
Red Hat JBoss Enterprise Application
Platform 7.2

How to Configure Server Security

For Use with Red Hat JBoss Enterprise Application Platform 7.2

Last Updated: 2019-09-26

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure
Server Security

For Use with Red Hat JBoss Enterprise Application Platform 7.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The purpose of this document is to provide a practical guide to securing Red Hat JBoss Enterprise
Application Platform (JBoss EAP). More specifically, this guide details how to secure all of the
management interfaces on JBoss EAP. Before reading this guide, users should read through the
Security Architecture document for Red Hat JBoss Enterprise Application Platform and have a solid
understanding of how JBoss EAP handles security. This document also makes use of the JBoss EAP
CLI interface for performing configuration changes. When completing this document, readers
should have a solid, working understanding of how to secure JBoss EAP.

. .

Table of Contents

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES
1.1. BUILDING BLOCKS

1.1.1. Interfaces and Socket Bindings
1.1.2. Elytron Subsystem

1.1.2.1. Enable Elytron Security Across the Server
1.1.2.2. Create an Elytron Security Domain

Add a Security Domain Using the Management CLI
Add a Security Domain Using the Management Console

1.1.2.3. Create an Elytron Security Realm
Add a Security Realm Using the Management CLI
Add a Security Realm Using the Management Console

1.1.2.4. Create an Elytron Role Decoder
Add a Role Decoder Using the Management CLI
Add a Role Decoder Using the Management Console

1.1.2.5. Create an Elytron Role Mapper
Adding a Role Mapper Takes the General Form
Adding a Role Mapper Using the Management Console

1.1.2.6. Create an Elytron Permission Set
Add a Permission Set Using the Management CLI

1.1.2.7. Create an Elytron Permission Mapper
Add a Permission Mapper Using the Management CLI
Add a Permission Mapper Using the Management Console

1.1.2.8. Creating an Authentication Configuration
Add an Authentication Configuration Using the Management CLI
Add an Authentication Configuration Using the Management Console

1.1.2.9. Creating an Authentication Context
Add an Authentication Context Using the Management CLI
Add an Authentication Context Using the Management Console

1.1.2.10. Create an Elytron Authentication Factory
Add an Authentication Factory Using the Management CLI
Add an Authentication Factory Using the Management Console

1.1.2.11. Create an Elytron Keystore
Add a Keystore Using the Management CLI
Add a Keystore Using the Management Console

1.1.2.12. Create an Elytron Key Manager
Add a Key Manager Using the Management CLI
Add a Key Manager Using the Management Console

1.1.2.13. Create an Elytron Truststore
1.1.2.14. Create an Elytron Trust Manager
1.1.2.15. Using the Out of the Box Elytron Components

1.1.2.15.1. Securing Management Interfaces
1.1.2.15.2. Securing Applications
1.1.2.15.3. Using SSL/TLS
1.1.2.15.4. Using Elytron with Other Subsystems

1.1.2.16. Enable and Disable the Elytron Subsystem
1.1.3. Legacy Security Subsystem

1.1.3.1. Enable and Disable the Security Subsystem
1.1.4. Legacy Security Realms
1.1.5. Using Authentication and Socket Bindings for Securing the Management Interfaces

1.2. HOW TO SECURE THE MANAGEMENT INTERFACES
Elytron Integration with the Management CLI

8
8
8
8
8
9
9
9
9
9
9

10
10
10
10
10
10
10
10
11
11
11
11
11
11

12
12
12
12
12
12
13
13
13
13
13
14
14
14
14
14
14
15
15
16
17
17
17
18
18
19

Table of Contents

1

1.2.1. Configure Networking and Ports
1.2.2. Disabling the Management Console
1.2.3. Disabling Remote Access to JMX

Removing the Remoting Connector
1.2.4. Silent Authentication
1.2.5. Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Using a Security Command
Using Elytron Subsystem Commands
Using Management Console

1.2.6. Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
1.2.7. Enable SASL Authentication for the Management Interfaces Using the CLI Security Command

Reorder SASL Mechanisms
Disable SASL Authentication for the Management Interfaces

1.2.8. Enable HTTP Authentication for the Management Interfaces Using the CLI Security Command
Disable HTTP Authentication for the Management Interfaces

1.2.9. Configure the Management Interfaces for One-way SSL/TLS with Legacy Core Management
Authentication

Create a Keystore to Secure the Management Interfaces
Ensure the Management Interfaces Bind to HTTPS
Optional: Implement a Custom socket-binding-group
Create a New Security Realm
Configure the Management Interfaces to Use the New Security Realm
Configure the Management Interfaces to Use the Keystore
Update the jboss-cli.xml File

1.2.10. Setting up Two-way SSL/TLS for the Management Interfaces with Legacy Core Management
Authentication

Prerequisites
1.2.11. HTTPS Listener Reference

1.2.11.1. About Cipher Suites
1.2.12. FIPS 140-2 Compliant Cryptography

1.2.12.1. Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat Enterprise Linux 7 and Later
Configuring the NSS database
Configure the Management CLI for FIPS 140-2 Compliant Cryptography for SSL/TLS
Configure the Elytron and Undertow Subsystems
Configure Undertow with the Legacy Core Management Authentication

1.2.12.2. Enable FIPS 140-2 Cryptography for SSL/TLS Using Bouncy Castle
Prerequisites
Configure the Management CLI for FIPS 140-2 Compliant Cryptography for SSL/TLS Using Elytron
Configure the Elytron and Undertow Subsystems

1.2.13. FIPS 140-2 Compliant Cryptography on IBM JDK
1.2.13.1. Key Storage
1.2.13.2. Management CLI Configuration
1.2.13.3. Examine FIPS Provider Information

1.2.14. Starting a Managed Domain when the JVM is Running in FIPS Mode
Prerequisites

1.2.15. Secure the Management Console with Red Hat Single Sign-On
Configure a Red Hat Single Sign-On Server for JBoss EAP Management
Install the Red Hat Single Sign-On Client Adapter on JBoss EAP
Configure JBoss EAP to Use Red Hat Single Sign-On

1.3. SECURITY AUDITING
1.3.1. Elytron Audit Logging

File Audit Logging
Periodic Rotating File Audit Logging

19
19
19
19

20
21
21
21
23
23
27
27
28
28
28

29
29
29
30
30
32
32
32

33
34
36
36
37
37
38
41

42
43
45
45
45
46
47
47
47
48
48
48
51
51
52
52
53
54
54
54

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

2

Size Rotating File Audit Logging
Syslog Audit Logging
1.3.1.1. Custom Security Event Listeners for Elytron

1.3.2. Configure Security Auditing for the Legacy Security Domains
1.4. CONFIGURE ONE-WAY AND TWO-WAY SSL/TLS FOR APPLICATIONS

1.4.1. Automatic Self-signed Certificate Creation for Applications
1.4.2. Using Elytron

1.4.2.1. Enable One-way SSL/TLS for Applications Using the Elytron Subsystem
Using a Security Command
Using Elytron Subsystem Commands
Using Management Console

1.4.2.2. Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem
1.4.3. Using Legacy Security Realms

1.4.3.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms
1.4.3.2. Enable Two-way SSL/TLS for Applications Using Legacy Security Realms

Update the Undertow Subsystem
1.5. ENABLE HTTP AUTHENTICATION FOR APPLICATIONS USING THE CLI SECURITY COMMAND

Disable HTTP Authentication for the Management Interfaces
1.6. SASL AUTHENTICATION MECHANISMS

1.6.1. Choosing SASL Authentication Mechanisms
1.6.2. Configuring SASL Authentication Mechanisms on the Server Side
1.6.3. Specifying SASL Authentication Mechanisms on the Client Side

sasl-mechanism-selector Grammar
1.6.4. Configuring SASL Authentication Mechanism Properties

1.7. ELYTRON INTEGRATION WITH THE MODCLUSTER SUBSYSTEM
1.7.1. Defining a Client SSL Context and Configuring ModCluster Subsystem

1.8. ELYTRON INTEGRATION WITH THE JGROUPS SUBSYSTEM
1.9. ELYTRON INTEGRATION WITH THE REMOTING SUBSYSTEM

1.9.1. Elytron Integration with Remoting Connectors
Enable One-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
Enable Two-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem

1.9.2. Elytron Integration with Remoting HTTP Connectors
Enable One-Way SSL on the Remoting HTTP Connector
Enable Two-way SSL/TLS on the Remoting HTTP Connectors

1.9.3. Elytron Integration with Remoting Outbound Connectors
1.10. SECURING A MANAGED DOMAIN

1.10.1. Configure Password Authentication Between Slaves and the Domain Controller Using Elytron
1.10.2. Configure Password Authentication Between Slaves and the Domain Controller Using Legacy Core
Management Authentication
1.10.3. Configuring SSL/TLS Between Domain and Host Controllers Using Elytron
1.10.4. Configuring SSL/TLS Between Domain and Host Controllers Using Legacy Core Management
Authentication

1.11. ADDITIONAL ELYTRON COMPONENTS FOR SSL/TLS
1.11.1. Using an ldap-key-store
1.11.2. Using a filtering-key-store
1.11.3. Reload a Keystore
1.11.4. Reinitialize a Key Manager
1.11.5. Reinitialize a Trust Manager
1.11.6. Keystore Alias
1.11.7. Using a client-ssl-context
1.11.8. Using a server-ssl-context

Add a Server SSL Context Using the Management CLI
Add a Server SSL Context Using the Management Console

55
55
56
57
58
58
59
59
59
60
62
62
67
67
68
69
69
70
70
70
71
71
72
73
74
74
75
75
75
76
77
78
78
79
81
81
81

82
84

87
89
89
90
91
91
91
91

92
92
93
93

Table of Contents

3

. .

1.11.9. Custom SSL Components
1.11.9.1. Add a Custom Component to Elytron
1.11.9.2. Including Arguments in a Custom Elytron Component
1.11.9.3. Using Custom Trust Managers with Elytron

Requirements for Implementing a Custom Trust Manager
Example Implementations
Adding the Custom Trust Manager

1.11.10. Using a Certificate Revocation List
1.11.11. Using a Certificate Authority to Manage Signed Certificates

Configure a Let’s Encrypt Account
Create an Account with the Certificate Authority
Update an Account with the Certificate Authority
Change the Account Key Associated with the Certificate Authority
Deactivate the Account with the Certificate Authority
Get the Metadata Associated with the Certificate Authority

1.11.12. Keystore Manipulation Operations
Generate a Key Pair
Generate a Certificate Signing Request
Import a Certificate or Certificate Chain
Export a Certificate
Change an Alias
Store Changes Made to Keystores
1.11.12.1. Keystore Certificate Authority Operations

Obtain a Signed Certificate
Revoke a Signed Certificate
Check if a Signed Certificate is Due for Renewal

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES
2.1. USER AUTHENTICATION WITH ELYTRON

2.1.1. Default Configuration
2.1.1.1. Default Elytron HTTP Authentication Configuration
2.1.1.2. Default Elytron Management CLI Authentication

2.1.2. Secure the Management Interfaces with a New Identity Store
2.1.3. Adding Silent Authentication
2.1.4. Mapping Identity for Authenticated Management Users
2.1.5. Using Elytron Client with the Management CLI

2.2. IDENTITY PROPAGATION AND FORWARDING WITH ELYTRON
2.2.1. Propagating Security Identities for Remote Calls

Configure the Server for Security Propagation
Review the Example Application Code That Propagates a Security Identity

2.2.2. Utilizing Authorization Forwarding Mode
Configure the Authentication Client on the Forwarding Server
Configure the Authorization Forwarding on the Receiving Server

2.2.3. Retrieving Security Identity Credentials
2.2.4. Mechanisms That Support Security Identity Propagation

2.3. IDENTITY SWITCHING WITH ELYTRON
2.3.1. Switching Identities in Server-to-server EJB Calls

2.4. USER AUTHENTICATION WITH LEGACY CORE MANAGEMENT AUTHENTICATION
2.4.1. Default User Configuration
2.4.2. Adding Authentication via LDAP
2.4.3. Using JAAS for Securing the Management Interfaces

2.5. ROLE-BASED ACCESS CONTROL
2.5.1. Enabling Role-Based Access Control

93
94
95
95
96
96
98
98
98
99
99
99
99
99
99

100
100
100
100
100
100
100
100
101
101
101

102
102
102
103
104
106
107
108
110
111
111

112
114
116
116
117
118
119
119
119

120
120
121
121
122
122

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

4

. .

CLI to Enable RBAC
Management CLI Command to Disable RBAC
XML Configuration to Enable or Disable RBAC

2.5.2. Changing the Permission Combination Policy
Setting the Permission Combination Policy

2.5.3. Managing Roles
2.5.3.1. Configure User Role Assignment Using the Management CLI

Viewing Role Assignment Configuration
Add a New Role
Add a User as Included in a Role
Add a User as Excluded in a Role
Remove User Role Include Configuration
Remove User Role Exclude Configuration

2.5.4. Configure User Role Assignment with the Elytron Subsystem
2.5.5. Roles and User Groups
2.5.6. Configure Group Role Assignment Using the Management CLI

Viewing Group Role Assignment Configuration
Add a New Role
Add a Group as Included in a Role
Add a Group as Excluded in a Role
Remove Group Role Include Configuration
Remove a User Group Exclude Entry

2.5.7. Using RBAC with LDAP
2.5.8. Scoped Roles

2.5.8.1. Configuring Scoped Roles from the Management CLI
Add a New Scoped Role
Viewing and Editing a Scoped Role Mapping
Delete a Scoped Role
Adding and Removing Users

2.5.8.2. Configuring Scoped Roles from the Management Console
Add a New Scoped Role
Edit a Scoped Role
View Scoped Role Members
Delete a Scoped Role
Adding and Removing Users

2.5.9. Configuring Constraints
2.5.9.1. Configure Sensitivity Constraints
2.5.9.2. List Sensitivity Constraints
2.5.9.3. Configure Application Resource Constraints
2.5.9.4. List Application Resource Constraints
2.5.9.5. Configure the Vault Expression Constraint

CHAPTER 3. SECURELY STORING CREDENTIALS
3.1. CREDENTIAL STORE

3.1.1. Create a Credential Store
Create a Credential Store for a Standalone Server
Create a Credential Store in a Managed Domain

3.1.2. Add a Credential to the Credential Store
Editing Credential Store Aliases Using the Management Console

3.1.3. Use a Stored Credential in a Configuration
3.1.4. List the Credentials in the Credential Store
3.1.5. Remove a Credential from the Credential Store
3.1.6. Obtain the Master Password for the Credential Store from an External Source

122
123
123
124
124
125
125
125
126
126
127
127
127
128
128
128
128
129
129
130
130
131
131
131
132
132
133
133
133
133
133
134
134
134
134
135
135
136
136
137
137

139
139
140
140
140
141
141
141

142
142
143

Table of Contents

5

. .

. .

3.1.7. Define a FIPS 140-2 Compliant Credential Store
3.1.7.1. Define a FIPS 140-2 Compliant Credential Store Using an NSS Database
3.1.7.2. Define a FIPS 140-2 Compliant Credential Store Using the BouncyCastle Providers

3.1.8. Use a Custom Implementation of the Credential Store
3.1.9. Create and Modify Credential Stores Offline with the WildFly Elytron Tool

3.1.9.1. Generate Masked Encrypted Strings Using the WildFly Elytron Tool
3.1.9.2. Convert a Password Vault to a Credential Store Using the WildFly Elytron Tool

3.1.10. Using Credential Stores with Elytron Client
3.1.11. Using Credential Stores in a Managed Domain

3.2. PASSWORD VAULT
3.2.1. Set Up a Password Vault
3.2.2. Initialize the Password Vault
3.2.3. Use a Password Vault
3.2.4. Store a Sensitive String in the Password Vault
3.2.5. Use an Encrypted Sensitive String in Configuration
3.2.6. Use an Encrypted Sensitive String in an Application
3.2.7. Check if a Sensitive String is in the Password Vault
3.2.8. Remove a Sensitive String from the Password Vault

Remove a Sensitive String Interactively
3.2.9. Configure Red Hat JBoss Enterprise Application Platform to Use a Custom Implementation of the
Password Vault
3.2.10. Obtain Keystore Password From External Source

CHAPTER 4. JAVA SECURITY MANAGER
4.1. ABOUT THE JAVA SECURITY MANAGER
4.2. DEFINE A JAVA SECURITY POLICY

4.2.1. Defining Policies in the Security Manager Subsystem
4.2.2. Defining Policies in the Deployment
4.2.3. Defining Policies in Modules

4.3. RUN JBOSS EAP WITH THE JAVA SECURITY MANAGER
4.4. CONSIDERATIONS MOVING FROM PREVIOUS VERSIONS

4.4.1. Defining Policies
4.4.2. JBoss EAP Configuration Changes
4.4.3. Custom Security Managers

APPENDIX A. REFERENCE MATERIAL
A.1. ELYTRON SUBSYSTEM COMPONENTS REFERENCE
A.2. CONFIGURE YOUR ENVIRONMENT TO USE THE BOUNCYCASTLE PROVIDER
A.3. SASL AUTHENTICATION MECHANISMS REFERENCE

A.3.1. Support Level for SASL Authentication Mechanisms
A.3.2. SASL Authentication Mechanism Properties

A.4. SECURITY AUTHORIZATION ARGUMENTS
Mechanism Specific Attributes

A.5. ELYTRON CLIENT SIDE ONE WAY EXAMPLE
A.6. ELYTRON CLIENT SIDE TWO WAY EXAMPLE

144
144
144
145
146
148
149
151
151
152
152
153
156
156
159
160
161

163
164

165
166

167
167
167
167
168
168
169
170
170
170
170

171
171

204
205
205
207
210
210
212
213

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

6

Table of Contents

7

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

1.1. BUILDING BLOCKS

1.1.1. Interfaces and Socket Bindings

JBoss EAP utilizes its host’s interfaces, for example inet-address and nic, as well as ports for
communication for both its web applications as well as its management interfaces. These interfaces and
ports are defined and configured through the interfaces and socket-binding-groups settings in the
JBoss EAP.

For more information on how to define and configure interfaces and socket-binding-groups, see the
Socket Bindings section of the JBoss EAP Configuration Guide.

Example: Interfaces

Example: Socket Binding Group

1.1.2. Elytron Subsystem

1.1.2.1. Enable Elytron Security Across the Server

There is a simple way to enable Elytron across the server. JBoss EAP 7.1 introduced an example
configuration script that enables Elytron as the security provider. This script resides in the
EAP_HOME/docs/examples directory in the server installation.

Execute the following command to enable Elytron security across the server.

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

<socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 <socket-binding name="management-http" interface="management"
port="${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management"
port="${jboss.management.https.port:9993}"/>
 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>
 <socket-binding name="http" port="${jboss.http.port:8080}"/>
 <socket-binding name="https" port="${jboss.https.port:8443}"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
 <outbound-socket-binding name="mail-smtp">
 <remote-destination host="localhost" port="25"/>
 </outbound-socket-binding>
</socket-binding-group>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

8

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#socket_bindings

$ EAP_HOME/bin/jboss-cli.sh --file=EAP_HOME/docs/examples/enable-elytron.cli

1.1.2.2. Create an Elytron Security Domain

Security domains in the elytron subsystem, when used in conjunction with security realms, are used for
both core management authentication as well as for authentication with applications.

IMPORTANT

Deployments are limited to using one Elytron security domain per deployment. Scenarios
that may have required multiple legacy security domains can now be accomplished using
a single Elytron security domain.

Add a Security Domain Using the Management CLI

/subsystem=elytron/security-domain=domainName:add(realms=[{realm=realmName,role-
decoder=roleDecoderName}],default-realm=realmName,permission-
mapper=permissionMapperName,role-mapper=roleMapperName,...)

Add a Security Domain Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click
View.

3. Select SSL → Security Domain and use the Add button to configure a new security domain.

1.1.2.3. Create an Elytron Security Realm

Security realms in the elytron subsystem, when used in conjunction with security domains, are used for
both core management authentication as well as for authentication with applications. Security realms
are also specifically typed based on their identity store, for example jdbc-realm, filesystem-realm,
properties-realm, etc.

Add a Security Realm Using the Management CLI

/subsystem=elytron/type-of-realm=realmName:add(....)

Examples of adding specific realms, such as jdbc-realm, filesystem-realm, and properties-realm can be
found in previous sections.

Add a Security Realm Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Security Realms and click
View.

3. Select the appropriate security realm type from the Security Realm tab and click Add to
configure a new security realm.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

1.1.2.4. Create an Elytron Role Decoder

A role decoder converts attributes from the identity provided by the security realm into roles. Role
decoders are also specifically typed based on their functionality, for example empty-role-decoder,
simple-role-decoder, and custom-role-decoder.

Add a Role Decoder Using the Management CLI

/subsystem=elytron/ROLE-DECODER-TYPE=roleDeoderName:add(....)

Add a Role Decoder Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Mappers / Decoders and
click View.

3. Click on Role Decoder, select the appropriate role decoder type and click Add to configure a
new role decoder.

1.1.2.5. Create an Elytron Role Mapper

A role mapper maps roles after they have been decoded to other roles. Examples include normalizing
role names or adding and removing specific roles from principals after they have been decoded. Role
mappers are also specifically typed based on their functionality, for example add-prefix-role-mapper,
add-suffix-role-mapper, and constant-role-mapper.

Adding a Role Mapper Takes the General Form

/subsystem=elytron/ROLE-MAPPER-TYPE=roleMapperName:add(...)

Adding a Role Mapper Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Mappers / Decoders and
click View.

3. Click on Role Mapper, select the appropriate role mapper type and click Add to configure a new
role mapper.

1.1.2.6. Create an Elytron Permission Set

Permission sets can be used to assign permissions to an identity.

Add a Permission Set Using the Management CLI

/subsystem=elytron/permission-set=PermissionSetName:add(permissions=[{class-name="...",
module="...", target-name="...", action="..."}...])

The permissions parameter consists of a set of permissions, where each permission has the following
attributes:

class-name is the fully qualified class name of the permission. This is the only permission

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

class-name is the fully qualified class name of the permission. This is the only permission
attribute that is required.

module is an optional module used to load the permission.

target-name is an optional target name passed to the permission as it is constructed.

action is an optional action passed to the permission as it is constructed.

1.1.2.7. Create an Elytron Permission Mapper

In addition to roles being assigned to a identity, permissions may also be assigned. A permission mapper
assigns permissions to an identity. Permission mappers are also specifically typed based on their
functionality, for example logical-permission-mapper, simple-permission-mapper, and custom-
permission-mapper.

Add a Permission Mapper Using the Management CLI

/subsystem=elytron/simple-permission-mapper=PermissionMapperName:add(...)

Add a Permission Mapper Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Mappers / Decoders and
click View.

3. Click on Principal Decoder, select the appropriate principal decoder type and click Add to
configure a new principal decoder.

1.1.2.8. Creating an Authentication Configuration

An authentication configuration contains the credentials to use when making a connection. For more
information on authentication configurations, see Configure Client Authentication with Elytron Client in
How to Configure Identity Management for JBoss EAP.

NOTE

Instead of a credential store, you can configure an Elytron security domain to use the
credentials of the accessing user. For instance, a security domain can be used in
conjunction with Kerberos for authenticating incoming users. Follow the instructions in
Configure the Elytron Subsystem in How to Set Up SSO with Kerberos for JBoss EAP,
and set obtain-kerberos-ticket=true in the Kerberos security factory.

Add an Authentication Configuration Using the Management CLI

/subsystem=elytron/authentication-
configuration=AUTHENTICATION_CONFIGURATION_NAME:add(authentication-
name=AUTHENTICATION_NAME, credential-reference={clear-text=PASSWORD})

Add an Authentication Configuration Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

11

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_client_authentication
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_set_up_sso_with_kerberos/#elytron_http_auth_app
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click
View.

3. Click on Authentication → Authentication Configuration and click Add to configure a new
authentication configuration.

For the full list of authentication-configuration attributes, see Elytron Subsystem Components
Reference.

1.1.2.9. Creating an Authentication Context

An authentication context contains a set of rules and either authentication configurations or SSL
contexts to use for establishing a connection. For more information on authentication contexts, see
Configure Client Authentication with Elytron Client in How to Configure Identity Management for JBoss
EAP.

Add an Authentication Context Using the Management CLI
An authentication context can be created using the following management CLI command.

/subsystem=elytron/authentication-context=AUTHENTICATION_CONTEXT_NAME:add()

Typically, an authentication context will contain a set of rules and either an authentication configuration
or a SSL context. The following CLI command provides demonstrates defining an authentication
context that only functions when the hostname is localhost.

/subsystem=elytron/authentication-context=AUTHENTICATION_CONTEXT_NAME:add(match-
rules=[{authentication-configuration=AUTHENTICATION_CONFIGURATION_NAME, match-
host=localhost}])

Add an Authentication Context Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click
View.

3. Click on Authentication → Authentication Context and click Add to configure a new
authentication context.

For the full list of authentication-context attributes, see Elytron Subsystem Components Reference.

1.1.2.10. Create an Elytron Authentication Factory

An authentication factory is an authentication policy used for specific authentication mechanisms.
Authentication factories are specifically based on the authentication mechanism, for example http-
authentication-factory, sasl-authentication-factory and kerberos-security-factory.

Add an Authentication Factory Using the Management CLI

/subsystem=elytron/AUTH-FACTORY-TYPE=authFactoryName:add(....)

Add an Authentication Factory Using the Management Console

1. Access the management console. For more information, see the Management Console section

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

12

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_client_authentication
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Factories / Transformers
and click View.

3. Click on HTTP Factories, SASL Factories, or Other Factories, choose the appropriate factory
type, and click Add to configure a new factory.

1.1.2.11. Create an Elytron Keystore

A key-store is the definition of a keystore or truststore including the type of keystore, its location, and
the credential for accessing it.

To generate an example keystore for use with the elytron subsystem, use the following command:

Add a Keystore Using the Management CLI
To define a key-store in Elytron that references the newly made keystore, execute the following
management CLI command. This command species the path to the keystore, relative to the file system
path provided, the credential reference used for accessing the keystore, and the type of keystore.

/subsystem=elytron/key-store=newKeyStore:add(path=keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

NOTE

The above command uses relative-to to reference the location of the keystore file.
Alternatively, you can specify the full path to the keystore in path and omit relative-to.

Add a Keystore Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click
View.

3. Click on Stores → Key Store and click Add to configure a new keystore.

1.1.2.12. Create an Elytron Key Manager

A key-manager references a key-store, and is used in conjunction with an SSL context.

Add a Key Manager Using the Management CLI
The following command specifies the underlying keystore to reference, the algorithm to use when
initializing the key manager, and the credential reference for accessing the entries in the underlying
keystore.

/subsystem=elytron/key-manager=newKeyManager:add(key-
store=KEY_STORE,algorithm="PKIX",credential-reference={clear-text=secret})

IMPORTANT

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore keystore.jks
-dname "CN=localhost" -keypass secret -storepass secret

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

IMPORTANT

If an algorithm is not specified, then it will be set to the default KeyManagerFactory
algorithm name.

The available key manager algorithms are provided by the JDK in use. For example, a JDK
that uses SunJSSE provides the PKIX and SunX509 algorithms.

Add a Key Manager Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click
View.

3. Click on SSL → Key Manager and click Add to configure a new key manager.

1.1.2.13. Create an Elytron Truststore

To create a truststore in Elytron execute the following CLI command.

/subsystem=elytron/key-store=default-trust-store:add(type=JKS, relative-to=jboss.server.config.dir,
path=application.truststore, credential-reference={clear-text=password})

In order to successfully execute the command above you must have an application.truststore file inside
your EAP_HOME/standalone/configuration directory. The truststore must contain the certificates
associated with the endpoint or a certificate chain in case the end point’s certificate is signed by a CA.

Red Hat recommends you to avoid using self-signed certificates. Ideally, certificates should be signed by
a CA and your truststore should contain a certificate chain representing your ROOT and intermediary
CAs.

1.1.2.14. Create an Elytron Trust Manager

To define a trust manager in Elytron execute the following CLI command.

/subsystem=elytron/trust-manager=default-trust-manager:add(key-store=TRUST-STORE-NAME)

This sets the defined truststore as the source of the certificates that the application server trusts.

1.1.2.15. Using the Out of the Box Elytron Components

JBoss EAP provides a default set of Elytron components configured in the elytron subsystem. You can
find more details on these pre-configured components in the Out of the Box section of the Security
Architecture guide.

1.1.2.15.1. Securing Management Interfaces

You can find more details on the enabling JBoss EAP to use the out of the box Elytron components for
securing the management interfaces in the User Authentication with Elytron section.

1.1.2.15.2. Securing Applications

The elytron subsystem provides application-http-authentication for http-authentication-factory by

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

14

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#elytron_ootb_example

The elytron subsystem provides application-http-authentication for http-authentication-factory by
default, which can be used to secure applications. For more information on how to configure
application-http-authentication, see the Out of the Box section of the Security Architecture guide.

To configure applications to use application-http-authentication, see Configure Web Applications to
Use Elytron or Legacy Security for Authentication in How to Configure Identity Management Guide . You
can also override the default behavior of all applications using the steps in the Override an Application’s
Authentication Configuration section of the JBoss EAP How to Configure Identity Management Guide .

1.1.2.15.3. Using SSL/TLS

JBoss EAP does provide a default one-way SSL/TLS configuration using the legacy core management
authentication, but it does not provide one in the elytron subsystem. You can find more details on
configuring SSL/TLS using the elytron subsystem for both the management interfaces as well as for
applications in the following sections:

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-Way SSL/TLS for the Management Interfaces using the Elytron Subsystem

Enable One-way SSL/TLS for Applications using the Elytron Subsystem

Enable Two-Way SSL/TLS for Applications using the Elytron Subsystem

1.1.2.15.4. Using Elytron with Other Subsystems

In addition to securing applications and management interfaces, Elytron also integrates with other
subsystems in JBoss EAP.

batch-jberet

You can configure the batch-jberet subsystem to run batch jobs using an Elytron security domain.
For more information, see Configure Security for Batch Jobs in the Configuration Guide.

datasources

You can use a credential store or an Elytron security domain to provide authentication information in
a datasource definition. For more information, see Datasource Security in the Configuration Guide.

ejb3

You can create mappings for Elytron security domains in the ejb3 subsystem to be referenced by
deployments. For more information, see Elytron Integration with the EJB Subsystem in Developing
EJB Applications.

iiop-openjdk

You can use the elytron subsystem to configure SSL/TLS between clients and servers using the
iiop-openjdk subsystem. For more information, see Configure IIOP to use SSL/TLS with the Elytron
Subsystem in the Configuration Guide.

jca

You can use the elytron-enabled attribute to enable Elytron security for a work manager. For more
information, see Configuring the JCA Subsystem in the Configuration Guide.

jgroups

You can configure the SYM_ENCRYPT and ASYM_ENCRYPT protocols to reference keystores or
credential references defined in the elytron subsystem. For more information, see Securing a Cluster
in the Configuration Guide.

mail

You can use a credential store to provide authentication information in a server definition in the mail

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#elytron_ootb_example
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#configure-app-authentication
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_override_deployment_config
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configure_batch_job_security
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#datasource_security
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/developing_ejb_applications/#elytron_integration_ejb_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configure_iiop_ssl
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configuring_jca_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#securing_cluster

You can use a credential store to provide authentication information in a server definition in the mail
subsystem. For more information, see Use a Credential Store for Passwords in the Configuration
Guide.

messaging-activemq

You can secure remote connections to the remote connections used by the messaging-activemq
subsystem. For more information, see the Using the Elytron Subsystem section of Configuring
Messaging.

modcluster

You can use an Elytron client ssl-context to communicate with a load balancer using SSL/TLS. For
more information, see Elytron Integration with the ModCluster Subsystem.

remoting

You can configure inbound and outbound connections in the remoting subsystem to reference
authentication contexts, SASL authentication factories, and SSL contexts defined in the elytron
subsystem. For full details on configuring each type of connection, see Elytron Integration with the
Remoting Subsystem.

resource-adapters

You can secure connections to the resource adapter using Elytron. You can enable security inflow to
establish security credentials when submitting work to be executed by the work manager. For more
information, see Configure Resource Adapters to Use the Elytron Subsystem in the Configuration
Guide.

undertow

You can use the elytron subsystem to configure both SSL/TLS and application authentication. For
more information on configuring application authentication, see Using SSL/TLS and Configure Web
Applications to Use Elytron or Legacy Security for Authentication in How to Configure Identity
Management.

1.1.2.16. Enable and Disable the Elytron Subsystem

The elytron subsystem comes pre-configured with the default JBoss EAP profiles alongside the legacy
security subsystem.

If you are using a profile where the elytron subsystem has not been configured, you can add it by adding
the elytron extension and enabling the elytron subsystem.

To add the elytron extension required for the elytron subsystem:

/extension=org.wildfly.extension.elytron:add()

To enable the elytron subsystem in JBoss EAP:

/subsystem=elytron:add

reload

To disable the elytron subsystem in JBoss EAP:

/subsystem=elytron:remove

reload

IMPORTANT

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

16

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#mail_subsystem_cred_store
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuring_messaging/#using_the_elytron_subsystem
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#configure_resource_adapters_with_elytron
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#configure-app-authentication

IMPORTANT

Other subsystems within JBoss EAP may have dependencies on the elytron subsystem. If
these dependencies are not resolved before disabling it, you will see errors when starting
JBoss EAP.

1.1.3. Legacy Security Subsystem

1.1.3.1. Enable and Disable the Security Subsystem

To disable the security subsystem in JBoss EAP:

/subsystem=security:remove

IMPORTANT

Other subsystems within JBoss EAP may have dependencies on the security subsystem.
If these dependencies are not resolved before disabling it, you will see errors when
starting JBoss EAP.

To enable the security subsystem in JBoss EAP:

/subsystem=security:add

1.1.4. Legacy Security Realms

JBoss EAP uses security realms to define authentication and authorization mechanisms, such as local,
LDAP, properties, which can then be used by the management interfaces. For more background
information on security realms, see the Security Realms section of the Red Hat JBoss Enterprise
Application Platform Security Architecture guide.

Example: Security Realms

<security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local" skip-group-loading="true"/>
 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization map-groups-to-roles="false">
 <properties path="mgmt-groups.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 <security-realm name="ApplicationRealm">
 <authentication>
 <local default-user="$local" allowed-users="*" skip-group-loading="true"/>
 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
</security-realms>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

17

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#security_realms

NOTE

In addition to updating the existing security realms, JBoss EAP also allows you to create
new security realms. You can create new security realms via the management console as
well as invoking the following command from the management CLI:

/core-service=management/security-realm=NEW-REALM-NAME:add()

If you create a new security realm and want to use a properties file for authentication or
authorization, you must create a new properties file specifically for the new security
domain. JBoss EAP does not reuse existing files used by other security domains nor does
it automatically create new files specified in the configuration if they do not exist.

1.1.5. Using Authentication and Socket Bindings for Securing the Management
Interfaces

By default, JBoss EAP defines an http-interface to connect to the management interfaces:

[standalone@localhost:9990 /] /core-service=management:read-resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "access" => {...},
 "ldap-connection" => undefined,
 "management-interface" => {"http-interface" => {
 "allowed-origins" => undefined,
 "console-enabled" => true,
 "http-authentication-factory" => "management-http-authentication",
 "http-upgrade" => {
 "enabled" => true,
 "sasl-authentication-factory" => "management-sasl-authentication"
 },
 "http-upgrade-enabled" => true,
 "sasl-protocol" => "remote",
 "secure-socket-binding" => undefined,
 "security-realm" => undefined,
 "server-name" => undefined,
 "socket-binding" => "management-http",
 "ssl-context" => undefined
 }},
 "security-realm" => {...},
 "service" => undefined
 }
}

You can use a combination socket-binding, http-authentication-factory and http-upgrade to secure
the management interfaces using the elytron subsystem. Alternatively, you can use socket-binding
with security-realm to secure the management interfaces with the legacy core management
authentication. You can also disable the management interfaces, and configure users of the interfaces
to have various roles and access rights.

1.2. HOW TO SECURE THE MANAGEMENT INTERFACES

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

18

The following sections show how to perform various operations related to securing the JBoss EAP
management interfaces and related subsystems.

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide .

Elytron Integration with the Management CLI
The management interfaces can be secured using resources from the elytron subsystem in the same
way as it is done by the legacy security realms.

The SSL configuration for connections comes from one of these locations:

Any SSL configuration within the CLI specific configuration.

The default SSL configuration that automatically prompts users to accept the server’s
certificate.

The java system property.

Client configuration can be modified using the wildfly-config.xml file.

NOTE

If you set the -Dwildfly.config.url property, any file can be used by the client for
configuration.

1.2.1. Configure Networking and Ports

Depending on the configuration of the host, JBoss EAP may be configured to use various network
interfaces and ports. This allows JBoss EAP to work with different host, networking, and firewall
requirements.

For more information on the networking and ports used by JBoss EAP, as well as how to configure these
settings, see the Network and Port Configuration section of the JBoss EAP Configuration Guide.

1.2.2. Disabling the Management Console

Other clients, such as JBoss Operations Network, operate using the HTTP interface for managing JBoss
EAP. In order to continue using these services, just the web-based management console itself may be
disabled. This is accomplished by setting the console-enabled attribute to false:

/core-service=management/management-interface=http-interface/:write-attribute(name=console-
enabled,value=false)

1.2.3. Disabling Remote Access to JMX

Remote access to the jmx subsystem allows for JDK and application management operations to be
triggered remotely. To disable remote access to JMX in JBoss EAP, remove the remoting connector in
the jmx subsystem:

Removing the Remoting Connector

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/management_cli_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#network_and_port_configuration

/subsystem=jmx/remoting-connector=jmx/:remove

For more information on JMX, see the JMX section of the Red Hat JBoss Enterprise Application
Platform Security Architecture guide.

1.2.4. Silent Authentication

The default installation of JBoss EAP contains a method of silent authentication for a local
management CLI user. This allows the local user the ability to access the management CLI without user
name or password authentication. This functionality is enabled as a convenience, and to assist local
users running the management CLI scripts without requiring authentication. It is considered a useful
feature given that access to the local configuration typically also gives the user the ability to add their
own user details or otherwise disable security checks.

The convenience of silent authentication for local users can be disabled where greater security control is
required. This can be achieved by removing the local element within the security-realm attribute of the
configuration file. This is applicable to both standalone instance as well as managed domain.

IMPORTANT

The removal of the local element should only be done if the impact on the JBoss EAP
instance and its configuration is fully understood.

To remove silent authentication when using the elytron subsystem:

[standalone@localhost:9990 /] /subsystem=elytron/sasl-authentication-factory=managenet-sasl-
authentication:read-resource
{
 "outcome" => "success",
 "result" => {
 "mechanism-configurations" => [
 {
 "mechanism-name" => "JBOSS-LOCAL-USER",
 "realm-mapper" => "local"
 },
 {
 "mechanism-name" => "DIGEST-MD5",
 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]
 }
],
 "sasl-server-factory" => "configured",
 "security-domain" => "ManagementDomain"
 }
}

/subsystem=elytron/sasl-authentication-factory=temp-sasl-authentication:list-
remove(name=mechanism-configurations,index=0)

reload

To remove silent authentication when using a legacy security realm:

/core-service=management/security-realm=REALM_NAME/authentication=local:remove

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

20

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#jmx

1.2.5. Enable One-way SSL/TLS for the Management Interfaces Using the Elytron
Subsystem

In JBoss EAP, you can enable one-way SSL/TLS for the management interfaces using the JBoss EAP
management CLI or the management console.

In the management CLI, one-way SSL/TLS can be enabled in two ways:

Using security command.

Using elytron subsystem commands.

Using a Security Command
The security enable-ssl-management command can be used to enable one-way SSL/TLS for the
management interfaces.

Example: Wizard Usage

security enable-ssl-management --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default management.keystore): keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct y/n
[y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): n

SSL options:
key store file: keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
password: secret
validity: 365
alias: localhost
Server keystore file keystore.jks, certificate file keystore.pem and keystore.csr file
will be generated in server configuration directory.
Do you confirm y/n :y

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

Using Elytron Subsystem Commands
The elytron subsystem commands can also be used to enable one-way SSL/TLS for the management
interfaces.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

21

1. Configure a key-store.

/subsystem=elytron/key-store=httpsKS:add(path=keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

NOTE

The above command uses relative-to to reference the location of the keystore
file. Alternatively, you can specify the full path to the keystore in path and omit
relative-to.

If the keystore file does not exist yet, the following commands can be used to generate an
example key pair:

/subsystem=elytron/key-store=httpsKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=1024,validity=365,credential-reference={clear-
text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=httpsKS:store()

2. Create a key-manager and server-ssl-context.

/subsystem=elytron/key-manager=httpsKM:add(key-
store=httpsKS,algorithm="SunX509",credential-reference={clear-text=secret})

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM,protocols=
["TLSv1.2"])

IMPORTANT

You need to know what key manager algorithms are provided by the JDK you are
using. For example, a JDK that uses SunJSSE provides the PKIX and SunX509
algorithms. You also need to determine what HTTPS protocols you want to
support. The example commands above use TLSv1.2. You can use the cipher-
suite-filter argument to specify which cipher suites are allowed, and the use-
cipher-suites-order argument to honor server cipher suite order. The use-
cipher-suites-order attribute by default is set to true. This differs from the
legacy security subsystem behavior, which defaults to honoring client cipher
suite order.

3. Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-attribute(name=ssl-
context, value=httpsSSC)

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

4. Reload the JBoss EAP instance.

reload

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

22

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

One-way SSL/TLS is now enabled for the management interfaces.

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss EAP will
use the SSL/TLS configuration provided by ssl-context.

NOTE

You can disable one-way SSL/TLS for the management interfaces using the disable-ssl-
management command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

Using Management Console
You can enable SSL for the management interface used by the management console using an SSL
wizard in the management console.

To access the wizard:

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Runtime, click the appropriate server name.

3. Click View next to server name.

4. Click HTTP Manageme…​ to open the HTTP Management Interface configuration page.

5. Click Enable SSL to launch the wizard.
The wizard guides you through the following scenarios for enabling SSL:

You want to create a certificate store and generate a self-signed certificate.

You already have the certificate store on the file system, but no keystore configuration.

You already have a keystore configuration that uses a valid certificate store.

Using the wizard, you can optionally create a truststore for mutual authentication.

1.2.6. Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron
Subsystem

1. Obtain or generate your client keystores:

2. Export the client certificate:

security disable-ssl-management

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore
client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

23

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

3. In JBoss EAP, two-way SSL/TLS for the management interfaces can be enabled either by using
a security command or by using the elytron subsystem commands.

a. Using a security command:
The security enable-ssl-management command can be used to enable two-way SSL/TLS
for the management interfaces.

NOTE

The following example does not validate the certificate as no chain of trust
exists. If you are using a trusted certificate, then the client certificate can be
validated without issue.

Example: Wizard Usage

security enable-ssl-management --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default management.keystore): server.keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct y/n [y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): y
Client certificate (path to pem file): /path/to/client.cer
Validate certificate y/n (blank y): n
Trust-store file name (management.truststore): server.truststore.jks
Password (blank generated): secret

SSL options:
key store file: server.keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown,
ST=Unknown, C=Unknown
password: secret
validity: 365
alias: localhost
client certificate: /path/to/client.cer
trust store file: server.trustore.jks
trust store password: secret
Server keystore file server.keystore.jks, certificate file server.pem and server.csr file will
be generated in server configuration directory.
Server truststore file server.trustore.jks will be generated in server configuration
directory.
Do you confirm y/n: y

NOTE

$ keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass
secret -file /path/to/client.cer

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

24

NOTE

Once the command is executed, the management CLI will reload the server
and attempt to reconnect to it.

To complete the two-way SSL/TLS authentication, you need to import the
server certificate into the client truststore and configure your client to
present the client certificate.

b. Using Elytron subsystem commands:
The elytron subsystem commands can also be used to enable two-way SSL/TLS for the
management interfaces.

i. Obtain or generate your keystore. Before enabling one-way SSL/TLS in JBoss EAP, you
must obtain or generate the keystores, truststores and certificates you plan on using. To
generate an example set of keystores, truststores, and certificates, use the following
commands.

A. Configure a key-store.

/subsystem=elytron/key-store=twoWayKS:add(path=server.keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=1024,validity=365,credential-
reference={clear-text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=twoWayKS:store()

NOTE

The above command uses relative-to to reference the location of
the keystore file. Alternatively, you can specify the full path to the
keystore in path and omit relative-to.

B. Export your server certificate.

/subsystem=elytron/key-store=twoWayKS:export-
certificate(alias=localhost,path=/path/to/server.cer,pem=true)

C. Create a key-store for the server trust store and import the client certificate into
the server truststore.

NOTE

The following example does not validate the certificate as no chain
of trust exists. If you are using a trusted certificate, then the client
certificate can be validated without issue.

/subsystem=elytron/key-
store=twoWayTS:add(path=server.truststore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret},type=JKS)

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

25

/subsystem=elytron/key-store=twoWayTS:import-
certificate(alias=client,path=/path/to/client.cer,credential-reference={clear-
text=secret},trust-cacerts=true,validate=false)

/subsystem=elytron/key-store=twoWayTS:store()

ii. Configure a key-manager, trust-manager, and server-ssl-context for the server
keystore and truststore.

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,credential-
reference={clear-text=secret})

/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS,algorithm="SunX509")

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-
manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,want-client-
auth=true,need-client-auth=true)

IMPORTANT

You need to know what key manager algorithms are provided by the JDK
you are using. For example, a JDK that uses SunJSSE provides the PKIX
and SunX509 algorithms. You also need to determine what HTTPS
protocols you want to support. The example commands above use
TLSv1.2. You can use the cipher-suite-filter argument to specify which
cipher suites are allowed, and the use-cipher-suites-order argument to
honor server cipher suite order. The use-cipher-suites-order attribute
by default is set to true. This differs from the legacy security subsystem
behavior, which defaults to honoring client cipher suite order.

A. Enable HTTPS on the management interface.

/core-service=management/management-interface=http-interface:write-
attribute(name=ssl-context, value=twoWaySSC)

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

B. Reload the JBoss EAP instance.

reload

NOTE

To complete the two-way SSL/TLS authentication, you need to
import the server certificate into the client truststore and configure
your client to present the client certificate.

C. Configure your client to use the client certificate.
You need to configure your client to present the trusted client certificate to the
server to complete the two-way SSL/TLS authentication. For example, if using a
browser, you need to import the trusted certificate into the browser’s trust store.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

26

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

This results in a forced two-way SSL/TLS authentication, without changing the
original authentication to the server management.

If you want to change the original authentication method, see Configure
Authentication with Certificates in How to Configure Identity Management for
JBoss EAP.

Two-way SSL/TLS is now enabled for the management interfaces.

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss EAP will
use the SSL/TLS configuration provided by ssl-context.

NOTE

You can disable two-way SSL/TLS for the management interfaces using the disable-ssl-
management command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

1.2.7. Enable SASL Authentication for the Management Interfaces Using the CLI
Security Command

In JBoss EAP, SASL authentication, using an elytron SASL authentication factory, can be enabled for
the management interfaces with the security enable-sasl-management command. This command
creates all of the non-existing resources required to configure authentication. By default this command
associates the included SASL factory with the http-interface.

Example: Enable SASL Authentication

security enable-sasl-management

Server reloaded.
Command success.
Authentication configured for management http-interface
sasl authentication-factory=management-sasl-authentication
security-domain=ManagementDomain

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

If a SASL factory already exists, then the factory is updated to use the mechanism defined by the --
mechanism argument.

For a list of arguments, see Authorization Security Arguments.

Reorder SASL Mechanisms

security disable-ssl-management

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

27

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#configure_authentication_with_certificates

The order of defined SASL mechanisms dictate how the server authenticates the request, with the first
matching mechanism being sent to the client. This order can be changed by passing a comma-
separated list into the following command.

security reorder-sasl-management --mechanisms-order=MECHANISM1,MECHANISM2,...

Disable SASL Authentication for the Management Interfaces
To remove the active SASL authentication factory use the following command.

security disable-sasl-management

Alternatively, the command can be used to remove specific mechanisms from the active SASL
authentication factory.

security disable-sasl-management --mechanism=MECHANISM

1.2.8. Enable HTTP Authentication for the Management Interfaces Using the CLI
Security Command

In JBoss EAP, HTTP authentication, using an elytron HTTP authentication factory, can be enabled for
the management interfaces with the security enable-http-auth-management command. This
command can only target the http-interface, and with no additional arguments the included HTTP
authentication factory will be associated with this interface.

Example: Enable HTTP Authentication

security enable-http-auth-management

Server reloaded.
Command success.
Authentication configured for management http-interface
http authentication-factory=management-http-authentication
security-domain=ManagementDomain

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

If a HTTP factory already exists, then the factory is updated to use the mechanism defined by the --
mechanism argument.

For a list of arguments, see Authorization Security Arguments.

Disable HTTP Authentication for the Management Interfaces
To remove the active HTTP authentication factory use the following command.

security disable-http-auth-management

Alternatively, you can use the following command to remove specific mechanisms from the active HTTP
authentication factory.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

28

security disable-http-auth-management --mechanism=MECHANISM

1.2.9. Configure the Management Interfaces for One-way SSL/TLS with Legacy
Core Management Authentication

Configuring the JBoss EAP management interfaces for communication only using one-way SSL/TLS
provides increased security. All network traffic between the client and the management interfaces is
encrypted, which reduces the risk of security attacks such as a man-in-the-middle attack.

In this procedure unencrypted communication with the JBoss EAP instance is disabled. This procedure
applies to both standalone server and managed domain configurations. For a managed domain, prefix
the management CLI commands with the name of the host, for example: /host=master.

IMPORTANT

While performing the steps for enabling one-way SSL/TLS on the management
interfaces, do not reload the configuration unless explicitly instructed. Doing so may
cause you to be locked out of the management interfaces.

1. Create a keystore to secure the management interfaces .

2. Ensure the management interfaces bind to HTTPS .

3. Optional: Implement a custom socket-binding-group.

4. Create a new security realm .

5. Configure the management interfaces to use the new security realm .

6. Configure the management interfaces to use the keystore .

7. Update the jboss-cli.xml.

Create a Keystore to Secure the Management Interfaces

NOTE

This keystore must be in JKS format as the management interfaces are not compatible
with keystores in JCEKS format.

Use the following to generate a keystore, replacing the example values for the parameters, for example
alias, keypass, keystore, storepass and dname, with the correct values for the environment.

NOTE

The parameter validity specifies for how many days the key is valid. A value of 730 equals
two years.

Ensure the Management Interfaces Bind to HTTPS

$ keytool -genkeypair -alias appserver -storetype jks -keyalg RSA -keysize 2048 -keypass
password1 -keystore EAP_HOME/standalone/configuration/identity.jks -storepass password1 -
dname "CN=appserver,OU=Sales,O=Systems Inc,L=Raleigh,ST=NC,C=US" -validity 730 -v

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

29

Running a Standalone Server

To ensure the management interfaces bind to HTTPS, you must add the management-https
configuration and remove the management-http configuration.

Use the following CLI commands to bind the management interfaces to HTTPS:

/core-service=management/management-interface=http-interface:write-attribute(name=secure-
socket-binding, value=management-https)

/core-service=management/management-interface=http-interface:undefine-attribute(name=socket-
binding)

Running a Managed Domain

Change the socket element within the management-interface attribute by adding secure-port and
removing port configuration.

Use the following commands to bind the management interfaces to HTTPS:

/host=master/core-service=management/management-interface=http-interface:write-
attribute(name=secure-port,value=9993)

/host=master/core-service=management/management-interface=http-interface:undefine-
attribute(name=port)

Optional: Implement a Custom socket-binding-group
If you want to use a custom socket-binding-group, you must ensure the management-https binding is
defined, which by default is bound to port 9993. You can verify this from the socket-binding-group
attribute of the server’s configuration file or using the management CLI:

/socket-binding-group=standard-sockets/socket-binding=management-https:read-
resource(recursive=true)

{
 "outcome" => "success",
 "result" => {
 "client-mappings" => undefined,
 "fixed-port" => false,
 "interface" => "management",
 "multicast-address" => undefined,
 "multicast-port" => undefined,
 "name" => "management-https",
 "port" => expression "${jboss.management.https.port:9993}"
 }
}

Create a New Security Realm
In this example, the new security realm using HTTPS, ManagementRealmHTTPS, uses a properties file
named https-mgmt-users.properties located in the EAP_HOME/standalone/configuration/ directory
for storing user names and passwords.

1. Create a properties file for storing user name and passwords.
User names and passwords can be added to the file later, but for now, you need to create an
empty file named https-mgmt-users.properties and save it to that location. The below
example shows using the touch command, but you may also use other mechanisms, such as a

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

30

text editor.

Example: Using the touch Command to Create an Empty File

2. Next, use the following management CLI commands to create a new security realm named
ManagementRealmHTTPS:

/core-service=management/security-realm=ManagementRealmHTTPS:add

/core-service=management/security-
realm=ManagementRealmHTTPS/authentication=properties:add(path=https-mgmt-
users.properties,relative-to=jboss.server.config.dir)

3. Add users to the properties file.
At this point, you have created a new security realm and configured it to use a properties file for
authentication. You must now add users to that properties file using the add-user script, which
is available in the EAP_HOME/bin/ directory. When running the add-user script, you must
specify both the properties file and the security realm using the -up and -r options respectively.
From there, the add-user script will interactively prompt you for the user name and password
information to store in the https-mgmt-users.properties file.

IMPORTANT

$ touch EAP_HOME/standalone/configuration/https-mgmt-users.properties

$ EAP_HOME/bin/add-user.sh -up EAP_HOME/standalone/configuration/https-mgmt-
users.properties -r ManagementRealmHTTPS
...
Enter the details of the new user to add.
Using realm 'ManagementRealmHTTPS' as specified on the command line.
...
Username : httpUser
Password requirements are listed below. To modify these restrictions edit the add-
user.properties configuration file.
 - The password must not be one of the following restricted values {root, admin,
administrator}
 - The password must contain at least 8 characters, 1 alphabetic character(s), 1 digit(s), 1
non-alphanumeric symbol(s)
 - The password must be different from the username
...
Password :
Re-enter Password :
About to add user 'httpUser' for realm 'ManagementRealmHTTPS'
...
Is this correct yes/no? yes
..
Added user 'httpUser' to file 'EAP_HOME/configuration/https-mgmt-users.properties'
...
Is this new user going to be used for one AS process to connect to another AS process?
e.g. for a slave host controller connecting to the master or for a Remoting connection for
server to server EJB calls.
yes/no? no

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

31

IMPORTANT

When configuring security realms that use properties files to store usernames
and passwords, it is recommended that each realm use a distinct properties file
that is not shared with another realm.

Configure the Management Interfaces to Use the New Security Realm
Use the following management CLI command to configure the management interfaces to use the new
security realm.

/core-service=management/management-interface=http-interface:write-attribute(name=security-
realm,value=ManagementRealmHTTPS)

Configure the Management Interfaces to Use the Keystore
Use the below management CLI command to configure the management interfaces to use the
keystore. For the parameters file, password and alias their values must be copied from the Create a
Keystore to Secure the Management Interfaces step.

/core-service=management/security-realm=ManagementRealmHTTPS/server-
identity=ssl:add(keystore-path=identity.jks,keystore-relative-to=jboss.server.config.dir,keystore-
password=password1, alias=appserver)

NOTE

To update the keystore password, use the following CLI command:

/core-service=management/security-realm=ManagementRealmHTTPS/server-
identity=ssl:write-attribute(name=keystore-password,value=newpassword)

At this point, you need to reload the server’s configuration:

reload

After reloading the server configuration, the log should contain the following, just before the text which
states the number of services that are started:

The management interfaces are now listening on port 9993, which confirms that the procedure was
successful.

IMPORTANT

At this point, the CLI will disconnect and will be unable to reconnect since the port
bindings have changed. Proceed to the next step to update the jboss-cli.xml file to allow
the management CLI to reconnect.

Update the jboss-cli.xml File

If using the management CLI to perform management actions, the following changes must to be made

13:50:54,160 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0061: Http management
interface listening on https://127.0.0.1:9993/management
13:50:54,162 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0052: Admin console listening
on https://127.0.0.1:9993

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

32

If using the management CLI to perform management actions, the following changes must to be made
to the EAP_HOME/bin/jboss-cli.xml file:

Update the value of <default-protocol> to https-remoting.

In <default-controller>, update the value of <protocol> to https-remoting.

In <default-controller>, update the value of <port> to 9993.

Example: jboss-cli.xml

The next time you connect to the management interface using the management CLI, you must accept
the server certificate and authenticate against the ManagementRealmHTTPS security realm:

Example: Accepting Server Certificate and Authenticating

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss EAP will
use the SSL/TLS configuration provided by ssl-context.

1.2.10. Setting up Two-way SSL/TLS for the Management Interfaces with Legacy
Core Management Authentication

Two-way SSL/TLS authentication, also known as client authentication, authenticates both the client and
the server using SSL/TLS certificates. This differs from the Configure the Management Interfaces for
One-way SSL/TLS section in that both the client and server each have a certificate. This provides
assurance that not only is the server who it says it is, but the client is also who it says it is.

In this section the following conventions are used:

<jboss-cli xmlns="urn:jboss:cli:2.0">
 <default-protocol use-legacy-override="true">https-remoting</default-protocol>
 <!-- The default controller to connect to when 'connect' command is executed w/o arguments -->
 <default-controller>
 <protocol>https-remoting</protocol>
 <host>localhost</host>
 <port>9993</port>
 </default-controller>
...

$./jboss-cli.sh -c
Unable to connect due to unrecognised server certificate
Subject - CN=appserver,OU=Sales,O=Systems Inc,L=Raleigh,ST=NC,C=US
Issuer - CN=appserver, OU=Sales, O=Systems Inc, L=Raleigh, ST=NC, C=US
Valid From - Tue Jun 28 13:38:48 CDT 2016
Valid To - Thu Jun 28 13:38:48 CDT 2018
MD5 : 76:f4:81:8b:7e:c3:be:6d:ee:63:c1:7a:b7:b8:f0:fb
SHA1 : ea:e3:f1:eb:53:90:69:d0:c9:69:4a:5a:a3:20:8f:76:c1:e6:66:b6

Accept certificate? [N]o, [T]emporarily, [P]ermenantly : p
Authenticating against security realm: ManagementRealmHTTPS
Username: httpUser
Password:
[standalone@localhost:9993 /]

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

33

HOST1

The JBoss server hostname. For example: jboss.redhat.com.

HOST2

A suitable name for the client. For example: myclient. Note this is not necessarily an actual
hostname.

CA_HOST1

The DN (distinguished name) to use for the HOST1 certificate. For example:
cn=jboss,dc=redhat,dc=com.

CA_HOST2

The DN (distinguished name) to use for the HOST2 certificate. For example:
cn=myclient,dc=redhat,dc=com.

Prerequisites

NOTE

If a password vault is used to store the keystore and truststore passwords, which is
recommended, the password vault should already be created. For more information on
the password vault, see the Password Vault section as well as the Password Vault System
section of the Red Hat JBoss Enterprise Application Platform 7 Security Architecture
guide.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected packages.

1. Generate the keystores.

2. Export the certificates.

3. Import the certificates into the opposing truststores.



$ keytool -genkeypair -alias HOST1_alias -keyalg RSA -keysize 1024 -validity 365 -keystore
HOST1.keystore.jks -dname "CA_HOST1" -keypass secret -storepass secret

$ keytool -genkeypair -alias HOST2_alias -keyalg RSA -keysize 1024 -validity 365 -keystore
HOST2.keystore.jks -dname "CA_HOST2" -keypass secret -storepass secret

$ keytool -exportcert -keystore HOST1.keystore.jks -alias HOST1_alias -keypass secret -
storepass secret -file HOST1.cer

$ keytool -exportcert -keystore HOST2.keystore.jks -alias HOST2_alias -keypass secret -
storepass secret -file HOST2.cer

$ keytool -importcert -keystore HOST1.truststore.jks -storepass secret -alias HOST2_alias -
trustcacerts -file HOST2.cer

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

34

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#password_vault_system

4. Define a CertificateRealm.
Define a CertificateRealm in the configuration for the server (host.xml or standalone.xml) and
point the interface to it. This can be done using the following commands:

/core-service=management/security-realm=CertificateRealm:add()

/core-service=management/security-realm=CertificateRealm/server-
identity=ssl:add(keystore-path=/path/to/HOST1.keystore.jks, keystore-
password=secret,alias=HOST1_alias)

/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-
path=/path/to/HOST1.truststore.jks,keystore-password=secret)

5. Change the security-realm of the http-interface to the new CertificateRealm.

/core-service=management/management-interface=http-interface:write-
attribute(name=security-realm,value=CertificateRealm)

6. Add the SSL/TLS configuration for the CLI.

IMPORTANT

In addition to adding the two-way SSL/TLS, the management interface should
also be configured to bind to HTTPS. For details, see Ensure the Management
Interfaces Bind to HTTPS in the section entitled Configure the Management
Interfaces for One-way SSL/TLS with Legacy Core Management Authentication.

Add the SSL/TLS configuration for the CLI, which uses EAP_HOME/bin/jboss-cli.xml as a
settings file.

To store the keystore and truststore passwords in plain text, edit EAP_HOME/bin/jboss-cli.xml
and add the SSL/TLS configuration using the appropriate values for the variables:

Example: jboss-cli.xml Storing Keystore and Truststore Passwords in Plain Text

To use the keystore and truststore passwords stored in a password vault, you need to add the
vault configuration and appropriate vault values to EAP_HOME/bin/jboss-cli.xml:

Example: jboss-cli.xml Storing Keystore and Truststore Passwords in a Password

$ keytool -importcert -keystore HOST2.truststore.jks -storepass secret -alias HOST1_alias -
trustcacerts -file HOST1.cer

<ssl>
 <alias>HOST2_alias</alias>
 <key-store>/path/to/HOST2.keystore.jks</key-store>
 <key-store-password>secret</key-store-password>
 <trust-store>/path/to/HOST2.truststore.jks</trust-store>
 <trust-store-password>secret</trust-store-password>
 <modify-trust-store>true</modify-trust-store>
</ssl>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

35

Example: jboss-cli.xml Storing Keystore and Truststore Passwords in a Password
Vault

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss EAP will
use the SSL/TLS configuration provided by ssl-context.

1.2.11. HTTPS Listener Reference

For a full list of attributes available for the HTTPS listener, see the Undertow Subsystem Attributes
section in the JBoss EAP Configuration Guide.

1.2.11.1. About Cipher Suites

You can configure a list of the encryption ciphers which are allowed. For JSSE syntax, it must be a
comma-separated list. For OpenSSL syntax, it must be a colon-separated list. Ensure that only one
syntax is used. The default is the JVM default.

IMPORTANT

Using weak ciphers is a significant security risk. See NIST Guidelines for NIST
recommendations on cipher suites.

See the OpenSSL documentation for a list of available OpenSSL ciphers . Note that the following are not
supported:

@SECLEVEL

SUITEB128

SUITEB128ONLY

SUITEB192

See the Java documentation for a list of the standard JSSE ciphers.

<ssl>
 <vault>
 <vault-option name="KEYSTORE_URL" value="path-to/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5WNXs8oEbrs"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="12345678"/>
 <vault-option name="ITERATION_COUNT" value="50"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
 </vault>
 <alias>HOST2_alias</alias>
 <key-store>/path/to/HOST2.keystore.jks</key-store>
 <key-store-password>VAULT::VB::cli_pass::1</key-store-password>
 <key-password>VAULT::VB::cli_pass::1</key-password>
 <trust-store>/path/to/HOST2.truststore.jks</trust-store>
 <trust-store-password>VAULT::VB::cli_pass::1</trust-store-password>
 <modify-trust-store>true</modify-trust-store>
</ssl>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

36

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#undertow-attribute-refs
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=915295
https://www.openssl.org/docs/man1.1.0/apps/ciphers.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#Cipher

To update the list of enabled cipher suites, use the enabled-cipher-suites attribute of the HTTPS
listener in the undertow subsystem.

Example: Management CLI Command for Updating the List of Enabled Cipher Suites

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=enabled-
cipher-
suites,value="TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA")

NOTE

The example only lists two possible ciphers, but real-world examples will likely use more.

1.2.12. FIPS 140-2 Compliant Cryptography

It is possible to configure FIPS 140-2 compliant cryptography on Red Hat Enterprise Linux using either
of the following methods.

Using the SunPKCS11 provider with an NSS database

Using the third party BouncyCastle providers

1.2.12.1. Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat Enterprise Linux 7 and
Later

You can configure Undertow to use FIPS 140-2 compliant cryptography for SSL/TLS. The scope of this
configuration example is limited to Red Hat Enterprise Linux 7 and later, using the Mozilla NSS library in
FIPS mode.

IMPORTANT

The installed Red Hat Enterprise Linux must already be configured to be FIPS 140-2
compliant. For more information, see the solution titled How can I make RHEL 6 or RHEL
7 FIPS 140-2 compliant?, which is located on the Red Hat Customer Portal.

WARNING

Using the TLS 1.2 protocol when running JBoss EAP in FIPS mode can cause a
NoSuchAlgorithmException to occur. More details on this issue can be found in
the solution titled NoSuchAlgorithmException: no such algorithm:
SunTls12MasterSecret, which is located on the Red Hat Customer Portal.

Therefore, it is not possible to configure HTTP/2 in FIPS mode because HTTP/2
requires the TLS 1.2 protocol. FIPS mode (PKCS11) supports the TLS 1 and the TLS
1.1 protocols so you can use:

TLS 1.1 in case of Oracle/OpenJDK

TLS 1 in case of IBM java



CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

37

https://access.redhat.com/knowledge/solutions/137833
https://access.redhat.com/solutions/1309153

To configure Undertow to use FIPS 140-2 compliant cryptography for SSL/TLS, you must do the
following:

Configure the NSS database.

Configure the management CLI for FIPS 140-2 compliant cryptography for SSL/TLS .

Configure the undertow subsystem to use either Elytron or the legacy core management
authentication.

NOTE

The OpenSSL provider requires a private key, but it is not possible to retrieve a private
key from the PKCS11 store. FIPS does not allow the export of unencrypted keys from FIPS
compliant cryptographic module. Therefore, for both the elytron subsystem as well as
legacy security, it is not possible to use the OpenSSL provider for TLS when in FIPS
mode.

Configuring the NSS database

1. Create a directory owned by the appropriate user to house the NSS database.

Example Commands for Creating the NSS Database Directory

NOTE

The jboss user is only an example. You need to replace it with a user on your
operating system that you plan on using for running JBoss EAP.

2. Create the NSS configuration file: /usr/share/jboss-as/nss_pkcsll_fips.cfg.
It must specify:

a name

the directory where the NSS library is located

the directory where the NSS database was created in the previous step

Example: nss_pkcsll_fips.cfg

name = nss-fips
nssLibraryDirectory=/usr/lib64
nssSecmodDirectory=/usr/share/jboss-as/nssdb
nssDbMode = readOnly
nssModule = fips

NOTE

$ mkdir -p /usr/share/jboss-as/nssdb
$ chown jboss /usr/share/jboss-as/nssdb
$ modutil -create -dbdir /usr/share/jboss-as/nssdb

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

38

NOTE

If you are not running a 64-bit version of Red Hat Enterprise Linux 6 then set
nssLibraryDirectory to /usr/lib instead of /usr/lib64.

3. Edit the Java security configuration file. This configuration file affects the entire JVM, and can
be defined using either of the following methods.

A default configuration file, java.security, is provided in your JDK. This file is used if no
other security configuration files are specified. See the JDK vendor’s documentation for the
location of this file.

Define a custom Java security configuration file and reference it by using the -
Djava.security.properties=/path/to/java.security.properties. When referenced in this
manner it overrides the settings in the default security file. This option is useful when having
multiple JVMs running on the same host that require different security settings.
Add the following line to your Java security configuration file:

Example: java.security

security.provider.1=sun.security.pkcs11.SunPKCS11 /usr/share/jboss-
as/nss_pkcsll_fips.cfg

NOTE

The nss_pkcsll_fips.cfg configuration file specified in the above line is the
file created in the previous step.

You also need to update the following link in your configuration file from:

security.provider.5=com.sun.net.ssl.internal.ssl.Provider

to

security.provider.5=com.sun.net.ssl.internal.ssl.Provider SunPKCS11-nss-fips

IMPORTANT

Any other security.provider.X lines in this file, for example
security.provider.2, must have the value of their X increased by one to
ensure that this provider is given priority.

4. Run the modutil command on the NSS database directory you created in the previous step to
enable FIPS mode.

modutil -fips true -dbdir /usr/share/jboss-as/nssdb

NOTE

You may get a security library error at this point requiring you to regenerate the
library signatures for some of the NSS shared objects.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

39

5. Set the password on the FIPS token.
The name of the token must be NSS FIPS 140-2 Certificate DB .

modutil -changepw "NSS FIPS 140-2 Certificate DB" -dbdir /usr/share/jboss-as/nssdb

IMPORTANT

The password used for the FIPS token must be a FIPS compliant password. If the
password is not strong enough, you may receive an error: ERROR: Unable to
change password on token "NSS FIPS 140-2 Certificate DB".

6. Create a certificate using the NSS tools.

Example Command

7. Verify that the JVM can read the private key from the PKCS11 keystore by running the following
command:

$ keytool -list -storetype pkcs11

IMPORTANT

$ certutil -S -k rsa -n undertow -t "u,u,u" -x -s "CN=localhost, OU=MYOU, O=MYORG,
L=MYCITY, ST=MYSTATE, C=MY" -d /usr/share/jboss-as/nssdb

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

40

IMPORTANT

Once you have FIPS enabled, you may see the following error when starting JBoss EAP:

10:16:13,993 ERROR [org.jboss.msc.service.fail] (MSC service thread 1-1)
MSC000001: Failed to start service
jboss.server.controller.management.security_realm.ApplicationRealm.key-manager:
org.jboss.msc.service.StartException in service
jboss.server.controller.management.security_realm.ApplicationRealm.key-manager:
WFLYDM0018: Unable to start service
 at
org.jboss.as.domain.management.security.AbstractKeyManagerService.start(AbstractKe
yManagerService.java:85)
 at
org.jboss.msc.service.ServiceControllerImpl$StartTask.startService(ServiceControllerImp
l.java:1963)
 at
org.jboss.msc.service.ServiceControllerImpl$StartTask.run(ServiceControllerImpl.java:18
96)
 at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
 at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
 at java.lang.Thread.run(Thread.java:745)
Caused by: java.security.KeyStoreException: FIPS mode: KeyStore must be from
provider SunPKCS11-nss-fips
 at
sun.security.ssl.KeyManagerFactoryImpl$SunX509.engineInit(KeyManagerFactoryImpl.j
ava:67)
 at javax.net.ssl.KeyManagerFactory.init(KeyManagerFactory.java:256)
 at
org.jboss.as.domain.management.security.AbstractKeyManagerService.createKeyMana
gers(AbstractKeyManagerService.java:130)
 at
org.jboss.as.domain.management.security.AbstractKeyManagerService.start(AbstractKe
yManagerService.java:83)
 ... 5 more

This message will appear if you have any existing key managers configured, such as the
default key manager in legacy core management authentication, that do not use FIPS
140-2 compliant cryptography.

Configure the Management CLI for FIPS 140-2 Compliant Cryptography for SSL/TLS
You must configure the JBoss EAP management CLI to work in an environment with FIPS 140-2
compliant cryptography for SSL/TLS enabled. By default, if you try to use the management CLI in such
an environment, the following exception is thrown: org.jboss.as.cli.CliInitializationException:
java.security.KeyManagementException: FIPS mode: only SunJSSE TrustManagers may be used.

If you are using the legacy security subsystem:
Update the javax.net.ssl.keyStore and javax.net.ssl.trustStore system properties in the
jboss-cli.sh file, as shown below:

JAVA_OPTS="$JAVA_OPTS -Djavax.net.ssl.trustStore=NONE -
Djavax.net.ssl.trustStoreType=PKCS11"
JAVA_OPTS="$JAVA_OPTS -Djavax.net.ssl.keyStore=NONE -

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

41

Djavax.net.ssl.keyStoreType=PKCS11 -Djavax.net.ssl.keyStorePassword=P@ssword123"

If you are using the elytron subsystem:

1. Create an XML configuration file for the management CLI with the following contents:

Example: cli-wildfly-config.xml

NOTE

If you are using the IBM JDK, see the IBM management CLI configuration
example for the specific configuration required.

2. When starting the management CLI, pass the configuration file to the management CLI
script using the -Dwildfly.config.url property. For example:

$ jboss-cli.sh -Dwildfly.config.url=cli-wildfly-config.xml

Configure the Elytron and Undertow Subsystems

1. Add the FIPS 140-2 compliant cryptography key-store, key-manager and ssl-context.

/subsystem=elytron/key-store=fipsKS:add(type=PKCS11,provider="SunPKCS11-nss-
fips",credential-reference={clear-text="P@ssword123"})

/subsystem=elytron/key-manager=fipsKM:add(key-
store=fipsKS,algorithm="SunX509",provider=SunPKCS11-nss-fips,credential-reference=
{clear-text="P@ssword123"})

/subsystem=elytron/server-ssl-context=fipsSSC:add(key-manager=fipsKM,protocols=
["TLSv1.1"])

2. Update the undertow subsystem to use the new ssl-context.

NOTE

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="truststore" type="PKCS11">
 <key-store-clear-password password="P@ssword123"/>
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-cli-context">
 <trust-store key-store-name="truststore"/>
 <cipher-suite selector="${cipher.suite.filter}"/>
 <protocol names="TLSv1.1"/>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-cli-context"/>
 </ssl-context-rules>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

42

NOTE

https-listener must always have either a security-realm or ssl-context
configured. When changing between the two configurations, the commands must
be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context,value=fipsSSC)
run-batch

reload

In the elytron subsystem, OpenJDK and Oracle JDK in FIPS mode restrict the usage of any advanced
features that are based on providing custom KeyManager or TrustManager implementations. The
following configuration attributes do not work on the server:

server-ssl-context.security-domain

trust-manager.certificate-revocation-list

Configure Undertow with the Legacy Core Management Authentication
Optionally, you can still use the legacy core management authentication instead of the elytron
subsystem to complete the setup of FIPS 140-2 compliant cryptography for SSL/TLS:

1. Configure Undertow to use SSL/TLS.

NOTE

The following commands below must either be run in batch mode, or the server
must be reloaded after adding the ssl server identity. The example below is
shown using batch mode.

batch

/core-service=management/security-realm=HTTPSRealm:add

/core-service=management/security-realm=HTTPSRealm/server-identity=ssl:add(keystore-
provider=PKCS11, keystore-password="strongP@ssword1")

/subsystem=undertow/server=default-server/https-listener=https:add(socket-binding=https,
security-realm=HTTPSRealm, enabled-protocols="TLSv1.1")

run-batch

The basic details for configuring Undertow to SSL/TLS are covered in Setting up an SSL/TLS
for Applications.

2. Configure the cipher suites used by Undertow.
Once you have SSL/TLS configured, you need to configure the https listener and security realm
to have a specific set of cipher suites enabled:

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

43

Required Cipher Suites

SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA

The basics behind enabling cipher suites for the https listener are covered in About Cipher
Suites. To enable cipher suites on the https listener:

Example Command for Enabling Cipher Suites on the Https Listener

/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=enabled-cipher-
suites,value="SSL_RSA_WITH_3DES_EDE_CBC_SHA,SSL_DHE_RSA_WITH_3DES_EDE_
CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_DSS_WITH_AES_128_CBC_S
HA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,TLS
_DHE_DSS_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_
ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_ECDSA_WITH_AES_128_CBC_
SHA,TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_3DES_
EDE_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_
WITH_AES_256_CBC_SHA,TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_R
SA_WITH_AES_128_CBC_SHA,TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE
_RSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_
ECDHE_RSA_WITH_AES_256_CBC_SHA,TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
,TLS_ECDH_anon_WITH_AES_128_CBC_SHA,TLS_ECDH_anon_WITH_AES_256_CBC_S
HA")

3. Enable cipher suites on the security realm.

Example Command for Enabling Cipher Suites on the Security Realm

/core-service=management/security-realm=HTTPSRealm/server-identity=ssl:write-
attribute(name=enabled-cipher-suites, value=[SSL_RSA_WITH_3DES_EDE_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA,

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

44

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_anon_WITH_AES_128_CBC_SHA,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA])

1.2.12.2. Enable FIPS 140-2 Cryptography for SSL/TLS Using Bouncy Castle

You can configure Undertow to use FIPS 140-2 compliant cryptography for SSL/TLS. The scope of this
configuration example is limited to Red Hat Enterprise Linux 7 and later. The Bouncy Castle JARs are
not provided by Red Hat, and must be obtained directly from Bouncy Castle.

Prerequisites

Ensure your environment is configured to use the BouncyCastle provider.

A Bouncy Castle keystore must exist on the server. If one does not exist, it can be created using
the following command.

$ keytool -genkeypair -alias ALIAS -keyalg RSA -keysize 2048 -keypass PASSWORD -
keystore KEYSTORE -storetype BCFKS -storepass STORE_PASSWORD

Configure the Management CLI for FIPS 140-2 Compliant Cryptography for SSL/TLS Using
Elytron
You must configure the JBoss EAP management CLI to work in an environment with FIPS 140-2
compliant cryptography for SSL/TLS enabled.

1. Create an XML configuration file for the management CLI with the following contents:

Example: cli-wildfly-config.xml

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="truststore" type="BCFKS">
 <file name="${truststore.location}" />
 <key-store-clear-password password="${password}" />
 </key-store>
 <key-store name="keystore" type="BCFKS">
 <file name="${keystore.location}" />
 <key-store-clear-password password="${password}" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-cli-context">

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

45

2. When starting the management CLI, pass the configuration file to the management CLI script
using the -Dwildfly.config.url property. For example:

$ jboss-cli.sh -Dwildfly.config.url=cli-wildfly-config.xml

Configure the Elytron and Undertow Subsystems

1. Add the FIPS 140-2 compliant cryptography key-store, key-manager and ssl-context. When
defining the keystore, the type must be BCFKS.

/subsystem=elytron/key-store=fipsKS:add(path=KEYSTORE,relative-
to=jboss.server.config.dir,credential-reference={clear-
text=STORE_PASSWORD},type="BCFKS")

/subsystem=elytron/key-manager=fipsKM:add(key-store=fipsKS,algorithm="X509",credential-
reference={clear-text=PASSWORD})

/subsystem=elytron/server-ssl-context=fipsSSC:add(key-manager=fipsKM,protocols=
["TLSv1.2"],cipher-suite-filter="TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,

 <key-store-ssl-certificate algorithm="X509" key-store-name="keystore">
 <key-store-clear-password password="${password"} />
 </key-store-ssl-certificate>
 <trust-store key-store-name="truststore"/>
 <trust-manager algorithm="X509">
 </trust-manager>
 <cipher-suite
selector="TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,TLS_DHE_DSS_WITH_AES_128_
CBC_SHA,TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,TLS_DHE_DSS_WITH_AES_25
6_CBC_SHA,TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_
3DES_EDE_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_EC
DSA_WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,TL
S_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_3DES_EDE_
CBC_SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_
128_CBC_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_3DES
_EDE_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_128_CBC_
SHA256,TLS_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_AES_256_CCM,TLS_RSA_WITH_AES_128_CCM"/>
 <protocol names="TLSv1.2"/>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-cli-context"/>
 </ssl-context-rules>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

46

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256,TLS_RSA_WITH_AES_256_CCM,TLS_RSA_WIT
H_AES_128_CCM")

2. Update the undertow subsystem to use the new ssl-context.

NOTE

https-listener must always have either a security-realm or ssl-context
configured. When changing between the two configurations, the commands must
be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context,value=fipsSSC)
run-batch

reload

1.2.13. FIPS 140-2 Compliant Cryptography on IBM JDK

On the IBM JDK, the IBM Java Cryptographic Extension (JCE) IBMJCEFIPS provider and the IBM Java
Secure Sockets Extension (JSSE) FIPS 140-2 Cryptographic Module (IBMJSSE2) for multi-platforms
provide FIPS 140-2 compliant cryptography.

For more information on the IBMJCEFIPS provider, see the IBM Documentation for IBM JCEFIPS and
NIST IBMJCEFIPS – Security Policy . For more information on IBMJSSE2, see Running IBMJSSE2 in
FIPS mode.

1.2.13.1. Key Storage

The IBM JCE does not provide a keystore. The keys are stored on the computer and do not leave its
physical boundary. If the keys are moved between computers they must be encrypted.

To run keytool in FIPS-compliant mode use the -providerClass option on each command like this:

keytool -list -storetype JCEKS -keystore mystore.jck -storepass mystorepass -providerClass
com.ibm.crypto.fips.provider.IBMJCEFIPS

1.2.13.2. Management CLI Configuration

To configure the management CLI for FIPS 140-2 compliant cryptography on the IBM JDK, you must
use a management CLI configuration file specifically for the IBM JDK, such as the following:

Example: cli-wildfly-config-ibm.xml

<configuration>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

47

https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/JCEFIPSDocs/ibmjcefips.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp497.pdf
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/runfips.html

1.2.13.3. Examine FIPS Provider Information

To examine information about the IBMJCEFIPS used by the server, enable debug-level logging by
adding -Djavax.net.debug=true to the standalone.conf or domain.conf files. Information about the
FIPS provider is logged to the server.log file, for example:

04:22:45,685 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using MessageDigest SHA from
provider IBMJCEFIPS version 1.7
04:22:45,689 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH KeyPairGenerator from provider
from init IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using KeyFactory DiffieHellman from
provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using KeyAgreement DiffieHellman
from provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH KeyAgreement from provider
IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH KeyAgreement from provider
from initIBMJCEFIPS version 1.7

1.2.14. Starting a Managed Domain when the JVM is Running in FIPS Mode

Update each host controller and the master domain controller to use SSL/TLS for communication.

Prerequisites
Before you begin, make sure you have completed the following prerequisites.

You have implemented a managed domain.
For details about configuring a managed domain, see the Domain Management section in the
JBoss EAP Configuration Guide.

You have configured FIPS.
For details about configuring FIPS, see Enable FIPS 140-2 Cryptography for SSL/TLS on Red
Hat Enterprise Linux 7 and later.

You have created all necessary certificates and have imported the domain controller’s

 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="truststore" type="JKS">
 <file name="/path/to/truststore"/>
 <key-store-clear-password password="P@ssword123"/>
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-cli-context">
 <trust-store key-store-name="truststore"/>
 <cipher-suite selector="${cipher.suite.filter}"/>
 <protocol names="TLSv1"/>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-cli-context"/>
 </ssl-context-rules>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

48

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#domain_management

You have created all necessary certificates and have imported the domain controller’s
certificate into each controller’s truststore.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 in all affected packages.

1. On the master domain controller, create an SSL/TLS security realm that is configured to use
your NSS database as a PKCS11 provider..

Example: Security Realm on the Master Domain Controller

2. On each host controller, create a security realm with an SSL/TLS truststore for authentication.

Example: Security Realm on Each Host Controller

NOTE

Repeat this process on each host.

3. Secure the HTTP interface on the master domain controller with the security realm you just
created.

Example: HTTP Interface



<security-realm name="HTTPSRealm">
 <server-identities>
 <ssl>
 <engine enabled-protocols="TLSv1.1"/>
 <keystore provider="PKCS11" keystore-password="strongP@ssword1"/>
 </ssl>
 </server-identities>
 <authentication>
 <local default-user="\$local"/>
 <properties path="https-users.properties" relative-to="jboss.domain.config.dir"/>
 </authentication>
</security-realm>

<security-realm name="HTTPSRealm">
 <authentication>
 <truststore provider="PKCS11" keystore-password="strongP@ssword1"/>
 </authentication>
</security-realm>

<management-interfaces>
 <http-interface security-realm="HTTPSRealm">
 <http-upgrade enabled="true"/>

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

49

4. Use the SSL/TLS realm on each host controller to connect to the master domain controller.
Update the security realm used for connecting to the master domain controller. Modify the host
controller’s configuration file, for example host.xml or host-slave.xml, while the server is not
running.

Example: Host Controller Configuration File

5. Update how each server connects back to its host controller.

Example: Server Configuration

6. Configure two-way SSL/TLS in a managed domain.
To enable two-way SSL/TLS, add a truststore authentication method to the SSL/TLS security
realm for the master domain controller, execute the following management CLI commands:

/host=master/core-service=management/security-
realm=HTTPSRealm/authentication=truststore:add(keystore-provider="PKCS11",keystore-
password="strongP@ssword1")

reload --host=master

You also need to update each host controller’s security realm to have an SSL server identity,
execute the following management CLI commands:

/host=host1/core-service=management/security-realm=HTTPSRealm/server-
identity=ssl:add(keystore-provider=PKCS11, keystore-
password="strongP@ssword1",enabled-protocols=["TLSv1.1"])

reload --host=host1

IMPORTANT

You also need to ensure that each host’s certificate is imported into the domain
controller’s truststore.

 <socket interface="management" port="${jboss.management.http.port:9990}"/>
 </http-interface>
</management-interfaces>

<domain-controller>
 <remote security-realm="HTTPSRealm">
 <discovery-options>
 <static-discovery name="primary" protocol="${jboss.domain.master.protocol:remote}"
host="${jboss.domain.master.address}" port="${jboss.domain.master.port:9990}"/>
 </discovery-options>
 </remote>
</domain-controller>

<server name="my-server" group="my-server-group">
 <ssl ssl-protocol="TLS" trust-manager-algorithm="SunX509" truststore-type="PKCS11"
truststore-password="strongP@ssword1"/>
</server>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

50

1.2.15. Secure the Management Console with Red Hat Single Sign-On

You can secure the JBoss EAP management console with Red Hat Single Sign-On using the elytron
subsystem.

NOTE

This feature is only available when running a standalone server and is not supported when
running a managed domain. It is not supported to use Red Hat Single Sign-On to secure
the management CLI.

Use the following steps to set up Red Hat Single Sign-On to authenticate users for the JBoss EAP
management console.

1. Configure a Red Hat Single Sign-On server for JBoss EAP management .

2. Install the Red Hat Single Sign-On client adapter on JBoss EAP .

3. Configure JBoss EAP to use Red Hat Single Sign-On .

Configure a Red Hat Single Sign-On Server for JBoss EAP Management

1. Download and install a Red Hat Single Sign-On server. See the Red Hat Single Sign-On Getting
Started Guide for basic instructions.

2. Start the Red Hat Single Sign-On server.
This procedure assumes that you started the server with a port offset of 100.

$ RHSSO_HOME/bin/standalone.sh -Djboss.socket.binding.port-offset=100

3. Log in to the Red Hat Single Sign-On administration console at http://localhost:8180/auth/.
If this is the first time you have accessed the Red Hat Single Sign-On administration console,
you are prompted to create an initial administration user.

4. Create a new realm called wildfly-infra.

a. From the drop down next to the realm name, click Add realm, enter wildfly-infra in the
Name field, and click Create.

5. Create a client application called wildfly-console.

IMPORTANT

The name of this client application must be wildfly-console.

a. Select Clients and click Create.

b. Enter wildfly-console in the Client ID field and click Save.

c. In the Settings screen that appears, set Access Type to public, Valid Redirect URIs to
http://localhost:9990/console/*, Web Origins to http://localhost:9990, and click Save.

6. Create a client application called wildfly-management.

a. Select Clients and click Create.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

51

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/getting_started_guide/
http://localhost:8180/auth/

b. Enter wildfly-management in the Client ID field and click Save.

c. In the Settings screen that appears, set Access Type to bearer-only and click Save.

7. Create a role to grant access to the JBoss EAP management console.

a. Select Roles and click Add Role.

b. Enter ADMINISTRATOR in uppercase in the Role Name field and click Save.
This procedure uses the ADMINISTRATOR role, but other roles are supported. For more
information, see the Role-Based Access Control section of JBoss EAP’s Security
Architecture.

8. Create a user and assign the ADMINISTRATOR role to them.

a. Select Users and click Add user.

b. Enter jboss in the Username field and click Save.

c. Select the Credentials tab and set a password for this user.

d. Select the Role Mappings tab, select ADMINISTRATOR and click Add selected to add the
role to this user.

Install the Red Hat Single Sign-On Client Adapter on JBoss EAP

1. Download the Red Hat Single Sign-On client adapter for JBoss EAP 7 from the software
downloads page.

2. Unzip this file into the root directory of your JBoss EAP installation.

3. Execute the adapter-elytron-install-offline.cli script to configure your JBoss EAP installation.

$ EAP_HOME/bin/jboss-cli.sh --file=adapter-elytron-install-offline.cli

IMPORTANT

This script adds the keycloak subsystem and other required resources in the
elytron and undertow subsystems to standalone.xml. If you need to use a
different configuration file, modify the script as needed.

Configure JBoss EAP to Use Red Hat Single Sign-On

1. In the EAP_HOME/bin/ directory, create a file called protect-eap-mgmt-services.cli with the
following contents.

Create a realm for both JBoss EAP console and mgmt interface
/subsystem=keycloak/realm=wildfly-infra:add(auth-server-
url=http://localhost:8180/auth,realm-public-key=REALM_PUBLIC_KEY)

Create a secure-deployment in order to protect mgmt interface
/subsystem=keycloak/secure-deployment=wildfly-management:add(realm=wildfly-
infra,resource=wildfly-management,principal-attribute=preferred_username,bearer-
only=true,ssl-required=EXTERNAL)

Protect HTTP mgmt interface with Keycloak adapter

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

52

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#rbac
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=core.service.rhsso

2. In this file, replace REALM_PUBLIC_KEY with the value of the public key. To obtain this value,
log in to the Red Hat Single Sign-On administration console, select the wildfly-infra realm,
navigate to Realm Settings → Keys and click Public key.

3. Start JBoss EAP.

$ EAP_HOME/bin/standalone.sh

IMPORTANT

If you modified the adapter-elytron-install-offline.cli script when installing the
Red Hat Single Sign-On client adapter to use a configuration file other than
standalone.xml, be sure to start the JBoss EAP using that configuration.

4. Execute the protect-eap-mgmt-services.cli script.

$ EAP_HOME/bin/jboss-cli.sh --connect --file=protect-eap-mgmt-services.cli

Now, when you access the JBoss EAP management console at http://localhost:9990/console/, you are
redirected to Red Hat Single Sign-On to log in, and then redirected back to the JBoss EAP
management console upon successful authentication.

1.3. SECURITY AUDITING

Security auditing refers to triggering events, such as writing to a log, in response to an authorization or
authentication attempt. Auditing is configured differently depending on the security system in use.

For instructions on configuring auditing with Elytron, see Elytron Audit Logging.

/core-service=management/management-interface=http-interface:undefine-
attribute(name=security-realm)
/subsystem=elytron/http-authentication-factory=keycloak-mgmt-http-
authentication:add(security-domain=KeycloakDomain,http-server-mechanism-factory=wildfly-
management,mechanism-configurations=[{mechanism-name=KEYCLOAK,mechanism-
realm-configurations=[{realm-name=KeycloakOIDCRealm,realm-mapper=keycloak-oidc-
realm-mapper}]}])
/core-service=management/management-interface=http-interface:write-attribute(name=http-
authentication-factory,value=keycloak-mgmt-http-authentication)
/core-service=management/management-interface=http-interface:write-attribute(name=http-
upgrade, value={enabled=true, sasl-authentication-factory=management-sasl-
authentication})

Enable RBAC where roles are obtained from the identity
/core-service=management/access=authorization:write-attribute(name=provider,value=rbac)
/core-service=management/access=authorization:write-attribute(name=use-identity-
roles,value=true)

Create a secure-server in order to publish the JBoss EAP console configuration via mgmt
interface
/subsystem=keycloak/secure-server=wildfly-console:add(realm=wildfly-infra,resource=wildfly-
console,public-client=true)

reload
reload

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

53

http://localhost:9990/console/

For instructions on configuring auditing with the legacy security system, see Configure Security
Auditing for the Legacy Security Domains.

1.3.1. Elytron Audit Logging

Audit logging for the elytron subsystem enables logging of Elytron authentication and authorization
events within the application server. Audit log entries are stored in either JSON or SIMPLE, human
readable format. By default, audit logging is disabled in Elytron.

You can enable audit logging by configuring any of the following log handlers for Elytron, and then
adding them to the desired security domain:

file audit logging

periodic rotating file audit logging

size rotating file audit logging

syslog audit logging

IMPORTANT

Elytron audit logging is distinct from other audit logging, such as audit logging for the
JBoss EAP management interfaces. For more information on management interface
audit logging options, see the Management Audit Logging section in the JBoss EAP
Configuration Guide.

File Audit Logging
File audit logging stores audit log messages in one specified file in the file system, without dividing them
into multiple files.

An Elytron file audit logger, named local-audit, is defined by default. Once enabled, it will write Elytron
audit logs to EAP_HOME/standalone/log/audit.log on a standalone server, or
EAP_HOME/domain/log/audit.log for a managed domain host.

The attributes of a file audit logger are:

path and relative-to: Defines the location of the log file.

synchronized: Specifies whether every event should be immediately written to disk.

format: Use SIMPLE for human readable text format, or JSON for storing individual events in
JSON.

1. You can use a command similar to the following to create a file audit log.

/subsystem=elytron/file-audit-log=my_audit_log:add(path="my_audit.log",relative-
to="jboss.server.log.dir",format=SIMPLE,synchronized=true)

2. Enable the defined file audit logger by adding it to a security domain.

/subsystem=elytron/security-domain=domain-with-file-logger:write-
attribute(name=security-event-listener, value=my_audit_log)

Periodic Rotating File Audit Logging

Periodic rotating file audit logging automatically rotates audit log files based on a configured schedule. It

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

54

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_audit_logging

Periodic rotating file audit logging automatically rotates audit log files based on a configured schedule. It
has the same basic attributes as the default file audit logger , with the following additional attribute:

suffix: This must be in the java.text.SimpleDateFormat format, for example .yyyy-MM-dd-HH.
The period of the rotation is automatically calculated based on this suffix, and the suffix is
appended to the end of the log file names.

1. You can use a command similar to the following to create a periodic rotating file audit log.

/subsystem=elytron/periodic-rotating-file-audit-
log=my_periodic_audit_log:add(path="my_periodic_audit.log",relative-
to="jboss.server.log.dir",format=SIMPLE,synchronized=false,suffix=".yyyy-MM-dd-HH")

2. Enable the defined periodic rotating file audit logger by adding it to a security domain.

/subsystem=elytron/security-domain=domain-with-periodic-file-logger:write-
attribute(name=security-event-listener, value=my_periodic_audit_log)

Size Rotating File Audit Logging
Size rotating file audit logging automatically rotates audit log files when the log file reaches a configured
file size. It has the same basic attributes as the default file audit logger , with the following additional
attributes:

rotate-size: The maximum size that the log file can reach before being rotated. The default is
2m for 2 megabytes.

max-backup-index: The maximum number of files to backup when rotating.

rotate-on-boot: By default, a new log file is not created on server restart. You can set this to
true to rotate the log on server restart.

suffix: This optionally adds a date suffix to a rotated log. This must be in the
java.text.SimpleDateFormat format, for example .yyyy-MM-dd-HH.

When the log file size exceeds the limit defined by the rotate-size attribute, the suffix .1 is appended to
the end of the current file and a new log file is created. If there are any existing log files, their suffixed
number is incremented by one, for example audit_log.1 is renamed to audit_log.2. This happens until
the maximum number of log files defined by max-backup-index is reached. When the max-backup-
index is exceeded, the file that is over limit, for example audit_log.99, is removed.

1. You can use a command similar to the following to create a size rotating file audit log.

/subsystem=elytron/size-rotating-file-audit-
log=my_size_log:add(path="my_size_audit.log",relative-
to="jboss.server.log.dir",format=SIMPLE,synchronized=false,rotate-size="2m",max-backup-
index=10)

2. Enable the defined size rotating audit logger by adding it to a security domain.

/subsystem=elytron/security-domain=domain-with-size-logger:write-attribute(name=security-
event-listener, value=my_size_log)

Syslog Audit Logging
A syslog handler specifies the parameters by which audit log entries are sent to a syslog server,
specifically the syslog server’s host name and port on which the syslog server is listening. Sending audit

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

55

logging to a syslog server provides more security options than logging to a local file or local syslog
server. Multiple syslog handlers can be defined and be active at the same time.

1. Add a syslog handler.

/subsystem=elytron/syslog-audit-log=syslog-logger:add(host-name=HOST_NAME,
port=PORT, server-address=SERVER_ADDRESS, format=JSON, transport=UDP)

2. Enable the defined syslog audit logger by adding it to a security domain.

/subsystem=elytron/security-domain=domain-with-syslog-logger:write-
attribute(name=security-event-listener, value=syslog-logger)

IMPORTANT

To send logs to syslog server over TLS, you can add the following configuration:

/subsystem=elytron/syslog-audit-log=remote-audit:add(transport=SSL_TCP,server-
address=127.0.0.1,port=9898,host-name=Elytron,ssl-context=audit-ssl)

NOTE

To send security events to more destinations, mainly loggers, the aggregate-security-
event-listener resource is used. This delivers all events to all listeners specified in the
aggregate listener definition.

1.3.1.1. Custom Security Event Listeners for Elytron

You can define a custom event listener to adjust how incoming security events are processed. This
event listener can be used for custom audit logging, or to authenticate users against your internal
identity storage.

1. Create a class that implements the
java.util.function.Consumer<org.wildfly.security.auth.server.event.SecurityEvent>
interface. For example, the following prints a message whenever a user succeeds or fails
authentication.

2. Add the JAR providing the custom event listener as a module to JBoss EAP, as outlined in Add a
Custom Component to Elytron. The following is an example of the management CLI command
that adds a custom event listener as a module to Elytron.

public class MySecurityEventListener implements Consumer<SecurityEvent> {
 public void accept(SecurityEvent securityEvent) {
 if (securityEvent instanceof SecurityAuthenticationSuccessfulEvent) {
 System.err.printf("Authenticated user \"%s\"\n",
securityEvent.getSecurityIdentity().getPrincipal());
 } else if (securityEvent instanceof SecurityAuthenticationFailedEvent) {
 System.err.printf("Failed authentication as user \"%s\"\n",
((SecurityAuthenticationFailedEvent)securityEvent).getPrincipal());
 }
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

56

/subsystem=elytron/custom-security-event-
listener=LISTENER_NAME:add(module=MODULE_NAME, class-name=CLASS_NAME)

IMPORTANT

Using the module management CLI command to add and remove modules is
provided as Technology Preview only. This command is not appropriate for use in
a managed domain or when connecting to the management CLI remotely.
Modules should be added and removed manually in a production environment.
For more information, see the Create a Custom Module Manually and Remove a
Custom Module Manually sections of the JBoss EAP Configuration Guide.

Technology Preview features are not supported with Red Hat production service
level agreements (SLAs), might not be functionally complete, and Red Hat does
not recommend to use them for production. These features provide early access
to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

3. Reference the newly defined listener from the security domain, such as ApplicationDomain.

/subsystem=elytron/security-domain=DOMAIN_NAME:write-attribute(name=security-event-
listener, value=LISTENER_NAME)

4. Reload the server to begin receiving security events from the provided security domain.

reload

1.3.2. Configure Security Auditing for the Legacy Security Domains

The goal of an audit module is to provide a way to monitor the events in the security subsystem. This
monitoring can be done by means of writing to a log file, email notifications, or any other measurable
auditing mechanism.

Auditing uses provider modules. Both included provider modules as well as custom implementations
may be used.

To configure security auditing settings for a security domain, the following steps must be performed
from the management console:

1. Click on the Configuration tab.

2. Navigate to Subsystems → Security (Legacy).

3. Select the security domain to edit and click View.

4. Select the Audit tab and press Add to add a new audit module.

5. Set a name for the module and fill in the Code field with the class name of the provider module.

6. Optionally, add module options by editing the module and adding key/value pairs in the Module
Options field. Press Enter to add a new value and press Backspace to remove an existing value.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

57

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#create_module_manually
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#remove_module_manually
https://access.redhat.com/support/offerings/techpreview

1.4. CONFIGURE ONE-WAY AND TWO-WAY SSL/TLS FOR
APPLICATIONS

1.4.1. Automatic Self-signed Certificate Creation for Applications

When using the legacy security realms, JBoss EAP provides automatic generation of self-signed
certificate for development purposes.

Example: Server Log Showing Self-signed Certificate Creation

15:26:09,031 WARN [org.jboss.as.domain.management.security] (MSC service thread 1-7)
WFLYDM0111: Keystore /path/to/jboss/standalone/configuration/application.keystore not found, it will
be auto generated on first use with a self signed certificate for host localhost
...
15:26:10,076 WARN [org.jboss.as.domain.management.security] (MSC service thread 1-2)
WFLYDM0113: Generated self signed certificate at /path/to/jboss/configuration/application.keystore.
Please note that self signed certificates are not secure, and should only be used for testing purposes.
Do not use this self signed certificate in production.
SHA-1 fingerprint of the generated key is
00:11:22:33:44:55:66:77:88:99:aa:bb:cc:dd:ee:ff:00:11:22:33
SHA-256 fingerprint of the generated key is
00:11:22:33:44:55:66:77:88:99:00:aa:bb:cc:dd:ee:ff:00:11:22:33:44:55:66:77:88:99:aa:bb:cc:dd:ee
...

This certificate is created for testing purposes and is assigned to the HTTPS interface used by
applications. The keystore containing the certificate will be generated if the file does not exist the first
time the HTTPS interface is accessed.

Example: Default ApplicationRealm Using the Self-signed Certificate

Example: Default HTTPS Interface Configuration

NOTE

<security-realm name="ApplicationRealm">
 <server-identities>
 <ssl>
 <keystore path="application.keystore" relative-to="jboss.server.config.dir" keystore-
password="password" alias="server" key-password="password" generate-self-signed-certificate-
host="localhost"/>
 </ssl>
 </server-identities>
 ...
</security-realm>

<subsystem xmlns="urn:jboss:domain:undertow:7.0">
 ...
 <server name="default-server">
 ...
 <https-listener name="https" socket-binding="https" security-realm="ApplicationRealm" enable-
http2="true"/>
 <host name="default-host" alias="localhost">
 ...

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

58

NOTE

If you want to disable the self-signed certificate creation, you will need to remove the
generate-self-signed-certificate-host="localhost" from the server keystore
configuration. The generate-self-signed-certificate-host attribute holds the host name
for which the self-signed certificate should be generated.

WARNING

This self-signed certificate is intended for testing purposes only and is not intended
for use in production environments. For more information on configuring SSL/TLS
for applications with Elytron, see the Enable One-way SSL/TLS for Applications
using the Elytron Subsystem and Enable Two-way SSL/TLS for Applications using
the Elytron Subsystem sections. For more information on configuring SSL/TLS for
applications with legacy security, see the Enable One-way SSL/TLS for
Applications Using Legacy Security Realms and Enable Two-way SSL/TLS for
Applications Using Legacy Security Realms sections.

1.4.2. Using Elytron

1.4.2.1. Enable One-way SSL/TLS for Applications Using the Elytron Subsystem

In JBoss EAP, you can enable one-way SSL/TLS for the for deployed applications using the JBoss EAP
management CLI or the management console.

In the management CLI, one-way SSL/TLS can be enabled in two ways:

Using security command.

Using elytron subsystem commands.

Using a Security Command
The security enable-ssl-http-server command can be used to enable one-way SSL/TLS for deployed
applications.

Example: Wizard Usage



security enable-ssl-http-server --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default default-server.keystore): keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown correct y/n
[y]?
Validity (in days, blank default): 365

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

59

NOTE

Once the command is executed, the management CLI will reload the server.

One-way SSL/TLS is now enabled for applications.

Using Elytron Subsystem Commands
In JBoss EAP, you can use the elytron subsystem, along with the undertow subsystem, to enable one-
way SSL/TLS for deployed applications.

1. Configure a key-store in JBoss EAP.

/subsystem=elytron/key-store=httpsKS:add(path=/path/to/keystore.jks, credential-reference=
{clear-text=secret}, type=JKS)

If the keystore file does not exist yet, the following commands can be used to generate an
example key pair:

/subsystem=elytron/key-store=httpsKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=1024,validity=365,credential-reference={clear-
text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=httpsKS:store()

2. Configure a key-manager that references your key-store.

/subsystem=elytron/key-manager=httpsKM:add(key-store=httpsKS, algorithm="SunX509",
credential-reference={clear-text=secret})

IMPORTANT

You need to know what key manager algorithms are provided by the JDK you are
using. For example, a JDK that uses SunJSSE provides the PKIX and SunX509
algorithms.

The example command above uses SunX509 for the key manager algorithm.

3. Configure a server-ssl-context that references your key-manager.

Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): n

SSL options:
key store file: keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
password: secret
validity: 365
alias: localhost
Server keystore file keystore.jks, certificate file keystore.pem and keystore.csr file
will be generated in server configuration directory.
Do you confirm y/n: y

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

60

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

/subsystem=elytron/server-ssl-context=httpsSSC:add(key-manager=httpsKM, protocols=
["TLSv1.2"])

IMPORTANT

You need to determine what SSL/TLS protocols you want to support. The
example command above uses TLSv1.2. You can use the cipher-suite-filter
argument to specify which cipher suites are allowed, and the use-cipher-suites-
order argument to honor server cipher suite order. The use-cipher-suites-order
attribute by default is set to true. This differs from the legacy security
subsystem behavior, which defaults to honoring client cipher suite order.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

4. Check and see if the https-listener is configured to use a legacy security realm for its SSL
configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-
attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the ApplicationRealm
legacy security realm for its SSL configuration. Undertow cannot reference both a legacy
security realm and an ssl-context in Elytron at the same time so you must remove the
reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to the
security realm in the next step.

5. Remove the reference to the legacy security realm, and update the https-listener to use the
ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or ssl-context
configured. When changing between the two configurations, the commands must
be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-



CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

61

attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=httpsSSC)
run-batch

6. Reload the server.

reload

One-way SSL/TLS is now enabled for applications.

NOTE

You can disable one-way SSL/TLS for deployed applications using the disable-ssl-http-
server command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

Using Management Console
You can enable SSL for applications by configuring the undertow subsystem using an SSL wizard in the
management console.

To access the wizard:

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Web (Undertow) → Server.

3. Click the name of the server to configure.

4. Click View.

5. Navigate to Listener → HTTPS Listener.

6. Select the listener for which SSL is to be enabled, and click Enable SSL to launch the wizard.
The wizard guides you through the following scenarios for enabling SSL:

You want to create a certificate store and generate a self-signed certificate.

You already have the certificate store on the file system, but no keystore configuration.

You already have a keystore configuration that uses a valid certificate store.

Using the wizard, you can optionally create a truststore for mutual authentication.

1.4.2.2. Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

1. Obtain or generate your client keystores:

security disable-ssl-http-server

$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore
client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

62

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

2. Export the client certificate:

3. Enable two-way SSL/TLS for deployed applications.
In JBoss EAP, two-way SSL/TLS for deployed applications can be enabled either by using a
security command or by using the elytron subsystem commands.

a. Using a security command.
The security enable-ssl-http-server command can be used to enable two-way SSL/TLS
for the deployed applications.

NOTE

The following example does not validate the certificate as no chain of trust
exists. If you are using a trusted certificate, then the client certificate can be
validated without issue.

Example: Wizard Usage

keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass
secret -file /path/to/client.cer

security enable-ssl-http-server --interactive

Please provide required pieces of information to enable SSL:
Key-store file name (default default-server.keystore): server.keystore.jks
Password (blank generated): secret
What is your first and last name? [Unknown]: localhost
What is the name of your organizational unit? [Unknown]:
What is the name of your organization? [Unknown]:
What is the name of your City or Locality? [Unknown]:
What is the name of your State or Province? [Unknown]:
What is the two-letter country code for this unit? [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct y/n [y]?
Validity (in days, blank default): 365
Alias (blank generated): localhost
Enable SSL Mutual Authentication y/n (blank n): y
Client certificate (path to pem file): /path/to/client.cer
Validate certificate y/n (blank y): n
Trust-store file name (management.truststore): server.truststore.jks
Password (blank generated): secret

SSL options:
key store file: server.keystore.jks
distinguished name: CN=localhost, OU=Unknown, O=Unknown, L=Unknown,
ST=Unknown, C=Unknown
password: secret
validity: 365
alias: localhost
client certificate: /path/to/client.cer
trust store file: server.trustore.jks
trust store password: secret
Server keystore file server.keystore.jks, certificate file server.pem and server.csr file will

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

63

NOTE

Once the command is executed, the management CLI will reload the server.

To complete the two-way SSL/TLS authentication, you need to import the
server certificate into the client truststore and configure your client to
present the client certificate.

b. Using elytron subsystem commands.
In JBoss EAP, you can also use the elytron subsystem, along with the undertow subsystem,
to enable two-way SSL/TLS for deployed applications.

i. Obtain or generate your keystore.
Before enabling two-way SSL/TLS in JBoss EAP, you must obtain or generate the
keystores, truststores and certificates you plan on using.

A. Create a server keystore:

/subsystem=elytron/key-
store=twoWayKS:add(path=/PATH/TO/server.keystore.jks,credential-reference=
{clear-text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayKS:generate-key-
pair(alias=localhost,algorithm=RSA,key-size=1024,validity=365,credential-
reference={clear-text=secret},distinguished-name="CN=localhost")

/subsystem=elytron/key-store=twoWayKS:store()

NOTE

The command above uses an absolute path to the keystore.
Alternatively you can use the relative-to attribute to specify the
base directory variable and path specify a relative path.

/subsystem=elytron/key-
store=twoWayKS:add(path=server.keystore.jks,relative-
to=jboss.server.config.dir,credential-reference={clear-
text=secret},type=JKS)

B. Export the server certificate:

/subsystem=elytron/key-store=twoWayKS:export-
certificate(alias=localhost,path=/path/to/server.cer,pem=true)

ii. Create a keystore for the server truststore and import the client certificate into the
server truststore.

NOTE

be generated in server configuration directory.
Server truststore file server.trustore.jks will be generated in server configuration
directory.
Do you confirm y/n: y

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

64

NOTE

The following example does not validate the certificate as no chain of
trust exists. If you are using a trusted certificate, then the client
certificate can be validated without issue.

/subsystem=elytron/key-
store=twoWayTS:add(path=/path/to/server.truststore.jks,credential-reference={clear-
text=secret},type=JKS)

/subsystem=elytron/key-store=twoWayTS:import-
certificate(alias=client,path=/path/to/client.cer,credential-reference={clear-
text=secret},trust-cacerts=true,validate=false)

/subsystem=elytron/key-store=twoWayTS:store()

iii. Configure a key-manager that references your keystore key-store.

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,
algorithm="SunX509", credential-reference={clear-text=secret})

IMPORTANT

You need to know what key manager algorithms are provided by the JDK
you are using. For example, a JDK that uses SunJSSE provides the PKIX
and SunX509 algorithms.

The example command below uses SunX509 for the key manager
algorithm.

iv. Configure a trust-manager that references your truststore key-store.

/subsystem=elytron/trust-manager=twoWayTM:add(key-store=twoWayTS,
algorithm="SunX509")

IMPORTANT

You need to know what key manager algorithms are provided by the JDK
you are using. For example, a JDK that uses SunJSSE provides the PKIX
and SunX509 algorithms.

The example command above uses SunX509 for the key manager
algorithm.

v. Configure a server-ssl-context that references your key-manager, trust-manager,
and enables client authentication:

/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-manager=twoWayKM,
protocols=["TLSv1.2"], trust-manager=twoWayTM, need-client-auth=true)

IMPORTANT

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

65

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

IMPORTANT

You need to determine what SSL/TLS protocols you want to support.
The example command above uses TLSv1.2. You can use the cipher-
suite-filter argument to specify which cipher suites are allowed, and the
use-cipher-suites-order argument to honor server cipher suite order.
The use-cipher-suites-order attribute by default is set to true. This
differs from the legacy security subsystem behavior, which defaults to
honoring client cipher suite order.

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

vi. Check and see if the https-listener is configured to use a legacy security realm for its
SSL configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-
attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the
ApplicationRealm legacy security realm for its SSL configuration. Undertow cannot
reference both a legacy security realm and an ssl-context in the elytron subsystem at
the same time. So you must remove the reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to
the security realm in the next step.

vii. Remove the reference to the legacy security realm, and update the https-listener to
use the ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or ssl-context
configured. When changing between the two configurations, the
commands must be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)



Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

66

/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=ssl-context, value=twoWaySSC)
run-batch

viii. Reload the server.

reload

NOTE

To complete the two-way SSL/TLS authentication, you need to import
the server certificate into the client truststore and configure your client
to present the client certificate.

$ keytool -importcert -keystore client.truststore.jks -storepass secret -
alias localhost -trustcacerts -file /path/to/server.cer

ix. Configure your client to use the client certificate.
You need to configure your client to present the trusted client certificate to the server
to complete the two-way SSL/TLS authentication. For example, if using a browser, you
need to import the trusted certificate into the browser’s trust store.

This procedure forces a two-way SSL/TLS but it does not change the original
authentication method of the application.

If you want to change the original authentication method, see Configure Authentication
with Certificates in How to Configure Identity Management for JBoss EAP.

Two-way SSL/TLS is now enabled for applications.

NOTE

You can disable two-way SSL/TLS for deployed applications using the disable-ssl-http-
server command.

This command does not delete the Elytron resources. It configures the system to use the
ApplicationRealm legacy security realm for its SSL configuration.

1.4.3. Using Legacy Security Realms

IMPORTANT

As a prerequisite, an SSL/TLS encryption key and certificate should be created and
placed in an accessible directory. Additionally, relevant information, such as keystore
aliases and passwords, desired cipher suites, should also be accessible. For examples on
generating SSL/TLS Keys and Certificates, see the first two steps in the Setting up Two-
way SSL/TLS for the Management Interfaces section. For more information about the
HTTPS listener, including cipher suites, see the HTTPS Listener Reference section.

1.4.3.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms

security disable-ssl-http-server

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

67

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#configure_authentication_with_certificates

This example assumes that the keystore, identity.jks, has been copied to the server configuration
directory and configured with the given properties. Administrators should substitute their own values for
the example ones.

NOTE

The management CLI commands shown assume that you are running a JBoss EAP
standalone server. For more details on using the management CLI for a JBoss EAP
managed domain, see the JBoss EAP Management CLI Guide .

1. Add and configure an HTTPS security realm first. Once the HTTPS security realm has been
configured, configure an https-listener in the undertow subsystem that references the security
realm:

batch

/core-service=management/security-realm=HTTPSRealm:add

/core-service=management/security-realm=HTTPSRealm/server-identity=ssl:add(keystore-
path=identity.jks, keystore-relative-to=jboss.server.config.dir, keystore-password=password1,
alias=appserver)

/subsystem=undertow/server=default-server/https-listener=https:write-
attribute(name=security-realm, value=HTTPSRealm)

run-batch

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

2. Restart the JBoss EAP instance for the changes to take effect.

1.4.3.2. Enable Two-way SSL/TLS for Applications Using Legacy Security Realms

Setting up two-way SSL/TLS for applications follows many of the same procedures outlined in Setting
up Two-way SSL/TLS for the Management Interfaces. To set up two-way SSL/TLS for applications, you
need to do the following:

1. Generate the stores for both the client and server

2. Export the certificates for both the client and server

3. Import the certificates into the opposing truststores

4. Define a security realm, for example CertificateRealm, on the server that uses the server’s
keystore and truststore

5. Update the undertow subsystem to use the security realm and require client verification



Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

68

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/management_cli_guide/

The first four steps are covered in Setting up Two-way SSL/TLS for the Management Interfaces .

IMPORTANT

If the server has not been reloaded since the new security realm has been added, you
must reload the server before performing the next step.

Update the Undertow Subsystem
Once the keystores, certificates, truststores, and security realms have been created and configured, you
need to add an HTTPS listener to the undertow subsystem, use the security realm you created, and
require client verification:

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=security-realm,
value=CertificateRealm)

/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=verify-client,
value=REQUIRED)

IMPORTANT

You must reload the server for these changes to take effect.

IMPORTANT

Any client connecting to a JBoss EAP instance with two-way SSL/TLS enabled for
applications must have access to a client certificate or keystore, in other words a client
keystore whose certificate is included in the server’s truststore. If the client is using a
browser to connect to the JBoss EAP instance, you need to import that certificate or
keystore into the browser’s certificate manager.

NOTE

More details on using certificate-based authentication in applications, in addition to two-
way SSL/TLS with applications, can be found in the Configuring a Security Domain to
Use Certificate-based Authentication section of the JBoss EAP How to Configure
Identity Management Guide.

1.5. ENABLE HTTP AUTHENTICATION FOR APPLICATIONS USING THE
CLI SECURITY COMMAND

In JBoss EAP, HTTP authentication, using an elytron HTTP authentication factory, can be enabled for
the undertow security domain with the security enable-http-auth-http-server command. By default this
command associates the application HTTP factory to the specified security domain.

Example: Enable HTTP Authentication on the Undertow Security Domain

security enable-http-auth-http-server --security-domain=SECURITY_DOMAIN

Server reloaded.
Command success.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

69

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#cert_based_auth_security_domain

Authentication configured for security domain SECURITY_DOMAIN
http authentication-factory=application-http-authentication
security-domain=SECURITY_DOMAIN

NOTE

Once the command is executed, the management CLI will reload the server and
reconnect to it.

If a HTTP factory already exists, then the factory is updated to use the mechanism defined by the --
mechanism argument.

For a list of arguments, see Authorization Security Arguments.

Disable HTTP Authentication for the Management Interfaces
To remove the active HTTP authentication factory use the following command.

security disable-http-auth-http-server --security-domain=SECURITY_DOMAIN

Alternatively, you can use the following command to remove specific mechanisms from the active SASL
authentication factory.

security disable-http-auth-http-server --mechanism=MECHANISM --security-
domain=SECURITY_DOMAIN

1.6. SASL AUTHENTICATION MECHANISMS

Simple Authentication and Security Layer (SASL) authentication mechanisms are used for defining the
mechanisms for authenticating connections to a JBoss EAP server using the elytron subsystem, and for
clients connecting to servers. Clients can be other JBoss EAP instances, or Elytron Client. SASL
authentication mechanisms in JBoss EAP are also significantly used in Elytron integration with the
remoting subsystem.

1.6.1. Choosing SASL Authentication Mechanisms

NOTE

Although JBoss EAP and Elytron Client work with a variety of SASL authentication
mechanisms, you must ensure that the mechanisms you use are supported. See this list
for the support levels for SASL authentication mechanisms.

The authentication mechanisms you use depends on your environment and desired authentication
method. The following list summarizes the use of some of the supported SASL authentication
mechanisms:

ANONYMOUS

Unauthenticated guest access.

DIGEST-MD5

Uses HTTP digest authentication as a SASL mechanism.

EXTERNAL

Uses authentication credentials that are implied in the context of the request. For example, IPsec or

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

70

https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer

Uses authentication credentials that are implied in the context of the request. For example, IPsec or
TLS authentication.

Mechanisms beginning with GS

Authentication using Kerberos.

JBOSS-LOCAL-USER

Provides authentication by testing that the client has the same file access as the local user that is
running the JBoss EAP server. This is useful for other JBoss EAP instances running on the same
machine.

OAUTHBEARER

Uses authentication provided by OAuth as a SASL mechanism.

PLAIN

Plain text username and password authentication.

Mechanisms beginning with SCRAM

Salted Challenge Response Authentication Mechanism (SCRAM) that uses a specified hashing
function.

Mechanisms ending with -PLUS

Indicates a channel binding variant of a particular authentication mechanism. You should use these
variants when the underlying connection uses SSL/TLS.

For more information on individual SASL authentication mechanisms, see the IANA SASL mechanism
list and individual mechanism memos.

1.6.2. Configuring SASL Authentication Mechanisms on the Server Side

Configuring SASL authentication mechanisms on the server side is done using SASL authentication
factories.

There are two levels of configuration required:

A sasl-authentication-factory, where you specify authentication mechanisms.

A configurable-sasl-server-factory that aggregates one or more of sasl-authentication-
factory, and configures mechanism properties as well as optionally applying filters to enable or
disable certain authentication mechanisms.

The following example demonstrates creating a new configurable-sasl-server-factory, and a sasl-
authentication-factory that uses DIGEST-MD5 as a SASL authentication mechanism for application
clients.

/subsystem=elytron/configurable-sasl-server-factory=mySASLServerFactory:add(sasl-server-
factory=elytron)

/subsystem=elytron/sasl-authentication-factory=mySASLAuthFactory:add(sasl-server-
factory=mySASLServerFactory,security-domain=ApplicationDomain,mechanism-configurations=
[{mechanism-name=DIGEST-MD5,mechanism-realm-configurations=[{realm-
name=ApplicationRealm}]}])

1.6.3. Specifying SASL Authentication Mechanisms on the Client Side

SASL authentication mechanisms used by a client are specified using a sasl-mechanism-selector. You

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

71

https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xml

SASL authentication mechanisms used by a client are specified using a sasl-mechanism-selector. You
can specify any supported SASL authentication mechanisms that are exposed by the server that the
client is connecting to.

A sasl-mechanism-selector is defined in Elytron configurations where authentication is configured:

In the elytron subsystem, this is an attribute of an authentication-configuration. For example:

/subsystem=elytron/authentication-configuration=myAuthConfig:write-attribute(name=sasl-
mechanism-selector,value="DIGEST-MD5")

An example of using an authentication-configuration with a sasl-mechanism-selector can be
seen in Configuring SSL/TLS Between Domain and Host Controllers Using Elytron .

For Elytron Client, it is specified under the configuration element of authentication-
configurations in the client configuration file, usually named wildfly-config.xml. For example:

See How to Configure Identity Management for more information on configuring client authentication
with Elytron Client.

sasl-mechanism-selector Grammar
The selector string for sasl-mechanism-selector has a specific grammar.

In a simple form, individual mechanisms are specified by listing their names in order, separated by a
spaces. For example, to specify DIGEST-MD5, SCRAM-SHA-1, and SCRAM-SHA-256 as allowed
authentication mechanisms, use the following string: DIGEST-MD5 SCRAM-SHA-1 SCRAM-SHA-256.

More advanced usage of the grammar can use the following special tokens:

#ALL: All mechanisms.

#FAMILY(NAME): Mechanisms belonging to the specified mechanism family. For example, the
family could be DIGEST, EAP, GS2, SCRAM, or IEC-ISO-9798.

#PLUS: Mechanisms that use channel binding. For example, SCRAM-SHA- XXX-PLUS or
GS2-XXX-PLUS.

#MUTUAL: Mechanisms that authenticate the server in some way, for example making the
server prove that the server knows the password. #MUTUAL includes families such as
#FAMILY(SCRAM) and #FAMILY(GS2).

#HASH(ALGORITHM): Mechanisms that use the specified hash algorithm. For example, the

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <authentication-rules>
 <rule use-configuration="default" />
 </authentication-rules>
 <authentication-configurations>
 <configuration name="default">
 <sasl-mechanism-selector selector="#ALL" />
 ...
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

72

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_client_authentication

#HASH(ALGORITHM): Mechanisms that use the specified hash algorithm. For example, the
algorithm could be MD5, SHA-1, SHA-256, SHA-384, or SHA-512.

The above tokens and names can also be used with the following operations and predicates:

-: Forbids

!: Inverts

&&: And

||: Or

==: Equals

?: If

#TLS: Is true when TLS is active, otherwise false.

Below are some examples of sasl-mechanism-selector strings and their meaning:

#TLS && !#MUTUAL: When TLS is active, all mechanisms without mutual authentication.

#ALL -ANONYMOUS: All mechanisms, except for ANONYMOUS.

SCRAM-SHA-1 SCRAM-SHA-256: Adds those two mechanisms in that order.

(SCRAM-SHA-1 || SCRAM-SHA-256): Adds the two mechanisms in the order that the provider
or server presents them.

!#HASH(MD5): Any mechanism that does not use the MD5 hashing algorithm.

#FAMILY(DIGEST): Any digest mechanism.

1.6.4. Configuring SASL Authentication Mechanism Properties

You can configure authentication mechanism properties on both the server side and on the client side.

On the server side, you define authentication mechanism properties in the configurable-sasl-
server-factory. The following example defines the com.sun.security.sasl.digest.utf8 property
with a value of false.

/subsystem=elytron/configurable-sasl-server-factory=mySASLServerFactory:map-
put(name=properties,key=com.sun.security.sasl.digest.utf8,value=false)

On the client side, you define authentication mechanisms properties in the client’s
authentication configuration:

In the elytron subsystem, define the authentication mechanism properties in your
authentication-configuration. The following example defines the wildfly.sasl.local-
user.quiet-auth property with a value of true.

/subsystem=elytron/authentication-configuration=myAuthConfig:map-
put(name=mechanism-properties,key=wildfly.sasl.local-user.quiet-auth,value=true)

For Elytron Client, authentication mechanism properties are specified under the

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

73

For Elytron Client, authentication mechanism properties are specified under the
configuration element of authentication-configurations in the client configuration file,
usually named wildfly-config.xml. For example:

You can see a list of standard Java SASL authentication mechanism properties in the Java
documentation. Other JBoss EAP-specific SASL authentication mechanism properties are listed in the
Authentication Mechanisms Reference .

1.7. ELYTRON INTEGRATION WITH THE MODCLUSTER SUBSYSTEM

One of the security capabilities exposed by elytron subsystem is a client ssl-context that can be used
to configure the modcluster subsystem to communicate with a load balancer using SSL/TLS.

When protecting the communication between the application server and the load balancer, you need to
define a client ssl-context in order to:

Define a truststore holding the certificate chain that will be used to validate load balancer’s
certificate.

Define a trust manager to perform validations against the load balancer’s certificate.

1.7.1. Defining a Client SSL Context and Configuring ModCluster Subsystem

The following procedure requires that a truststore and trust manager be configured. For information on
creating these see Create an Elytron Truststore and Create an Elytron Trust Manager .

1. Create the client SSL context.
This SSL context is going to be used by the modcluster subsystem when connecting to the load
balancer using SSL/TLS:

/subsystem=elytron/client-ssl-context=modcluster-client-ssl-context:add(trust-
manager=default-trust-manager)

2. Reference the newly created client SSL context using one of the following options.

Configure the modcluster subsystem by setting the ssl-context.

/subsystem=modcluster/mod-cluster-config=configuration:write-attribute(name=ssl-
context, value=modcluster-client-ssl-context)

Configure the undertow subsystem by defining the ssl-context attribute of the mod-
cluster filter.

...
<authentication-configurations>
 <configuration name="default">
 <sasl-mechanism-selector selector="#ALL" />
 <set-mechanism-properties>
 <property key="wildfly.sasl.local-user.quiet-auth" value="true" />
 </set-mechanism-properties>
 ...
 </configuration>
</authentication-configurations>
...

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

74

https://docs.oracle.com/javase/8/docs/api/javax/security/sasl/Sasl.html#field.summary

/subsystem=undertow/configuration=filter/mod-cluster=modcluster:write-
attribute(name=ssl-context,value=modcluster-client-ssl-context)

3. Reload the server.

reload

For configuring the modcluster subsystem and using two-way authentication, along with the trust
manager, the key manager also needs to be configured.

1. Create the keystore.

/subsystem=elytron/key-store=twoWayKS:add(path=/path/to/client.keystore.jks, credential-
reference={clear-text=secret},type=JKS)

2. Configure the key manager.

/subsystem=elytron/key-manager=twoWayKM:add(key-store=twoWayKS,
algorithm="SunX509", credential-reference={clear-text=secret})

3. Create the client SSL context.

/subsystem=elytron/client-ssl-context=modcluster-client-ssl-context:add(trust-
manager=default-trust-manager, key-manager=twoWayKM)

NOTE

If you already have an existing client SSL context, you can add the key-manager
to it as follows:

/subsystem=elytron/client-ssl-context=modcluster-client-ssl-context:write-
attribute(name=key-manager, value=twoWayKM)

4. Reload the server.

reload

1.8. ELYTRON INTEGRATION WITH THE JGROUPS SUBSYSTEM

Components in the elytron subsystem may be referenced when defining authorization or encryption
protocols in the jgroups subsystem. Full instructions on configuring these protocols are found in the
Securing a Cluster section of the Configuration Guide.

1.9. ELYTRON INTEGRATION WITH THE REMOTING SUBSYSTEM

1.9.1. Elytron Integration with Remoting Connectors

A remoting connector is specified by a SASL authentication factory, a socket binding, and an optional
SSL context. In particular, the attributes for a connector are as follows:

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

75

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#securing_cluster

sasl-authentication-factory

A reference to the SASL authentication factory to use for authenticating requests to this connector.
For more information on creating this factory, see Create an Elytron Authentication Factory .

socket-binding

A reference to the socket binding, detailing the interface and port where the connector should listen
for incoming requests.

ssl-context

An optional reference to the server-side SSL Context to use for this connector. The SSL Context
contains the server key manager and trust manager to be used, and should be defined in instances
where SSL is desired.

For example, a connector can be added as follows, where SASL_FACTORY_NAME is an already defined
authentication factory and SOCKET_BINDING_NAME is an existing socket binding.

/subsystem=remoting/connector=CONNECTOR_NAME:add(sasl-authentication-
factory=SASL_FACTORY_NAME,socket-binding=SOCKET_BINDING_NAME)

If SSL is desired, a preconfigured server-ssl-context may be referenced using the ssl-context
attribute, as seen below.

/subsystem=remoting/connector=CONNECTOR_NAME:add(sasl-authentication-
factory=SASL_FACTORY_NAME,socket-binding=SOCKET_BINDING_NAME,ssl-
context=SSL_CONTEXT_NAME)

Enable One-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
Before enabling one-way SSL/TLS in JBoss EAP, you must configure a key-store, key-manager, and a
server-ssl-context that references the defined key-manager.

The following SASL mechanisms support channel binding to external secure channels, such as SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Create a socket-binding for the connector. The following command defines the
oneWayBinding binding that listens on port 11199.

/socket-binding-group=standard-sockets/socket-binding=oneWayBinding:add(port=11199)

2. Create a connector that references the SASL authentication factory, the previously created
socket binding, and the SSL context.

/subsystem=remoting/connector=oneWayConnector:add(sasl-authentication-
factory=SASL_FACTORY,socket-binding=oneWayBinding,ssl-context=SSL_CONTEXT)

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

76

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

3. Configure the client to trust the server certificate. A generic example client is found at Elytron
Client Side One Way Example. This example configures an ssl-context using the client trust-
store.

Enable Two-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
Before enabling two-way SSL/TLS in JBoss EAP, you must configure a separate key-store components
for the client and server certificates, a key-manager for the server key-store, a trust-manager for the
server trust-store, and a server-ssl-context that references the defined key-manager and trust-
manager.

The following SASL mechanisms support channel binding to external secure channels, such as SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Create a socket-binding for the connector. The following command defines the
twoWayBinding binding that listens on port 11199.

/socket-binding-group=standard-sockets/socket-binding=twoWayBinding:add(port=11199)

2. Create a connector that references the SASL authentication factory, the previously created
socket binding, and the SSL context.

/subsystem=remoting/connector=twoWayConnector:add(sasl-authentication-
factory=SASL_FACTORY,socket-binding=twoWayBinding,ssl-context=SSL_CONTEXT)

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss
EAP will use the SSL/TLS configuration provided by ssl-context.

3. Configure your client to trust the server certificate, and to present its certificate to the server.
You need to configure your client to present the trusted client certificate to the server to
complete the two-way SSL/TLS authentication. For example, if using a browser, you need to
import the trusted certificate into the browser’s truststore. A generic example client is found at
Elytron Client Side Two Way Example . This example configures an ssl-context using the client
trust-store and key-store.

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

77

Two-way SSL/TLS is now enabled on the remoting connector.

1.9.2. Elytron Integration with Remoting HTTP Connectors

A remote HTTP connection is specified by referencing a connector in the undertow system and a SASL
authentication factory defined in the elytron subsystem. The HTTP connector provides the
configuration for the HTTP upgrade-based remoting connector, and connects to an HTTP listener
specified by the connector-ref attribute.

The attributes for a connector are as follows:

connector-ref

A reference to a predefined undertow listener.

sasl-authentication-factory

A reference to the SASL authentication factory to use for authenticating requests to this connector.
For more information on creating this factory, see Create an Elytron Authentication Factory .

For example, a http-connector can be added as follows, where CONNECTOR_NAME references the
undertow listener, and SASL_FACTORY_NAME is an already defined authentication factory in the
elytron subsystem.

/subsystem=remoting/http-connector=HTTP_CONNECTOR_NAME:add(connector-
ref=CONNECTOR_NAME,sasl-authentication-factory=SASL_FACTORY_NAME)

Enable One-Way SSL on the Remoting HTTP Connector
Before enabling one-way SSL/TLS in JBoss EAP, you must configure a key-store, key-manager, and a
server-ssl-context that references the defined key-manager.

The following SASL mechanisms support channel binding to external secure channels, such as SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Check whether the https-listener is configured to use a legacy security realm for its SSL
configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-
attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the ApplicationRealm

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

78

legacy security realm for its SSL configuration. Undertow cannot reference both a legacy
security realm and an ssl-context in Elytron at the same time so you must remove the
reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to the
security realm in the next step.

2. Remove the reference to the legacy security realm, and update the https-listener to use the
ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or ssl-context
configured. When changing between the two configurations, the commands must
be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=SERVER_SSL_CONTEXT)
run-batch

3. Create an HTTP connector that references the HTTPS listener and the SASL authentication
factory.

/subsystem=remoting/http-connector=ssl-http-connector:add(connector-ref=https,sasl-
authentication-factory=SASL_FACTORY)

4. Reload the server.

reload

5. Configure the client to trust the server certificate. For example, if using a browser, you need to
import the trusted certificate into the browser’s truststore.

Enable Two-way SSL/TLS on the Remoting HTTP Connectors
Before enabling two-way SSL/TLS in JBoss EAP, you must configure separate key-store components
for the client and server certificates, a key-manager for the server key-store, a trust-manager for the
server trust-store, and a server-ssl-context that references the defined key-manager and trust-
manager.

The following SASL mechanisms support channel binding to external secure channels, such as SSL/TLS:

GS2-KRB5-PLUS

SCRAM-SHA-1-PLUS

SCRAM-SHA-256-PLUS

SCRAM-SHA-384-PLUS

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

79

SCRAM-SHA-512-PLUS

To use any of the above mechanisms, a custom SASL factory can be configured, or one of the
predefined SASL authentication factories can be modified to offer any of these mechanisms. A SASL
mechanism selector can be used on the client to specify the appropriate SASL mechanism.

1. Check whether the https-listener is configured to use a legacy security realm for its SSL
configuration.

/subsystem=undertow/server=default-server/https-listener=https:read-
attribute(name=security-realm)
{
 "outcome" => "success",
 "result" => "ApplicationRealm"
}

The above command shows that the https-listener is configured to use the ApplicationRealm
legacy security realm for its SSL configuration. Undertow cannot reference both a legacy
security realm and an ssl-context in Elytron at the same time so you must remove the
reference to the legacy security realm.

NOTE

If the result is undefined, you do not need to remove the reference to the
security realm in the next step.

2. Remove the reference to the legacy security realm, and update the https-listener to use the
ssl-context from Elytron.

NOTE

https-listener must always have either a security-realm or ssl-context
configured. When changing between the two configurations, the commands must
be executed as a single batch, as shown below.

batch
/subsystem=undertow/server=default-server/https-listener=https:undefine-
attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-listener=https:write-attribute(name=ssl-
context, value=SERVER_SSL_CONTEXT)
run-batch

3. Create an HTTP connector that references the HTTPS listener and the SASL authentication
factory.

/subsystem=remoting/http-connector=ssl-http-connector:add(connector-ref=https,sasl-
authentication-factory=SASL_FACTORY)

4. Reload the server.

reload

5. Configure your client to trust the server certificate, and to present its certificate to the server.

You need to configure your client to present the trusted client certificate to the server to

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

80

You need to configure your client to present the trusted client certificate to the server to
complete the two-way SSL/TLS authentication. For example, if using a browser, you need to
import the trusted certificate into the browser’s truststore.

Two-way SSL/TLS is now enabled on the remoting HTTP connector.

IMPORTANT

In cases where you have both a security-realm and ssl-context defined, JBoss EAP will
use the SSL/TLS configuration provided by ssl-context.

1.9.3. Elytron Integration with Remoting Outbound Connectors

A remote outbound connection is specified by an outbound socket binding and an authentication
context. The authentication context provides all of the security information that is needed for the
connection. In particular, the attributes for a remote-outbound-connection are as follows:

outbound-socket-binding-ref - The name of the outbound socket binding, which is used to
determine the destination address and port for the connection.

authentication-context - A reference to the authentication context, which contains the
authentication configuration and the defined SSL context, if one exists, required for the
connection. For information on defining an authentication context, see Creating an
Authentication Context.

For example, a remote-outbound-connection can be added as follows, where
OUTBOUND_SOCKET_BINDING_NAME is an already defined outbound-socket-binding and
AUTHENTICATION_CONTEXT_NAME is an authentication-context that has already been defined in the
elytron subsystem configuration.

/subsystem=remoting/remote-outbound-
connection=OUTBOUND_CONNECTION_NAME:add(authentication-
context=AUTHENTICATION_CONTEXT_NAME, outbound-socket-binding-
ref=OUTBOUND_SOCKET_BINDING_NAME)

1.10. SECURING A MANAGED DOMAIN

In addition to securing the management interfaces, you can also secure communication between JBoss
EAP instances in a managed domain.

For information on concepts and general configuration for the managed domain operating mode, see
the Domain Management section of the JBoss EAP Configuration Guide.

1.10.1. Configure Password Authentication Between Slaves and the Domain
Controller Using Elytron

1. Add a user on the master domain controller.
A user needs to be added on the master domain controller for the slave controller to use for
authentication. If you are using the default file based user and group authentication mechanism,
this can be done by running EAP_HOME/bin/adduser.sh. Add the username, password and
other configurations when prompted.

The add-user utility can be used to manage both the users in the ManagementRealm and the
users in the ApplicationRealm.

NOTE

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

81

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#domain_management

NOTE

The server caches the contents of the properties files in memory. However, the
server does check the modified time of the properties files on each
authentication request and reloads if the time has been updated. This means that
all changes made by the add-user utility are immediately applied to any running
server.

The slave controller attempts to authenticate using the HTTP interface. If the HTTP interface
has been secured with the ManagementRealm Elytron security realm, then you would need to
add a user to ManagementRealm for the slave controller to use.

NOTE

The default name of the realm for management users is ManagementRealm.
When the add-user utility prompts for the realm name, just accept the default
unless you have switched to a different realm.

The following example assumes the user slave with the password password1! has been added
to ManagementRealm.

2. Add an authentication-configuration to the slave controller.

/host=slave/subsystem=elytron/authentication-configuration=slave:add(authentication-
name=slave, credential-reference={clear-text=password1!})

3. Add an authentication-context to the slave controller.

/host=slave/subsystem=elytron/authentication-context=slave-context:add(match-rules=
[{authentication-configuration=slave}])

4. Specify the domain controller location and authentication-context in the slave controller.

<domain-controller>
 <remote protocol="remote" host="localhost" port="9990" authentication-context="slave-
context"/>
</domain-controller>

1.10.2. Configure Password Authentication Between Slaves and the Domain
Controller Using Legacy Core Management Authentication

When configuring a managed domain, by default, the master domain controller is configured to require
authentication for each slave controller that connects to it. To configure slave controllers with the
proper credentials, you must do the following:

1. Add a user to the master domain controller
You need to add a user to the master domain controller using the add-user script. Specifically,
you will need to ensure that the user is added to the same realm the master uses to secure its
management interface, which by default is ManagementRealm. You also need to ensure you
answer yes to the Is this new user going to be used for one AS process to connect to another AS
process? question.

IMPORTANT

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

82

IMPORTANT

After adding the user, the script will output a <secret> element, which will be used
in the next step. You must keep this value for use in the next step.

Example: Adding a Slave User

$ EAP_HOME/bin/add-user.sh

What type of user do you wish to add?
 a) Management User (mgmt-users.properties)
 b) Application User (application-users.properties)
(a): a

Enter the details of the new user to add.
Using realm 'ManagementRealm' as discovered from the existing property files.
Username : slave-user
Password recommendations are listed below. To modify these restrictions edit the add-
user.properties configuration file.
 - The password should be different from the username
 - The password should not be one of the following restricted values {root, admin,
administrator}
 - The password should contain at least 8 characters, 1 alphabetic character(s), 1 digit(s), 1
non-alphanumeric symbol(s)
Password :
Re-enter Password :
What groups do you want this user to belong to? (Please enter a comma separated list, or
leave blank for none)[]:
About to add user 'slave-user' for realm 'ManagementRealm'
Is this correct yes/no? yes
Added user 'slave-user' to file '/home/user/EAP-7.2.0/standalone/configuration/mgmt-
users.properties'
Added user 'slave-user' to file '/home/user/EAP-7.2.0/domain/configuration/mgmt-
users.properties'
Added user 'slave-user' with groups to file '/home/user/EAP-
7.2.0/standalone/configuration/mgmt-groups.properties'
Added user 'slave-user' with groups to file '/home/user/EAP-
7.2.0/domain/configuration/mgmt-groups.properties'
Is this new user going to be used for one AS process to connect to another AS process?
e.g. for a slave host controller connecting to the master or for a Remoting connection for
server to server EJB calls.
yes/no? yes
To represent the user add the following to the server-identities definition <secret
value="ABCzc3dv11Qx" />

2. Configure the slave controllers to use the credential.
Once you have created the user on the master domain controller, you will need to update each
slave controller to use that credential in the host configuration file, for example host.xml or
host-slave.xml. To do so, you need to add the user name to the <remote> element in the
domain controller configuration. You will also need to add the <secret> to the server identities
of the realm used to secure the <remote> element. Both the user name and <secret> were
obtained when adding the user to the master domain controller in the previous step.

Example: Configuring Slave Controllers

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

83

1.10.3. Configuring SSL/TLS Between Domain and Host Controllers Using Elytron

IMPORTANT

When you configure SSL/TLS to be used between JBoss EAP instances in a managed
domain, each instance can have a client or server role depending on the interaction. This
includes all host controllers as well as domain controllers. As a result, it is recommended
that you set up two-way SSL/TLS between endpoints.

You can configure JBoss EAP instances in a managed domain to use SSL/TLS when communicating
with each other, in other words, between the master domain controller and host controllers. To do so
using Elytron, use the following procedure.

1. Generate and configure all necessary certificates and keystores.
In order to set up two-way SSL/TLS between endpoints, you need to generate and configure
certificates and keystores for the master domain controller as well as each host controller. You
also need to import the certificate of the master domain controller into each host controller’s
keystore as well as import each host controller’s certificate into the master domain controller’s
keystore. The specifics of this process is covered in Enable Two-way SSL/TLS for the
Management Interfaces Using the Elytron Subsystem.

2. Add a user on the master domain controller.
A user needs to be added on the master domain controller for the slave controller to use for
authentication. If you are using the default file based user and group authentication mechanism,
this can be done by running EAP_HOME/bin/adduser.sh. Add the username, password and
other configurations when prompted.

The add-user utility can be used to manage both the users in the ManagementRealm and the
users in the ApplicationRealm.

NOTE

The server caches the contents of the properties files in memory. However, the
server does check the modified time of the properties files on each
authentication request and reloads if the time has been updated. This means that
all changes made by the add-user utility are immediately applied to any running
server.

...
<security-realm name="ManagementRealm">
 <server-identities>
 <!-- Replace this with either a base64 password of your own, or use a vault with a vault
expression -->
 <secret value="ABCzc3dv11Qx"/>
 </server-identities>
...
<domain-controller>
 <remote security-realm="ManagementRealm" username="slave-user">
 <discovery-options>
 <static-discovery name="primary" protocol="${jboss.domain.master.protocol:remote}"
host="${jboss.domain.master.address}" port="${jboss.domain.master.port:9990}"/>
 </discovery-options>
 </remote>
</domain-controller>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

84

The slave controller attempts to authenticate using the HTTP interface. If the HTTP interface
has been secured with the ManagementRealm Elytron security realm, then you would need to
add a user to ManagementRealm for the slave controller to use.

NOTE

The default name of the realm for management users is ManagementRealm.
When the add-user utility prompts for the realm name, just accept the default
unless you have switched to a different realm.

The following example assumes the user slave with the password password1! has been added
to ManagementRealm.

3. Configure the master domain controller to use SSL/TLS.
The commands below configure the domain controller’s key-store, key-manager, trust-
manager, and server-ssl-context for the server keystore and truststore.

/host=master/subsystem=elytron/key-
store=twoWayKS:add(path=/path/to/server.keystore.jks,credential-reference={clear-
text=secret},type=JKS)

/host=master/subsystem=elytron/key-
store=twoWayTS:add(path=/path/to/server.truststore.jks,credential-reference={clear-
text=secret},type=JKS)

/host=master/subsystem=elytron/key-manager=twoWayKM:add(key-
store=twoWayKS,algorithm="SunX509",credential-reference={clear-text=secret})

/host=master/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS,algorithm="SunX509")

/host=master/subsystem=elytron/server-ssl-context=twoWaySSC:add(key-
manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM,want-client-
auth=true,need-client-auth=true)

/host=master/core-service=management/management-interface=http-interface:write-
attribute(name=ssl-context, value=twoWaySSC)

IMPORTANT

You need to know what key manager algorithms are provided by the JDK you are
using. For example, a JDK that uses SunJSSE provides the PKIX and SunX509
algorithms. You also need to determine what HTTPS protocols you want to
support. The example commands above use TLSv1.2. You can use the cipher-
suite-filter argument to specify which cipher suites are allowed, and the use-
cipher-suites-order argument to honor server cipher suite order. The use-
cipher-suites-order attribute by default is set to true. This differs from the
legacy security subsystem behavior, which defaults to honoring client cipher
suite order.

4. Configure an authentication context and domain controller location on each slave host
controller.

The following example configuration assumes the domain controller exists on localhost. Ensure

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

85

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

The following example configuration assumes the domain controller exists on localhost. Ensure
you specify the correct management user, password, and domain controller location for your
environment.

/host=slave1/subsystem=elytron/authentication-context=slaveHostSSLContext:add()

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:add()

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-attribute(name=sasl-mechanism-
selector,value=DIGEST-MD5)

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-attribute(name=authentication-
name,value=slave)

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-
attribute(name=realm,value=ManagementRealm)

/host=slave1/subsystem=elytron/authentication-
configuration=slaveHostSSLConfiguration:write-attribute(name=credential-reference,value=
{clear-text=password1!})

/host=slave1/subsystem=elytron/authentication-context=slaveHostSSLContext:write-
attribute(name=match-rules,value=[{match-host=localhost,authentication-
configuration=slaveHostSSLConfiguration}]

/host=slave1:write-remote-domain-
controller(host=localhost,port=9990,protocol=remote,authentication-
context=slaveHostSSLContext)

5. Configure each slave host controller to use SSL/TLS.
The commands below configure a slave host controller’s key-store, key-manager, trust-
manager, client-ssl-context for the server keystore and truststore, as well as the
authentication-context.

The following example configuration assumes the domain controller exists on localhost. Ensure
you specify the correct domain controller location for your environment.

/host=slave1/subsystem=elytron/key-
store=twoWayKS:add(path=/path/to/client.keystore.jks,credential-reference={clear-
text=secret},type=JKS)

/host=slave1/subsystem=elytron/key-
store=twoWayTS:add(path=/path/to/client.truststore.jks,credential-reference={clear-
text=secret},type=JKS)

/host=slave1/subsystem=elytron/key-manager=twoWayKM:add(key-
store=twoWayKS,algorithm="SunX509",credential-reference={clear-text=secret})

/host=slave1/subsystem=elytron/trust-manager=twoWayTM:add(key-
store=twoWayTS,algorithm="SunX509")

/host=slave1/subsystem=elytron/client-ssl-context=twoWayCSC:add(key-

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

86

manager=twoWayKM,protocols=["TLSv1.2"],trust-manager=twoWayTM)

/host=slave1/subsystem=elytron/authentication-context=slaveHostSSLContext:write-
attribute(name=match-rules,value=[{match-host=localhost,authentication-
configuration=slaveHostSSLConfiguration,ssl-context=twoWayCSC}])

6. Reload all the JBoss EAP hosts in your managed domain.

1.10.4. Configuring SSL/TLS Between Domain and Host Controllers Using Legacy
Core Management Authentication

IMPORTANT

When you configure SSL/TLS to be used between JBoss EAP instances in a managed
domain, each instance can have a client or server role depending on the interaction. This
includes all host controllers as well as domain controllers. As a result, it is recommended
that you set up two-way SSL/TLS between endpoints.

You can configure JBoss EAP instances in a managed domain to use SSL/TLS when communicating
with each other, in other words, between the master domain controller and host controllers. To do so
using legacy core management authentication, use the following procedure.

1. Generate and configure all necessary certificates and keystores.
In order to set up two-way SSL/TLS between endpoints, you need to generate and configure
certificates and keystores for the master domain controller as well as each host controller. You
also need to import the certificate of the master domain controller into each host controller’s
keystore as well as import each host controller’s certificate into the master domain controller’s
keystore. The specifics of this process is covered in Setting up Two-way SSL/TLS for the
Management Interfaces with Legacy Core Management Authentication.

2. Configure the master domain controller to use SSL/TLS.
Once you have configured all certificates and keystores, you need to configure a security realm
to use two-way SSL/TLS. This is done by configuring a security realm to use SSL/TLS and to
require it for authentication. That security realm is then used to secure the management
interface used for connecting between host controllers and the master domain controller.

NOTE

The following commands below must either be run in batch mode, or the server
must be reloaded after adding the ssl server identity. The example below is
shown using batch mode.

batch

/host=master/core-service=management/security-realm=CertificateRealm:add()

/host=master/core-service=management/security-realm=CertificateRealm/server-
identity=ssl:add(alias=domaincontroller,keystore-relative-to=jboss.domain.config.dir,keystore-
path=domaincontroller.jks,keystore-password=secret)

/host=master/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-relative-
to=jboss.domain.config.dir,keystore-path=domaincontroller.jks,keystore-password=secret)

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

87

/host=master/core-service=management/security-
realm=CertificateRealm/authentication=local:add(default-user=\$local)

/host=master/core-service=management/security-
realm=CertificateRealm/authentication=properties:add(relative-
to=jboss.domain.config.dir,path=mgmt-users.properties)

/host=master/core-service=management/management-interface=http-interface:write-
attribute(name=security-realm,value=CertificateRealm)

run-batch

3. Configure all host controllers to use SSL/TLS.
Once you have the master domain controller configured to use two-way SSL/TLS, you need to
configure each host controller to use it as well. The process is very much the same as the
master domain controller configuration, except you will need to use the keystore specific to
each host.

NOTE

The following commands below must either be run in batch mode, or the server
must be reloaded after adding the ssl server identity. The example below is
shown using batch mode.

batch

/host=instance1/core-service=management/security-realm=CertificateRealm:add()

/host=instance1/core-service=management/security-realm=CertificateRealm/server-
identity=ssl:add(alias=instance1,keystore-relative-to=jboss.domain.config.dir,keystore-
path=instance1.jks,keystore-password=secret)

/host=instance1/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-relative-
to=jboss.domain.config.dir,keystore-path=instance1.jks,keystore-password=secret)

/host=instance1/core-service=management/security-
realm=CertificateRealm/authentication=local:add(default-user="\$local")

/host=instance1/core-service=management/security-
realm=CertificateRealm/authentication=properties:add(relative-
to=jboss.domain.config.dir,path=mgmt-users.properties)

/host=instance1/core-service=management/management-interface=http-interface:write-
attribute(name=security-realm,value=CertificateRealm)

run-batch

Additionally, you will need to update the security realm used when connecting the master
domain controller. This change must be done directly in the host controller’s configuration file,
for example host.xml or host-slave.xml, while the server is not running.

Example: Host Controller Configuration File

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

88

WARNING

Red Hat recommends that SSLv2, SSLv3, and TLSv1.0 be explicitly
disabled in favor of TLSv1.1 or TLSv1.2 in all affected packages.

1.11. ADDITIONAL ELYTRON COMPONENTS FOR SSL/TLS

The basic concepts behind configuring one-way SSL/TLS and two-way SSL/TLS are covered in the
following:

Enable One-way SSL/TLS for Applications Using the Elytron Subsystem

Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem

Elytron also offers some additional components for configuring SSL/TLS.

1.11.1. Using an ldap-key-store

An ldap-key-store allows you to use a keystore stored in an LDAP server. You can use an ldap-key-store
in the same way as you use a key-store.

NOTE

It is not possible to use a JMX ObjectName to decrypt the LDAP credentials. Instead,
credentials can be secured by using a credential store.

To create and use an ldap-key-store:

1. Configure a dir-context.
To connect to the LDAP server from JBoss EAP, you need to configure a dir-context that
provides the URL as well as the principal used to connect to the server.

Example: dir-context

/subsystem=elytron/dir-context=exampleDC:add(url="ldap://127.0.0.1:10389",
principal="uid=admin,ou=system", credential-reference={clear-text="secret"})

<domain-controller>
 <remote security-realm="CertificateRealm" username="slave-user">
 <discovery-options>
 <static-discovery name="primary" protocol="${jboss.domain.master.protocol:remote}"
host="${jboss.domain.master.address}" port="${jboss.domain.master.port:9990}"/>
 </discovery-options>
 </remote>
</domain-controller>



CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

89

2. Configure an ldap-key-store.
When you configure an ldap-key-store, you need to specify both the dir-context used to
connect to the LDAP server as well as how to locate the keystore stored in the LDAP server. At
a minimum, this requires you to specify a search-path.

Example: ldap-key-store

/subsystem=elytron/ldap-key-store=ldapKS:add(dir-context=exampleDC, search-
path="ou=Keystores,dc=wildfly,dc=org")

3. Use the ldap-key-store.
Once you have defined your ldap-key-store, you can use it in the same places where a key-
store could be used. For example, you could use an ldap-key-store when configuring One-way
SSL/TLS and Two-way SSL/TLS for applications.

For the full list of attributes for ldap-key-store as well as other Elytron components, see Elytron
Subsystem Components Reference.

1.11.2. Using a filtering-key-store

A filtering-key-store allows you to expose a subset of aliases from an existing key-store, and use it in
the same places you could use a key-store. For example, if a keystore contained alias1, alias2, and
alias3, but you only wanted to expose alias1 and alias3, a filtering-key-store provides you several ways
to do that.

To create a filtering-key-store:

1. Configure a key-store.

/subsystem=elytron/key-store=myKS:add(path=keystore.jks, relative-
to=jboss.server.config.dir, credential-reference={clear-text=secret}, type=JKS)

2. Configure a filtering-key-store.
When you configure a filtering-key-store, you specify which key-store you want to filter and the
alias-filter for filtering aliases from the key-store. The filter can be specified in one of the
following formats:

alias1,alias3, which is a comma-delimited list of aliases to expose.

ALL:-alias2, which exposes all aliases in the keystore except the ones listed.

NONE:+alias1:+alias3, which exposes no aliases in the keystore except the ones listed.
This example uses a comma-delimted list to expose alias1 and alias3.

/subsystem=elytron/filtering-key-store=filterKS:add(key-store=myKS, alias-
filter="alias1,alias3")

NOTE

The alias-filter attribute is case sensitive. Because the use of mixed-case or
uppercase aliases, such as elytronAppServer, might not be recognized by
some keystore providers, it is recommended to use lowercase aliases, such as
elytronappserver.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

90

3. Use the filtering-key-store.
Once you have defined your filtering-key-store, you can use it in the same places where a key-
store could be used. For example, you could use a filtering-key-store when configuring One-
way SSL/TLS and Two-way SSL/TLS for applications.

For the full list of attributes for filtering-key-store as well as other Elytron components, see Elytron
Subsystem Components Reference.

1.11.3. Reload a Keystore

You can reload a keystore configured in JBoss EAP from the management CLI. This is useful in cases
where you have made changes to certificates referenced by a keystore.

To reload a keystore:

/subsystem=elytron/key-store=httpsKS:load

1.11.4. Reinitialize a Key Manager

You can reinitialize a key-manager configured in JBoss EAP from the management CLI. This is useful in
cases where you have made changes in certificates provided by keystore resource and you want to apply
this change to new SSL connections without restarting the server.

NOTE

If the key-store is file based then it must be loaded first.

/subsystem=elytron/key-store=httpsKS:load()

To reinitialize a key-manager:

/subsystem=elytron/key-manager=httpsKM:init()

1.11.5. Reinitialize a Trust Manager

You can reinitialize a trust-manager configured in JBoss EAP from the management CLI. This is useful
in cases where you have made changes to certificates provided by keystore resource and you want to
apply this change to new SSL connections without restarting the server.

NOTE

If the key-store is file based then it must be loaded first.

/subsystem=elytron/key-store=httpsKS:load()

To reinitialize a trust-manager:

/subsystem=elytron/trust-manager=httpsTM:init()

1.11.6. Keystore Alias

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

91

The alias denotes the stored secret or credential in the store. If you add a keystore to the elytron
subsystem using the key-store component, you can check the keystore’s contents using the alias
related key-store operations.

The different operations for alias manipulation are:

read-alias - Read an alias from a keystore.

read-aliases - Read aliases from a keystore.

remove-alias - Remove an alias from a keystore.

For example, to read an alias:

/subsystem=elytron/key-store=httpsKS/:read-alias(alias=localhost)

1.11.7. Using a client-ssl-context

A client-ssl-context is used for providing an SSL context when the JBoss EAP instance creates an SSL
connection as a client, such as using SSL in remoting.

To create a client-ssl-context:

1. Create key-store, key-manager, and trust-manager components as needed.
If establishing a two-way SSL/TLS connection, you need to create separate key-store
components for the client and server certificates, a key-manager for the client key-store, and a
trust-manager for the server key-store. Alternatively, if you are doing a one-way SSL/TLS
connection, you need to create a key-store for the server certificate and a trust-manager that
references it. Examples on creating keystores and truststores are available in the Enable Two-
way SSL/TLS for Applications using the Elytron Subsystem section.

2. Create a client-ssl-context.
Create a client-ssl-context referencing keystores, truststores, as well as any other necessary
configuration options.

Example: client-ssl-context

/subsystem=elytron/client-ssl-context=exampleCSC:add(key-manager=clientKM, trust-
manager=clientTM, protocols=["TLSv1.2"])

3. Reference the client-ssl-context.

For the full list of attributes for client-ssl-context as well as other Elytron components, see Elytron
Subsystem Components Reference.

1.11.8. Using a server-ssl-context

A server-ssl-context is used for providing a server-side SSL context. In addition to the usual
configuration for an SSL context, it is possible to configure additional items such as cipher suites and
protocols. The SSL context will wrap any additional items that are configured.

1. Create key-store, key-manager, and trust-manager components as needed.
If establishing a two-way SSL/TLS connection, you need to create separate key-store
components for the client and server certificates, a key-manager for the server key-store, and
a trust-manager for the server trust-store. Alternatively, if you are doing a one-way SSL/TLS

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

92

connection, you need to create a key-store for the server certificate and a key-manager that
references it. Examples on creating keystores and truststores are available in the Enable Two-
way SSL/TLS for Applications Using the Elytron Subsystem section.

2. Create a server-ssl-context.
Create a server-ssl-context that references the key manager, trust manager, or any other
desired configuration options using one of the options outlined below.

Add a Server SSL Context Using the Management CLI

/subsystem=elytron/server-ssl-context=newServerSSLContext:add(key-
manager=KEY_MANAGER,protocols=["TLSv1.2"])

IMPORTANT

You need to determine what HTTPS protocols will be supported. The example commands
above use TLSv1.2. You can use the cipher-suite-filter argument to specify which cipher
suites are allowed, and the use-cipher-suites-order argument to honor server cipher
suite order. The use-cipher-suites-order attribute by default is set to true. This differs
from the legacy security subsystem behavior, which defaults to honoring client cipher
suite order.

Add a Server SSL Context Using the Management Console

1. Access the management console. For more information, see the Management Console section
in the JBoss EAP Configuration Guide.

2. Navigate to Configuration → Subsystems → Security (Elytron) → Other Settings and click
View.

3. Click on SSL → Server SSL Context and click Add to configure a new server SSL context.

For the full list of attributes for server-ssl-context as well as other Elytron components, see Elytron
Subsystem Components Reference.

1.11.9. Custom SSL Components

When configuring SSL/TLS in the elytron subsystem, you can provide and use custom implementations
of the following components:

key-store

key-manager

trust-manager

client-ssl-context

server-ssl-context

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

93

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#management_console_overview

WARNING

It is not recommended to provide custom implementations of any component
outside of the trust-manager without an intimate knowledge of the Java Secure
Socket Extension (JSSE).

IMPORTANT

When using FIPS it is not possible to utilize a custom trust manager or key manager, as
FIPS requires these managers be embedded in the JDK for security reasons. Similar
behavior can be accomplished by implementing a SecurityRealm that validates X509
evidences.

When creating custom implementations of Elytron components, they must present the appropriate
capabilities and requirements. For more details on capabilities and requirements, see the Capabilities
and Requirements section of the JBoss EAP Security Architecture guide. Implementation details for
each component are provided by the JDK vendor.

1.11.9.1. Add a Custom Component to Elytron

The following steps describe adding a custom component within Elytron.

1. Add the JAR containing the provider for the custom component as a module into JBoss EAP,
declaring any required dependencies, such as javax.api:

module add --name=MODULE_NAME --resources=FACTORY_JAR --
dependencies=javax.api,DEPENDENCY_LIST

IMPORTANT

Using the module management CLI command to add and remove modules is
provided as Technology Preview only. This command is not appropriate for use in
a managed domain or when connecting to the management CLI remotely.
Modules should be added and removed manually in a production environment.
For more information, see the Create a Custom Module Manually and Remove a
Custom Module Manually sections of the JBoss EAP Configuration Guide.

Technology Preview features are not supported with Red Hat production service
level agreements (SLAs), might not be functionally complete, and Red Hat does
not recommend to use them for production. These features provide early access
to upcoming product features, enabling customers to test functionality and
provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

2. When the component is added to the elytron subsystem the java.util.ServiceLoader will be
used to discover the provider. Alternatively, a reference to the provider can be provided by
defining a provider-loader. There are two methods of creating the loader, and only one should
be implemented for each component.



Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

94

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#capabilities_and_requirements
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#create_module_manually
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#remove_module_manually
https://access.redhat.com/support/offerings/techpreview
https://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html

Reference the provider directly when defining the provider-loader:

/subsystem=elytron/provider-loader=LOADER_NAME:add(class-names=
[CLASS_NAME],module=MODULE_NAME)

Include a reference to the provider in META-INF/services/java.security.Provider. This
reference is automatically created when using the @MetaInfServices annotation in
org.kohsuke.metainf-services. When using this method only the module needs to be
referenced by the provider-loader, as seen below:

/subsystem=elytron/provider-loader=LOADER_NAME:add(module=MODULE_NAME)

3. Add the custom component into Elytron’s configuration, using the appropriate element for the
type to be added and referencing any defined providers.

/subsystem=elytron/COMPONENT_NAME=NEW_COMPONENT:add(providers=LOADER_N
AME,...)

For instance, to define a trust manager, the trust-manager element would be used, as seen in
the following command:

Example: Adding a Custom Trust Manager

/subsystem=elytron/trust-
manager=newTrustManager:add(algorithm=MyX509,providers=customProvider,key-
store=sampleKeystore)

4. Once defined, the component can be referenced from other elements.

1.11.9.2. Including Arguments in a Custom Elytron Component

You can include arguments within a custom component if your class implements the initialize method,
as seen below.

This method allows the custom class to receive a set of configuration strings when defined. These are
passed in using the configuration attribute when defining the component. For instance, the following
example defines an attribute named myAttribute with a value of myValue.

/subsystem=elytron/COMPONENT_NAME=NEW_COMPONENT:add(class-
name=CLASS_NAME,module=MODULE_NAME,configuration={myAttribute="myValue"}

1.11.9.3. Using Custom Trust Managers with Elytron

By implementing a custom trust manager, it is possible to extend the validation of certificates when
using HTTPS in Undertow, LDAPS in a dir-context, or any place where Elytron is used for SSL
connections. This component is responsible for making trust decisions for the server, and it is strongly
recommended that these be implemented if a custom trust manager is used.

IMPORTANT

void initialize(final Map<String, String> configuration);

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

95

IMPORTANT

When using FIPS it is not possible to utilize a custom trust manager, as FIPS requires this
manager be embedded in the JDK for security reasons. Similar behavior can be
accomplished by implementing a SecurityRealm that validates X509 evidences.

Requirements for Implementing a Custom Trust Manager
When using a custom trust manager, the following must be implemented:

A trust manager that implements the X509ExtendedTrustManager interface.

A trust manager factory that extends TrustManagerFactorySpi.

The provider of the trust manager factory.

The provider must be included in the JAR file to be added into JBoss EAP. Any implemented classes
must be included in JBoss EAP as a module. Classes are not required to be in one module, and can be
loaded from module dependencies.

Example Implementations
The following example demonstrates a provider that registers the custom trust manager factory as a
service.

Example: Provider

The following example demonstrates a custom trust manager. This trust manager contains overloaded
methods on checking if a client or server is trusted.

Example: TrustManager

import org.kohsuke.MetaInfServices;
import javax.net.ssl.TrustManagerFactory;
import java.security.Provider;
import java.util.Collections;
import java.util.List;
import java.util.Map;

@MetaInfServices(Provider.class)
public class CustomProvider extends Provider {

 public CustomProvider() {
 super("CustomProvider", 1.0, "Demo provider");

 System.out.println("CustomProvider initialization.");

 final List<String> emptyList = Collections.emptyList();
 final Map<String, String> emptyMap = Collections.emptyMap();

 putService(new Service(this, TrustManagerFactory.class.getSimpleName(),"CustomAlgorithm",
CustomTrustManagerFactorySpi.class.getName(), emptyList, emptyMap));
 }

}

import javax.net.ssl.SSLEngine;

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

96

The following example is a factory used to return instances of the trust manager.

Example: TrustManagerFactorySpi

import javax.net.ssl.X509ExtendedTrustManager;
import java.net.Socket;
import java.security.cert.CertificateException;
import java.security.cert.X509Certificate;

public class CustomTrustManager extends X509ExtendedTrustManager {

 public void checkClientTrusted(X509Certificate[] x509Certificates, String s, Socket socket) throws
CertificateException {
 // Insert your code here
 }

 public void checkServerTrusted(X509Certificate[] x509Certificates, String s, Socket socket) throws
CertificateException {
 // Insert your code here
 }

 public void checkClientTrusted(X509Certificate[] x509Certificates, String s, SSLEngine sslEngine)
throws CertificateException {
 // Insert your code here
 }

 public void checkServerTrusted(X509Certificate[] x509Certificates, String s, SSLEngine sslEngine)
throws CertificateException {
 // Insert your code here
 }

 public void checkClientTrusted(X509Certificate[] x509Certificates, String s) throws
CertificateException {
 // Insert your code here
 }

 public void checkServerTrusted(X509Certificate[] x509Certificates, String s) throws
CertificateException {
 // Insert your code here
 }

 public X509Certificate[] getAcceptedIssuers() {
 // Insert your code here
 }

}

import javax.net.ssl.ManagerFactoryParameters;
import javax.net.ssl.TrustManager;
import javax.net.ssl.TrustManagerFactorySpi;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyStore;
import java.security.KeyStoreException;

public class CustomTrustManagerFactorySpi extends TrustManagerFactorySpi {

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

97

Adding the Custom Trust Manager
Once the provider and trust manager have been created, add them to the elytron subsystem by using
the steps outlined in Add a Custom Component to Elytron .

1.11.10. Using a Certificate Revocation List

If you want to validate a certificate against a certificate revocation list (CRL), you can configure this
using the certificate-revocation-list attribute for a trust manager in the elytron subsystem. For
example:

/subsystem=elytron/trust-manager=TRUST_MANAGER:write-attribute(name=certificate-revocation-
list,value={path=/path/to/CRL_FILE.crl.pem}

For more information on the available attributes for a trust manager, see the trust-manager Attributes
table.

NOTE

Your truststore must contain the certificate chain in order to check the validity of both
the certification revocation list and the certificate. The truststore should not contain end-
entity certificates, just certificate authority and intermediate certificates.

You can instruct the trust manager to reload the certificate revocation list by using the reload-
certificate-revocation-list operation.

/subsystem=elytron/trust-manager=TRUST_MANAGER:reload-certificate-revocation-list

1.11.11. Using a Certificate Authority to Manage Signed Certificates

You can obtain and manage signed certificates using the JBoss EAP management CLI. This allows you
to create a signed certificate directly from the CLI and then import it into the desired keystore.

NOTE

Many of the commands in this section have an optional staging parameter that indicates
whether the certificate authority’s staging URL should be used. This value defaults to
false, and is designed to assist in testing purposes. This parameter should never be
enabled in a production environment.

 protected void engineInit(KeyStore keyStore) throws KeyStoreException {
 // Insert your code here
 }

 protected void engineInit(ManagerFactoryParameters managerFactoryParameters) throws
InvalidAlgorithmParameterException {
 // Insert your code here
 }

 protected CustomTrustManager[] engineGetTrustManagers() {
 // Insert your code here
 }

}

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

98

Configure a Let’s Encrypt Account
As of JBoss EAP 7.2, Let’s Encrypt is the only supported certificate authority. To manage signed
certificates an account must be created with the certificate authority, and the following information
provided:

A keystore to contain the alias of the certificate authority account key.

The alias of the certificate authority. If the provided alias does not exist in the given keystore,
then one will be created and stored as a private key entry.

An optional list of URLs, such as email addresses, that the certificate authority can contact in
the result of any issues.

/subsystem=elytron/certificate-authority-account=CERTIFICATE_ACCOUNT:add(key-
store=KEYSTORE,alias=ALIAS,contact-urls=[mailto:EMAIL_ADDRESS])

Create an Account with the Certificate Authority
Once an account has been configured it may be created with the certificate authority by agreeing to
their terms of service.

/subsystem=elytron/certificate-authority-account=CERTIFICATE_ACCOUNT:create-account(agree-
to-terms-of-service=true)

Update an Account with the Certificate Authority
The certificate authority account options can be updated using the update-account command.

/subsystem=elytron/certificate-authority-account=CERTIFICATE_ACCOUNT:update-account(agree-
to-terms-of-service=true)

Change the Account Key Associated with the Certificate Authority
The key associated with the certificate authority account can be changed by using the change-
account-key command.

/subsystem=elytron/certificate-authority-account=CERTIFICATE_ACCOUNT:change-account-key()

Deactivate the Account with the Certificate Authority
If the account is no longer desired, then it may be deactivated by using the deactivate-account
command.

/subsystem=elytron/certificate-authority-account=CERTIFICATE_ACCOUNT:deactivate-account()

Get the Metadata Associated with the Certificate Authority
The metadata for the account can be queried with the get-metadata command. This provides the
following information:

A URL to the terms of service.

A URL to the certificate authority website.

A list of the certificate authority accounts.

Whether or not an external account is required.

/subsystem=elytron/certificate-authority-account=CERTIFICATE_ACCOUNT:get-metadata()

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

99

1.11.12. Keystore Manipulation Operations

It is possible to perform various keystore manipulation operations on an Elytron key-store resource
using the management CLI.

Generate a Key Pair
The generate-key-pair command generates a key pair and wraps the resulting public key in a self-signed
X.509 certificate. The generated private key and self-signed certificate will be added to the keystore.

/subsystem=elytron/key-store=httpsKS:add(path=/path/to/server.keystore.jks,credential-reference=
{clear-text=secret},type=JKS)

/subsystem=elytron/key-store=httpsKS:generate-key-pair(alias=example,algorithm=RSA,key-
size=1024,validity=365,credential-reference={clear-text=secret},distinguished-
name="CN=www.example.com")

Generate a Certificate Signing Request
The generate-certificate-signing-request command generates a PKCS #10 certificate signing request
using a PrivateKeyEntry from the keystore. The generated certificate signing request will be written to
a file.

/subsystem=elytron/key-store=httpsKS:generate-certificate-signing-
request(alias=example,path=server.csr,relative-to=jboss.server.config.dir,distinguished-
name="CN=www.example.com",extensions=
[{critical=false,name=KeyUsage,value=digitalSignature}],credential-reference={clear-text=secret})

Import a Certificate or Certificate Chain
The import-certificate command imports a certificate or certificate chain from a file into an entry in the
keystore.

/subsystem=elytron/key-store=httpsKS:import-
certificate(alias=example,path=/path/to/certificate_or_chain/file,relative-
to=jboss.server.config.dir,credential-reference={clear-text=secret},trust-cacerts=true)

Export a Certificate
The export-certificate command exports a certificate from an entry in the keystore to a file.

/subsystem=elytron/key-store=httpsKS:export-certificate(alias=example,path=serverCert.cer,relative-
to=jboss.server.config.dir,pem=true)

Change an Alias
The change-alias command moves an existing keystore entry to a new alias.

/subsystem=elytron/key-store=httpsKS:change-alias(alias=example,new-
alias=newExample,credential-reference={clear-text=secret})

Store Changes Made to Keystores
The store command persists any changes that have been made to the file that backs the keystore.

/subsystem=elytron/key-store=httpsKS:store()

1.11.12.1. Keystore Certificate Authority Operations

The following operations can be performed on the keystore after you Configure a Let’s Encrypt

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

100

The following operations can be performed on the keystore after you Configure a Let’s Encrypt
Account.

NOTE

Many of the commands in this section have an optional staging parameter that indicates
whether the certificate authority’s staging URL should be used. This value defaults to
false, and is designed to assist in testing purposes. This parameter should never be
enabled in a production environment.

Obtain a Signed Certificate
Once a certificate authority account has been defined for the keystore, you can use the obtain-
certificate command to obtain a signed certificate and store it in the keystore. If an account with the
certificate authority does not exist, then it will be automatically created.

/subsystem=elytron/key-store=KEYSTORE:obtain-certificate(alias=ALIAS,domain-names=
[DOMAIN_NAME],certificate-authority-account=CERTIFICATE_ACCOUNT,agree-to-terms-of-
service=true,algorithm=RSA,credential-reference={clear-text=secret})

Revoke a Signed Certificate
The revoke-certificate command revokes a certificate that was issued by the certificate authority.

/subsystem=elytron/key-store=KEYSTORE:revoke-certificate(alias=ALIAS,certificate-authority-
account=CERTIFICATE_ACCOUNT)

Check if a Signed Certificate is Due for Renewal
The should-renew-certificate command determines if a certificate is due for renewal. The command
returns true if the certificate expires in less than the given number of days, and false otherwise.

The following command determines if the certificate expires in the next 7 days.

/subsystem=elytron/key-store=KEYSTORE:should-renew-certificate(alias=ALIAS,expiration=7)

CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES

101

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS
MANAGEMENT INTERFACES

2.1. USER AUTHENTICATION WITH ELYTRON

2.1.1. Default Configuration

By default, the JBoss EAP management interfaces are secured by the legacy core management
authentication.

Example: Default Configuration

/core-service=management/management-interface=http-interface:read-resource()
{
 "outcome" => "success",
 "result" => {
 "allowed-origins" => undefined,
 "console-enabled" => true,
 "http-authentication-factory" => undefined,
 "http-upgrade" => {"enabled" => true},
 "http-upgrade-enabled" => true,
 "sasl-protocol" => "remote",
 "secure-socket-binding" => undefined,
 "security-realm" => "ManagementRealm",
 "server-name" => undefined,
 "socket-binding" => "management-http",
 "ssl-context" => undefined
 }

JBoss EAP does provide management-http-authentication and management-sasl-authentication in
the elytron subsystem for securing the management interfaces as well.

To update JBoss EAP to use the default Elytron components:

1. Set http-authentication-factory to use management-http-authentication:

/core-service=management/management-interface=http-interface:write-attribute(name=http-
authentication-factory, value=management-http-authentication)

2. Set sasl-authentication-factory to use management-sasl-authentication:

/core-service=management/management-interface=http-interface:write-attribute(name=http-
upgrade.sasl-authentication-factory, value=management-sasl-authentication)

3. Undefine security-realm:

/core-service=management/management-interface=http-interface:undefine-
attribute(name=security-realm)

4. Reload JBoss EAP for the changes to take affect:

reload

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

102

The management interfaces are now secured using the default components provided by the elytron
subsystem.

2.1.1.1. Default Elytron HTTP Authentication Configuration

When you access the management interface over http, for example when using the web-based
management console, JBoss EAP will use the management-http-authentication http-authentication-
factory.

/subsystem=elytron/http-authentication-factory=management-http-authentication:read-resource()
{
 "outcome" => "success",
 "result" => {
 "http-server-mechanism-factory" => "global",
 "mechanism-configurations" => [{
 "mechanism-name" => "DIGEST",
 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]
 }],
 "security-domain" => "ManagementDomain"
 }
}

The management-http-authentication http-authentication-factory, is configured to use the
ManagementDomain security domain.

/subsystem=elytron/security-domain=ManagementDomain:read-resource()
{
 "outcome" => "success",
 "result" => {
 "default-realm" => "ManagementRealm",
 "permission-mapper" => "default-permission-mapper",
 "post-realm-principal-transformer" => undefined,
 "pre-realm-principal-transformer" => undefined,
 "principal-decoder" => undefined,
 "realm-mapper" => undefined,
 "realms" => [
 {
 "realm" => "ManagementRealm",
 "role-decoder" => "groups-to-roles"
 },
 {
 "realm" => "local",
 "role-mapper" => "super-user-mapper"
 }
],
 "role-mapper" => undefined,
 "trusted-security-domains" => undefined
 }
}

The ManagementDomain security domain is backed by the ManagementRealm Elytron security realm,
which is a properties-based realm.

IMPORTANT

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

103

IMPORTANT

A properties-based realm is only read when the server starts. Any users added after
server start, either manually or by using an add-user script, will require a server reload.
This reload is accomplished by running the reload command from the management CLI.

reload

/subsystem=elytron/properties-realm=ManagementRealm:read-resource()
{
 "outcome" => "success",
 "result" => {
 "groups-attribute" => "groups",
 "groups-properties" => {
 "path" => "mgmt-groups.properties",
 "relative-to" => "jboss.server.config.dir"
 },
 "plain-text" => false,
 "users-properties" => {
 "path" => "mgmt-users.properties",
 "relative-to" => "jboss.server.config.dir"
 }
 }
}

2.1.1.2. Default Elytron Management CLI Authentication

By default, the management CLI (jboss-cli.sh) is configured to connect over remote+http.

Example: Default jboss-cli.xml

This will establish a connection over HTTP and use HTTP upgrade to change the communication
protocol to Remoting. The HTTP upgrade connection is secured in the http-upgrade section of the
http-interface using a sasl-authentication-factory.

Example: Configuration with Default Components

/core-service=management/management-interface=http-interface:read-resource()
{
 "outcome" => "success",
 "result" => {
 "allowed-origins" => undefined,

<jboss-cli xmlns="urn:jboss:cli:3.1">

 <default-protocol use-legacy-override="true">remote+http</default-protocol>

 <!-- The default controller to connect to when 'connect' command is executed w/o arguments -->
 <default-controller>
 <protocol>remote+http</protocol>
 <host>localhost</host>
 <port>9990</port>
 </default-controller>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

104

 "console-enabled" => true,
 "http-authentication-factory" => "management-http-authentication",
 "http-upgrade" => {
 "enabled" => true,
 "sasl-authentication-factory" => "management-sasl-authentication"
 },
 "http-upgrade-enabled" => true,
 "sasl-protocol" => "remote",
 "secure-socket-binding" => undefined,
 "security-realm" => undefined,
 "server-name" => undefined,
 "socket-binding" => "management-http",
 "ssl-context" => undefined
 }
}

The default sasl-authentication-factory is management-sasl-authentication.

/subsystem=elytron/sasl-authentication-factory=management-sasl-authentication:read-resource()
{
 "outcome" => "success",
 "result" => {
 "mechanism-configurations" => [
 {
 "mechanism-name" => "JBOSS-LOCAL-USER",
 "realm-mapper" => "local"
 },
 {
 "mechanism-name" => "DIGEST-MD5",
 "mechanism-realm-configurations" => [{"realm-name" => "ManagementRealm"}]
 }
],
 "sasl-server-factory" => "configured",
 "security-domain" => "ManagementDomain"
 }
}

The management-sasl-authentication sasl-authentication-factory specifies JBOSS-LOCAL-USER
and DIGEST-MD5 mechanisms.

The ManagementRealm Elytron security realm, used in DIGEST-MD5, is the same realm used in the
management-http-authentication http-authentication-factory.

Example: JBOSS-LOCAL-USER Realm

/subsystem=elytron/identity-realm=local:read-resource()
{
 "outcome" => "success",
 "result" => {
 "attribute-name" => undefined,
 "attribute-values" => undefined,
 "identity" => "$local"
 }
}

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

105

The local Elytron security realm is for handling silent authentication for local users.

2.1.2. Secure the Management Interfaces with a New Identity Store

1. Create a security domain and any supporting security realms, decoders, or mappers for your
identity store.
This process is covered in the Elytron Subsystem section of JBoss EAP How to Configure
Identity Management Guide. For example, if you wanted to secure the management interfaces
using a filesystem-based identity store, you would follow the steps in Configure Authentication
with a Filesystem-based Identity Store.

2. Create an http-authentication-factory or sasl-authentication-factory.

Example: http-authentication-factory

/subsystem=elytron/http-authentication-factory=example-http-auth:add(http-server-
mechanism-factory=global, security-domain=exampleSD, mechanism-configurations=
[{mechanism-name=DIGEST, mechanism-realm-configurations=[{realm-
name=exampleManagementRealm}]}])

Example: sasl-authentication-factory

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-server-
factory=configured, security-domain=exampleSD, mechanism-configurations=[{mechanism-
name=DIGEST-MD5, mechanism-realm-configurations=[{realm-
name=exampleManagementRealm}]}])

3. Add pattern-filter to the configured configurable-sasl-server-factory.

Example: Add GSSAPI to the Configured configurable-sasl-server-factory

/subsystem=elytron/configurable-sasl-server-factory=configured:list-add(name=filters, value=
{pattern-filter=GSSAPI})

This is an optional step. When a client attempts to connect to the HTTP management
interfaces, JBoss EAP sends back an HTTP response with a status code of 401 Unauthorized,
and a set of headers that list the supported authentication mechanisms, for example, Digest,
GSSAPI, and so on. For more information, see the Local and Remote Client Authentication with
the HTTP Interface section in the JBoss EAP Security Architecture guide.

4. Update the management interfaces to use your http-authentication-factory or sasl-
authentication-factory.

Example: Update http-authentication-factory

/core-service=management/management-interface=http-interface:write-attribute(name=http-
authentication-factory, value=example-http-auth)

reload

Example: Update sasl-authentication-factory

/core-service=management/management-interface=http-interface:write-attribute(name=http-

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

106

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_secure_apps
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_apps_filesystemAuth
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#local_and_remote_client_authentication_with_http_interfaces

upgrade.sasl-authentication-factory, value=example-sasl-auth)

reload

NOTE

When using legacy core management authentication, you can only secure the
http management interface with a single legacy security realm. This forces the
HTTP and SASL configuration to appear in a single legacy security realm. When
using the elytron subsystem, you can configure the http-authentication-factory
and sasl-authentication-factory separately, allowing you to use distinct security
domains for securing the HTTP and SASL mechanisms of the http management
interface.

NOTE

If two different attributes with similar implementation in legacy security and Elytron,
respectively, are configured in the management interface, only the Elytron related
configurations are used. For example, if security-realm for legacy security and http-
authentication-factory for Elytron are configured, then authentication is handled by
http-authentication-factory configuration.

NOTE

When the management interface includes both http-authentication-factory, or sasl-
authentication-factory for the HTTP interface, as well as the security-realm, and the
ssl-context attribute is not used, the authentication is handled by Elytron and the SSL is
handled by the legacy security realm.

When the management interface includes both the security-realm and the ssl-context,
and the http-authentication-factory or sasl-authentication-factory for the HTTP
interface is not used, then authentication is handled by the legacy security realm and SSL
is handled by Elytron.

2.1.3. Adding Silent Authentication

By default, JBoss EAP provides an authentication mechanism for local users, also know as silent
authentication, through the local security realm. You can find more details on silent authentication in
the Silent Authentication section.

Silent authentication must be added to a sasl-authentication-factory.

To add silent authentication to an existing sasl-authentication-factory:

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:list-add(name=mechanism-
configurations, value={mechanism-name=JBOSS-LOCAL-USER, realm-mapper=local})

reload

To create a new sasl-server-factory with silent authentication:

/subsystem=elytron/sasl-authentication-factory=example-sasl-auth:add(sasl-server-
factory=configured,security-domain=ManagementDomain,mechanism-configurations=[{mechanism-
name=DIGEST-MD5,mechanism-realm-configurations=[{realm-name=exampleManagementRealm}]},

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

107

{mechanism-name=JBOSS-LOCAL-USER, realm-mapper=local}])

reload

NOTE

The above example uses the existing ManagementDomain security domain, but you can
also create and use other security domains. You can find more examples of creating
security domains in the Elytron Subsystem section of the JBoss EAP How to Configure
Identity Management Guide.

IMPORTANT

If the Elytron security is used and an authentication attempt comes in using the JBOSS-
LOCAL-USER SASL mechanism with an authentication name that does not correspond
to a real identity, authentication fails.

Choosing a custom user name for JBOSS-LOCAL-USER is possible with legacy security
subsystem. There the authentication proceeds by mapping the user name to a special
identity.

2.1.4. Mapping Identity for Authenticated Management Users

When using the elytron subsystem to secure the management interfaces, you can provide a security
domain to the management interfaces for identity mapping of authenticated users. This allows
authenticated users to appear with the appropriate identity when logged into the management
interfaces.

The application server exposes more than one kind of management interface. Each type of interface
can be associated with an independent authentication-factory to handle the authentication
requirements of that interface.

To make the authorization decision, the current security identity is obtained from the security domain.
The returned security identity has the role mapping and permission assignment, based on the rules
defined within that security domain.

NOTE

In most cases, a common security domain is used for all management; for authentication
of the management interfaces as well as for obtaining the security identity used for the
authorization decisions. In these cases, the security domain is associated with the
authentication factory of the management interface and no special access=identity
needs to be defined.

In some cases, a different security domain is used to obtain the identity for the
authorization decisions. Here, the access=identity resource is defined. It contains a
reference to a security domain to obtain the identity for authorization.

The below example assumes you have secured the management interfaces with the exampleSD Elytron
security domain and have it exposed as exampleManagementRealm.

To define the identity mapping, add the identity resource to the management interfaces.

Example: Add the identity Resource

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

108

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_secure_apps

/core-service=management/access=identity:add(security-domain=exampleSD)

Once you have added the identity resource, the identity of an authenticated user will appear when
accessing the management interfaces. When the identity resource is not added, then the identity of the
security domain used for authentication is used.

For example, if you logged into the management CLI as user1, your identity will properly appear.

Example: Display the Identity of an Authenticated User from the Management CLI

:whoami
{
 "outcome" => "success",
 "result" => {"identity" => {"username" => "user1"}}
}

IMPORTANT

If the identity resource is added and legacy security realms are used to secure the
management interfaces, authenticated users will always have the anonymous identity.
Once the identity resource is removed, users authenticated from the legacy security
realms will appear with the appropriate identity.

Authorization for management operation always uses the security domain, which is the domain specified
on access=identity. If not specified, it is the domain used for authentication. Any role mapping is always
in the context of the security domain.

The identity resource for the current request will return a set of roles as mapped using the Elytron
configuration. When an RBAC based role mapping definition is in use, the roles from the identity
resource will be taken as groups and fed into the management RoleMapping to obtain the
management roles for the current request.

Table 2.1. Identity to be Used for Different Scenarios

Scenario No access=identity
definition

access=identity
referencing an Elytron
security-domain

HTTP management interface using legacy security-
realm

Identity from
connection.

Unsupported or
anonymous identity.

HTTP management interface using elytron HTTP
authentication factory backed by security-domain

Identity from
connection.

Identity from referenced
security-domain if it
was successfully
inflowed.

Native management, including over HTTP Upgrade,
interface using legacy security-realm

Identity from
connection.

Unsupported or
anonymous identity.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

109

Native management, including over HTTP Upgrade,
interface using elytron SASL authentication factory
backed by security-domain

Identity from
connection.

Identity from referenced
security-domain if it
was successfully
inflowed.

Scenario No access=identity
definition

access=identity
referencing an Elytron
security-domain

NOTE

If security domain used in the identity resource does not trust the security domain from
authentication, anonymous identity is used.

The security domain used in the identity resource does not need to trust the security
domain from authentication, when both are using an identical security realm.

The trusted security domains is not transitive.

Where no access=identity resource is defined, then the identity established during authentication
against the management interface will be used. Identities established using connections, through the
remoting subsystem or using applications, will not be usable in this case.

Where an access=identity resource is defined but the security domain used by the management
interfaces is different and not listed in the list of domains to inflow from, no identity will be established.
An inflow will be attempted using the identity established during authentication. Identities established
using connections through the remoting subsystem or using applications will not be inflowed in this way.

IMPORTANT

Where the management interfaces are secured using the legacy security realms, the
identity will not be sharable across different security domains. In that case no
access=identity resource should be defined. So the identity established during
authentication can be used directly. Thus, applications secured using PicketBox are not
supported for the identity resource.

2.1.5. Using Elytron Client with the Management CLI

You can configure the management CLI to use Elytron Client for providing security information when
connecting to JBoss EAP.

1. Secure the management interfaces with Elytron.
In order to use Elytron Client with the management CLI, you must secure the management
interfaces with Elytron. You can find more details on securing the management interfaces with
Elytron in User Authentication with Elytron .

2. Create an Elytron Client configuration file.
You need to create an Elytron Client configuration file that houses your authentication
configuration as well as rules for using that configuration. You can find more details on creating
an authentication configuration in the The Configuration File Approach section of the JBoss
EAP How to Configure Identity Management Guide .

Example: custom-config.xml

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

110

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_client_configuration_file_approach

3. Use the Elytron Client configuration file with management CLI script.

$./jboss-cli.sh -c -Dwildfly.config.url=/path/to/custom-config.xml

2.2. IDENTITY PROPAGATION AND FORWARDING WITH ELYTRON

2.2.1. Propagating Security Identities for Remote Calls

JBoss EAP 7.1 introduced the ability to easily configure the server and your applications to propagate a
security identity from a client to the server for remoting calls. You can also configure server components
to run within the security identity of a given user.

The example in this section demonstrates how to forward security identity credentials. It propagates the
security identity of a client and an EJB to a remote EJB. It returns a string containing the name of the
Principal that called the remote EJB along with the user’s authorized role information. The example
consists of the following components.

A secured EJB that contains a single method, accessible by all users, that returns authorization
information about the caller.

An intermediate EJB that contains a single method. It makes use of a remote connection and
invokes the method on the secured EJB.

A remote standalone client application that invokes the intermediate EJB.

A META-INF/wildfly-config.xml file that contains the identity information used for
authentication.

You must first enable security identity propagation by configuring the server. Next review the example
application code that uses the WildFlyInitialContextFactory to look up and invoke the remote EJB.

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <authentication-rules>
 <rule use-configuration="configuration1">
 <match-host name="localhost" />
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="configuration1">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="user1" />
 <credentials>
 <clear-password password="password123" />
 </credentials>
 <set-mechanism-realm name="exampleManagementRealm" />
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

111

Configure the Server for Security Propagation

1. Configure the ejb3 subsystem to use the Elytron ApplicationDomain.

/subsystem=ejb3/application-security-domain=quickstart-domain:add(security-
domain=ApplicationDomain)

This adds the following application-security-domain configuration to the ejb3 subsystem.

2. Add the PLAIN authentication configuration to send plain text user names and passwords, and
the authentication context that is to be used for outbound connections. See Mechanisms That
Support Security Identity Propagation for the list of mechanisms that support identity
propagation.

/subsystem=elytron/authentication-configuration=ejb-outbound-configuration:add(security-
domain=ApplicationDomain,sasl-mechanism-selector="PLAIN")
/subsystem=elytron/authentication-context=ejb-outbound-context:add(match-rules=
[{authentication-configuration=ejb-outbound-configuration}])

This adds the following authentication-client configuration to the elytron subsystem.

3. Add the remote destination outbound socket binding to the standard-sockets socket binding
group.

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding=ejb-
outbound:add(host=localhost,port=8080)

This adds the following ejb-outbound outbound socket binding to the standard-sockets
socket binding group.

<subsystem xmlns="urn:jboss:domain:ejb3:5.0">

 <application-security-domains>
 <application-security-domain name="quickstart-domain" security-
domain="ApplicationDomain"/>
 </application-security-domains>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">
 <authentication-client>
 <authentication-configuration name="ejb-outbound-configuration" security-
domain="ApplicationDomain" sasl-mechanism-selector="PLAIN"/>
 <authentication-context name="ejb-outbound-context">
 <match-rule authentication-configuration="ejb-outbound-configuration"/>
 </authentication-context>
 </authentication-client>

</subsystem>

<socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">

 <outbound-socket-binding name="ejb-outbound">

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

112

4. Add the remote outbound connection and set the SASL authentication factory in the HTTP
connector.

/subsystem=remoting/remote-outbound-connection=ejb-outbound-connection:add(outbound-
socket-binding-ref=ejb-outbound, authentication-context=ejb-outbound-context)
/subsystem=remoting/http-connector=http-remoting-connector:write-attribute(name=sasl-
authentication-factory,value=application-sasl-authentication)

This adds the following http-remoting-connector and ejb-outbound-connection configuration
to the remoting subsystem.

5. Configure the Elytron SASL authentication to use the PLAIN mechanism.

/subsystem=elytron/sasl-authentication-factory=application-sasl-authentication:write-
attribute(name=mechanism-configurations,value=[{mechanism-name=PLAIN},{mechanism-
name=JBOSS-LOCAL-USER,realm-mapper=local},{mechanism-name=DIGEST-
MD5,mechanism-realm-configurations=[{realm-name=ApplicationRealm}]}])

This adds the following application-sasl-authentication configuration to the elytron
subsystem.

 <remote-destination host="localhost" port="8080"/>
 </outbound-socket-binding>
</socket-binding-group>

<subsystem xmlns="urn:jboss:domain:remoting:4.0">

 <http-connector name="http-remoting-connector" connector-ref="default" security-
realm="ApplicationRealm" sasl-authentication-factory="application-sasl-authentication"/>
 <outbound-connections>
 <remote-outbound-connection name="ejb-outbound-connection" outbound-socket-
binding-ref="ejb-outbound" authentication-context="ejb-outbound-context"/>
 </outbound-connections>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:4.0" final-providers="combined-providers" disallowed-
providers="OracleUcrypto">

 <sasl>

 <sasl-authentication-factory name="application-sasl-authentication" sasl-server-
factory="configured" security-domain="ApplicationDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="PLAIN"/>
 <mechanism mechanism-name="JBOSS-LOCAL-USER" realm-mapper="local"/>
 <mechanism mechanism-name="DIGEST-MD5">
 <mechanism-realm realm-name="ApplicationRealm"/>
 </mechanism>
 </mechanism-configuration>
 </sasl-authentication-factory>
 </sasl>

</subsystem>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

113

The server is now configured to enable security propagation for the following example application.

Review the Example Application Code That Propagates a Security Identity
Once security identity propagation is enabled in the server configuration, the EJB client application can
use the WildFlyInitialContextFactory to look up and invoke the EJB proxy. The EJB is invoked as the
user that authenticated in the client example shown below. The following abbreviated code examples
are taken from the ejb-security-context-propagation quickstart that ships with JBoss EAP 7.2. See
that quickstart for a complete working example of security identity propagation.

To invoke the EJB as a different user, you can set the Context.SECURITY_PRINCIPAL and
Context.SECURITY_CREDENTIALS in the context properties.

Example: Remote Client

Example: Intermediate EJB

public class RemoteClient {

 public static void main(String[] args) throws Exception {
 // invoke the intermediate bean using the identity configured in wildfly-config.xml
 invokeIntermediateBean();

 // now lets programmatically setup an authentication context to switch users before invoking the
intermediate bean
 AuthenticationConfiguration superUser =
AuthenticationConfiguration.empty().setSaslMechanismSelector(SaslMechanismSelector.NONE.addMe
chanism("PLAIN")).
 useName("superUser").usePassword("superPwd1!");
 final AuthenticationContext authCtx = AuthenticationContext.empty().
 with(MatchRule.ALL, superUser);

 AuthenticationContext.getContextManager().setThreadDefault(authCtx);
 invokeIntermediateBean();
 }

 private static void invokeIntermediateBean() throws Exception {
 final Hashtable<String, String> jndiProperties = new Hashtable<>();
 jndiProperties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.wildfly.naming.client.WildFlyInitialContextFactory");
 jndiProperties.put(Context.PROVIDER_URL, "remote+http://localhost:8080");
 final Context context = new InitialContext(jndiProperties);
 IntermediateEJBRemote intermediate = (IntermediateEJBRemote) context.lookup("ejb:/ejb-
security-context-propagation/IntermediateEJB!"
 + IntermediateEJBRemote.class.getName());
 // Call the intermediate EJB
 System.out.println(intermediate.makeRemoteCalls());
 }
}

@Stateless
@Remote(IntermediateEJBRemote.class)
@SecurityDomain("quickstart-domain")
@PermitAll
public class IntermediateEJB implements IntermediateEJBRemote {

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

114

Example: Secured EJB

Example: wildfly-config.xml File

 @EJB(lookup="ejb:/ejb-security-context-
propagation/SecuredEJB!org.jboss.as.quickstarts.ejb_security_context_propagation.SecuredEJBRemot
e")
 private SecuredEJBRemote remote;

 @Resource
 private EJBContext context;

 public String makeRemoteCalls() {
 try {
 StringBuilder sb = new StringBuilder("** ").
 append(context.getCallerPrincipal()).
 append(" * * \n\n");
 sb.append("Remote Security Information: ").
 append(remote.getSecurityInformation()).
 append("\n");

 return sb.toString();
 } catch (Exception e) {
 if (e instanceof RuntimeException) {
 throw (RuntimeException) e;
 }
 throw new RuntimeException("Teasting failed.", e);
 }
 }
}

@Stateless
@Remote(SecuredEJBRemote.class)
@SecurityDomain("quickstart-domain")
public class SecuredEJB implements SecuredEJBRemote {

 @Resource
 private SessionContext context;

 @PermitAll
 public String getSecurityInformation() {
 StringBuilder sb = new StringBuilder("[");
 sb.append("Principal=[").
 append(context.getCallerPrincipal().getName()).
 append("], ");
 userInRole("guest", sb).append(", ");
 userInRole("user", sb).append(", ");
 userInRole("admin", sb).append("]");
 return sb.toString();
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

115

2.2.2. Utilizing Authorization Forwarding Mode

In addition to credential forwarding, Elytron supports the trusted use of identities between peers. This
can be useful in the following cases.

Requirements are such that you cannot send passwords over the wire.

The authentication type is one that does not support credential forwarding.

The environment requires a need to limit which systems are allowed to receive the propagated
requests.

To utilize authorization forwarding, you first configure an authentication client on the forwarding server
and then configure the receiving server to accept and handle the authorization .

Configure the Authentication Client on the Forwarding Server
To enable authorization forwarding, you must configure an authentication client configuration in the
forwarding server configuration.

The following management CLI commands create a default authentication client configuration to
enable authentication forwarding. You can configure a more advanced rule based selection if you need
one.

Example: Management CLI Command to Create the Authentication Client Configuration

/subsystem=elytron/authentication-configuration=forwardit:add(authentication-
name=theserver1,security-domain=ApplicationDomain,realm=ApplicationRealm,forwarding-
mode=authorization,credential-reference={clear-text=thereallysecretpassword})
/subsystem=elytron/authentication-context=forwardctx:add(match-rules=[{authentication-
configuration=forwardit,match-no-user=true}])

These commands add the following authentication-configuration and authentication-context
configuration to the elytron subsystem.

Example: Authentication Client Configuration

 <authentication-rules>
 <rule use-configuration="default"/>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="default">
 <set-user-name name="quickstartUser"/>
 <credentials>
 <clear-password password="quickstartPwd1!"/>
 </credentials>
 <sasl-mechanism-selector selector="PLAIN"/>
 <providers>
 <use-service-loader />
 </providers>
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

<authentication-client>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

116

When the forwarding server contacts the receiving server, instead of using the default authentication-
based user name and credentials, it uses the predefined server login name theserver1 to establish the
trust relationship.

Configure the Authorization Forwarding on the Receiving Server
For the forwarding to complete successfully, the receiving server configuration needs to be configured
with the identity matching the one passed by the forwarding server. In this case, you must configure a
user named theserver1 on the receiving server with the correct credentials.

You must also configure a "RunAs" permission mapping in the elytron subsystem to allow the identity
switch for the theserver1 identity that is passed from the forwarding server. For more information about
permission mapping, see Create an Elytron Permission Mapper in How to Configure Server Security for
JBoss EAP.

The command below adds a simple-permission-mapper named auth-forwarding-permission-mapper
that includes the following configurations.

A permission mapping for the user anonymous. This user has no permissions, which prevents an
anonymous user from being able to log in.

A permission mapping for the user theserver1. This user is assigned the
RunAsPrincipalPermission permission of *, which gives this user global permissions to run as
any identity. You can restrict the permission to a specific identity if you prefer.

A permission mapping for all other users.

Example: Management CLI Command to the Create Simple Permission Mapper

/subsystem=elytron/permission-set=run-as-principal-permission:add(permissions=[{class-
name="org.wildfly.security.auth.permission.RunAsPrincipalPermission",target-name="*"}])

/subsystem=elytron/simple-permission-mapper=auth-forwarding-permission-mapper:add(permission-
mappings=[{principals=["anonymous"]},{principals=["theserver1"],permission-sets=[{permission-
set=login-permission},{permission-set=default-permissions},{permission-set=run-as-principal-
permission}]},{match-all=true,permission-sets=[{permission-set=login-permission},{permission-
set=default-permissions}]}]

This command adds the following simple-permission-mapper configuration to the elytron subsystem.

Example: Simple Permission Mapper Configuration

 <authentication-configuration name="forwardit" authentication-name="theserver1" security-
domain="ApplicationDomain" forwarding-mode="authorization" realm="ApplicationRealm">
 <credential-reference clear-text="thereallysecretpassword"/>
 </authentication-configuration>
 <authentication-context name="forwardctx">
 <match-rule match-no-user="true" authentication-configuration="forwardit"/>
 </authentication-context>
</authentication-client>

<mappers>
 <simple-permission-mapper name="auth-forwarding-permission-mapper">
 <permission-mapping>
 <principal name="anonymous"/>
 <!-- No permissions: Deny any permission to anonymous! -->

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

117

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_server_security/#create_an_elytron_permission_mapper

NOTE

The login-permission and default-permissions permission sets are already present in
the default configuration.

In cases where principal transformers are used after forwarding authorization, then those transformers
are applied on both the authentication and the authorization principals.

2.2.3. Retrieving Security Identity Credentials

There might be situations where you need to retrieve identity credentials for use in outgoing calls, for
example, by an HTTP client. The following example demonstrates how to retrieve security credentials
programmatically.

 </permission-mapping>
 <permission-mapping>
 <principal name="theserver1"/>
 <permission-set name="login-permission"/>
 <permission-set name="default-permissions"/>
 <permission-set name="run-as-principal-permission"/>
 </permission-mapping>
 <permission-mapping match-all="true">
 <permission-set name="login-permission"/>
 <permission-set name="default-permissions"/>
 </permission-mapping>
 </simple-permission-mapper>
</mappers>
<permission-sets>
 <permission-set name="login-permission">
 <permission class-name="org.wildfly.security.auth.permission.LoginPermission"/>
 </permission-set>
 <permission-set name="default-permissions">
 <permission class-name="org.wildfly.extension.batch.jberet.deployment.BatchPermission"
module="org.wildfly.extension.batch.jberet" target-name="*"/>
 <permission class-name="org.wildfly.transaction.client.RemoteTransactionPermission"
module="org.wildfly.transaction.client"/>
 <permission class-name="org.jboss.ejb.client.RemoteEJBPermission" module="org.jboss.ejb-
client"/>
 </permission-set>
 <permission-set name="run-as-principal-permission">
 <permission class-name="org.wildfly.security.auth.permission.RunAsPrincipalPermission" target-
name="*"/>
 </permission-set>
</permission-sets>

import org.wildfly.security.auth.server.IdentityCredentials;
import org.wildfly.security.auth.server.SecurityDomain;
import org.wildfly.security.auth.server.SecurityIdentity;
import org.wildfly.security.credential.PasswordCredential;
import org.wildfly.security.password.interfaces.ClearPassword;

SecurityIdentity securityIdentity = null;
ClearPassword password = null;

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

118

2.2.4. Mechanisms That Support Security Identity Propagation

The following SASL mechanisms support propagation of security identities:

PLAIN

OAUTHBEARER

GSSAPI

GS2-KRB5

The following HTTP mechanisms support propagation of security identities:

FORM 1

BASIC

BEARER_TOKEN

SPNEGO

1 FORM authentication is not automatically handled by the web browser. For this reason, you cannot use
identity propagation with web applications that use FORM authentication when running in an HA cluster.
Other mechanisms, such as BASIC and SPNEGO, support identity propagation in an HA cluster
environment.

2.3. IDENTITY SWITCHING WITH ELYTRON

2.3.1. Switching Identities in Server-to-server EJB Calls

By default, when you make a remote call to an EJB deployed to an application server, the identity used
for authentication on the remote server is the same one that was used on the source server. In some
cases, you might want to run the remote secured EJB within the security context of a different identity.

// Obtain the SecurityDomain for the current deployment.
// The calling code requires the
// org.wildfly.security.permission.ElytronPermission("getSecurityDomain") permission
// if running with a security manager.
SecurityDomain securityDomain = SecurityDomain.getCurrent();
if (securityDomain != null) {
 // Obtain the current security identity from the security domain.
 // This always returns an identity, but it could be the representation
 // of the anonymous identity if no authenticated identity is available.
 securityIdentity = securityDomain.getCurrentSecurityIdentity();
 // The private credentials can be accessed to obtain any credentials delegated to the identity.
 // The calling code requires the
 // org.wildfly.security.permission.ElytronPermission("getPrivateCredentials")
 // permission if running with a security manager.
 IdentityCredentials credentials = securityIdentity.getPrivateCredentials();
 if (credentials.contains(PasswordCredential.class)) {
 password =
credentials.getCredential(PasswordCredential.class).getPassword(ClearPassword.class);
 }
}

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

119

You can use the Elytron API to switch identities in server-to-server EJB calls. When you do that, the
request received over the connection is executed as a new request, using the identity specified
programmatically in the API call.

The following code example demonstrates how to switch the identity that is used for authentication on a
remote EJB. The remoteUsername and remotePassword arguments passed in the
securityDomain.authenticate() method are the identity credentials that are to be used for
authentication on the target server.

Example: Switching Identities in Server-to-server EJB Calls

2.4. USER AUTHENTICATION WITH LEGACY CORE MANAGEMENT
AUTHENTICATION

2.4.1. Default User Configuration

All management interfaces in JBoss EAP are secured by default and users can access them in two
different ways: local interfaces and remote interfaces. The basics of both of these authentication
mechanisms are covered in the Default Security and JBoss EAP Out of the Box sections of the JBoss
EAP Security Architecture guide. By default, access to these interfaces is configured in the Management
Realm security realm. Initially, the local interface is enabled and requires access to the host machine
running the JBoss EAP instance. Remote access is also enabled and is configured to use a file-based
identity store. By default it uses mgmt-users.properties file to store user names and passwords, and
mgmt-groups.properties to store user group information.

User information is added to these files by using the included adduser script located in the
EAP_HOME/bin/ directory.

To add a user via the adduser script:

1. Run the add-user.sh or add-user.bat command.

2. Choose whether to add a management user or application user.

3. Choose the realm the user will be added to. By default, the only available realms are
ManagementRealm and ApplicationRealm. If a custom realm has been added, its name can be
manually entered instead.

4. Type the desired user name, password, and optional roles when prompted. The changes are
written to each of the properties files for the security realm.

SecurityDomain securityDomain = SecurityDomain.getCurrent();
Callable<T> forwardIdentityCallable = () -> {
 return AuthenticationContext.empty()
 .with(MatchRule.ALL,
 AuthenticationConfiguration.empty()
 .setSaslMechanismSelector(SaslMechanismSelector.ALL)
 .useForwardedIdentity(securityDomain))
 .runCallable(callable);
};

securityDomain.authenticate(remoteUsername, new
PasswordGuessEvidence(remotePassword.toCharArray())).runAs(forwardIdentityCallable);

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

120

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#default_security
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#how_red_hat_jboss_enterprise_application_platform_7_handles_security_out_of_the_box

2.4.2. Adding Authentication via LDAP

JBoss EAP also supports using LDAP authentication for securing the management interfaces. The
basics of LDAP and how it works with JBoss EAP are covered in the LDAP, Using LDAP with the
Management Interfaces, and Using LDAP with the ManagementRealm sections of the Red Hat JBoss
Enterprise Application Platform 7 Security Architecture guide. For more specifics on how to secure the
management interfaces using LDAP authentication, see the Securing the Management Interfaces with
LDAP section of the JBoss EAP How to Configure Identity Management Guide .

2.4.3. Using JAAS for Securing the Management Interfaces

JAAS is a declarative security API used by JBoss EAP to manage security. For more details and
background regarding JAAS and declarative security, see the Declarative Security and JAAS section of
the Red Hat JBoss Enterprise Application Platform Security Architecture guide.

NOTE

When JBoss EAP instances are configured to run in ADMIN_ONLY mode, using JAAS to
secure the management interfaces is not supported. For more information on
ADMIN_ONLY mode, see the Running JBoss EAP in ADMIN_ONLY Mode section of the
JBoss EAP Configuration Guide.

To use JAAS to authenticate to the management interfaces, the following steps must be performed:

1. Create a security domain.
In this example, a security domain is created with the UserRoles login module, but other login
modules may be used as well:

/subsystem=security/security-domain=UsersLMDomain:add(cache-type=default)

/subsystem=security/security-domain=UsersLMDomain/authentication=classic:add

/subsystem=security/security-domain=UsersLMDomain/authentication=classic/login-
module=UsersRoles:add(code=UsersRoles, flag=required,module-options=
[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")])

2. Create a security realm with JAAS authentication.

/core-service=management/security-realm=SecurityDomainAuthnRealm:add

/core-service=management/security-
realm=SecurityDomainAuthnRealm/authentication=jaas:add(name=UsersLMDomain)

3. Update the http-interface management interface to use new security realm.

/core-service=management/management-interface=http-interface/:write-
attribute(name=security-realm,value=SecurityDomainAuthnRealm)

4. Optional: Assign group membership.
The attribute assign-groups determines whether loaded user membership information from
the security domain is used for group assignment in the security realm. When set to true, this
group assignment is used for Role-Based Access Control (RBAC).

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

121

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#ldap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#using_ldap_with_the_management_interfaces
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#using_ldap_management_realm
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#securing_the_management_interfaces_with_ldap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#declarative_security_and_jaas
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#running_eap_in_admin_only_mode

/core-service=management/security-
realm=SecurityDomainAuthnRealm/authentication=jaas:write-attribute(name=assign-
groups,value=true)

2.5. ROLE-BASED ACCESS CONTROL

The basics of Role-Based Access Control are covered in the Role-Based Access Control and Adding
RBAC to the Management Interfaces sections of the JBoss EAP Security Architecture guide.

2.5.1. Enabling Role-Based Access Control

By default the Role-Based Access Control (RBAC) system is disabled. It is enabled by changing the
provider attribute from simple to rbac. provider is an attribute of the access-control element of the
management element. This can be done using the management CLI or by editing the server
configuration XML file if the server is offline. When RBAC is disabled or enabled on a running server, the
server configuration must be reloaded before it takes effect.

WARNING

Before changing the provider to rbac, be sure your configuration has a user who will
be mapped to one of the RBAC roles, preferably with at least one in the
Administrator or SuperUser role. Otherwise your installation will not be
manageable except by shutting it down and editing the XML configuration. If you
have started with one of the standard XML configurations shipped with JBoss EAP,
the $local user will be mapped to the SuperUser role and the local authentication
scheme will be enabled. This will allow a user, running the CLI on the same system as
the JBoss EAP process, to have full administrative permissions. Remote CLI users
and web-based management console users will have no permissions.

It is recommended to map at least one user, besides $local, before switching the
provider to rbac. You can do all of the configuration associated with the rbac
provider even when the provider is set to simple.

Once enabled it can only be disabled by a user of the Administrator or SuperUser roles. By default the
management CLI runs as the SuperUser role if it is run on the same machine as the server.

CLI to Enable RBAC
To enable RBAC with the management CLI, use the write-attribute operation of the access
authorization resource to set the provider attribute to rbac.

/core-service=management/access=authorization:write-attribute(name=provider, value=rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }



Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

122

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#role_based_access_control
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#adding_rbac_to_the_management_interfaces

}

reload

In a managed domain, the access control configuration is part of the domain wide configuration, so the
resource address is the same as above, but the management CLI is connected to the master domain
controller.

/core-service=management/access=authorization:write-attribute(name=provider,value=rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 },
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
 }},
 "server-two" => {"response" => {
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
 }}
 }}}}
}

reload --host=master

NOTE

As with a standalone server, a reload or restart is required for the change to take effect. In
a managed domain, all hosts and servers in the domain will need to be reloaded or
restarted, starting with the master domain controller.

Management CLI Command to Disable RBAC
To disable RBAC with the management CLI, use the write-attribute operation of the access
authorization resource to set the provider attribute to simple.

/core-service=management/access=authorization:write-attribute(name=provider, value=simple)

XML Configuration to Enable or Disable RBAC
If the server is offline the XML configuration can be edited to enable or disable RBAC. To do this, edit
the provider attribute of the access-control element of the management element. Set the value to rbac
to enable, and simple to disable.

Example: XML Configuration to Enable or Disable RBAC

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

123

2.5.2. Changing the Permission Combination Policy

The Permission Combination Policy determines how permissions are determined if a user is assigned
more than one role. This can be set to permissive or rejecting. The default is permissive.

When set to permissive, if any role is assigned to the user that permits an action, then the action is
allowed.

When set to rejecting, if multiple roles are assigned to a user, then no action is allowed. This means that
when the policy is set to rejecting each user should only be assigned one role. Users with multiple roles
will not be able to use the management console or the management CLI when the policy is set to
rejecting.

The Permission Combination Policy is configured by setting the permission-combination-policy
attribute to either permissive or rejecting. This can be done using the management CLI or by editing
the server configuration XML file if the server is offline. The permission-combination-policy attribute
is part of the access-control element and the access-control element can be found in the
management element.

Setting the Permission Combination Policy
Use the write-attribute operation of the access authorization resource to set the permission-
combination-policy attribute to the required policy name.

/core-service=management/access=authorization:write-attribute(name=permission-combination-
policy, value=POLICYNAME)

The valid policy names are rejecting and permissive.

Example: Management CLI Command for Rejecting Permission Combination Policy

/core-service=management/access=authorization:write-attribute(name=permission-combination-
policy, value=rejecting)

If the server is offline the XML configuration can be edited to change the permission combination policy
value. To do this, edit the permission-combination-policy attribute of the access-control element.

Example: XML Configuration for Rejecting Permission Combination Policy

<management>
 <access-control provider="rbac">
 <role-mapping>
 <role name="SuperUser">
 <include>
 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
 </access-control>
</management>

<access-control provider="rbac" permission-combination-policy="rejecting">
 <role-mapping>
 <role name="SuperUser">
 <include>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

124

2.5.3. Managing Roles

When Role-Based Access Control (RBAC) is enabled, what a management user is permitted to do is
determined by the roles to which the user is assigned. JBoss EAP 7 uses a system of includes and
excludes based on both the user and group membership to determine to which role a user belongs.

A user is considered to be assigned to a role if the user is:

listed as a user to be included in the role, or

a member of a group that is listed to be included in the role.

A user is also considered to be assigned to a role if the user is not:

listed as a user to exclude from the role, or

a member of a group that is listed to be excluded from the role.

Exclusions take priority over inclusions.

Role include and exclude settings for users and groups can be configured using both the management
console and the management CLI.

Only users of the SuperUser or Administrator roles can perform this configuration.

2.5.3.1. Configure User Role Assignment Using the Management CLI

The configuration of mapping users and groups to roles is located at: /core-
service=management/access=authorization as role-mapping elements.

Only users of the SuperUser or Administrator roles can perform this configuration.

Viewing Role Assignment Configuration
Use the :read-children-names operation to get a complete list of the configured roles:

/core-service=management/access=authorization:read-children-names(child-type=role-mapping)
{
 "outcome" => "success",
 "result" => [
 "Administrator",
 "Deployer",
 "Maintainer",
 "Monitor",
 "Operator",
 "SuperUser"
]
}

Use the read-resource operation of a specified role-mapping to get the full details of a specific role:

 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
</access-control>

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

125

/core-service=management/access=authorization/role-mapping=ROLENAME:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },
 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}

Add a New Role
This procedure shows how to add a role-mapping entry for a role. This must be done before the role can
be configured.

Use the add operation to add a new role configuration.

/core-service=management/access=authorization/role-mapping=ROLENAME:add

ROLENAME is the name of the role that the new mapping is for, such as Auditor.

Example: Management CLI Command for New Role Configuration

/core-service=management/access=authorization/role-mapping=Auditor:add

Add a User as Included in a Role
This procedure shows how to add a user to the included list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a user entry to the includes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:add(name=USERNAME, type=USER)

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends the use of a naming convention
for aliases, such as user-USERNAME (for example, user-max).

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

126

USERNAME is the name of the user being added to the include list, such as max.

Example: Management CLI Command for User Included in a Role

/core-service=management/access=authorization/role-mapping=Auditor/include=user-
max:add(name=max, type=USER)

Add a User as Excluded in a Role
This procedure shows how to add a user to the excluded list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a user entry to the excludes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:add(name=USERNAME, type=USER)

ROLENAME is the name of the role being configured, for example Auditor.

USERNAME is the name of the user being added to the exclude list, for example max.

ALIAS is a unique name for this mapping. Red Hat recommends that the use of a naming
convention for aliases, such as user-USERNAME (for example, user-max).

Example: Management CLI Command User Excluded in a Role

/core-service=management/access=authorization/role-mapping=Auditor/exclude=user-
max:add(name=max, type=USER)

Remove User Role Include Configuration
This procedure shows how to remove a user include entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-mapping=ROLENAME/include=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that the use of a naming
convention for aliases, such as user-USERNAME (for example, user-max).

Example: Management CLI Command for Removing User Role Include Configuration

/core-service=management/access=authorization/role-mapping=Auditor/include=user-max:remove

NOTE

Removing the user from the list of includes does not remove the user from the system,
nor does it guarantee that the role will not be assigned to the user. The role might still be
assigned based on group membership.

Remove User Role Exclude Configuration
This procedure shows how to remove an user exclude entry from a role mapping.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

127

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that the use of a naming
convention for aliases, such as user-USERNAME (for example, user-max).

/core-service=management/access=authorization/role-mapping=Auditor/exclude=user-max:remove

NOTE

Removing the user from the list of excludes does not remove the user from the system,
nor does it guarantee the role will be assigned to the user. Roles might still be excluded
based on group membership.

2.5.4. Configure User Role Assignment with the Elytron Subsystem

In addition to adding role mappings for users directly, as covered in Managing Roles section, you can
also configure RBAC roles to be directly taken from the identity provided by the elytron subsystem.

To configure the RBAC system to use roles provided by the elytron subsystem:

/core-service=management/access=authorization:write-attribute(name=use-identity-roles,value=true)

IMPORTANT

RBAC must be enabled to use this functionality, and the principal must have RBAC roles.

2.5.5. Roles and User Groups

A user group is an arbitrary label that can be assigned to one or more users. When authenticating using
the management interfaces, users are assigned groups from either the elytron subsystem or core
management authentication, depending on how the management interfaces are secured. The RBAC
system can be configured to automatically assign roles to users depending on what user groups they are
members of. It can also exclude users from roles based on group membership.

2.5.6. Configure Group Role Assignment Using the Management CLI

Groups to be included or excluded from a role can be configured in the management console and the
management CLI. This topic only shows using the management CLI.

The configuration of mapping users and groups to roles is located in the management API at: /core-
service=management/access=authorization as role-mapping elements.

Only users in the SuperUser or Administrator roles can perform this configuration.

Viewing Group Role Assignment Configuration
Use the read-children-names operation to get a complete list of the configured roles:

/core-service=management/access=authorization:read-children-names(child-type=role-mapping)

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

128

{
 "outcome" => "success",
 "result" => [
 "Administrator",
 "Deployer",
 "Maintainer",
 "Monitor",
 "Operator",
 "SuperUser"
]
}

Use the read-resource operation of a specified role-mapping to get the full details of a specific role:

/core-service=management/access=authorization/role-mapping=ROLENAME:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },
 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}

Add a New Role
This procedure shows how to add a role-mapping entry for a role. This must be done before the role can
be configured.

Use the add operation to add a new role configuration.

/core-service=management/access=authorization/role-mapping=ROLENAME:add

Add a Group as Included in a Role
This procedure shows how to add a group to the included list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a group entry to the includes list of the role.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

129

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:add(name=GROUPNAME, type=GROUP)

ROLENAME is the name of the role being configured, such as Auditor.

GROUPNAME is the name of the group being added to the include list, such as investigators.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-investigators).

Example: Management CLI Command for Adding a Group as Included in a Role

/core-service=management/access=authorization/role-mapping=Auditor/include=group-
investigators:add(name=investigators, type=GROUP)

Add a Group as Excluded in a Role
This procedure shows how to add a group to the excluded list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be created first.

Use the add operation to add a group entry to the excludes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:add(name=GROUPNAME, type=GROUP)

ROLENAME is the name of the role being configured, such as Auditor.

GROUPNAME is the name of the group being added to the include list, such as supervisors.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-supervisors).

Example: Management CLI Command for Adding a Group as Excluded in a Role

/core-service=management/access=authorization/role-mapping=Auditor/exclude=group-
supervisors:add(name=supervisors, type=GROUP)

Remove Group Role Include Configuration
This procedure shows how to remove a group include entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-mapping=ROLENAME/include=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-investigators).

Example: Management CLI Command for Removing Group Role Include Configuration

/core-service=management/access=authorization/role-mapping=Auditor/include=group-
investigators:remove

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

130

NOTE

Removing the group from the list of includes does not remove the group from the
system, nor does it guarantee that the role will not be assigned to users in this group. The
role might still be assigned to users in the group individually.

Remove a User Group Exclude Entry
This procedure shows how to remove a group exclude entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:remove

ROLENAME is the name of the role being configured, such as Auditor.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases, such as group-GROUPNAME (for example, group-supervisors).

/core-service=management/access=authorization/role-mapping=Auditor/exclude=group-
supervisors:remove

NOTE

Removing the group from the list of excludes does not remove the group from the
system. It also does not guarantee the role will be assigned to members of the group.
Roles might still be excluded based on group membership.

2.5.7. Using RBAC with LDAP

The basics of using RBAC with LDAP as well as how to configure JBoss EAP to use RBAC with LDAP are
covered in the LDAP and RBAC section of the JBoss EAP How to Configure Identity Management
Guide.

2.5.8. Scoped Roles

Scoped roles are user-defined roles that grant the permissions of one of the standard roles but only for
one or more specified server groups or hosts in an JBoss EAP managed domain. Scoped roles allow for
management users to be granted permissions that are limited to only those server groups or hosts that
are required.

IMPORTANT

Scoped roles can be created by users assigned the Administrator or SuperUser roles.

They are defined by five characteristics:

A unique name.

The standard roles which it is based on.

If it applies to server groups or hosts.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

131

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#ldap_and_rbac

The list of server groups or hosts that it is restricted to.

If all users are automatically included. This defaults to false.

Once created a scoped role can be assigned to users and groups the same way that the standard roles
are.

Creating a scoped role does not allow for defining new permissions. Scoped roles can only be used to
apply the permissions of an existing role in a limited scope. For example, a scoped role could be created
based on the Deployer role which is restricted to a single server group.

There are only two scopes that roles can be limited to:

Host-scoped roles

A role that is host-scoped restricts the permissions of that role to one or more hosts. This means
access is provided to the relevant /host=*/ resource trees but resources that are specific to other
hosts are hidden.

Server-group-scoped roles

A role that is server-group-scoped restricts the permissions of that role to one or more server
groups. Additionally the role permissions will also apply to the profile, socket binding group, server
configuration, and server resources that are associated with the specified server-groups. Any sub-
resources within any of those that are not logically related to the server-group will not be visible to
the user.

IMPORTANT

Some resources are non-addressable to server-group and host scoped roles in order to
provide a simplified view of the management model to improve usability. This is distinct
from resources that are non-addressable to protect sensitive data.

For host scoped roles this means that resources in the /host=* portion of the
management model will not be visible if they are not related to the server groups
specified for the role.

For server-group scoped roles, this means that resources in the profile, socket-binding-
group, deployment, deployment-overlay, server-group, server-config and server
portions of the management model will not be visible if they are not related to the server
groups specified for the role.

2.5.8.1. Configuring Scoped Roles from the Management CLI

IMPORTANT

Only users in the SuperUser or Administrator roles can perform this configuration.

Add a New Scoped Role
To add a new scoped role, the following operations must be done:

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-ROLE:add

/core-service=management/access=authorization/server-group-scoped-role=NEW-SCOPED-
ROLE:add(base-role=BASE-ROLE, server-groups=[SERVER-GROUP-NAME])

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

132

Replace NEW-SCOPED-ROLE, BASE-ROLE, and SERVER-GROUP-NAME with the proper information.

Viewing and Editing a Scoped Role Mapping
A scoped role’s details, including members, can be viewed by using the following command:

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-ROLE:read-
resource(recursive=true)

Replace NEW-SCOPED-ROLE with the proper information.

To edit a scoped role’s details, the write-attribute command may be used. For example:

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-ROLE:write-
attribute(name=include-all, value=true)

Replace NEW-SCOPED-ROLE with the proper information.

Delete a Scoped Role

/core-service=management/access=authorization/role-mapping=NEW-SCOPED-ROLE:remove

/core-service=management/access=authorization/server-group-scoped-role=NEW-SCOPED-
ROLE:remove

Replace NEW-SCOPED-ROLE with the proper information.

IMPORTANT

A scoped role cannot be deleted if users or groups are assigned to it. Remove the role
assignments first, and then delete it.

Adding and Removing Users
Adding and removing users to and from scoped roles follows the same process as adding and removing
standard roles.

2.5.8.2. Configuring Scoped Roles from the Management Console

IMPORTANT

Only users in the SuperUser or Administrator roles can perform this configuration.

Scoped role configuration in the management console can be found by following these steps:

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on Roles to view all roles, including scoped roles.

The following procedures show how to perform configuration tasks for scoped roles.

Add a New Scoped Role

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

133

1. Log in to the management console.

2. Click on the Access Control tab.

3. Select Roles and click the Add (+) button.

4. Choose Host Scoped Role or Server Group Scoped Role.

5. Specify the following details:

Name: The unique name for the new scoped role.

Base Role: The role which this role will base its permissions on.

Hosts or Server Groups: The list of hosts or server groups that the role is restricted to,
depending on the type of scoped role being added. Multiple entries can be selected.

Include All: Whether this role should automatically include all users. Defaults to OFF.

6. Click Add to create the new role.

Edit a Scoped Role

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click on the desired scoped role to edit and click Edit.

5. Update the desired details to change and click the Save button.

View Scoped Role Members

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click on the desired scoped role to view the included and excluded members.

Delete a Scoped Role

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left.

4. Click on the desired scoped role and click Remove from the drop down.

5. Click Yes to remove the role and all of its assignments.

Adding and Removing Users
Adding and removing users to and from scoped roles follows the same process as adding and removing
standard roles. To update a user’s scoped roles:

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

134

1. Log in to the management console.

2. Click on the Access Control tab.

3. Click on the Roles menu on the left and click on the desired scoped role.

4. Select the Plus (+) button to include a member or the Minus (-) button to exclude a member.

2.5.9. Configuring Constraints

2.5.9.1. Configure Sensitivity Constraints

Each sensitivity constraint defines a set of resources that are considered sensitive. A sensitive resource
is generally one that either should be secret, like passwords, or one that will have serious impact on the
server, like networking, JVM configuration, or system properties. The access control system itself is also
considered sensitive. Resource sensitivity limits which roles are able to read, write or address a specific
resource.

Sensitivity constraint configuration is at /core-
service=management/access=authorization/constraint=sensitivity-classification.

Within the management model each sensitivity constraint is identified as a classification. The
classifications are then grouped into types. Each classification has an applies-to element which is a list
of path patterns to which the classifications configuration applies.

To configure a sensitivity constraint, use the write-attribute operation to set the configured-requires-
read, configured-requires-write, or configured-requires-addressable attribute. To make that type of
operation sensitive set the value of the attribute to true, otherwise to make it nonsensitive set it to
false. By default these attributes are not set and the values of default-requires-read, default-requires-
write, and default-requires-addressable are used. Once the configured attribute is set it is that value
that is used instead of the default. The default values cannot be changed.

Example: Make Reading System Properties a Sensitive Operation

/core-service=management/access=authorization/constraint=sensitivity-
classification/type=core/classification=system-property:write-attribute(name=configured-requires-
read,value=true)

Example: Result

/core-service=management/access=authorization/constraint=sensitivity-
classification/type=core/classification=system-property:read-resource

{
 "outcome" => "success",
 "result" => {
 "configured-requires-addressable" => undefined,
 "configured-requires-read" => true,
 "configured-requires-write" => undefined,
 "default-requires-addressable" => false,
 "default-requires-read" => false,
 "default-requires-write" => true,
 "applies-to" => {
 "/core-service=platform-mbean/type=runtime" => undefined,

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

135

 "/system-property=*" => undefined,
 "/" => undefined
 }
 }
}

The roles, and the respective operations that they are able to perform, depend on the configuration of
the attributes. This is summarized in the following table:

Table 2.2. Sensitivity Constraint Configuration Outcomes

Value requires-read requires-write requires-addressable

true Read is sensitive. Only
Auditor,
Administrator,
SuperUser can read.

Write is sensitive. Only
Administrator and
SuperUser can write.

Addressing is sensitive.
Only Auditor,
Administrator,
SuperUser can
address.

false Read is not sensitive.
Any management user
can read.

Write is not sensitive.
Only Maintainer,
Administrator and
SuperUser can write.
Deployer can also write
the resource is an
application resource.

Addressing is not
sensitive. Any
management user can
address.

2.5.9.2. List Sensitivity Constraints

You can see a list of the available sensitivity constraints directly from the JBoss EAP management
model using the following management CLI command:

/core-service=management/access=authorization/constraint=sensitivity-classification:read-
resource(include-runtime=true,recursive=true)

2.5.9.3. Configure Application Resource Constraints

Each application resource constraint defines a set of resources, attributes and operations that are
usually associated with the deployment of applications and services. When an application resource
constraint is enabled management users of the Deployer role are granted access to the resources that
it applies to.

Application constraint configuration is at /core-
service=management/access=authorization/constraint=application-classification/.

Each application resource constraint is identified as a classification. The classifications are then grouped
into types. Each classification has an applies-to element which is a list of path patterns to which the
classifications configuration applies.

By default the only application resource classification that is enabled is core. Core includes
deployments, deployment overlays, and the deployment operations.

To enable an application resource, use the write-attribute operation to set the configured-application
attribute of the classification to true. To disable an application resource, set this attribute to false. By

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

136

default these attributes are not set and the value of default-application attribute is used. The default
value cannot be changed.

Example: Enabling the logger-profile Application Resource Classification

/core-service=management/access=authorization/constraint=application-
classification/type=logging/classification=logging-profile:write-attribute(name=configured-
application,value=true)

Example: Result

/core-service=management/access=authorization/constraint=application-
classification/type=logging/classification=logging-profile:read-resource

{
 "outcome" => "success",
 "result" => {
 "configured-application" => true,
 "default-application" => false,
 "applies-to" => {"/subsystem=logging/logging-profile=*" => undefined}
 }
}

IMPORTANT

Application resource constraints apply to all resources that match its configuration. For
example, it is not possible to grant a Deployer user access to one datasource resource
but not another. If this level of separation is required then it is recommended to configure
the resources in different server groups and create different scoped Deployer roles for
each group.

2.5.9.4. List Application Resource Constraints

You can see a list of the available application resource constraints directly from the JBoss EAP
management model using the following management CLI command:

/core-service=management/access=authorization/constraint=application-classification:read-
resource(include-runtime=true,recursive=true)

2.5.9.5. Configure the Vault Expression Constraint

By default, reading and writing vault expressions are sensitive operations. Configuring the vault
expression constraint allows either or both of those operations to be set to nonsensitive. Changing this
constraint allows a greater number of roles to read and write vault expressions.

The vault expression constraint is found at /core-
service=management/access=authorization/constraint=vault-expression.

To configure the vault expression constraint, use the write-attribute operation to set the attributes of
configured-requires-write and configured-requires-read to true or false. By default these are not set
and the values of default-requires-read and default-requires-write are used. The default values
cannot be changed.

CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES

137

Example: Making Writing to Vault Expressions a Nonsensitive Operation

/core-service=management/access=authorization/constraint=vault-expression:write-
attribute(name=configured-requires-write,value=false)

Example: Result

/core-service=management/access=authorization/constraint=vault-expression:read-resource

{
 "outcome" => "success",
 "result" => {
 "configured-requires-read" => undefined,
 "configured-requires-write" => false,
 "default-requires-read" => true,
 "default-requires-write" => true
 }
}

The roles, and the respective vault expressions that they will be able to read and write, depend on the
configuration of the attributes. This is summarized in the following table:

Table 2.3. Vault Expression Constraint Configuration Outcomes

Value requires-read requires-write

true Read operation is sensitive. Only
Auditor, Administrator, and
SuperUser can read.

Write operation is sensitive. Only
Administrator and SuperUser
can write.

false Read operation is not sensitive. All
management users can read.

Write operation is not sensitive.
Monitor, Administrator, and
SuperUser can write. Deployer
can also write if the vault
expression is in an application
resource.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

138

CHAPTER 3. SECURELY STORING CREDENTIALS
JBoss EAP allows the encryption of sensitive strings outside of configuration files. These strings can be
stored in a keystore, and subsequently decrypted for applications and verifications systems. Sensitive
strings can be stored in either of the following:

Credential Store - Introduced in JBoss EAP 7.1, a credential store can safely secure sensitive
and plain text strings by encrypting them in a storage file. Each JBoss EAP server can contain
multiple credential stores.

Password Vault - Primarily used in legacy configurations, a password vault uses a Java Keystore
to store sensitive strings outside of the configuration files. Each JBoss EAP server can only
contain a single password vault.

All of the configuration files in EAP_HOME/standalone/configuration/ and
EAP_HOME/domain/configuration/ are world readable by default. It is strongly recommended to not
store plaintext passwords in the configuration files, and instead place these credentials in either a
credential store or password vault.

If you decide to place plaintext passwords in the configuration files, then these files should only be
accessible by limited users. At a minimum, the user account under which JBoss EAP 7 is running requires
read-write access.

3.1. CREDENTIAL STORE

Introduced with the elytron subsystem, credential stores allow for secure storage and usage of
credentials. You can find more background information on credential stores as well as other Elytron
components in the Core Concepts and Components section of the Security Architecture guide.

Using a credential store is preferred to using a password vault to store passwords and other sensitive
strings. Credential stores allow for easier credential management within the JBoss EAP management
CLI, without having to use an external tool. You can also use multiple credential stores within a JBoss
EAP server, compared to the limitation of only one password vault per JBoss EAP server.

The default credential store implementation uses a JCEKS keystore file to store credentials. When
creating a new credential store, the default implementation also allows you to reference an existing
keystore file or have JBoss EAP automatically create one for you. Currently, the default implementation
only allows you to store clear text passwords.

IMPORTANT

The elytron subsystem does not provide any checks for using the same file as storage to
multiple credential stores. It is strongly advised not to use the same file for multiple
credential stores or even to share the storage file using remote file systems.

If you need to use shared storage file, be sure to set the read-only flag on the credential
stores accessing it. This will prevent the file from being modified. After the file is updated
from outside, each credential store has to be reloaded to reflect the changed values. A
similar process needs to be followed when using credential stores in a managed domain.

Since a credential store contains sensitive information, the directory containing the store
should be accessible to only limited users. At a minimum the user account under which
JBoss EAP is running requires read-write access.

IMPORTANT

CHAPTER 3. SECURELY STORING CREDENTIALS

139

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/security_architecture/#elytron_core_concepts_components

IMPORTANT

JBoss EAP reads the credential store file into memory and writes changes to it at varying
times. You must ensure that the user running the JBoss EAP process has permissions to
the store file, and that you do not externally modify the store file while JBoss EAP is
running.

If the file is modified externally, you can use the reload() operation on the credential
store to make JBoss EAP reload the content of the store file.

3.1.1. Create a Credential Store

To create a credential store, you must define a path to the new credential store file, and provide a
master password that is used to encrypt the credential store. The directory containing the store should
be accessible to only limited users. At a minimum the user account under which JBoss EAP is running
requires read-write access.

IMPORTANT

JCEKS keystore implementations differ between Java vendors, so the JBoss EAP
instance must run a JDK from the same vendor that generated the JCEKS keystore.

Like providing paths in other JBoss EAP configuration, you can also use the relative-to attribute to
provide a path relative to another.

Create a Credential Store for a Standalone Server
Use the following management CLI command to create a new credential store:

/subsystem=elytron/credential-store=STORE_NAME:add(location="path/to/store_file", credential-
reference={clear-text=STORE_PASSWORD},create=true)

For example, the following command creates a new store named my_store, and creates the file
jboss.server.data.dir/cred_stores/my_store.jceks:

/subsystem=elytron/credential-store=my_store:add(location="cred_stores/my_store.jceks", relative-
to=jboss.server.data.dir, credential-reference={clear-text=supersecretstorepassword},create=true)

NOTE

If you want to use an implementation other than default, you can explicitly define the
type of a credential store. For more information, see the section on using a custom
credential store implementation.

Create a Credential Store in a Managed Domain
Use the following management CLI command to create a new credential store in a managed domain:

/profile=PROFILE_NAME/subsystem=elytron/credential-
store=STORE_NAME:add(location=path/to/store_file,credential-reference={clear-
text="STORE_PASSWORD"},create=true)

For example, the following command creates a new store named my_store, and creates the file
jboss.server.data.dir/cred_stores/my_store.jceks:

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

140

/profile=full/subsystem=elytron/credential-store=my_store:add(relative-
to=jboss.server.data.dir,location="cred_stores/my_store.jceks",credential-reference={clear-
text=supersecretstorepassword},create=true)

NOTE

There is no need to define a credential store resource at each server. Every server
running the same profile, for which the credential store is created, contains our credential
store. Therefore, it is good idea to locate the storage file at the server data directory,
relative-to=jboss.server.data.dir.

For another way of creating a credential store in a managed domain, see Using Credential Stores in a
Managed Domain.

3.1.2. Add a Credential to the Credential Store

To add a new credential to a credential store, you associate an alias to the sensitive string that you are
wanting to store.

NOTE

Credential store aliases are case insensitive by default. Any stored alias is displayed in
lowercase, and may be referenced using any combination of uppercase and lowercase
letters.

If a custom credential store is used, then case sensitivity will be determined by the
custom implementation.

The following management CLI command adds a credential to a credential store:

/subsystem=elytron/credential-store=STORE_NAME:add-alias(alias=ALIAS, secret-
value="SENSITIVE_STRING")

For example, to add a password with the alias database-pw to the store created in the previous section:

/subsystem=elytron/credential-store=my_store:add-alias(alias=database-pw, secret-
value="speci@l_db_pa$$_01")

Editing Credential Store Aliases Using the Management Console

1. Log in to the management console and click on the Runtime tab.

2. Select the server and select Security (Elytron) → Stores and click View.

3. Select the credential store and click Aliases to edit the aliases.

3.1.3. Use a Stored Credential in a Configuration

To refer to a password or sensitive string stored in a credential store, use the credential-reference
attribute in your JBoss EAP configuration. You can use credential-reference as an alternative to
providing a password or other sensitive string in most places throughout the JBoss EAP configuration.

CHAPTER 3. SECURELY STORING CREDENTIALS

141

credential-reference={store=STORE_NAME, alias=ALIAS}

For example, to create a new datasource using the password that was added to the credential store in
the previous example , you can use credential-reference like the following:

data-source add --name=my_DS --jndi-name=java:/my_DS --driver-name=h2 --connection-
url=jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE --user-name=db_user
--credential-reference={store=my_store, alias=database-pw}

In the above example, instead of providing a password using --password, a credential-reference
including a store name and alias is provided. If you check the resulting datasource configuration, note
that password is undefined and the credential-reference attribute is defined instead.

/subsystem=datasources/data-source=my_DS:read-resource()
{
 "outcome" => "success",
 "result" => {
 ...
 "credential-reference" => {
 "store" => "my_store",
 "alias" => "database-pw"
 },
 ...
 "password" => undefined,
 ...
 }
}

3.1.4. List the Credentials in the Credential Store

You can list the aliases of all the credentials contained in a credential store using the following
management CLI command:

/subsystem=elytron/credential-store=STORE_NAME:read-aliases()

For example:

/subsystem=elytron/credential-store=my_store:read-aliases()
{
 "outcome" => "success",
 "result" => [
 "database-pw"
]
}

3.1.5. Remove a Credential from the Credential Store

You can remove a credential from a credential store using the following command:

/subsystem=elytron/credential-store=STORE_NAME:remove-alias(alias=ALIAS)

For example:

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

142

/subsystem=elytron/credential-store=my_store:remove-alias(alias=database-pw)

3.1.6. Obtain the Master Password for the Credential Store from an External Source

Instead of providing your credential store’s master password in the clear, you can choose to provide that
password using a pseudo credential store. You have the following options:

EXT

External command using java.lang.Runtime#exec(java.lang.String). If parameters are needed, they
are supplied using a space-separated list of strings. An external command refers to any executable
from the operation system, for example a shell script or an executable binary. The password is read
from the standard output of the executed command.

Example

{EXT}/usr/bin/getTheMasterPassswordScript.sh par1 par2

CMD

External command using java.lang.ProcessBuilder. If parameters are needed, they are supplied
using a comma-separated list of strings. An external command refers to any executable from the
operation system, for example a shell script or an executable binary. The password is read from the
standard output of the executed command.

Example

{CMD}/usr/bin/getTheMasterPassswordScript.sh par1,par2

MASK

Masked password using PBE, or Password Based Encryption. It must be in the following format, which
includes the SALT and ITERATION values:

MASK-MASKED_VALUE;SALT;ITERATION

Example

MASK-NqMznhSbL3lwRpDmyuqLBW==;12345678;123

IMPORTANT

EXT, CMD, and MASK provide backward compatibility with the legacy security vault style
of supplying an external password. For MASK you must use the above format that
includes the SALT and ITERATION values.

You can also use a password located in another credential store as the master password for a new
credential store.

Example Credential Store Created with a Password from Another Credential Store

CHAPTER 3. SECURELY STORING CREDENTIALS

143

/subsystem=elytron/credential-store=exampleCS:add(location="cred_stores/exampleCS.jceks",
relative-to=jboss.server.data.dir, create=true, credential-reference={store=master-cred-store,
alias=master-pw})

3.1.7. Define a FIPS 140-2 Compliant Credential Store

A FIPS 140-2 compliant credential store may be defined using either of the following methods.

Using an NSS Database

Using the BouncyCastle Providers

3.1.7.1. Define a FIPS 140-2 Compliant Credential Store Using an NSS Database

To obtain a FIPS compliant keystore, use a Sun PKCS#11 provider accessing an NSS database.
Instructions on defining the database are found at Configuring the NSS Database.

1. Create a secret key to be used in the credential store.

$ keytool -keystore NONE -storetype PKCS11 -storepass STORE_PASSWORD -genseckey
-alias ALIAS -keyalg AES -keysize 256

2. Create an external credential store. An external credential store holds a secret key in a PKCS#11
keystore, and accesses this keystore using the alias defined in the previous step. This keystore is
then used to decrypt the credentials in a JCEKS keystore. In addition to the credential-store
attributes, the credential-store KeyStoreCredentialStore implementation properties are used
to configure external credential stores.

/subsystem=elytron/credential-store=STORE_NAME:add(modifiable=true, implementation-
properties={"keyStoreType"=>"PKCS11","external"=>"true","keyAlias"=>"ALIAS",
externalPath="/path/to/EXTERNAL_STORAGE"},credential-reference={clear-
text="STORE_PASSWORD"}, create=true)

3. Once created, the credential store can be used to store aliases as normal.

/subsystem=elytron/credential-store=STORE_NAME:add-alias(alias="ALIAS", secret-
value="SENSITIVE_STRING")

4. Confirm that the alias has been added successfully by reading from the credential store.

/subsystem=elytron/credential-store=STORE_NAME:read-aliases()

3.1.7.2. Define a FIPS 140-2 Compliant Credential Store Using the BouncyCastle Providers

The following instructions outline how you can use a BouncyCastle provider to obtain a FIPS compliant
keystore.

1. Ensure your your environment is configured to use the BouncyCastle provider.

2. Create a secret key to be used in the credential store.

$ keytool -genseckey -alias KEY_ALIAS -keyalg AES -keysize 128 -keystore KEYSTORE -
storetype BCFKS -storepass PASSWORD -keypass PASSWORD

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

144

IMPORTANT

The keypass and storepass for the keystore must be identical for FIPS
credential stores to be defined in the elytron subsystem.

3. Create an external credential store. An external credential store holds a secret key in a BCFKS
keystore, and accesses this keystore using the alias defined in the previous step. This keystore is
then used to decrypt the credentials in a JCEKS keystore. The credential-store
KeyStoreCredentialStore implementation properties are used to configure external credential
stores.

/subsystem=elytron/credential-store=BCFKS_CREDENTIAL_STORE:add(relative-
to=jboss.server.config.dir,credential-reference={clear-text=PASSWORD},implementation-
properties=
{keyAlias=KEY_ALIAS,external=true,externalPath=CREDENTIAL_STORE,keyStoreType=BC
FKS},create=true,location=KEYSTORE,modifiable=true)

4. Once created, the credential store can be used to store aliases as normal.

/subsystem=elytron/credential-store=BCFKS_CREDENTIAL_STORE:add-
alias(alias="ALIAS", secret-value="SENSITIVE_STRING")

5. Confirm that the alias has been added successfully by reading from the credential store.

/subsystem=elytron/credential-store=BCFKS_CREDENTIAL_STORE:read-aliases()

3.1.8. Use a Custom Implementation of the Credential Store

To use a custom implementation of the credential store:

1. Create a class that extends the Service Provider Interface (SPI) CredentialStoreSpi abstract
class.

2. Create a class that implements the Java Security Provider. The provider must add the custom
credential store class as a service.

3. Create a module containing your credential store and provider classes, and add it to JBoss EAP
with a dependency on org.wildfly.security.elytron. For example:

module add --name=org.jboss.customcredstore --
resources=/path/to/customcredstoreprovider.jar --dependencies=org.wildfly.security.elytron --
slot=main

4. Create a provider loader for your provider. For example:

/subsystem=elytron/provider-loader=myCustomLoader:add(class-names=
[org.wildfly.security.mycustomcredstore.CustomElytronProvider],module=org.jboss.customcreds
tore)

5. Create a credential store using the custom implementation.

NOTE

CHAPTER 3. SECURELY STORING CREDENTIALS

145

NOTE

Ensure that you specify the correct providers and type values. The value of type
is what is used in your provider class where it adds your custom credential store
class as a service.

For example:

/subsystem=elytron/credential-
store=my_store:add(providers=myCustomLoader,type=CustomKeyStorePasswordStore,locatio
n="cred_stores/my_store.jceks",relative-to=jboss.server.data.dir,credential-reference={clear-
text=supersecretstorepassword},create=true)

Alternatively, if you have created multiple providers, you can specify the additional providers
using another provider loader with other-providers. This allows you to have other additional
implementations for new types of credentials. These specified other providers are automatically
accessible in the custom credential store’s initialize method as the Provider[] argument. For
example:

/subsystem=elytron/credential-store=my_store:add(providers=myCustomLoader,other-
providers=myCustomLoader2,type=CustomKeyStorePasswordStore,location="cred_stores/my_
store.jceks",relative-to=jboss.server.data.dir,credential-reference={clear-
text=supersecretstorepassword},create=true)

3.1.9. Create and Modify Credential Stores Offline with the WildFly Elytron Tool

You can use the WildFly Elytron tool, which you access using the elytron-tool script located in
EAP_HOME/bin/, to create and modify a credential store for an offline, or stopped, JBoss EAP server.

IMPORTANT

JCEKS keystore implementations differ between Java vendors, so the JBoss EAP
instance must run a JDK from the same vendor that generated the JCEKS keystore.

IMPORTANT

Using the WildFly Elytron tool to modify a credential store that is in use by a running
JBoss EAP server can result in changes to the store being lost. Instead, you should create
and modify credential stores for a running server by using the management CLI, as
described in the previous sections .

The following commands are shown using elytron-tool.sh for Red Hat Enterprise Linux and Solaris
systems. For Windows Server systems, use the elytron-tool.bat script instead.

Create a Credential Store Using the WildFly Elytron Tool

Create a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location "path/to/store_file" --password
STORE_PASSWORD

For example:

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

146

$ EAP_HOME/bin/elytron-tool.sh credential-store --create --location "../cred_stores/my_store.jceks" --
password supersecretstorepassword

If you do not want to provide your store password in the command, you can omit that argument and you
will be prompted to enter the password manually using standard input. You can also use a masked
password generated by the WildFly Elytron tool for the store password.

Create a Credential Store Using the BouncyCastle Provider with the WildFly Elytron Tool

The following procedure outlines how to create a credential store using the WildFly Elytron tool.

1. Ensure your environment is configured to use the BouncyCastle provider.

2. Define a BCFKS keystore. If this keystore already exists, proceed to the next step.

$ keytool -genkeypair -alias ALIAS -keyalg RSA -keysize 2048 -keypass PASSWORD -
keystore KEYSTORE -storetype BCFKS -storepass PASSWORD

IMPORTANT

The keypass and storepass for the keystore must be identical for FIPS
credential stores to be defined in the elytron subsystem.

3. Generate a secret key for the credential store.

$ keytool -genseckey -alias KEY_ALIAS -keyalg AES -keysize 128 -keystore KEYSTORE -
storetype BCFKS -storepass PASSWORD -keypass PASSWORD

4. Define the credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store -c -a ALIAS -x ALIAS_PASSWORD -p
PASSWORD -l KEYSTORE -u
"keyStoreType=BCFKS;external=true;keyAlias=KEY_ALIAS;externalPath=CREDENTIAL_ST
ORE"

Add a Credential to a Credential Store Using the WildFly Elytron Tool

Add a credential to a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "path/to/store_file" --password
STORE_PASSWORD --add ALIAS --secret SENSITIVE_STRING

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/my_store.jceks" --
password supersecretstorepassword --add database-pw --secret speci@l_db_pa$$_01

Similar to providing the credential store password, if you do not want to provide your secret in the
command, you can omit that argument and you will be prompted to enter the secret manually using
standard input.

List All the Credentials in the Credential Store Using the WildFly Elytron Tool

List the credentials in a credential store using the WildFly Elytron tool with the following command:

CHAPTER 3. SECURELY STORING CREDENTIALS

147

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "path/to/store_file" --password
STORE_PASSWORD --aliases

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/my_store.jceks" --
password supersecretstorepassword --aliases

Check If an Alias Exists in the Credential Store Using the Wildfly Elytron Tool

Check if an alias exists in a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "path/to/store_file" --password
STORE_PASSWORD --exists ALIAS

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/my_store.jceks" --
password supersecretstorepassword --exists database-pw

Remove a Credential from the Credential Store Using the WildFly Elytron Tool

Remove a credential from a credential store using the WildFly Elytron tool with the following command:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "path/to/store_file" --password
STORE_PASSWORD --remove ALIAS

For example:

$ EAP_HOME/bin/elytron-tool.sh credential-store --location "../cred_stores/my_store.jceks" --
password supersecretstorepassword --remove database-pw

Add a Credential Store Created with the WildFly Elytron Tool to a JBoss EAP Server

After you have created a credential store with the WildFly Elytron tool, add it to your running JBoss EAP
server with the following management CLI command:

/subsystem=elytron/credential-store=STORE_NAME:add(location="path/to/store_file",credential-
reference={clear-text=STORE_PASSWORD})

For example:

/subsystem=elytron/credential-
store=my_store:add(location="../cred_stores/my_store.jceks",credential-reference={clear-
text=supersecretstorepassword})

After adding the credential store to the JBoss EAP configuration, you can then refer to a password or
sensitive string stored in the credential store using the credential-reference attribute.

For more information, use the EAP_HOME/bin/elytron-tool.sh credential-store --help command for a
detailed listing of available options.

3.1.9.1. Generate Masked Encrypted Strings Using the WildFly Elytron Tool

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

148

You can use the WildFly Elytron tool to generate PicketBox-compatible MASK- encrypted strings to
use instead of a plain text password for a credential store.

To generate a masked string, use the following command and provide values for the salt and the
iteration count:

$ EAP_HOME/bin/elytron-tool.sh mask --salt SALT --iteration ITERATION_COUNT --secret
PASSWORD

For example:

$ EAP_HOME/bin/elytron-tool.sh mask --salt 12345678 --iteration 123 --secret
supersecretstorepassword

MASK-8VzWsSNwBaR676g8ujiIDdFKwSjOBHCHgnKf17nun3v;12345678;123

If you do not want to provide the secret in the command, you can omit that argument and you will be
prompted to enter the secret manually using standard input.

For more information, use the EAP_HOME/bin/elytron-tool.sh mask --help command for a detailed
listing of available options.

3.1.9.2. Convert a Password Vault to a Credential Store Using the WildFly Elytron Tool

You can use the WildFly Elytron tool to convert a password vault to a credential store. To convert a
password vault to a credential store, you need the vault’s values used when initializing the vault .

NOTE

When converting a password vault, aliases in the new credential store are named in the
following format based on their equivalent password vault block and attribute name:
VAULT_BLOCK::ATTRIBUTE_NAME.

Convert a Single Password Vault

Convert a single password vault to a credential store using the following command:

$ EAP_HOME/bin/elytron-tool.sh vault --keystore "path/to/vault_file" --keystore-password
VAULT_PASSWORD --enc-dir "path/to/vault_directory" --salt SALT --iteration ITERATION_COUNT -
-alias VAULT_ALIAS

For example, you can also specify the new credential store’s file name and location with the --location
argument:

$ EAP_HOME/bin/elytron-tool.sh vault --keystore ../vaults/vault.keystore --keystore-password vault22
--enc-dir ../vaults/ --salt 1234abcd --iteration 120 --alias my_vault --location
../cred_stores/my_vault_converted.cred_store

NOTE

CHAPTER 3. SECURELY STORING CREDENTIALS

149

1

2

3

NOTE

You can also use the --summary argument to print a summary of the management CLI
commands used to convert it. Note that even if a plain text password is used, it is masked
in the summary output. The default SALT and ITERATION values are used unless they
are specified in the command.

Bulk Convert Multiple Password Vaults

To bulk convert multiple password vaults:

1. Put the details of the vaults you want to convert into a description file in the following format:

keystore:path/to/vault_file
keystore-password:VAULT_PASSWORD
enc-dir:path/to/vault_directory
salt:SALT 1
iteration:ITERATION_COUNT
location:path/to/converted_cred_store 2
alias:VAULT_ALIAS
properties:PARAMETER1=VALUE1;PARAMETER2=VALUE2; 3

salt and iteration can be omitted if you are providing a plain text password for the vault.

Specifies the location and file name for the converted credential store.

Optional: Specifies a list of optional parameters separated by semicolons (;). See
EAP_HOME/bin/elytron-tool.sh vault --help for a list of available parameters.

For example:

keystore:/vaults/vault1/vault1.keystore
keystore-password:vault11
enc-dir:/vaults/vault1/
salt:1234abcd
iteration:120
location:/cred_stores/vault1_converted.cred_store
alias:my_vault

keystore:/vaults/vault2/vault2.keystore
keystore-password:vault22
enc-dir:/vaults/vault2/
salt:abcd1234
iteration:130
location:/cred_stores/vault2_converted.cred_store
alias:my_vault2

2. Run the bulk convert command with your description file from the previous step:

$ EAP_HOME/bin/elytron-tool.sh vault --bulk-convert vaultdescriptions.txt

For more information, use the EAP_HOME/bin/elytron-tool.sh vault --help command for a detailed
listing of available options.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

150

1

2

3

4

3.1.10. Using Credential Stores with Elytron Client

Clients connecting to JBoss EAP, such as EJBs, can authenticate using Elytron Client. Users without
access to a running JBoss EAP server can create and modify credential stores using the WildFly Elytron
tool, and then clients can use Elytron Client to access sensitive strings inside a credential store.

The following example shows you how to use a credential store in an Elytron Client configuration file.

Example custom-config.xml with a Credential Store

A name for the credential store for use within the Elytron Client configuration file.

The master password for the credential store.

The path to the credential store file.

A credential reference for a sensitive string stored in the credential store.

See the JBoss EAP How to Configure Identity Management Guide for more information on configuring
client authentication using Elytron Client.

3.1.11. Using Credential Stores in a Managed Domain

There are a few different ways of creating and setting up a credential store in a managed domain. One of
the ways is:

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 ...
 <credential-stores>
 <credential-store name="my_store"> 1
 <protection-parameter-credentials>
 <credential-store-reference clear-text="pass123"/> 2
 </protection-parameter-credentials>
 <attributes>
 <attribute name="location" value="/path/to/my_store.jceks"/> 3
 </attributes>
 </credential-store>
 </credential-stores>
 ...
 <authentication-configurations>
 <configuration name="my_user">
 <set-host name="localhost"/>
 <set-user-name name="my_user"/>
 <set-mechanism-realm name="ManagementRealm"/>
 <use-provider-sasl-factory/>
 <credentials>
 <credential-store-reference store="my_store" alias="my_user"/> 4
 </credentials>
 </configuration>
 </authentication-configurations>
 ...
 </authentication-client>
</configuration>

CHAPTER 3. SECURELY STORING CREDENTIALS

151

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_identity_management/#elytron_client_authentication

1. Use the WildFly Elytron Tool to prepare the credential store. For more information on this, see
Create and Modify Credential Stores Offline with the WildFly Elytron Tool .

2. Distribute the created credential store storage file. For example, distribute it to each server, for
example by using scp, or store it in NFS and use it for all the created credential stores.

3. You can then create a credential store with the create property set to false, using the already
created file.

/profile=full/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,location="store.keystore",credential-reference={clear-
text="secret2"},create=false)

NOTE

When using one credential store to store all credential stores, when storing it on
NFS, you must use the credential store in read-only mode. The read-only mode
is used to maintain consistency. It is also prefered to use an absolute path in this
case.

/profile=full/subsystem=elytron/credential-
store=test:add(location=/absolute/path/to/store.keystore,credential-reference=
{clear-text="secret2"},create=false,modifiable=false)

For other ways of creating a credential store in a managed domain, see Create a Credential Store in a
Managed Domain.

3.2. PASSWORD VAULT

Configuration of JBoss EAP and associated applications requires potentially sensitive information, such
as user names and passwords. Instead of storing the password as plain text in configuration files, the
password vault feature can be used to mask the password information and store it in an encrypted
keystore. Once the password is stored, references can be included in management CLI commands or
applications deployed to JBoss EAP.

The password vault uses the Java keystore as its storage mechanism. Password vault consists of two
parts: storage and key storage. Java keystore is used to store the key, which is used to encrypt or
decrypt sensitive strings in Vault storage.

IMPORTANT

The keytool utility, provided by the Java Runtime Environment (JRE), is utilized for this
steps. Locate the path for the file, which on Red Hat Enterprise Linux is /usr/bin/keytool.

JCEKS keystore implementations differ between Java vendors so the keystore must be
generated using the keytool utility from the same vendor as the JDK used. Using a
keystore generated by the keytool from one vendor’s JDK in a JBoss EAP 7 instance
running on a JDK from a different vendor results in the following exception:
java.io.IOException: com.sun.crypto.provider.SealedObjectForKeyProtector

3.2.1. Set Up a Password Vault

Follow the steps below to set up and use a Password Vault.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

152

1. Create a directory to store the keystore and other encrypted information.
The rest of this procedure assumes that the directory is EAP_HOME/vault/. Since this directory
will contain sensitive information it should be accessible to only limited users. At a minimum the
user account under which JBoss EAP is running requires read-write access.

2. Determine the parameters to use with keytool utility.
Decide on values for the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. Aliases are
case-insensitive.

storetype

The storetype specifies the keystore type. The value jceks is recommended.

keyalg

The algorithm to use for encryption. Use the documentation for the JRE and operating
system to see which other choices are available.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. For
information on appropriate values, see the documentation distributed with the keytool utility.

storepass

The value of storepass is the password that is used to authenticate to the keystore so that
the key can be read. The password must be at least 6 characters long and must be provided
when the keystore is accessed. If this parameter is omitted, the keytool utility will prompt for
it to be entered after the command has been executed

keypass

The value of keypass is the password used to access the specific key and must match the
value of the storepass parameter.

validity

The value of validity is the period (in days) for which the key will be valid.

keystore

The value of keystore is the file path and file name in which the keystore’s values are to be
stored. The keystore file is created when data is first added to it. Ensure the correct file path
separator is used: / (forward slash) for Red Hat Enterprise Linux and similar operating
systems, \ (backslash) for Windows Server.
The keytool utility has many other options. See the documentation for the JRE or the
operating system for more details.

3. Run the keytool command, ensuring keypass and storepass contain the same value.

This results in a keystore that has been created in the file EAP_HOME/vault/vault.keystore. It
stores a single key, with the alias vault, which will be used to store encrypted strings, such as
passwords, for JBoss EAP.

3.2.2. Initialize the Password Vault

The password vault can be initialized either interactively, where you are prompted for each parameter’s

$ keytool -genseckey -alias vault -storetype jceks -keyalg AES -keysize 128 -storepass
vault22 -keypass vault22 -validity 730 -keystore EAP_HOME/vault/vault.keystore

CHAPTER 3. SECURELY STORING CREDENTIALS

153

The password vault can be initialized either interactively, where you are prompted for each parameter’s
value, or non-interactively, where all parameter values are provided on the command line. Each method
gives the same result, so either may be used.

The following parameters will be needed:

keystore URL (KEYSTORE_URL)

The file system path or URI of the keystore file. The examples use
EAP_HOME/vault/vault.keystore.

keystore password (KEYSTORE_PASSWORD)

The password used to access the keystore.

Salt (SALT)

The salt value is a random string of eight characters used, together with the iteration count, to
encrypt the content of the keystore.

keystore Alias (KEYSTORE_ALIAS)

The alias by which the keystore is known.

Iteration Count (ITERATION_COUNT)

The number of times the encryption algorithm is run.

Directory to store encrypted files (ENC_FILE_DIR)

The path in which the encrypted files are to be stored. This is typically the directory containing the
password vault. It is convenient but not mandatory to store all of your encrypted information in the
same place as the keystore. This directory should be only accessible to limited users. At a minimum
the user account under which JBoss EAP 7 is running requires read-write access. The keystore
should be located in the directory you created when you set up the password vault. Note that the
trailing backslash or forward slash on the directory name is required. Ensure the correct file path
separator is used: / (forward slash) for Red Hat Enterprise Linux and similar operating systems, \
(backslash) for Windows Server.

Vault Block (VAULT_BLOCK)

The name to be given to this block in the password vault.

Attribute (ATTRIBUTE)

The name to be given to the attribute being stored.

Security Attribute (SEC-ATTR)

The password which is being stored in the password vault.

To run the password vault command non-interactively, the vault script located in EAP_HOME/bin/ can
be invoked with parameters for the relevant information:

Example: Initializing Password Vault

Example: Output

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias
KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --sec-attr SEC-ATTR --
enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

$ vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --
vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir EAP_HOME/vault/ --iteration 120
--salt 1234abcd

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

154

To run the password vault command interactively, the following steps are required:

1. Launch the password vault command interactively.
Run EAP_HOME/bin/vault.sh on Red Hat Enterprise Linux and similar operating systems or
EAP_HOME\bin\vault.bat on Windows Server. Start a new interactive session by typing 0 (zero).

2. Complete the prompted parameters.
Follow the prompts to input the required parameters.

3. Make a note of the masked password information.
The masked password, salt, and iteration count are printed to standard output. Make a note of
them in a secure location. They are required to add entries to the Password Vault. Access to the
keystore file and these values could allow an attacker access to obtain access to sensitive
information in the Password Vault.

4. Exit the interactive console
Type 2 (two) to exit the interactive console.

Example: Input and Output

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Nov 09, 2015 9:02:47 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX00361: Default Security Vault Implementation Initialized and Ready
WFLYSEC0047: Secured attribute value has been stored in Vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
WFLYSEC0048: Vault Configuration in WildFly configuration file:
**

</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit

CHAPTER 3. SECURELY STORING CREDENTIALS

155

+ The keystore password has been masked for use in configuration files and deployments. In addition,
the vault is initialized and ready to use.

3.2.3. Use a Password Vault

Before passwords and other sensitive attributes can be masked and used in configuration files, JBoss
EAP 7 must be made aware of the password vault which stores and decrypts them.

The following command can be used to configure JBoss EAP 7 to use the password vault:

/core-service=vault:add(vault-options=[("KEYSTORE_URL" => PATH_TO_KEYSTORE),
("KEYSTORE_PASSWORD" => MASKED_PASSWORD),("KEYSTORE_ALIAS" => ALIAS),("SALT"
=> SALT),("ITERATION_COUNT" => ITERATION_COUNT),("ENC_FILE_DIR" => ENC_FILE_DIR)])

/core-service=vault:add(vault-options=[("KEYSTORE_URL" => "EAP_HOME/vault/vault.keystore"),
("KEYSTORE_PASSWORD" => "MASK-5dOaAVafCSd"),("KEYSTORE_ALIAS" => "vault"),("SALT"
=> "1234abcd"),("ITERATION_COUNT" => "120"),("ENC_FILE_DIR" => "EAP_HOME/vault/")])

NOTE

If Microsoft Windows Server is being used, use two backslashes (\\) in the file path
instead using one. For example, C:\\data\\vault\\vault.keystore. This is because a single
backslash character (\) is used for character escaping.

3.2.4. Store a Sensitive String in the Password Vault

0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password: vault22
Enter Keystore password again: vault22
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

156

Including passwords and other sensitive strings in plaintext configuration files is a security risk. Store
these strings instead in the Password Vault for improved security, where they can then be referenced in
configuration files, management CLI commands and applications in their masked form.

Sensitive strings can be stored in the Password Vault either interactively, where the tool prompts for
each parameter’s value, or non-interactively, where all the parameters' values are provided on the
command line. Each method gives the same result, so either may be used. Both of these methods are
invoked using the vault script.

To run the password vault command non-interactively, the vault script (located in EAP_HOME/bin/)
can be invoked with parameters for the relevant information:

NOTE

The keystore password must be given in plaintext form, not masked form.

Example: Output

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias
KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --sec-attr SEC-ATTR --
enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

$ vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --
vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir EAP_HOME/vault/ --iteration 120
--salt 1234abcd

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX00361: Default Security Vault Implementation Initialized and Ready
WFLYSEC0047: Secured attribute value has been stored in Vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
WFLYSEC0048: Vault Configuration in WildFly configuration file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="../vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>

CHAPTER 3. SECURELY STORING CREDENTIALS

157

After invoking the vault script, a message prints to standard output, showing the vault block, attribute
name, masked string, and advice about using the string in your configuration. Make note of this
information in a secure location. An extract of sample output is as follows:

To run the password vault command interactively, the following steps are required:

1. Launch the Password Vault command interactively.
Launch the operating system’s command line interface and run EAP_HOME/bin/vault.sh (on
Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on
Microsoft Windows Server). Start a new interactive session by typing 0 (zero).

2. Complete the prompted parameters.
Follow the prompts to input the required parameters. These values must match those provided
when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Complete the prompted parameters about the sensitive string.
Enter 0 (zero) to start storing the sensitive string. Follow the prompts to input the required
parameters.

4. Make note of the information about the masked string.
A message prints to standard output, showing the vault block, attribute name, masked string,
and advice about using the string in the configuration. Make note of this information in a secure
location. An extract of sample output is as follows:

5. Exit the interactive console.
Type 2 (two) to exit the interactive console.

Example: Input and Output

 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="../vault/"/>
</vault><management> ...
**

Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1

Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1

 ===
 JBoss Vault
 JBOSS_HOME: EAP_HOME
 JAVA: java
 ===

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

158

3.2.5. Use an Encrypted Sensitive String in Configuration

Any sensitive string which has been encrypted can be used in a configuration file or management CLI

 **** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
 **
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
 **
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
0
Task: Store a secured attribute
Please enter secured attribute value (such as password):
Please enter secured attribute value (such as password) again:
Values match
Enter Vault Block:ds_Example1
Enter Attribute Name:password
Secured attribute value has been stored in vault.
Please make note of the following:
 **
Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1
 **
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit

CHAPTER 3. SECURELY STORING CREDENTIALS

159

Any sensitive string which has been encrypted can be used in a configuration file or management CLI
command in its masked form, providing expressions are allowed.

To confirm if expressions are allowed within a particular subsystem, run the following management CLI
command against that subsystem:

/subsystem=SUBSYSTEM:read-resource-description(recursive=true)

From the output of running this command, look for the value of the expressions-allowed parameter. If
this is true, then expressions can be used within the configuration of this subsystem.

Use the following syntax to replace any plaintext string with the masked form.

Example: Datasource Definition Using a Password in Masked Form

3.2.6. Use an Encrypted Sensitive String in an Application

Encrypted strings stored in the password vault can be used in an application’s source code. The below
example is an extract of a servlet’s source code, illustrating the use of a masked password in a
datasource definition, instead of the plaintext password. The plaintext version is commented out so that
you can see the difference.

Example: Servlet Using a Vaulted Password

${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::MASKED_STRING}

...
 <subsystem xmlns="urn:jboss:domain:datasources:5.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS" enabled="true" use-java-
context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>
 <password>${VAULT::ds_ExampleDS::password::1}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "VAULT::DS::thePass::1",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

160

3.2.7. Check if a Sensitive String is in the Password Vault

Before attempting to store or use a sensitive string in the Password Vault it can be useful to first confirm
if it is already stored.

This check can be done either interactively, where the user is prompted for each parameter’s value, or
non-interactively, where all parameters' values are provided on the command line. Each method gives
the same result, so either may be used. Both of these methods are invoked using the vault script.

Use the non-interative method to provide all parameters' values at once. For a description of all
parameters, see Initialize the Password Vault . To run the password vault command non-interactively,
the vault script located in EAP_HOME/bin/ can be invoked with parameters for the relevant
information:

Substitute the placeholder values with the actual values. The values for parameters KEYSTORE_URL,
KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those provided when the password vault
was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

If the sensitive string is stored in the vault block specified, the following message will be displayed:

If the value is not stored in the specified block, the following message will be displayed:

To run the password vault command interactively, the following steps are required:

1. Launch the password vault command interactively.
Run EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Windows Server). Start a new interactive session by typing 0
(zero).

2. Complete the prompted parameters. Follow the prompts to input the required authentication
parameters. These values must match those provided when the password vault was created.

NOTE

)
/*old (plaintext) definition
@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "sa",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)*/

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias
KEYSTORE_ALIAS --check-sec-attr --vault-block VAULT_BLOCK --attribute ATTRIBUTE --enc-dir
ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

Password already exists.

Password doesn't exist.

CHAPTER 3. SECURELY STORING CREDENTIALS

161

NOTE

When prompted for authentication, the keystore password must be given in
plaintext form, not masked form.

Enter 1 (one) to select Check whether a secured attribute exists.

Enter the name of the vault block in which the sensitive string is stored.

Enter the name of the sensitive string to be checked.

If the sensitive string is stored in the vault block specified, a confirmation message like the following will
be output:

If the sensitive string is not stored in the specified block, a message like the following will be output:

Example: Check For a Sensitive String Interactively

A value exists for (VAULT_BLOCK, ATTRIBUTE)

No value has been store for (VAULT_BLOCK, ATTRIBUTE)

 ===
 JBoss Vault
 JBOSS_HOME: EAP_HOME
 JAVA: java
 ===

 **** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Nov 09, 2015 9:24:36 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
 **
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

162

3.2.8. Remove a Sensitive String from the Password Vault

For security reasons it is best to remove sensitive strings from the Password Vault when they are no
longer required. For example, if an application is being decommissioned, any sensitive strings used in
datasource definitions should be removed at the same time.

IMPORTANT

As a prerequisite, before removing a sensitive string from the Password Vault, confirm if it
is used in the configuration of JBoss EAP.

This operation can be done either interactively, where the user is prompted for each parameter’s value,
or non-interactively, where all parameters' values are provided on the command line. Each method gives
the same result, so either may be used. Both of these methods are invoked using the vault script.

Use the non-interative method to provide all parameters' values at once. For a description of all
parameters, see Initialize the Password Vault . To run the password vault command non-interactively,
the vault script (located in EAP_HOME/bin/) can be invoked with parameters for the relevant
information:

Substitute the placeholder values with the actual values. The values for parameters KEYSTORE_URL,
KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those provided when the password Vault
was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

If the sensitive string is successfully removed, a confirmation message like the following will be displayed:

If the sensitive string is not removed, a message like the following will be displayed:

</vault><management> ...
 **
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
1
Task: Verify whether a secured attribute exists
Enter Vault Block:vb
Enter Attribute Name:password
A value exists for (vb, password)
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit

$ vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias
KEYSTORE_ALIAS --remove-sec-attr --vault-block VAULT_BLOCK --attribute ATTRIBUTE --enc-dir
ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

CHAPTER 3. SECURELY STORING CREDENTIALS

163

Example: Output

Remove a Sensitive String Interactively
To run the password vault command interactively, the following steps are required:

1. Launch the password vault command interactively.
Run EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by
typing 0 (zero).

2. Complete the prompted parameters.
Follow the prompts to input the required authentication parameters. These values must match
those provided when the password vault was created.

NOTE

When prompted for authentication, the keystore password must be given in
plaintext form, not masked form.

Enter 2 (two) to choose option Remove secured attribute.

Enter the name of the vault block in which the sensitive string is stored.

Enter the name of the sensitive string to be removed.

If the sensitive string is successfully removed, a confirmation message like the following will be displayed:

If the sensitive string is not removed, a message like the following will be displayed:

Example: Output

$./vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --
remove-sec-attr --vault-block vb --attribute password --enc-dir EAP_HOME/vault/ --iteration 120 --salt
1234abcd
 ===
 JBoss Vault
 JBOSS_HOME: EAP_HOME
 JAVA: java
 ===
Dec 23, 2015 1:54:24 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute [vb::password] has been successfully removed from vault

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

 **** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

164

3.2.9. Configure Red Hat JBoss Enterprise Application Platform to Use a Custom
Implementation of the Password Vault

In addition to using the provided password vault implementation, a custom implementation of
SecurityVault can also be used.

IMPORTANT

As a prerequisite, ensure that the password vault has been initialized. For more
information, see Initialize the Password Vault .

To use a custom implementation for the password vault:

1. Create a class that implements the interface SecurityVault.

2. Create a module containing the class from the previous step, and specify a dependency on
org.picketbox where the interface is SecurityVault.

3. Enable the custom password vault in the JBoss EAP configuration by adding the vault element
with the following attributes:

code - The fully qualified name of class that implements SecurityVault.

Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Dec 23, 2014 1:40:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in configuration file:
 **
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
 **
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
2
Task: Remove secured attribute
Enter Vault Block:vb
Enter Attribute Name:password
Secured attribute [vb::password] has been successfully removed from vault

CHAPTER 3. SECURELY STORING CREDENTIALS

165

module - The name of the module that contains the custom class.

Optionally, the vault-options parameters can be used to initialize the custom class for a password vault.

Example: Use vault-options Parameters to Initialize the Custom Class

/core-service=vault:add(code="custom.vault.implementation.CustomSecurityVault",
module="custom.vault.module", vault-options=[("KEYSTORE_URL" => PATH_TO_KEYSTORE),
("KEYSTORE_PASSWORD" => MASKED_PASSWORD), ("KEYSTORE_ALIAS" => ALIAS),("SALT"
=> SALT),("ITERATION_COUNT" => ITERATION_COUNT),("ENC_FILE_DIR" => ENC_FILE_DIR)])

3.2.10. Obtain Keystore Password From External Source

The EXT, EXTC, CMD, CMDC or CLASS methods can be used in vault configuration for obtaining the
Java keystore password.

The description for the methods are listed as:

{EXT}…​

Refers to the exact command, where the … ​ is the exact command. For example:
{EXT}/usr/bin/getmypassword --section 1 --query company, run the /usr/bin/getmypassword
command, which displays the password on standard output and use it as password for Security
Vault’s keystore. In this example, the command is using two options: --section 1 and --query
company.

{EXTC[:expiration_in_millis]}…​

Refers to the exact command, where the … ​ is the exact command line that is passed to the
Runtime.exec(String) method to execute a platform command. The first line of the command
output is used as the password. EXTC variant caches the passwords for expiration_in_millis
milliseconds. Default cache expiration is 0 = infinity. For example:
{EXTC:120000}/usr/bin/getmypassword --section 1 --query company verifies if the cache
contains /usr/bin/getmypassword output, if it contains the output then use it. If it does not contain
the output, run the command to output it to cache and use it. In this example, the cache expires in 2
minutes, that is 120000 milliseconds.

{CMD}…​ or {CMDC[:expiration_in_millis]}…​

The general command is a string delimited by , (comma) where the first part is the actual command
and further parts represents the parameters. The comma can be backslashed to keep it as a part of
the parameter. For example, {CMD}/usr/bin/getmypassword,--section,1,--query,company.

{CLASS[@jboss_module_spec]}classname[:ctorargs]

Where the [:ctorargs] is an optional string delimited by the : (colon) from the classname is passed to
the classname ctor. The ctorargs is a comma delimited list of strings. For example,
{CLASS@org.test.passwd}org.test.passwd.ExternamPassworProvider. In this example, the
org.test.passwd.ExternamPassworProvider class is loaded from org.test.passwd module and
uses the toCharArray() method to get the password. If toCharArray() is not available the toString()
method is used. The org.test.passwd.ExternamPassworProvider class must have the default
constructor.

<vault-option name="KEYSTORE_PASSWORD" value="METHOD_TO_OBTAIN_PASSWORD"/>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

166

CHAPTER 4. JAVA SECURITY MANAGER

4.1. ABOUT THE JAVA SECURITY MANAGER

The Java Security Manager is a class that manages the external boundary of the Java Virtual Machine
(JVM) sandbox, controlling how code executing within the JVM can interact with resources outside the
JVM. When the Java Security Manager is activated, the Java API checks with the security manager for
approval before executing a wide range of potentially unsafe operations. The Java Security Manager
uses a security policy to determine whether a given action will be allowed or denied.

4.2. DEFINE A JAVA SECURITY POLICY

A Java security policy is a set of defined permissions for different classes of code. The Java Security
Manager compares actions requested by applications against the security policy. If an action is allowed
by the policy, the Security Manager will permit that action to take place. If the action is not allowed by
the policy, the Security Manager will deny that action.

IMPORTANT

Previous versions of JBoss EAP defined policies using an external file, e.g.
EAP_HOME/bin/server.policy. JBoss EAP 7 defines Java Security Policies in two ways:
the security-manager subsystem and through XML files in the individual deployments.
The security-manager subsystem defines minimum and maximum permission for ALL
deployments, while the XML files specify the permissions requested by the individual
deployment.

4.2.1. Defining Policies in the Security Manager Subsystem

The security-manager subsystem allows you do define shared or common permissions for all
deployments. This is accomplished by defining minimum and maximum permission sets. All deployments
will be granted at the least all permissions defined in the minimum permission. The deployment process
fails for a deployment if it requests a permission that exceeds the ones defined in the maximum
permission set.

Example: Management CLI Command for Updating Minimum Permission Set

Example: Management CLI Command for Updating Maximum Permission Set

NOTE

If the maximum permission set is not defined, its value defaults to
java.security.AllPermission.

You can find a full reference of the security-manager subsystem in the JBoss EAP Configuration
Guide.

/subsystem=security-manager/deployment-permissions=default:write-attribute(name=minimum-
permissions, value=[{class="java.util.PropertyPermission", actions="read", name="*"}])

/subsystem=security-manager/deployment-permissions=default:write-attribute(name=maximum-
permissions, value=[{class="java.util.PropertyPermission", actions="read,write", name="*"},
{class="java.io.FilePermission", actions="read,write", name="/-"}])

CHAPTER 4. JAVA SECURITY MANAGER

167

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#security-manager-reference

4.2.2. Defining Policies in the Deployment

In JBoss EAP 7, you can add a META-INF/permissions.xml to your deployment, which is part of JSR
342 and is a part of the Java EE specification. This file allows you to specify the permissions needed by
the deployment. If a minimum permissions set is defined in the security-manager subsystem and a
META-INF/permissions.xml is added to your deployment, then the union of those permissions is
granted. If the permissions requested in the permissions.xml exceed the maximum policies defined in
the security-manager subsystem, its deployment will not succeed. If both META-INF/permissions.xml
and META-INF/jboss-permissions.xml are present in the deployment, then only the permissions
requested in the META-INF/jboss-permissions.xml are granted.

The specification dictates that permissions.xml cover the entire application or top-level deployment
module. In cases where you wish to define specific permissions for a subdeployment, you can use the
JBoss EAP-specific META-INF/jboss-permissions.xml. It follows the same exact format as
permissions.xml and will apply only to the deployment module in which it is declared.

Example: Sample permissions.xml

4.2.3. Defining Policies in Modules

You can restrict the permissions of a module by adding a <permissions> element to the module.xml
file. The <permissions> element contains zero or more <grant> elements, which define the permission
to grant to the module. Each <grant> element contains the following attributes:

permission

The qualified class name of the permission to grant.

name

The permission name to provide to the permission class constructor.

actions

The (optional) list of actions, required by some permission types.

Example: module.xml with Defined Policies

If the <permissions> element is present, the module will be restricted to only the permissions you have
listed. If the <permissions> element is not present, there will be no restrictions on the module.

<permissions version="7">
 <permission>
 <class-name>java.util.PropertyPermission</class-name>
 <name>*</name>
 <actions>read</actions>
 </permission>
</permissions>

<module xmlns="urn:jboss:module:1.5" name="org.jboss.test.example">
 <permissions>
 <grant permission="java.util.PropertyPermission" name="*" actions="read,write" />
 <grant permission="java.io.FilePermission" name="/etc/-" actions="read" />
 </permissions>
 ...
</module>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

168

http://jcp.org/en/jsr/detail?id=342

4.3. RUN JBOSS EAP WITH THE JAVA SECURITY MANAGER

IMPORTANT

Previous version of JBoss EAP allowed for the use of the -Djava.security.manager Java
system property as well as custom security managers. Neither of these are supported in
JBoss EAP 7. In addition, the Java Security Manager policies are now defined within the
security-manager subsystem, meaning external policy files and the -
Djava.security.policy Java system property are not supported JBoss EAP 7.

IMPORTANT

Before starting JBoss EAP with the Java Security Manager enabled, you need make sure
all security policies are defined in the security-manager subsystem.

To run JBoss EAP with the Java Security Manager, you need to use the secmgr option during startup.
There are two ways to do this:

Use the flag with the startup script To use the -secmgr flag with the startup script, include it
when starting up your JBoss EAP instance:

Example: Startup Script

./standalone.sh -secmgr

Using the Startup Configuration File

IMPORTANT

The domain or standalone server must be completely stopped before you edit
any configuration files.

NOTE

If you are using JBoss EAP in a managed domain, you must perform the following
procedure on each physical host or instance in your domain.

To enable the Java Security Manager using the startup configuration file, you need to edit either
the standalone.conf or domain.conf file, depending if you are running a standalone instance or
managed domain. If running in Windows, the standalone.conf.bat or domain.conf.bat files are
used instead.

Uncomment the SECMGR="true" line in the configuration file:

Example: standalone.conf or domain.conf

Uncomment this to run with a security manager enabled
SECMGR="true"

Example: standalone.conf.bat or domain.conf.bat

CHAPTER 4. JAVA SECURITY MANAGER

169

rem # Uncomment this to run with a security manager enabled
set "SECMGR=true"

4.4. CONSIDERATIONS MOVING FROM PREVIOUS VERSIONS

When moving applications from a previous version of JBoss EAP to JBoss EAP 7 running with the Java
Security Manager enabled, you need to be aware of the changes in how policies are defined as well as
the necessary configuration needed with both the JBoss EAP configuration and the deployment.

4.4.1. Defining Policies

In previous versions of JBoss EAP, policies were defined in an external configuration file. In JBoss EAP 7,
policies are defined using the security-manager subsystem and with permissions.xml or jboss-
permissions.xml contained in the deployment. More details on how to use both to define your policies
are covered in a previous section.

4.4.2. JBoss EAP Configuration Changes

In previous versions of JBoss EAP, you could use -Djava.security.manager and -Djava.security.policy
Java system properties during JBoss EAP startup. These are no longer supported and the secmgr flag
should be used instead to enable JBoss EAP to run with the Java Security Manager. More details on the
secmgr flag are covered in a previous section.

4.4.3. Custom Security Managers

Custom security managers are not supported in JBoss EAP 7.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

170

APPENDIX A. REFERENCE MATERIAL

A.1. ELYTRON SUBSYSTEM COMPONENTS REFERENCE

Table A.1. add-prefix-role-mapper Attributes

Attribute Description

prefix The prefix to add to each role.

Table A.2. add-suffix-role-mapper Attributes

Attribute Description

suffix The suffix to add to each role.

Table A.3. aggregate-http-server-mechanism-factory Attributes

Attribute Description

http-server-mechanism-factories The list of HTTP server factories to aggregate.

Table A.4. aggregate-principal-decoder Attributes

Attribute Description

principal-decoders The list of principal decoders to aggregate.

Table A.5. aggregate-principal-transformer Attributes

Attribute Description

principal-transformers The list of principal transformers to aggregate.

Table A.6. aggregate-providers Attributes

Attribute Description

providers The list of referenced Provider[] resources to aggregate.

Table A.7. aggregate-realm Attributes

Attribute Description

APPENDIX A. REFERENCE MATERIAL

171

authentication-realm Reference to the security realm to use for authentication steps.
This is used for obtaining or validating credentials.

authorization-realm Reference to the security realm to use for loading the identity
for authorization steps.

Attribute Description

Table A.8. aggregate-role-mapper Attributes

Attribute Description

role-mappers The list of role mappers to aggregate.

Table A.9. aggregate-sasl-server-factory Attributes

Attribute Description

sasl-server-factories The list of SASL server factories to aggregate.

Table A.10. authentication-configuration Attributes

Attribute Description

anonymous If true anonymous authentication is allowed. The default is
false.

authentication-name The authentication name to use.

authorization-name The authorization name to use.

credential-reference The credential to use for authentication. This can be in clear text
or as a reference to a credential stored in a credential-store.

extends An existing authentication configuration to extend.

host The host to use.

kerberos-security-factory Reference to a kerberos security factory used to obtain a GSS
kerberos credential.

mechanism-properties Configuration properties for the SASL authentication
mechanism.

port The port to use.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

172

protocol The protocol to use.

realm The realm to use.

sasl-mechanism-selector The SASL mechanism selector string. See sasl-mechanism-
selector Grammar for usage information.

security-domain Reference to a security domain to obtain a forwarded identity.

Attribute Description

Table A.11. authentication-context Attributes

Attribute Description

extends An existing authentication context to extend.

match-rules The rules to match against for this authentication context.

Table A.12. authentication-context match-rules Attributes

Attribute Description

match-abstract-type The abstract type to match against.

match-abstract-type-authority The abstract type authority to match against.

match-host The host to match against.

match-local-security-domain The local security domain to match against.

match-no-user If true, rule will match against no user.

match-path The patch to match against.

match-port The port to match against.

match-protocol The protocol to match against.

match-urn The URN to match against.

match-user The user to match against.

authentication-configuration Reference to the authentication configuration to use for a
successful match.

APPENDIX A. REFERENCE MATERIAL

173

ssl-context Reference to the ssl-context to use for a successful match.

Attribute Description

Table A.13. caching-realm Attributes

Attribute Description

maximum-age The time in milliseconds that an item can stay in the cache. A
value of -1 keeps items indefinitely. This defaults to -1.

maximum-entries The maximum number of entries to keep in the cache. This
defaults to 16.

realm A reference to a cacheable security realm such as jdbc-realm,
ldap-realm, filesystem-realm or a custom security realm.

Table A.14. certificate-authority-account Attributes

Attribute Description

alias The alias of certificate authority account key in the keystore. If
the alias does not already exist in the keystore, a certificate
authority account key will be automatically generated and stored
as a PrivateKeyEntry under the alias.

certificate-authority The name of the certificate authority to use. The default, and
only allowed value, is LetsEncrypt.

contact-urls A list of URLs that the certificate authority can contact about
any issues related to this account.

credential-reference The credential to be used when accessing the certificate
authority account key.

key-store The keystore that contains the certificate authority account key.

Table A.15. chained-principal-transformer Attributes

Attribute Description

principal-transformers List of principal transformers to chain.

Table A.16. client-ssl-context Attributes

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

174

Attribute Description

cipher-suite-filter The filter to apply to specify the enabled cipher suites. This filter
takes a list of items delimited by colons, commas, or spaces.
Each item may be a OpenSSL-style cipher suite name, a
standard SSL/TLS cipher suite name, or a keyword such as
TLSv1.2 or DES. A full list of keywords as well as additional
details on creating a filter can be found in the Javadoc for the
CipherSuiteSelector class. The default value is DEFAULT,
which corresponds to all known cipher suites that do not have
NULL encryption and excludes any cipher suites that have no
authentication.

key-manager Reference to the key-manager to use within the
SSLContext.

protocols The enabled protocols. Allowed options: SSLv2, SSLv3,
TLSv1, TLSv1.1, TLSv1.2, TLSv1.3. This defaults to enabling
TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3.

WARNING

Red Hat recommends that SSLv2, SSLv3,
and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected
packages.

provider-name The name of the provider to use. If not specified, all providers
from providers will be passed to the SSLContext.

providers The name of the providers to obtain the Provider[] to use to
load the SSLContext.

session-timeout The timeout for SSL sessions.

trust-manager Reference to the trust-manager to use within the
SSLContext.

Table A.17. concatenating-principal-decoder Attributes

Attribute Description

joiner The string that will be used to join the values in the principal-
decoders attribute.

principal-decoders The list of principal decoders to concatenate.



APPENDIX A. REFERENCE MATERIAL

175

http://wildfly-security.github.io/wildfly-elytron/1.6.x/api-javadoc/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-

Table A.18. configurable-http-server-mechanism-factory Attributes

Attribute Description

filters The list of filters to be applied in order to enable or disable
mechanisms based on the name.

http-server-mechanism-factory Reference to the http server factory to be wrapped.

properties Custom properties to be passed in to the HTTP server factory
calls.

Table A.19. configurable-http-server-mechanism-factory filters Attributes

Attribute Description

pattern-filter Filter based on a regular expression pattern.

enabling If true the filter will be enabled if the mechanism matches. This
defaults to true.

Table A.20. configurable-sasl-server-factory Attributes

Attribute Description

filters List of filters to be evaluated sequentially and combined using
or.

properties Custom properties to be passed in to the SASL server factory
calls.

protocol The protocol passed into the factory when creating the
mechanism.

sasl-server-factory Reference to the SASL server factory to be wrapped.

server-name The server name passed into the factory when creating the
mechanism.

Table A.21. configurable-sasl-server-factory filters Attributes

Attribute Description

predefined-filter A predefined filter to use to filter the mechanism name. Allowed
values are HASH_MD5, HASH_SHA, HASH_SHA_256,
HASH_SHA_384, HASH_SHA_512, GS2, SCRAM,
DIGEST, IEC_ISO_9798, EAP, MUTUAL, BINDING, and
RECOMMENDED.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

176

pattern-filter A filter for the mechanism name based on a regular expression.

enabling If true the filter will be enabled if the factory matches. This
defaults to true.

Attribute Description

Table A.22. constant-permission-mapper Attributes

Attribute Description

permission-sets The permission sets to assign in the event of a match.
Permission sets can be used to assign permissions to an identity.

permission-sets can take the following attribute:

permission-set
A reference to a permission set.

NOTE

The permissions attribute is deprecated, and
is replaced by permission-sets.

Table A.23. constant-principal-decoder Attributes

Attribute Description

constant The constant value the principal decoder will always return.

Table A.24. constant-principal-transformer Attributes

Attribute Description

constant The constant value this principal transformer will always return.

Table A.25. constant-realm-mapper Attributes

Attribute Description

realm-name Reference to the realm that will be returned.

Table A.26. constant-role-mapper Attributes

APPENDIX A. REFERENCE MATERIAL

177

Attribute Description

roles The list of roles that will be returned.

Table A.27. credential-store Attributes

Attribute Description

create Specifies whether the credential store should create storage
when it does not exist.

credential-reference The reference to the credential used to create protection
parameter. This can be in clear text or as a reference to a
credential stored in a credential-store.

implementation-properties Map of credentials store implementation-specific properties.

location The file name of the credential store storage.

modifiable Whether the credential store is modifiable.

other-providers The name of the providers to obtain the providers to search for
the one that can create the required JCA objects within the
credential store. This is valid only for keystore-based credential
store. If this is not specified, then the global list of providers is
used instead.

provider-name The name of the provider to use to instantiate the
CredentialStoreSpi. If the provider is not specified, then the
first provider found that can create an instance of the specified
type will be used.

providers The name of the providers to obtain the providers to search for
the one that can create the required credential store type. If this
is not specified, then the global list of providers is used instead.

relative-to The base path this credential store path is relative to.

type Type of the credential store, for example,
KeyStoreCredentialStore.

Table A.28. credential-store alias

Attribute Description

entry-type Type of credential entry stored in the credential store.

secret-value Secret value such as password.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

178

Table A.29. credential-store KeyStoreCredentialStore implementation properties

Attribute Description

cryptoAlg Cryptographic algorithm name to be used to encrypt decrypt
entries at external storage. This attribute is only valid if
external is enabled. Defaults to AES.

external Whether data is stored to external storage and encrypted by the
keyAlias. Defaults to false.

externalPath Specifies path to external storage. This attribute is only valid if
external is enabled.

keyAlias The secret key alias within the credential store that is used to
encrypt or decrypt data to the external storage.

keyStoreType The keystore type, such as PKCS11. Defaults to
KeyStore.getDefaultType().

Table A.30. custom-credential-security-factory Attributes

Attribute Description

configuration The optional key and value configuration for the custom security
factory.

class-name The class name of the implementation of the custom security
factory.

module The module to use to load the custom security factory.

Table A.31. custom-modifiable-realm Attributes

Attribute Description

configuration The optional key and value configuration for the custom realm.

class-name The class name of the implementation of the custom realm.

module The module to use to load the custom realm.

Table A.32. custom-permission-mapper Attributes

Attribute Description

configuration The optional key and value configuration for the permission
mapper.

APPENDIX A. REFERENCE MATERIAL

179

class-name Fully qualified class name of the permission mapper.

module Name of the module to use to load the permission mapper.

Attribute Description

Table A.33. custom-principal-decoder Attributes

Attribute Description

configuration The optional key and value configuration for the principal
decoder.

class-name Fully qualified class name of the principal decoder.

module Name of the module to use to load the principal decoder.

Table A.34. custom-principal-transformer Attributes

Attribute Description

configuration The optional key and value configuration for the principal
transformer.

class-name Fully qualified class name of the principal transformer.

module Name of the module to use to load the principal transformer.

Table A.35. custom-realm Attributes

Attribute Description

configuration The optional key and value configuration for the custom realm.

class-name Fully qualified class name of the custom realm.

module Name of the module to use to load the custom realm.

Table A.36. custom-realm-mapper Attributes

Attribute Description

configuration The optional key and value configuration for the realm mapper.

class-name Fully qualified class name of the realm mapper.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

180

module Name of the module to use to load the realm mapper.

Attribute Description

Table A.37. custom-role-decoder Attributes

Attribute Description

configuration The optional key and value configuration for the role decoder.

class-name Fully qualified class name of the role decoder.

module Name of the module to use to load the role decoder.

Table A.38. custom-role-mapper Attributes

Attribute Description

configuration The optional key and value configuration for the role mapper.

class-name Fully qualified class name of the role mapper.

module Name of the module to use to load the role mapper.

Table A.39. dir-context Attributes

Attribute Description

authentication-context The authentication context to obtain login credentials to
connect to the LDAP server. Can be omitted if authentication-
level is none, which is equivalent to anonymous authentication.

authentication-level The authentication level, meaning security level or
authentication mechanism, to use. Corresponds to
SECURITY_AUTHENTICATION or
java.naming.security.authentication environment
property. Allowed values are none, simple and sasl_mech
format. The sasl_mech format is a space-separated list of SASL
mechanism names.

connection-timeout The timeout for connecting to the LDAP server in milliseconds.

credential-reference The credential reference to authenticate and connect to the
LDAP server. This can be omitted if authentication-level is
none, which is equivalent to anonymous authentication.

enable-connection-pooling If true connection pooling is enabled. This defaults to false.

APPENDIX A. REFERENCE MATERIAL

181

module Name of module that will be used as the class loading base.

principal The principal to authenticate and connect to the LDAP server.
This can be omitted if authentication-level is none which is
equivalent to anonymous authentication.

properties The additional connection properties for the DirContext.

read-timeout The read timeout for an LDAP operation in milliseconds.

referral-mode The mode used to determine if referrals should be followed.
Allowed values are FOLLOW, IGNORE, and THROW. This
defaults to IGNORE.

ssl-context The name of the SSL context used to secure connection to the
LDAP server.

url The connection URL.

Attribute Description

Table A.40. filesystem-realm Attributes

Attribute Description

encoded Whether the identity names should be stored encoded (Base32)
in file names.

levels The number of levels of directory hashing to apply. The default
value is 2.

path The path to the file containing the realm.

relative-to The predefined relative path to use with path. For example
jboss.server.config.dir.

Table A.41. filtering-key-store Attributes

Attribute Description

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

182

alias-filter A filter to apply to the aliases returned from the key-store. It
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

NOTE

The alias-filter attribute is case sensitive.
Because the use of mixed-case or uppercase
aliases, such as elytronAppServer, might not
be recognized by some keystore providers, it is
recommended to use lowercase aliases, such as
elytronappserver.

key-store Reference to the key-store to filter.

Attribute Description

Table A.42. http-authentication-factory Attributes

Attribute Description

http-server-mechanism-factory The HttpServerAuthenticationMechanismFactory to
associate with this resource.

mechanism-configurations The list of mechanism-specific configurations.

security-domain The security domain to associate with this resource.

Table A.43. http-authentication-factory mechanism-configurations Attributes

Attribute Description

credential-security-factory The security factory to use to obtain a credential as required by
the mechanism.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

host-name The host name this configuration applies to.

mechanism-name This configuration will only apply where a mechanism with the
name specified is used. If this attribute is omitted then this will
match any mechanism name.

APPENDIX A. REFERENCE MATERIAL

183

mechanism-realm-configurations The list of definitions of the realm names as understood by the
mechanism.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

protocol The protocol this configuration applies to.

realm-mapper The realm mapper to be used by the mechanism.

Attribute Description

Table A.44. http-authentication-factory mechanism-configurations mechanism-realm-
configurations Attributes

Attribute Description

final-principal-transformer A final principal transformer to apply for this mechanism realm.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

realm-mapper The realm mapper to be used by the mechanism.

realm-name The name of the realm to be presented by the mechanism.

Table A.45. identity-realm Attributes

Attribute Description

attribute-name The name of the attribute associated with this identity.

attribute-values The list of values associated with the identities attribute.

identity The identity available from the security realm.

Table A.46. jdbc-realm Attributes

Attribute Description

principal-query The list of authentication queries used to authenticate users
based on specific key types.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

184

Table A.47. jdbc-realm principal-query Attributes

Attribute Description

attribute-mapping The list of attribute mappings defined for this resource.

bcrypt-mapper A key mapper that maps a column returned from a SQL query
to a Bcrypt key type.

clear-password-mapper A key mapper that maps a column returned from a SQL query
to a clear password key type. This has a password-index child
element that is the column index from an authentication query
that represents the user’s password.

data-source The name of the datasource used to connect to the database.

salted-simple-digest-mapper A key mapper that maps a column returned from a SQL query
to a Salted Simple Digest key type.

scram-mapper A key mapper that maps a column returned from a SQL query
to a SCRAM key type.

simple-digest-mapper A key mapper that maps a column returned from a SQL query
to a Simple Digest key type.

sql The SQL statement used to obtain the keys as table columns for
a specific user and map them accordingly with their type.

Table A.48. jdbc-realm principal-query attribute-mapping Attributes

Attribute Description

index The column index from a query that representing the mapped
attribute.

to The name of the identity attribute mapped from a column
returned from a SQL query.

Table A.49. jdbc-realm principal-query bcrypt-mapper Attributes

Attribute Description

iteration-count-index The column index from an authentication query that represents
the password’s iteration count, if supported.

password-index The column index from an authentication query that represents
the user’s password.

APPENDIX A. REFERENCE MATERIAL

185

salt-index The column index from an authentication query that represents
the password’s salt, if supported.

Attribute Description

Table A.50. jdbc-realm principal-query salted-simple-digest-mapper Attributes

Attribute Description

algorithm The algorithm for a specific password key mapper. Allowed
values are password-salt-digest-md5, password-salt-
digest-sha-1, password-salt-digest-sha-256, password-
salt-digest-sha-384, password-salt-digest-sha-512, salt-
password-digest-md5, salt-password-digest-sha-1,
salt-password-digest-sha-256, salt-password-digest-
sha-384, and salt-password-digest-sha-512. The default is
password-salt-digest-md5.

password-index The column index from an authentication query that represents
the user’s password.

salt-index The column index from an authentication query that represents
the password’s salt, if supported.

Table A.51. jdbc-realm principal-query simple-digest-mapper Attributes

Attribute Description

algorithm The algorithm for a specific password key mapper. Allowed
values are simple-digest-md2, simple-digest-md5, simple-
digest-sha-1, simple-digest-sha-256, simple-digest-sha-
384, and simple-digest-sha-512. The default is simple-
digest-md5.

password-index The column index from an authentication query that represents
the user’s password.

Table A.52. jdbc-realm principal-query scram-mapper Attributes

Attribute Description

algorithm The algorithm for a specific password key mapper. The allowed
values are scram-sha-1 and scram-sha-256. The default
value is scram-sha-256.

iteration-count-index The column index from an authentication query that represents
the password’s iteration count, if supported.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

186

password-index The column index from an authentication query that represents
the user’s password.

salt-index The column index from an authentication query that represents
the password’s salt, if supported.

Attribute Description

Table A.53. kerberos-security-factory Attributes

Attribute Description

debug If true the JAAS step of obtaining the credential will have debug
logging enabled. Defaults to false.

mechanism-names The mechanism names the credential should be usable with.
Names will be converted to OIDs and used together with OIDs
from mechanism-oids attribute.

mechanism-oids The list of mechanism OIDs the credential should be usable with.

minimum-remaining-lifetime The amount of time in seconds a cached credential can have
before it is recreated.

obtain-kerberos-ticket Should the KerberosTicket also be obtained and associated
with the credential. This is required to be true where credentials
are delegated to the server.

options The Krb5LoginModule additional options.

path The path of the keytab to load to obtain the credential.

principal The principal represented by the keytab.

relative-to The relative path to the keytab.

request-lifetime How much lifetime should be requested for newly created
credentials.

required Whether the keytab file with an adequate principal is required to
exist at the time the service starts.

server If true this factory is used for the server-side portion of
Kerberos authentication. If false it is used for the client-side.
Defaults to true

wrap-gss-credential Whether generated GSS credentials should be wrapped to
prevent improper disposal.

APPENDIX A. REFERENCE MATERIAL

187

Table A.54. key-manager Attributes

Attribute Description

algorithm The name of the algorithm to use to create the underlying
KeyManagerFactory. This is provided by the JDK. For
example, a JDK that uses SunJSSE provides the PKIX and
SunX509 algorithms. More details on SunJSSE can be found in
the Java Secure Socket Extension (JSSE) Reference Guide.

alias-filter A filter to apply to the aliases returned from the keystore. This
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

credential-reference The credential reference to decrypt keystore item. This can be
specified in clear text or as a reference to a credential stored in
a credential-store. This is not a password of the keystore.

key-store Reference to the key-store to use to initialize the underlying
KeyManagerFactory.

provider-name The name of the provider to use to create the underlying
KeyManagerFactory.

providers Reference to obtain the Provider[] to use when creating the
underlying KeyManagerFactory.

Table A.55. key-store Attributes

Attribute Description

alias-filter A filter to apply to the aliases returned from the keystore, can
either be a comma separated list of aliases to return or one of
the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

NOTE

The alias-filter attribute is case sensitive.
Because the use of mixed-case or uppercase
aliases, such as elytronAppServer, might not
be recognized by some keystore providers, it is
recommended to use lowercase aliases, such as
elytronappserver.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

188

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

credential-reference The password to use to access the keystore. This can be
specified in clear text or as a reference to a credential stored in
a credential-store.

path The path to the keystore file.

provider-name The name of the provider to use to load the keystore. Setting
this attribute disables searching for the first provider that can
create a keystore of the specified type.

providers A reference to the providers that should be used to obtain the
list of provider instances to search. If not specified, the global list
of providers will be used instead.

relative-to The base path this store is relative to. This can be a full path or
predefined path such as jboss.server.config.dir.

required If true the keystore file referenced is required to exist at the
time the keystore service starts. The default value is false.

type The type of the keystore, for example, JKS. A full list of keystore
types can be found in the Java Cryptography Architecture
Standard Algorithm Name Documentation for JDK 8.

Attribute Description

Table A.56. key-store-realm Attributes

Attribute Description

key-store Reference to the keystore used to back this security realm.

Table A.57. ldap-key-store Attributes

Attribute Description

alias-attribute The name of LDAP attribute where the item alias will be stored.

certificate-attribute The name of LDAP attribute where the certificate will be stored.

certificate-chain-attribute The name of LDAP attribute where the certificate chain will be
stored.

certificate-chain-encoding The encoding of the certificate chain.

certificate-type The type of the certificate.

APPENDIX A. REFERENCE MATERIAL

189

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore

dir-context The name of the dir-context which will be used to
communication with LDAP server.

filter-alias The LDAP filter for obtaining an item in the keystore by alias.

filter-certificate The LDAP filter for obtaining an item in the keystore by
certificate.

filter-iterate The LDAP filter for iterating over all items of the keystore.

key-attribute The name of LDAP attribute where the key will be stored.

key-type The type of keystore that is stored in a serialized manner in the
LDAP attribute. For example, JKS. A full list of keystore types
can be found in the Java Cryptography Architecture Standard
Algorithm Name Documentation for JDK 8.

new-item-template Configuration for item creation. This defines how the LDAP
entry of newly created keystore item will look.

search-path The path in LDAP where the keystore items will be searched.

search-recursive If the LDAP search should be recursive.

search-time-limit The time limit in milliseconds for obtaining keystore items from
LDAP. Defaults to 10000.

Attribute Description

Table A.58. ldap-key-store new-item-template Attributes

Attribute Description

new-item-attributes The LDAP attributes which will be set for newly created items.
This takes a list of items with name and value pairs.

new-item-path The path in LDAP where the newly created keystore items will
be stored.

new-item-rdn The name of LDAP RDN for the newly created items.

Table A.59. ldap-realm Attributes

Attribute Description

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

190

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore

allow-blank-password Whether this realm supports blank password direct verification. A
blank password attempt will be rejected otherwise.

dir-context The name of the dir-context which will be used to connect to
the LDAP server.

direct-verification If true this realm supports verification of credentials by directly
connecting to LDAP as the account being authenticated;
otherwise, the password is retrieved from the LDAP server and
verified in JBoss EAP. If enabled, the JBoss EAP server must be
able to obtain the plain user password from the client, which
requires either the PLAIN SASL or BASIC HTTP mechanism be
used for authentication. Defaults to false.

identity-mapping The configuration options that define how principals are
mapped to their corresponding entries in the underlying LDAP
server.

Attribute Description

Table A.60. ldap-realm identity-mapping Attributes

Attribute Description

rdn-identifier The RDN part of the principal’s DN to be used to obtain the
principal’s name from an LDAP entry. This is also used when
creating new identities.

use-recursive-search If true identity search queries are recursive. Defaults to false.

search-base-dn The base DN to search for identities.

attribute-mapping List of attribute mappings defined for this resource.

filter-name The LDAP filter for getting identity by name.

iterator-filter The LDAP filter for iterating over identities of the realm.

new-identity-parent-dn The DN of parent of newly created identities. Required for
modifiability of the realm.

new-identity-attributes The list of attributes of newly created identities and is required
for modifiability of the realm. This is a list of name and value
pair objects.

user-password-mapper The credential mapping for a credential similar to userPassword.

otp-credential-mapper The credential mapping for OTP credential.

APPENDIX A. REFERENCE MATERIAL

191

x509-credential-mapper The configuration allowing to use LDAP as storage of X509
credentials. If none of the -from child attributes are defined,
then this configuration will be ignored. If more than one -from
child attribute is defined, then the user certificate must match all
the defined criteria.

Attribute Description

Table A.61. ldap-realm identity-mapping attribute-mapping Attributes

Attribute Description

extract-rdn The RDN key to use as the value for an attribute, in case the
value in its raw form is in X.500 format.

filter The filter to use to obtain the values for a specific attribute.

filter-base-dn The name of the context where the filter should be performed.

from The name of the LDAP attribute to map to an identity attribute.
If not defined, DN of entry is used.

reference The name of LDAP attribute containing DN of entry to obtain
value from.

role-recursion Maximum depth for recursive role assignment. Use 0 to specify
no recursion. Defaults to 0.

role-recursion-name Determine the LDAP attribute of role entry which will be a
substitute for "{0}" in filter-name when searching roles of role.

search-recursive If true attribute LDAP search queries are recursive. Defaults to
true.

to The name of the identity attribute mapped from a specific
LDAP attribute. If not provided, the name of the attribute is the
same as define in from. If the from is not defined too, value dn
is used.

Table A.62. ldap-realm identity-mapping user-password-mapper Attributes

Attribute Description

from The name of the LDAP attribute to map to an identity attribute.
If not defined, DN of entry is used.

verifiable If true password can be used to verify the user. Defaults to true.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

192

writable If true password can be changed. Defaults to false.

Attribute Description

Table A.63. ldap-realm identity-mapping otp-credential-mapper Attributes

Attribute Description

algorithm-from The name of the LDAP attribute of OTP algorithm.

hash-from The name of the LDAP attribute of OTP hash function.

seed-from The name of the LDAP attribute of OTP seed.

sequence-from The name of the LDAP attribute of OTP sequence number.

Table A.64. ldap-realm identity-mapping x509-credential-mapper Attributes

Attribute Description

certificate-from The name of the LDAP attribute to map to an encoded user
certificate. If not defined, encoded certificate will not be
checked.

digest-algorithm The digest algorithm, which is the hash function, used to
compute digest of the user certificate. Will be used only if
digest-from has been defined.

digest-from The name of the LDAP attribute to map to a user certificate
digest. If not defined, certificate digest will not be checked.

serial-number-from The name of the LDAP attribute to map to a serial number of
user certificate. If not defined, serial number will not be checked.

subject-dn-from The name of the LDAP attribute to map to a subject DN of user
certificate. If not defined, subject DN will not be checked.

Table A.65. logical-permission-mapper Attributes

Attribute Description

left Reference to the permission mapper to use to the left of the
operation.

logical-operation The logical operation to use to combine the permission mappers.
Allowed values are and, or, xor, and unless.

APPENDIX A. REFERENCE MATERIAL

193

right Reference to the permission mapper to use to the right of the
operation.

Attribute Description

Table A.66. logical-role-mapper Attributes

Attribute Description

left Reference to a role mapper to be used on the left side of the
operation.

logical-operation The logical operation to be performed on the role mapper
mappings. Allowed values are: and, minus, or, and xor.

right Reference to a role mapper to be used on the right side of the
operation.

Table A.67. mapped-regex-realm-mapper Attributes

Attribute Description

delegate-realm-mapper The realm mapper to delegate to if there is no match using the
pattern.

pattern The regular expression which must contain at least one capture
group to extract the realm from the name.

realm-map Mapping of realm name extracted using the regular expression
to a defined realm name.

Table A.68. mechanism-provider-filtering-sasl-server-factory Attributes

Attribute Description

enabling If true no provider loaded mechanisms are enabled unless
matched by one of the filters. This defaults to true.

filters The list of filters to apply when comparing the mechanisms from
the providers. A filter matches when all of the specified values
match the mechanism and provider pair.

sasl-server-factory Reference to a SASL server factory to be wrapped by this
definition.

Table A.69. mechanism-provider-filtering-sasl-server-factory filters Attributes

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

194

Attribute Description

mechanism-name The name of the SASL mechanism this filter matches with.

provider-name The name of the provider this filter matches.

provider-version The version to use when comparing the provider’s version.

version-comparison The equality to use when evaluating the Provider’s version. The
allowed values are less-than and greater-than. The default
value is less-than.

Table A.70. properties-realm Attributes

Attribute Description

groups-attribute The name of the attribute in the returned
AuthorizationIdentity that should contain the group
membership information for the identity.

groups-properties The properties file containing the users and their groups.

users-properties The properties file containing the users and their passwords.

Table A.71. properties-realm users-properties Attributes

Attribute Description

digest-realm-name The default realm name to use for digested passwords if one is
not discovered in the properties file.

path The path to the file containing the users and their passwords.
The file should contain realm name declaration.

plain-text If true the passwords in properties file stored in plain text. If
false they are pre-hashed, taking the form of HEX(MD5(
username \":\" realm \":\" password))). Defaults to false.

relative-to The predefined path the path is relative to.

Table A.72. properties-realm groups-properties Attributes

Attribute Description

path The path to the file containing the users and their groups.

relative-to The predefined path the path is relative to.

APPENDIX A. REFERENCE MATERIAL

195

Table A.73. provider-http-server-mechanism-factory Attributes

Attribute Description

providers The providers to use to locate the factories. If not specified, the
globally registered list of providers will be used.

Table A.74. provider-loader Attributes

Attribute Description

argument An argument to be passed into the constructor as the Provider
is instantiated.

class-names The list of the fully qualified class names of providers to load.
These are loaded after the service-loader discovered providers,
and any duplicates will be skipped.

configuration The key and value configuration to be passed to the provider to
initialize it.

module The name of the module to load the provider from.

path The path of the file to use to initialize the providers.

relative-to The base path of the configuration file.

Table A.75. provider-sasl-server-factory Attributes

Attribute Description

providers The providers to use to locate the factories. If not specified, the
globally registered list of providers will be used.

Table A.76. regex-principal-transformer Attributes

Attribute Description

pattern The regular expression to use to locate the portion of the name
to be replaced.

replace-all If true all occurrences of the pattern matched are replaced. If
false only the first occurrence. is replaced. Defaults to false.

replacement The value to be used as the replacement.

Table A.77. regex-validating-principal-transformer Attributes

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

196

Attribute Description

match If true the name must match the given pattern to make
validation successful. If false the name must not match the
given pattern to make validation successful. This defaults to
true.

pattern The regular expression to use for the principal transformer.

Table A.78. sasl-authentication-factory Attributes

Attribute Description

mechanism-configurations The list of mechanism specific configurations.

sasl-server-factory The SASL server factory to associate with this resource.

security-domain The security domain to associate with this resource.

Table A.79. sasl-authentication-factory mechanism-configurations Attributes

Attribute Description

credential-security-factory The security factory to use to obtain a credential as required by
the mechanism.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

host-name The host name this configuration applies to.

mechanism-name This configuration will only apply where a mechanism with the
name specified is used. If this attribute is omitted then this will
match any mechanism name.

mechanism-realm-configurations The list of definitions of the realm names as understood by the
mechanism.

protocol The protocol this configuration applies to.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

realm-mapper The realm mapper to be used by the mechanism.

Table A.80. sasl-authentication-factory mechanism-configurations mechanism-realm-
configurations Attributes

APPENDIX A. REFERENCE MATERIAL

197

Attribute Description

final-principal-transformer A final principal transformer to apply for this mechanism realm.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

realm-mapper The realm mapper to be used by the mechanism.

realm-name The name of the realm to be presented by the mechanism.

Table A.81. server-ssl-context Attributes

Attribute Description

authentication-optional If true rejecting of the client certificate by the security domain
will not prevent the connection. This allows a fall through to use
other authentication mechanisms, such as form login, when the
client certificate is rejected by security domain. This has an
effect only when the security domain is set. This defaults to
false.

cipher-suite-filter The filter to apply to specify the enabled cipher suites. This filter
takes a list of items delimited by colons, commas, or spaces.
Each item may be an OpenSSL-style cipher suite name, a
standard SSL/TLS cipher suite name, or a keyword such as
TLSv1.2 or DES. A full list of keywords as well as additional
details on creating a filter can be found in the Javadoc for the
CipherSuiteSelector class. The default value is DEFAULT,
which corresponds to all known cipher suites that do not have
NULL encryption and excludes any cipher suites that have no
authentication.

final-principal-transformer A final principal transformer to apply for this mechanism realm.

key-manager Reference to the key managers to use within the SSLContext.

maximum-session-cache-size The maximum number of SSL/TLS sessions to be cached.

need-client-auth If true a client certificate is required on SSL handshake.
Connection without trusted client certificate will be rejected.
This defaults to false.

post-realm-principal-transformer A principal transformer to apply after the realm is selected.

pre-realm-principal-transformer A principal transformer to apply before the realm is selected.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

198

http://wildfly-security.github.io/wildfly-elytron/1.6.x/api-javadoc/org/wildfly/security/ssl/CipherSuiteSelector.html#fromString-java.lang.String-

protocols The enabled protocols. Allowed options are SSLv2, SSLv3,
TLSv1, TLSv1.1, TLSv1.2, TLSv1.3. This defaults to enabling
TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3.

WARNING

Red Hat recommends that SSLv2, SSLv3,
and TLSv1.0 be explicitly disabled in favor
of TLSv1.1 or TLSv1.2 in all affected
packages.

provider-name The name of the provider to use. If not specified, all providers
from providers will be passed to the SSLContext.

providers The name of the providers to obtain the Provider[] to use to
load the SSLContext.

realm-mapper The realm mapper to be used for SSL authentication.

security-domain The security domain to use for authentication during SSL/TLS
session establishment.

session-timeout The timeout for SSL/TLS sessions.

trust-manager Reference to the trust-manager to use within the
SSLContext.

use-cipher-suites-order If true the cipher suites order defined on the server will be used.
If false the cipher suites order presented by the client will be
used. Defaults to true.

want-client-auth If true a client certificate will be requested, but not required, on
SSL handshake. If a security domain is referenced and supports
X509 evidence, this will be set to true automatically. This is
ignored when need-client-auth is set. This defaults to false.

wrap If true, the returned SSLEngine, SSLSocket, and
SSLServerSocket instances will be wrapped to protect
against further modification. This defaults to false.

Attribute Description

NOTE



APPENDIX A. REFERENCE MATERIAL

199

NOTE

The realm mapper and principal transformer attributes for a server-ssl-context apply
only for the SASL EXTERNAL mechanism, where the certificate is verified by the trust
manager. HTTP CLIENT-CERT authentication settings are configured in an http-
authentication-factory.

Table A.82. service-loader-http-server-mechanism-factory Attributes

Attribute Description

module The module to use to obtain the class loader to load the
factories. If not specified the class loader to load the resource
will be used instead.

Table A.83. service-loader-sasl-server-factory Attributes

Attribute Description

module The module to use to obtain the class loader to load the
factories. If not specified the class loader to load the resource
will be used instead.

Table A.84. simple-permission-mapper Attributes

Attribute Description

mapping-mode The mapping mode that should be used in the event of multiple
matches. Allowed values are, and, or, xor, unless, and first.
The default is first.

permission-mappings The list of defined permission mappings.

Table A.85. simple-permission-mapper permission-mappings Attributes

Attribute Description

permission-sets The permission sets to assign in the event of a match.
Permission sets can be used to assign permissions to an identity.

permission-sets can take the following attribute:

permission-set
A reference to a permission set.

IMPORTANT

The permissions attribute is deprecated, and
is replaced by permission-sets.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

200

principals The list of principals to compare when mapping permissions, if
the identities principal matches any one in the list it is a match.

roles The list of roles to compare when mapping permissions, if the
identity is a member of any one in the list it is a match.

Attribute Description

Table A.86. permission-set permission Attributes

Attribute Description

action The action to pass to the permission as it is constructed.

class-name The fully qualified class name of the permission.

module The module to use to load the permission.

target-name The target name to pass to the permission as it is constructed.

Table A.87. simple-regex-realm-mapper Attributes

Attribute Description

delegate-realm-mapper The realm mapper to delegate to if there is no match using the
pattern.

pattern The regular expression which must contain at least one capture
group to extract the realm from the name.

Table A.88. simple-role-decoder Attributes

Attribute Description

attribute The name of the attribute from the identity to map directly to
roles.

Table A.89. token-realm Attributes

Attribute Description

jwt A token validator to be used in conjunction with a token-based
realm that handles security tokens based on the JWT/JWS
standard.

APPENDIX A. REFERENCE MATERIAL

201

oauth2-introspection A token validator to be used in conjunction with a token-based
realm that handles OAuth2 Access Tokens and validates them
using an endpoint compliant with the RFC-7662 OAuth2 Token
Introspection specification.

principal-claim The name of the claim that should be used to obtain the
principal’s name. The default is username.

Attribute Description

Table A.90. token-realm jwt Attributes

Attribute Description

audience A list of strings representing the audiences supported by this
configuration. During validation JWT tokens must have an aud
claim that contains one of the values defined here.

certificate The name of the certificate with a public key to load from the
keystore.

issuer A list of strings representing the issuers supported by this
configuration. During validation JWT tokens must have an iss
claim that contains one of the values defined here.

key-store A keystore from where the certificate with a public key should
be loaded from.

public-key A public key in PEM Format. During validation, if a public key is
provided, the signature will be verified based on the key you
provided here.

Table A.91. token-realm oauth2-introspection Attributes

Attribute Description

client-id The identifier of the client on the OAuth2 Authorization Server.

client-secret The secret of the client.

client-ssl-context The SSL context to be used if the introspection endpoint is
using HTTPS.

host-name-verification-policy A policy that defines how host names should be verified when
using HTTPS. The only allowed value is ANY.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

202

introspection-url The URL of token introspection endpoint.

Attribute Description

Table A.92. trust-manager Attributes

Attribute Description

algorithm The name of the algorithm to use to create the underlying
TrustManagerFactory. This is provided by the JDK. For
example, a JDK that uses SunJSSE provides the PKIX and
SunX509 algorithms. More details on SunJSSE can be found in
the Java Secure Socket Extension (JSSE) Reference Guide.

alias-filter A filter to apply to the aliases returned from the keystore. This
can either be a comma-separated list of aliases to return or one
of the following formats:

ALL:-alias1:-alias2

NONE:+alias1:+alias2

certificate-revocation-list Enables the certificate revocation list that can be checked by a
trust manager. The attributes of certificate-revocation-list
are:

path - The path to the configuration file that is used to
initialize the provider.

relative-to - The base path of the certificate
revocation list file.

maximum-cert-path - The maximum number of non-
self-issued intermediate certificates that can exist in a
certification path. The default value is 5.

See Using a Certificate Revocation List for more information.

key-store Reference to the key-store to use to initialize the underlying
TrustManagerFactory.

provider-name The name of the provider to use to create the underlying
TrustManagerFactory.

providers Reference to obtain the Provider[] to use when creating the
underlying TrustManagerFactory.

Table A.93. x500-attribute-principal-decoder Attributes

APPENDIX A. REFERENCE MATERIAL

203

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SupportClasses

Attribute Description

attribute-name The name of the X.500 attribute to map. This can also be
defined using the oid attribute.

convert When set to true, the principal decoder will attempt to convert a
principal to a X500Principal, if it is not already of that type. If
the conversion fails, the original value is used as the principal.

joiner The joining string. The default value is a period (.).

maximum-segments The maximum number of occurrences of the attribute to map.
The default value is 2147483647.

oid The OID of the X.500 attribute to map. This can also be defined
using the attribute-name attribute.

required-attributes The list of attribute names of the attributes that must be
present in the principal

required-oids The list of OIDs of the attributes that must be present in the
principal.

reverse If true the attribute values will be processed and returned in
reverse order. The default value is false.

start-segment The starting occurrence of the attribute you want to map. This
uses a zero-based index and the default value is 0.

A.2. CONFIGURE YOUR ENVIRONMENT TO USE THE BOUNCYCASTLE

PROVIDER

You can configure your JBoss EAP installation to use a BouncyCastle provider. The Bouncy Castle
JARs are not provided by Red Hat, and must be obtained directly from Bouncy Castle.

IMPORTANT

Java 8 must be used when the BouncyCastle providers are specified, as the
BouncyCastle APIs are only certified up to Java 8.

1. Include both BouncyCastle JARs, beginning with bc-fips and bctls-fips, on your JDK’s
classpath. For Java 8 this is accomplished by placing the JAR files in $JAVA_HOME/lib/ext.

2. Using either of the following methods, include the BouncyCastle providers in your Java
security configuration file:

A default configuration file, java.security, is provided in your JDK, and can be updated to
include the BouncyCastle providers. This file is used if no other security configuration files
are specified. See the JDK vendor’s documentation for the location of this file.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

204

Define a custom Java security configuration file and reference it by adding the -
Djava.security.properties==/path/to/java.security.properties system property.
When referenced using two equal signs the default policy is overwritten, and only the
providers defined in the referenced file are used. When a single equal sign is used, as in -
Djava.security.properties=/path/to/java.security.properties, then the providers are
appended to the default security file, preferring to use the file passed in the argument when
keys are specified in both files. This option is useful when having multiple JVMs running on
the same host that require different security settings.

An example configuration file that defines these providers is seen below.

Example: BouncyCastle Security Policy

We can override the values in the JRE_HOME/lib/security/java.security
file here. If both properties files specify values for the same key, the
value from the command-line properties file is selected, as it is the last
one loaded. We can reorder and change security providers in this file.
security.provider.1=org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider
security.provider.2=org.bouncycastle.jsse.provider.BouncyCastleJsseProvider fips:BCFIPS
security.provider.3=sun.security.provider.Sun
security.provider.4=com.sun.crypto.provider.SunJCE

This is a comma-separated list of algorithm and/or algorithm:provider
entries.
#
securerandom.strongAlgorithms=DEFAULT:BCFIPS

IMPORTANT

If the default configuration file is updated, then every other security.provider.X
line in this file, for example security.provider.2, must increase its value of X to
ensure that this provider is given priority. Each provider must have a unique
priority.

3. Configure the elytron subsystem to exclusively use the BouncyCastle providers. By default,
the system is configured to use both the elytron and openssl providers. Because it also
includes a TLS implementation, it is recommended to disable the OpenSSL provider to ensure
the TLS implementation from Bouncy Castle is used.

/subsystem=elytron:write-attribute(name=final-providers,value=elytron)

4. Reload the server for the changes to take effect.

reload

A.3. SASL AUTHENTICATION MECHANISMS REFERENCE

A.3.1. Support Level for SASL Authentication Mechanisms

APPENDIX A. REFERENCE MATERIAL

205

Name Support Level Comments

ANONYMOUS Supported

DIGEST-SHA-512 Technology Preview Supported but name not currently IANA
registered.

DIGEST-SHA-256 Technology Preview Supported but name not currently IANA
registered.

DIGEST-SHA Technology Preview Supported but name not currently IANA
registered.

DIGEST-MD5 Supported

EXTERNAL Supported

GS2-KRB5 Supported

GS2-KRB5-PLUS Supported

GSSAPI Supported

JBOSS-LOCAL-USER Supported Supported but name not currently IANA
registered.

OAUTHBEARER Supported

OTP Not supported

PLAIN Supported

SCRAM-SHA-1 Supported

SCRAM-SHA-1-PLUS Supported

SCRAM-SHA-256 Supported

SCRAM-SHA-256-PLUS Supported

SCRAM-SHA-384 Supported

SCRAM-SHA-384-PLUS Supported

SCRAM-SHA-512 Supported

SCRAM-SHA-512-PLUS Supported

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

206

9798-U-RSA-SHA1-ENC Not supported

9798-M-RSA-SHA1-ENC Not supported

9798-U-DSA-SHA1 Not supported

9798-M-DSA-SHA1 Not supported

9798-U-ECDSA-SHA1 Not supported

9798-M-ECDSA-SHA1 Not supported

Name Support Level Comments

A.3.2. SASL Authentication Mechanism Properties

You can see a list of standard Java SASL authentication mechanism properties in the Java
documentation. Other JBoss EAP-specific SASL authentication mechanism properties are listed in the
following tables.

Table A.94. SASL Properties Used During SASL Mechanism Negotiation or Authentication
Exchange

Property Client /
Server

Description

com.sun.security.sasl.digest.realm Server Used by some SASL mechanisms, including the
DIGEST-MD5 algorithm supplied with most Oracle
JDKs, to provide the list of possible server realms to
the mechanism. Each realm name must be separated
by a space character (U+0020).

com.sun.security.sasl.digest.utf8 Client, server Used by some SASL mechanisms, including the
DIGEST-MD5 algorithm supplied with most Oracle
JDKs, to indicate that information exchange should
take place using UTF-8 character encoding instead
of the default Latin-1/ISO-8859-1 encoding. The
default value is true.

wildfly.sasl.authentication-timeout Server The amount of time, in seconds, after which a server
should terminate an authentication attempt. The
default value is 150 seconds.

wildfly.sasl.channel-binding-
required

Client, server Indicates that a mechanism which supports channel
binding is required. A value of true indicates that
channel binding is required. Any other value, or lack
of this property, indicates that channel binding is not
required.

APPENDIX A. REFERENCE MATERIAL

207

https://docs.oracle.com/javase/8/docs/api/javax/security/sasl/Sasl.html#field.summary

wildfly.sasl.digest.alternative_protoc
ols

Server Supplies a separated list of alternative protocols that
are acceptable in responses received from the client.
The list can be space, comma, tab, or new line
separated.

wildfly.sasl.gssapi.client.delegate-
credential

Client Specifies if the GSSAPI mechanism supports
credential delegation. If set to true, the credential is
delegated from the client to the server.

This property defaults to true if a GSSCredential is
provided using the
javax.security.sasl.credentials property.
Otherwise, the default value is false.

wildfly.sasl.gs2.client.delegate-
credential

Client Specifies if the GS2 mechanism supports credential
delegation. If set to true, the credential is delegated
from the client to the server.

This property defaults to true if a GSSCredential is
provided using a CredentialCallback. Otherwise,
the default value is false.

wildfly.sasl.local-user.challenge-
path

Server Specifies the directory in which the server generates
the challenge file. The default value is the
java.io.tmpdir system property.

wildfly.sasl.local-user.default-user Server The user name to use for silent authentication.

wildfly.sasl.local-user.quiet-auth Client Enables silent authentication for a local user. The
default value is true.

Note that the EJB client and naming client disables
silent local authentication if this property is not
explicitly defined and a callback handler or user name
was specified in the client configuration.

wildfly.sasl.local-user.use-secure-
random

Server Specifies whether the server uses a secure random
number generator when creating the challenge. The
default value is true.

Property Client /
Server

Description

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

208

wildfly.sasl.mechanism-query-all Client, server Indicates that all possible supported mechanism
names should be returned, regardless of the
presence or absence of any other properties.

This property is only effective on calls to
SaslServerFactory#getMechanismNames(Ma
p) or
SaslClientFactory#getMechanismNames(Map
) for Elytron-provided SASL factories.

wildfly.sasl.otp.alternate-dictionary Client Provides an alternate dictionary to the OTP SASL
mechanism. Each dictionary word must be separated
by a space character (U+0020).

wildfly.sasl.relax-compliance Server The specifications for the SASL mechanisms
mandate certain behavior and verification of that
behavior at the opposite side of the connection.
When interacting with other SASL mechanism
implementations, some of these requirements are
interpreted loosely. If this property is set to true,
checking is relaxed where differences in specification
interpretation has been identified. The default value
is false.

wildfly.sasl.scram.min-iteration-
count

Client, server The minimum iteration count to use for SCRAM. The
default value is 4096.

wildfly.sasl.scram.max-iteration-
count

Client, server The maximum iteration count to use for SCRAM. The
default value is 32786.

wildfly.sasl.secure-rng Client, server The algorithm name of a SecureRandom
implementation to use. Using this property can
improve security, at the cost of performance.

wildfly.security.sasl.digest.ciphers Client, server Comma-separated list of supported ciphers that
directly limits the set of supported ciphers for SASL
mechanisms.

Property Client /
Server

Description

Table A.95. SASL Properties Used After Authentication

Property Client /
Server

Description

wildfly.sasl.principal Client Contains the negotiated client principal after a
successful SASL client-side authentication.

APPENDIX A. REFERENCE MATERIAL

209

wildfly.sasl.security-identity Server Contains the negotiated security identity after a
successful SASL server-side authentication.

Property Client /
Server

Description

A.4. SECURITY AUTHORIZATION ARGUMENTS

Arguments to the security commands in JBoss EAP are determined by the defined mechanism. Each
mechanism requires different properties, and it is recommended to use tab completion to examine the
various requirements for the defined mechanism.

Table A.96. Universal Arguments

Attribute Description

--mechanism Specifies the mechanism to enable or disable. A list of supported
SASL mechanisms is available at Support Level for SASL
Authentication Mechanisms, and the BASIC, CLIENT_CERT,
DIGEST, DIGEST-SHA-256, and FORM HTTP authentication
mechanisms are currently supported.

--no-reload If specified, then the server is not reloaded after the security
command is completed.

Mechanism Specific Attributes
The following attributes are only eligible for specific mechanisms. They are grouped below based on
their function.

Table A.97. key-store Realm

Attribute Description

--key-store-name The name of the truststore as an existing keystore. This must be
specified if --key-store-realm-name is not used for the
EXTERNAL SASL mechanism or the CLIENT_CERT HTTP
mechanism.

--key-store-realm-name The name of the truststore as an existing keystore realm. This
must be specified if --key-store-name is not used for the
EXTERNAL SASL mechanism or the CLIENT_CERT HTTP
mechanism.

--roles An optional argument that defines a comma separated list of
roles associated with the current identity. If no existing role
mapper contains the specified list of roles, then a role mapper
will be generated and assigned.

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

210

Table A.98. file-system Realm

Attribute Description

--exposed-realm The realm exposed to the user.

--file-system-realm-name The name of the filesystem realm.

--user-role-decoder The name of the role decoder used to extract the roles from the
user’s repository. This attribute is only used if --file-system-
realm-name is specified.

Table A.99. Properties Realm

Attribute Description

--exposed-realm The realm exposed to the user. This value must match the
realm-name defined in the user’s properties file.

--groups-properties-file A path to the properties file that contains the groups attribute
for management operations, or the roles for the undertow
server.

--properties-realm-name The name of an existing properties realm.

--relative-to Adjusts the paths of --group-properties-file and --users-
properties-file to be relative to a system property.

--users-properties-file A path to the properties file that contains the user details.

Table A.100. Miscellaneous Properties

Attribute Description

--management-interface The management interface to configure for management
authentication commands. This defaults to the http-interface.

--new-auth-factory-name Used to specify a name for the authentication factory. If not
defined, a name is automatically created.

--new-realm-name Used to specify a name for the properties file realm resource. If
not defined, a name is automatically created.

--new-security-domain Used to specify a name for the security domain. If not defined, a
name is automatically created.

--super-user Configures a local user with super-user permissions. Usable with
the JBOSS-LOCAL-USER mechanism.

APPENDIX A. REFERENCE MATERIAL

211

A.5. ELYTRON CLIENT SIDE ONE WAY EXAMPLE

After configuring a server SSL context, it is important to test the configuration if possible. An Elytron
client SSL context can be placed in a configuration file and then executed from the management CLI,
allowing functional testing of the server configuration. These steps assume that the server-side
configuration is completed, and the server has been reloaded if necessary.

1. If the server keystore already exists, then proceed to the next step; otherwise, create the server
keystore.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore
server.keystore.jks -dname "CN=localhost" -keypass secret -storepass secret

2. If the server certificate has already been exported, then proceed to the next step; otherwise,
export the server certificate.

$ keytool -exportcert -keystore server.keystore.jks -alias localhost -keypass secret -
storepass secret -file server.cer

3. Import the server certificate into the client’s truststore.

$ keytool -importcert -keystore client.truststore.jks -storepass secret -alias localhost -
trustcacerts -file server.cer

4. Define the client-side SSL context inside of example-security.xml. This configuration file
contains an Elytron authentication-client that defines the authentication and SSL
configuration for outbound connections. The following file demonstrates defining a client SSL
context and keystore.

5. Using the management CLI, reference the newly created file and attempt to access the server.
The following command accesses the management interface and executes the whoami
command.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="clientStore" type="jks" >
 <file name="/path/to/client.truststore.jks"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <ssl-contexts>
 <ssl-context name="client-SSL-context">
 <trust-store key-store-name="clientStore" />
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-SSL-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

212

$ EAP_HOME/bin/jboss-cli.sh -c --controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=/path/to/example-security.xml :whoami

A.6. ELYTRON CLIENT SIDE TWO WAY EXAMPLE

After configuring a server SSL context, it is important to test the configuration if possible. An Elytron
client SSL context can be placed in a configuration file and then executed from the management CLI,
allowing functional testing of the server configuration. These steps assume that the server-side
configuration is completed, and the server has been reloaded if necessary.

1. If the server and client keystores already exist, then proceed to the next step; otherwise, create
the server and client keystores.

$ keytool -genkeypair -alias localhost -keyalg RSA -keysize 1024 -validity 365 -keystore
server.keystore.jks -dname "CN=localhost" -keypass secret -storepass secret
$ keytool -genkeypair -alias client -keyalg RSA -keysize 1024 -validity 365 -keystore
client.keystore.jks -dname "CN=client" -keypass secret -storepass secret

2. If the server and client certificates have already been exported, then proceed to the next step;
otherwise, export the server and client certificates.

$ keytool -exportcert -keystore server.keystore.jks -alias localhost -keypass secret -
storepass secret -file server.cer
$ keytool -exportcert -keystore client.keystore.jks -alias client -keypass secret -storepass
secret -file client.cer

3. Import the server certificate into the client’s truststore.

$ keytool -importcert -keystore client.truststore.jks -storepass secret -alias localhost -
trustcacerts -file server.cer

4. Import the client certificate into the server’s truststore.

$ keytool -importcert -keystore server.truststore.jks -storepass secret -alias client -
trustcacerts -file client.cer

5. Define the client-side SSL context inside of example-security.xml. This configuration file
contains an Elytron authentication-client that defines the authentication and SSL
configuration for outbound connections. The following file demonstrates defining a client SSL
context and keystore.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
 <authentication-client xmlns="urn:elytron:client:1.2">
 <key-stores>
 <key-store name="clientStore" type="jks" >
 <file name="/path/to/client.truststore.jks"/>
 <key-store-clear-password password="secret" />
 </key-store>
 </key-stores>
 <key-store name="clientKeyStore" type="jks" >
 <file name="/path/to/client.keystore.jks"/>

APPENDIX A. REFERENCE MATERIAL

213

6. Using the management CLI, reference the newly created file and attempt to access the server.
The following command accesses the management interface and executes the whoami
command.

$ EAP_HOME/bin/jboss-cli.sh -c --controller=remote+https://127.0.0.1:9993 -
Dwildfly.config.url=/path/to/example-security.xml :whoami

Revised on 2019-09-26 10:52:34 UTC

 <key-store-clear-password password="secret" />
 </key-store>
 <ssl-contexts>
 <ssl-context name="client-SSL-context">
 <trust-store key-store-name="clientStore" />
 <key-store-ssl-certificate key-store-name="clientKeyStore" alias="client">
 <key-store-clear-password password="secret" />
 </key-store-ssl-certificate>
 </ssl-context>
 </ssl-contexts>
 <ssl-context-rules>
 <rule use-ssl-context="client-SSL-context" />
 </ssl-context-rules>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 7.2 How to Configure Server Security

214

	Table of Contents
	CHAPTER 1. SECURING THE SERVER AND ITS INTERFACES
	1.1. BUILDING BLOCKS
	1.1.1. Interfaces and Socket Bindings
	1.1.2. Elytron Subsystem
	1.1.2.1. Enable Elytron Security Across the Server
	1.1.2.2. Create an Elytron Security Domain
	1.1.2.3. Create an Elytron Security Realm
	1.1.2.4. Create an Elytron Role Decoder
	1.1.2.5. Create an Elytron Role Mapper
	1.1.2.6. Create an Elytron Permission Set
	1.1.2.7. Create an Elytron Permission Mapper
	1.1.2.8. Creating an Authentication Configuration
	1.1.2.9. Creating an Authentication Context
	1.1.2.10. Create an Elytron Authentication Factory
	1.1.2.11. Create an Elytron Keystore
	1.1.2.12. Create an Elytron Key Manager
	1.1.2.13. Create an Elytron Truststore
	1.1.2.14. Create an Elytron Trust Manager
	1.1.2.15. Using the Out of the Box Elytron Components
	1.1.2.16. Enable and Disable the Elytron Subsystem

	1.1.3. Legacy Security Subsystem
	1.1.3.1. Enable and Disable the Security Subsystem

	1.1.4. Legacy Security Realms
	1.1.5. Using Authentication and Socket Bindings for Securing the Management Interfaces

	1.2. HOW TO SECURE THE MANAGEMENT INTERFACES
	Elytron Integration with the Management CLI
	1.2.1. Configure Networking and Ports
	1.2.2. Disabling the Management Console
	1.2.3. Disabling Remote Access to JMX
	Removing the Remoting Connector

	1.2.4. Silent Authentication
	1.2.5. Enable One-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
	Using a Security Command
	Using Elytron Subsystem Commands
	Using Management Console

	1.2.6. Enable Two-way SSL/TLS for the Management Interfaces Using the Elytron Subsystem
	1.2.7. Enable SASL Authentication for the Management Interfaces Using the CLI Security Command
	Reorder SASL Mechanisms
	Disable SASL Authentication for the Management Interfaces

	1.2.8. Enable HTTP Authentication for the Management Interfaces Using the CLI Security Command
	Disable HTTP Authentication for the Management Interfaces

	1.2.9. Configure the Management Interfaces for One-way SSL/TLS with Legacy Core Management Authentication
	Create a Keystore to Secure the Management Interfaces
	Ensure the Management Interfaces Bind to HTTPS
	Optional: Implement a Custom socket-binding-group
	Create a New Security Realm
	Configure the Management Interfaces to Use the New Security Realm
	Configure the Management Interfaces to Use the Keystore
	Update the jboss-cli.xml File

	1.2.10. Setting up Two-way SSL/TLS for the Management Interfaces with Legacy Core Management Authentication
	Prerequisites

	1.2.11. HTTPS Listener Reference
	1.2.11.1. About Cipher Suites

	1.2.12. FIPS 140-2 Compliant Cryptography
	1.2.12.1. Enable FIPS 140-2 Cryptography for SSL/TLS on Red Hat Enterprise Linux 7 and Later
	1.2.12.2. Enable FIPS 140-2 Cryptography for SSL/TLS Using Bouncy Castle

	1.2.13. FIPS 140-2 Compliant Cryptography on IBM JDK
	1.2.13.1. Key Storage
	1.2.13.2. Management CLI Configuration
	1.2.13.3. Examine FIPS Provider Information

	1.2.14. Starting a Managed Domain when the JVM is Running in FIPS Mode
	Prerequisites

	1.2.15. Secure the Management Console with Red Hat Single Sign-On
	Configure a Red Hat Single Sign-On Server for JBoss EAP Management
	Install the Red Hat Single Sign-On Client Adapter on JBoss EAP
	Configure JBoss EAP to Use Red Hat Single Sign-On

	1.3. SECURITY AUDITING
	1.3.1. Elytron Audit Logging
	File Audit Logging
	Periodic Rotating File Audit Logging
	Size Rotating File Audit Logging
	Syslog Audit Logging
	1.3.1.1. Custom Security Event Listeners for Elytron

	1.3.2. Configure Security Auditing for the Legacy Security Domains

	1.4. CONFIGURE ONE-WAY AND TWO-WAY SSL/TLS FOR APPLICATIONS
	1.4.1. Automatic Self-signed Certificate Creation for Applications
	1.4.2. Using Elytron
	1.4.2.1. Enable One-way SSL/TLS for Applications Using the Elytron Subsystem
	1.4.2.2. Enable Two-way SSL/TLS for Applications Using the Elytron Subsystem

	1.4.3. Using Legacy Security Realms
	1.4.3.1. Enable One-way SSL/TLS for Applications Using Legacy Security Realms
	1.4.3.2. Enable Two-way SSL/TLS for Applications Using Legacy Security Realms

	1.5. ENABLE HTTP AUTHENTICATION FOR APPLICATIONS USING THE CLI SECURITY COMMAND
	Disable HTTP Authentication for the Management Interfaces

	1.6. SASL AUTHENTICATION MECHANISMS
	1.6.1. Choosing SASL Authentication Mechanisms
	1.6.2. Configuring SASL Authentication Mechanisms on the Server Side
	1.6.3. Specifying SASL Authentication Mechanisms on the Client Side
	sasl-mechanism-selector Grammar

	1.6.4. Configuring SASL Authentication Mechanism Properties

	1.7. ELYTRON INTEGRATION WITH THE MODCLUSTER SUBSYSTEM
	1.7.1. Defining a Client SSL Context and Configuring ModCluster Subsystem

	1.8. ELYTRON INTEGRATION WITH THE JGROUPS SUBSYSTEM
	1.9. ELYTRON INTEGRATION WITH THE REMOTING SUBSYSTEM
	1.9.1. Elytron Integration with Remoting Connectors
	Enable One-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem
	Enable Two-way SSL/TLS for Remoting Connectors Using the Elytron Subsystem

	1.9.2. Elytron Integration with Remoting HTTP Connectors
	Enable One-Way SSL on the Remoting HTTP Connector
	Enable Two-way SSL/TLS on the Remoting HTTP Connectors

	1.9.3. Elytron Integration with Remoting Outbound Connectors

	1.10. SECURING A MANAGED DOMAIN
	1.10.1. Configure Password Authentication Between Slaves and the Domain Controller Using Elytron
	1.10.2. Configure Password Authentication Between Slaves and the Domain Controller Using Legacy Core Management Authentication
	1.10.3. Configuring SSL/TLS Between Domain and Host Controllers Using Elytron
	1.10.4. Configuring SSL/TLS Between Domain and Host Controllers Using Legacy Core Management Authentication

	1.11. ADDITIONAL ELYTRON COMPONENTS FOR SSL/TLS
	1.11.1. Using an ldap-key-store
	1.11.2. Using a filtering-key-store
	1.11.3. Reload a Keystore
	1.11.4. Reinitialize a Key Manager
	1.11.5. Reinitialize a Trust Manager
	1.11.6. Keystore Alias
	1.11.7. Using a client-ssl-context
	1.11.8. Using a server-ssl-context
	Add a Server SSL Context Using the Management CLI
	Add a Server SSL Context Using the Management Console

	1.11.9. Custom SSL Components
	1.11.9.1. Add a Custom Component to Elytron
	1.11.9.2. Including Arguments in a Custom Elytron Component
	1.11.9.3. Using Custom Trust Managers with Elytron

	1.11.10. Using a Certificate Revocation List
	1.11.11. Using a Certificate Authority to Manage Signed Certificates
	Configure a Let’s Encrypt Account
	Create an Account with the Certificate Authority
	Update an Account with the Certificate Authority
	Change the Account Key Associated with the Certificate Authority
	Deactivate the Account with the Certificate Authority
	Get the Metadata Associated with the Certificate Authority

	1.11.12. Keystore Manipulation Operations
	Generate a Key Pair
	Generate a Certificate Signing Request
	Import a Certificate or Certificate Chain
	Export a Certificate
	Change an Alias
	Store Changes Made to Keystores
	1.11.12.1. Keystore Certificate Authority Operations

	CHAPTER 2. SECURING USERS OF THE SERVER AND ITS MANAGEMENT INTERFACES
	2.1. USER AUTHENTICATION WITH ELYTRON
	2.1.1. Default Configuration
	2.1.1.1. Default Elytron HTTP Authentication Configuration
	2.1.1.2. Default Elytron Management CLI Authentication

	2.1.2. Secure the Management Interfaces with a New Identity Store
	2.1.3. Adding Silent Authentication
	2.1.4. Mapping Identity for Authenticated Management Users
	2.1.5. Using Elytron Client with the Management CLI

	2.2. IDENTITY PROPAGATION AND FORWARDING WITH ELYTRON
	2.2.1. Propagating Security Identities for Remote Calls
	Configure the Server for Security Propagation
	Review the Example Application Code That Propagates a Security Identity

	2.2.2. Utilizing Authorization Forwarding Mode
	Configure the Authentication Client on the Forwarding Server
	Configure the Authorization Forwarding on the Receiving Server

	2.2.3. Retrieving Security Identity Credentials
	2.2.4. Mechanisms That Support Security Identity Propagation

	2.3. IDENTITY SWITCHING WITH ELYTRON
	2.3.1. Switching Identities in Server-to-server EJB Calls

	2.4. USER AUTHENTICATION WITH LEGACY CORE MANAGEMENT AUTHENTICATION
	2.4.1. Default User Configuration
	2.4.2. Adding Authentication via LDAP
	2.4.3. Using JAAS for Securing the Management Interfaces

	2.5. ROLE-BASED ACCESS CONTROL
	2.5.1. Enabling Role-Based Access Control
	CLI to Enable RBAC
	Management CLI Command to Disable RBAC
	XML Configuration to Enable or Disable RBAC

	2.5.2. Changing the Permission Combination Policy
	Setting the Permission Combination Policy

	2.5.3. Managing Roles
	2.5.3.1. Configure User Role Assignment Using the Management CLI

	2.5.4. Configure User Role Assignment with the Elytron Subsystem
	2.5.5. Roles and User Groups
	2.5.6. Configure Group Role Assignment Using the Management CLI
	Viewing Group Role Assignment Configuration
	Add a New Role
	Add a Group as Included in a Role
	Add a Group as Excluded in a Role
	Remove Group Role Include Configuration
	Remove a User Group Exclude Entry

	2.5.7. Using RBAC with LDAP
	2.5.8. Scoped Roles
	2.5.8.1. Configuring Scoped Roles from the Management CLI
	2.5.8.2. Configuring Scoped Roles from the Management Console

	2.5.9. Configuring Constraints
	2.5.9.1. Configure Sensitivity Constraints
	2.5.9.2. List Sensitivity Constraints
	2.5.9.3. Configure Application Resource Constraints
	2.5.9.4. List Application Resource Constraints
	2.5.9.5. Configure the Vault Expression Constraint

	CHAPTER 3. SECURELY STORING CREDENTIALS
	3.1. CREDENTIAL STORE
	3.1.1. Create a Credential Store
	Create a Credential Store for a Standalone Server
	Create a Credential Store in a Managed Domain

	3.1.2. Add a Credential to the Credential Store
	Editing Credential Store Aliases Using the Management Console

	3.1.3. Use a Stored Credential in a Configuration
	3.1.4. List the Credentials in the Credential Store
	3.1.5. Remove a Credential from the Credential Store
	3.1.6. Obtain the Master Password for the Credential Store from an External Source
	3.1.7. Define a FIPS 140-2 Compliant Credential Store
	3.1.7.1. Define a FIPS 140-2 Compliant Credential Store Using an NSS Database
	3.1.7.2. Define a FIPS 140-2 Compliant Credential Store Using the BouncyCastle Providers

	3.1.8. Use a Custom Implementation of the Credential Store
	3.1.9. Create and Modify Credential Stores Offline with the WildFly Elytron Tool
	3.1.9.1. Generate Masked Encrypted Strings Using the WildFly Elytron Tool
	3.1.9.2. Convert a Password Vault to a Credential Store Using the WildFly Elytron Tool

	3.1.10. Using Credential Stores with Elytron Client
	3.1.11. Using Credential Stores in a Managed Domain

	3.2. PASSWORD VAULT
	3.2.1. Set Up a Password Vault
	3.2.2. Initialize the Password Vault
	3.2.3. Use a Password Vault
	3.2.4. Store a Sensitive String in the Password Vault
	3.2.5. Use an Encrypted Sensitive String in Configuration
	3.2.6. Use an Encrypted Sensitive String in an Application
	3.2.7. Check if a Sensitive String is in the Password Vault
	3.2.8. Remove a Sensitive String from the Password Vault
	Remove a Sensitive String Interactively

	3.2.9. Configure Red Hat JBoss Enterprise Application Platform to Use a Custom Implementation of the Password Vault
	3.2.10. Obtain Keystore Password From External Source

	CHAPTER 4. JAVA SECURITY MANAGER
	4.1. ABOUT THE JAVA SECURITY MANAGER
	4.2. DEFINE A JAVA SECURITY POLICY
	4.2.1. Defining Policies in the Security Manager Subsystem
	4.2.2. Defining Policies in the Deployment
	4.2.3. Defining Policies in Modules

	4.3. RUN JBOSS EAP WITH THE JAVA SECURITY MANAGER
	4.4. CONSIDERATIONS MOVING FROM PREVIOUS VERSIONS
	4.4.1. Defining Policies
	4.4.2. JBoss EAP Configuration Changes
	4.4.3. Custom Security Managers

	APPENDIX A. REFERENCE MATERIAL
	A.1. ELYTRON SUBSYSTEM COMPONENTS REFERENCE
	A.2. CONFIGURE YOUR ENVIRONMENT TO USE THE BOUNCYCASTLE PROVIDER
	A.3. SASL AUTHENTICATION MECHANISMS REFERENCE
	A.3.1. Support Level for SASL Authentication Mechanisms
	A.3.2. SASL Authentication Mechanism Properties

	A.4. SECURITY AUTHORIZATION ARGUMENTS
	Mechanism Specific Attributes

	A.5. ELYTRON CLIENT SIDE ONE WAY EXAMPLE
	A.6. ELYTRON CLIENT SIDE TWO WAY EXAMPLE

