
Red Hat JBoss Enterprise Application
Platform 7.2

Getting Started with JBoss EAP for OpenShift
Online

Guide to developing with Red Hat JBoss Enterprise Application Platform for
OpenShift Online

Last Updated: 2019-09-12

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with
JBoss EAP for OpenShift Online

Guide to developing with Red Hat JBoss Enterprise Application Platform for OpenShift Online

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss Enterprise Application Platform for OpenShift Online

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP)?
1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
1.3. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT
1.4. VERSION COMPATIBILITY AND SUPPORT

1.4.1. OpenShift 4.1 Support

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE
2.1. PREREQUISITES
2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT
2.3. IMPORT THE LATEST JBOSS EAP FOR OPENSHIFT IMAGE STREAMS AND TEMPLATES
2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION TO OPENSHIFT
2.5. POST DEPLOYMENT TASKS

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION
3.1. HOW THE JBOSS EAP FOR OPENSHIFT S2I PROCESS WORKS
3.2. CONFIGURING JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT VARIABLES
3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS

3.3.1. S2I Artifacts
3.3.1.1. Modules, Drivers, and Generic Deployments

3.3.2. Runtime Artifacts
3.3.2.1. Datasources
3.3.2.2. Resource Adapters

3.4. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP FOR OPENSHIFT IMAGE
3.4.1. Scaling Up and Persistent Storage Partitioning
3.4.2. Scaling Down and Transaction Recovery

CHAPTER 4. MIGRATING TO JBOSS EAP FOR OPENSHIFT JDK 11 IMAGE
4.1. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT USING JDK 11 IMAGE
4.2. IMPORT JDK 11 IMAGE
4.3. DEPLOY A JBOSS EAP S2I APPLICATION TO OPENSHIFT USING JDK 11 IMAGE
4.4. CONFIGURE JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT VARIABLES FOR JDK 11 IMAGE

CHAPTER 5. MIGRATING APPLICATION TO OPENSHIFT 4
5.1. UPDATING LIVENESS AND READINESS PROBE CONFIGURATION FOR OPENSHIFT 4

CHAPTER 6. TROUBLESHOOTING
6.1. TROUBLESHOOTING POD RESTARTS
6.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

CHAPTER 7. REFERENCE INFORMATION
7.1. PERSISTENT TEMPLATES
7.2. INFORMATION ENVIRONMENT VARIABLES
7.3. CONFIGURATION ENVIRONMENT VARIABLES
7.4. APPLICATION TEMPLATES
7.5. EXPOSED PORTS
7.6. DATASOURCES

7.6.1. JNDI Mappings for Datasources
7.6.1.1. Database Drivers
7.6.1.2. Datasource Configuration Environment Variables
7.6.1.3. Examples

7.6.1.3.1. Single Mapping
7.6.1.3.2. Multiple Mappings

4
4
4
4
5
5

6
6
6
7
8
9

11
11

12
12
13
13
16
16
17
19
19
19

20
20
20
20
21

22
22

24
24
24

26
26
26
27
31
32
32
32
33
33
35
36
36

Table of Contents

1

7.7. CLUSTERING
7.7.1. Configuring a JGroups Discovery Mechanism

7.7.1.1. Configuring KUBE_PING
7.7.1.2. Configuring DNS_PING

7.7.2. Configuring JGroups to Encrypt Cluster Traffic
7.7.2.1. Configuring SYM_ENCRYPT
7.7.2.2. Configuring ASYM_ENCRYPT

7.8. HEALTH CHECKS
7.9. MESSAGING

7.9.1. Configuring External Red Hat AMQ Brokers
Example OpenShift Application Definition

7.10. SECURITY DOMAINS
7.11. HTTPS ENVIRONMENT VARIABLES
7.12. ADMINISTRATION ENVIRONMENT VARIABLES
7.13. S2I

7.13.1. Custom Configuration
7.13.1.1. Custom Modules

7.13.2. Deployment Artifacts
7.13.3. Artifact Repository Mirrors
7.13.4. Scripts
7.13.5. Environment Variables

7.14. SSO
7.15. TRANSACTION RECOVERY

7.15.1. Unsupported Transaction Recovery Scenarios
7.15.2. Manual Transaction Recovery Process

7.15.2.1. Caveats
7.15.2.2. Prerequisite
7.15.2.3. Procedure

7.15.2.3.1. Resolving In-doubt Branches
7.15.2.3.2. Extract the Global Transaction ID and Node Identifier from Each XID
7.15.2.3.3. Obtain the List of Node Identifiers of All Running JBoss EAP Instances in Any Cluster that Can
Contact the Resource Managers
7.15.2.3.4. Find the Transaction Logs
7.15.2.3.5. Cleaning Up the Transaction Logs for Reconciled In-doubt Branches

7.16. INCLUDED JBOSS MODULES

36
36
37
37
39
39
40
40
41
41
41
41

42
42
43
43
43
43
43
44
44
46
47
47
47
47
48
49
49
50

52
52
53
54

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

2

Table of Contents

3

CHAPTER 1. INTRODUCTION

1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
(JBOSS EAP)?

Red Hat JBoss Enterprise Application Platform 7 (JBoss EAP) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 7 specification. It provides preconfigured
options for features such as high-availability clustering, messaging, and distributed caching. It includes a
modular structure that allows you to enable services only when required, which results in improved
startup speed.

The web-based management console and management command line interface (CLI) make editing
XML configuration files unnecessary and add the ability to script and automate tasks. In addition, JBoss
EAP includes APIs and development frameworks that allow you to quickly develop, deploy, and run
secure and scalable Java EE applications. JBoss EAP 7 is a certified implementation of the Java EE 8
full and web profile specifications.

1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?

Red Hat offers a containerized image for JBoss EAP that is designed for use with OpenShift. Using this
image, developers can quickly and easily build, scale, and test applications that are deployed across
hybrid environments.

1.3. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT

There are some notable differences when comparing the JBoss EAP product with the JBoss EAP for
OpenShift image. The following table describes these differences and notes which features are included
or supported in the current version of JBoss EAP for OpenShift.

Table 1.1. Differences between JBoss EAP and JBoss EAP for OpenShift

JBoss EAP Feature Status in JBoss EAP for
OpenShift

Description

JBoss EAP
management console

Not included The JBoss EAP management console is not included
in this release of JBoss EAP for OpenShift.

JBoss EAP
management CLI

Not recommended The JBoss EAP management CLI is not
recommended for use with JBoss EAP running in a
containerized environment. Any configuration
changes made using the management CLI in a
running container will be lost when the container
restarts. The management CLI is accessible from
within a pod for troubleshooting purposes.

Managed domain Not supported Although a JBoss EAP managed domain is not
supported, creation and distribution of applications
are managed in the containers on OpenShift.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

4

Default root page Disabled The default root page is disabled, but you can deploy
your own application to the root context as
ROOT.war.

Remote messaging Supported Red Hat AMQ for inter-pod and remote messaging is
supported. ActiveMQ Artemis is only supported for
messaging within a single pod with JBoss EAP
instances, and is only enabled when Red Hat AMQ is
absent.

Transaction recovery Partially supported There are some unsupported transaction recovery
scenarios and caveats when undertaking transaction
recovery with the JBoss EAP for OpenShift image.

JBoss EAP Feature Status in JBoss EAP for
OpenShift

Description

1.4. VERSION COMPATIBILITY AND SUPPORT

This guide covers the following JBoss EAP for OpenShift images:

jboss-eap-7/eap72-openshift(JDK 8)

jboss-eap-7/eap72-openjdk11-openshift-rhel8(JDK 11)

You can see information on the latest tag for these images in the Red Hat Container Catalog:

JDK 8

JDK 11

The Hawkular agent is not active in JDK 11, and will be ignored if configured.

JBoss EAP for OpenShift is updated frequently. Therefore, it is important to understand which versions
of the images are compatible with which versions of OpenShift. See OpenShift and Atomic Platform
Tested Integrations on the Red Hat Customer Portal for more information on version compatibility and
support.

1.4.1. OpenShift 4.1 Support

Changes in OpenShift 4.1 affect access to Jolokia, and the Open Java Console is no longer available in
the OpenShift 4.1 web console.

In previous releases of OpenShift, certain kube-apiserver proxied requests were authenticated and
passed through to the cluster. This behavior is now considered insecure and is not supported. As a
result, accessing Jolokia in this manner is no longer supported.

Due to changes in codebase for the OpenShift console, the link to the Open Java Console is no longer
available.

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7/eap72-openshift
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7/eap72-openjdk11-openshift-rhel8
https://access.redhat.com/articles/2176281

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE
JBOSS EAP FOR OPENSHIFT IMAGE

The following workflow demonstrates using the Source-to-Image (S2I) process to build and run a Java
application on the JBoss EAP for OpenShift image.

As an example, the kitchensink quickstart is used in this procedure. It demonstrates a Java EE web-
enabled database application using JSF, CDI, EJB, JPA, and Bean Validation. See the kitchensink
quickstart that ships with JBoss EAP 7 for more information.

2.1. PREREQUISITES

This workflow assumes that you already have an active OpenShift Online subscription and that you have
installed the OpenShift CLI.

2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT

1. Log in to your OpenShift instance using the oc login command.

2. Create a new project in OpenShift.
A project allows a group of users to organize and manage content separately from other groups.
You can create a project in OpenShift using the following command.

$ oc new-project PROJECT_NAME

For example, for the kitchensink quickstart, create a new project named eap-demo using the
following command.

$ oc new-project eap-demo

3. Optional: Create a keystore and a secret.

NOTE

Creating a keystore and a secret is required if you are using any HTTPS-enabled
features in your OpenShift project. For example, if you are using the eap72-
https-s2i template, you must create a keystore and secret.

This workflow demonstration for the kitchensink quickstart does not use an
HTTPS template, so a keystore and secret are not required.

a. Create a keystore.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

6

https://docs.openshift.com/online/getting_started/choose_a_plan.html
https://docs.openshift.com/online/getting_started/beyond_the_basics.html#btb-installing-the-openshift-cli

WARNING

The following commands generate a self-signed certificate, but for
production environments Red Hat recommends that you use your own
SSL certificate purchased from a verified Certificate Authority (CA) for
SSL-encrypted connections (HTTPS).

You can use the Java keytool command to generate a keystore using the following
command.

$ keytool -genkey -keyalg RSA -alias ALIAS_NAME -keystore
KEYSTORE_FILENAME.jks -validity 360 -keysize 2048

For example, for the kitchensink quickstart, use the following command to generate a
keystore.

$ keytool -genkey -keyalg RSA -alias eapdemo-selfsigned -keystore keystore.jks -validity
360 -keysize 2048

b. Create a secret from the keystore.
Create a secret from the previously created keystore using the following command.

$ oc secrets new SECRET_NAME KEYSTORE_FILENAME.jks

For example, for the kitchensink quickstart, use the following command to create a secret.

$ oc secrets new eap7-app-secret keystore.jks

2.3. IMPORT THE LATEST JBOSS EAP FOR OPENSHIFT IMAGE
STREAMS AND TEMPLATES

Use the following command to import the latest JBoss EAP for OpenShift image streams and templates
into your OpenShift project’s namespace.

for resource in \
 eap72-image-stream.json \
 eap72-amq-persistent-s2i.json \
 eap72-amq-s2i.json \
 eap72-basic-s2i.json \
 eap72-https-s2i.json \
 eap72-mongodb-persistent-s2i.json \
 eap72-mysql-persistent-s2i.json \
 eap72-postgresql-persistent-s2i.json \
 eap72-sso-s2i.json
do
 oc replace --force -f \



CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE

7

1

2

3

4

5

https://raw.githubusercontent.com/jboss-container-images/jboss-eap-7-openshift-
image/eap72/templates/${resource}
done

NOTE

The JBoss EAP image streams and templates imported using the above command are
only available within that OpenShift project.

If you want to import the image streams and templates into a different project, add the -
n PROJECT_NAME to the oc replace line of the command. For example:

...
oc replace -n PROJECT_NAME --force -f
...

2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION
TO OPENSHIFT

1. Create a new OpenShift application using the JBoss EAP for OpenShift image and your Java
application’s source code. Red Hat recommends using one of the provided JBoss EAP for
OpenShift templates for S2I builds.
For example, for the kitchensink quickstart, use the following command to use the eap72-
basic-s2i template in the eap-demo project, created in Prepare OpenShift for Application
Deployment, with the kitchensink source code on GitHub.

oc new-app --template=eap72-basic-s2i \ 1
 -p IMAGE_STREAM_NAMESPACE=eap-demo \ 2
 -p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-quickstarts
\ 3
 -p SOURCE_REPOSITORY_REF=openshift \ 4
 -p CONTEXT_DIR=kitchensink 5

The template to use.

The latest images streams and templates were imported into the project’s namespace , so
you must specify the namespace of where to find the image stream. This is usually the
project’s name.

URL to the repository containing the application source code.

The Git repository reference to use for the source code. This can be a Git branch or tag
reference.

The directory within the source repository to build.

NOTE

A template can specify default values for many template parameters, and you
might have to override some, or all, of the defaults. To see template information,
including a list of parameters and any default values, use the command oc
describe template TEMPLATE_NAME.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

8

NOTE

You might also want to configure environment variables when creating your new
OpenShift application.

For example, if you are using an HTTPS template such as eap72-https-s2i, you
must specify the required HTTPS environment variables HTTPS_NAME,
HTTPS_PASSWORD, and HTTPS_KEYSTORE to match your keystore details.

2. Retrieve the name of the build configuration.

$ oc get bc -o name

3. Use the name of the build configuration from the previous step to view the Maven progress of
the build.

$ oc logs -f buildconfig/BUILD_CONFIG_NAME

For example, for the kitchensink quickstart, the following command shows the progress of the
Maven build.

$ oc logs -f buildconfig/eap-app

2.5. POST DEPLOYMENT TASKS

Depending on your application, some tasks might need to be performed after your OpenShift
application has been built and deployed. This might include exposing a service so that the application is
viewable from outside of OpenShift, or scaling your application to a specific number of replicas.

1. Get the service name of your application using the following command.

$ oc get service

2. Expose the main service as a route so you can access your application from outside of
OpenShift. For example, for the kitchensink quickstart, use the following command to expose
the required service and port.

$ oc expose service/eap-app --port=8080

NOTE

If you used a template to create the application, the route might already exist. If it
does, continue on to the next step.

3. Get the URL of the route.

$ oc get route

4. Access the application in your web browser using the URL. The URL is the value of the
HOST/PORT field from previous command’s output.

If your application does not use the JBoss EAP root context, append the context of the

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE

9

If your application does not use the JBoss EAP root context, append the context of the
application to the URL. For example, for the kitchensink quickstart, the URL might be
http://HOST_PORT_VALUE/kitchensink/.

5. Optionally, you can also scale up the application instance by running the following command.
This increases the number of replicas to 3.

$ oc scale deploymentconfig DEPLOYMENTCONFIG_NAME --replicas=3

For example, for the kitchensink quickstart, use the following command to scale up the
application.

$ oc scale deploymentconfig eap-app --replicas=3

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

10

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT
IMAGE FOR YOUR JAVA APPLICATION

The JBoss EAP for OpenShift image is preconfigured for basic use with your Java applications.
However, you can configure the JBoss EAP instance inside the image. The recommended method is to
use the OpenShift S2I process, together with application template parameters and environment
variables.

IMPORTANT

Any configuration changes made on a running container will be lost when the container is
restarted or terminated.

This includes any configuration changes made using scripts that are included with a
traditional JBoss EAP installation, for example add-user.sh or the management CLI.

It is strongly recommended that you use the OpenShift S2I process, together with
application template parameters and environment variables, to make any configuration
changes to the JBoss EAP instance inside the JBoss EAP for OpenShift image.

3.1. HOW THE JBOSS EAP FOR OPENSHIFT S2I PROCESS WORKS

NOTE

The variable EAP_HOME is used to denote the path to the JBoss EAP installation inside
the JBoss EAP for OpenShift image.

The S2I process for JBoss EAP for OpenShift works as follows:

1. If a pom.xml file is present in the source code repository, a Maven build process is triggered
that uses the contents of the $MAVEN_ARGS environment variable.
Although you can specify custom Maven arguments or options with the $MAVEN_ARGS
environment variable, Red Hat recommends that you use the $MAVEN_ARGS_APPEND
environment variable to do this. The $MAVEN_ARGS_APPEND variable takes the default
arguments from $MAVEN_ARGS and appends the options from $MAVEN_ARGS_APPEND to
it.

By default, the OpenShift profile uses the Maven package goal, which includes system
properties for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo).

NOTE

To use Maven behind a proxy on JBoss EAP for OpenShift image, set the
$HTTP_PROXY_HOST and $HTTP_PROXY_PORT environment variables.
Optionally, you can also set the $HTTP_PROXY_USERNAME,
HTTP_PROXY_PASSWORD, and HTTP_PROXY_NONPROXYHOSTS
variables.

2. The results of a successful Maven build are copied to the
EAP_HOME/standalone/deployments/ directory inside the JBoss EAP for OpenShift image.
This includes all JAR, WAR, and EAR files from the source repository specified by the

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

11

$ARTIFACT_DIR environment variable. The default value of $ARTIFACT_DIR is the Maven
target directory.

3. All files in the configuration source repository directory are copied to the
EAP_HOME/standalone/configuration/ directory inside the JBoss EAP for OpenShift image. If
you want to use a custom JBoss EAP configuration file, it should be named standalone-
openshift.xml.

4. All files in the modules source repository directory are copied to the EAP_HOME/modules/
directory inside the JBoss EAP for OpenShift image.

See Artifact Repository Mirrors for additional guidance on how to instruct the S2I process to utilize the
custom Maven artifacts repository mirror.

3.2. CONFIGURING JBOSS EAP FOR OPENSHIFT USING
ENVIRONMENT VARIABLES

Using environment variables is the recommended method of configuring the JBoss EAP for OpenShift
image. See the OpenShift documentation for instructions on specifying environment variables for
application containers and build containers.

For example, you can set the JBoss EAP instance’s management username and password using
environment variables when creating your OpenShift application:

oc new-app --template=eap72-basic-s2i \
 -p IMAGE_STREAM_NAMESPACE=eap-demo \
 -p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-quickstarts \
 -p SOURCE_REPOSITORY_REF=openshift \
 -p CONTEXT_DIR=kitchensink \
 -e ADMIN_USERNAME=myspecialuser \
 -e ADMIN_PASSWORD=myspecialp@ssw0rd

Available environment variables for the JBoss EAP for OpenShift image are listed in Reference
Information.

3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS

The JBoss EAP for OpenShift image extends database support in OpenShift using various artifacts.
These artifacts are included in the built image through different mechanisms:

S2I artifacts that are injected into the image during the S2I process.

Runtime artifacts from environment files provided through the OpenShift Secret mechanism.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/application-life-cycle-management#dev-guide-new-app

IMPORTANT

Support for using the Red Hat-provided internal datasource drivers with the JBoss EAP
for OpenShift image is now deprecated for JDK 8 image streams. It is recommended that
you use JDBC drivers obtained from your database vendor for your JBoss EAP
applications.

The following internal datasources are no longer provided with the JBoss EAP for
OpenShift JDK 11 image:

MySQL

PostgreSQL

For more information about installing drivers, see Modules, Drivers, and Generic
Deployments.

For more information on configuring JDBC drivers with JBoss EAP, see JDBC drivers in
the JBoss EAP Configuration Guide.

3.3.1. S2I Artifacts

The S2I artifacts include modules, drivers, and additional generic deployments that provide the
necessary configuration infrastructure required for the deployment. This configuration is built into the
image during the S2I process so that only the datasources and associated resource adapters need to be
configured at runtime.

See Artifact Repository Mirrors for additional guidance on how to instruct the S2I process to utilize the
custom Maven artifacts repository mirror.

3.3.1.1. Modules, Drivers, and Generic Deployments

There are a few options for including these S2I artifacts in the JBoss EAP for OpenShift image:

1. Include the artifact in the application source deployment directory. The artifact is downloaded
during the build and injected into the image. This is similar to deploying an application on the
JBoss EAP for OpenShift image.

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#jdbc_drivers

2. Include the CUSTOM_INSTALL_DIRECTORIES environment variable, a list of comma-
separated list of directories used for installation and configuration of artifacts for the image
during the S2I process. There are two methods for including this information in the S2I:

An install.sh script in the nominated installation directory. The install script executes during
the S2I process and operates with impunity.

install.sh Script Example

#!/bin/bash

injected_dir=$1
source /usr/local/s2i/install-common.sh
install_deployments ${injected_dir}/injected-deployments.war
install_modules ${injected_dir}/modules
configure_drivers ${injected_dir}/drivers.env

The install.sh script is responsible for customizing the base image using APIs provided by
install-common.sh. install-common.sh contains functions that are used by the install.sh
script to install and configure the modules, drivers, and generic deployments.

Functions contained within install-common.sh:

install_modules

configure_drivers

install_deployments

Modules

A module is a logical grouping of classes used for class loading and dependency
management. Modules are defined in the EAP_HOME/modules/ directory of the
application server. Each module exists as a subdirectory, for example
EAP_HOME/modules/org/apache/. Each module directory then contains a slot
subdirectory, which defaults to main and contains the module.xml configuration file
and any required JAR files.

For more information about configuring module.xml files for MySQL and PostgreSQL
JDBC drivers, see the Datasource Configuration Examples in the JBoss EAP
Configuration Guide.

Example module.xml File

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="org.apache.derby">
 <resources>
 <resource-root path="derby-10.12.1.1.jar"/>
 <resource-root path="derbyclient-10.12.1.1.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#example_datasource_configurations

Example module.xml File for PostgreSQL Datasource

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="org.postgresql">
<resources>
<resource-root path="postgresql-jdbc.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

Example module.xml File for MySQL Connect/J 8 Datasource

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysql-connector-java-8.0.Z.jar" />
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

NOTE

The ".Z" in mysql-connector-java-8.0.Z.jar indicates the version of the
JAR file downloaded. The file can be renamed, but the name must match
the name in the module.xml file.

The install_modules function in install.sh copies the respective JAR files to the
modules directory in JBoss EAP, along with the module.xml.

Drivers

Drivers are installed as modules. The driver is then configured in install.sh by the
configure_drivers function, the configuration properties for which are defined in a
runtime artifact environment file.

Example drivers.env File

#DRIVER
DRIVERS=DERBY
DERBY_DRIVER_NAME=derby
DERBY_DRIVER_MODULE=org.apache.derby
DERBY_DRIVER_CLASS=org.apache.derby.jdbc.EmbeddedDriver
DERBY_XA_DATASOURCE_CLASS=org.apache.derby.jdbc.EmbeddedXADataSourc
e

The MySQL and PostgreSQL datasources are no longer provided as pre-configured
internal datasources. However, these drivers can still be installed as modules as
described in Modules, Drivers, and Generic Deployments.
The mechanism follows the Derby driver example and uses S2I artifacts. Create a

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

15

The mechanism follows the Derby driver example and uses S2I artifacts. Create a
drivers.env file for each datasource to be installed.

Example drivers.env File for MySQL Datasource

#DRIVER
DRIVERS=MYSQL
MYSQL_DRIVER_NAME=mysql
MYSQL_DRIVER_MODULE=org.mysql
MYSQL_DRIVER_CLASS=com.mysql.cj.jdbc.Driver
MYSQL_XA_DATASOURCE_CLASS=com.mysql.jdbc.jdbc2.optional.MysqlXADataSou
rce

Example drivers.env File for PostgreSQL Datasource

#DRIVER
DRIVERS=POSTGRES
POSTGRES_DRIVER_NAME=postgres
POSTGRES_DRIVER_MODULE=org.postgresql
POSTGRES_DRIVER_CLASS=org.postgresql.Driver
POSTGRES_XA_DATASOURCE_CLASS=org.postgresql.xa.PGXADataSource

For information about download locations for various drivers, such as MySQL or
PostgreSQL, see JDBC Driver Download Locations in the Configuration Guide.

Generic Deployments

Deployable archive files, such as JARs, WARs, RARs, or EARs, can be deployed from an injected image
using the install_deployments function supplied by the API in install-common.sh.

If the CUSTOM_INSTALL_DIRECTORIES environment variable has been declared but no
install.sh scripts are found in the custom installation directories, the following artifact
directories will be copied to their respective destinations in the built image:

modules/* copied to $JBOSS_HOME/modules/system/layers/openshift

configuration/* copied to $JBOSS_HOME/standalone/configuration

deployments/* copied to $JBOSS_HOME/standalone/deployments

This is a basic configuration approach compared to the install.sh alternative, and requires the
artifacts to be structured appropriately.

3.3.2. Runtime Artifacts

3.3.2.1. Datasources

There are three types of datasources:

1. Default internal datasources. These are PostgreSQL, MySQL, and MongoDB. These
datasources are available on OpenShift by default through the Red Hat Registry and do not
require additional environment files to be configured for JDK 8 image streams. Set the
DB_SERVICE_PREFIX_MAPPING environment variable to the name of the OpenShift service
for the database to be discovered and used as a datasource.

2. Other internal datasources. These are datasources not available by default through the Red Hat

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

16

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#jdbc_driver_download_locations

2. Other internal datasources. These are datasources not available by default through the Red Hat
Registry but run on OpenShift. Configuration of these datasources is provided by environment
files added to OpenShift Secrets.

3. External datasources that are not run on OpenShift. Configuration of external datasources is
provided by environment files added to OpenShift Secrets.

Example: Datasource Environment File

derby datasource
ACCOUNTS_DERBY_DATABASE=accounts
ACCOUNTS_DERBY_JNDI=java:/accounts-ds
ACCOUNTS_DERBY_DRIVER=derby
ACCOUNTS_DERBY_USERNAME=derby
ACCOUNTS_DERBY_PASSWORD=derby
ACCOUNTS_DERBY_TX_ISOLATION=TRANSACTION_READ_UNCOMMITTED
ACCOUNTS_DERBY_JTA=true

Connection info for xa datasource
ACCOUNTS_DERBY_XA_CONNECTION_PROPERTY_DatabaseName=/home/jboss/source/data/dat
abases/derby/accounts

_HOST and _PORT are required, but not used
ACCOUNTS_DERBY_SERVICE_HOST=dummy
ACCOUNTS_DERBY_SERVICE_PORT=1527

The DATASOURCES property is a comma-separated list of datasource property prefixes. These
prefixes are then appended to all properties for that datasource. Multiple datasources can then be
included in a single environment file. Alternatively, each datasource can be provided in separate
environment files.

Datasources contain two types of properties: connection pool-specific properties and database driver-
specific properties. Database driver-specific properties use the generic
XA_CONNECTION_PROPERTY, because the driver itself is configured as a driver S2I artifact. The
suffix of the driver property is specific to the particular driver for the datasource.

In the above example, ACCOUNTS is the datasource prefix, XA_CONNECTION_PROPERTY is the
generic driver property, and DatabaseName is the property specific to the driver.

The datasources environment files are added to the OpenShift Secret for the project. These
environment files are then called within the template using the ENV_FILES environment property, the
value of which is a comma-separated list of fully qualified environment files as shown below.

{
 “Name”: “ENV_FILES”,
 “Value”: “/etc/extensions/datasources1.env,/etc/extensions/datasources2.env”
}

3.3.2.2. Resource Adapters

Configuration of resource adapters is provided by environment files added to OpenShift Secrets.

Table 3.1. Resource Adapter Properties

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

17

Attribute Description

PREFIX_ID The identifier of the resource adapter as specified in the server
configuration file.

PREFIX_ARCHIVE The resource adapter archive.

PREFIX_MODULE_SLOT The slot subdirectory, which contains the module.xml
configuration file and any required JAR files.

PREFIX_MODULE_ID The JBoss Module ID where the object factory Java class can be
loaded from.

PREFIX_CONNECTION_CLASS The fully qualified class name of a managed connection factory
or admin object.

PREFIX_CONNECTION_JNDI The JNDI name for the connection factory.

PREFIX_PROPERTY_ParentDirectory Directory where the data files are stored.

PREFIX_PROPERTY_AllowParentPaths Set AllowParentPaths to false to disallow .. in paths. This
prevents requesting files that are not contained in the parent
directory.

PREFIX_POOL_MAX_SIZE The maximum number of connections for a pool. No more
connections will be created in each sub-pool.

PREFIX_POOL_MIN_SIZE The minimum number of connections for a pool.

PREFIX_POOL_PREFILL Specifies if the pool should be prefilled. Changing this value
requires a server restart.

PREFIX_POOL_FLUSH_STRATEGY How the pool should be flushed in case of an error. Valid values
are: FailingConnectionOnly (default), IdleConnections,
and EntirePool.

The RESOURCE_ADAPTERS property is a comma-separated list of resource adapter property
prefixes. These prefixes are then appended to all properties for that resource adapter. Multiple resource
adapter can then be included in a single environment file. In the example below, MYRA is used as the
prefix for a resource adapter. Alternatively, each resource adapter can be provided in separate
environment files.

Example: Resource Adapter Environment File

#RESOURCE_ADAPTER
RESOURCE_ADAPTERS=MYRA
MYRA_ID=myra
MYRA_ARCHIVE=myra.rar

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

18

MYRA_CONNECTION_CLASS=org.javaee7.jca.connector.simple.connector.outbound.MyManagedCo
nnectionFactory
MYRA_CONNECTION_JNDI=java:/eis/MySimpleMFC

The resource adapter environment files are added to the OpenShift Secret for the project namespace.
These environment files are then called within the template using the ENV_FILES environment
property, the value of which is a comma-separated list of fully qualified environment files as shown
below.

{
 "Name": "ENV_FILES",
 "Value": "/etc/extensions/resourceadapter1.env,/etc/extensions/resourceadapter2.env"
}

3.4. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP FOR
OPENSHIFT IMAGE

3.4.1. Scaling Up and Persistent Storage Partitioning

There are two methods for deploying JBoss EAP with persistent storage: single-node partitioning, and
multi-node partitioning.

Single-node partitioning stores the JBoss EAP data store directory, including transaction data, in the
storage volume.

Multi-node partitioning creates additional, independent split-n directories to store the transaction data
for each JBoss EAP pod, where n is an incremental integer. This communication is not altered if a JBoss
EAP pod is updated, goes down unexpectedly, or is redeployed. When the JBoss EAP pod is operational
again, it reconnects to the associated split directory and continues as before. If a new JBoss EAP pod is
added, a corresponding split-n directory is created for that pod.

To enable the multi-node configuration you must set the SPLIT_DATA parameter to true. This results
in the server creating independent split-n directories for each instance within the persistent volume
which are used as their data store.

IMPORTANT

Due to the different storage methods of single-node and multi-node partitioning,
changing a deployment from single-node to multi-node results in the application losing all
data previously stored in the data directory, including messages, transaction logs, and so
on. This is also true if changing a deployment from multi-node to single-node, as the
storage paths will not match.

3.4.2. Scaling Down and Transaction Recovery

When the JBoss EAP for OpenShift image is deployed using a multi-node configuration, it is possible for
unexpectedly terminated transactions to be left in the data directory of a terminating pod if the cluster
is scaled down.

See manual transaction recovery to complete these branches.

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION

19

CHAPTER 4. MIGRATING TO JBOSS EAP FOR OPENSHIFT
JDK 11 IMAGE

4.1. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT USING
JDK 11 IMAGE

Preparing OpenShift for application deployment using the JDK 11 image stream follows the same
procedure as described in Prepare OpenShift for Application Deployment.

4.2. IMPORT JDK 11 IMAGE

Use the following command to import the JBoss EAP for OpenShift JDK 11 image stream and templates
into your OpenShift project’s namespace:

for resource in \
 eap72-openjdk11-image-stream.json \
 eap72-openjdk11-amq-persistent-s2i.json \
 eap72-openjdk11-amq-s2i.json \
 eap72-openjdk11-basic-s2i.json \
 eap72-openjdk11-https-s2i.json \
 eap72-openjdk11-sso-s2i.json \
 eap72-openjdk11-starter-s2i.json \
 eap72-openjdk11-third-party-db-s2i.json \
 eap72-openjdk11-tx-recovery-s2i.json
do
 oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-eap-7-openshift-image/eap72-
openjdk11-ubi8/templates/${resource}
done

IMPORTANT

The following internal datasources and drivers are not provided with the JBoss EAP for
OpenShift JDK 11 image:

MySQL

PostgreSQL

MongoDB

It is recommended that you use JDBC drivers obtained from your database vendor for
your JBoss EAP applications.

For more information about installing drivers, see Modules, Drivers, and Generic
Deployments.

4.3. DEPLOY A JBOSS EAP S2I APPLICATION TO OPENSHIFT USING
JDK 11 IMAGE

Deploying a JBoss EAP S2I application to OpenShift follows the same procedures as described in
Deploy a JBoss EAP Source-to-Image (S2I) Application to OpenShift .

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

20

The JDK 11 stream uses the eap72-openjdk11-basic-s2i for S2I builds, instead of the eap72-basic-s2i
template used in JDK 8.

To deploy the kitchensink quickstart, use the following command to use the eap72-openjdk11-basic-
s2i template with the kitchensink source code on GitHub:

oc new-app --template=eap72-openjdk11-basic-s2i \
 -p IMAGE_STREAM_NAMESPACE=eap-demo \
 -p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-quickstarts.git \
 -p SOURCE_REPOSITORY_REF=openshift \
 -p CONTEXT_DIR=kitchensink \

The eap72-openjdk11-basic-s2i template in the eap-demo project was created in Prepare OpenShift
for Application Deployment.

4.4. CONFIGURE JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT
VARIABLES FOR JDK 11 IMAGE

Configuring JBoss EAP for OpenShift using environment variables for JDK 11 follows the same
procedures as described in Configuring JBoss EAP for OpenShift Using Environment Variables .

The JDK 11 image stream uses the eap72-openjdk11-basic-s2i template, instead of the eap72-basic-
s2i template used in JDK 8.

To set the JBoss EAP instance’s management username and password using environment variables, use
the following command when creating your OpenShift application.

oc new-app --template=eap72-openjdk11-basic-s2i \
-p IMAGE_STREAM_NAMESPACE=eap-demo \
-p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-quickstarts \
-p SOURCE_REPOSITORY_REF=openshift \
-p CONTEXT_DIR=kitchensink \
-e ADMIN_USERNAME=myspecialuser \
-e ADMIN_PASSWORD=myspecialp@ssw0rd

CHAPTER 4. MIGRATING TO JBOSS EAP FOR OPENSHIFT JDK 11 IMAGE

21

CHAPTER 5. MIGRATING APPLICATION TO OPENSHIFT 4

5.1. UPDATING LIVENESS AND READINESS PROBE CONFIGURATION
FOR OPENSHIFT 4

The YAML configuration of probes must be adjusted when migrating to OpenShift 4.

On OpenShift 3.11, the default YAML configuration for liveness probes is similar to the following code
example:

Example YAML Configuration for OpenShift 3.11 Liveness Probe

livenessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - /opt/eap/bin/livenessProbe.sh
 initialDelaySeconds: 60
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3

In this example, the liveness probe is located at /opt/eap/bin/livenessProbe.sh within the JBoss EAP
image. The probe is triggered the first time after a 60 second initial delay and then every 10 seconds
after a pod is started on the JBoss EAP server.

The probe is considered a failure after 3 attempts to call the livenessProbe.sh script. The container is
deemed unhealthy, and OpenShift will restart the JBoss EAP container in its respective pod.

On OpenShift 3.11, a single call lasts 5 seconds before it returns as a success or failure. On OpenShift 4,
a single call lasts less than 1 second.

On OpenShift 3.11, a call to the probe lasts 5 seconds, followed by a 10 second waiting period. This
means that 3 calls last approximately 35 seconds before the container inside the pod is restarted if the
JBoss EAP image is unhealthy.

On OpenShift 4, 3 calls last approximately 23 seconds. The configuration of the probe for OpenShift 4
should be adjusted in the YAML configuration as follows:

Example YAML Configuration for OpenShift 4 Liveness Probe

livenessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - /opt/eap/bin/livenessProbe.sh
 initialDelaySeconds: 60
 periodSeconds: 16
 successThreshold: 1
 failureThreshold: 3

In this example, periodSeconds has been increased by 6 seconds. Now the first call lasts 1 second,

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

22

In this example, periodSeconds has been increased by 6 seconds. Now the first call lasts 1 second,
followed by a 16 second waiting period. Three calls would last approximately 34 seconds, which is nearly
equivalent to the OpenShift 3.11 behavior of the probe.

For readiness probes, a similar adjustment must be made to the YAML configuration:

Example YAML Configuration for OpenShift 4 Readiness Probe

readinessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'
 - /opt/eap/bin/readinessProbe.sh
 initialDelaySeconds: 10
 periodSeconds: 16
 successThreshold: 1
 failureThreshold: 3

Additional Resources

Liveness and Readiness Probes

CHAPTER 5. MIGRATING APPLICATION TO OPENSHIFT 4

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health#container-health-checks-using-probes

CHAPTER 6. TROUBLESHOOTING

6.1. TROUBLESHOOTING POD RESTARTS

Pods can restart for a number of reasons, but a common cause of JBoss EAP pod restarts might include
OpenShift resource constraints, especially out-of-memory issues. See the OpenShift documentation for
more information on OpenShift pod eviction.

By default, JBoss EAP for OpenShift templates are configured to automatically restart affected
containers when they encounter situations like out-of-memory issues. The following steps can help you
diagnose and troubleshoot out-of-memory and other pod restart issues.

1. Get the name of the pod that has been having trouble.
You can see pod names, as well as the number times each pod has restarted with the following
command.

$ oc get pods

2. To diagnose why a pod has restarted, you can examine the JBoss EAP logs of the previous pod,
or the OpenShift events.

a. To see the JBoss EAP logs of the previous pod, use the following command.

oc logs --previous POD_NAME

b. To see the OpenShift events, use the following command.

$ oc get events

3. If a pod has restarted because of a resource issue, you can attempt to modify your OpenShift
pod configuration to increase its resource requests and limits . See the OpenShift
documentation for more information on configuring pod compute resources .

6.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

The JBoss EAP management CLI, EAP_HOME/bin/jboss-cli.sh, is accessible from within a container
for troubleshooting purposes.

IMPORTANT

It is not recommended to make configuration changes in a running pod using the JBoss
EAP management CLI. Any configuration changes made using the management CLI in a
running container will be lost when the container restarts.

To make configuration changes to JBoss EAP for OpenShift, see Configuring the JBoss
EAP for OpenShift Image for Your Java Application.

1. First open a remote shell session to the running pod.

$ oc rsh POD_NAME

2. Run the following command from the remote shell session to launch the JBoss EAP

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-handling-out-of-resource-errors#out-of-resource-eviction-of-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-quota#requests-vs-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/index#dev-compute-resources

2. Run the following command from the remote shell session to launch the JBoss EAP
management CLI:

$ /opt/eap/bin/jboss-cli.sh

CHAPTER 6. TROUBLESHOOTING

25

CHAPTER 7. REFERENCE INFORMATION

NOTE

The content in this section is derived from the engineering documentation for this image.
It is provided for reference as it can be useful for development purposes and for testing
beyond the scope of the product documentation.

7.1. PERSISTENT TEMPLATES

The JBoss EAP database templates, which deploy JBoss EAP and database pods, have both ephemeral
and persistent variations.

Persistent templates include an environment variable to provision a persistent volume claim, which binds
with an available persistent volume to be used as a storage volume for the JBoss EAP for OpenShift
deployment. Information, such as timer schema, log handling, or data updates, is stored on the storage
volume, rather than in ephemeral container memory. This information persists if the pod goes down for
any reason, such as project upgrade, deployment rollback, or an unexpected error.

Without a persistent storage volume for the deployment, this information is stored in the container
memory only, and is lost if the pod goes down for any reason.

For example, an EE timer backed by persistent storage continues to run if the pod is restarted. Any
events triggered by the timer during the restart process are enacted when the application is running
again.

Conversely, if the EE timer is running in the container memory, the timer status is lost if the pod is
restarted, and starts from the beginning when the pod is running again.

7.2. INFORMATION ENVIRONMENT VARIABLES

The following environment variables are designed to provide information to the image and should not be
modified by the user:

Table 7.1. Information Environment Variables

Variable Name Description and Value

JBOSS_IMAGE_NAME The image name.

Value: jboss-eap-7/eap72-openshift

JBOSS_IMAGE_RELEASE The image release label.

Value: dev

JBOSS_IMAGE_VERSION The image version.

Value: This is the image version number. See the Red Hat
Container Catalog for the latest value.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

26

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7/eap72-openshift

JBOSS_MODULES_SYSTEM_PKGS A comma-separated list of JBoss EAP system modules
packages that are available to applications.

Value: org.jboss.logmanager, jdk.nashorn.api

STI_BUILDER Provides OpenShift S2I support for jee project types.

Value: jee

Variable Name Description and Value

7.3. CONFIGURATION ENVIRONMENT VARIABLES

You can configure the following environment variables to adjust the image without requiring a rebuild.

Table 7.2. Configuration Environment Variables

Variable Name Description

AB_JOLOKIA_AUTH_OPENSHIFT Switch on client authentication for OpenShift TLS
communication. The value of this parameter can be true, false,
or a relative distinguished name, which must be contained in a
presented client’s certificate. The default CA cert is set to
/var/run/secrets/kubernetes.io/serviceaccount/ca.crt.

Set to false to disable client authentication for
OpenShift TLS communication.

Set to true to enable client authentication for
OpenShift TLS communication using the default CA
certificate and client principal.

Set to a relative distinguished name, for example
cn=someSystem, to enable client authentication for
OpenShift TLS communication but override the client
principal. This distinguished name must be contained in
a presented client’s certificate.

AB_JOLOKIA_CONFIG If set, uses this fully qualified file path for the Jolokia JVM agent
properties, which are described in the Jolokia reference
documentation. If you set your own Jolokia properties config file,
the rest of the Jolokia settings in this document are ignored.

If not set, /opt/jolokia/etc/jolokia.properties is created using
the settings as defined in the Jolokia reference documentation.

Example value: /opt/jolokia/custom.properties

AB_JOLOKIA_DISCOVERY_ENABLED Enable Jolokia discovery.

Defaults to false.

CHAPTER 7. REFERENCE INFORMATION

27

https://jolokia.org/reference/html/agents.html#agents-jvm

AB_JOLOKIA_HOST Host address to bind to.

Defaults to 0.0.0.0.

Example value: 127.0.0.1

AB_JOLOKIA_HTTPS Switch on secure communication with HTTPS.

By default self-signed server certificates are generated if no
serverCert configuration is given in AB_JOLOKIA_OPTS.

Example value: true

AB_JOLOKIA_ID Agent ID to use.

The default value is the $HOSTNAME, which is the container
id.

Example value: openjdk-app-1-xqlsj

AB_JOLOKIA_OFF If set to true, disables activation of Jolokia, which echos an
empty value.

Jolokia is enabled by default.

AB_JOLOKIA_OPTS Additional options to be appended to the agent configuration.
They should be given in the format key=value, key=value, … ​ ​.

Example value: backlog=20

AB_JOLOKIA_PASSWORD The password for basic authentication.

By default, authentication is switched off.

Example value: mypassword

AB_JOLOKIA_PASSWORD_RANDOM Determines if a random AB_JOLOKIA_PASSWORD should
be generated.

Set to true to generate a random password. The generated
value is saved in the /opt/jolokia/etc/jolokia.pw file.

AB_JOLOKIA_PORT The port to listen to.

Defaults to 8778.

Example value: 5432

Variable Name Description

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

28

AB_JOLOKIA_USER The name of the user to use for basic authentication.

Defaults to jolokia.

Example value: myusername

CLI_GRACEFUL_SHUTDOWN If set to any non-zero length value, the image will prevent
shutdown with the TERM signal and will require execution of the
shutdown command using the JBoss EAP management CLI.

Example value: true

CONTAINER_HEAP_PERCENT Set the maximum Java heap size, as a percentage of available
container memory.

Example value: 0.5

CUSTOM_INSTALL_DIRECTORIES A list of comma-separated directories used for installation and
configuration of artifacts for the image during the S2I process.

Example value: custom,shared

DEFAULT_JMS_CONNECTION_FACTOR
Y

This value is used to specify the default JNDI binding for the
JMS connection factory, for example jms-connection-
factory='java:jboss/DefaultJMSConnectionFactory'.

Example value: java:jboss/DefaultJMSConnectionFactory

ENABLE_ACCESS_LOG Enable logging of access messages to the standard output
channel.

Logging of access messages is implemented using following
methods:

The JBoss EAP 6.4 OpenShift image uses a custom
JBoss Web Access Log Valve.

The JBoss EAP for OpenShift image uses the
Undertow AccessLogHandler.

Defaults to false.

INITIAL_HEAP_PERCENT Set the initial Java heap size, as a percentage of the maximum
heap size.

Example value: 0.5

JAVA_OPTS_APPEND Server startup options.

Example value: -Dfoo=bar

Variable Name Description

CHAPTER 7. REFERENCE INFORMATION

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/development_guide/#accessloghandler

JBOSS_MODULES_SYSTEM_PKGS_APP
END

A comma-separated list of package names that will be
appended to the JBOSS_MODULES_SYSTEM_PKGS
environment variable.

Example value: org.jboss.byteman

JGROUPS_CLUSTER_PASSWORD Password used to authenticate the node so it is allowed to join
the JGroups cluster. Required, when using ASYM_ENCRYPT
JGroups cluster traffic encryption protocol. If not set,
authentication is disabled, cluster communication is not
encrypted and a warning is issued. Optional, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol.

Example value: mypassword

JGROUPS_ENCRYPT_KEYSTORE Name of the keystore file within the secret specified via
JGROUPS_ENCRYPT_SECRET variable, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: jgroups.jceks

JGROUPS_ENCRYPT_KEYSTORE_DIR Directory path of the keystore file within the secret specified via
JGROUPS_ENCRYPT_SECRET variable, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: /etc/jgroups-encrypt-secret-volume

JGROUPS_ENCRYPT_NAME Name associated with the server’s certificate, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: jgroups

JGROUPS_ENCRYPT_PASSWORD Password used to access the keystore and the certificate, when
using SYM_ENCRYPT JGroups cluster traffic encryption
protocol. If not set, cluster communication is not encrypted and
a warning is issued.

Example value: mypassword

JGROUPS_ENCRYPT_PROTOCOL JGroups protocol to use for encryption of cluster traffic. Can be
either SYM_ENCRYPT or ASYM_ENCRYPT.

Defaults to SYM_ENCRYPT.

Example value: ASYM_ENCRYPT

Variable Name Description

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

30

JGROUPS_ENCRYPT_SECRET Name of the secret, containing the JGroups keystore file used
for securing the JGroups communications, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: eap7-app-secret

JGROUPS_PING_PROTOCOL JGroups protocol to use for node discovery. Can be either
openshift.DNS_PING or openshift.KUBE_PING.

MQ_SIMPLE_DEFAULT_PHYSICAL_DES
TINATION

For backwards compatibility, set to true to use MyQueue and
MyTopic as physical destination name defaults instead of
queue/MyQueue and topic/MyTopic.

OPENSHIFT_DNS_PING_SERVICE_NAM
E

Name of the service exposing the ping port on the servers for
the DNS discovery mechanism.

Example value: eap-app-ping

OPENSHIFT_DNS_PING_SERVICE_POR
T

The port number of the ping port for the DNS discovery
mechanism. If not specified, an attempt will be made to discover
the port number from the SRV records for the service, otherwise
the default 8888 will be used.

Defaults to 8888.

OPENSHIFT_KUBE_PING_LABELS Clustering labels selector for the Kubernetes discovery
mechanism.

Example value: app=eap-app

OPENSHIFT_KUBE_PING_NAMESPACE Clustering project namespace for the Kubernetes discovery
mechanism.

Example value: myproject

SCRIPT_DEBUG If set to true, ensures that the Bash scripts are executed with
the -x option, printing the commands and their arguments as
they are executed.

Variable Name Description

NOTE

Other environment variables not listed above that can influence the product can be
found in the JBoss EAP documentation.

7.4. APPLICATION TEMPLATES

Table 7.3. Application Templates

CHAPTER 7. REFERENCE INFORMATION

31

https://access.redhat.com/documentation/en/red-hat-jboss-enterprise-application-platform/

Variable Name Description

AUTO_DEPLOY_EXPLODED Controls whether exploded deployment content should be
automatically deployed.

Example value: false

7.5. EXPOSED PORTS

Table 7.4. Exposed Ports

Port Number Description

8443 HTTPS

8778 Jolokia Monitoring

7.6. DATASOURCES

Datasources are automatically created based on the value of some of the environment variables.

The most important environment variable is DB_SERVICE_PREFIX_MAPPING, as it defines JNDI
mappings for the datasources. The allowed value for this variable is a comma-separated list of
POOLNAME-DATABASETYPE=PREFIX triplets, where:

POOLNAME is used as the pool-name in the datasource.

DATABASETYPE is the database driver to use.

PREFIX is the prefix used in the names of environment variables that are used to configure the
datasource.

7.6.1. JNDI Mappings for Datasources

For each POOLNAME-DATABASETYPE=PREFIX triplet defined in the
DB_SERVICE_PREFIX_MAPPING environment variable, the launch script creates a separate
datasource, which is executed when running the image.

NOTE

The first part (before the equal sign) of the DB_SERVICE_PREFIX_MAPPING should be
lowercase.

The DATABASETYPE determines the driver for the datasource.

For more information about configuring a driver, see Modules, Drivers, and Generic Deployments. The
JDK 8 image has drivers for postgresql and mysql configured by default.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

32

WARNING

Do not use any special characters for the POOLNAME parameter.

7.6.1.1. Database Drivers

IMPORTANT

Support for using the Red Hat-provided internal datasource drivers with the JBoss EAP
for OpenShift image is now deprecated for JDK 8 image streams. It is recommended that
you use JDBC drivers obtained from your database vendor for your JBoss EAP
applications.

The following internal datasources are no longer provided with the JBoss EAP for
OpenShift JDK 11 image:

MySQL

PostgreSQL

For more information about installing drivers, see Modules, Drivers, and Generic
Deployments.

For more information on configuring JDBC drivers with JBoss EAP, see JDBC drivers in
the JBoss EAP Configuration Guide.

Every JDK 8 image contains Java drivers for MySQL, PostgreSQL, and MongoDB databases deployed.
Datasources are generated only for MySQL and PostgreSQL databases.

IMPORTANT

JDK 11 image streams do not contain drivers for MySQL, PostgreSQL, and MongoDB
databases and the datasources are not generated.

For more information about installing drivers, see Modules, Drivers, and Generic
Deployments.

NOTE

For MongoDB database there are no JNDI mappings created because MongoDB is not a
SQL database.

7.6.1.2. Datasource Configuration Environment Variables

To configure other datasource properties, use the following environment variables.

IMPORTANT



CHAPTER 7. REFERENCE INFORMATION

33

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#jdbc_drivers

IMPORTANT

Be sure to replace the values for POOLNAME, DATABASETYPE, and PREFIX in the
following variable names with the appropriate values. These replaceable values are
described in this section and in the Datasources section.

Variable Name Description

POOLNAME_DATABASETYPE_SERVICE
_HOST

Defines the database server’s host name or IP address to be
used in the datasource’s connection-url property.

Example value: 192.168.1.3

POOLNAME_DATABASETYPE_SERVICE
_PORT

Defines the database server’s port for the datasource.

Example value: 5432

PREFIX_BACKGROUND_VALIDATION When set to true database connections are validated
periodically in a background thread prior to use. Defaults to
false, meaning the validate-on-match method is enabled by
default instead.

PREFIX_BACKGROUND_VALIDATION_M
ILLIS

Specifies frequency of the validation, in milliseconds, when the
background-validation database connection validation
mechanism is enabled
(PREFIX_BACKGROUND_VALIDATION variable is set to
true). Defaults to 10000.

PREFIX_CONNECTION_CHECKER Specifies a connection checker class that is used to validate
connections for the particular database in use.

Example value:
org.jboss.jca.adapters.jdbc.extensions.postgres.Postg
reSQLValidConnectionChecker

PREFIX_DATABASE Defines the database name for the datasource.

Example value: myDatabase

PREFIX_DRIVER Defines Java database driver for the datasource.

Example value: postgresql

PREFIX_EXCEPTION_SORTER Specifies the exception sorter class that is used to properly
detect and clean up after fatal database connection exceptions.

Example value:
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLE
xceptionSorter

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

34

PREFIX_JNDI Defines the JNDI name for the datasource. Defaults to
java:jboss/datasources/POOLNAME_DATABASETYPE,
where POOLNAME and DATABASETYPE are taken from
the triplet described above. This setting is useful if you want to
override the default generated JNDI name.

Example value: java:jboss/datasources/test-postgresql

PREFIX_JTA Defines Java Transaction API (JTA) option for the non-XA
datasource. The XA datasources are already JTA capable by
default.

Defaults to true.

PREFIX_MAX_POOL_SIZE Defines the maximum pool size option for the datasource.

Example value: 20

PREFIX_MIN_POOL_SIZE Defines the minimum pool size option for the datasource.

Example value: 1

PREFIX_NONXA Defines the datasource as a non-XA datasource. Defaults to
false.

PREFIX_PASSWORD Defines the password for the datasource.

Example value: password

PREFIX_TX_ISOLATION Defines the java.sql.Connection transaction isolation level for
the datasource.

Example value: TRANSACTION_READ_UNCOMMITTED

PREFIX_URL Defines connection URL for the datasource.

Example value:
jdbc:postgresql://localhost:5432/postgresdb

PREFIX_USERNAME Defines the username for the datasource.

Example value: admin

Variable Name Description

When running this image in OpenShift, the POOLNAME_DATABASETYPE_SERVICE_HOST and
POOLNAME_DATABASETYPE_SERVICE_PORT environment variables are set up automatically from
the database service definition in the OpenShift application template, while the others are configured in
the template directly as env entries in container definitions under each pod template.

7.6.1.3. Examples

CHAPTER 7. REFERENCE INFORMATION

35

These examples show how value of the DB_SERVICE_PREFIX_MAPPING environment variable
influences datasource creation.

7.6.1.3.1. Single Mapping

Consider value test-postgresql=TEST.

This creates a datasource with java:jboss/datasources/test_postgresql name. Additionally, all the
required settings like password and username are expected to be provided as environment variables
with the TEST_ prefix, for example TEST_USERNAME and TEST_PASSWORD.

7.6.1.3.2. Multiple Mappings

You can specify multiple datasource mappings.

NOTE

Always separate multiple datasource mappings with a comma.

Consider the following value for the DB_SERVICE_PREFIX_MAPPING environment variable: cloud-
postgresql=CLOUD,test-mysql=TEST_MYSQL.

This creates the following two datasources:

1. java:jboss/datasources/test_mysql

2. java:jboss/datasources/cloud_postgresql

Then you can use TEST_MYSQL prefix for configuring things like the username and password for the
MySQL datasource, for example TEST_MYSQL_USERNAME. And for the PostgreSQL datasource, use
the CLOUD_ prefix, for example CLOUD_USERNAME.

7.7. CLUSTERING

7.7.1. Configuring a JGroups Discovery Mechanism

To enable JBoss EAP clustering on OpenShift, configure the JGroups protocol stack in your JBoss EAP
configuration to use either the kubernetes.KUBE_PING or openshift.DNS_PING discovery
mechanism.

Although you can use a custom standalone-openshift.xml configuration file, it is recommended that
you use environment variables to configure JGroups in your image build.

The instructions below use environment variables to configure the discovery mechanism for the JBoss
EAP for OpenShift image.

IMPORTANT

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

36

IMPORTANT

If you use one of the available application templates to deploy an application on top of
the JBoss EAP for OpenShift image, the default discovery mechanism is
openshift.DNS_PING.

The openshift.DNS_PING and kubernetes.KUBE_PING discovery mechanisms are not
compatible with each other. It is not possible to form a supercluster out of two
independent child clusters, with one using the openshift.DNS_PING mechanism for
discovery and the other using the kubernetes.KUBE_PING mechanism. Similarly, when
performing a rolling upgrade, the discovery mechanism needs to be identical for both the
source and the target clusters.

7.7.1.1. Configuring KUBE_PING

To use the KUBE_PING JGroups discovery mechanism:

1. The JGroups protocol stack must be configured to use KUBE_PING as the discovery
mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
kubernetes.KUBE_PING:

JGROUPS_PING_PROTOCOL=kubernetes.KUBE_PING

2. The KUBERNETES_NAMESPACE environment variable must be set to your OpenShift project
name. If not set, the server behaves as a single-node cluster (a "cluster of one"). For example:

KUBERNETES_NAMESPACE=PROJECT_NAME

3. The KUBERNETES_LABELS environment variable should be set. This should match the label
set at the service level. If not set, pods outside of your application (albeit in your namespace) will
try to join. For example:

KUBERNETES_LABELS=application=APP_NAME

4. Authorization must be granted to the service account the pod is running under to be allowed to
access Kubernetes' REST API. This is done using the OpenShift CLI. The following example uses
the default service account in the current project’s namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc project
-q)

Using the eap-service-account in the project namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):eap-service-account -
n $(oc project -q)

NOTE

See Prepare OpenShift for Application Deployment for more information on
adding policies to service accounts.

7.7.1.2. Configuring DNS_PING

CHAPTER 7. REFERENCE INFORMATION

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#labels
https://docs.openshift.com/container-platform/latest/dev_guide/service_accounts.html#default-service-accounts-and-roles

To use the DNS_PING JGroups discovery mechanism:

1. The JGroups protocol stack must be configured to use DNS_PING as the discovery mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
openshift.DNS_PING:

JGROUPS_PING_PROTOCOL=openshift.DNS_PING

2. The OPENSHIFT_DNS_PING_SERVICE_NAME environment variable must be set to the name
of the ping service for the cluster. If not set, the server will act as if it is a single-node cluster (a
"cluster of one").

OPENSHIFT_DNS_PING_SERVICE_NAME=PING_SERVICE_NAME

3. The OPENSHIFT_DNS_PING_SERVICE_PORT environment variable should be set to the port
number on which the ping service is exposed. The DNS_PING protocol attempts to discern the
port from the SRV records, otherwise it defaults to 8888.

OPENSHIFT_DNS_PING_SERVICE_PORT=PING_PORT

4. A ping service which exposes the ping port must be defined. This service should be headless
(ClusterIP=None) and must have the following:

a. The port must be named.

b. The service must be annotated with service.alpha.kubernetes.io/tolerate-unready-
endpoints set to "true".

NOTE

Omitting this annotation will result in each node forming their own "cluster of
one" during startup, then merging their cluster into the other nodes' clusters
after startup, as the other nodes are not detected until after they have
started.

NOTE

kind: Service
apiVersion: v1
spec:
 clusterIP: None
 ports:
 - name: ping
 port: 8888
 selector:
 deploymentConfig: eap-app
metadata:
 name: eap-app-ping
 annotations:
 service.alpha.kubernetes.io/tolerate-unready-endpoints: "true"
 description: "The JGroups ping port for clustering."

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

38

NOTE

DNS_PING does not require any modifications to the service account and works using the
default permissions.

7.7.2. Configuring JGroups to Encrypt Cluster Traffic

To encrypt cluster traffic for JBoss EAP on OpenShift, you must configure the JGroups protocol stack
in your JBoss EAP configuration to use either the SYM_ENCRYPT or ASYM_ENCRYPT protocol.

Although you can use a custom standalone-openshift.xml configuration file, it is recommended that
you use environment variables to configure JGroups in your image build.

The instructions below use environment variables to configure the protocol for cluster traffic encryption
for the JBoss EAP for OpenShift image.

IMPORTANT

The SYM_ENCRYPT and ASYM_ENCRYPT protocols are not compatible with each
other. It is not possible to form a supercluster out of two independent child clusters, with
one using the SYM_ENCRYPT protocol for the encryption of cluster traffic and the other
using the ASYM_ENCRYPT protocol. Similarly, when performing a rolling upgrade, the
protocol needs to be identical for both the source and the target clusters.

7.7.2.1. Configuring SYM_ENCRYPT

To use the SYM_ENCRYPT protocol to encrypt JGroups cluster traffic:

1. The JGroups protocol stack must be configured to use SYM_ENCRYPT as the encryption
protocol.
You can do this by setting the JGROUPS_ENCRYPT_PROTOCOL environment variable to
SYM_ENCRYPT:

JGROUPS_ENCRYPT_PROTOCOL=SYM_ENCRYPT

2. The JGROUPS_ENCRYPT_SECRET environment variable must be set to the name of the
secret containing the JGroups keystore file used for securing the JGroups communications. If
not set, cluster communication is not encrypted and a warning is issued. For example:

JGROUPS_ENCRYPT_SECRET=eap7-app-secret

3. The JGROUPS_ENCRYPT_KEYSTORE_DIR environment variable must be set to the
directory path of the keystore file within the secret specified via
JGROUPS_ENCRYPT_SECRET variable. If not set, cluster communication is not encrypted
and a warning is issued. For example:

JGROUPS_ENCRYPT_KEYSTORE_DIR=/etc/jgroups-encrypt-secret-volume

4. The JGROUPS_ENCRYPT_KEYSTORE environment variable must be set to the name of the
keystore file within the secret specified via JGROUPS_ENCRYPT_SECRET variable. If not set,
cluster communication is not encrypted and a warning is issued. For example:

JGROUPS_ENCRYPT_KEYSTORE=jgroups.jceks

CHAPTER 7. REFERENCE INFORMATION

39

5. The JGROUPS_ENCRYPT_NAME environment variable must be set to the name associated
with the server’s certificate. If not set, cluster communication is not encrypted and a warning is
issued. For example:

JGROUPS_ENCRYPT_NAME=jgroups

6. The JGROUPS_ENCRYPT_PASSWORD environment variable must be set to the password
used to access the keystore and the certificate. If not set, cluster communication is not
encrypted and a warning is issued. For example:

JGROUPS_ENCRYPT_PASSWORD=mypassword

7.7.2.2. Configuring ASYM_ENCRYPT

To use the ASYM_ENCRYPT protocol to encrypt JGroups cluster traffic:

1. The JGroups protocol stack must be configured to use ASYM_ENCRYPT as the encryption
protocol.
You can do this by setting the JGROUPS_ENCRYPT_PROTOCOL environment variable to
ASYM_ENCRYPT:

JGROUPS_ENCRYPT_PROTOCOL=ASYM_ENCRYPT

2. The JGROUPS_CLUSTER_PASSWORD environment variable must be set to the password
used to authenticate the node so it is allowed to join the JGroups cluster. If not set,
authentication is disabled, cluster communication is not encrypted and a warning is issued. For
example:

JGROUPS_CLUSTER_PASSWORD=mypassword

NOTE

If you configure ASYM_ENCRYPT but also define any of the environment variables
required for SYM_ENCRYPT, the SYM_ENCRYPT environment variables are ignored
and a warning is issued. In this situation, cluster communication is still encrypted using
ASYM_ENCRYPT.

7.8. HEALTH CHECKS

The JBoss EAP for OpenShift image utilizes the liveness and readiness probes included in OpenShift by
default. In addition, this image includes Eclipse MicroProfile Health , as discussed in the Configuration
Guide.

The following table demonstrates the values necessary for these health checks to pass. If the status is
anything other than the values found below, then the check is failed and the image is restarted per the
image’s restart policy.

Table 7.5. Liveness and Readiness Checks

Performed Test Liveness Readiness

Server Status Any status Running

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health#container-health-checks-using-probes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/configuration_guide/#microprofile_health_check

Boot Errors None None

Deployment Status [a] N/A or no failed entries N/A or no failed entries

Eclipse MicroProfile Health [b] N/A or UP N/A or UP

[a] N/A is only a valid state when no deployments are present.

[b] N/A is only a valid state when the microprofile-health-smallrye subsystem has been disabled.

Performed Test Liveness Readiness

7.9. MESSAGING

7.9.1. Configuring External Red Hat AMQ Brokers

You can configure the JBoss EAP for OpenShift image with environment variables to connect to
external Red Hat AMQ brokers.

Example OpenShift Application Definition
The following example uses a template to create a JBoss EAP application connected to an external Red
Hat AMQ 7 broker.

Example: eap72-amq-s2i application template

oc new-app eap72-amq-s2i \
-p APPLICATION_NAME=eap72-mq \
-p MQ_USERNAME=MY_USERNAME \
-p MQ_PASSWORD=MY_PASSWORD

NOTE

The JDK 11 image stream uses the eap72-openjdk11-amq-s2i application template in the
above example, instead of eap72-amq-s2i used in the JDK 8 image stream.

IMPORTANT

The template used in this example provides valid default values for the required
parameters. If you do not use a template and provide your own parameters, be aware that
the MQ_SERVICE_PREFIX_MAPPING name must match the APPLICATION_NAME
name, appended with "-amq7=MQ".

7.10. SECURITY DOMAINS

To configure a new Security Domain, the user must define the SECDOMAIN_NAME environment
variable.

This results in the creation of a security domain named after the environment variable. The user may
also define the following environment variables to customize the domain:

CHAPTER 7. REFERENCE INFORMATION

41

Table 7.6. Security Domains

Variable name Description

SECDOMAIN_NAME Defines an additional security domain.

Example value: myDomain

SECDOMAIN_PASSWORD_STACKING If defined, the password-stacking module option is enabled
and set to the value useFirstPass.

Example value: true

SECDOMAIN_LOGIN_MODULE The login module to be used.

Defaults to UsersRoles

SECDOMAIN_USERS_PROPERTIES The name of the properties file containing user definitions.

Defaults to users.properties

SECDOMAIN_ROLES_PROPERTIES The name of the properties file containing role definitions.

Defaults to roles.properties

7.11. HTTPS ENVIRONMENT VARIABLES

Variable name Description

HTTPS_NAME If defined along with HTTPS_PASSWORD and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL name.

This should be the value specified as the alias name of your
keystore if you created it with the keytool -genkey command.

Example value: example.com

HTTPS_PASSWORD If defined along with HTTPS_NAME and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL key
password.

Example value: passw0rd

HTTPS_KEYSTORE If defined along with HTTPS_PASSWORD and
HTTPS_NAME, enables HTTPS and sets the SSL certificate
key file to a relative path under
EAP_HOME/standalone/configuration

Example value: ssl.key

7.12. ADMINISTRATION ENVIRONMENT VARIABLES

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

42

Table 7.7. Administration Environment Variables

Variable name Description

ADMIN_USERNAME If both this and ADMIN_PASSWORD are defined, used for the
JBoss EAP management user name.

Example value: eapadmin

ADMIN_PASSWORD The password for the specified ADMIN_USERNAME.

Example value: passw0rd

7.13. S2I

The image includes S2I scripts and Maven.

Maven is currently only supported as a build tool for applications that are supposed to be deployed on
JBoss EAP-based containers (or related/descendant images) on OpenShift.

Only WAR deployments are supported at this time.

7.13.1. Custom Configuration

It is possible to add custom configuration files for the image. All files put into configuration/ directory
will be copied into EAP_HOME/standalone/configuration/. For example to override the default
configuration used in the image, just add a custom standalone-openshift.xml into the configuration/
directory. See example for such a deployment.

7.13.1.1. Custom Modules

It is possible to add custom modules. All files from the modules/ directory will be copied into
EAP_HOME/modules/. See example for such a deployment.

7.13.2. Deployment Artifacts

By default, artifacts from the source target directory will be deployed. To deploy from different
directories set the ARTIFACT_DIR environment variable in the BuildConfig definition. ARTIFACT_DIR
is a comma-delimited list. For example: ARTIFACT_DIR=app1/target,app2/target,app3/target

7.13.3. Artifact Repository Mirrors

A repository in Maven holds build artifacts and dependencies of various types, for example, all of the
project JARs, library JARs, plug-ins, or any other project specific artifacts. It also specifies locations
from where to download artifacts while performing the S2I build. Besides using central repositories, it is a
common practice for organizations to deploy a local custom mirror repository.

Benefits of using a mirror are:

Availability of a synchronized mirror, which is geographically closer and faster.

Ability to have greater control over the repository content.

Possibility to share artifacts across different teams (developers, CI), without the need to rely on

CHAPTER 7. REFERENCE INFORMATION

43

https://github.com/goldmann/openshift-eap-examples/tree/master/custom-configuration
https://github.com/goldmann/openshift-eap-examples/tree/master/custom-module

Possibility to share artifacts across different teams (developers, CI), without the need to rely on
public servers and repositories.

Improved build times.

Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http://10.0.0.1:8080/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build
configuration of the application as follows:

1. Identify the name of the build configuration to apply MAVEN_MIRROR_URL variable against.

oc get bc -o name
buildconfig/eap

2. Update build configuration of eap with a MAVEN_MIRROR_URL environment variable.

oc env bc/eap MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "eap" updated

3. Verify the setting.

oc env bc/eap --list
buildconfigs eap
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application.

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

7.13.4. Scripts

run

This script uses the openshift-launch.sh script that configures and starts JBoss EAP with the
standalone-openshift.xml configuration.

assemble

This script uses Maven to build the source, create a package (WAR), and move it to the
EAP_HOME/standalone/deployments directory.

7.13.5. Environment Variables

You can influence the way the build is executed by supplying environment variables to the s2i build
command. The environment variables that can be supplied are:

Table 7.8. s2i Environment Variables

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

44

Variable name Description

ARTIFACT_DIR The .war, .ear, and .jar files from this directory will be copied
into the deployments/ directory.

Example value: target

HTTP_PROXY_HOST Host name or IP address of a HTTP proxy for Maven to use.

Example value: 192.168.1.1

HTTP_PROXY_PORT TCP Port of a HTTP proxy for Maven to use.

Example value: 8080

HTTP_PROXY_USERNAME If supplied with HTTP_PROXY_PASSWORD, use credentials
for HTTP proxy.

Example value: myusername

HTTP_PROXY_PASSWORD If supplied with HTTP_PROXY_USERNAME, use credentials
for HTTP proxy.

Example value: mypassword

HTTP_PROXY_NONPROXYHOSTS If supplied, a configured HTTP proxy will ignore these hosts.

Example value: some.example.org|*.example.net

MAVEN_ARGS Overrides the arguments supplied to Maven during build.

Example value: -e -Popenshift -DskipTests -
Dcom.redhat.xpaas.repo.redhatga package

MAVEN_ARGS_APPEND Appends user arguments supplied to Maven during build.

Example value: -Dfoo=bar

MAVEN_MIRROR_URL URL of a Maven Mirror/repository manager to configure.

Example value: http://10.0.0.1:8080/repository/internal/

MAVEN_CLEAR_REPO Optionally clear the local Maven repository after the build.

Example value: true

APP_DATADIR If defined, directory in the source from where data files are
copied.

Example value: mydata

CHAPTER 7. REFERENCE INFORMATION

45

DATA_DIR Directory in the image where data from $APP_DATADIR will
be copied.

Example value: EAP_HOME/data

Variable name Description

NOTE

For more information, see Build and Run a Java Application on the JBoss EAP for
OpenShift Image, which uses Maven and the S2I scripts included in the JBoss EAP for
OpenShift image.

7.14. SSO

This image contains support for Red Hat JBoss SSO-enabled applications.

NOTE

See the Red Hat JBoss SSO for OpenShift documentation for more information on how
to deploy the Red Hat JBoss SSO for OpenShift image with the JBoss EAP for
OpenShift image.

Table 7.9. SSO Environment Variables

Variable name Description

SSO_URL URL of the SSO server.

SSO_REALM SSO realm for the deployed applications.

SSO_PUBLIC_KEY Public key of the SSO Realm. This field is optional but if omitted
can leave the applications vulnerable to man-in-middle attacks.

SSO_USERNAME SSO User required to access the SSO REST API.

Example value: mySsoUser

SSO_PASSWORD Password for the SSO user defined by the SSO_USERNAME
variable.

Example value: 6fedmL3P

SSO_SAML_KEYSTORE Keystore location for SAML. Defaults to /etc/sso-saml-
secret-volume/keystore.jks.

SSO_SAML_KEYSTORE_PASSWORD Keystore password for SAML. Defaults to mykeystorepass.

SSO_SAML_CERTIFICATE_NAME Alias for keys/certificate to use for SAML. Defaults to jboss.

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/single/red_hat_jboss_sso_for_openshift/#Example-EAP-Manual

SSO_BEARER_ONLY SSO Client Access Type. (Optional)

Example value: true

SSO_CLIENT Path for SSO redirects back to the application. Defaults to
match module-name.

SSO_ENABLE_CORS If true, enable CORS for SSO applications. (Optional)

SSO_SECRET The SSO Client Secret for Confidential Access.

Example value: KZ1QyIq4

SSO_DISABLE_SSL_CERTIFICATE_VALI
DATION

If true the SSL/TLS communication between JBoss EAP and
the RH-SSO server will be unsecure, for example, the certificate
validation is disabled with curl. Not set by default.

Example value: true

Variable name Description

7.15. TRANSACTION RECOVERY

When a cluster is scaled down, it is possible for transaction branches to be in doubt. In these cases,
manual transaction recovery might be necessary.

7.15.1. Unsupported Transaction Recovery Scenarios

JTS transactions
Because the network endpoint of the parent is encoded in recovery coordinator IORs, recovery
cannot work reliably if either the child or parent node recovers with either a new IP address, or if
it is intended to be accessed using a virtualized IP address.

XTS transactions
XTS does not work in a clustered scenario for recovery purposes. See JBTM-2742 for details.

Transactions propagated over JBoss Remoting

Transactions propagated over XATerminator
Because the EIS is intended to be connected to a single instance of a Java EE application server,
there are no well-defined ways to couple these processes.

7.15.2. Manual Transaction Recovery Process

7.15.2.1. Caveats

This procedure only describes how to manually recover transactions that were wholly self-contained
within a single JVM. The procedure does not describe how to recover JTA transactions that have been
propagated to other JVMs.

IMPORTANT

CHAPTER 7. REFERENCE INFORMATION

47

https://issues.jboss.org/browse/JBTM-2742
http://jbossremoting.jboss.org/

IMPORTANT

There are various network partition scenarios in which OpenShift might start multiple
instances of the same pod with the same IP address and same node name and where,
due to the partition, the old pod is still running. During manual recovery, this might result
in a situation where you might be connected to a pod that has a stale view of the object
store. If you think you are in this scenario, it is recommended that all JBoss EAP pods be
shut down to ensure that none of the resource managers or object stores are in use.

When you enlist a resource in an XA transaction, it is your responsibility to ensure that each resource
type is supported for recovery. For example, it is known that PostgreSQL and MySQL are well-behaved
with respect to recovery, but for others, such as A-MQ and JDV resource managers, you should check
documentation of the specific OpenShift release.

The deployment must use a JDBC object store .

IMPORTANT

The transaction manager relies on the uniqueness of node identifiers. The maximum byte
length of an XID is set by the XA specification and cannot be changed. Due to the data
that the JBoss EAP for OpenShift image must include in the XID, this leaves room for 23
bytes in the node identifier.

OpenShift coerces the node identifier to fit this 23 byte limit:

For all node names, even those under 23 bytes, the - (dash) character is stripped
out.

If the name is still over 23 bytes, characters are truncated from the beginning of
the name until length of the name is within the 23 byte limit.

However, this process might impact the uniqueness of the identifier. For example, the
names aaa123456789012345678m0jwh and bbb123456789012345678m0jwh are both
truncated to 123456789012345678m0jwh, which breaks the uniqueness of the names
that are expected. In another example, this-pod-is-m0jwh and thispod-is-m0jwh are
both truncated to thispodism0jwh, again breaking the uniqueness of the names.

It is your responsibility to ensure that the node names you configure are unique, keeping
in mind the above truncation process.

7.15.2.2. Prerequisite

It is assumed the OpenShift instance has been configured with a JDBC store, and that the store tables
are partitioned using a table prefix corresponding to the pod name. This should be automatic whenever
a JBoss EAP deployment is in use. You can verify that the JBoss EAP instance is using a JDBC object
store by looking at the configuration of the transactions subsystem in a running pod:

1. Determine if the /opt/eap/standalone/configuration/openshift-standalone.xml configuration
file contains an element for the transaction subsystem:

<subsystem xmlns="urn:jboss:domain:transactions:3.0">

2. If the JDBC object store is in use, then there is an entry similar to the following:

<jdbc-store datasource-jndi-name="java:jboss/datasources/jdbcstore_postgresql"/>

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

48

NOTE

The JNDI name identifies the datasource used to store the transaction logs.

7.15.2.3. Procedure

IMPORTANT

The following procedure details the process of manual transaction recovery solely for
datasources.

1. Use the database vendor tooling to list the XIDs (transaction branch identifiers) for in-doubt
branches. It is necessary to list XIDs for all datasources that were in use by any deployments
running on the pod that failed or was scaled down. Refer to the vendor documentation for the
database product in use.

2. For each such XID, determine which pod created the transaction and check to see if that pod is
still running.

a. If it is running, then leave the branch alone.

b. If the pod is not running, assume it was removed from the cluster and you must apply the
manual resolution procedure described here. Look in the transaction log storage that was
used by the failed pod to see if there is a corresponding transaction log:

i. If there is a log, then manually commit the XID using the vendor tooling.

ii. If there is not a log, assume it is an orphaned branch and roll back the XID using the
vendor tooling.

The rest of this procedure explains in detail how to carry out each of these steps.

7.15.2.3.1. Resolving In-doubt Branches

First, find all the resources that the deployment is using.

It is recommended that you do this using the JBoss EAP managagement CLI. Although the resources
should be defined in the JBoss EAP standalone-openshift.xml configuration file, there are other ways
they can be made available to the transaction subsystem within the application server. For example, this
can be done using a file in a deployment, or dynamically using the management CLI at runtime.

1. Open a terminal on a pod running a JBoss EAP instance in the cluster of the failed pod. If there
is no such pod, scale up to one.

2. Create a management user using the /opt/eap/bin/add-user.sh script.

3. Log into the management CLI using the /opt/eap/bin/jboss-cli.sh script.

4. List the datasources configured on the server. These are the ones that may contain in-doubt
transaction branches.

/subsystem=datasources:read-resource
{
 "outcome" => "success",
 "result" => {
 "data-source" => {

CHAPTER 7. REFERENCE INFORMATION

49

 "ExampleDS" => undefined,
 ...
 },
 ...
}

5. Once you have the list, find the connection URL for each of the datasources. For example:

/subsystem=datasources/data-source=ExampleDS:read-attribute(name=connection-url)
{
 "outcome" => "success",
 "result" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE",
 "response-headers" => {"process-state" => "restart-required"}
}

6. Connect to each datasource and list any in-doubt transaction branches.

NOTE

The table name that stores in-doubt branches will be different for each
datasource vendor.

JBoss EAP has a default SQL query tool (H2) that you can use to check each database. For
example:

java -cp /opt/eap/modules/system/layers/base/com/h2database/h2/main/h2-1.3.173.jar \
-url "jdbc:postgresql://localhost:5432/postgres" \
-user sa \
-password sa \
-sql "select gid from pg_prepared_xacts;"

Alternatively, you can use the resource’s native tooling. For example, for a PostGreSQL
datasource called sampledb, you can use the OpenShift client tools to remotely log in to the
pod and query the in-doubt transaction table:

$ oc rsh postgresql-2-vwf9n # rsh to the named pod
sh-4.2$ psql sampledb
psql (9.5.7)
Type "help" for help.

sampledb=# select gid from pg_prepared_xacts;
131077_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGHAtanRhLWNyYXNoLXJlYy0zLXAy
Y2N3_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGgAAAAEAAAAA

7.15.2.3.2. Extract the Global Transaction ID and Node Identifier from Each XID

When all XIDs for in-doubt branches are identified, convert the XIDs into a format that you can compare
to the logs stored in the transaction tables of the transaction manager.

For example, the following Bash script can be used to perform this conversion. Assuming that $PG_XID
holds the XID from the select statement above, then the JBoss EAP transaction ID can be obtained as
follows:

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

50

PG_XID="$1"
IFS='_' read -ra lines <<< "$PG_XID"
[["${lines[0]}" = 131077]] || exit 0; # this script only works for our own FORMAT ID
PG_TID=${lines[1]}

a=($(echo "$PG_TID"| base64 -d | xxd -ps |tr -d '\n' | while read -N16 i ; do echo 0x$i ; done))
b=($(echo "$PG_TID"| base64 -d | xxd -ps |tr -d '\n' | while read -N8 i ; do echo 0x$i ; done))
c=("${b[@]:4}") # put the last 3 32-bit hexadecimal numbers into array c
the negative elements of c need special handling since printf below only works with positive
hexadecimal numbers
for i in "${!c[@]}"; do
 arg=${c[$i]}
 # inspect the MSB to see if arg is negative - if so convert it from a 2’s complement number
 [[$(($arg>>31)) = 1]] && x=$(echo "obase=16; $(($arg - 0x100000000))" | bc) || x=$arg
 if [[${x:0:1} = \-]] ; then # see if the first character is a minus sign
 neg[$i]="-";
 c[$i]=0x${x:1} # strip the minus sign and make it hex for use with printf below
 else
 neg[$i]=""
 c[$i]=$x
 fi
done
EAP_TID=$(printf %x:%x:${neg[0]}%x:${neg[1]}%x:${neg[2]}%x ${a[0]} ${a[1]} ${c[0]} ${c[1]} ${c[2]})

After completion, the $EAP_TID variable holds the global transaction ID of the transaction that created
this XID. The node identifier of the pod that started the transaction is given by the output of the
following bash command:

echo "$PG_TID"| base64 -d | tail -c +29

NOTE

The node identifier starts from the 29th character of the PostgreSQL global transaction
ID field.

If this pod is still running, then leave this in-doubt branch alone since the transaction is still in
flight.

If this pod is not running, then you need to search the relevant transaction log storage for the
transaction log. The log storage is located in a JDBC table, which is named following the
os<node-identifier>jbosststxtable pattern.

If there is no such table, leave the branch alone as it is owned by some other transaction
manager. The URL for the datasource containing this table is defined in the transaction
subsystem description shown below.

If there is such a table, look for an entry that matches the global transaction ID.

If there is an entry in the table that matches the global transaction ID, then the in-doubt
branch needs to be committed using the datasource vendor tooling as described below.

If there is no such entry, then the branch is an orphan and can safely be rolled back.

An example of how to commit an in-doubt PostgreSQL branch is shown below:

CHAPTER 7. REFERENCE INFORMATION

51

$ oc rsh postgresql-2-vwf9n
sh-4.2$ psql sampledb
psql (9.5.7)
Type "help" for help.
psql sampledb
commit prepared '131077_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGHAtanRh

LWNyYXNoLXJlYy0zLXAyY2N3_AAAAAAAAAAAAAP//rBEAB440GK1aJ72oAAAAGgAAAAEAAAAA';

IMPORTANT

Repeat this procedure for all datasources and in-doubt branches.

7.15.2.3.3. Obtain the List of Node Identifiers of All Running JBoss EAP Instances in Any Cluster
that Can Contact the Resource Managers

Node identifiers are configured to be the same name as the pod name. You can obtain the pod names in
use using the oc command. Use the following command to list the running pods:

$ oc get pods | grep Running
eap-manual-tx-recovery-app-4-26p4r 1/1 Running 0 23m
postgresql-2-vwf9n 1/1 Running 0 41m

For each running pod, look in the output of the pod’s log and obtain the node name. For example, for
first pod shown in the above output, use the following command:

$ oc logs eap-manual-tx-recovery-app-4-26p4r | grep "jboss.node.name" | head -1
jboss.node.name = tx-recovery-app-4-26p4r

IMPORTANT

The aforementioned JBoss node name identifier will always be truncated to the
maximum length of 23 characters in total by removing characters from the beginning and
retaining the trailing characters until the maximum length of 23 characters is reached.

7.15.2.3.4. Find the Transaction Logs

1. The transaction logs reside in a JDBC-backed object store. The JNDI name of this store is
defined in the transaction subsystem definition of the JBoss EAP configuration file.

2. Look in the configuration file to find the datasource definition corresponding to the above JNDI
name.

3. Use the JNDI name to derive the connection URL.

4. You can use the URL to connect to the database and issue a select query on the relevant in-
doubt transaction table.
Alternatively, if you know which pod the database is running on, and you know the name of the
database, it might be easier to open an OpenShift remote shell into the pod and use the
database tooling directly.

For example, if the JDBC store is hosted by a PostgreSQL database called sampledb running

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

52

For example, if the JDBC store is hosted by a PostgreSQL database called sampledb running
on pod postgresql-2-vwf9n, then you can find the transaction logs using the following
commands:

NOTE

The ostxrecoveryapp426p4rjbosststxtable table name listed in the following
command has been chosen since it follows the pattern for JDBC table names
holding the log storage entries. In your environment the table name will have
similar form:

Starting with os prefix.

The part in the middle is derived from the JBoss node name above, possibly
deleting the "-" (dash) character if present.

Finally the jbosststxtable suffix is appended to create the final name of the
table.

$ oc rsh postgresql-2-vwf9n
sh-4.2$ psql sampledb
psql (9.5.7)
Type "help" for help.

sampledb=# select uidstring from ostxrecoveryapp426p4rjbosststxtable where
TYPENAME='StateManager/BasicAction/TwoPhaseCoordinator/AtomicAction'
;
 uidstring

 0:ffff0a81009d:33789827:5a68b2bf:40
 (1 row)

7.15.2.3.5. Cleaning Up the Transaction Logs for Reconciled In-doubt Branches

WARNING

Do not delete the log unless you are certain that there are no remaining in-doubt
branches.

When all the branches for a given transaction are complete, and all potential resources managers have
been checked, including A-MQ and JDV, it is safe to delete the transaction log.

Issue the following command, specify the transaction log to be removed using the appropriate
uidstring:

DELETE FROM ostxrecoveryapp426p4rjbosststxtable where uidstring = UIDSTRING

IMPORTANT



CHAPTER 7. REFERENCE INFORMATION

53

IMPORTANT

If you do not delete the log, then completed transactions which failed after prepare, but
which have now been resolved, will never be removed from the transaction log storage.
The consequence of this is that unnecessary storage is used and future manual
reconciliation will be more difficult.

7.16. INCLUDED JBOSS MODULES

The table below lists included JBoss Modules in the JBoss EAP for OpenShift image.

Table 7.10. Included JBoss Modules

JBoss Module

org.jboss.as.clustering.common

org.jboss.as.clustering.jgroups

org.jboss.as.ee

org.jboss.logmanager.ext

org.jgroups

org.mongodb

org.openshift.ping

org.postgresql

com.mysql

net.oauth.core

NOTE

The following modules are not included in the JDK 11 image:

org.mongodb

org.postgresql

com.mysql

Revised on 2019-09-12 10:36:38 UTC

Red Hat JBoss Enterprise Application Platform 7.2 Getting Started with JBoss EAP for OpenShift Online

54

CHAPTER 7. REFERENCE INFORMATION

55

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP)?
	1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
	1.3. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT
	1.4. VERSION COMPATIBILITY AND SUPPORT
	1.4.1. OpenShift 4.1 Support

	CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE
	2.1. PREREQUISITES
	2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT
	2.3. IMPORT THE LATEST JBOSS EAP FOR OPENSHIFT IMAGE STREAMS AND TEMPLATES
	2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION TO OPENSHIFT
	2.5. POST DEPLOYMENT TASKS

	CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION
	3.1. HOW THE JBOSS EAP FOR OPENSHIFT S2I PROCESS WORKS
	3.2. CONFIGURING JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT VARIABLES
	3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS
	3.3.1. S2I Artifacts
	3.3.1.1. Modules, Drivers, and Generic Deployments

	3.3.2. Runtime Artifacts
	3.3.2.1. Datasources
	3.3.2.2. Resource Adapters

	3.4. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP FOR OPENSHIFT IMAGE
	3.4.1. Scaling Up and Persistent Storage Partitioning
	3.4.2. Scaling Down and Transaction Recovery

	CHAPTER 4. MIGRATING TO JBOSS EAP FOR OPENSHIFT JDK 11 IMAGE
	4.1. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT USING JDK 11 IMAGE
	4.2. IMPORT JDK 11 IMAGE
	4.3. DEPLOY A JBOSS EAP S2I APPLICATION TO OPENSHIFT USING JDK 11 IMAGE
	4.4. CONFIGURE JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT VARIABLES FOR JDK 11 IMAGE

	CHAPTER 5. MIGRATING APPLICATION TO OPENSHIFT 4
	5.1. UPDATING LIVENESS AND READINESS PROBE CONFIGURATION FOR OPENSHIFT 4

	CHAPTER 6. TROUBLESHOOTING
	6.1. TROUBLESHOOTING POD RESTARTS
	6.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

	CHAPTER 7. REFERENCE INFORMATION
	7.1. PERSISTENT TEMPLATES
	7.2. INFORMATION ENVIRONMENT VARIABLES
	7.3. CONFIGURATION ENVIRONMENT VARIABLES
	7.4. APPLICATION TEMPLATES
	7.5. EXPOSED PORTS
	7.6. DATASOURCES
	7.6.1. JNDI Mappings for Datasources
	7.6.1.1. Database Drivers
	7.6.1.2. Datasource Configuration Environment Variables
	7.6.1.3. Examples

	7.7. CLUSTERING
	7.7.1. Configuring a JGroups Discovery Mechanism
	7.7.1.1. Configuring KUBE_PING
	7.7.1.2. Configuring DNS_PING

	7.7.2. Configuring JGroups to Encrypt Cluster Traffic
	7.7.2.1. Configuring SYM_ENCRYPT
	7.7.2.2. Configuring ASYM_ENCRYPT

	7.8. HEALTH CHECKS
	7.9. MESSAGING
	7.9.1. Configuring External Red Hat AMQ Brokers
	Example OpenShift Application Definition

	7.10. SECURITY DOMAINS
	7.11. HTTPS ENVIRONMENT VARIABLES
	7.12. ADMINISTRATION ENVIRONMENT VARIABLES
	7.13. S2I
	7.13.1. Custom Configuration
	7.13.1.1. Custom Modules

	7.13.2. Deployment Artifacts
	7.13.3. Artifact Repository Mirrors
	7.13.4. Scripts
	7.13.5. Environment Variables

	7.14. SSO
	7.15. TRANSACTION RECOVERY
	7.15.1. Unsupported Transaction Recovery Scenarios
	7.15.2. Manual Transaction Recovery Process
	7.15.2.1. Caveats
	7.15.2.2. Prerequisite
	7.15.2.3. Procedure

	7.16. INCLUDED JBOSS MODULES

