
Red Hat OpenShift Serverless 1.32

Functions

Setting up and using OpenShift Serverless Functions

Last Updated: 2024-03-18

Red Hat OpenShift Serverless 1.32 Functions

Setting up and using OpenShift Serverless Functions

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about getting started with OpenShift Serverless Functions and
about developing and deploying functions by using Quarkus, Node.js, TypeScript, and Python.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH FUNCTIONS
1.1. PREREQUISITES
1.2. CREATING, DEPLOYING, AND INVOKING A FUNCTION
1.3. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER PLATFORM
1.4. NEXT STEPS

CHAPTER 2. CREATING FUNCTIONS
2.1. CREATING A FUNCTION BY USING THE KNATIVE CLI
2.2. CREATING A FUNCTION IN THE WEB CONSOLE

CHAPTER 3. RUNNING FUNCTIONS LOCALLY
3.1. RUNNING A FUNCTION LOCALLY

CHAPTER 4. DEPLOYING FUNCTIONS
4.1. DEPLOYING A FUNCTION

CHAPTER 5. BUILDING FUNCTIONS
5.1. BUILDING A FUNCTION

5.1.1. Image container types
5.1.2. Image registry types
5.1.3. Push flag
5.1.4. Help command

CHAPTER 6. LISTING EXISTING FUNCTIONS
6.1. LISTING EXISTING FUNCTIONS

CHAPTER 7. INVOKING FUNCTIONS
7.1. INVOKING A DEPLOYED FUNCTION WITH A TEST EVENT

CHAPTER 8. DELETING FUNCTIONS
8.1. DELETING A FUNCTION

CHAPTER 9. BUILDING AND DEPLOYING FUNCTIONS ON THE CLUSTER
9.1. BUILDING AND DEPLOYING A FUNCTION ON THE CLUSTER
9.2. SPECIFYING FUNCTION REVISION
9.3. SETTING CUSTOM VOLUME SIZE
9.4. TESTING A FUNCTION IN THE WEB CONSOLE

CHAPTER 10. CONNECTING AN EVENT SOURCE TO A FUNCTION
10.1. CONNECT AN EVENT SOURCE TO A FUNCTION USING THE DEVELOPER PERSPECTIVE

CHAPTER 11. SUBSCRIBING FUNCTIONS TO CLOUDEVENTS
11.1. SUBSCRIBING A FUNCTION TO CLOUDEVENTS

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE
12.1. DEVELOPING QUARKUS FUNCTIONS

12.1.1. Prerequisites
12.1.2. Quarkus function template structure
12.1.3. About invoking Quarkus functions

12.1.3.1. Invocation examples
12.1.4. CloudEvent attributes
12.1.5. Quarkus function return values

12.1.5.1. Permitted types
12.1.6. Testing Quarkus functions

5
5
5
6
6

7
7
7

10
10

11
11

12
12
12
12
12
13

14
14

15
15

16
16

17
17
18
19
19

21
21

22
22

23
23
23
23
24
25
27
27
28
28

Table of Contents

1

. .

12.1.7. Overriding liveness and readiness probe values
12.1.8. Next steps

12.2. DEVELOPING NODE.JS FUNCTIONS
12.2.1. Prerequisites
12.2.2. Node.js function template structure
12.2.3. About invoking Node.js functions

12.2.3.1. Node.js context objects
12.2.3.1.1. Context object methods
12.2.3.1.2. CloudEvent data

12.2.4. Node.js function return values
12.2.4.1. Returning headers
12.2.4.2. Returning status codes

12.2.5. Testing Node.js functions
12.2.6. Overriding liveness and readiness probe values
12.2.7. Node.js context object reference

12.2.7.1. log
12.2.7.2. query
12.2.7.3. body
12.2.7.4. headers
12.2.7.5. HTTP requests

12.2.8. Next steps
12.3. DEVELOPING TYPESCRIPT FUNCTIONS

12.3.1. Prerequisites
12.3.2. TypeScript function template structure
12.3.3. About invoking TypeScript functions

12.3.3.1. TypeScript context objects
12.3.3.1.1. Context object methods
12.3.3.1.2. Context types
12.3.3.1.3. CloudEvent data

12.3.4. TypeScript function return values
12.3.4.1. Returning headers
12.3.4.2. Returning status codes

12.3.5. Testing TypeScript functions
12.3.6. Overriding liveness and readiness probe values
12.3.7. TypeScript context object reference

12.3.7.1. log
12.3.7.2. query
12.3.7.3. body
12.3.7.4. headers
12.3.7.5. HTTP requests

12.3.8. Next steps
12.4. DEVELOPING PYTHON FUNCTIONS

12.4.1. Prerequisites
12.4.2. Python function template structure
12.4.3. About invoking Python functions
12.4.4. Python function return values

12.4.4.1. Returning CloudEvents
12.4.5. Testing Python functions
12.4.6. Next steps

CHAPTER 13. CONFIGURING FUNCTIONS
13.1. ACCESSING SECRETS AND CONFIG MAPS FROM FUNCTIONS USING CLI

13.1.1. Modifying function access to secrets and config maps interactively

29
30
30
30
30
31
31
31
31
32
32
32
33
33
35
35
36
36
37
37
37
37
37
38
38
38
39
39
40
40
41
41

42
42
44
44
45
45
46
47
47
47
47
47
48
48
49
49
49

50
50
50

Red Hat OpenShift Serverless 1.32 Functions

2

13.1.2. Modifying function access to secrets and config maps interactively by using specialized commands
13.2. CONFIGURING YOUR FUNCTION PROJECT USING THE FUNC.YAML FILE

13.2.1. Referencing local environment variables from func.yaml fields
13.2.2. Adding annotations to functions
13.2.3. Adding annotations to a function
13.2.4. Additional resources
13.2.5. Adding function access to secrets and config maps manually

13.2.5.1. Mounting a secret as a volume
13.2.5.2. Mounting a config map as a volume
13.2.5.3. Setting environment variable from a key value defined in a secret
13.2.5.4. Setting environment variable from a key value defined in a config map
13.2.5.5. Setting environment variables from all values defined in a secret
13.2.5.6. Setting environment variables from all values defined in a config map

13.3. CONFIGURABLE FIELDS IN FUNC.YAML
13.3.1. Configurable fields in func.yaml

13.3.1.1. buildEnvs
13.3.1.2. envs
13.3.1.3. builder
13.3.1.4. build
13.3.1.5. volumes
13.3.1.6. options
13.3.1.7. image
13.3.1.8. imageDigest
13.3.1.9. labels
13.3.1.10. name
13.3.1.11. namespace
13.3.1.12. runtime

51
52
52
52
53
53
54
54
55
55
56
57
58
59
59
59
59
60
60
60
61

62
62
62
62
62
62

Table of Contents

3

Red Hat OpenShift Serverless 1.32 Functions

4

CHAPTER 1. GETTING STARTED WITH FUNCTIONS
Function lifecycle management includes creating and deploying a function, after which it can be
invoked. You can do all of these operations on OpenShift Serverless using the kn func tool.

1.1. PREREQUISITES

To enable the use of OpenShift Serverless Functions on your cluster, you must complete the following
steps:

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

NOTE

Functions are deployed as a Knative service. If you want to use event-driven
architecture with your functions, you must also install Knative Eventing.

You have the oc CLI installed.

You have the Knative (kn) CLI installed. Installing the Knative CLI enables the use of kn func
commands which you can use to create and manage functions.

You have installed Docker Container Engine or Podman version 3.4.7 or higher.

You have access to an available image registry, such as the OpenShift Container Registry.

If you are using Quay.io as the image registry, you must ensure that either the repository is not
private, or that you have followed the OpenShift Container Platform documentation on Allowing
pods to reference images from other secured registries.

If you are using the OpenShift Container Registry, a cluster administrator must expose the
registry.

1.2. CREATING, DEPLOYING, AND INVOKING A FUNCTION

On OpenShift Serverless, you can use the kn func to create, deploy, and invoke a function.

Procedure

1. Create a function project:

Example command

Example output

2. Navigate to the function project directory:

Example command

$ kn func create -l <runtime> -t <template> <path>

$ kn func create -l typescript -t cloudevents examplefunc

Created typescript function in /home/user/demo/examplefunc

CHAPTER 1. GETTING STARTED WITH FUNCTIONS

5

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html#cli-getting-started
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/installing_serverless/#installing-kn
https://quay.io/
https://docs.openshift.com/container-platform/latest/openshift_images/managing_images/using-image-pull-secrets.html#images-allow-pods-to-reference-images-from-secure-registries_using-image-pull-secrets
https://docs.openshift.com/container-platform/latest/registry/securing-exposing-registry.html#securing-exposing-registry

Example command

3. Build and run the function locally:

Example command

4. Deploy the function to your cluster:

Example output

5. Invoke the function:

This invokes either a locally or remotely running function. If both are running, the local one is
invoked.

1.3. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER
PLATFORM

Exposing a default registry manually

Marketplace page for the Intellij Knative plugin

Marketplace page for the Visual Studio Code Knative plugin

Creating applications using the Developer perspective

1.4. NEXT STEPS

See Using functions with Knative Eventing

$ cd examplefunc

$ kn func run

$ kn func deploy

Function deployed at: http://func.example.com

$ kn func invoke

Red Hat OpenShift Serverless 1.32 Functions

6

https://docs.openshift.com/container-platform/latest/registry/securing-exposing-registry.html#securing-exposing-registry
https://plugins.jetbrains.com/plugin/16476-knative--serverless-functions-by-red-hat
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-knative&utm_source=VSCode.pro&utm_campaign=AhmadAwais
https://docs.openshift.com/container-platform/latest/applications/creating_applications/odc-creating-applications-using-developer-perspective.html#odc-creating-applications-using-the-developer-perspective

CHAPTER 2. CREATING FUNCTIONS
Before you can build and deploy a function, you must create it. You can create functions using the
Knative (kn) CLI.

2.1. CREATING A FUNCTION BY USING THE KNATIVE CLI

You can specify the path, runtime, template, and image registry for a function as flags on the command
line, or use the -c flag to start the interactive experience in the terminal.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Create a function project:

Accepted runtime values include quarkus, node, typescript, go, python, springboot, and
rust.

Accepted template values include http and cloudevents.

Example command

Example output

Alternatively, you can specify a repository that contains a custom template.

Example command

Example output

2.2. CREATING A FUNCTION IN THE WEB CONSOLE

You can create a function from a Git repository by using the Developer perspective of the OpenShift
Container Platform web console.

$ kn func create -r <repository> -l <runtime> -t <template> <path>

$ kn func create -l typescript -t cloudevents examplefunc

Created typescript function in /home/user/demo/examplefunc

$ kn func create -r https://github.com/boson-project/templates/ -l node -t hello-world
examplefunc

Created node function in /home/user/demo/examplefunc

CHAPTER 2. CREATING FUNCTIONS

7

Prerequisites

Before you can create a function by using the web console, a cluster administrator must
complete the following steps:

Install the OpenShift Serverless Operator and Knative Serving on the cluster.

Install the OpenShift Pipelines Operator on the cluster.

Create the following pipeline tasks so that they are available for all namespaces on the
cluster:

func-s2i task

func-deploy task

Node.js function

You must log into the OpenShift Container Platform web console.

You must create a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must create or have access to a Git repository that contains the code for your function.
The repository must contain a func.yaml file and use the s2i build strategy.

Procedure

1. In the Developer perspective, navigate to +Add → Create Serverless function. The Create
Serverless function page is displayed.

2. Enter a Git Repo URL that points to the Git repository that contains the code for your function.

3. In the Pipelines section:

a. Select the Build, deploy and configure a Pipeline Repository radio button to create a new
pipeline for your function.

b. Select the Use Pipeline from this cluster radio button to connect your function to an
existing pipeline in the cluster.

4. Click Create.

Verification

After you have created a function, you can view it in the Topology view of the Developer

$ oc apply -f https://raw.githubusercontent.com/openshift-knative/kn-plugin-
func/serverless-1.32/pkg/pipelines/resources/tekton/task/func-s2i/0.1/func-s2i.yaml

$ oc apply -f https://raw.githubusercontent.com/openshift-knative/kn-plugin-
func/serverless-1.32/pkg/pipelines/resources/tekton/task/func-deploy/0.1/func-
deploy.yaml

$ oc apply -f https://raw.githubusercontent.com/openshift-knative/kn-plugin-
func/serverless-1.32/pkg/pipelines/resources/tekton/pipeline/dev-console/0.1/nodejs-
pipeline.yaml

Red Hat OpenShift Serverless 1.32 Functions

8

After you have created a function, you can view it in the Topology view of the Developer
perspective.

CHAPTER 2. CREATING FUNCTIONS

9

CHAPTER 3. RUNNING FUNCTIONS LOCALLY
You can run a function locally by using the kn func tool. This can be useful, for example, for testing the
function before deploying it to the cluster.

3.1. RUNNING A FUNCTION LOCALLY

You can use the kn func run command to run a function locally in the current directory or in the
directory specified by the --path flag. If the function that you are running has never previously been built,
or if the project files have been modified since the last time it was built, the kn func run command
builds the function before running it by default.

Example command to run a function in the current directory

Example command to run a function in a directory specified as a path

You can also force a rebuild of an existing image before running the function, even if there have been no
changes to the project files, by using the --build flag:

Example run command using the build flag

If you set the build flag as false, this disables building of the image, and runs the function using the
previously built image:

Example run command using the build flag

You can use the help command to learn more about kn func run command options:

Build help command

$ kn func run

$ kn func run --path=<directory_path>

$ kn func run --build

$ kn func run --build=false

$ kn func help run

Red Hat OpenShift Serverless 1.32 Functions

10

CHAPTER 4. DEPLOYING FUNCTIONS
You can deploy your functions to the cluster by using the kn func tool.

4.1. DEPLOYING A FUNCTION

You can deploy a function to your cluster as a Knative service by using the kn func deploy command. If
the targeted function is already deployed, it is updated with a new container image that is pushed to a
container image registry, and the Knative service is updated.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must have already created and initialized the function that you want to deploy.

Procedure

Deploy a function:

Example output

If no namespace is specified, the function is deployed in the current namespace.

The function is deployed from the current directory, unless a path is specified.

The Knative service name is derived from the project name, and cannot be changed using
this command.

NOTE

You can create a serverless function with a Git repository URL by using Import from Git
or Create Serverless Function in the +Add view of the Developer perspective.

$ kn func deploy [-n <namespace> -p <path> -i <image>]

Function deployed at: http://func.example.com

CHAPTER 4. DEPLOYING FUNCTIONS

11

CHAPTER 5. BUILDING FUNCTIONS
To run a function, you first must build the function project. This happens automatically when using the kn
func run command, but you can also build a function without running it.

5.1. BUILDING A FUNCTION

Before you can run a function, you must build the function project. If you are using the kn func run
command, the function is built automatically. However, you can use the kn func build command to build
a function without running it, which can be useful for advanced users or debugging scenarios.

The kn func build command creates an OCI container image that can be run locally on your computer
or on an OpenShift Container Platform cluster. This command uses the function project name and the
image registry name to construct a fully qualified image name for your function.

5.1.1. Image container types

By default, kn func build creates a container image by using Red Hat Source-to-Image (S2I)
technology.

Example build command using Red Hat Source-to-Image (S2I)

5.1.2. Image registry types

The OpenShift Container Registry is used by default as the image registry for storing function images.

Example build command using OpenShift Container Registry

Example output

You can override using OpenShift Container Registry as the default image registry by using the --
registry flag:

Example build command overriding OpenShift Container Registry to use quay.io

Example output

5.1.3. Push flag

You can add the --push flag to a kn func build command to automatically push the function image

$ kn func build

$ kn func build

Building function image
Function image has been built, image: registry.redhat.io/example/example-function:latest

$ kn func build --registry quay.io/username

Building function image
Function image has been built, image: quay.io/username/example-function:latest

Red Hat OpenShift Serverless 1.32 Functions

12

You can add the --push flag to a kn func build command to automatically push the function image
after it is successfully built:

Example build command using OpenShift Container Registry

5.1.4. Help command

You can use the help command to learn more about kn func build command options:

Build help command

$ kn func build --push

$ kn func help build

CHAPTER 5. BUILDING FUNCTIONS

13

CHAPTER 6. LISTING EXISTING FUNCTIONS
You can list existing functions. You can do it using the kn func tool.

6.1. LISTING EXISTING FUNCTIONS

You can list existing functions by using kn func list. If you want to list functions that have been deployed
as Knative services, you can also use kn service list.

Procedure

List existing functions:

Example output

List functions deployed as Knative services:

Example output

$ kn func list [-n <namespace> -p <path>]

NAME NAMESPACE RUNTIME URL
READY
example-function default node http://example-function.default.apps.ci-ln-g9f36hb-
d5d6b.origin-ci-int-aws.dev.rhcloud.com True

$ kn service list -n <namespace>

NAME URL LATEST
AGE CONDITIONS READY REASON
example-function http://example-function.default.apps.ci-ln-g9f36hb-d5d6b.origin-ci-int-
aws.dev.rhcloud.com example-function-gzl4c 16m 3 OK / 3 True

Red Hat OpenShift Serverless 1.32 Functions

14

CHAPTER 7. INVOKING FUNCTIONS
You can test a deployed function by invoking it. You can do it using the kn func tool.

7.1. INVOKING A DEPLOYED FUNCTION WITH A TEST EVENT

You can use the kn func invoke CLI command to send a test request to invoke a function either locally
or on your OpenShift Container Platform cluster. You can use this command to test that a function is
working and able to receive events correctly. Invoking a function locally is useful for a quick test during
function development. Invoking a function on the cluster is useful for testing that is closer to the
production environment.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You must have already deployed the function that you want to invoke.

Procedure

Invoke a function:

The kn func invoke command only works when there is either a local container image
currently running, or when there is a function deployed in the cluster.

The kn func invoke command executes on the local directory by default, and assumes that
this directory is a function project.

$ kn func invoke

CHAPTER 7. INVOKING FUNCTIONS

15

CHAPTER 8. DELETING FUNCTIONS
You can delete a function. You can do it using the kn func tool.

8.1. DELETING A FUNCTION

You can delete a function by using the kn func delete command. This is useful when a function is no
longer required, and can help to save resources on your cluster.

Procedure

Delete a function:

If the name or path of the function to delete is not specified, the current directory is
searched for a func.yaml file that is used to determine the function to delete.

If the namespace is not specified, it defaults to the namespace value in the func.yaml file.

$ kn func delete [<function_name> -n <namespace> -p <path>]

Red Hat OpenShift Serverless 1.32 Functions

16

CHAPTER 9. BUILDING AND DEPLOYING FUNCTIONS ON THE
CLUSTER

Instead of building a function locally, you can build a function directly on the cluster. When using this
workflow on a local development machine, you only need to work with the function source code. This is
useful, for example, when you cannot install on-cluster function building tools, such as docker or podman.

9.1. BUILDING AND DEPLOYING A FUNCTION ON THE CLUSTER

You can use the Knative (kn) CLI to initiate a function project build and then deploy the function directly
on the cluster. To build a function project in this way, the source code for your function project must
exist in a Git repository branch that is accessible to your cluster.

Prerequisites

Red Hat OpenShift Pipelines must be installed on your cluster.

You have installed the OpenShift CLI (oc).

You have installed the Knative (kn) CLI.

Procedure

1. Create a function:

2. Implement the business logic of your function. Then, use Git to commit and push the changes.

3. Deploy your function:

If you are not logged into the container registry referenced in your function configuration, you
are prompted to provide credentials for the remote container registry that hosts the function
image:

Example output and prompts

4. To update your function, commit and push new changes by using Git, then run the kn func
deploy --remote command again.

5. Optional. You can configure your function to be built on the cluster after every Git push by using
pipelines-as-code:

a. Generate the Tekton Pipelines and PipelineRuns configuration for your function:

$ kn func create <function_name> -l <runtime>

$ kn func deploy --remote

� Creating Pipeline resources
Please provide credentials for image registry used by Pipeline.
? Server: https://index.docker.io/v1/
? Username: my-repo
? Password: ********
 Function deployed at URL: http://test-function.default.svc.cluster.local

CHAPTER 9. BUILDING AND DEPLOYING FUNCTIONS ON THE CLUSTER

17

1

2

3

4

Apart from generating configuration files, this command connects to the cluster and
validates that the pipeline is installed. By using the token, it also creates, on behalf of the
user, a webhook on the function repository. That webhook triggers the pipeline on the
cluster every time changes are pushed to the repository.

You need to have a valid GitHub personal access token with the repository access to use
this command.

b. Commit and push the generated .tekton/pipeline.yaml and .tekton/pipeline-run.yaml
files:

c. After you make a change to your function, commit and push it. The function is rebuilt
automatically by using the created pipeline.

9.2. SPECIFYING FUNCTION REVISION

When building and deploying a function on the cluster, you must specify the location of the function
code by specifying the Git repository, branch, and subdirectory within the repository. You do not need to
specify the branch if you use the main branch. Similarly, you do not need to specify the subdirectory if
your function is at the root of the repository. You can specify these parameters in the func.yaml
configuration file, or by using flags with the kn func deploy command.

Prerequisites

Red Hat OpenShift Pipelines must be installed on your cluster.

You have installed the OpenShift (oc) CLI.

You have installed the Knative (kn) CLI.

Procedure

Deploy your function:

With the --remote flag, the build runs remotely.

Substitute <repo-url> with the URL of the Git repository.

Substitute <branch> with the Git branch, tag, or commit. If using the latest commit on the
main branch, you can skip this flag.

Substitute <function-dir> with the directory containing the function if it is different than
the repository root directory.

$ kn func config git set

$ git add .tekton/pipeline.yaml .tekton/pipeline-run.yaml
$ git commit -m 'Add the Pipelines and PipelineRuns configuration'
$ git push

$ kn func deploy --remote \ 1
 --git-url <repo-url> \ 2
 [--git-branch <branch>] \ 3
 [--git-dir <function-dir>] 4

Red Hat OpenShift Serverless 1.32 Functions

18

For example:

9.3. SETTING CUSTOM VOLUME SIZE

For projects that require a volume with a larger size to build, you might need to customize the persistent
volume claim (PVC) when building on the cluster. The default PVC size is 256 mebibytes.

Prerequisites

Red Hat OpenShift Pipelines must be installed on your cluster.

You have installed the OpenShift (oc) CLI.

You have installed the Knative (kn) CLI.

Procedure

Deploy your function with the --pvc-size flag and PVC size specification by running the
following command:

In this example, PVC is set to two gibibytes.

9.4. TESTING A FUNCTION IN THE WEB CONSOLE

You can test a deployed serverless function by invoking it in the Developer perspective of the Red Hat
OpenShift Serverless web console.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your Red Hat
OpenShift Serverless cluster.

You have logged in to the web console and are in the Developer perspective.

You have created and deployed a function.

Procedure

1. In the Developer perspective, navigate to Topology.

2. Click on a function, then click Test Serverless Function from the Actions drop-down list in the
Details panel. This opens the Test Serverless Function dialog box.

3. In the Test Serverless Function dialog box, modify the settings for your test as required:

a. Choose the Format for your test. This can be either CloudEvent or HTTP.

$ kn func deploy --remote \
 --git-url https://example.com/alice/myfunc.git \
 --git-branch my-feature \
 --git-dir functions/example-func/

$ kn func deploy --remote --pvc-size='2Gi'

CHAPTER 9. BUILDING AND DEPLOYING FUNCTIONS ON THE CLUSTER

19

b. The Content-Type defaults to the Content-Type HTTP header value.

c. You can use the Advanced Settings to modify the Type or Source for CloudEvent tests, or
to add optional headers.

d. You can modify the input data for the test.

4. Click Test to run your test.

5. After the test is complete, the Test Serverless Function dialog box displays a status code and a
message that informs you whether your test was succesful.

6. Click Back to perform another test, or Close to close the testing dialog box.

Red Hat OpenShift Serverless 1.32 Functions

20

CHAPTER 10. CONNECTING AN EVENT SOURCE TO A
FUNCTION

Functions are deployed as Knative services on an OpenShift Container Platform cluster. You can
connect functions to Knative Eventing components so that they can receive incoming events.

10.1. CONNECT AN EVENT SOURCE TO A FUNCTION USING THE
DEVELOPER PERSPECTIVE

Functions are deployed as Knative services on an OpenShift Container Platform cluster. When you
create an event source by using the OpenShift Container Platform web console, you can specify a
deployed function that events are sent to from that source.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console and are in the Developer perspective.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created and deployed a function.

Procedure

1. Create an event source of any type, by navigating to +Add → Event Source and selecting the
event source type that you want to create.

2. In the Target section of the Create Event Source form view, select your function in the
Resource list.

3. Click Create.

Verification

You can verify that the event source was created and is connected to the function by viewing the
Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the event source and click the connected function to see the function details in the right
panel.

CHAPTER 10. CONNECTING AN EVENT SOURCE TO A FUNCTION

21

CHAPTER 11. SUBSCRIBING FUNCTIONS TO CLOUDEVENTS
You can subscribe a function to a set of events. This links your function to CloudEvent objects defined
by your filters and enables automated responses.

11.1. SUBSCRIBING A FUNCTION TO CLOUDEVENTS

The subscribe command connects the function to a set of events, matching a series of filters for
CloudEvent metadata and a Knative Broker as the source of events, from where they are consumed.

Prerequisites

You have installed Knative Eventing on the cluster.

You have configured a Knative Broker.

You have installed the Knative (kn) CLI.

Procedure

1. Subscribe the function to events for a given broker by running the following command:

Example command

Use the --source flag to specify the broker and one or more --filter flags to specify your filters.

You can also omit the --source flag to use the default broker:

Example command

2. Deploy the function with Knative Triggers:

Example command

Example output

$ kn func subscribe --filter type=com.example.Hello --source my-broker

$ kn func subscribe --filter type=com.example --filter extension=my-extension-value

$ kn func deploy

� Function image built: <registry>/hello:latest
� Creating Triggers on the cluster
� Function deployed in namespace "default" and exposed at URL:
http://hello.default.my-cluster.example.com

Red Hat OpenShift Serverless 1.32 Functions

22

1

2

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE
GUIDE

12.1. DEVELOPING QUARKUS FUNCTIONS

After you have created a Quarkus function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

12.1.1. Prerequisites

Before you can develop functions, you must complete the setup steps in Configuring OpenShift
Serverless Functions.

12.1.2. Quarkus function template structure

When you create a Quarkus function by using the Knative (kn) CLI, the project directory looks similar to
a typical Maven project. Additionally, the project contains the func.yaml file, which is used for
configuring the function.

Both http and event trigger functions have the same template structure:

Template structure

Used to determine the image name and registry.

The Project Object Model (POM) file contains project configuration, such as information about
dependencies. You can add additional dependencies by modifying this file.

Example of additional dependencies

.
├── func.yaml 1
├── mvnw
├── mvnw.cmd
├── pom.xml 2
├── README.md
└── src
 ├── main
 │ ├── java
 │ │ └── functions
 │ │ ├── Function.java 3
 │ │ ├── Input.java
 │ │ └── Output.java
 │ └── resources
 │ └── application.properties
 └── test
 └── java
 └── functions 4
 ├── FunctionTest.java
 └── NativeFunctionIT.java

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

23

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/installing_serverless/#configuring-serverless-functions

3

4

Dependencies are downloaded during the first compilation.

The function project must contain a Java method annotated with @Funq. You can place this
method in the Function.java class.

Contains simple test cases that can be used to test your function locally.

12.1.3. About invoking Quarkus functions

You can create a Quarkus project that responds to cloud events, or one that responds to simple HTTP
requests. Cloud events in Knative are transported over HTTP as a POST request, so either function type
can listen and respond to incoming HTTP requests.

When an incoming request is received, Quarkus functions are invoked with an instance of a permitted
type.

Table 12.1. Function invocation options

Invocation method Data type contained in the
instance

Example of data

HTTP POST request JSON object in the body of the
request

{ "customerId": "0123456",
"productId": "6543210" }

HTTP GET request Data in the query string ?
customerId=0123456&produ
ctId=6543210

CloudEvent JSON object in the data property { "customerId": "0123456",
"productId": "6543210" }

The following example shows a function that receives and processes the customerId and productId
purchase data that is listed in the previous table:

Example Quarkus function

...
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.13</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>3.8.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
...

Red Hat OpenShift Serverless 1.32 Functions

24

The corresponding Purchase JavaBean class that contains the purchase data looks as follows:

Example class

12.1.3.1. Invocation examples

The following example code defines three functions named withBeans, withCloudEvent, and
withBinary;

Example

public class Functions {
 @Funq
 public void processPurchase(Purchase purchase) {
 // process the purchase
 }
}

public class Purchase {
 private long customerId;
 private long productId;
 // getters and setters
}

import io.quarkus.funqy.Funq;
import io.quarkus.funqy.knative.events.CloudEvent;

public class Input {
 private String message;

 // getters and setters
}

public class Output {
 private String message;

 // getters and setters
}

public class Functions {
 @Funq
 public Output withBeans(Input in) {
 // function body
 }

 @Funq
 public CloudEvent<Output> withCloudEvent(CloudEvent<Input> in) {
 // function body
 }

 @Funq
 public void withBinary(byte[] in) {

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

25

The withBeans function of the Functions class can be invoked by:

An HTTP POST request with a JSON body:

An HTTP GET request with query parameters:

A CloudEvent object in binary encoding:

A CloudEvent object in structured encoding:

The withCloudEvent function of the Functions class can be invoked by using a CloudEvent object,
similarly to the withBeans function. However, unlike withBeans, withCloudEvent cannot be invoked
with a plain HTTP request.

The withBinary function of the Functions class can be invoked by:

A CloudEvent object in binary encoding:

$ curl "http://localhost:8080/" -X POST \
 -H "Content-Type: application/octet-stream" \
 -H "Ce-SpecVersion: 1.0"\
 -H "Ce-Type: withBinary" \
 -H "Ce-Source: cURL" \
 -H "Ce-Id: 42" \
 --data-binary '@img.jpg'

A CloudEvent object in structured encoding:

 // function body
 }
}

$ curl "http://localhost:8080/withBeans" -X POST \
 -H "Content-Type: application/json" \
 -d '{"message": "Hello there."}'

$ curl "http://localhost:8080/withBeans?message=Hello%20there." -X GET

$ curl "http://localhost:8080/" -X POST \
 -H "Content-Type: application/json" \
 -H "Ce-SpecVersion: 1.0" \
 -H "Ce-Type: withBeans" \
 -H "Ce-Source: cURL" \
 -H "Ce-Id: 42" \
 -d '{"message": "Hello there."}'

$ curl http://localhost:8080/ \
 -H "Content-Type: application/cloudevents+json" \
 -d '{ "data": {"message":"Hello there."},
 "datacontenttype": "application/json",
 "id": "42",
 "source": "curl",
 "type": "withBeans",
 "specversion": "1.0"}'

Red Hat OpenShift Serverless 1.32 Functions

26

$ curl http://localhost:8080/ \
 -H "Content-Type: application/cloudevents+json" \
 -d "{ \"data_base64\": \"$(base64 --wrap=0 img.jpg)\",
 \"datacontenttype\": \"application/octet-stream\",
 \"id\": \"42\",
 \"source\": \"curl\",
 \"type\": \"withBinary\",
 \"specversion\": \"1.0\"}"

12.1.4. CloudEvent attributes

If you need to read or write the attributes of a CloudEvent, such as type or subject, you can use the
CloudEvent<T> generic interface and the CloudEventBuilder builder. The <T> type parameter must
be one of the permitted types.

In the following example, CloudEventBuilder is used to return success or failure of processing the
purchase:

12.1.5. Quarkus function return values

Functions can return an instance of any type from the list of permitted types. Alternatively, they can
return the Uni<T> type, where the <T> type parameter can be of any type from the permitted types.

The Uni<T> type is useful if a function calls asynchronous APIs, because the returned object is serialized
in the same format as the received object. For example:

If a function receives an HTTP request, then the returned object is sent in the body of an HTTP
response.

If a function receives a CloudEvent object in binary encoding, then the returned object is sent in
the data property of a binary-encoded CloudEvent object.

The following example shows a function that fetches a list of purchases:

public class Functions {

 private boolean _processPurchase(Purchase purchase) {
 // do stuff
 }

 public CloudEvent<Void> processPurchase(CloudEvent<Purchase> purchaseEvent) {
 System.out.println("subject is: " + purchaseEvent.subject());

 if (!_processPurchase(purchaseEvent.data())) {
 return CloudEventBuilder.create()
 .type("purchase.error")
 .build();
 }
 return CloudEventBuilder.create()
 .type("purchase.success")
 .build();
 }
}

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

27

Example command

Invoking this function through an HTTP request produces an HTTP response that contains a list
of purchases in the body of the response.

Invoking this function through an incoming CloudEvent object produces a CloudEvent
response with a list of purchases in the data property.

12.1.5.1. Permitted types

The input and output of a function can be any of the void, String, or byte[] types. Additionally, they can
be primitive types and their wrappers, for example, int and Integer. They can also be the following
complex objects: Javabeans, maps, lists, arrays, and the special CloudEvents<T> type.

Maps, lists, arrays, the <T> type parameter of the CloudEvents<T> type, and attributes of Javabeans
can only be of types listed here.

Example

12.1.6. Testing Quarkus functions

Quarkus functions can be tested locally on your computer. In the default project that is created when
you create a function using kn func create, there is the src/test/ directory, which contains basic Maven
tests. These tests can be extended as needed.

Prerequisites

You have created a Quarkus function.

You have installed the Knative (kn) CLI.

Procedure

1. Navigate to the project folder for your function.

2. Run the Maven tests:

public class Functions {
 @Funq
 public List<Purchase> getPurchasesByName(String name) {
 // logic to retrieve purchases
 }
}

public class Functions {
 public List<Integer> getIds();
 public Purchase[] getPurchasesByName(String name);
 public String getNameById(int id);
 public Map<String,Integer> getNameIdMapping();
 public void processImage(byte[] img);
}

$./mvnw test

Red Hat OpenShift Serverless 1.32 Functions

28

1

2

3

1

2

12.1.7. Overriding liveness and readiness probe values

You can override liveness and readiness probe values for your Quarkus functions. This allows you to
configure health checks performed on the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

1. Override the /health/liveness and /health/readiness paths with your own values. You can do
this either by changing properties in the function source or by setting the
QUARKUS_SMALLRYE_HEALTH_LIVENESS_PATH and
QUARKUS_SMALLRYE_HEALTH_READINESS_PATH environment variables on func.yaml
file.

a. To override the paths using the function source, update the path properties in the
src/main/resources/application.properties file:

quarkus.smallrye-health.root-path=/health 1
quarkus.smallrye-health.liveness-path=alive 2
quarkus.smallrye-health.readiness-path=ready 3

The root path, which is automatically prepended to the liveness and readiness paths.

The liveness path, set to /health/alive here.

The readiness path, set to /health/ready here.

b. To override the paths using environment variables, define the path variables in the build
block of the func.yaml file:

The liveness path, set to /health/alive here.

The readiness path, set to /health/ready here.

2. Add the new endpoints to the func.yaml file, so that they are properly bound to the container
for the Knative service:

build:
 builder: s2i
 buildEnvs:
 - name: QUARKUS_SMALLRYE_HEALTH_LIVENESS_PATH
 value: alive 1
 - name: QUARKUS_SMALLRYE_HEALTH_READINESS_PATH
 value: ready 2

deploy:

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

29

1

2

3

4

12.1.8. Next steps

Build and deploy a function.

12.2. DEVELOPING NODE.JS FUNCTIONS

After you have created a Node.js function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

12.2.1. Prerequisites

Before you can develop functions, you must complete the steps in Configuring OpenShift
Serverless Functions.

12.2.2. Node.js function template structure

When you create a Node.js function using the Knative (kn) CLI, the project directory looks like a typical
Node.js project. The only exception is the additional func.yaml file, which is used to configure the
function.

Both http and event trigger functions have the same template structure:

Template structure

The func.yaml configuration file is used to determine the image name and registry.

Your project must contain an index.js file which exports a single function.

You are not restricted to the dependencies provided in the template package.json file. You can
add additional dependencies as you would in any other Node.js project.

Example of adding npm dependencies

When the project is built for deployment, these dependencies are included in the created runtime
container image.

Integration and unit test scripts are provided as part of the function template.

 healthEndpoints:
 liveness: /health/alive
 readiness: /health/ready

.
├── func.yaml 1
├── index.js 2
├── package.json 3
├── README.md
└── test 4
 ├── integration.js
 └── unit.js

npm install --save opossum

Red Hat OpenShift Serverless 1.32 Functions

30

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/installing_serverless/#configuring-serverless-functions

12.2.3. About invoking Node.js functions

When using the Knative (kn) CLI to create a function project, you can generate a project that responds
to CloudEvents, or one that responds to simple HTTP requests. CloudEvents in Knative are transported
over HTTP as a POST request, so both function types listen for and respond to incoming HTTP events.

Node.js functions can be invoked with a simple HTTP request. When an incoming request is received,
functions are invoked with a context object as the first parameter.

12.2.3.1. Node.js context objects

Functions are invoked by providing a context object as the first parameter. This object provides access
to the incoming HTTP request information.

Example context object

This information includes the HTTP request method, any query strings or headers sent with the request,
the HTTP version, and the request body. Incoming requests that contain a CloudEvent attach the
incoming instance of the CloudEvent to the context object so that it can be accessed by using
context.cloudevent.

12.2.3.1.1. Context object methods

The context object has a single method, cloudEventResponse(), that accepts a data value and returns
a CloudEvent.

In a Knative system, if a function deployed as a service is invoked by an event broker sending a
CloudEvent, the broker examines the response. If the response is a CloudEvent, this event is handled by
the broker.

Example context object method

12.2.3.1.2. CloudEvent data

If the incoming request is a CloudEvent, any data associated with the CloudEvent is extracted from the
event and provided as a second parameter. For example, if a CloudEvent is received that contains a
JSON string in its data property that is similar to the following:

function handle(context, data)

// Expects to receive a CloudEvent with customer data
function handle(context, customer) {
 // process the customer
 const processed = handle(customer);
 return context.cloudEventResponse(customer)
 .source('/handle')
 .type('fn.process.customer')
 .response();
}

{
 "customerId": "0123456",
 "productId": "6543210"
}

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

31

When invoked, the second parameter to the function, after the context object, will be a JavaScript
object that has customerId and productId properties.

Example signature

The data parameter in this example is a JavaScript object that contains the customerId and productId
properties.

12.2.4. Node.js function return values

Functions can return any valid JavaScript type or can have no return value. When a function has no
return value specified, and no failure is indicated, the caller receives a 204 No Content response.

Functions can also return a CloudEvent or a Message object in order to push events into the Knative
Eventing system. In this case, the developer is not required to understand or implement the CloudEvent
messaging specification. Headers and other relevant information from the returned values are extracted
and sent with the response.

Example

12.2.4.1. Returning headers

You can set a response header by adding a headers property to the return object. These headers are
extracted and sent with the response to the caller.

Example response header

12.2.4.2. Returning status codes

You can set a status code that is returned to the caller by adding a statusCode property to the return
object:

Example status code

function handle(context, data)

function handle(context, customer) {
 // process customer and return a new CloudEvent
 return new CloudEvent({
 source: 'customer.processor',
 type: 'customer.processed'
 })
}

function handle(context, customer) {
 // process customer and return custom headers
 // the response will be '204 No content'
 return { headers: { customerid: customer.id } };
}

function handle(context, customer) {
 // process customer
 if (customer.restricted) {

Red Hat OpenShift Serverless 1.32 Functions

32

Status codes can also be set for errors that are created and thrown by the function:

Example error status code

12.2.5. Testing Node.js functions

Node.js functions can be tested locally on your computer. In the default project that is created when you
create a function by using kn func create, there is a test folder that contains some simple unit and
integration tests.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

1. Navigate to the test folder for your function.

2. Run the tests:

12.2.6. Overriding liveness and readiness probe values

You can override liveness and readiness probe values for your Node.js functions. This allows you to
configure health checks performed on the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

 return { statusCode: 451 }
 }
}

function handle(context, customer) {
 // process customer
 if (customer.restricted) {
 const err = new Error(‘Unavailable for legal reasons’);
 err.statusCode = 451;
 throw err;
 }
}

$ npm test

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

33

1

2

3

4

5

1. In your function code, create the Function object, which implements the following interface:

The initialization function, called before the server is started. This function is optional and
should be synchronous.

The shutdown function, called after the server is stopped. This function is optional and
should be synchronous.

The liveness function, called to check if the server is alive. This function is optional and
should return 200/OK if the server is alive.

The readiness function, called to check if the server is ready to accept requests. This
function is optional and should return 200/OK if the server is ready.

The function to handle HTTP requests.

For example, add the following code to the index.js file:

export interface Function {
 init?: () => any; 1

 shutdown?: () => any; 2

 liveness?: HealthCheck; 3

 readiness?: HealthCheck; 4

 logLevel?: LogLevel;

 handle: CloudEventFunction | HTTPFunction; 5
}

const Function = {

 handle: (context, body) => {
 // The function logic goes here
 return 'function called'
 },

 liveness: () => {
 process.stdout.write('In liveness\n');
 return 'ok, alive';
 }, 1

 readiness: () => {
 process.stdout.write('In readiness\n');
 return 'ok, ready';
 } 2
};

Function.liveness.path = '/alive'; 3
Function.readiness.path = '/ready'; 4

module.exports = Function;

Red Hat OpenShift Serverless 1.32 Functions

34

1

2

3

4

1

2

Custom liveness function.

Custom readiness function.

Custom liveness endpoint.

Custom readiness endpoint.

As an alternative to Function.liveness.path and Function.readiness.path, you can specify
custom endpoints using the LIVENESS_URL and READINESS_URL environment variables:

The liveness path, set to /alive here.

The readiness path, set to /ready here.

2. Add the new endpoints to the func.yaml file, so that they are properly bound to the container
for the Knative service:

12.2.7. Node.js context object reference

The context object has several properties that can be accessed by the function developer. Accessing
these properties can provide information about HTTP requests and write output to the cluster logs.

12.2.7.1. log

Provides a logging object that can be used to write output to the cluster logs. The log adheres to the
Pino logging API .

Example log

You can access the function by using the kn func invoke command:

Example command

run:
 envs:
 - name: LIVENESS_URL
 value: /alive 1
 - name: READINESS_URL
 value: /ready 2

deploy:
 healthEndpoints:
 liveness: /alive
 readiness: /ready

function handle(context) {
 context.log.info(“Processing customer”);
}

$ kn func invoke --target 'http://example.function.com'

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

35

https://getpino.io/#/docs/api

Example output

You can change the log level to one of fatal, error, warn, info, debug, trace, or silent. To do that,
change the value of logLevel by assigning one of these values to the environment variable
FUNC_LOG_LEVEL using the config command.

12.2.7.2. query

Returns the query string for the request, if any, as key-value pairs. These attributes are also found on the
context object itself.

Example query

You can access the function by using the kn func invoke command:

Example command

Example output

12.2.7.3. body

Returns the request body if any. If the request body contains JSON code, this will be parsed so that the
attributes are directly available.

Example body

You can access the function by using the curl command to invoke it:

Example command

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"Pr
ocessing customer"}

function handle(context) {
 // Log the 'name' query parameter
 context.log.info(context.query.name);
 // Query parameters are also attached to the context
 context.log.info(context.name);
}

$ kn func invoke --target 'http://example.com?name=tiger'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"tig
er"}

function handle(context) {
 // log the incoming request body's 'hello' parameter
 context.log.info(context.body.hello);
}

$ kn func invoke -d '{"Hello": "world"}'

Red Hat OpenShift Serverless 1.32 Functions

36

Example output

12.2.7.4. headers

Returns the HTTP request headers as an object.

Example header

You can access the function by using the kn func invoke command:

Example command

Example output

12.2.7.5. HTTP requests

method

Returns the HTTP request method as a string.

httpVersion

Returns the HTTP version as a string.

httpVersionMajor

Returns the HTTP major version number as a string.

httpVersionMinor

Returns the HTTP minor version number as a string.

12.2.8. Next steps

Build and deploy a function.

12.3. DEVELOPING TYPESCRIPT FUNCTIONS

After you have created a TypeScript function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

12.3.1. Prerequisites

Before you can develop functions, you must complete the steps in Configuring OpenShift

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"w
orld"}

function handle(context) {
 context.log.info(context.headers["custom-header"]);
}

$ kn func invoke --target 'http://example.function.com'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"so
me-value"}

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

37

1

2

3

4

Before you can develop functions, you must complete the steps in Configuring OpenShift
Serverless Functions.

12.3.2. TypeScript function template structure

When you create a TypeScript function using the Knative (kn) CLI, the project directory looks like a
typical TypeScript project. The only exception is the additional func.yaml file, which is used for
configuring the function.

Both http and event trigger functions have the same template structure:

Template structure

The func.yaml configuration file is used to determine the image name and registry.

You are not restricted to the dependencies provided in the template package.json file. You can
add additional dependencies as you would in any other TypeScript project.

Example of adding npm dependencies

When the project is built for deployment, these dependencies are included in the created runtime
container image.

Your project must contain an src/index.js file which exports a function named handle.

Integration and unit test scripts are provided as part of the function template.

12.3.3. About invoking TypeScript functions

When using the Knative (kn) CLI to create a function project, you can generate a project that responds
to CloudEvents or one that responds to simple HTTP requests. CloudEvents in Knative are transported
over HTTP as a POST request, so both function types listen for and respond to incoming HTTP events.

TypeScript functions can be invoked with a simple HTTP request. When an incoming request is received,
functions are invoked with a context object as the first parameter.

12.3.3.1. TypeScript context objects

To invoke a function, you provide a context object as the first parameter. Accessing properties of the

.
├── func.yaml 1
├── package.json 2
├── package-lock.json
├── README.md
├── src
│ └── index.ts 3
├── test 4
│ ├── integration.ts
│ └── unit.ts
└── tsconfig.json

npm install --save opossum

Red Hat OpenShift Serverless 1.32 Functions

38

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/installing_serverless/#configuring-serverless-functions

To invoke a function, you provide a context object as the first parameter. Accessing properties of the
context object can provide information about the incoming HTTP request.

Example context object

This information includes the HTTP request method, any query strings or headers sent with the request,
the HTTP version, and the request body. Incoming requests that contain a CloudEvent attach the
incoming instance of the CloudEvent to the context object so that it can be accessed by using
context.cloudevent.

12.3.3.1.1. Context object methods

The context object has a single method, cloudEventResponse(), that accepts a data value and returns
a CloudEvent.

In a Knative system, if a function deployed as a service is invoked by an event broker sending a
CloudEvent, the broker examines the response. If the response is a CloudEvent, this event is handled by
the broker.

Example context object method

12.3.3.1.2. Context types

The TypeScript type definition files export the following types for use in your functions.

Exported type definitions

function handle(context:Context): string

// Expects to receive a CloudEvent with customer data
export function handle(context: Context, cloudevent?: CloudEvent): CloudEvent {
 // process the customer
 const customer = cloudevent.data;
 const processed = processCustomer(customer);
 return context.cloudEventResponse(customer)
 .source('/customer/process')
 .type('customer.processed')
 .response();
}

// Invokable is the expeted Function signature for user functions
export interface Invokable {
 (context: Context, cloudevent?: CloudEvent): any
}

// Logger can be used for structural logging to the console
export interface Logger {
 debug: (msg: any) => void,
 info: (msg: any) => void,
 warn: (msg: any) => void,
 error: (msg: any) => void,
 fatal: (msg: any) => void,
 trace: (msg: any) => void,
}

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

39

12.3.3.1.3. CloudEvent data

If the incoming request is a CloudEvent, any data associated with the CloudEvent is extracted from the
event and provided as a second parameter. For example, if a CloudEvent is received that contains a
JSON string in its data property that is similar to the following:

When invoked, the second parameter to the function, after the context object, will be a JavaScript
object that has customerId and productId properties.

Example signature

The cloudevent parameter in this example is a JavaScript object that contains the customerId and
productId properties.

12.3.4. TypeScript function return values

Functions can return any valid JavaScript type or can have no return value. When a function has no
return value specified, and no failure is indicated, the caller receives a 204 No Content response.

Functions can also return a CloudEvent or a Message object in order to push events into the Knative

// Context represents the function invocation context, and provides
// access to the event itself as well as raw HTTP objects.
export interface Context {
 log: Logger;
 req: IncomingMessage;
 query?: Record<string, any>;
 body?: Record<string, any>|string;
 method: string;
 headers: IncomingHttpHeaders;
 httpVersion: string;
 httpVersionMajor: number;
 httpVersionMinor: number;
 cloudevent: CloudEvent;
 cloudEventResponse(data: string|object): CloudEventResponse;
}

// CloudEventResponse is a convenience class used to create
// CloudEvents on function returns
export interface CloudEventResponse {
 id(id: string): CloudEventResponse;
 source(source: string): CloudEventResponse;
 type(type: string): CloudEventResponse;
 version(version: string): CloudEventResponse;
 response(): CloudEvent;
}

{
 "customerId": "0123456",
 "productId": "6543210"
}

function handle(context: Context, cloudevent?: CloudEvent): CloudEvent

Red Hat OpenShift Serverless 1.32 Functions

40

Eventing system. In this case, the developer is not required to understand or implement the CloudEvent
messaging specification. Headers and other relevant information from the returned values are extracted
and sent with the response.

Example

12.3.4.1. Returning headers

You can set a response header by adding a headers property to the return object. These headers are
extracted and sent with the response to the caller.

Example response header

12.3.4.2. Returning status codes

You can set a status code that is returned to the caller by adding a statusCode property to the return
object:

Example status code

export const handle: Invokable = function (
 context: Context,
 cloudevent?: CloudEvent
): Message {
 // process customer and return a new CloudEvent
 const customer = cloudevent.data;
 return HTTP.binary(
 new CloudEvent({
 source: 'customer.processor',
 type: 'customer.processed'
 })
);
};

export function handle(context: Context, cloudevent?: CloudEvent): Record<string, any> {
 // process customer and return custom headers
 const customer = cloudevent.data as Record<string, any>;
 return { headers: { 'customer-id': customer.id } };
}

export function handle(context: Context, cloudevent?: CloudEvent): Record<string, any> {
 // process customer
 const customer = cloudevent.data as Record<string, any>;
 if (customer.restricted) {
 return {
 statusCode: 451
 }
 }
 // business logic, then
 return {
 statusCode: 240
 }
}

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

41

Status codes can also be set for errors that are created and thrown by the function:

Example error status code

12.3.5. Testing TypeScript functions

TypeScript functions can be tested locally on your computer. In the default project that is created when
you create a function using kn func create, there is a test folder that contains some simple unit and
integration tests.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

Procedure

1. If you have not previously run tests, install the dependencies first:

2. Navigate to the test folder for your function.

3. Run the tests:

12.3.6. Overriding liveness and readiness probe values

You can override liveness and readiness probe values for your TypeScript functions. This allows you to
configure health checks performed on the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function by using kn func create.

export function handle(context: Context, cloudevent?: CloudEvent): Record<string, string> {
 // process customer
 const customer = cloudevent.data as Record<string, any>;
 if (customer.restricted) {
 const err = new Error(‘Unavailable for legal reasons’);
 err.statusCode = 451;
 throw err;
 }
}

$ npm install

$ npm test

Red Hat OpenShift Serverless 1.32 Functions

42

1

2

3

4

5

Procedure

1. In your function code, create the Function object, which implements the following interface:

The initialization function, called before the server is started. This function is optional and
should be synchronous.

The shutdown function, called after the server is stopped. This function is optional and
should be synchronous.

The liveness function, called to check if the server is alive. This function is optional and
should return 200/OK if the server is alive.

The readiness function, called to check if the server is ready to accept requests. This
function is optional and should return 200/OK if the server is ready.

The function to handle HTTP requests.

For example, add the following code to the index.js file:

export interface Function {
 init?: () => any; 1

 shutdown?: () => any; 2

 liveness?: HealthCheck; 3

 readiness?: HealthCheck; 4

 logLevel?: LogLevel;

 handle: CloudEventFunction | HTTPFunction; 5
}

const Function = {

 handle: (context, body) => {
 // The function logic goes here
 return 'function called'
 },

 liveness: () => {
 process.stdout.write('In liveness\n');
 return 'ok, alive';
 }, 1

 readiness: () => {
 process.stdout.write('In readiness\n');
 return 'ok, ready';
 } 2
};

Function.liveness.path = '/alive'; 3

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

43

1

2

3

4

1

2

Custom liveness function.

Custom readiness function.

Custom liveness endpoint.

Custom readiness endpoint.

As an alternative to Function.liveness.path and Function.readiness.path, you can specify
custom endpoints using the LIVENESS_URL and READINESS_URL environment variables:

The liveness path, set to /alive here.

The readiness path, set to /ready here.

2. Add the new endpoints to the func.yaml file, so that they are properly bound to the container
for the Knative service:

12.3.7. TypeScript context object reference

The context object has several properties that can be accessed by the function developer. Accessing
these properties can provide information about incoming HTTP requests and write output to the cluster
logs.

12.3.7.1. log

Provides a logging object that can be used to write output to the cluster logs. The log adheres to the
Pino logging API .

Example log

Function.readiness.path = '/ready'; 4

module.exports = Function;

run:
 envs:
 - name: LIVENESS_URL
 value: /alive 1
 - name: READINESS_URL
 value: /ready 2

deploy:
 healthEndpoints:
 liveness: /alive
 readiness: /ready

export function handle(context: Context): string {
 // log the incoming request body's 'hello' parameter
 if (context.body) {
 context.log.info((context.body as Record<string, string>).hello);
 } else {

Red Hat OpenShift Serverless 1.32 Functions

44

https://getpino.io/#/docs/api

You can access the function by using the kn func invoke command:

Example command

Example output

You can change the log level to one of fatal, error, warn, info, debug, trace, or silent. To do that,
change the value of logLevel by assigning one of these values to the environment variable
FUNC_LOG_LEVEL using the config command.

12.3.7.2. query

Returns the query string for the request, if any, as key-value pairs. These attributes are also found on the
context object itself.

Example query

You can access the function by using the kn func invoke command:

Example command

Example output

12.3.7.3. body

Returns the request body, if any. If the request body contains JSON code, this will be parsed so that the

 context.log.info('No data received');
 }
 return 'OK';
}

$ kn func invoke --target 'http://example.function.com'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"Pr
ocessing customer"}

export function handle(context: Context): string {
 // log the 'name' query parameter
 if (context.query) {
 context.log.info((context.query as Record<string, string>).name);
 } else {
 context.log.info('No data received');
 }
 return 'OK';
}

$ kn func invoke --target 'http://example.function.com' --data '{"name": "tiger"}'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"tig
er"}
{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"tig
er"}

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

45

Returns the request body, if any. If the request body contains JSON code, this will be parsed so that the
attributes are directly available.

Example body

You can access the function by using the kn func invoke command:

Example command

Example output

12.3.7.4. headers

Returns the HTTP request headers as an object.

Example header

You can access the function by using the curl command to invoke it:

Example command

Example output

export function handle(context: Context): string {
 // log the incoming request body's 'hello' parameter
 if (context.body) {
 context.log.info((context.body as Record<string, string>).hello);
 } else {
 context.log.info('No data received');
 }
 return 'OK';
}

$ kn func invoke --target 'http://example.function.com' --data '{"hello": "world"}'

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"w
orld"}

export function handle(context: Context): string {
 // log the incoming request body's 'hello' parameter
 if (context.body) {
 context.log.info((context.headers as Record<string, string>)['custom-header']);
 } else {
 context.log.info('No data received');
 }
 return 'OK';
}

$ curl -H'x-custom-header: some-value’' http://example.function.com

{"level":30,"time":1604511655265,"pid":3430203,"hostname":"localhost.localdomain","reqId":1,"msg":"so
me-value"}

Red Hat OpenShift Serverless 1.32 Functions

46

12.3.7.5. HTTP requests

method

Returns the HTTP request method as a string.

httpVersion

Returns the HTTP version as a string.

httpVersionMajor

Returns the HTTP major version number as a string.

httpVersionMinor

Returns the HTTP minor version number as a string.

12.3.8. Next steps

Build and deploy a function.

See the Pino API documentation for more information about logging with functions.

12.4. DEVELOPING PYTHON FUNCTIONS

IMPORTANT

OpenShift Serverless Functions with Python is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

After you have created a Python function project , you can modify the template files provided to add
business logic to your function. This includes configuring function invocation and the returned headers
and status codes.

12.4.1. Prerequisites

Before you can develop functions, you must complete the steps in Configuring OpenShift
Serverless Functions.

12.4.2. Python function template structure

When you create a Python function by using the Knative (kn) CLI, the project directory looks similar to a
typical Python project. Python functions have very few restrictions. The only requirements are that your
project contains a func.py file that contains a main() function, and a func.yaml configuration file.

Developers are not restricted to the dependencies provided in the template requirements.txt file.
Additional dependencies can be added as they would be in any other Python project. When the project
is built for deployment, these dependencies will be included in the created runtime container image.

Both http and event trigger functions have the same template structure:

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

47

https://getpino.io/#/docs/api
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.32/html-single/installing_serverless/#configuring-serverless-functions

1

2

3

4

Template structure

Contains a main() function.

Used to determine the image name and registry.

Additional dependencies can be added to the requirements.txt file as they are in any other Python
project.

Contains a simple unit test that can be used to test your function locally.

12.4.3. About invoking Python functions

Python functions can be invoked with a simple HTTP request. When an incoming request is received,
functions are invoked with a context object as the first parameter.

The context object is a Python class with two attributes:

The request attribute is always present, and contains the Flask request object.

The second attribute, cloud_event, is populated if the incoming request is a CloudEvent
object.

Developers can access any CloudEvent data from the context object.

Example context object

12.4.4. Python function return values

Functions can return any value supported by Flask. This is because the invocation framework proxies
these values directly to the Flask server.

Example

fn
├── func.py 1
├── func.yaml 2
├── requirements.txt 3
└── test_func.py 4

def main(context: Context):
 """
 The context parameter contains the Flask request object and any
 CloudEvent received with the request.
 """
 print(f"Method: {context.request.method}")
 print(f"Event data {context.cloud_event.data}")
 # ... business logic here

def main(context: Context):
 body = { "message": "Howdy!" }
 headers = { "content-type": "application/json" }
 return body, 200, headers

Red Hat OpenShift Serverless 1.32 Functions

48

https://flask.palletsprojects.com/en/1.1.x/quickstart/#about-responses

Functions can set both headers and response codes as secondary and tertiary response values from
function invocation.

12.4.4.1. Returning CloudEvents

Developers can use the @event decorator to tell the invoker that the function return value must be
converted to a CloudEvent before sending the response.

Example

This example sends a CloudEvent as the response value, with a type of "my.type" and a source of
"/my/function". The CloudEvent data property is set to the returned data variable. The event_source
and event_type decorator attributes are both optional.

12.4.5. Testing Python functions

You can test Python functions locally on your computer. The default project contains a test_func.py
file, which provides a simple unit test for functions.

NOTE

The default test framework for Python functions is unittest. You can use a different test
framework if you prefer.

Prerequisites

To run Python functions tests locally, you must install the required dependencies:

Procedure

1. Navigate to the folder for your function that contains the test_func.py file.

2. Run the tests:

12.4.6. Next steps

Build and deploy a function.

@event("event_source"="/my/function", "event_type"="my.type")
def main(context):
 # business logic here
 data = do_something()
 # more data processing
 return data

$ pip install -r requirements.txt

$ python3 test_func.py

CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE

49

https://github.com/cloudevents/spec/blob/v1.0.1/spec.md#event-data

CHAPTER 13. CONFIGURING FUNCTIONS

13.1. ACCESSING SECRETS AND CONFIG MAPS FROM FUNCTIONS
USING CLI

After your functions have been deployed to the cluster, they can access data stored in secrets and
config maps. This data can be mounted as volumes, or assigned to environment variables. You can
configure this access interactively by using the Knative CLI, or by manually by editing the function
configuration YAML file.

IMPORTANT

To access secrets and config maps, the function must be deployed on the cluster. This
functionality is not available to a function running locally.

If a secret or config map value cannot be accessed, the deployment fails with an error
message specifying the inaccessible values.

13.1.1. Modifying function access to secrets and config maps interactively

You can manage the secrets and config maps accessed by your function by using the kn func config
interactive utility. The available operations include listing, adding, and removing values stored in config
maps and secrets as environment variables, as well as listing, adding, and removing volumes. This
functionality enables you to manage what data stored on the cluster is accessible by your function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Run the following command in the function project directory:

Alternatively, you can specify the function project directory using the --path or -p option.

2. Use the interactive interface to perform the necessary operation. For example, using the utility
to list configured volumes produces an output similar to this:

This scheme shows all operations available in the interactive utility and how to navigate to them:

$ kn func config

$ kn func config
? What do you want to configure? Volumes
? What operation do you want to perform? List
Configured Volumes mounts:
- Secret "mysecret" mounted at path: "/workspace/secret"
- Secret "mysecret2" mounted at path: "/workspace/secret2"

Red Hat OpenShift Serverless 1.32 Functions

50

kn func config
 ├─> Environment variables
 │ ├─> Add
 │ │ ├─> ConfigMap: Add all key-value pairs from a config map
 │ │ ├─> ConfigMap: Add value from a key in a config map
 │ │ ├─> Secret: Add all key-value pairs from a secret
 │ │ └─> Secret: Add value from a key in a secret
 │ ├─> List: List all configured environment variables
 │ └─> Remove: Remove a configured environment variable
 └─> Volumes
 ├─> Add
 │ ├─> ConfigMap: Mount a config map as a volume
 │ └─> Secret: Mount a secret as a volume
 ├─> List: List all configured volumes
 └─> Remove: Remove a configured volume

3. Optional. Deploy the function to make the changes take effect:

13.1.2. Modifying function access to secrets and config maps interactively by using
specialized commands

Every time you run the kn func config utility, you need to navigate the entire dialogue to select the
operation you need, as shown in the previous section. To save steps, you can directly execute a specific
operation by running a more specific form of the kn func config command:

To list configured environment variables:

To add environment variables to the function configuration:

To remove environment variables from the function configuration:

To list configured volumes:

To add a volume to the function configuration:

To remove a volume from the function configuration:

13.2. CONFIGURING YOUR FUNCTION PROJECT USING THE

$ kn func deploy -p test

$ kn func config envs [-p <function-project-path>]

$ kn func config envs add [-p <function-project-path>]

$ kn func config envs remove [-p <function-project-path>]

$ kn func config volumes [-p <function-project-path>]

$ kn func config volumes add [-p <function-project-path>]

$ kn func config volumes remove [-p <function-project-path>]

CHAPTER 13. CONFIGURING FUNCTIONS

51

13.2. CONFIGURING YOUR FUNCTION PROJECT USING THE
FUNC.YAML FILE

The func.yaml file contains the configuration for your function project. Values specified in func.yaml
are used when you execute a kn func command. For example, when you run the kn func build
command, the value in the build field is used. In some cases, you can override these values with
command line flags or environment variables.

13.2.1. Referencing local environment variables from func.yaml fields

If you want to avoid storing sensitive information such as an API key in the function configuration, you
can add a reference to an environment variable available in the local environment. You can do this by
modifying the envs field in the func.yaml file.

Prerequisites

You need to have the function project created.

The local environment needs to contain the variable that you want to reference.

Procedure

To refer to a local environment variable, use the following syntax:

{{ env:ENV_VAR }}

Substitute ENV_VAR with the name of the variable in the local environment that you want to
use.

For example, you might have the API_KEY variable available in the local environment. You can
assign its value to the MY_API_KEY variable, which you can then directly use within your
function:

Example function

13.2.2. Adding annotations to functions

You can add Kubernetes annotations to a deployed Serverless function. Annotations enable you to
attach arbitrary metadata to a function, for example, a note about the function’s purpose. Annotations
are added to the annotations section of the func.yaml configuration file.

There are two limitations of the function annotation feature:

After a function annotation propagates to the corresponding Knative service on the cluster, it
cannot be removed from the service by deleting it from the func.yaml file. You must remove

name: test
namespace: ""
runtime: go
...
envs:
- name: MY_API_KEY
 value: '{{ env:API_KEY }}'
...

Red Hat OpenShift Serverless 1.32 Functions

52

1

the annotation from the Knative service by modifying the YAML file of the service directly, or by
using the OpenShift Container Platform web console.

You cannot set annotations that are set by Knative, for example, the autoscaling annotations.

13.2.3. Adding annotations to a function

You can add annotations to a function. Similar to a label, an annotation is defined as a key-value map.
Annotations are useful, for example, for providing metadata about a function, such as the function’s
author.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For every annotation that you want to add, add the following YAML to the annotations section:

Substitute <annotation_name>: "<annotation_value>" with your annotation.

For example, to indicate that a function was authored by Alice, you might include the following
annotation:

3. Save the configuration.

The next time you deploy your function to the cluster, the annotations are added to the corresponding
Knative service.

13.2.4. Additional resources

Getting started with functions

Knative documentation on Autoscaling

name: test
namespace: ""
runtime: go
...
annotations:
 <annotation_name>: "<annotation_value>" 1

name: test
namespace: ""
runtime: go
...
annotations:
 author: "alice@example.com"

CHAPTER 13. CONFIGURING FUNCTIONS

53

https://knative.dev/docs/serving/autoscaling/

Kubernetes documentation on managing resources for containers

Knative documentation on configuring concurrency

13.2.5. Adding function access to secrets and config maps manually

You can manually add configuration for accessing secrets and config maps to your function. This might
be preferable to using the kn func config interactive utility and commands, for example when you have
an existing configuration snippet.

13.2.5.1. Mounting a secret as a volume

You can mount a secret as a volume. Once a secret is mounted, you can access it from the function as a
regular file. This enables you to store on the cluster data needed by the function, for example, a list of
URIs that need to be accessed by the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each secret you want to mount as a volume, add the following YAML to the volumes
section:

Substitute mysecret with the name of the target secret.

Substitute /workspace/secret with the path where you want to mount the secret.
For example, to mount the addresses secret, use the following YAML:

3. Save the configuration.

name: test
namespace: ""
runtime: go
...
volumes:
- secret: mysecret
 path: /workspace/secret

name: test
namespace: ""
runtime: go
...
volumes:
- configMap: addresses
 path: /workspace/secret-addresses

Red Hat OpenShift Serverless 1.32 Functions

54

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://knative.dev/docs/serving/autoscaling/concurrency/

13.2.5.2. Mounting a config map as a volume

You can mount a config map as a volume. Once a config map is mounted, you can access it from the
function as a regular file. This enables you to store on the cluster data needed by the function, for
example, a list of URIs that need to be accessed by the function.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each config map you want to mount as a volume, add the following YAML to the volumes
section:

Substitute myconfigmap with the name of the target config map.

Substitute /workspace/configmap with the path where you want to mount the config map.
For example, to mount the addresses config map, use the following YAML:

3. Save the configuration.

13.2.5.3. Setting environment variable from a key value defined in a secret

You can set an environment variable from a key value defined as a secret. A value previously stored in a
secret can then be accessed as an environment variable by the function at runtime. This can be useful
for getting access to a value stored in a secret, such as the ID of a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

name: test
namespace: ""
runtime: go
...
volumes:
- configMap: myconfigmap
 path: /workspace/configmap

name: test
namespace: ""
runtime: go
...
volumes:
- configMap: addresses
 path: /workspace/configmap-addresses

CHAPTER 13. CONFIGURING FUNCTIONS

55

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each value from a secret key-value pair that you want to assign to an environment variable,
add the following YAML to the envs section:

Substitute EXAMPLE with the name of the environment variable.

Substitute mysecret with the name of the target secret.

Substitute key with the key mapped to the target value.
For example, to access the user ID that is stored in userdetailssecret, use the following
YAML:

3. Save the configuration.

13.2.5.4. Setting environment variable from a key value defined in a config map

You can set an environment variable from a key value defined as a config map. A value previously stored
in a config map can then be accessed as an environment variable by the function at runtime. This can be
useful for getting access to a value stored in a config map, such as the ID of a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For each value from a config map key-value pair that you want to assign to an environment
variable, add the following YAML to the envs section:

name: test
namespace: ""
runtime: go
...
envs:
- name: EXAMPLE
 value: '{{ secret:mysecret:key }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailssecret:userid }}'

Red Hat OpenShift Serverless 1.32 Functions

56

Substitute EXAMPLE with the name of the environment variable.

Substitute myconfigmap with the name of the target config map.

Substitute key with the key mapped to the target value.
For example, to access the user ID that is stored in userdetailsmap, use the following
YAML:

3. Save the configuration.

13.2.5.5. Setting environment variables from all values defined in a secret

You can set an environment variable from all values defined in a secret. Values previously stored in a
secret can then be accessed as environment variables by the function at runtime. This can be useful for
simultaneously getting access to a collection of values stored in a secret, for example, a set of data
pertaining to a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For every secret for which you want to import all key-value pairs as environment variables, add
the following YAML to the envs section:

name: test
namespace: ""
runtime: go
...
envs:
- name: EXAMPLE
 value: '{{ configMap:myconfigmap:key }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailsmap:userid }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ secret:mysecret }}' 1

CHAPTER 13. CONFIGURING FUNCTIONS

57

1

1

Substitute mysecret with the name of the target secret.

For example, to access all user data that is stored in userdetailssecret, use the following YAML:

3. Save the configuration.

13.2.5.6. Setting environment variables from all values defined in a config map

You can set an environment variable from all values defined in a config map. Values previously stored in a
config map can then be accessed as environment variables by the function at runtime. This can be useful
for simultaneously getting access to a collection of values stored in a config map, for example, a set of
data pertaining to a user.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a function.

Procedure

1. Open the func.yaml file for your function.

2. For every config map for which you want to import all key-value pairs as environment variables,
add the following YAML to the envs section:

Substitute myconfigmap with the name of the target config map.

For example, to access all user data that is stored in userdetailsmap, use the following YAML:

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailssecret }}'

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:myconfigmap }}' 1

name: test
namespace: ""
runtime: go
...
envs:
- value: '{{ configMap:userdetailsmap }}'

Red Hat OpenShift Serverless 1.32 Functions

58

3. Save the file.

13.3. CONFIGURABLE FIELDS IN FUNC.YAML

You can configure some of the func.yaml fields.

13.3.1. Configurable fields in func.yaml

Many of the fields in func.yaml are generated automatically when you create, build, and deploy your
function. However, there are also fields that you modify manually to change things, such as the function
name or the image name.

13.3.1.1. buildEnvs

The buildEnvs field enables you to set environment variables to be available to the environment that
builds your function. Unlike variables set using envs, a variable set using buildEnv is not available during
function runtime.

You can set a buildEnv variable directly from a value. In the following example, the buildEnv variable
named EXAMPLE1 is directly assigned the one value:

You can also set a buildEnv variable from a local environment variable. In the following example, the
buildEnv variable named EXAMPLE2 is assigned the value of the LOCAL_ENV_VAR local environment
variable:

13.3.1.2. envs

The envs field enables you to set environment variables to be available to your function at runtime. You
can set an environment variable in several different ways:

1. Directly from a value.

2. From a value assigned to a local environment variable. See the section "Referencing local
environment variables from func.yaml fields" for more information.

3. From a key-value pair stored in a secret or config map.

4. You can also import all key-value pairs stored in a secret or config map, with keys used as names
of the created environment variables.

This examples demonstrates the different ways to set an environment variable:

buildEnvs:
- name: EXAMPLE1
 value: one

buildEnvs:
- name: EXAMPLE1
 value: '{{ env:LOCAL_ENV_VAR }}'

name: test
namespace: ""
runtime: go
...

CHAPTER 13. CONFIGURING FUNCTIONS

59

1

2

3

4

5

6

1

2

An environment variable set directly from a value.

An environment variable set from a value assigned to a local environment variable.

An environment variable assigned from a key-value pair stored in a secret.

An environment variable assigned from a key-value pair stored in a config map.

A set of environment variables imported from key-value pairs of a secret.

A set of environment variables imported from key-value pairs of a config map.

13.3.1.3. builder

The builder field specifies the strategy used by the function to build the image. It accepts values of
pack or s2i.

13.3.1.4. build

The build field indicates how the function should be built. The value local indicates that the function is
built locally on your machine. The value git indicates that the function is built on a cluster by using the
values specified in the git field.

13.3.1.5. volumes

The volumes field enables you to mount secrets and config maps as a volume accessible to the function
at the specified path, as shown in the following example:

The mysecret secret is mounted as a volume residing at /workspace/secret.

The myconfigmap config map is mounted as a volume residing at /workspace/configmap.

envs:
- name: EXAMPLE1 1
 value: value
- name: EXAMPLE2 2
 value: '{{ env:LOCAL_ENV_VALUE }}'
- name: EXAMPLE3 3
 value: '{{ secret:mysecret:key }}'
- name: EXAMPLE4 4
 value: '{{ configMap:myconfigmap:key }}'
- value: '{{ secret:mysecret2 }}' 5
- value: '{{ configMap:myconfigmap2 }}' 6

name: test
namespace: ""
runtime: go
...
volumes:
- secret: mysecret 1
 path: /workspace/secret
- configMap: myconfigmap 2
 path: /workspace/configmap

Red Hat OpenShift Serverless 1.32 Functions

60

13.3.1.6. options

The options field enables you to modify Knative Service properties for the deployed function, such as
autoscaling. If these options are not set, the default ones are used.

These options are available:

scale

min: The minimum number of replicas. Must be a non-negative integer. The default is 0.

max: The maximum number of replicas. Must be a non-negative integer. The default is 0,
which means no limit.

metric: Defines which metric type is watched by the Autoscaler. It can be set to
concurrency, which is the default, or rps.

target: Recommendation for when to scale up based on the number of concurrently
incoming requests. The target option can be a float value greater than 0.01. The default is
100, unless the options.resources.limits.concurrency is set, in which case target defaults
to its value.

utilization: Percentage of concurrent requests utilization allowed before scaling up. It can
be a float value between 1 and 100. The default is 70.

resources

requests

cpu: A CPU resource request for the container with deployed function.

memory: A memory resource request for the container with deployed function.

limits

cpu: A CPU resource limit for the container with deployed function.

memory: A memory resource limit for the container with deployed function.

concurrency: Hard Limit of concurrent requests to be processed by a single replica. It
can be integer value greater than or equal to 0, default is 0 - meaning no limit.

This is an example configuration of the scale options:

name: test
namespace: ""
runtime: go
...
options:
 scale:
 min: 0
 max: 10
 metric: concurrency
 target: 75
 utilization: 75
 resources:
 requests:
 cpu: 100m

CHAPTER 13. CONFIGURING FUNCTIONS

61

13.3.1.7. image

The image field sets the image name for your function after it has been built. You can modify this field. If
you do, the next time you run kn func build or kn func deploy, the function image will be created with
the new name.

13.3.1.8. imageDigest

The imageDigest field contains the SHA256 hash of the image manifest when the function is deployed.
Do not modify this value.

13.3.1.9. labels

The labels field enables you to set labels on a deployed function.

You can set a label directly from a value. In the following example, the label with the role key is directly
assigned the value of backend:

You can also set a label from a local environment variable. In the following example, the label with the
author key is assigned the value of the USER local environment variable:

13.3.1.10. name

The name field defines the name of your function. This value is used as the name of your Knative service
when it is deployed. You can change this field to rename the function on subsequent deployments.

13.3.1.11. namespace

The namespace field specifies the namespace in which your function is deployed.

13.3.1.12. runtime

The runtime field specifies the language runtime for your function, for example, python.

 memory: 128Mi
 limits:
 cpu: 1000m
 memory: 256Mi
 concurrency: 100

labels:
- key: role
 value: backend

labels:
- key: author
 value: '{{ env:USER }}'

Red Hat OpenShift Serverless 1.32 Functions

62

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH FUNCTIONS
	1.1. PREREQUISITES
	1.2. CREATING, DEPLOYING, AND INVOKING A FUNCTION
	1.3. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER PLATFORM
	1.4. NEXT STEPS

	CHAPTER 2. CREATING FUNCTIONS
	2.1. CREATING A FUNCTION BY USING THE KNATIVE CLI
	2.2. CREATING A FUNCTION IN THE WEB CONSOLE

	CHAPTER 3. RUNNING FUNCTIONS LOCALLY
	3.1. RUNNING A FUNCTION LOCALLY

	CHAPTER 4. DEPLOYING FUNCTIONS
	4.1. DEPLOYING A FUNCTION

	CHAPTER 5. BUILDING FUNCTIONS
	5.1. BUILDING A FUNCTION
	5.1.1. Image container types
	5.1.2. Image registry types
	5.1.3. Push flag
	5.1.4. Help command

	CHAPTER 6. LISTING EXISTING FUNCTIONS
	6.1. LISTING EXISTING FUNCTIONS

	CHAPTER 7. INVOKING FUNCTIONS
	7.1. INVOKING A DEPLOYED FUNCTION WITH A TEST EVENT

	CHAPTER 8. DELETING FUNCTIONS
	8.1. DELETING A FUNCTION

	CHAPTER 9. BUILDING AND DEPLOYING FUNCTIONS ON THE CLUSTER
	9.1. BUILDING AND DEPLOYING A FUNCTION ON THE CLUSTER
	9.2. SPECIFYING FUNCTION REVISION
	9.3. SETTING CUSTOM VOLUME SIZE
	9.4. TESTING A FUNCTION IN THE WEB CONSOLE

	CHAPTER 10. CONNECTING AN EVENT SOURCE TO A FUNCTION
	10.1. CONNECT AN EVENT SOURCE TO A FUNCTION USING THE DEVELOPER PERSPECTIVE

	CHAPTER 11. SUBSCRIBING FUNCTIONS TO CLOUDEVENTS
	11.1. SUBSCRIBING A FUNCTION TO CLOUDEVENTS

	CHAPTER 12. FUNCTIONS DEVELOPMENT REFERENCE GUIDE
	12.1. DEVELOPING QUARKUS FUNCTIONS
	12.1.1. Prerequisites
	12.1.2. Quarkus function template structure
	12.1.3. About invoking Quarkus functions
	12.1.3.1. Invocation examples

	12.1.4. CloudEvent attributes
	12.1.5. Quarkus function return values
	12.1.5.1. Permitted types

	12.1.6. Testing Quarkus functions
	12.1.7. Overriding liveness and readiness probe values
	12.1.8. Next steps

	12.2. DEVELOPING NODE.JS FUNCTIONS
	12.2.1. Prerequisites
	12.2.2. Node.js function template structure
	12.2.3. About invoking Node.js functions
	12.2.3.1. Node.js context objects

	12.2.4. Node.js function return values
	12.2.4.1. Returning headers
	12.2.4.2. Returning status codes

	12.2.5. Testing Node.js functions
	12.2.6. Overriding liveness and readiness probe values
	12.2.7. Node.js context object reference
	12.2.7.1. log
	12.2.7.2. query
	12.2.7.3. body
	12.2.7.4. headers
	12.2.7.5. HTTP requests

	12.2.8. Next steps

	12.3. DEVELOPING TYPESCRIPT FUNCTIONS
	12.3.1. Prerequisites
	12.3.2. TypeScript function template structure
	12.3.3. About invoking TypeScript functions
	12.3.3.1. TypeScript context objects

	12.3.4. TypeScript function return values
	12.3.4.1. Returning headers
	12.3.4.2. Returning status codes

	12.3.5. Testing TypeScript functions
	12.3.6. Overriding liveness and readiness probe values
	12.3.7. TypeScript context object reference
	12.3.7.1. log
	12.3.7.2. query
	12.3.7.3. body
	12.3.7.4. headers
	12.3.7.5. HTTP requests

	12.3.8. Next steps

	12.4. DEVELOPING PYTHON FUNCTIONS
	12.4.1. Prerequisites
	12.4.2. Python function template structure
	12.4.3. About invoking Python functions
	12.4.4. Python function return values
	12.4.4.1. Returning CloudEvents

	12.4.5. Testing Python functions
	12.4.6. Next steps

	CHAPTER 13. CONFIGURING FUNCTIONS
	13.1. ACCESSING SECRETS AND CONFIG MAPS FROM FUNCTIONS USING CLI
	13.1.1. Modifying function access to secrets and config maps interactively
	13.1.2. Modifying function access to secrets and config maps interactively by using specialized commands

	13.2. CONFIGURING YOUR FUNCTION PROJECT USING THE FUNC.YAML FILE
	13.2.1. Referencing local environment variables from func.yaml fields
	13.2.2. Adding annotations to functions
	13.2.3. Adding annotations to a function
	13.2.4. Additional resources
	13.2.5. Adding function access to secrets and config maps manually
	13.2.5.1. Mounting a secret as a volume
	13.2.5.2. Mounting a config map as a volume
	13.2.5.3. Setting environment variable from a key value defined in a secret
	13.2.5.4. Setting environment variable from a key value defined in a config map
	13.2.5.5. Setting environment variables from all values defined in a secret
	13.2.5.6. Setting environment variables from all values defined in a config map

	13.3. CONFIGURABLE FIELDS IN FUNC.YAML
	13.3.1. Configurable fields in func.yaml
	13.3.1.1. buildEnvs
	13.3.1.2. envs
	13.3.1.3. builder
	13.3.1.4. build
	13.3.1.5. volumes
	13.3.1.6. options
	13.3.1.7. image
	13.3.1.8. imageDigest
	13.3.1.9. labels
	13.3.1.10. name
	13.3.1.11. namespace
	13.3.1.12. runtime

