& RedHat

Red Hat OpenShift Serverless 1.32

Integrations

Integrating OpenShift Serverless with Service Mesh and with the cost management
service

Last Updated: 2024-03-18

Red Hat OpenShift Serverless 1.32 Integrations

Integrating OpenShift Serverless with Service Mesh and with the cost management service

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to integrate Service Mesh with OpenShift Serverless. It
also covers using the cost management service to help you understand and track costs and shows
you how to use NVIDIA GPU resources with serverless applications.

Table of Contents

Table of Contents

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESSciiiiiiiiiinnn... 3
1.1. PREREQUISITES 3
1.2. ADDITIONAL RESOURCES 4
1.3. CREATING A CERTIFICATE TO ENCRYPT INCOMING EXTERNAL TRAFFIC 4
1.4. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS 5

1.4.1. Verifying installation prerequisites 5
1.4.2. Installing and configuring Service Mesh 6
1.4.3. Installing and configuring Serverless 9

1.4.4. Verifying the integration 12
1.5. ENABLING KNATIVE SERVING METRICS WHEN USING SERVICE MESH WITH MTLS 14
1.6. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS WHEN KOURIER IS ENABLED 15
1.7.IMPROVING NET-ISTIO MEMORY USAGE BY USING SECRET FILTERING FOR SERVICE MESH 16

CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK TRAFFIC WITH OPENSHIFT SERVERLESS . 18

2.1. PREREQUISITES 18
2.2. HIGH-LEVEL ARCHITECTURE 18
2.3. SECURING THE SERVICE MESH 18
2.4.VERIFYING THE CONFIGURATION 23
CHAPTER 3. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE 27
3.1. PREREQUISITES 27
3.2. USING LABELS FOR COST MANAGEMENT QUERIES 27
3.3. ADDITIONAL RESOURCES 27
CHAPTER 4. INTEGRATING SERVERLESS WITH OPENSHIFTPIPELINES ..., 28
4.1. PREREQUISITES 28
4.2. CREATING A SERVICE DEPLOYED BY OPENSHIFT PIPELINES 28
4.3. ADDITIONAL RESOURCES 33
CHAPTER 5. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS 34
5.1. SPECIFYING GPU REQUIREMENTS FOR A SERVICE 34

5.2. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER PLATFORM 34

Red Hat OpenShift Serverless 1.32 Integrations

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT

SERVERLESS

The OpenShift Serverless Operator provides Kourier as the default ingress for Knative. However, you
can use Service Mesh with OpenShift Serverless whether Kourier is enabled or not. Integrating with
Kourier disabled allows you to configure additional networking and routing options that the Kourier
ingress does not support, such as mTLS functionality.

Note the following assumptions and limitations:

e All Knative internal components, as well as Knative Services, are part of the Service Mesh and

have sidecars injection enabled. This means that strict mTLS is enforced within the whole mesh.
All requests to Knative Services require an mTLS connection, with the client having to send its
certificate, except calls coming from OpenShift Routing.

OpenShift Serverless with Service Mesh integration can only target one service mesh. Multiple
meshes can be present in the cluster, but OpenShift Serverless is only available on one of them.

Changing the target ServiceMeshMemberRoll that OpenShift Serverless is part of, meaning
moving OpenShift Serverless to another mesh, is not supported. The only way to change the
targeted Service mesh is to uninstall and reinstall OpenShift Serverless.

1.1. PREREQUISITES

You have access to an Red Hat OpenShift Serverless account with cluster administrator access.
You have installed the OpenShift CLI (oc).

You have installed the Serverless Operator.

You have installed the Red Hat OpenShift Service Mesh Operator.

The examples in the following procedures use the domain example.com. The example
certificate for this domain is used as a certificate authority (CA) that signs the subdomain
certificate.

To complete and verify these procedures in your deployment, you need either a certificate
signed by a widely trusted public CA or a CA provided by your organization. Example commands
must be adjusted according to your domain, subdomain, and CA.

You must configure the wildcard certificate to match the domain of your OpenShift Container
Platform cluster. For example, if your OpenShift Container Platform console address is
https://console-openshift-console.apps.openshift.example.com, you must configure the
wildcard certificate so that the domain is *.apps.openshift.example.com. For more information
about configuring wildcard certificates, see the following topic about Creating a certificate to
encrypt incoming external traffic.

If you want to use any domain name, including those which are not subdomains of the default
OpenShift Container Platform cluster domain, you must set up domain mapping for those
domains. For more information, see the OpenShift Serverless documentation about Creating a
custom domain mapping.

https://console-openshift-console.apps.openshift.example.com
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/serving/#serverless-create-domain-mapping_create-domain-mapping

Red Hat OpenShift Serverless 1.32 Integrations

IMPORTANT

OpenShift Serverless only supports the use of Red Hat OpenShift Service Mesh
functionality that is explicitly documented in this guide, and does not support other
undocumented features.

Using Serverless 1.31 with Service Mesh is only supported with Service Mesh version 2.2 or
later. For details and information on versions other than 1.31, see the "Red Hat OpenShift
Serverless Supported Configurations" page.

1.2. ADDITIONAL RESOURCES

® Red Hat OpenShift Serverless Supported Configurations

® Kourier and Istio ingresses

1.3. CREATING A CERTIFICATE TO ENCRYPT INCOMING EXTERNAL
TRAFFIC

By default, the Service Mesh mTLS feature only secures traffic inside of the Service Mesh itself,
between the ingress gateway and individual pods that have sidecars. To encrypt traffic as it flows into
the OpenShift Container Platform cluster, you must generate a certificate before you enable the
OpenShift Serverless and Service Mesh integration.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator and Knative Serving.
® |nstall the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Procedure

1. Create aroot certificate and private key that signs the certificates for your Knative services:

$ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \
-subj '/O=Example Inc./CN=example.com'\
-keyout root.key \
-out root.crt

2. Create a wildcard certificate:

$ openssl req -nodes -newkey rsa:2048 \
-subj "/CN=".apps.openshift.example.com/O=Example Inc." \
-keyout wildcard.key \
-out wildcard.csr

3. Sign the wildcard certificate:

https://access.redhat.com/articles/4912821
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/serving/#kourier-and-istio-ingresses

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

$ openssl x509 -req -days 365 -set_serial 0\
-CA root.crt\
-CAkey root.key \
-in wildcard.csr \
-out wildcard.crt

4. Create a secret by using the wildcard certificate:

$ oc create -n istio-system secret tls wildcard-certs \
--key=wildcard.key \
--cert=wildcard.crt

This certificate is picked up by the gateways created when you integrate OpenShift Serverless
with Service Mesh, so that the ingress gateway serves traffic with this certificate.

1.4. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

1.4.1. Verifying installation prerequisites

Before installing and configuring the Service Mesh integration with Serverless, verify that the
prerequisites have been met.

Procedure

1. Check for conflicting gateways:

Example command

$ oc get gateway -A -o jsonpath="{range .items[*]}{@.metadata.namespace}{"/"}
{@.metadata.name}{" "H@.spec.serversi{"\n"H{end}" | column -t

Example output

knative-serving/knative-ingress-gateway [{"hosts":["*"],"port":
{"name":"https","number":443,"protocol":"HTTPS"},"tIs":{"credentialName":"wildcard-
certs","mode":"SIMPLE"}}]

knative-serving/knative-local-gateway [{"hosts":["*"],"port":
{"name":"http","number":8081,"protocol":"HTTP"}}]

This command should not return a Gateway that binds port: 443 and hosts: ["*"'], except the
Gateways in knative-serving and Gateways that are part of another Service Mesh instance.

NOTE

The mesh that Serverless is part of must be distinct and preferably reserved only
for Serverless workloads. That is because additional configuration, such as
Gateways, might interfere with the Serverless gateways knative-local-gateway
and knative-ingress-gateway. Red Hat OpenShift Service Mesh only allows one
Gateway to claim a wildcard host binding (hosts: ["™"']) on the same port (port:
443). If another Gateway is already binding this configuration, a separate mesh
has to be created for Serverless workloads.

Red Hat OpenShift Serverless 1.32 Integrations

2. Check whether Red Hat OpenShift Service Mesh istio-ingressgateway is exposed as type
NodePort or LoadBalancer:

Example command
I $ oc get svc -A | grep istio-ingressgateway
Example output

istio-system istio-ingressgateway ClusterlP 172.30.46.146 none>
15021/TCP,80/TCP,443/TCP 9m50s

This command should not return a Service object of type NodePort or LoadBalancer.

NOTE

Cluster external Knative Services are expected to be called via OpenShift Ingress
using OpenShift Routes. It is not supported to access Service Mesh directly, such
as by exposing the istio-ingressgateway using a Service object with type
NodePort or LoadBalancer.

1.4.2. Installing and configuring Service Mesh

To integrate Serverless with Service Mesh, you need to install Service Mesh with a specific configuration.

Procedure

1. Create a ServiceMeshControlPlane resource in the istio-system namespace with the
following configuration:

IMPORTANT

If you have an existing ServiceMeshControlPlane object, make sure that you
have the same configuration applied.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
namespace: istio-system
spec:
profiles:
- default
security:
dataPlane:
mtls: true 0
techPreview:
meshConfig:
defaultConfig:
terminationDrainDuration: 35s 9
gateways:
ingress:
service:

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

metadata:

labels:
knative: ingressgateway 6
proxy:
networking:
trafficControl:

inbound:
excludedPorts: ﬂ
- 8444 # metrics
- 8022 # serving: wait-for-drain k8s pre-stop hook

Enforce strict mTLS in the mesh. Only calls using a valid client certificate are allowed.

Serverless has a graceful termination for Knative Services of 30 seconds. istio-proxy
needs to have a longer termination duration to make sure no requests are dropped.

Define a specific selector for the ingress gateway to target only the Knative gateway.

o0 09

These ports are called by Kubernetes and cluster monitoring, which are not part of the
mesh and cannot be called using mTLS. Therefore, these ports are excluded from the
mesh.

2. Add the namespaces that you would like to integrate with Service Mesh to the
ServiceMeshMemberRoll object as members:

Example servicemesh-member-roll.yaml configuration file

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
namespace: istio-system
spec:
members: ﬂ
- knative-serving
- knative-eventing
- your-OpenShift-projects

ﬂ A list of namespaces to be integrated with Service Mesh.

IMPORTANT

This list of namespaces must include the knative-serving and knative-eventing
namespaces.

3. Apply the ServiceMeshMemberRoll resource:

I $ oc apply -f servicemesh-member-roll.yaml

4. Create the necessary gateways so that Service Mesh can accept traffic. The following example
uses the knative-local-gateway object with the ISTIO_MUTUAL mode (mTLS):

Fxamnble istin-knative-aatewavs.vaml confiauration file

Red Hat OpenShift Serverless 1.32 Integrations

e R LR TR e - Rt D L T R T ETEE 2 R Rt SR TR T

apiVersion: networking.istio.io/vialpha3
kind: Gateway
metadata:
name: knative-ingress-gateway
namespace: knative-serving
spec:
selector:
knative: ingressgateway
servers:
- port:
number: 443
name: https
protocol: HTTPS
hosts:
tls:
mode: SIMPLE

credentialName: <wildcard_certs> ﬂ

apiVersion: networking.istio.io/vialpha3
kind: Gateway

metadata:

name: knative-local-gateway
namespace: knative-serving

spec:
selector:
knative: ingressgateway
servers:
- port:
number: 8081
name: https
protocol: HTTPS g
tls:
mode: ISTIO_MUTUAL €
hosts:

nkn

apiVersion: vi
kind: Service
metadata:
name: knative-local-gateway
namespace: istio-system
labels:
experimental.istio.io/disable-gateway-port-translation: "true"
spec:
type: ClusterIP
selector:
istio: ingressgateway
ports:
- name: http2
port: 80
targetPort: 8081

ﬂ Name of the secret containing the wildcard certificate.

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

%The knative-local-gateway object serves HTTPS traffic and expects all clients to send
requests using mTLS. This means that only traffic coming from within Service Mesh is

5. Apply the Gateway resources:

I $ oc apply -f istio-knative-gateways.yaml

1.4.3. Installing and configuring Serverless

After installing Service Mesh, you need to install Serverless with a specific configuration.

Procedure

1. Install Knative Serving with the following KnativeServing custom resource, which enables the
Istio integration:

Example knative-serving-config.yaml configuration file

apiVersion: operator.knative.dev/vibetai
kind: KnativeServing
metadata:
name: knative-serving
namespace: knative-serving
spec:
ingress:
istio:
enabled: true ﬂ
deployments: g
- name: activator
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: autoscaler
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
config:
istio:
gateway.knative-serving.knative-ingress-gateway: istio-ingressgateway.<your-istio-
namespace>.svc.cluster.local
local-gateway.knative-serving.knative-local-gateway: knative-local-gateway.<your-istio-
namespace>.svc.cluster.local

ﬂ Enable Istio integration.
9 Enable sidecar injection for Knative Serving data plane pods.

If your istio is not running in the istio-system namespace, you need to set these two flags
with the correct namespace.

2. Apply the KnativeServing resource:

Red Hat OpenShift Serverless 1.32 Integrations

I $ oc apply -f knative-serving-config.yaml

3. Install Knative Eventing with the following KnativeEventing object, which enables the Istio
integration:

Example knative-eventing-config.yaml configuration file

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:
config:
features:
istio: enabled ﬂ
workloads: 9
- name: pingsource-mt-adapter
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: imc-dispatcher
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: mt-broker-ingress
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: mt-broker-filter
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHT TPProbers": "true"

ﬂ Enable Eventing Istio controller to create a DestinationRule for each InMemoryChannel
or KafkaChannel service.

9 Enable sidecar injection for Knative Eventing pods.

4. Apply the KnativeEventing resource:
I $ oc apply -f knative-eventing-config.yami

5. Install Knative Kafka with the following KnativeKafka custom resource, which enables the Istio
integration:

Example knative-kafka-config.yaml configuration file

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:

name: knative-kafka

namespace: knative-eventing

10

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

spec:
channel:
enabled: true
bootstrapServers: <bootstrap_servers> ﬂ
source:
enabled: true
broker:
enabled: true
defaultConfig:
bootstrapServers: <bootstrap_servers> g
numPartitions: <num_partitions>
replicationFactor: <replication_factor>
sink:
enabled: true
workloads: 6
- name: kafka-controller
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: kafka-broker-receiver
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: kafka-broker-dispatcher
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHT TPProbers": "true"
- name: kafka-channel-receiver
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: kafka-channel-dispatcher
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: kafka-source-dispatcher
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"
- name: kafka-sink-receiver
annotations:
"sidecar.istio.io/inject": "true"
"sidecar.istio.io/rewriteAppHTTPProbers": "true"

wThe Apache Kafka cluster URL, for example my-cluster-kafka-bootstrap.kafka:9092.

9 Enable sidecar injection for Knative Kafka pods.

6. Apply the KnativeEventing object:
I $ oc apply -f knative-kafka-config.yaml

7. Install ServiceEntry to inform Service Mesh of the communication between KnativeKafka
components and an Apache Kafka cluster:

1

Red Hat OpenShift Serverless 1.32 Integrations

Example kafka-cluster-serviceentry.yaml configuration file

apiVersion: networking.istio.io/vialpha3
kind: ServiceEntry
metadata:
name: kafka-cluster
namespace: knative-eventing
spec:
hosts:
- <bootstrap_servers_without_port>
exportTo:

ports: g
- number: 9092
name: tcp-plain
protocol: TCP
- number: 9093
name: tcp-tls
protocol: TCP
- number: 9094
name: tcp-sasl-tls
protocol: TCP
- number: 9095
name: tcp-sasl-tls
protocol: TCP
- number: 9096
name: tcp-tls
protocol: TCP
location: MESH_EXTERNAL
resolution: NONE

ﬂ The list of Apache Kafka cluster hosts, for example my-cluster-kafka-bootstrap.kafka.

9 Apache Kafka cluster listeners ports.

NOTE

The listed ports in spec.ports are example TPC ports. The actual values depend
on how the Apache Kafka cluster is configured.

8. Apply the ServiceEntry resource:

I $ oc apply -f kafka-cluster-serviceentry.yaml

1.4.4. Verifying the integration

After installing Service Mesh and Serverless with Istio enabled, you can verify that the integration works.

Procedure

1. Create a Knative Service that has sidecar injection enabled and uses a pass-through route:

12

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

Example knative-service.yaml configuration file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: <service_name>
namespace: <namespace> ﬂ
annotations:
serving.knative.openshift.io/enablePassthrough: "true"
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
- image: <image_url>

A namespace that is part of the service mesh member roll.

®9

Instruct Knative Serving to generate a pass-through enabled route, so that the certificates
you have generated are served through the ingress gateway directly.

Inject Service Mesh sidecars into the Knative service pods.

o

IMPORTANT

Always add the annotation from this example to all of your Knative Service to
make them work with Service Mesh.

2. Apply the Service resource:

I $ oc apply -f knative-service.yaml

3. Access your serverless application by using a secure connection that is now trusted by the CA:
I $ curl --cacert root.crt <service_url>
For example, run:

Example command
I $ curl --cacert root.crt https://hello-default.apps.openshift.example.com
Example output

I Hello Openshift!

13

Red Hat OpenShift Serverless 1.32 Integrations

14

1.5. ENABLING KNATIVE SERVING METRICS WHEN USING SERVICE
MESH WITH MTLS

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by default, because
Service Mesh prevents Prometheus from scraping metrics. This section shows how to enable Knative
Serving metrics when using Service Mesh and mTLS.

Prerequisites
® You have installed the OpenShift Serverless Operator and Knative Serving on your cluster.
® You have installed Red Hat OpenShift Service Mesh with the mTLS functionality enabled.

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Procedure

1. Specify prometheus as the metrics.backend-destination in the observability spec of the
Knative Serving custom resource (CR):

apiVersion: operator.knative.dev/vibetai
kind: KnativeServing
metadata:

name: knative-serving
spec:

config:

observability:
metrics.backend-destination: "prometheus”

This step prevents metrics from being disabled by default.

2. Apply the following network policy to allow traffic from the Prometheus namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-monitoring-ns

namespace: knative-serving
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
name: "openshift-monitoring"
podSelector: {}

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

3. Modify and reapply the default Service Mesh control plane in the istio-system namespace, so
that it includes the following spec:

spec:
proxy:
networking:
trafficControl:
inbound:
excludedPorts:
- 8444

1.6. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
WHEN KOURIER IS ENABLED

You can use Service Mesh with OpenShift Serverless even if Kourier is already enabled. This procedure

might be useful if you have already installed Knative Serving with Kourier enabled, but decide to add a
Service Mesh integration later.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

® |nstall the OpenShift CLI (oc).
® |nstall the OpenShift Serverless Operator and Knative Serving on your cluster.

® |nstall Red Hat OpenShift Service Mesh. OpenShift Serverless with Service Mesh and Kourier is
supported for use with both Red Hat OpenShift Service Mesh versions 1.x and 2.x.

Procedure

1. Add the namespaces that you would like to integrate with Service Mesh to the
ServiceMeshMemberRoll object as members:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default

namespace: istio-system
spec:

members:

- <namespace> ﬂ

ﬂ A list of namespaces to be integrated with Service Mesh.

15

Red Hat OpenShift Serverless 1.32 Integrations

2. Apply the ServiceMeshMemberRoll resource:
I $ oc apply -f <filename>

3. Create a network policy that permits traffic flow from Knative system pods to Knative services:

a. For each namespace that you want to integrate with Service Mesh, create a NetworkPolicy
resource:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-serving-system-namespace
namespace: <namespace>
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
knative.openshift.io/part-of: "openshift-serverless”
podSelector: {}
policyTypes:
- Ingress

ﬂ Add the namespace that you want to integrate with Service Mesh.

NOTE

The knative.openshift.io/part-of: "openshift-serverless™ label was added
in OpenShift Serverless 1.22.0. If you are using OpenShift Serverless 1.21.1 or
earlier, add the knative.openshift.io/part-of label to the knative-serving
and knative-serving-ingress namespaces.

Add the label to the knative-serving namespace:

$ oc label namespace knative-serving knative.openshift.io/part-
of=openshift-serverless

Add the label to the knative-serving-ingress namespace:

$ oc label namespace knative-serving-ingress knative.openshift.io/part-
of=openshift-serverless

b. Apply the NetworkPolicy resource:

I $ oc apply -f <filename>

1.7. IMPROVING NET-ISTIO MEMORY USAGE BY USING SECRET
FILTERING FOR SERVICE MESH

16

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

By default, the informers implementation for the Kubernetes client-go library fetches all resources of a
particular type. This can lead to a substantial overhead when many resources are available, which can
cause the Knative net-istio ingress controller to fail on large clusters due to memory leaking. However, a
filtering mechanism is available for the Knative net-istio ingress controller, which enables the controllers
to only fetch Knative related secrets.

The secret filtering is enabled by default on the OpenShift Serverless Operator side. An environment
variable, ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID=true, is added by default to the
net-istio controller pods.

IMPORTANT

If you enable secret filtering, you must label all of your secrets with
networking.internal.knative.dev/certificate-uid: "<id>". Otherwise, Knative Serving
does not detect them, which leads to failures. You must label both new and existing
secrets.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

® Install Red Hat OpenShift Service Mesh. OpenShift Serverless with Service Mesh only is
supported for use with Red Hat OpenShift Service Mesh version 2.0.5 or later.

® |nstall the OpenShift Serverless Operator and Knative Serving.

Install the OpenShift CLI (oc).

You can disable the secret filtering by setting the
ENABLE_SECRET_INFORMER_FILTERING_BY_CERT _UID variable to false by using the workloads
field in the KnativeServing custom resource (CR).

Example KnativeServing CR

apiVersion: operator.knative.dev/vibetai
kind: KnativeServing
metadata:
name: knative-serving
namespace: knative-serving
spec:

workloads:
- env:
- container: controller
envVars:
- name: ENABLE_SECRET_INFORMER_FILTERING_BY_CERT _UID
value: 'false’
name: net-istio-controller

17

https://aly.arriqaaq.com/kubernetes-informers/

Red Hat OpenShift Serverless 1.32 Integrations

CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK
TRAFFIC WITH OPENSHIFT SERVERLESS

IMPORTANT

Using Service Mesh to isolate network traffic with OpenShift Serverless is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Service Mesh can be used to isolate network traffic between tenants on a shared Red Hat OpenShift
Serverless cluster using Service Mesh AuthorizationPolicy resources. Serverless can also leverage this,
using several Service Mesh resources. A tenant is a group of one or multiple projects that can access
each other over the network on a shared cluster.

2.1. PREREQUISITES

® You have access to an Red Hat OpenShift Serverless account with cluster administrator access.
® You have set up the Service Mesh and Serverless integration.

® You have created one or more OpenShift projects for each tenant.

2.2. HIGH-LEVEL ARCHITECTURE

The high-level architecture of Serverless traffic isolation provided by Service Mesh consists of
AuthorizationPolicy objects in the knative-serving, knative-eventing, and the tenants' namespaces,
with all the components being part of the Service Mesh. The injected Service Mesh sidecars enforce
those rules to isolate network traffic between tenants.

2.3. SECURING THE SERVICE MESH

Authorization policies and mTLS allow you to secure Service Mesh.

Procedure

1. Make sure that all Red Hat OpenShift Serverless projects of your tenant are part of the same
ServiceMeshMemberRoll object as members:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
namespace: istio-system
spec:
members:
- knative-serving # static value, needs to be here, see setup page

18

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK TRAFFIC WITH OPENSHIFT SERVERLESS

- knative-eventing # static value, needs to be here, see setup page

- team-alpha-1 # example OpenShift project that belongs to the team-alpha tenant
- team-alpha-2 # example OpenShift project that belongs th the team-alpha tenant
- team-bravo-1 # example OpenShift project that belongs to the team-bravo tenant
- team-bravo-2 # example OpenShift project that belongs th the team-bravo tenant

All projects that are part of the mesh must enforce mTLS in strict mode. This forces Istio to only
accept connections with a client-certificate present and allows the Service Mesh sidecar to
validate the origin using an AuthorizationPolicy object.

. Create the configuration with AuthorizationPolicy objects in the knative-serving and knative-
eventing namespaces:

Example knative-default-authz-policies.yaml configuration file

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: deny-all-by-default
namespace: knative-eventing
spec: { }
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: deny-all-by-default
namespace: knative-serving
spec: { }
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-mt-channel-based-broker-ingress-to-imc-dispatcher
namespace: knative-eventing
spec:
action: ALLOW
selector:
matchLabels:
app.kubernetes.io/component: "imc-dispatcher"
rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/mt-broker-ingress" |
to:
- operation:
methods: ["POST" |
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-mt-channel-based-broker-ingress-to-kafka-channel
namespace: knative-eventing
spec:
action: ALLOW
selector:

19

Red Hat OpenShift Serverless 1.32 Integrations

matchLabels:
app.kubernetes.io/component: "kafka-channel-receiver"

rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/mt-broker-ingress" |
to:
- operation:

methods: ["POST" |
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-kafka-channel-to-mt-channel-based-broker-filter
namespace: knative-eventing
spec:
action: ALLOW
selector:
matchLabels:
app.kubernetes.io/component: "broker-filter"
rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/knative-kafka-channel-data-plane"]
to:
- operation:
methods: ["POST" |
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-imc-to-mt-channel-based-broker-filter
namespace: knative-eventing
spec:
action: ALLOW
selector:
matchLabels:
app.kubernetes.io/component: "broker-filter"
rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/imc-dispatcher"]
to:
- operation:
methods: ["POST" |
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-probe-kafka-broker-receiver
namespace: knative-eventing
spec:
action: ALLOW

20

CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK TRAFFIC WITH OPENSHIFT SERVERLESS

selector:
matchLabels:
app.kubernetes.io/component: "kafka-broker-receiver"

rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/kafka-controller"]
to:
- operation:

methods: ["GET"]
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-probe-kafka-sink-receiver
namespace: knative-eventing
spec:
action: ALLOW
selector:
matchLabels:
app.kubernetes.io/component: "kafka-sink-receiver"
rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/kafka-controller"]
to:
- operation:
methods: ["GET"]
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-probe-kafka-channel-receiver
namespace: knative-eventing
spec:
action: ALLOW
selector:
matchLabels:
app.kubernetes.io/component: "kafka-channel-receiver"
rules:
- from:
- source:
namespaces: ["knative-eventing"]
principals: ["cluster.local/ns/knative-eventing/sa/kafka-controller"]
to:
- operation:
methods: ["GET"]
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: allow-traffic-to-activator
namespace: knative-serving
spec:

21

Red Hat OpenShift Serverless 1.32 Integrations

selector:

matchLabels:

app: activator

action: ALLOW
rules:

- from:

- source:
namespaces: ["knative-serving", "istio-system"]

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:

name: allow-traffic-to-autoscaler
namespace: knative-serving

spec:

selector:

matchLabels:

app: autoscaler

action: ALLOW
rules:

- from:

- source:
namespaces: ["knative-serving" |

These policies restrict the access rules for the network communication between Serverless
system components. Specifically, they enforce the following rules:

Deny all traffic that is not explicitly allowed in the knative-serving and knative-eventing
namespaces

Allow traffic from the istio-system and knative-serving namespaces to activator
Allow traffic from the knative-serving namespace to autoscaler
Allow health probes for Apache Kafka components in the knative-eventing namespace

Allow internal traffic for channel-based brokers in the knative-eventing namespace

3. Apply the authorization policy configuration:

I $ oc apply -f knative-default-authz-policies.yaml

4. Define which OpenShift projects can communicate with each other. For this communication,
every OpenShift project of a tenant requires the following:

One AuthorizationPolicy object limiting directly incoming traffic to the tenant'’s project

One AuthorizationPolicy object limiting incoming traffic using the activator component of
Serverless that runs in the knative-serving project

One AuthorizationPolicy object allowing Kubernetes to call PreStopHooks on Knative
Services

Instead of creating these policies manually, install the helm utility and create the necessary
resources for each tenant:

22

CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK TRAFFIC WITH OPENSHIFT SERVERLESS

Installing the helm utility
I $ helm repo add openshift-helm-charts https://charts.openshift.io/
Creating example configuration for team alpha

$ helm template openshift-helm-charts/redhat-knative-istio-authz --version 1.31.0 --set
"name=team-alpha" --set "namespaces={team-alpha-1,team-alpha-2}" > team-alpha.yaml

Creating example configuration for team bravo

$ helm template openshift-helm-charts/redhat-knative-istio-authz --version 1.31.0 --set
"name=team-bravo" --set "namespaces={team-bravo-1,team-bravo-2}" > team-bravo.yaml|

5. Apply the authorization policy configuration:

I $ oc apply -f team-alpha.yaml team-bravo.yami

2.4.VERIFYING THE CONFIGURATION

You can use the curl command to verify the configuration for network traffic isolation.

NOTE

The following examples assume having two tenants, each having one namespace, and all
part of the ServiceMeshMemberRoll object, configured with the resources in the team-
alpha.yaml and team-bravo.yaml files.

Procedure

1. Deploy Knative Services in the namespaces of both of the tenants:

Example command for team-alpha

$ kn service create test-webapp -n team-alpha-1 \
--annotation-service serving.knative.openshift.io/enablePassthrough=true \
--annotation-revision sidecar.istio.io/inject=true \
--env RESPONSE="Hello Serverless" \
--image docker.io/openshift/hello-openshift

Example command for team-bravo

$ kn service create test-webapp -n team-bravo-1 \
--annotation-service serving.knative.openshift.io/enablePassthrough=true \
--annotation-revision sidecar.istio.io/inject=true \
--env RESPONSE="Hello Serverless" \
--image docker.io/openshift/hello-openshift

Alternatively, use the following YAML configuration:

I apiVersion: serving.knative.dev/v1

23

Red Hat OpenShift Serverless 1.32 Integrations

kind: Service
metadata:
name: test-webapp
namespace: team-alpha-1
annotations:
serving.knative.openshift.io/enablePassthrough: "true”
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: 'true'
spec:
containers:
- image: docker.io/openshift/hello-openshift
env:
- name: RESPONSE
value: "Hello Serverless!"
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: test-webapp
namespace: team-bravo-1
annotations:
serving.knative.openshift.io/enablePassthrough: "true"
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: 'true'
spec:
containers:
- image: docker.io/openshift/hello-openshift
env:
- name: RESPONSE
value: "Hello Serverless!"

2. Deploy a curl pod for testing the connections:

$ cat <<EOF | oc apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: curl
namespace: team-alpha-1
labels:
app: curl
spec:
replicas: 1
selector:
matchLabels:
app: curl
template:
metadata:
labels:
app: curl

24

CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK TRAFFIC WITH OPENSHIFT SERVERLESS

annotations:

sidecar.istio.io/inject: 'true’
spec:

containers:

- name: curl
image: curlimages/curl
command:
- sleep
- "3600"

EOF

3. Verify the configuration by using the curl command.
Test team-alpha-1 - team-alpha-1 through cluster local domain, which is allowed:

Example command
I $ oc exec deployment/curl -n team-alpha-1 -it -- curl -v http://test-webapp.team-alpha-1:80
Example output

HTTP/1.1 200 OK

content-length: 18

content-type: text/plain; charset=utf-8
date: Wed, 26 Jul 2023 12:49:59 GMT
server: envoy
X-envoy-upstream-service-time: 9

Hello Serverless!

Test the team-alpha-1 to team-alpha-1 connection through an external domain, which is
allowed:

Example command

$ EXTERNAL_URL=$(oc get ksvc -n team-alpha-1 test-webapp -0 custom-
columns=:.status.url --no-headers) &&\
oc exec deployment/curl -n team-alpha-1 -it -- curl -ik SEXTERNAL_URL

Example output

HTTP/2 200

content-length: 18

content-type: text/plain; charset=utf-8
date: Wed, 26 Jul 2023 12:55:30 GMT
server: istio-envoy
X-envoy-upstream-service-time: 3629

Hello Serverless!

Test the team-alpha-1 to team-bravo-1 connection through the cluster’s local domain, which is
not allowed:

Example command

25

Red Hat OpenShift Serverless 1.32 Integrations

I $ oc exec deployment/curl -n team-alpha-1 -it -- curl -v http://test-webapp.team-bravo-1:80
Example output

* processing: http://test-webapp.team-bravo-1:80

* Trying 172.30.73.216:80...

* Connected to test-webapp.team-bravo-1 (172.30.73.216) port 80
>GET/HTTP/1 A

> Host: test-webapp.team-bravo-1

> User-Agent: curl/8.2.0

> Accept: */*

>

< HTTP/1.1 403 Forbidden

< content-length: 19

< content-type: text/plain

< date: Wed, 26 Jul 2023 12:55:49 GMT

< server: envoy

< X-envoy-upstream-service-time: 6

<

* Connection #0 to host test-webapp.team-bravo-1 left intact
RBAC: access denied

Test the team-alpha-1 to team-bravo-1 connection through an external domain, which is
allowed:

Example command

$ EXTERNAL_URL=$(oc get ksvc -n team-bravo-1 test-webapp -o custom-
columns=:.status.url --no-headers) &&\
oc exec deployment/curl -n team-alpha-1 -it -- curl -ik SEXTERNAL_URL

Example output

HTTP/2 200

content-length: 18

content-type: text/plain; charset=utf-8
date: Wed, 26 Jul 2023 12:56:22 GMT
server: istio-envoy
X-envoy-upstream-service-time: 2856

Hello Serverless!

4. Delete the resources that were created for verification:

$ oc delete deployment/curl -n team-alpha-1 && \
oc delete ksvc/test-webapp -n team-alpha-1 && \
oc delete ksvc/test-webapp -n team-bravo-1

Additional resources for OpenShift Container Platform

® The Helm utility

® Option reference for the Helm utility

26

https://github.com/openshift-knative/knative-istio-authz-chart
https://github.com/openshift-knative/knative-istio-authz-chart/blob/main/values.yaml

CHAPTER 3. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE

CHAPTER 3. INTEGRATING SERVERLESS WITH THE COST
MANAGEMENT SERVICE

Cost management is an OpenShift Container Platform service that enables you to better understand
and track costs for clouds and containers. It is based on the open source Koku project.

3.1. PREREQUISITES
® You have cluster administrator permissions.

® You have set up cost management and added an OpenShift Container Platform source.

3.2. USING LABELS FOR COST MANAGEMENT QUERIES

Labels, also known as tags in cost management, can be applied for nodes, namespaces or pods. Each
label is a key and value pair. You can use a combination of multiple labels to generate reports. You can
access reports about costs by using the Red Hat hybrid console..

Labels are inherited from nodes to namespaces, and from namespaces to pods. However, labels are not
overridden if they already exist on a resource. For example, Knative services have a default app=
<revision_names> label:

Example Knative service default label

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: showcase
spec:

labels:
app: <revision_name>

If you define a label for a namespace, such as app=my-domain, the cost management service does not
take into account costs coming from a Knative service with the tag app=<revision_name> when
querying the application using the app=my-domain tag. Costs for Knative services that have this tag
must be queried under the app=<revision_name> tag.

3.3. ADDITIONAL RESOURCES
® Configure tagging for your sources

® Use the Cost Explorer to visualize your costs

27

https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-introduction-cost-management#about-cost-management_getting-started
https://project-koku.github.io/
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/adding_an_openshift_container_platform_source_to_cost_management/index
https://console.redhat.com/openshift/cost-management/
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-installing-cost-management#configure-tagging-next-step_configuring
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-using-cost-management#cost-explorer-next-step_using-cost-management

Red Hat OpenShift Serverless 1.32 Integrations

CHAPTER 4. INTEGRATING SERVERLESS WITH OPENSHIFT
PIPELINES

Integrating Serverless with OpenShift Pipelines enables CI/CD pipeline management for Serverless
services. Using this integration, you can automate the deployment of your Serverless services.

4.1. PREREQUISITES

® You have access to the cluster with cluster-admin privileges.

® The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

® You have installed the OpenShift Pipelines Operator on the cluster.

4.2. CREATING A SERVICE DEPLOYED BY OPENSHIFT PIPELINES

Using the OpenShift Container Platform web console, you can create a service that the OpenShift

Pipelines deploys.

Procedure

1. In the OpenShift Container Platform web console Developer perspective, navigate to +Add

</> Developer

+Add

Topology

Observe

Search

Builds

Pipelines

Helm

Project

ConfigMaps

Secrets

and select the Import from Git option.

Project: my-project ¥

Add
e

Getting started resources ®

M Create applications using samples

Choose a code sample to get started creating an
application with

Basic Quarkus &

Basic Spring Boot 5

View all samples

Developer Catalog
b All services
Browse the catalog to discover, deploy and

connect to services

= n

oS Build with guided documentation

Follow guided documentation to build applications

and familiarize yourself with key features.

Get started with Quarkus using s2i >

Get started with Spring >

View all quick starts

Git Repository

© Import from Git

Import code from your Git repository to be
built and deployed

o Details on

M Explore new developer features

Explore new features and resources within the

developer perspective.

Discover certified Helm Charts >

Start building your application quickly in
topology >

What's new in OpenShift 414 =

© Container images

Deploy an existing Image from an Image
registry or Image stream tag

@ Sharina

2. Inthe Import from Git dialog, specify project metadata by doing the following:

® Specify the Git repository URL.

e |f necessary, specify the context directory. This is the subdirectory inside the repository that
contains the root of application source code.

e Optional: Specify the application name. By default, the repository name is used.

® Seclect the Serverless Deployment resource type.

® Seclect the Add pipeline checkbox. The pipeline is automatically selected based on the
source code and its visualization is shown on the scheme.

28

CHAPTER 4. INTEGRATING SERVERLESS WITH OPENSHIFT PIPELINES

® Specify any other relevant settings.

Import from Git

Git

Git Repo URL *

https://github.com/markito/kgr-pay

Validated

v Hide advanced Git options

Git reference

Optional branch, tag, or commit.

Context dir

/qr-encode

Optional subdirectory for the source code, used as a context directory for build.

Source Secret

Select Secret name -

Secret with credentials for pulling your source code.

@ Builder Image detected.

A Builder Image is recommended.

ﬁ Python 39 (UBl 8) # EditImport Strategy

BUILDER PYTHOM

Build and run Python 3.9 applications on UBI 8. For more information about using this builder image,
including OpenShift considerations, see httpsy/github.com/sclorg/s2i-python-
container/blob/master/3.9/README.md.

Sample repository: https://github.com/sclorg/django-ex.git &

General

Application name

kqgr-pay-app

A unique name given to the application grouping to label your resources.

MName *

kgr-pay

29

Red Hat OpenShift Serverless 1.32 Integrations

30

I A unigue name given to the component that will be used to name associated resources. I

Resource type

Serverless Deployment

Resource type to generate. The default can be set in User Preferences.

Pipelines

Add pipeline

s2i-python-knative

v Hide pipeline visualization

fetch-repository ———————— build kn-service-apply

a a X H

Advanced options

Target port

8080

Target port for traffic.

Create a route
Exposes your compoenent at a public URL

» Show advanced Routing options

Click on the names to access advanced options for Health checks, Deployment, Scaling, Resource limits,

Cancel

and Labels.

3. Click Create to create the service.

4. After the service creation starts, you are navigated to the Topology screen, where your service
and the related trigger are visualized and where you can interact with them.

CHAPTER 4. INTEGRATING SERVERLESS WITH OPENSHIFT PIPELINES

Project: my-project Application: All applications
<[> De
L!!'! Display options = Filter by resource = T Mame = Find by name... / [i]
+Add
Topology
P pl
Search ; L
g ‘ : A
Builds . :
: e
Pipelines g '
. L] .
Helm : kqr-pay-00002 : © cl-eve. 039508 i
broi Qrmmmmmme e (]
roject
By &5 kacpay B A} Triggers n
ConfigMaps
LZIZ]I'—FIE'y'—EF-p
Secrets

5. Optional: Verify that the pipeline has been created and that the service is being built and
deployed by navigating to the Pipelines page:

Project: my-project =

Pipelines
Create =

Topology Pipelines PipelineRuns Repositories

Observe

Y Filter = Name = Search by name..
Search
Name Lastrun Task status Last run status Last run time
Builds
@ kgr-pay kgr-pay-tuoxyx | R & Running @ Nov 29,2023, 7:46 AM

Pipelines

Helm

Project

ConfigMaps

Secrets

6. To see the details of the pipeline, click the pipeline on the Pipelines page.

31

Red Hat OpenShift Serverless 1.32 Integrations

32

Project: my-project =

Fipelines » Pipeline details

appkubernetes.io/instance=kgr-pay

pipeline.openshift.io/runtime=python

pipeline.openshift.io/type=knative

Annotations

0 annotations &

Created at

@ Nov 29, 2023, 5:51 AM

Owner

Mo owner

app.kubernetes.io/name=kgr-pay

operatortekton.dev/operand-name=openshift-pipelines-addons

pipeline.openshift.io/runtime-version=3.9-ubig

http:/fel-event-listener-0395p8-my-project.apps.rosa kpkfe-oadda-

@ kar-pay
Details ~ Metrics YAML PipelineRuns ~ Parameters
Pipeline details
fetch-repository build kn-service-apply
@, 58 s -
Name TriggerTemplates
kar-pay m trigger-template-kgr-pay-dt7gws
dzux6pc.p3.openshiftapps.com K
Namespace
@ my-project Tasks
@ git-clone (fetch-repository)
Labels Edit & @ s2i-python (build)

@ kn (kn-service-apply)

Workspaces
workspace

Actions

7. To see the details about the current pipeline run, click the name of the run on the Pipelines

page.

CHAPTER 4. INTEGRATING SERVERLESS WITH OPENSHIFT PIPELINES

Project: my-project =

PipelineRuns » PipelineRun details

kgr-pay-6vOtwr o succeeded

Details YAML TaskRuns Parameters Logs
PipelineRun details
7 \ ;
| fetch- it il build 272
\Q etch-repasitory 1/ & bui /!)
Q Q % HH
Name
kqr-pay-6vStwr
Namespace
@ my-project
Labels Edit &

app.kubernetes.iofinstance=kgr-pay ' = appkubernetes.io/name=kgr-pay
operatortekton.dev/operand-name=openshift-pipelines-addens
pipeline.openshift.io/runtime=python
pipeline.openshift.io/runtime-version=3.9-ubig

pipeline.cpenshiftio/type=knative | tekton.dev/pipeline=kgr-pay

Annotations

2 annotations #

Mo owner

Actions

Events

\-Q kn-service-apply 111 J

Status
® Succeeded

Pipeline

G kar-pay

Start time
@ Nov 29, 2023, 5:51 AM

Completion time
@ Nov 29, 2023, 5:54 AM

Duration
3 minutes 13 seconds

Triggered by:
cluster-admin

VolumeClaimTemplate Resources
pvc-adf55f0baf

4.3. ADDITIONAL RESOURCES

® Documentation for Red Hat OpenShift Pipelines

33

https://docs.openshift.com/pipelines/1.12/about/about-pipelines.html

Red Hat OpenShift Serverless 1.32 Integrations

CHAPTER 5. USING NVIDIA GPU RESOURCES WITH
SERVERLESS APPLICATIONS

NVIDIA supports using GPU resources on OpenShift Container Platform. See GPU Operator on
OpenShift for more information about setting up GPU resources on OpenShift Container Platform.

5.1. SPECIFYING GPU REQUIREMENTS FOR A SERVICE

After GPU resources are enabled for your OpenShift Container Platform cluster, you can specify GPU
requirements for a Knative service using the Knative (kn) CLI.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

® You have installed the Knative (kn) CLI.
® GPU resources are enabled for your OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

NOTE

Using NVIDIA GPU resources is not supported for IBM zSystems and IBM Power on
OpenShift Container Platform or OpenShift Dedicated.

Procedure

1. Create a Knative service and set the GPU resource requirement limit to 1 by using the --limit
nvidia.com/gpu=1 flag:

I $ kn service create hello --image <service-image> --limit nvidia.com/gpu=1

A GPU resource requirement limit of 1 means that the service has 1 GPU resource dedicated.
Services do not share GPU resources. Any other services that require GPU resources must wait
until the GPU resource is no longer in use.

A limit of 1 GPU also means that applications exceeding usage of 1 GPU resource are restricted.
If a service requests more than 1 GPU resource, it is deployed on a node where the GPU
resource requirements can be met.

2. Optional. For an existing service, you can change the GPU resource requirement limit to 3 by
using the --limit nvidia.com/gpu=3 flag:

I $ kn service update hello --limit nvidia.com/gpu=3

5.2. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER
PLATFORM

® Setting resource quotas for extended resources

34

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html
https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html#quotas-setting-per-project

CHAPTER 5. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS

35

	Table of Contents
	CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
	1.1. PREREQUISITES
	1.2. ADDITIONAL RESOURCES
	1.3. CREATING A CERTIFICATE TO ENCRYPT INCOMING EXTERNAL TRAFFIC
	1.4. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
	1.4.1. Verifying installation prerequisites
	1.4.2. Installing and configuring Service Mesh
	1.4.3. Installing and configuring Serverless
	1.4.4. Verifying the integration

	1.5. ENABLING KNATIVE SERVING METRICS WHEN USING SERVICE MESH WITH MTLS
	1.6. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS WHEN KOURIER IS ENABLED
	1.7. IMPROVING NET-ISTIO MEMORY USAGE BY USING SECRET FILTERING FOR SERVICE MESH

	CHAPTER 2. USING SERVICE MESH TO ISOLATE NETWORK TRAFFIC WITH OPENSHIFT SERVERLESS
	2.1. PREREQUISITES
	2.2. HIGH-LEVEL ARCHITECTURE
	2.3. SECURING THE SERVICE MESH
	2.4. VERIFYING THE CONFIGURATION

	CHAPTER 3. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE
	3.1. PREREQUISITES
	3.2. USING LABELS FOR COST MANAGEMENT QUERIES
	3.3. ADDITIONAL RESOURCES

	CHAPTER 4. INTEGRATING SERVERLESS WITH OPENSHIFT PIPELINES
	4.1. PREREQUISITES
	4.2. CREATING A SERVICE DEPLOYED BY OPENSHIFT PIPELINES
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS
	5.1. SPECIFYING GPU REQUIREMENTS FOR A SERVICE
	5.2. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER PLATFORM

