARNING

The isolcpus argument is not fully functional on Red Hat Enterprise Linux
7.1. There is a bug which allows kernel processes to use CPUs that have
been isolated. This bug was fixed in Red Hat Enterprise Linux 7.2, however
some users have experienced performance problems.

Because of this, the isolcpus solution has been deprecated and there is a
replacement solution which relies on systemd. However, this solution is still
a work-in-progress, since it currently cannot isolate all of the kernel
threads.

To use the systemd solution, edit the /etc/systemd/system.conf file and
uncomment the following line:

CPUAffinity=1 2

The CPUAffinity option takes a list of CPU indices or ranges separated by a
whitespace.

5. Update the boot record for this change to take effect:

grub2-install /dev/device

Replace device with the name of the device that contains the boot record, usually sda.

6. Reboot the system.

4.2. SCHEDULER CONFIGURATION

1. Edit the /etc/nova/nova.conf file on each system running the OpenStack Compute Scheduler.
Find the scheduler_default_filters option, uncomment it if commented out, and add
AggregateInstanceExtraSpecFilter and NUMATopologyFilter to the list of filters. The whole



CHAPTER 4. CONFIGURING CPU PINNING WITH NUMA

69

line can look like this:

scheduler_default_filters=RetryFilter,AvailabilityZoneFilter,RamFilter,
ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,CoreFilter,
NUMATopologyFilter,AggregateInstanceExtraSpecsFilter

2. Restart the openstack-nova-scheduler service:

systemctl restart openstack-nova-scheduler.service

4.3. AGGREGATE AND FLAVOR CONFIGURATION

Prepare your OpenStack environment for running virtual machine instances pinned to specific resources
by completing the following steps on a system with the Compute command-line interface:

1. Load the admin credentials:

source ~/keystonerc_admin

2. Create an aggregate for the hosts that will receive pinning requests:

nova aggregate-create name

Replace name with a suitable name, such as performance or cpu_pinning.

3. Enable the pinning by editing the metadata for the aggregate:

nova aggregate-set-metadata 1 pinned=true

In this command, number 1 matches the ID of the aggregate created in the previous step.

4. Create an aggregate for other hosts:

nova aggregate-create name

Replace name with another suitable name, such as normal.

5. Edit the metadata for this aggregate accordingly:

nova aggregate-set-metadata 2 pinned=false

Here, number 2 is used because it comes after 1, which is the ID of the first aggregate.

6. Change your existing flavors' specifications to this one:

for i in $(nova flavor-list | cut -f 2 -d ' ' | grep -o '[0-9]*'); do nova flavor-key $i set
"aggregate_instance_extra_specs:pinned"="false"; done

7. Create a flavor for the hosts that will receive pinning requests:

nova flavor-create name ID RAM disk vCPUs

Replace name with an appropriate name, such as m1.small.performance or pinned.small, ID with

Red Hat OpenStack Platform 10 Instances and Images Guide

70

the identifier for the new flavor (6 if you have five standard flavors, or auto if you want nova to
generate a UUID), RAM with the desired amount of RAM in MB, disk with the desired disk size in
GB, and vCPUs with the number of virtual CPUs that you want to reserve.

8. Set the hw:cpu_policy specification of this flavor to dedicated so as to require dedicated
resources, which enables CPU pinning, and also the hw:cpu_thread_policy specification to
require, which places each vCPU on thread siblings:

nova flavor-key ID set hw:cpu_policy=dedicated
nova flavor-key ID set hw:cpu_thread_policy=require

Replace ID with the ID of the flavor created in the previous step.

NOTE

If the host does not have an SMT architecture or enough CPU cores with free
thread siblings, scheduling will fail. If such behavior is undesired, or if your hosts
simply do not have an SMT architecture, do not use the hw:cpu_thread_policy
specification, or set it to prefer instead of require. The (default) prefer policy
ensures that thread siblings are used when available.

9. Set the aggregate_instance_extra_specs:pinned specification to true so as to ensure that
instances based on this flavor have this specification in their aggregate metadata:

nova flavor-key ID set aggregate_instance_extra_specs:pinned=true

Again, replace ID with the ID of the flavor.

10. Add some hosts to the new aggregates:

nova aggregate-add-host ID_1 host_1

Replace ID_1 with the ID of the first ("performance"/"pinning") aggregate and host_1 with the
host name of the host that you want to add to the aggregate.

nova aggregate-add-host ID_2 host_2

Replace ID_2 with the ID of the second ("normal") aggregate and host_2 with the host name of
the host that you want to add to it.

You can now boot an instance using the new flavor:

nova boot --image image --flavor flavor server_name

Replace image with a saved VM image name (see nova image-list), flavor with the name of the flavor
(m1.small.performance, pinned.small, or any other name that you used), and server_name with the name
for the new server.

To verify that the new server has been placed correctly, run the following command and check for OS-
EXT-SRV-ATTR:hypervisor_hostname in the output:

nova show server_name

CHAPTER 4. CONFIGURING CPU PINNING WITH NUMA

71

APPENDIX A. IMAGE CONFIGURATION PARAMETERS
The following keys can be used with the property option for both the glance image-update and glance
image-create commands.

$ glance image-update IMG-UUID --property architecture=x86_64

NOTE

Behavior set using image properties overrides behavior set using flavors. For more
information, see Section 3.4, “Managing flavors”.

Table A.1. Property Keys

Specific to Key Description Supported values

All architecture The CPU
architecture
that must be
supported by
the hypervisor.
For example,
x86_64, arm,
or ppc64. Run
uname -m to
get the
architecture of a
machine. We
strongly
recommend
using the
architecture
data vocabulary
defined by the
libosinfo project
for this purpose.

alpha-DEC 64-bit RISC

armv7l-ARM Cortex-A7 MPCore

cris-Ethernet, Token Ring, AXis-Code
Reduced Instruction Set

i686-Intel sixth-generation x86 (P6
micro architecture)

ia64-Itanium

lm32-Lattice Micro32

m68k-Motorola 68000

microblaze-Xilinx 32-bit FPGA (Big
Endian)

microblazeel-Xilinx 32-bit FPGA (Little
Endian)

mips-MIPS 32-bit RISC (Big Endian)

mipsel-MIPS 32-bit RISC (Little
Endian)

mips64-MIPS 64-bit RISC (Big Endian)

mips64el-MIPS 64-bit RISC (Little
Endian)

openrisc-OpenCores RISC

parisc-HP Precision Architecture RISC

parisc64-HP Precision Architecture
64-bit RISC

ppc-PowerPC 32-bit

ppc64-PowerPC 64-bit

Red Hat OpenStack Platform 10 Instances and Images Guide

72

http://libosinfo.org

ppcemb-PowerPC (Embedded 32-bit)

s390-IBM Enterprise Systems
Architecture/390

s390x-S/390 64-bit

sh4-SuperH SH-4 (Little Endian)

sh4eb-SuperH SH-4 (Big Endian)

sparc-Scalable Processor Architecture,
32-bit

sparc64-Scalable Processor
Architecture, 64-bit

unicore32-Microprocessor Research
and Development Center RISC
Unicore32

x86_64-64-bit extension of IA-32

xtensa-Tensilica Xtensa configurable
microprocessor core

xtensaeb-Tensilica Xtensa configurable
microprocessor core (Big Endian)

All hypervisor_type The hypervisor
type.

kvm, vmware

All instance_uuid For snapshot
images, this is
the UUID of the
server used to
create this
image.

Valid server UUID

All kernel_id The ID of an
image stored in
the Image
Service that
should be used
as the kernel
when booting an
AMI-style
image.

Valid image ID

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

73

All os_distro The common
name of the
operating
system
distribution in
lowercase (uses
the same data
vocabulary as
the libosinfo
project). Specify
only a
recognized
value for this
field.
Deprecated
values are listed
to assist you in
searching for
the recognized
value.

arch-Arch Linux. Do not use archlinux
or org.archlinux

centos-Community Enterprise
Operating System. Do not use
org.centos or CentOS

debian-Debian. Do not use Debian or
org.debian

fedora-Fedora. Do not use Fedora,
org.fedora, or org.fedoraproject

freebsd-FreeBSD. Do not use
org.freebsd, freeBSD, or FreeBSD

gentoo-Gentoo Linux. Do not use
Gentoo or org.gentoo

mandrake-Mandrakelinux
(MandrakeSoft) distribution. Do not
use mandrakelinux or MandrakeLinux

mandriva-Mandriva Linux. Do not use
mandrivalinux

mes-Mandriva Enterprise Server. Do
not use mandrivaent or mandrivaES

msdos-Microsoft Disc Operating
System. Do not use ms-dos

netbsd-NetBSD. Do not use NetBSD or
org.netbsd

netware-Novell NetWare. Do not use
novell or NetWare

openbsd-OpenBSD. Do not use
OpenBSD or org.openbsd

opensolaris-OpenSolaris. Do not use
OpenSolaris or org.opensolaris

opensuse-openSUSE. Do not use suse,
SuSE, or org.opensuse

rhel-Red Hat Enterprise Linux. Do not
use redhat, RedHat, or com.redhat

sled-SUSE Linux Enterprise Desktop.
Do not use com.suse

ubuntu-Ubuntu. Do not use Ubuntu,
com.ubuntu, org.ubuntu, or canonical

windows-Microsoft Windows. Do not
use com.microsoft.server

Specific to Key Description Supported values

Red Hat OpenStack Platform 10 Instances and Images Guide

74

http://libosinfo.org

All os_version The operating
system version
as specified by
the distributor.

Version number (for example, "11.10")

All ramdisk_id The ID of image
stored in the
Image Service
that should be
used as the
ramdisk when
booting an AMI-
style image.

Valid image ID

All vm_mode The virtual
machine mode.
This represents
the host/guest
ABI (application
binary interface)
used for the
virtual machine.

hvm-Fully virtualized. This is the mode used by
QEMU and KVM.

libvirt API driver hw_disk_bus Specifies the
type of disk
controller to
attach disk
devices to.

scsi, virtio, ide, or usb.

libvirt API driver hw_numa_nodes Number of
NUMA nodes to
expose to the
instance (does
not override
flavor
definition).

Integer. For a detailed example of NUMA-
topology definition, see the hw:NUMA_def key in
Add Metadata.

libvirt API driver hw_numa_memp
olicy

NUMA memory
allocation policy
(does not
override flavor
definition).

strict - Mandatory for the instance’s RAM
allocations to come from the NUMA nodes to
which it is bound (default if numa_nodes is
specified). preferred - The kernel can fall back
to using an alternative node. Useful when the
'hw:numa_nodes' parameter is set to '1'.

libvirt API driver hw_numa_cpus.
0

Mapping of
vCPUs N-M to
NUMA node 0
(does not
override flavor
definition).

Comma-separated list of integers.

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

75

libvirt API driver hw_numa_cpus.1 Mapping of
vCPUs N-M to
NUMA node 1
(does not
override flavor
definition).

Comma-separated list of integers.

libvirt API driver hw_numa_mem.
0

Mapping N MB
of RAM to
NUMA node 0
(does not
override flavor
definition).

Integer

libvirt API driver hw_numa_mem.1 Mapping N MB
of RAM to
NUMA node 1
(does not
override flavor
definition).

Integer

libvirt API driver hw_qemu_guest
_agent

Guest agent
support. If set to
yes, and if
qemu-ga is
also installed,
file systems can
be quiesced
(frozen) and
snapshots
created
automatically.

yes / no

Specific to Key Description Supported values

Red Hat OpenStack Platform 10 Instances and Images Guide

76

libvirt API driver hw_rng_model Adds a random-
number
generator
device to the
image’s
instances. The
cloud
administrator
can enable and
control device
behavior by
configuring the
instance’s flavor.
By default:

The
genera
tor
device
is
disable
d.

/dev/ra
ndom
is used
as the
default
entrop
y
source.
To
specify
a
physica
l HW
RNG
device,
use the
followin
g
option
in the
nova.c
onf file:
rng_de
v_path
=/dev/
hwrng

virtio, or other supported device.

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

77

libvirt API driver hw_scsi_model Enables the use
of VirtIO SCSI
(virtio-scsi) to
provide block
device access
for compute
instances; by
default,
instances use
VirtIO Block
(virtio-blk).
VirtIO SCSI is a
para-virtualized
SCSI controller
device that
provides
improved
scalability and
performance,
and supports
advanced SCSI
hardware.

virtio-scsi

libvirt API driver hw_video_model The video image
driver used.

vga, cirrus, vmvga, xen, or qxl

libvirt API driver hw_video_ram Maximum RAM
for the video
image. Used
only if a
hw_video:ram
_max_mb
value has been
set in the
flavor’s
extra_specs
and that value is
higher than the
value set in
hw_video_ra
m.

Integer in MB (for example, '64')

Specific to Key Description Supported values

Red Hat OpenStack Platform 10 Instances and Images Guide

78

libvirt API driver hw_watchdog_a
ction

Enables a virtual
hardware
watchdog
device that
carries out the
specified action
if the server
hangs. The
watchdog uses
the i6300esb
device
(emulating a
PCI Intel
6300ESB). If
hw_watchdog
_action is not
specified, the
watchdog is
disabled.

disabled-The device is not attached.
Allows the user to disable the watchdog
for the image, even if it has been
enabled using the image’s flavor. The
default value for this parameter is
disabled.

reset-Forcefully reset the guest.

poweroff-Forcefully power off the
guest.

pause-Pause the guest.

none-Only enable the watchdog; do
nothing if the server hangs.

libvirt API driver os_command_lin
e

The kernel
command line to
be used by the
libvirt driver,
instead of the
default. For
Linux
Containers
(LXC), the value
is used as
arguments for
initialization.
This key is valid
only for Amazon
kernel, ramdisk,
or machine
images (aki, ari,
or ami).

libvirt API driver
and VMware API
driver

hw_vif_model Specifies the
model of virtual
network
interface device
to use.

The valid options depend on the configured
hypervisor.

KVM and QEMU: e1000, ne2k_pci,
pcnet, rtl8139, and virtio.

VMware: e1000, e1000e, VirtualE1000,
VirtualE1000e, VirtualPCNet32,
VirtualSriovEthernetCard, and
VirtualVmxnet.

Xen: e1000, netfront, ne2k_pci, pcnet,
and rtl8139.

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

79

VMware API
driver

vmware_adapter
type

The virtual SCSI
or IDE controller
used by the
hypervisor.

lsiLogic, busLogic, or ide

VMware API
driver

vmware_ostype A VMware
GuestID which
describes the
operating
system installed
in the image.
This value is
passed to the
hypervisor when
creating a
virtual machine.
If not specified,
the key defaults
to otherGuest.

See thinkvirt.com.

VMware API
driver

vmware_image_
version

Currently
unused.

1

XenAPI driver auto_disk_config If true, the root
partition on the
disk is
automatically
resized before
the instance
boots. This
value is only
taken into
account by the
Compute
service when
using a Xen-
based
hypervisor with
the XenAPI
driver. The
Compute
service will only
attempt to
resize if there is
a single partition
on the image,
and only if the
partition is in
ext3 or ext4
format.

true / false

Specific to Key Description Supported values

Red Hat OpenStack Platform 10 Instances and Images Guide

80

http://www.thinkvirt.com/?q=node/181

XenAPI driver os_type The operating
system installed
on the image.
The XenAPI
driver contains
logic that takes
different actions
depending on
the value of the
os_type
parameter of
the image. For
example, for
os_type=wind
ows images, it
creates a
FAT32-based
swap partition
instead of a
Linux swap
partition, and it
limits the
injected host
name to less
than 16
characters.

linux or windows

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

81

	Table of Contents
	PREFACE
	CHAPTER 1. IMAGE SERVICE
	1.1. UNDERSTANDING THE IMAGE SERVICE
	1.1.1. Image conversion
	1.1.2. Image introspection
	1.1.3. Harden the Image Service
	1.1.3.1. Diagnose Vulnerability
	1.1.3.2. Mitigate Vulnerability

	1.2. MANAGING IMAGES
	1.2.1. Creating an image
	1.2.1.1. Using a KVM guest image with Red Hat OpenStack Platform
	1.2.1.2. Creating custom Red Hat Enterprise Linux or Windows images
	1.2.1.3. Using libosinfo

	1.2.2. Uploading an image
	1.2.3. Updating an image
	1.2.4. Deleting an image
	1.2.5. Converting an image to RAW format
	1.2.5.1. Configuring Image Service to accept RAW and ISO only

	CHAPTER 2. CONFIGURING OPENSTACK COMPUTE STORAGE
	2.1. ARCHITECTURE OVERVIEW
	2.2. CONFIGURATION

	CHAPTER 3. VIRTUAL MACHINE INSTANCES
	3.1. MANAGING INSTANCES
	3.1.1. Adding components
	3.1.2. Creating an instance
	3.1.3. Updating an instance
	3.1.4. Resizing an instance
	3.1.5. Connecting to an instance
	3.1.5.1. Accessing an instance console using the dashboard
	3.1.5.2. Connecting directly to a VNC console
	3.1.5.3. Connecting directly to a serial console

	3.1.6. Viewing instance usage
	3.1.7. Deleting an instance
	3.1.8. Managing multiple instances simultaneously

	3.2. CUSTOMIZING AN INSTANCE USING CLOUD-INIT
	3.2.1. Example user-data files
	3.2.1.1. Example user-data file to manage users and groups
	3.2.1.2. Example user-data file to configure SSH keys for user accounts

	3.3. MANAGING INSTANCE SECURITY
	3.3.1. Managing key pairs
	3.3.1.1. Creating a key pair
	3.3.1.2. Importing a key pair
	3.3.1.3. Deleting a key pair

	3.3.2. Creating a security group
	3.3.3. Creating, assigning, and releasing floating IP addresses
	3.3.3.1. Allocating a floating IP to the project
	3.3.3.2. Assigning a floating IP
	3.3.3.3. Releasing a floating IP

	3.3.4. Logging in to an instance
	3.3.5. Injecting an admin password into an instance

	3.4. MANAGING FLAVORS
	3.4.1. Updating configuration permissions
	3.4.2. Creating a flavor
	3.4.3. Updating general attributes
	3.4.4. Updating flavor metadata
	3.4.4.1. Viewing metadata
	3.4.4.2. Adding metadata

	3.5. MANAGING HOST AGGREGATES
	3.5.1. Enabling host aggregate scheduling
	3.5.2. Viewing availability zones or host aggregates
	3.5.3. Adding a host aggregate
	3.5.4. Updating a host aggregate
	3.5.5. Deleting a host aggregate

	3.6. SCHEDULING HOSTS AND CELLS
	3.6.1. Configuring scheduling filters
	3.6.2. Configuring scheduling weights
	3.6.2.1. Configure Weight Options for Hosts
	3.6.2.2. Configure Weight Options for Cells

	3.7. EVACUATING INSTANCES
	3.7.1. Evacuating one instance
	3.7.2. Evacuating all instances
	3.7.3. Configuring shared storage

	3.8. MANAGING INSTANCE SNAPSHOTS
	3.8.1. Creating an instance snapshot
	3.8.2. Managing a snapshot
	3.8.3. Rebuilding an instance to a state in a snapshot
	3.8.4. Consistent Snapshots

	3.9. USING RESCUE MODE FOR INSTANCES
	3.9.1. Preparing an image for a rescue mode instance
	3.9.1.1. Rescuing image if using ext4 filesystem

	3.9.2. Adding the rescue image to the OpenStack Image Service
	3.9.3. Launching an instance in rescue mode
	3.9.4. Unrescuing an instance

	3.10. SETTING A CONFIGURATION DRIVE FOR INSTANCES
	3.10.1. Configuration drive options
	3.10.2. Using a configuration drive

	CHAPTER 4. CONFIGURING CPU PINNING WITH NUMA
	4.1. COMPUTE NODE CONFIGURATION
	4.2. SCHEDULER CONFIGURATION
	4.3. AGGREGATE AND FLAVOR CONFIGURATION

	APPENDIX A. IMAGE CONFIGURATION PARAMETERS

