
Red Hat JBoss Enterprise Application
Platform 6.4

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Last Updated: 2022-05-02

Red Hat JBoss Enterprise Application Platform 6.4 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Legal Notice

Copyright © 2017 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides references and examples for Java EE 6 developers using Red Hat JBoss
Enterprise Application Platform 6 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
1.1. INTRODUCTION
1.2. PREREQUISITES
1.3. SET UP THE DEVELOPMENT ENVIRONMENT
1.4. RUN YOUR FIRST APPLICATION

CHAPTER 2. MAVEN GUIDE
2.1. LEARN ABOUT MAVEN
2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY
2.3. USE THE MAVEN REPOSITORY
2.4. UPGRADE THE MAVEN REPOSITORY

CHAPTER 3. CLASS LOADING AND MODULES
3.1. INTRODUCTION
3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT
3.7. CLASS LOADING AND SUBDEPLOYMENTS
3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE
3.9. REFERENCE

CHAPTER 4. VALVES
4.1. ABOUT VALVES
4.2. ABOUT GLOBAL VALVES
4.3. ABOUT AUTHENTICATOR VALVES
4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE
4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE
4.6. CREATE A CUSTOM VALVE

CHAPTER 5. LOGGING FOR DEVELOPERS
5.1. INTRODUCTION
5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
5.3. PER-DEPLOYMENT LOGGING
5.4. LOGGING PROFILES

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION
6.1. INTRODUCTION
6.2. JBOSS LOGGING TOOLS

CHAPTER 7. REMOTE JNDI LOOKUP
7.1. REGISTERING OBJECTS TO JNDI
7.2. CONFIGURING A REMOTE JNDI CLIENT

CHAPTER 8. ENTERPRISE JAVABEANS
8.1. INTRODUCTION
8.2. CREATING ENTERPRISE BEAN PROJECTS
8.3. SESSION BEANS
8.4. MESSAGE-DRIVEN BEANS
8.5. INVOKING SESSION BEANS
8.6. CONTAINER INTERCEPTORS
8.7. CLUSTERED ENTERPRISE JAVABEANS

6
6
6
9

16

35
35
37
41
57

59
59
63
66
68
69
70
74
76
77

82
82
82
82
82
84
85

88
88
90
93
94

96
96
96

115
115
115

117
117

120
130
134
140
152
159

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

8.8. REFERENCE

CHAPTER 9. JBOSS MBEAN SERVICES
9.1. WRITING JBOSS MBEAN SERVICES
9.2. A STANDARD MBEAN EXAMPLE
9.3. DEPLOYING JBOSS MBEAN SERVICES

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS
10.1. SESSION REPLICATION
10.2. HTTPSESSION PASSIVATION AND ACTIVATION
10.3. IMPLEMENT AN HA SINGLETON
10.4. APACHE MOD_CLUSTER-MANAGER APPLICATION

CHAPTER 11. CDI
11.1. OVERVIEW OF CDI
11.2. USE CDI

CHAPTER 12. JAVA TRANSACTION API (JTA)
12.1. OVERVIEW
12.2. TRANSACTION CONCEPTS
12.3. TRANSACTION OPTIMIZATIONS
12.4. TRANSACTION OUTCOMES
12.5. OVERVIEW OF JTA TRANSACTIONS
12.6. TRANSACTION SUBSYSTEM CONFIGURATION
12.7. USE JTA TRANSACTIONS
12.8. ORB CONFIGURATION
12.9. TRANSACTION REFERENCES

CHAPTER 13. HIBERNATE
13.1. ABOUT HIBERNATE CORE
13.2. JAVA PERSISTENCE API (JPA)
13.3. HIBERNATE ANNOTATIONS
13.4. HIBERNATE QUERY LANGUAGE
13.5. HIBERNATE SERVICES
13.6. BEAN VALIDATION
13.7. ENVERS
13.8. PERFORMANCE TUNING

CHAPTER 14. HIBERNATE SEARCH
14.1. GETTING STARTED WITH HIBERNATE SEARCH
14.2. MAPPING ENTITIES TO THE INDEX STRUCTURE
14.3. QUERYING
14.4. MANUAL INDEX CHANGES
14.5. INDEX OPTIMIZATION
14.6. ADVANCED FEATURES

CHAPTER 15. JAX-RS WEB SERVICES
15.1. ABOUT JAX-RS
15.2. ABOUT RESTEASY
15.3. ABOUT RESTFUL WEB SERVICES
15.4. RESTEASY DEFINED ANNOTATIONS
15.5. RESTEASY CONFIGURATION
15.6. JAX-RS WEB SERVICE SECURITY
15.7. EXCEPTION HANDLING
15.8. RESTEASY INTERCEPTORS

168

174
174
174
176

178
178
182
184
190

192
192
193

216
216
216
223
227
228
230
249
260
261

266
266
266
281
285
298
304
309
320

323
323
329
357
385
389
391

397
397
397
397
397
400
402
404
406

Development Guide

2

. .

. .

. .

. .

. .

. .

. .

15.9. STRING BASED ANNOTATIONS
15.10. CONFIGURE FILE EXTENSIONS
15.11. RESTEASY JAVASCRIPT API
15.12. RESTEASY ASYNCHRONOUS JOB SERVICE
15.13. RESTEASY JAXB
15.14. RESTEASY ATOM SUPPORT
15.15. YAML PROVIDER
15.16. EJB INTEGRATION
15.17. JSON SUPPORT VIA JACKSON
15.18. RESTEASY/SPRING INTEGRATION

CHAPTER 16. JAX-WS WEB SERVICES
16.1. ABOUT JAX-WS WEB SERVICES
16.2. CONFIGURE THE WEBSERVICES SUBSYSTEM
16.3. CONFIGURE THE HTTP TIMEOUT PER APPLICATION
16.4. JAX-WS WEB SERVICE ENDPOINTS
16.5. JAX-WS WEB SERVICE CLIENTS
16.6. JAX-WS DEVELOPMENT REFERENCE

CHAPTER 17. WEBSOCKETS
17.1. ABOUT WEBSOCKETS
17.2. CREATE A WEBSOCKET APPLICATION

CHAPTER 18. APPLICATION SECURITY
18.1. FOUNDATIONAL CONCEPTS
18.2. ROLE-BASED SECURITY IN APPLICATIONS
18.3. LOGIN MODULES
18.4. EJB APPLICATION SECURITY
18.5. JAX-RS APPLICATION SECURITY
18.6. PASSWORD VAULTS FOR SENSITIVE STRINGS
18.7. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
18.8. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

CHAPTER 19. SINGLE SIGN ON (SSO)
19.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
19.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
19.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
19.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
19.5. ABOUT KERBEROS
19.6. ABOUT SPNEGO
19.7. ABOUT MICROSOFT ACTIVE DIRECTORY
19.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB
APPLICATIONS
19.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION
19.10. ABOUT SAML WEB BROWSER BASED SSO
19.11. COOKIE DOMAIN

CHAPTER 20. DEVELOPMENT SECURITY REFERENCES
20.1. EJB SECURITY PARAMETER REFERENCE

CHAPTER 21. CONFIGURATION REFERENCES
21.1. JBOSS-WEB.XML CONFIGURATION REFERENCE

CHAPTER 22. SUPPLEMENTAL REFERENCES
22.1. TYPES OF JAVA ARCHIVES

412
416
418
421
425
428
430
431

432
432

434
434
435
438
438
443
452

457
457
457

463
463
464
479
512

530
533
552
554

555
555
555
555
556
558
558
558

559
562
563
564

566
566

568
568

572
572

Table of Contents

3

. .APPENDIX A. REVISION HISTORY 574

Development Guide

4

Table of Contents

5

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1. INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 6

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss Application
Server 7 with high-availability clustering, messaging, distributed caching, and other technologies.

JBoss EAP 6 includes a new, modular structure that allows service enabling only when required,
improving startup speed.

The Management Console and Management Command Line Interface make editing XML configuration
files unnecessary and add the ability to script and automate tasks.

In addition, JBoss EAP 6 includes APIs and development frameworks for quickly developing secure and
scalable Java EE applications.

Report a bug

1.2. PREREQUISITES

1.2.1. Become Familiar with Java Enterprise Edition 6

1.2.1.1. Overview of EE 6 Profiles

Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two
profiles that the EE 6 specification defines are the Full Profile and the Web Profile.

EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile
includes a subset of APIs which are useful to web developers.

JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile
specifications.

Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”

Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile”

Report a bug

1.2.1.2. Java Enterprise Edition 6 Web Profile

The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is
designed for web application development. The other profile defined by the Java Enterprise Edition 6
specification is the Full Profile. See Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile” for more
details.

Java EE 6 Web Profile Requirements

Java Platform, Enterprise Edition 6

Development Guide

6

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+228-762700+%5BLatest%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-762700+23+Jun+2015+09%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4488-591661+%5BLatest%5D&comment=Title%3A+Overview+of+EE+6+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4488-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Java Web Technologies

Servlet 3.0 (JSR 315)

JSP 2.2 and Expression Language (EL) 1.2

JavaServer Faces (JSF) 2.1 (JSR 314)

Java Standard Tag Library (JSTL) for JSP 1.2

Debugging Support for Other Languages 1.0 (JSR 45)

Enterprise Application Technologies

Contexts and Dependency Injection (CDI) (JSR 299)

Dependency Injection for Java (JSR 330)

Enterprise JavaBeans 3.1 Lite (JSR 318)

Java Persistence API 2.0 (JSR 317)

Common Annotations for the Java Platform 1.1 (JSR 250)

Java Transaction API (JTA) 1.1 (JSR 907)

Bean Validation (JSR 303)

Report a bug

1.2.1.3. Java Enterprise Edition 6 Full Profile

The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of
them as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web
Profile (Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following
APIs.

Items Included in the EE 6 Full Profile

EJB 3.1 (not Lite) (JSR 318)

Java EE Connector Architecture 1.6 (JSR 322)

Java Message Service (JMS) API 1.1 (JSR 914)

JavaMail 1.4 (JSR 919)

Web Service Technologies

Jax-RS RESTful Web Services 1.1 (JSR 311)

Implementing Enterprise Web Services 1.3 (JSR 109)

JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)

Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

7

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4489-591661+%5BLatest%5D&comment=Title%3A+Java+Enterprise+Edition+6+Web+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4489-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Web Services Metadata for the Java Platform (JSR 181)

Java APIs for XML-based RPC 1.1 (JSR 101)

Java APIs for XML Messaging 1.3 (JSR 67)

Java API for XML Registries (JAXR) 1.0 (JSR 93)

Management and Security Technologies

Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)

Java Authentication Contract for Containers 1.3 (JSR 115)

Java EE Application Deployment 1.2 (JSR 88)

J2EE Management 1.1 (JSR 77)

Report a bug

1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP
6

1.2.2.1. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged.

Static Modules

Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each
sub-directory represents one module and defines a main/ subdirectory that contains a configuration
file (module.xml) and any required JAR files. The name of the module is defined in the module.xml
file. All the application server provided APIs are provided as static modules, including the Java EE
APIs as well as other APIs such as JBoss Logging.

Example 1.1. Example module.xml file

The module name, com.mysql, should match the directory structure for the module, excluding
the main/ subdirectory name.

The modules provided in JBoss EAP distributions are located in a system directory within the

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.15.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

Development Guide

8

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4490-706470+%5BLatest%5D&comment=Title%3A+Java+Enterprise+Edition+6+Full+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4490-706470+04+Sep+2014+00%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The modules provided in JBoss EAP distributions are located in a system directory within the
EAP_HOME/modules directory. This keeps them separate from any modules provided by third
parties.

Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install
their modules within the system directory.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third-party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using
a one directory per module layout. This ensures that custom versions of modules that already exist in
the system directory are loaded instead of the shipped versions. In this way, user provided modules
will take precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss
EAP searches for modules, then the product will look for a system subdirectory structure within one
of the locations specified. A system structure must exist somewhere in the locations specified with
JBOSS_MODULEPATH.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment
(or subdeployment in an EAR). The name of a dynamic module is derived from the name of the
deployed archive. Because deployments are loaded as modules, they can configure dependencies
and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that has
explicit or implicit dependencies.

Report a bug

1.3. SET UP THE DEVELOPMENT ENVIRONMENT

1.3.1. Download and Install Red Hat JBoss Developer Studio

1.3.1.1. Setup Red Hat JBoss Developer Studio

1. Section 1.3.1.2, “Download Red Hat JBoss Developer Studio”

2. Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”

3. Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”

4. Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”

Report a bug

1.3.1.2. Download Red Hat JBoss Developer Studio

1. Go to https://access.redhat.com/.

2. Select Downloads from the menu at the top of the page.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

9

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4360-766898+%5BLatest%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-766898+05+Aug+2015+14%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4583-721148+%5BLatest%5D&comment=Title%3A+Setup+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4583-721148+30+Oct+2014+15%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/

3. Find Red Hat JBoss Developer Studio in the list and click on it.

4. Select the appropriate version and click Download.

Report a bug

1.3.1.3. Install Red Hat JBoss Developer Studio

Prerequisites:

Section 1.3.1.2, “Download Red Hat JBoss Developer Studio”

Procedure 1.1. Install Red Hat JBoss Developer Studio

1. Open a terminal.

2. Move into the directory containing the downloaded .jar file.

3. Run the following command to launch the GUI installer:

java -jar jbdevstudio-build_version.jar

4. Click Next to start the installation process.

5. Select I accept the terms of this license agreement and click Next.

6. Adjust the installation path and click Next.

NOTE

If the installation path folder does not exist, a prompt will appear. Click Ok to
create the folder.

7. Choose a JVM, or leave the default JVM selected, and click Next.

8. Add any application platforms available, and click Next.

9. Review the installation details, and click Next.

10. Click Next when the installation process is complete.

11. Configure the desktop shortcuts for Red Hat JBoss Developer Studio, and click Next.

12. Click Done.

Report a bug

1.3.1.4. Start Red Hat JBoss Developer Studio

Prerequisites:

Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”

Procedure 1.2. Command to start Red Hat JBoss Developer Studio

Development Guide

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4580-733629+%5BLatest%5D&comment=Title%3A+Download+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4580-733629+18+Dec+2014+15%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4581-733628+%5BLatest%5D&comment=Title%3A+Install+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4581-733628+18+Dec+2014+15%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

1. Open a terminal.

2. Change into the installation directory.

3. Run the following command to start Red Hat JBoss Developer Studio:

[localhost]$./jbdevstudio

Report a bug

1.3.1.5. Add the JBoss EAP Server Using Define New Server

These instructions assume this is your first introduction to Red Hat JBoss Developer Studio and you
have not yet added any Red Hat JBoss Enterprise Application Platform servers. The procedure below
adds the JBoss EAP server using the Define New Server wizard.

Procedure 1.3. Add the server

1. Open the Servers tab. If there is no Servers tab, add it to the panel as follows:

a. Click Window → Show View → Other....

b. Select Servers from the Server folder and click OK.

2. Click on No servers are available. Click this link to create a new server... or, if you prefer,
right-click within the blank Server panel and select New → Server.

Figure 1.1. Add a new server - No servers available

3. Expand JBoss Enterprise Middleware and choose JBoss Enterprise Application Platform
6.1+. Enter a server name, for example, "JBoss Enterprise Application Platform 6.4", then click
Next to create the JBoss runtime and define the server. The next time you define a new server,
this dialog displays a Server runtime environment selection with the new runtime definition.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

11

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4582-681218+%5BLatest%5D&comment=Title%3A+Start+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4582-681218+03+Jul+2014+10%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 1.2. Define a New Server

4. Create a Server Adapter to manage starting and stopping the server. Keep the defaults and
click Next.

Development Guide

12

Figure 1.3. Create a New Server Adapter

5. Enter a name, for example "JBoss EAP 6.4 Runtime". Under Home Directory, click Browse and
navigate to your JBoss EAP install location. Then click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

13

Figure 1.4. Add New Server Runtime Environment

NOTE

Some quickstarts require that you run the server with a different profile or
additional arguments. To deploy a quickstart that requires the full profile, you
must define a new server and add a Server Runtime Environment that specifies
standalone-full.xml for the Configuration file. Be sure to give the new server a
descriptive name.

6. Configure existing projects for the new server. Because you do not have any projects at this
point, click Finish.

Development Guide

14

Figure 1.5. Modify resources for the new JBoss server

Result

The JBoss EAP Runtime Server is listed in the Servers tab.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

15

Figure 1.6. Server appears in the server list

Report a bug

1.4. RUN YOUR FIRST APPLICATION

1.4.1. Download the Quickstart Code Examples

1.4.1.1. Access the Quickstarts

Summary

JBoss EAP 6 comes with a series of quickstart examples designed to help users begin writing
applications using the Java EE 6 technologies.

Prerequisites

Maven 3.0.0 or higher. For more information on installing Maven, refer to
http://maven.apache.org/download.html.

Section 2.1.1, “About the Maven Repository”

The JBoss EAP 6 Maven repository is available online, so it is not necessary to download and
install it locally. If you plan to use the online repository, you can skip to the next step. If you
prefer to install a local repository, see: Section 2.2.3, “Install the JBoss EAP 6 Maven Repository
Locally”.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”

Procedure 1.4. Download the Quickstarts

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Quickstarts" in the list.

3. Click the Download button to download a Zip archive containing the examples.

4. Unzip the archive in a directory of your choosing.

Result

The JBoss EAP Quickstarts have been downloaded and unzipped. Refer to the README.md file in the
top-level directory of the Quickstart archive for instructions about deploying each quickstart.

Report a bug

Development Guide

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+26921-769220+%5BLatest%5D&comment=Title%3A+Add+the+JBoss+EAP+Server+Using+Define+New+Server%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=26921-769220+28+Aug+2015+16%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/download.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5720-736846+%5BLatest%5D&comment=Title%3A+Access+the+Quickstarts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5720-736846+19+Jan+2015+04%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

1.4.2. Run the Quickstarts

1.4.2.1. Run the Quickstarts in Red Hat JBoss Developer Studio

This section describes how to use Red Hat JBoss Developer Studio to deploy the quickstarts and run
the Arquillian tests.

Procedure 1.5. Import the quickstarts into Red Hat JBoss Developer Studio

Each quickstart ships with a POM (Project Object Model) file that contains project and configuration
information for the quickstart. Using this POM file, you can easily import the quickstart into Red Hat
JBoss Developer Studio.

IMPORTANT

If your quickstart project folder is located within the IDE workspace when you import it
into Red Hat JBoss Developer Studio, the IDE generates an invalid project name and
WAR archive name. Be sure your quickstart project folder is located outside the IDE
workspace before you begin!

1. If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using
the Maven Settings”.

2. Start Red Hat JBoss Developer Studio.

3. From the menu, select File → Import.

4. In the selection list, choose Maven → Existing Maven Projects, then click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

17

Figure 1.7. Import Existing Maven Projects

5. Browse to the directory of the quickstart you plan to test, for example the helloworld
quickstart, and click OK. The Projects list box is populated with the pom.xml file of the
selected quickstart project.

Development Guide

18

Figure 1.8. Select Maven Projects

6. Click Finish.

Procedure 1.6. Build and Deploy the helloworld quickstart

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the JBoss
server is configured and running correctly.

1. If you do not see a Servers tab or have not yet defined a server, follow the instructions here:
Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server” . If you plan to deploy a
quickstart that requires the full profile or additional startup arguments, be sure to create the
server runtime environment as noted in the quickstart instructions.

2. Right-click on the jboss-helloworld project in the Project Explorer tab and select Run As. You
are provided with a list of choices. Select Run on Server.

Figure 1.9. Run As - Run on Server

3. Select JBoss EAP 6.1+ Runtime Server from the server list and click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

19

Figure 1.10. Run on Server

4. The next screen displays the resources that are configured on the server. The jboss-helloworld
quickstart is configured for you. Click Finish to deploy the quickstart.

Development Guide

20

Figure 1.11. Modify Resources Configured on the Server

5. Review the results.

In the Server tab, the JBoss EAP 6.x Runtime Server status changes to [Started,
Republish] .

The server Console tab shows messages detailing the JBoss EAP 6.x server start and the
helloworld quickstart deployment.

A helloworld tab appears displaying the URL http://localhost:8080/jboss-
helloworld/HelloWorld and the text "Hello World!".

The following messages in the Console confirm deployment of the jboss-helloworld.war
file:

JBAS018210: Register web context: /jboss-helloworld
JBAS018559: Deployed "jboss-helloworld.war" (runtime-name : "jboss-helloworld.war")

The registered web context is appended to http://localhost:8080 to provide the URL used

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

21

http://localhost:8080/jboss-helloworld/HelloWorld

The registered web context is appended to http://localhost:8080 to provide the URL used
to access the deployed application.

6. To verify the helloworld quickstart deployed successfully to the JBoss server, open a web
browser and access the application at this URL: http://localhost:8080/jboss-helloworld

Procedure 1.7. Run the bean-validation quickstart Arquillian tests

Some quickstarts do not provide a user interface layer and instead provide Arquillian tests to
demonstrate the code examples. The bean-validation quickstart is an example of a quickstart that
provides Arquillian tests.

1. Follow the procedure above to import the bean-validation quickstart into Red Hat JBoss
Developer Studio.

2. In the Servers tab, right-click on the server and choose Start to start the JBoss EAP server. If
you do not see a Servers tab or have not yet defined a server, follow the instructions here:
Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server” .

3. Right-click on the jboss-bean-validation project in the Project Explorer tab and select Run As.
You are provided with a list of choices. Select Maven Build.

4. In the Goals input field of the Edit Configuration dialog, type: clean test -Parq-jbossas-
remote

Then click Run.

Development Guide

22

http://localhost:8080/jboss-helloworld

Figure 1.12. Edit Configuration

5. Review the results.

The server Console tab shows messages detailing the JBoss EAP server start and the output of
the bean-validation quickstart Arquillian tests.

 T E S T S

Running org.jboss.as.quickstarts.bean_validation.test.MemberValidationTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.189 sec

Results :

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

23

Report a bug

1.4.2.2. Run the Quickstarts Using a Command Line

Procedure 1.8. Build and Deploy the Quickstarts Using a Command Line

You can easily build and deploy the quickstarts using a command line. Be aware that, when using a
command line, you are responsible for starting the JBoss server if it is required.

1. If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using
the Maven Settings”.

2. Review the README.html file in the root directory of the quickstarts.

This file contains general information about system requirements, how to configure Maven, how
to add users, and how to run the Quickstarts. Be sure to read through it before you get started.

It also contains a table listing the available quickstarts. The table lists each quickstart name and
the technologies it demonstrates. It gives a brief description of each quickstart and the level of
experience required to set it up. For more detailed information about a quickstart, click on the
quickstart name.

Some quickstarts are designed to enhance or extend other quickstarts. These are noted in the
Prerequisites column. If a quickstart lists prerequisites, you must install them first before
working with the quickstart.

Some quickstarts require the installation and configuration of optional components. Do not
install these components unless the quickstart requires them.

3. Run the helloworld quickstart.

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the
JBoss server is configured and running correctly. Open the README.html file in the root of the
helloworld quickstart. It contains detailed instructions on how to build and deploy the quickstart
and access the running application

4. Run the other quickstarts.

Follow the instructions in the README.html file located in the root folder of each quickstart to
run the example.

Report a bug

1.4.3. Review the Quickstart Tutorials

1.4.3.1. Explore the helloworld Quickstart

Summary

The helloworld quickstart shows you how to deploy a simple Servlet to JBoss EAP 6. The business logic
is encapsulated in a service which is provided as a CDI (Contexts and Dependency Injection) bean and
injected into the Servlet. This quickstart is very simple. All it does is print "Hello World" onto a web page.
It is a good starting point to be sure you have configured and started your server properly.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README.html file at the root of the helloworld quickstart directory. Here we show you how to use Red

Development Guide

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+27008-768101+%5BLatest%5D&comment=Title%3A+Run+the+Quickstarts+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=27008-768101+23+Aug+2015+20%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7307-768103+%5BLatest%5D&comment=Title%3A+Run+the+Quickstarts+Using+a+Command+Line%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7307-768103+23+Aug+2015+20%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat JBoss
Developer Studio, configured Maven, and imported and successfully run the helloworld quickstart.

Prerequisites

Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install Red
Hat JBoss Developer Studio”.

Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here:
Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio” .

Follow the procedures here to import, build, and deploy the helloworld quickstart in Red Hat
JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer
Studio”

Verify the helloworld quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-helloworld

Procedure 1.9. Examine the Directory Structure

The code for the helloworld quickstart can be found in the QUICKSTART_HOME/helloworld directory.
The helloworld quickstart is comprised of a Servlet and a CDI bean. It also includes an empty beans.xml
file which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.

1. The beans.xml file is located in the WEB-INF/ folder in the src/main/webapp/ directory of the
quickstart.

2. The src/main/webapp/ directory also includes an index.html file which uses a simple meta
refresh to redirect the user's browser to the Servlet, which is located at
http://localhost:8080/jboss-helloworld/HelloWorld.

3. All the configuration files for this example are located in WEB-INF/, which can be found in the
src/main/webapp/ directory of the example.

4. Notice that the quickstart doesn't even need a web.xml file!

Procedure 1.10. Examine the Code

The package declaration and imports have been excluded from these listings. The complete listing is
available in the quickstart source code.

1. Review the HelloWorldServlet code
The HelloWorldServlet.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This Servlet sends the
information to the browser.

42. @SuppressWarnings("serial")
43. @WebServlet("/HelloWorld")
44. public class HelloWorldServlet extends HttpServlet {
45.
46. static String PAGE_HEADER = "<html><head><title>helloworld</title></head>
<body>";
47.
48. static String PAGE_FOOTER = "</body></html>";
49.
50. @Inject

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

25

http://localhost:8080/jboss-helloworld
http://localhost:8080/jboss-helloworld/HelloWorld

Table 1.1. HelloWorldServlet Details

Line Note

43 Before Java EE 6, an XML file was used to register Servlets. It is now much cleaner. All you
need to do is add the @WebServlet annotation and provide a mapping to a URL used to
access the servlet.

46-48 Every web page needs correctly formed HTML. This quickstart uses static Strings to write
the minimum header and footer output.

50-51 These lines inject the HelloService CDI bean which generates the actual message. As long
as we don't alter the API of HelloService, this approach allows us to alter the
implementation of HelloService at a later date without changing the view layer.

58 This line calls into the service to generate the message "Hello World", and write it out to the
HTTP request.

2. Review the HelloService code
The HelloService.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service is very simple. It
returns a message. No XML or annotation registration is required.

Report a bug

1.4.3.2. Explore the numberguess Quickstart

Summary

This quickstart shows you how to create and deploy a simple application to JBoss EAP 6. This
application does not persist any information. Information is displayed using a JSF view, and business

51. HelloService helloService;
52.
53. @Override
54. protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
55. resp.setContentType("text/html");
56. PrintWriter writer = resp.getWriter();
57. writer.println(PAGE_HEADER);
58. writer.println("<h1>" + helloService.createHelloMessage("World") + "</h1>");
59. writer.println(PAGE_FOOTER);
60. writer.close();
61. }
62.
63. }

public class HelloService {

 String createHelloMessage(String name) {
 return "Hello " + name + "!";
 }
}

Development Guide

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7881-759156+%5BLatest%5D&comment=Title%3A+Explore+the+helloworld+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7881-759156+22+May+2015+05%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

logic is encapsulated in two CDI (Contexts and Dependency Injection) beans. In the numberguess
quickstart, you get 10 attempts to guess a number between 1 and 100. After each attempt, you're told
whether your guess was too high or too low.

The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess
directory. The numberguess quickstart is comprised of a number of beans, configuration files and
Facelets (JSF) views, packaged as a WAR module.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README.html file at the root of the numberguess quickstart directory. Here we show you how to use
Red Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat
JBoss Developer Studio, configured Maven, and imported and successfully run the numberguess
quickstart.

Prerequisites

Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install Red
Hat JBoss Developer Studio”.

Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here:
Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio” .

Follow the procedures here to import, build, and deploy the numberguess quickstart in Red
Hat JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer
Studio”

Verify the numberguess quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-numberguess

Procedure 1.11. Examine the Configuration Files

All the configuration files for this example are located in WEB-INF/ directory which can be found in the
src/main/webapp/ directory of the quickstart.

1. Examine the faces-config.xml file.

This quickstart uses the JSF 2.0 version of faces-config.xml filename. A standardized version
of Facelets is the default view handler in JSF 2.0, so there's really nothing that you have to
configure. JBoss EAP 6 goes above and beyond Java EE here. It will automatically configure the
JSF for you if you include this configuration file. As a result, the configuration consists of only
the root element:

2. Examine the beans.xml file.

There's also an empty beans.xml file, which tells JBoss EAP 6 to look for beans in this
application and to activate the CDI.

19. <faces-config version="2.0"
20. xmlns="http://java.sun.com/xml/ns/javaee"
21. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
22. xsi:schemaLocation="
23. http://java.sun.com/xml/ns/javaee>
24. http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">
25.
26. </faces-config>

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

27

http://localhost:8080/jboss-numberguess

3. There is no web.xml file

Notice that the quickstart doesn't even need a web.xml file!

Procedure 1.12. Examine the JSF Code

JSF uses the .xhtml file extension for source files, but serves up the rendered views with the .jsf
extension.

Examine the home.xhtml code.

The home.xhtml file is located in the src/main/webapp/ directory.

19. <html xmlns="http://www.w3.org/1999/xhtml"
20. xmlns:ui="http://java.sun.com/jsf/facelets"
21. xmlns:h="http://java.sun.com/jsf/html"
22. xmlns:f="http://java.sun.com/jsf/core">
23.
24. <head>
25. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
26. <title>Numberguess</title>
27. </head>
28.
29. <body>
30. <div id="content">
31. <h1>Guess a number...</h1>
32. <h:form id="numberGuess">
33.
34. <!-- Feedback for the user on their guess -->
35. <div style="color: red">
36. <h:messages id="messages" globalOnly="false" />
37. <h:outputText id="Higher" value="Higher!"
38. rendered="#{game.number gt game.guess and game.guess ne 0}" />
39. <h:outputText id="Lower" value="Lower!"
40. rendered="#{game.number lt game.guess and game.guess ne 0}" />
41. </div>
42.
43. <!-- Instructions for the user -->
44. <div>
45. I'm thinking of a number between #{game.smallest} and #{game.biggest}. You have
48. #{game.remainingGuesses} guesses remaining.
49. </div>
50.
51. <!-- Input box for the users guess, plus a button to submit, and reset -->
52. <!-- These are bound using EL to our CDI beans -->
53. <div>
54. Your guess:
55. <h:inputText id="inputGuess" value="#{game.guess}"
56. required="true" size="3"
57. disabled="#{game.number eq game.guess}"
58. validator="#{game.validateNumberRange}" />
59. <h:commandButton id="guessButton" value="Guess"
60. action="#{game.check}"
61. disabled="#{game.number eq game.guess}" />

Development Guide

28

Table 1.2. JSF Details

Line Note

36-40 These are the messages which can be sent to the user: "Higher!" and "Lower!"

45-48 As the user guesses, the range of numbers they can guess gets smaller. This sentence
changes to make sure they know the number range of a valid guess.

55-58 This input field is bound to a bean property using a value expression.

58 A validator binding is used to make sure the user does not accidentally input a number
outside of the range in which they can guess. If the validator was not here, the user might
use up a guess on an out of bounds number.

59-61 There must be a way for the user to send their guess to the server. Here we bind to an
action method on the bean.

Procedure 1.13. Examine the Class Files

All of the numberguess quickstart source files can be found in the
src/main/java/org/jboss/as/quickstarts/numberguess/ directory. The package declaration and
imports have been excluded from these listings. The complete listing is available in the quickstart source
code.

1. Review the Random.java qualifier code.

A qualifier is used to remove ambiguity between two beans, both of which are eligible for
injection based on their type. For more information on qualifiers, refer to Section 11.2.3.3, “Use a
Qualifier to Resolve an Ambiguous Injection”

The @Random qualifier is used for injecting a random number.

62. </div>
63. <div>
64. <h:commandButton id="restartButton" value="Reset"
65. action="#{game.reset}" immediate="true" />
66. </div>
67. </h:form>
68.
69. </div>
70.
71. <br style="clear: both" />
72.
73. </body>
74. </html>

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)
@Documented
@Qualifier

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

29

2. Review the MaxNumber.java qualifier code.

The @MaxNumberqualifier is used for injecting the maximum number allowed.

3. Review the Generator.java code.

The Generator class is responsible for creating the random number via a producer method. It
also exposes the maximum possible number via a producer method. This class is application
scoped so you don't get a different random each time.

4. Review the Game.java code.

The session scoped class Game is the primary entry point of the application. It is responsible for
setting up or resetting the game, capturing and validating the user's guess, and providing
feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to
initialize the game by retrieving a random number from the @Random Instance<Integer> bean.

public @interface Random {

}

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)
@Documented
@Qualifier
public @interface MaxNumber {

}

@SuppressWarnings("serial")
@ApplicationScoped
public class Generator implements Serializable {

 private java.util.Random random = new java.util.Random(System.currentTimeMillis());

 private int maxNumber = 100;

 java.util.Random getRandom() {
 return random;
 }

 @Produces
 @Random
 int next() {
 // a number between 1 and 100
 return getRandom().nextInt(maxNumber - 1) + 1;
 }

 @Produces
 @MaxNumber
 int getMaxNumber() {
 return maxNumber;
 }
}

Development Guide

30

Notice the @Named annotation in the class. This annotation is only required when you want to
make the bean accessible to a JSF view via Expression Language (EL), in this case #{game}.

@SuppressWarnings("serial")
@Named
@SessionScoped
public class Game implements Serializable {

 /**
 * The number that the user needs to guess
 */
 private int number;

 /**
 * The users latest guess
 */
 private int guess;

 /**
 * The smallest number guessed so far (so we can track the valid guess range).
 */
 private int smallest;

 /**
 * The largest number guessed so far
 */
 private int biggest;

 /**
 * The number of guesses remaining
 */
 private int remainingGuesses;

 /**
 * The maximum number we should ask them to guess
 */
 @Inject
 @MaxNumber
 private int maxNumber;

 /**
 * The random number to guess
 */
 @Inject
 @Random
 Instance<Integer> randomNumber;

 public Game() {
 }

 public int getNumber() {
 return number;
 }

 public int getGuess() {
 return guess;

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

31

 }

 public void setGuess(int guess) {
 this.guess = guess;
 }

 public int getSmallest() {
 return smallest;
 }

 public int getBiggest() {
 return biggest;
 }

 public int getRemainingGuesses() {
 return remainingGuesses;
 }

 /**
 * Check whether the current guess is correct, and update the biggest/smallest guesses as
needed. Give feedback to the user
 * if they are correct.
 */
 public void check() {
 if (guess > number) {
 biggest = guess - 1;
 } else if (guess < number) {
 smallest = guess + 1;
 } else if (guess == number) {
 FacesContext.getCurrentInstance().addMessage(null, new
FacesMessage("Correct!"));
 }
 remainingGuesses--;
 }

 /**
 * Reset the game, by putting all values back to their defaults, and getting a new random
number. We also call this method
 * when the user starts playing for the first time using {@linkplain PostConstruct
@PostConstruct} to set the initial
 * values.
 */
 @PostConstruct
 public void reset() {
 this.smallest = 0;
 this.guess = 0;
 this.remainingGuesses = 10;
 this.biggest = maxNumber;
 this.number = randomNumber.get();
 }

 /**
 * A JSF validation method which checks whether the guess is valid. It might not be valid
because there are no guesses left,
 * or because the guess is not in range.
 *

Development Guide

32

Report a bug

1.4.4. Replace the Default Welcome Web Application

JBoss EAP 6 includes a Welcome application, which displays when you open the URL of the server at
port 8080. You can replace this application with your own web application by following this procedure.

Procedure 1.14. Replace the Default Welcome Web Application With Your Own Web Application

1. Disable the Welcome application.
Use the Management CLI script EAP_HOME/bin/jboss-cli.sh to run the following command.
You may need to change the profile to modify a different managed domain profile, or remove
the /profile=default portion of the command for a standalone server.

/profile=default/subsystem=web/virtual-server=default-host:write-attribute(name=enable-
welcome-root,value=false)

2. Configure your Web application to use the root context.
To configure your web application to use the root context (/) as its URL address, modify its
jboss-web.xml, which is located in the META-INF/ or WEB-INF/ directory. Replace its <context-
root> directive with one that looks like the following.

3. Deploy your application.
Deploy your application to the server group or server you modified in the first step. The
application is now available on http://SERVER_URL:PORT/.

Report a bug

1.4.5. Using WS-AtomicTransaction

 */
 public void validateNumberRange(FacesContext context, UIComponent toValidate, Object
value) {
 if (remainingGuesses <= 0) {
 FacesMessage message = new FacesMessage("No guesses left!");
 context.addMessage(toValidate.getClientId(context), message);
 ((UIInput) toValidate).setValid(false);
 return;
 }
 int input = (Integer) value;

 if (input < smallest || input > biggest) {
 ((UIInput) toValidate).setValid(false);

 FacesMessage message = new FacesMessage("Invalid guess");
 context.addMessage(toValidate.getClientId(context), message);
 }
 }
}

<jboss-web>
 <context-root>/</context-root>
</jboss-web>

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

33

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8023-681225+%5BLatest%5D&comment=Title%3A+Explore+the+numberguess+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8023-681225+03+Jul+2014+10%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9017-591860+%5BLatest%5D&comment=Title%3A+Replace+the+Default+Welcome+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9017-591860+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The wsat-simple quickstart demonstrates the deployment of a WS-AT (WS-AtomicTransaction)
enabled JAX-WS Web Service bundled in a WAR archive for deployment to Red Hat JBoss Enterprise
Application Platform.

The Web service is offered by a Restaurant for making bookings. The Service allows bookings to be
made within an Atomic Transaction. This example demonstrates the basics of implementing a WS-AT
enabled Web service. It is beyond the scope of this quick start to demonstrate more advanced features.
In particular:

The Service does not implement the required hooks to support recovery in the presence of
failures.

It also does not utilize a transactional back end resource.

Only one Web service participates in the protocol. As WS-AT is a 2PC coordination protocol, it
is best suited to multi-participant scenarios.

For a more complete example, refer the XTS demonstrator application that ships with the Narayana
project: http://www.jboss.org/narayana.

It is also assumed that you have an understanding of WS-AtomicTransaction. For more details, read the
XTS documentation that ships with the Narayana project, which can be downloaded here:
http://www.jboss.org/narayana/documentation/4174_Final.

The application consists of a single JAX-WS web service that is deployed within a WAR archive. It is
tested with a JBoss Arquillian enabled JUnit test.

When running the org.jboss.as.quickstarts.wsat.simple.ClientTest#testCommit() method, the
following steps occur:

1. A new Atomic Transaction (AT) is created by the client.

2. An operation on a WS-AT enabled Web service is invoked by the client.

3. The JaxWSHeaderContextProcessor in the WS Client handler chain inserts the WS-AT context
into the outgoing SOAP message.

4. When the service receives the SOAP request, the JaxWSHeaderContextProcessor in its handler
chain inspects the WS-AT context and associates the request with this AT.

5. The Web service operation is invoked.

6. A participant is enlisted in this AT. This allows the Web Service logic to respond to protocol
events, such as Commit and Rollback.

7. The service invokes the business logic. In this case, a booking is made with the restaurant.

8. The backend resource is prepared. This ensures that the Backend resource can undo or make
permanent the change when told to do so by the coordinator.

9. The client can then decide to commit or rollback the AT. If the client decides to commit, the
coordinator will begin the 2PC protocol. If the participant decides to rollback, all participants will
be told to rollback.

There is another test that shows what happens if the client decides to rollback the AT.

Report a bug

Development Guide

34

http://www.jboss.org/narayana
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44983-776714+%5BLatest%5D&comment=Title%3A+Using+WS-AtomicTransaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44983-776714+31+Mar+2016+06%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 2. MAVEN GUIDE

2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other
build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be
private and internal within a company with a goal to share common artifacts among development teams.
Repositories are also available from third-parties. JBoss EAP 6 includes a Maven repository that
contains many of the requirements that Java EE developers typically use to build applications on JBoss
EAP 6. To configure your project to use this repository, see Section 2.3.1, “Configure the JBoss EAP
Maven 6 Repository”.

Remote repositories are accessed using common protocols such as http:// for a repository on an HTTP
server or file:// for a repository on a file server.

For more information about Maven, see Welcome to Apache Maven .

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

For more information about Maven POM files, see the Apache Maven Project POM Reference and
Section 2.1.2, “About the Maven POM File” .

Report a bug

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom.xml file requires some configuration options and will
default all others. See Section 2.1.3, “Minimum Requirements of a Maven POM File” for details.

The schema for the pom.xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.

For more information about POM files, see the Apache Maven Project POM Reference .

Report a bug

2.1.3. Minimum Requirements of a Maven POM File

Minimum requirements

The minimum requirements of a pom.xml file are as follows:

project root

CHAPTER 2. MAVEN GUIDE

35

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1841-591649+%5BLatest%5D&comment=Title%3A+About+the+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1841-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5721-591710+%5BLatest%5D&comment=Title%3A+About+the+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5721-591710+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

modelVersion

groupId - the id of the project's group

artifactId - the id of the artifact (project)

version - the version of the artifact under the specified group

Sample pom.xml file

A basic pom.xml file might look like this:

Report a bug

2.1.4. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that must not be distributed with the pom.xml file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found.

In the Maven installation

The settings file can be found in the M2_HOME/conf/ directory. These settings are referred to as
global settings. The default Maven settings file is a template that can be copied and used as a
starting point for the user settings file.

In the user's installation

The settings file can be found in the USER_HOME/.m2/ directory. If both the Maven and user
settings.xml files exist, the contents are merged. Where there are overlaps, the user's settings.xml
file takes precedence.

The following is an example of a Maven settings.xml file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.jboss.app</groupId>
 <artifactId>my-app</artifactId>
 <version>1</version>
</project>

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <!-- Configure the JBoss EAP Maven repository -->
 <profile>
 <id>jboss-eap-maven-repository</id>
 <repositories>
 <repository>
 <id>jboss-eap</id>
 <url>file:///path/to/repo/jboss-eap-6.4-maven-repository</url>

Development Guide

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5723-591711+%5BLatest%5D&comment=Title%3A+Minimum+Requirements+of+a+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5723-591711+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-1.0.0.xsd.

Report a bug

2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY

2.2.1. Download and Install Maven

If you plan to use Maven command line to build and deploy your applications to JBoss EAP, you must
download and install Maven. If you plan to use Red Hat JBoss Developer Studio to build and deploy your
applications, you can skip this procedure as Maven is distributed with Red Hat JBoss Developer Studio.

1. Go to Apache Maven Project - Download Maven and download the latest distribution for your
operating system.

2. See the Maven documentation for information on how to download and install Apache Maven
for your operating system.

Report a bug

2.2.2. Install the JBoss EAP 6 Maven Repository

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager.

Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”

 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-maven-plugin-repository</id>
 <url>file:///path/to/repo/jboss-eap-6.4-maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <!-- Optionally, make the repository active by default -->
 <activeProfile>jboss-eap-maven-repository</activeProfile>
 </activeProfiles>
</settings>

CHAPTER 2. MAVEN GUIDE

37

http://maven.apache.org/xsd/settings-1.0.0.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5756-759157+%5BLatest%5D&comment=Title%3A+About+the+Maven+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5756-759157+22+May+2015+05%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/download.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8896-681226+%5BLatest%5D&comment=Title%3A+Download+and+Install+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8896-681226+03+Jul+2014+10%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Section 2.2.4, “Install the JBoss EAP 6 Maven Repository for Use with Apache httpd”

Section 2.2.5, “Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager”

Report a bug

2.2.3. Install the JBoss EAP 6 Maven Repository Locally

Summary

The JBoss EAP 6 Maven repository is available online, so it is not necessary to download and install it
locally. However, if you prefer to install the JBoss EAP Maven repository locally, there are three ways to
do it: on your local file system, on Apache Web Server, or with a Maven repository manager. This
example covers the steps to download the JBoss EAP 6 Maven Repository to the local file system. This
option is easy to configure and allows you to get up and running quickly on your local machine. It can
help you become familiar with using Maven for development but is not recommended for team
production environments.

Procedure 2.1. Download and Install the JBoss EAP 6 Maven Repository to the Local File System

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform VERSION Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the file on the local file system into a directory of your choosing.

5. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

This creates a Maven repository directory called jboss-eap-version-maven-repository.

IMPORTANT

If you want to continue to use an older local repository, you must configure it separately in
the Maven settings.xml configuration file. Each local repository must be configured
within its own <repository> tag.

IMPORTANT

When downloading a new Maven repository, remove the cached repository/ subdirectory
located under the .m2/directory before attempting to use the new Maven repository.

Report a bug

2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This example will cover the steps to download the JBoss EAP 6 Maven
Repository for use with Apache httpd. This option is good for multi-user and cross-team development

Development Guide

38

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8321-591831+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8321-591831+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5707-736857+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Locally%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5707-736857+19+Jan+2015+04%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

environments because any developer that can access the web server can also access the Maven
repository.

Prerequisites

You must configure Apache httpd. See Apache HTTP Server Project documentation for instructions.

Procedure 2.2. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files in a directory that is web accessible on the Apache server.

5. Configure Apache to allow read access and directory browsing in the created directory.

6. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

This allows a multi-user environment to access the Maven repository on Apache httpd.

NOTE

If you're upgrading from a previous version of the repository, note that JBoss EAP Maven
Repository artifacts can be extracted into an existing JBoss product Maven repository
(such as JBoss EAP 6.1.0) without any conflicts. After the repository archive has been
extracted, the artifacts can be used with the existing Maven settings for this repository.

Report a bug

2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This option is best if you have a license and already use a repository
manager because you can host the JBoss repository alongside your existing repositories. For more
information about Maven repository managers, see Section 2.2.6, “About Maven Repository Managers” .

This example will cover the steps to install the JBoss EAP 6 Maven Repository using Sonatype Nexus
Maven Repository Manager. For more complete instructions, see Sonatype Nexus: Manage Artifacts .

Procedure 2.3. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files into a directory of your choosing on the server hosting Nexus.

CHAPTER 2. MAVEN GUIDE

39

http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5722-736861+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+for+Use+with+Apache+httpd%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5722-736861+19+Jan+2015+05%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://www.sonatype.org/nexus/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

Procedure 2.4. Add the JBoss EAP 6 Maven Repository using Nexus Maven Repository Manager

1. Log into Nexus as an Administrator.

2. Select the Repositories section from the Views → Repositories menu to the left of your
repository manager.

3. Click the Add... dropdown, then select Hosted Repository.

4. Give the new repository a name and ID.

5. Enter the path on disk to the unzipped repository in the field Override Local Storage Location.

6. Continue if you want the artifact to be available in a repository group. Do not continue with this
procedure if this is not what you want.

7. Select the repository group.

8. Click on the Configure tab.

9. Drag the new JBoss Maven repository from the Available Repositories list to the Ordered
Group Repositories list on the left.

NOTE

Note that the order of this list determines the priority for searching Maven
artifacts.

10. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

The repository is configured using Nexus Maven Repository Manager.

Report a bug

2.2.6. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient
deployments and a better level of control over what is downloaded by Maven.

They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Apache Maven Project - The List of
Repository Managers.

Commonly used Maven repository managers

Sonatype Nexus

See Sonatype Nexus: Manage Artifacts for more information about Nexus.

Development Guide

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7827-759235+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Using+Nexus+Maven+Repository+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7827-759235+25+May+2015+07%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/repository-management.html
http://www.sonatype.org/nexus/

Artifactory

See Artifactory Open Source for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

Report a bug

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven 6 Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

You can configure the repositories in the Maven global or user settings.

You can configure the repositories in the project's POM file.

Procedure 2.5. Configure Maven Settings to Use the JBoss EAP 6 Maven Repository

1. Configure the Maven repository using Maven settings
This is the recommended approach. Maven settings used with a repository manager or
repository on a shared server provide better control and manageability of projects. Settings also
provide the ability to use an alternative mirror to redirect all lookup requests for a specific
repository to your repository manager without changing the project files. For more information
about mirrors, see http://maven.apache.org/guides/mini/guide-mirror-settings.html.

This method of configuration applies across all Maven projects, as long as the project POM file
does not contain repository configuration.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

2. Configure the Maven repository using the project POM
This method of configuration is generally not recommended. If you decide to configure
repositories in your project POM file, plan carefully and be aware that it can slow down your build
and you may even end up with artifacts that are not from the expected repository.

NOTE

CHAPTER 2. MAVEN GUIDE

41

http://www.jfrog.com/products.php
http://archiva.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8765-591847+%5BLatest%5D&comment=Title%3A+About+Maven+Repository+Managers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8765-591847+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/guides/mini/guide-mirror-settings.html

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven
should query all artifacts for all projects using this manager. Because Maven uses
all declared repositories to find missing artifacts, if it can't find what it's looking
for, it will try and look for it in the repository central (defined in the built-in
parent POM). To override this central location, you can add a definition with
central so that the default repository central is now your repository manager as
well. This works well for established projects, but for clean or 'new' projects it
causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration.
Maven has to query these external repositories for missing artifacts. This not only
slows down your build, it also causes you to lose control over where your artifacts
are coming from and likely to cause broken builds.

This method of configuration overrides the global and user Maven settings for the configured
project.

Section 2.3.4, “Configure the JBoss EAP 6 Maven Repository Using the Project POM” .

Report a bug

2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

You can modify the Maven settings. This directs Maven to use the configuration across all
projects.

You can configure the project's POM file. This limits the configuration to the specific project.

This topic shows you how to direct Maven to use the JBoss EAP 6 Maven Repository across all projects
using the Maven settings. This is the recommended approach.

You can configure Maven to use either the online or a locally installed JBoss EAP 6 repository. If you
choose to use the online repository, you can use a preconfigured settings file or add the JBoss EAP 6
Maven profiles to the existing settings file. To use a local repository, you must download the repository
and configure the settings to point to your locally installed repository. The following procedures describe
how to configure Maven for JBoss EAP 6.

NOTE

Development Guide

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8418-591838+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+Maven+6+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8418-591838+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see
Section 2.2.2, “Install the JBoss EAP 6 Maven Repository” . The following are examples for
each of the installation options:

File System

file:///path/to/repo/jboss-eap-6.x-maven-repository

Apache Web Server

http://intranet.acme.com/jboss-eap-6.x-maven-repository/

Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

You can configure Maven using either the Maven install global settings or the user install
settings. These instructions configure the user install settings as this is the most common
configuration.

Procedure 2.6. Configure Maven Using the Settings Shipped with the Quickstart Examples

The JBoss EAP 6 Quickstarts ship with a settings.xml file that is configured to use the online JBoss
EAP 6 Maven repository. This is the simplest approach.

1. This procedure overwrites the existing Maven settings file, so you must back up the existing
Maven settings.xml file.

a. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/.m2/ directory.

For Linux or Mac, this is: ~/.m2/

For Windows, this is: \Documents and Settings\USER_NAME\.m2\ or
\Users\USER_NAME\.m2\

b. If you have an existing USER_HOME/.m2/settings.xml file, rename it or make a backup
copy so you can restore it later.

2. Download and unzip the quickstart examples that ship with JBoss EAP 6. For more information,
see Section 1.4.1.1, “Access the Quickstarts”

3. Copy the QUICKSTART_HOME/settings.xml file to the USER_HOME/.m2/ directory.

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the
procedure below entitled Procedure 2.9, “Refresh the Red Hat JBoss Developer Studio User
Settings”.

Procedure 2.7. Manually Edit and Configure the Maven Settings To Use the Online JBoss EAP 6
Maven Repository

You can manually add the JBoss EAP 6 profiles to an existing Maven settings file.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/.m2/ directory.

For Linux or Mac, this is ~/.m2/

CHAPTER 2. MAVEN GUIDE

43

For Linux or Mac, this is ~/.m2/

For Windows, this is \Documents and Settings\USER_NAME\.m2\ or
\Users\USER_NAME\.m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/.m2/conf/ directory into the USER_HOME/.m2/ directory.

3. Copy the following XML into the <profiles> element of the file.

<!-- Configure the JBoss GA Maven repository -->
<profile>
 <id>jboss-ga-repository</id>
 <repositories>
 <repository>
 <id>jboss-ga-repository</id>
 <url>http://maven.repository.redhat.com/techpreview/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-ga-plugin-repository</id>
 <url>http://maven.repository.redhat.com/techpreview/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>
<!-- Configure the JBoss Early Access Maven repository -->
<profile>
 <id>jboss-earlyaccess-repository</id>
 <repositories>
 <repository>
 <id>jboss-earlyaccess-repository</id>
 <url>http://maven.repository.redhat.com/earlyaccess/all/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-earlyaccess-plugin-repository</id>
 <url>http://maven.repository.redhat.com/earlyaccess/all/</url>

Development Guide

44

Copy the following XML into the <activeProfiles> element of the settings.xml file.

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the
procedure below entitled Procedure 2.9, “Refresh the Red Hat JBoss Developer Studio User
Settings”.

Procedure 2.8. Configure the Settings to Use a Locally Installed JBoss EAP Repository

You can modify the settings to use the JBoss EAP 6 repository installed on the local file system.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/.m2/ directory.

For Linux or Mac, this is ~/.m2/

For Windows, this is \Documents and Settings\USER_NAME\.m2\ or
\Users\USER_NAME\.m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/.m2/conf/ directory into the USER_HOME/.m2/ directory.

3. Copy the following XML into the <profiles> element of the settings.xml file. Be sure to change
the <url> to the actual repository location.

 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>jboss-ga-repository</activeProfile>
<activeProfile>jboss-earlyaccess-repository</activeProfile>

<profile>
 <id>jboss-eap-repository</id>
 <repositories>
 <repository>
 <id>jboss-eap-repository</id>
 <name>JBoss EAP Maven Repository</name>
 <url>file:///path/to/repo/jboss-eap-6.x-maven-repository</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>

CHAPTER 2. MAVEN GUIDE

45

Copy the following XML into the <activeProfiles> element of the settings.xml file.

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the
procedure below entitled Procedure 2.9, “Refresh the Red Hat JBoss Developer Studio User
Settings”.

Procedure 2.9. Refresh the Red Hat JBoss Developer Studio User Settings

If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, you must refresh
the user settings.

1. From the menu, choose Window → Preferences.

2. In the Preferences Window, expand Maven and choose User Settings.

3. Click the Update Settings button to refresh the Maven user settings in Red Hat JBoss
Developer Studio.

 <pluginRepository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>
 file:///path/to/repo/jboss-eap-6.x-maven-repository
 </url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>jboss-eap-repository</activeProfile>

Development Guide

46

Figure 2.1. Update Maven User Settings

IMPORTANT

If your Maven repository contains outdated artifacts, you may encounter one of the
following Maven error messages when you build or deploy your project:

Missing artifact ARTIFACT_NAME

[ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located in your
~/.m2/repository/ subdirectory on Linux, or the
%SystemDrive%\Users\USERNAME\.m2\repository\ subdirectory on Windows.

Report a bug

CHAPTER 2. MAVEN GUIDE

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5709-770212+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Maven+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5709-770212+14+Sep+2015+01%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2.3.3. Configure Maven for Use with Red Hat JBoss Developer Studio

The artifacts and dependencies needed to build and deploy applications to Red Hat JBoss Enterprise
Application Platform are hosted on a public repository. You must direct Maven to use this repository
when you build your applications. This topic covers the steps to configure Maven if you plan to build and
deploy applications using Red Hat JBoss Developer Studio.

Maven is distributed with Red Hat JBoss Developer Studio, so it is not necessary to install it separately.
However, you must configure Maven for use by the Java EE Web Project wizard for deployments to
JBoss EAP. The procedure below demonstrates how to configure Maven for use with JBoss EAP by
editing the Maven configuration file from within Red Hat JBoss Developer Studio.

Procedure 2.10. Configure Maven in Red Hat JBoss Developer Studio

1. Click Window→Preferences, expand JBoss Tools and select JBoss Maven Integration.

Figure 2.2. JBoss Maven Integration Pane in the Preferences Window

2. Click Configure Maven Repositories.

3. Click Add Repository to configure the JBoss GA Tech Preview Maven repository. Complete
the Add Maven Repository dialog as follows:

a. Set the Profile ID, Repository ID, and Repository Name values to jboss-ga-repository.

b. Set the Repository URL value to http://maven.repository.redhat.com/techpreview/all.

c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK

Development Guide

48

Figure 2.3. Add Maven Repository - JBoss Tech Preview

4. Click Add Repository to configure the JBoss Early Access Maven repository. Complete the
Add Maven Repository dialog as follows:

a. Set the Profile ID, Repository ID, and Repository Name values to jboss-earlyaccess-
repository.

b. Set the Repository URL value to http://maven.repository.redhat.com/earlyaccess/all/.

c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK

CHAPTER 2. MAVEN GUIDE

49

Figure 2.4. Add Maven Repository - JBoss Early Access

5. Review the repositories and click Finish.

Development Guide

50

Figure 2.5. Review Maven Repositories

6. You are prompted with the message "Are you sure you want to update the file
'MAVEN_HOME/settings.xml'?". Click Yes to update the settings. Click OK to close the dialog.

The JBoss EAP Maven repository is now configured for use with Red Hat JBoss Developer
Studio.

Report a bug

2.3.4. Configure the JBoss EAP 6 Maven Repository Using the Project POM

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

You can modify the Maven settings.

You can configure the project's POM file.

This task shows you how to configure a specific project to use the JBoss EAP 6 Maven Repository by
adding repository information to the project pom.xml. This configuration method supercedes and
overrides the global and user settings configurations.

This method of configuration is generally not recommended. If you decide to configure repositories in

CHAPTER 2. MAVEN GUIDE

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+27042-768102+%5BLatest%5D&comment=Title%3A+Configure+Maven+for+Use+with+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=27042-768102+23+Aug+2015+20%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This method of configuration is generally not recommended. If you decide to configure repositories in
your project POM file, plan carefully and be aware that it can slow down your build and you may even end
up with artifacts that are not from the expected repository.

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can't find what it's looking for, it will try and look
for it in the repository central (defined in the built-in parent POM). To override this
central location, you can add a definition with central so that the default repository
central is now your repository manager as well. This works well for established projects,
but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration. Maven has to
query these external repositories for missing artifacts. This not only slows down your
build, it also causes you to lose control over where your artifacts are coming from and
likely to cause broken builds.

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see:
Section 2.2.2, “Install the JBoss EAP 6 Maven Repository” . The following are examples for
each of the installation options:

File System

file:///path/to/repo/jboss-eap-6.x-maven-repository

Apache Web Server

http://intranet.acme.com/jboss-eap-6.x-maven-repository/

Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

1. Open your project's pom.xml file in a text editor.

2. Add the following repository configuration. If there is already a <repositories> configuration in
the file, then add the <repository> element to it. Be sure to change the <url> to the actual
repository location.

<repositories>
 <repository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>file:///path/to/repo/jboss-eap-6.x.0-maven-repository/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>

Development Guide

52

3. Add the following plug-in repository configuration. If there is already a <pluginRepositories>
configuration in the file, then add the <pluginRepository> element to it.

Report a bug

2.3.5. Manage Project Dependencies

This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise
Application Platform 6.

A BOM is a Maven pom.xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupId:artifactId:version (GAV) to the dependency management
section of the project pom.xml file and specifying the <scope>import</scope> and
<type>pom</type> element values.

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

Supported Maven Artifacts
As part of the product build process, all runtime components of JBoss EAP are built from source in a
controlled environment. This helps to ensure that the binary artifacts do not contain any malicious code,
and that they can be supported for the life of the product. These artifacts can be easily identified by the
-redhat version qualifier, for example 1.0.0-redhat-1.

Adding a supported artifact to the build configuration pom.xml file ensures that the build is using the
correct binary artifact for local building and testing. Note that an artifact with a -redhat version is not
necessarily part of the supported public API, and may change in future revisions. For information about
the public supported API, see the JavaDoc documentation included in the release.

For example, to use the supported version of hibernate, add something similar to the following to your
build configuration.

 </snapshots>
 </repository>
</repositories>

<pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>file:///path/to/repo/jboss-eap-6.x.0-maven-repository/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

CHAPTER 2. MAVEN GUIDE

53

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4606-737541+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Project+POM%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4606-737541+21+Jan+2015+03%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Notice that the above example includes a value for the <version/> field. However, it is recommended to
use Maven dependency management for configuring dependency versions.

Dependency Management
Maven includes a mechanism for managing the versions of direct and transitive dependencies
throughout the build. For general information about using dependency management, see the Apache
Maven Project Introduction to the Dependency Mechanism .

Using one or more supported JBoss dependencies directly in your build does not guarantee that all
transitive dependencies of the build will be fully supported JBoss artifacts. It is common for Maven
builds to use a mix of artifact sources from the Maven central repository, the JBoss.org Maven
repository, and other Maven repositories.

Included with the JBoss EAP Maven repository is a dependency management BOM, which specifies all
supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will
prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In
other words, transitive dependencies will be managed to the correct supported dependency version
where applicable. The version of this BOM matches the version of the JBoss EAP release.

JBoss JavaEE Specs Bom
The jboss-javaee-6.0 BOM contains the Java EE Specification API JARs used by JBoss EAP.

To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and
Servlet API JARs needed to build and deploy the application.

The following example uses the 3.0.2.Final-redhat-x version of the jboss-javaee-6.0 BOM.

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>4.2.16.Final-redhat-1</version>
 <scope>provided</scope>
</dependency>

<dependencyManagement>
 <dependencies>
 ...
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>eap6-supported-artifacts</artifactId>
 <version>6.4.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-6.0</artifactId>
 <version>3.0.2.Final-redhat-x</version>
 <type>pom</type>

Development Guide

54

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

JBoss EAP BOMs and Quickstarts
The JBoss BOMs are located in the jboss-bom project at https://github.com/jboss-developer/jboss-
eap-boms.

The quickstarts provide the primary use case examples for the Maven repository. The following table
lists the Maven BOMs used by the quickstarts.

Table 2.1. JBoss BOMs Used by the Quickstarts

Maven artifactId Description

jboss-javaee-6.0-with-hibernate This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate ORM, Hibernate Search and
Hibernate Validator. It also provides tool projects such as Hibernate JPA
Model Gen and Hibernate Validator Annotation Processor.

jboss-javaee-6.0-with-
hibernate3

This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate 3 ORM, Hibernate Entity
Manager (JPA 1.0) and Hibernate Validator.

jboss-javaee-6.0-with-logging This BOM builds on the Java EE full profile BOM, adding the JBoss
Logging Tools and Log4j framework.

jboss-javaee-6.0-with-osgi This BOM builds on the Java EE full profile BOM, adding OSGI.

jboss-javaee-6.0-with-resteasy This BOM builds on the Java EE full profile BOM, adding RESTEasy

jboss-javaee-6.0-with-security This BOM builds on the Java EE full profile BOM, adding Picketlink.

jboss-javaee-6.0-with-tools This BOM builds on the Java EE full profile BOM, adding Arquillian to the
mix. It also provides a version of JUnit and TestNG recommended for
use with Arquillian.

 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet</groupId>
 <artifactId>jboss-servlet-api_3.0_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet.jsp</groupId>
 <artifactId>jboss-jsp-api_2.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

CHAPTER 2. MAVEN GUIDE

55

https://github.com/jboss-developer/jboss-eap-boms

jboss-javaee-6.0-with-
transactions

This BOM includes a world class transaction manager. Use the JBossTS
APIs to access its full capabilities.

Maven artifactId Description

The following example uses the 6.4.0.GA version of the jboss-javaee-6.0-with-hibernate BOM.

JBoss Client BOMs
The JBoss EAP server build includes two client BOMs: jboss-as-ejb-client-bom and jboss-as-jms-
client-bom.

The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The following example uses the 7.4.0.Final-redhat-x version of the jboss-as-ejb-client-bom client
BOM.

This example uses the 7.4.0.Final-redhat-x version of the jboss-as-jms-client-bom client BOM.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom.eap</groupId>
 <artifactId>jboss-javaee-6.0-with-hibernate</artifactId>
 <version>6.4.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

<dependencies>
 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-ejb-client-bom</artifactId>
 <version>7.5.0.Final-redhat-x</version>
 <type>pom</type>
 </dependency>
 ...l
</dependencies>

<dependencies>

Development Guide

56

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

Report a bug

2.4. UPGRADE THE MAVEN REPOSITORY

2.4.1. Apply a Patch to the Local Maven Repository

Summary

A Maven repository stores Java libraries, plug-ins, and other artifacts required to build and deploy
applications to JBoss EAP. The JBoss EAP repository is available online or as a downloaded ZIP file. If
you use the publicly hosted repository, updates are applied automatically for you. However, if you
download and install the Maven repository locally, you are responsible for applying any updates.
Whenever a patch is available for JBoss EAP, a corresponding patch is provided for the JBoss EAP
Maven repository. This patch is available in the form of an incremental ZIP file that is unzipped into the
existing local repository. The ZIP file contains new JAR and POM files. It does not overwrite any existing
JARs nor does it remove JARs, so there is no rollback requirement.

For more information about the JBoss EAP patching process, see the chapter entitled Patching and
Upgrading JBoss EAP 6 in the Installation Guide for JBoss Enterprise Application Platform 6 located on
the Customer Portal at https://access.redhat.com/documentation/en-
us/red_hat_jboss_enterprise_application_platform/?version=6.4.

This task describes how to apply Maven updates to your locally installed Maven repository using the
unzip command.

Prerequisites

Valid access and subscription to the Red Hat Customer Portal.

The Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository ZIP file,
downloaded and installed locally.

Procedure 2.11. Update the Maven Repository

1. Open a browser and log into https://access.redhat.com.

2. Select Downloads from the menu at the top of the page.

3. Find Red Hat JBoss Enterprise Application Platform in the list and click on it.

4. Select the correct version of JBoss EAP from the Version drop-down menu that appears on
this screen, then click on Patches.

5. Find Red Hat JBoss Enterprise Application Platform <VERSION> CPx Incremental Maven

 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-jms-client-bom</artifactId>
 <version>7.4.0.Final-redhat-x</version>
 <type>pom</type>
 </dependency>
 ...
</dependencies>

CHAPTER 2. MAVEN GUIDE

57

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+22363-773459+%5BLatest%5D&comment=Title%3A+Manage+Project+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22363-773459+14+Dec+2015+14%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/?version=6.4
https://access.redhat.com

5. Find Red Hat JBoss Enterprise Application Platform <VERSION> CPx Incremental Maven
Repository in the list and click Download.

6. You are prompted to save the ZIP file to a directory of your choice. Choose a directory and save
the file.

7. Locate the path to JBoss EAP Maven repository, referred to in the commands below as
EAP_MAVEN_REPOSITORY_PATH, for your operating system. For more information about how
to install the Maven repository on the local file system, see Section 2.2.3, “Install the JBoss EAP
6 Maven Repository Locally”.

8. Unzip the Maven patch file directly into the installation directory of the JBoss EAP
<VERSION>.x Maven repository.

For Linux, open a terminal and type the following command:

[standalone@localhost:9999 /] unzip -o jboss-eap-<VERSION>.x-incremental-maven-
repository.zip -d EAP_MAVEN_REPOSITORY_PATH

For Windows, use the Windows extraction utility to extract the ZIP file into the root of the
EAP_MAVEN_REPOSITORY_PATH directory.

Result

The locally installed Maven repository is updated with the latest patch.

Report a bug

Development Guide

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28282-781567+%5BLatest%5D&comment=Title%3A+Apply+a+Patch+to+the+Local+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28282-781567+13+Nov+2017+14%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of hierarchical
class loaders. Developers have fine-grained control of the classes available to their applications, and can
configure a deployment to ignore classes provided by the application server in favor of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module can
define dependencies on other modules in order to have the classes from that module added to its own
class path. Because each deployed JAR and WAR file is treated as a module, developers can control the
contents of their application's class path by adding module configuration to their application.

Report a bug

3.1.2. Class Loading

Class Loading is the mechanism by which Java classes and resources are loaded into the Java Runtime
Environment.

Report a bug

3.1.3. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged.

Static Modules

Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each
sub-directory represents one module and defines a main/ subdirectory that contains a configuration
file (module.xml) and any required JAR files. The name of the module is defined in the module.xml
file. All the application server provided APIs are provided as static modules, including the Java EE
APIs as well as other APIs such as JBoss Logging.

Example 3.1. Example module.xml file

The module name, com.mysql, should match the directory structure for the module, excluding
the main/ subdirectory name.

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.15.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

CHAPTER 3. CLASS LOADING AND MODULES

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4352-593309+%5BLatest%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-593309+24+Feb+2014+07%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4549-591667+%5BLatest%5D&comment=Title%3A+Class+Loading%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4549-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The modules provided in JBoss EAP distributions are located in a system directory within the
EAP_HOME/modules directory. This keeps them separate from any modules provided by third
parties.

Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install
their modules within the system directory.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third-party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using
a one directory per module layout. This ensures that custom versions of modules that already exist in
the system directory are loaded instead of the shipped versions. In this way, user provided modules
will take precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss
EAP searches for modules, then the product will look for a system subdirectory structure within one
of the locations specified. A system structure must exist somewhere in the locations specified with
JBOSS_MODULEPATH.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment
(or subdeployment in an EAR). The name of a dynamic module is derived from the name of the
deployed archive. Because deployments are loaded as modules, they can configure dependencies
and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that has
explicit or implicit dependencies.

Report a bug

3.1.4. Module Dependencies

A module dependency is a declaration that one module requires the classes of another module in order
to function. Modules can declare dependencies on any number of other modules. When the application
server loads a module, the modular class loader parses the dependencies of that module and adds the
classes from each dependency to its class path. If a specified dependency cannot be found, the module
will fail to load.

Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies
to access the APIs provided by JBoss EAP 6.

There are two types of dependencies: explicit and implicit.

Explicit Dependencies

Explicit dependencies are declared by the developer in the configuration file. Static modules can declare
dependencies in the module.xml file. Dynamic modules can have dependencies declared in the
MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.

Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause

Development Guide

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4360-766898+%5BLatest%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-766898+05+Aug+2015+14%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause
a module to fail to load. However if the dependency becomes available later it will NOT be added to the
module's class path. Dependencies must be available when the module is loaded.

Implicit Dependencies

Implicit dependencies are added automatically by the application server when certain conditions or
meta-data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of
modules that are added by detection of implicit dependencies in deployments.

Deployments can also be configured to exclude specific implicit dependencies. This is done with the
jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an
application bundles a specific version of a library that the application server will attempt to add as an
implicit dependency.

A module's class path contains only its own classes and that of its immediate dependencies. A module is
not able to access the classes of the dependencies of one of its dependencies. However a module can
specify that an explicit dependency is exported. An exported dependency is provided to any module
that depends on the module that exports it.

Example 3.2. Module dependencies

Module A depends on Module B and Module B depends on Module C. Module A can access the
classes of Module B, and Module B can access the classes of Module C. Module A cannot access the
classes of Module C unless:

Module A declares an explicit dependency on Module C, or

Module B exports its dependency on Module C.

Report a bug

3.1.5. Class Loading in Deployments

For the purposes of class loading, all deployments are treated as modules by JBoss EAP 6. These are
called dynamic modules. Class loading behavior varies according to the deployment type.

WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/lib directory are
treated the same as classes in WEB-INF/classes directory. All classes packaged in the WAR will be
loaded with the same class loader.

EAR Deployment

EAR deployments are made up of more than one module. The definition of these modules follows
these rules:

1. The lib/ directory of the EAR is a single module called the parent module.

2. Each WAR deployment within the EAR is a single module.

3. Each EJB JAR deployment within the EAR is a single module.

Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic
dependency on the parent module. However they do not have automatic dependencies on each
other. This is called subdeployment isolation and can be disabled on a per deployment basis or for

CHAPTER 3. CLASS LOADING AND MODULES

61

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5825-767307+%5BLatest%5D&comment=Title%3A+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5825-767307+12+Aug+2015+21%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

the entire application server.

Explicit dependencies between subdeployment modules can be added by the same means as any
other module.

Report a bug

3.1.6. Class Loading Precedence

The JBoss EAP 6 modular class loader uses a precedence system to prevent class loading conflicts.

During deployment a complete list of packages and classes is created for each deployment and each of
its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple
copies of the same classes and packages within the deployments class path from conflicting with each
other.

The class loader loads classes in the following order, from highest to lowest:

1. Implicit dependencies.

These are the dependencies that are added automatically by JBoss EAP 6, such as the JAVA EE
APIs. These dependencies have the highest class loader precedence because they contain
common functionality and APIs that are supplied by JBoss EAP 6.

Refer to Section 3.9.1, “Implicit Module Dependencies” for complete details about each implicit
dependency.

2. Explicit dependencies.

These are dependencies that are manually added in the application configuration. This can be
done using the application's MANIFEST.MF file or the new optional JBoss deployment
descriptor jboss-deployment-structure.xml file.

Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” to learn how to add
explicit dependencies.

3. Local resources.

Class files packaged up inside the deployment itself, e.g. from the WEB-INF/classes or WEB-
INF/lib directories of a WAR file.

4. Inter-deployment dependencies.

These are dependencies on other deployments in a EAR deployment. This can include classes in
the lib directory of the EAR or classes defined in other EJB jars.

Report a bug

3.1.7. Dynamic Module Naming

All deployments are loaded as modules by JBoss EAP 6 and named according to the following
conventions.

Deployments of WAR and JAR files are named with the following format:

Development Guide

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4550-764998+%5BLatest%5D&comment=Title%3A+Class+Loading+in+Deployments%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4550-764998+14+Jul+2015+11%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4561-591666+%5BLatest%5D&comment=Title%3A+Class+Loading+Precedence%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4561-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 deployment.DEPLOYMENT_NAME

For example, inventory.war and store.jar will have the module names of
deployment.inventory.war and deployment.store.jar respectively.

Subdeployments within an Enterprise Archive are named with the following format:

 deployment.EAR_NAME.SUBDEPLOYMENT_NAME

For example, the subdeployment of reports.war within the enterprise archive accounts.ear will
have the module name of deployment.accounts.ear.reports.war.

Report a bug

3.1.8. jboss-deployment-structure.xml

jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-deployment-
structure-1_2.xsd

Report a bug

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT

This task shows how to add an explicit dependency to an application. Explicit module dependencies can
be added to applications to add the classes of those modules to the class path of the application at
deployment.

Some dependencies are automatically added to deployments by JBoss EAP 6. See Section 3.9.1,
“Implicit Module Dependencies” for details.

Prerequisites

1. You must already have a working software project that you want to add a module dependency
to.

2. You must know the name of the module being added as a dependency. See Section 3.9.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment then see Section 3.1.7, “Dynamic Module Naming” to determine the module
name.

Dependencies can be configured using two different methods:

1. Adding entries to the MANIFEST.MF file of the deployment.

2. Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Procedure 3.1. Add dependency configuration to MANIFEST.MF

Maven projects can be configured to create the required dependency entries in the MANIFEST.MF file.
See Section 3.3, “Generate MANIFEST.MF entries using Maven” .

1. Add MANIFEST.MF file

If the project has no MANIFEST.MF file, create a file called MANIFEST.MF. For a web

CHAPTER 3. CLASS LOADING AND MODULES

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4562-759221+%5BLatest%5D&comment=Title%3A+Dynamic+Module+Naming%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4562-759221+25+May+2015+04%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4611-591668+%5BLatest%5D&comment=Title%3A+jboss-deployment-structure.xml%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4611-591668+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

If the project has no MANIFEST.MF file, create a file called MANIFEST.MF. For a web
application (WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to
the META-INF directory.

2. Add dependencies entry
Add a dependencies entry to the MANIFEST.MF file with a comma-separated list of
dependency module names.

3. Optional: Make a dependency optional
A dependency can be made optional by appending optional to the module name in the
dependency entry.

4. Optional: Export a dependency
A dependency can be exported by appending export to the module name in the dependency
entry.

5. Optional: Dependencies using annotations
This flag is needed when the module dependency contains annotations which need to be
processed during annotation scanning, such as when declaring EJB Interceptors. If this is not
done, an EJB interceptor declared in a module cannot be used in a deployment. There are other
situations involving annotation scanning when this is needed too.

Using this flag requires that the module contain a Jandex index. Instructions for creating and
using a Jandex index are included at the end of this topic.

Procedure 3.2. Add dependency configuration to jboss-deployment-structure.xml

1. Add jboss-deployment-structure.xml
If the application has no jboss-deployment-structure.xml file then create a new file called
jboss-deployment-structure.xml and add it to the project. This file is an XML file with the root
element of <jboss-deployment-structure>.

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Add dependencies section
Create a <deployment> element within the document root and a <dependencies> element
within that.

3. Add module elements
Within the dependencies node, add a module element for each module dependency. Set the
name attribute to the name of the module.

Dependencies: org.javassist, org.apache.velocity

Dependencies: org.javassist optional, org.apache.velocity

Dependencies: org.javassist, org.apache.velocity export

<jboss-deployment-structure>

</jboss-deployment-structure>

Development Guide

64

4. Optional: Make a dependency optional
A dependency can be made optional by adding the optional attribute to the module entry with
the value of true. The default value for this attribute is false.

5. Optional: Export a dependency
A dependency can be exported by adding the export attribute to the module entry with the
value of true. The default value for this attribute is false.

Example 3.3. jboss-deployment-structure.xml with two dependencies

JBoss EAP 6 will add the classes from the specified modules to the class path of the application when it
is deployed.

Creating a Jandex index

The annotations flag requires that the module contain a Jandex index. You can create a new "index
JAR" to add to the module. Use the Jandex JAR to build the index, and then insert it into a new JAR file:

Procedure 3.3.

1. Create the index

2. Create a temporary working space

3. Move the index file to the working directory

<module name="org.javassist" />

<module name="org.javassist" optional="true" />

<module name="org.javassist" export="true" />

<jboss-deployment-structure>

 <deployment>

 <dependencies>
 <module name="org.javassist" />
 <module name="org.apache.velocity" export="true" />
 </dependencies>

 </deployment>

</jboss-deployment-structure>

java -jar EAP_HOME/modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar
$JAR_FILE

mkdir /tmp/META-INF

mv $JAR_FILE.ifx /tmp/META-INF/jandex.idx

CHAPTER 3. CLASS LOADING AND MODULES

65

4. Option 1: Include the index in a new JAR file

Then place the JAR in the module directory and edit module.xml to add it to the resource
roots.

Option 2: Add the index to an existing JAR

5. Tell the module import to utilize the annotation index
Tell the module import to utilize the annotation index, so that annotation scanning can find the
annotations.

Choose one of the methods below based on your situation:

If you are adding a module dependency using MANIFEST.MF, add annotations after the
module name.

For example change:

to

If you are adding a module dependency using jboss-deployment-structure.xml add
annotations="true" on the module dependency.

Report a bug

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects that use the Maven JAR, EJB or WAR packaging plug-ins can generate a
MANIFEST.MF file with a Dependencies entry. This does not automatically generate the list of
dependencies, this process only creates the MANIFEST.MF file with the details specified in the
pom.xml.

Prerequisites

1. You must already have a working Maven project.

2. The Maven project must be using one of the JAR, EJB, or WAR plug-ins (maven-jar-plugin,
maven-ejb-plugin, maven-war-plugin).

3. You must know the name of the project's module dependencies. Refer to Section 3.9.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment , then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

jar cf index.jar -C /tmp META-INF/jandex.idx

java -jar EAP_HOME/modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar -m
$JAR_FILE

Dependencies: test.module, other.module

Dependencies: test.module annotations, other.module

Development Guide

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4551-766904+%5BLatest%5D&comment=Title%3A+Add+an+Explicit+Module+Dependency+to+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4551-766904+05+Aug+2015+15%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 3.4. Generate a MANIFEST.MF file containing module dependencies

1. Add Configuration
Add the following configuration to the packaging plug-in configuration in the project's pom.xml
file.

2. List Dependencies
Add the list of the module dependencies in the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST.MF. Refer to Section 3.2, “Add an
Explicit Module Dependency to a Deployment” for details about that format.

The optional and export attributes can also be used here.

3. Build the Project
Build the project using the Maven assembly goal.

[Localhost]$ mvn assembly:assembly

When the project is built using the assembly goal, the final archive contains a MANIFEST.MF file with
the specified module dependencies.

Example 3.4. Configured Module Dependencies in pom.xml

The example here shows the WAR plug-in but it also works with the JAR and EJB plug-ins (maven-
jar-plugin and maven-ejb-plugin).

<configuration>
 <archive>
 <manifestEntries>
 <Dependencies></Dependencies>
 </manifestEntries>
 </archive>
</configuration>

<Dependencies>org.javassist, org.apache.velocity</Dependencies>

<Dependencies>org.javassist optional, org.apache.velocity export</Dependencies>

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Dependencies>org.javassist, org.apache.velocity</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
</plugins>

CHAPTER 3. CLASS LOADING AND MODULES

67

Report a bug

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED

This task describes how to configure your application to exclude a list of module dependencies.

You can configure a deployable application to prevent implicit dependencies from being loaded. This is
commonly done when the application includes a different version of a library or framework than the one
that will be provided by the application server as an implicit dependency.

Prerequisites

1. You must already have a working software project that you want to exclude an implicit
dependency from.

2. You must know the name of the module to exclude. Refer to Section 3.9.1, “Implicit Module
Dependencies” for a list of implicit dependencies and their conditions.

Procedure 3.5. Add dependency exclusion configuration to jboss-deployment-structure.xml

1. If the application has no jboss-deployment-structure.xml file, create a new file called jboss-
deployment-structure.xml and add it to the project. This file is an XML file with the root
element of <jboss-deployment-structure>.

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a <deployment> element within the document root and an <exclusions> element
within that.

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

Example 3.5. Excluding two modules

<jboss-deployment-structure>

</jboss-deployment-structure>

<deployment>
 <exclusions>

 </exclusions>
</deployment>

<module name="org.javassist" />

<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="org.javassist" />
 <module name="org.dom4j" />

Development Guide

68

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5828-766171+%5BLatest%5D&comment=Title%3A+Generate+MANIFEST.MF+entries+using+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5828-766171+28+Jul+2015+11%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

Summary

This topic covers the steps required to exclude a subsystem from a deployment. This is done by editing
the jboss-deployment-structure.xml configuration file. Excluding a subsystem provides the same
effect as removing the subsystem, but it applies only to a single deployment.

Procedure 3.6. Exclude a Subsystem

1. Open the jboss-deployment-structure.xml file in a text editor.

2. Add the following XML inside the <deployment> tags:

<exclude-subsystems>
 <subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

3. Save the jboss-deployment-structure.xml file.

Result

The subsystem has been successfully excluded. The subsystem's deployment unit processors will no
longer run on the deployment.

Example 3.6. Example jboss-deployment-structure.xml file.

 </exclusions>
 </deployment>
</jboss-deployment-structure>

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <deployment>
 <exclude-subsystems>
 <subsystem name="jaxrs" />
 </exclude-subsystems>
 <exclusions>
 <module name="org.javassist" />
 </exclusions>
 <dependencies>
 <module name="deployment.javassist.proxy" />
 <module name="deployment.myjavassist" />
 <module name="myservicemodule" services="import"/>
 </dependencies>
 <resources>
 <resource-root path="my-library.jar" />
 </resources>
 </deployment>
 <sub-deployment name="myapp.war">
 <dependencies>
 <module name="deployment.myear.ear.myejbjar.jar" />

CHAPTER 3. CLASS LOADING AND MODULES

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4552-591667+%5BLatest%5D&comment=Title%3A+Prevent+a+Module+Being+Implicitly+Loaded%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4552-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A
DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment

You can programmatically find or load classes and resources in your application code. The method you
choose will depend on a number of factors. This topic describes the methods available and provides
guidelines for when to use them.

Load a Class Using the Class.forName() Method

You can use the Class.forName() method to programmatically load and initialize classes. This
method has two signatures.

Class.forName(String className)

This signature takes only one parameter, the name of the class you need to load. With this method
signature, the class is loaded by the class loader of the current class and initializes the newly
loaded class by default.

Class.forName(String className, boolean initialize, ClassLoader loader)

This signature expects three parameters: the class name, a boolean value that specifies whether
to initialize the class, and the ClassLoader that should load the class.

The three argument signature is the recommended way to programmatically load a class. This
signature allows you to control whether you want the target class to be initialized upon load. It is also
more efficient to obtain and provide the class loader because the JVM does not need to examine

 </dependencies>
 <local-last value="true" />
 </sub-deployment>
 <module name="deployment.myjavassist" >
 <resources>
 <resource-root path="javassist.jar" >
 <filter>
 <exclude path="javassist/util/proxy" />
 </filter>
 </resource-root>
 </resources>
 </module>
 <module name="deployment.javassist.proxy" >
 <dependencies>
 <module name="org.javassist" >
 <imports>
 <include path="javassist/util/proxy" />
 <exclude path="/**" />
 </imports>
 </module>
 </dependencies>
 </module>
</jboss-deployment-structure>

Development Guide

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11440-733509+%5BLatest%5D&comment=Title%3A+Exclude+a+Subsystem+from+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11440-733509+18+Dec+2014+05%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

the call stack to determine which class loader to use. Assuming the class containing the code is
named CurrentClass, you can obtain the class's class loader using
CurrentClass.class.getClassLoader() method.

The following example provides the class loader to load and initialize the TargetClass class:

Example 3.7. Provide a class loader to load and initialize the TargetClass.

Find All Resources with a Given Name

If you know the name and path of a resource, the best way to load it directly is to use the standard
Java development kit Class or ClassLoader API.

Load a Single Resource

To load a single resource located in the same directory as your class or another class in your
deployment, you can use the Class.getResourceAsStream() method.

Example 3.8. Load a single resource in your deployment.

Load All Instances of a Single Resource

To load all instances of a single resource that are visible to your deployment's class loader, use
the Class.getClassLoader().getResources(String resourceName) method, where
resourceName is the fully qualified path of the resource. This method returns an Enumeration of
all URL objects for resources accessible by the class loader with the given name. You can then
iterate through the array of URLs to open each stream using the openStream() method.

Example 3.9. Load all instances of a resource and iterate through the result.

Class<?> targetClass = Class.forName("com.myorg.util.TargetClass", true,
CurrentClass.class.getClassLoader());

InputStream inputStream =
CurrentClass.class.getResourceAsStream("targetResourceName");

Enumeration<URL> urls =
CurrentClass.class.getClassLoader().getResources("full/path/to/resource");
while (urls.hasMoreElements()) {
 URL url = urls.nextElement();
 InputStream inputStream = null;
 try {
 inputStream = url.openStream();
 // Process the inputStream
 ...
 } catch(IOException ioException) {
 // Handle the error
 } finally {
 if (inputStream != null) {
 try {
 inputStream.close();
 } catch (Exception e) {
 // ignore
 }

CHAPTER 3. CLASS LOADING AND MODULES

71

NOTE

Because the URL instances are loaded from local storage, it is not necessary to use
the openConnection() or other related methods. Streams are much simpler to use
and minimize the complexity of the code.

Load a Class File From the Class Loader

If a class has already been loaded, you can load the class file that corresponds to that class using the
following syntax:

Example 3.10. Load a class file for a class that has been loaded.

If the class is not yet loaded, you must use the class loader and translate the path:

Example 3.11. Load a class file for a class that has not been loaded.

Report a bug

3.6.2. Programmatically Iterate Resources in a Deployment

The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc for
the JBoss Modules API is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use
these APIs, you must add the following dependency to the MANIFEST.MF:

It is important to note that while these APIs provide increased flexibility, they will also run much more
slowly than a direct path lookup.

This topic describes some of the ways you can programmatically iterate through resources in your
application code.

List Resources Within a Deployment and Within All Imports

There are times when it is not possible to look up resources by the exact path. For example, the exact
path may not be known or you may need to examine more than one file in a given path. In this case,
the JBoss Modules library provides several APIs for iterating all deployment resources. You can

 }
 }
}

InputStream inputStream =
CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleName() + ".class");

String className = "com.myorg.util.TargetClass"
InputStream inputStream =
CurrentClass.class.getClassLoader().getResourceAsStream(className.replace('.', '/') +
".class");

Dependencies: org.jboss.modules

Development Guide

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+24376-764600+%5BLatest%5D&comment=Title%3A+Programmatically+Load+Classes+and+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24376-764600+12+Jul+2015+20%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.jboss.org/jbossmodules/1.3.0.Final/api/

iterate through resources in a deployment by utilizing one of two methods.

Iterate All Resources Found in a Single Module

The ModuleClassLoader.iterateResources() method iterates all the resources within this
module class loader. This method takes two arguments: the starting directory name to search and
a boolean that specifies whether it should recurse into subdirectories.

The following example demonstrates how to obtain the ModuleClassLoader and obtain the
iterator for resources in the bin/ directory, recursing into subdirectories.

Example 3.12. Find resources in the "bin" directory, recursing into subdirectories.

The resultant iterator may be used to examine each matching resource and query its name and
size (if available), open a readable stream, or acquire a URL for the resource.

Iterate All Resources Found in a Single Module and Imported Resources

The Module.iterateResources() method iterates all the resources within this module class loader,
including the resources that are imported into the module. This method returns a much larger set
than the previous method. This method requires an argument, which is a filter that narrows the
result to a specific pattern. Alternatively, PathFilters.acceptAll() can be supplied to return the
entire set.

Example 3.13. Find the entire set of resources in this module, including imports.

Find All Resources That Match a Pattern

If you need to find only specific resources within your deployment or within your deployment's full
import set, you need to filter the resource iteration. The JBoss Modules filtering APIs give you
several tools to accomplish this.

Examine the Full Set of Dependencies

If you need to examine the full set of dependencies, you can use the Module.iterateResources()
method's PathFilter parameter to check the name of each resource for a match.

Examine Deployment Dependencies

If you need to look only within the deployment, use the ModuleClassLoader.iterateResources()
method. However, you must use additional methods to filter the resultant iterator. The
PathFilters.filtered() method can provide a filtered view of a resource iterator this case. The
PathFilters class includes many static methods to create and compose filters that perform
various functions, including finding child paths or exact matches, or matching an Ant-style "glob"
pattern.

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources = moduleClassLoader.iterateResources("bin",true);

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources = module.iterateResources(PathFilters.acceptAll());

CHAPTER 3. CLASS LOADING AND MODULES

73

Additional Code Examples For Filtering Resouces

The following examples demonstrate how to filter resources based on different criteria.

Example 3.14. Find all files named "messages.properties" in your deployment.

Example 3.15. Find all files named "messages.properties" in your deployment and imports.

Example 3.16. Find all files inside any directory named "my-resources" in your deployment.

Example 3.17. Find all files named "messages" or "errors" in your deployment and imports.

Example 3.18. Find all files in a specific package in your deployment.

Report a bug

3.7. CLASS LOADING AND SUBDEPLOYMENTS

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/messages.properties"),
moduleClassLoader.iterateResources("", true));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.match("**/message.properties));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources = PathFilters.filtered(PathFilters.match("**/my-
resources/**"), moduleClassLoader.iterateResources("", true));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.any(PathFilters.match("**/messages"),
PathFilters.match("**/errors"));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("path/form/of/packagename", false);

Development Guide

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+24377-592557+%5BLatest%5D&comment=Title%3A+Programmatically+Iterate+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24377-592557+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3.7.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR.

The contents of the lib/ directory in the root of the EAR archive is a module. This is called the
parent module.

Each WAR and EJB JAR subdeployment is a module. These modules have the same behavior as
any other module as well as implicit dependencies on the parent module.

Subdeployments have implicit dependencies on the parent module and any other non-WAR
subdeployments.

The implicit dependencies on non-WAR subdeployments occur because JBoss EAP 6 has
subdeployment class loader isolation disabled by default. Dependencies on the parent module persist,
regardless of subdeployment class loader isolation.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another subdeployment
as would be done for any other module.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE 6 specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST.MF file of
each subdeployment.

Report a bug

3.7.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default a subdeployment can access the resources of other subdeployments.

If a subdeployment is not to be allowed to access the resources of other subdeployments, strict
subdeployment isolation can be enabled.

Report a bug

3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR

This task shows you how to enable subdeployment class loader isolation in an EAR deployment by using
a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled it is not possible to add a
WAR deployment as a dependency.

CHAPTER 3. CLASS LOADING AND MODULES

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4354-766002+%5BLatest%5D&comment=Title%3A+Modules+and+Class+Loading+in+Enterprise+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4354-766002+27+Jul+2015+00%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4565-765768+%5BLatest%5D&comment=Title%3A+Subdeployment+Class+Loader+Isolation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4565-765768+22+Jul+2015+22%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

1. Add the deployment descriptor file
Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF
directory of the EAR if it doesn't already exist and add the following content:

2. Add the <ear-subdeployments-isolated> element
Add the <ear-subdeployments-isolated> element to the jboss-deployment-structure.xml
file if it doesn't already exist with the content of true.

Result:

Subdeployment class loader isolation will now be enabled for this EAR deployment. This means that the
subdeployments of the EAR will not have automatic dependencies on each of the non-WAR
subdeployments.

Report a bug

3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM
MODULE

Summary

If you have multiple applications that use common Tag Library Descriptors (TLDs), it may be useful to
separate the TLDs from the applications so that they are located in one central and unique location. This
enables easier additions and updates to TLDs without necessarily having to update each individual
application that uses them.

This can be done by creating a custom JBoss EAP 6 module that contains the TLD JARs, and declaring
a dependency on that module in the applications.

Prerequisites

At least one JAR containing TLDs. Ensure that the TLDs are packed in META-INF.

Procedure 3.7. Deploy TLDs in a Custom Module

1. Using the Management CLI, connect to your JBoss EAP 6 instance and execute the following
command to create the custom module containing the TLD JAR:

module add --name=MyTagLibs --resources=/path/to/TLDarchive.jar

If the TLDs are packaged with classes that require dependencies, use the --
dependencies=DEPENDENCY option to ensure that you specify those dependencies when
creating the custom module.

When creating the module, you can specify multiple JAR resources by separating each one with
:. For example, --resources=/path/to/one.jar:/path/to/two.jar

2. In your applications, declare a dependency on the new MyTagLibs custom module using one of
the methods described in Section 3.2, “Add an Explicit Module Dependency to a Deployment” .

<jboss-deployment-structure>

</jboss-deployment-structure>

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

Development Guide

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4566-765773+%5BLatest%5D&comment=Title%3A+Enable+Subdeployment+Class+Loader+Isolation+Within+a+EAR%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4566-765773+22+Jul+2015+23%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

IMPORTANT

Ensure that you also import META-INF when declaring the dependency. For
example, for MANIFEST.MF:

Or, for jboss-deployment-structure.xml, use the meta-inf attribute.

Result

In your applications you can use TLDs that are contained in the new custom module.

Report a bug

3.9. REFERENCE

3.9.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies and
the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsystem
Responsibl
e for
Adding the
Dependenc
y

Dependencies That Are
Always Added

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the
Dependency

Core Server
javax.api

ibm.jdk

sun.jdk

org.jboss.vfs

EE
subsystem javaee.api

org.hibernate.valida
tor

org.jboss.invocation

org.jboss.as.ee

Dependencies: com.MyTagLibs meta-inf

CHAPTER 3. CLASS LOADING AND MODULES

77

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+41813-724992+%5BLatest%5D&comment=Title%3A+Deploy+Tag+Library+Descriptors+%28TLDs%29+in+a+Custom+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41813-724992+10+Nov+2014+20%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

EJB 3
subsystem javax.ejb.api

org.jboss.ejb-client

org.jboss.iiop-client

org.jboss.as.ejb3

org.jboss.as.jacorb
The presence of an ejb-
jar.xml file within a valid
location in the deployment,
as described in the Java EE
6 specification.

The presence of annotation-
based EJBs, for example:
@Stateless, @Stateful,
@MessageDriven

JAX-RS
(RESTEasy)
subsystem

javax.xml.bind.api

javax.ws.rs.api

org.jboss.resteasy.r
esteasy-atom-
provider

org.jboss.resteasy.r
esteasy-
hibernatevalidator-
provider

org.jboss.resteasy.r
esteasy-jaxrs

org.jboss.resteasy.r
esteasy-jaxb-
provider

org.jboss.resteasy.r
esteasy-jackson-
provider

org.jboss.resteasy.r
esteasy-jettison-
provider

org.jboss.resteasy.r
esteasy-jsapi

org.jboss.resteasy.r
esteasy-multipart-
provider

org.jboss.resteasy.r
esteasy-yaml-
provider

org.codehaus.jacks
on.jackson-core-asl

The presence of JAX-RS
annotations in the
deployment.

Subsystem
Responsibl
e for
Adding the
Dependenc
y

Dependencies That Are
Always Added

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the
Dependency

Development Guide

78

JCA
subsystem javax.resource.api javax.jms.api

javax.validation.api

org.jboss.ironjacam
ar.api

org.jboss.ironjacam
ar.impl

org.hibernate.valida
tor

The deployment of a
resource adapter (RAR)
archive.

JPA
(Hibernate)
subsystem

javax.persistence.a
pi

javaee.api

org.jboss.as.jpa

org.jboss.as.jpa.spi

org.javassist

org.jboss.as.jpa.hibe
rnate:3 /
org.jboss.as.jpa.hibe
rnate3.HibernatePe
rsistenceProviderA
daptor

org.hibernate.enver
s

org.jboss.as.naming

org.jboss.jandex

The presence of an
@PersistenceUnit or
@PersistenceContext
annotation, or a
<persistence-unit-ref> or
<persistence-context-
ref> element in a
deployment descriptor.

JBoss EAP 6 maps
persistence provider names
to module names. If you
name a specific provider in
the persistence.xml file, a
dependency is added for the
appropriate module. If this
not the desired behavior,
you can exclude it using a
jboss-deployment-
structure.xml file.

Logging
subsystem org.jboss.logging

org.apache.log4j

org.apache.commo
ns.logging

org.slf4j

org.jboss.logging.jul
-to-slf4j-stub

These dependencies are
always added unless the
add-logging-api-
dependencies attribute is
set to false.

Subsystem
Responsibl
e for
Adding the
Dependenc
y

Dependencies That Are
Always Added

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

79

SAR
subsystem org.jboss.modules

org.jboss.as.system
-jmx

org.jboss.common-
beans

The deployment of a SAR
archive.

Security
subsystem org.picketbox

org.jboss.as.security

javax.security.jacc.a
pi

javax.security.auth.
message.api

Web
subsystem javax.servlet.api

javax.servlet.jsp.api

javax.websocket.api

javax.servlet.jstl.api

org.jboss.as.web

The deployment of a WAR
archive. JavaServer Faces
(JSF) is added only if it is
used.

Web
Services
subsystem

javax.jws.api

javax.xml.soap.api

javax.xml.ws.api

org.jboss.ws.api

org.jboss.ws.spi

If it is not application client
type, then it will add the
conditional dependencies

Subsystem
Responsibl
e for
Adding the
Dependenc
y

Dependencies That Are
Always Added

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the
Dependency

Development Guide

80

Weld (CDI)
Subsystem javax.enterprise.api

javax.inject.api

javax.persistence.a
pi

javaee.api

org.javassist

org.jboss.as.weld

org.jboss.weld.core

org.jboss.weld.api

org.jboss.weld.spi

The presence of a
beans.xml file in the
deployment.

Container
Managed
Persistence
(CMP)
Subsystem

org.jboss.as.cmp

Subsystem
Responsibl
e for
Adding the
Dependenc
y

Dependencies That Are
Always Added

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the
Dependency

Report a bug

3.9.2. Included Modules

A table listing the JBoss EAP 6 included modules and whether they are supported can be found on the
Customer Portal at https://access.redhat.com/articles/1122333.

Report a bug

3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

The key tasks that can be performed using this deployment descriptor are:

Defining explicit module dependencies.

Preventing specific implicit dependencies from loading.

Defining additional modules from the resources of that deployment.

Changing the subdeployment isolation behavior in that EAR deployment.

Adding additional resource roots to a module in an EAR.

Report a bug

CHAPTER 3. CLASS LOADING AND MODULES

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4353-775643+%5BLatest%5D&comment=Title%3A+Implicit+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4353-775643+20+Jan+2016+02%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/articles/1122333
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+3891-682454+%5BLatest%5D&comment=Title%3A+Included+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3891-682454+08+Jul+2014+09%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4614-591668+%5BLatest%5D&comment=Title%3A+JBoss+Deployment+Structure+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4614-591668+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 4. VALVES

4.1. ABOUT VALVES

A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is
inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it
on or perform other processing such as authentication or even canceling the request.

Valves can be configured at the server level or at the application level. The only difference is in how they
are configured and packaged.

Global Valves are configured at the server level and apply to all applications deployed to the
server. Instructions to configure Global Valves are located in the Administration and
Configuration Guide for JBoss EAP.

Valves configured at the application level are packaged with the application deployment and
only affect the specific application. Instructions to configure Valves at the application level are
located in the Development Guide for JBoss EAP.

Version 6.1.0 and later supports global valves.

Report a bug

4.2. ABOUT GLOBAL VALVES

A Global Valve is a valve that is inserted into the request processing pipeline of all deployed
applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6.
Global valves are configured in the web subsystem.

Only version 6.1.0 and later supports global valves.

For instructions on how to configure Global Valves, see the chapter entitled Global Valves in the
Administration and Configuration Guide for JBoss EAP .

Report a bug

4.3. ABOUT AUTHENTICATOR VALVES

An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-
class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the
authenticate(Request request, Response response, LoginConfig config) method.

This can be used to implement additional authentication schemes.

Report a bug

4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE

Valves that are not installed as global valves must be included with your application and configured in the
jboss-web.xml deployment descriptor.

IMPORTANT

Development Guide

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14168-672932+%5BLatest%5D&comment=Title%3A+About+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14168-672932+12+Jun+2014+12%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14169-717305+%5BLatest%5D&comment=Title%3A+About+Global+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14169-717305+17+Oct+2014+12%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14172-592104+%5BLatest%5D&comment=Title%3A+About+Authenticator+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14172-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

IMPORTANT

Valves that are installed as global valves are automatically applied to all deployed
applications. For instructions on how to configure Global Valves, see Global Valves in the
JBoss EAP Administration and Configuration Guide .

Prerequisites

The valve must be created and included in your application's classpath. This can be done by
either including it in the application's WAR file or any module that is added as a dependency.
Examples of such modules include a static module installed on the server or a JAR file in the lib/
directory of an EAR archive if the WAR is deployed in an EAR.

The application must include a jboss-web.xml deployment descriptor.

Procedure 4.1. Configure an application for a local valve

1. Configure a Valve
Create a valve element containing the class-name child element in the application's jboss-
web.xml file. The class-name is the name of the valve class.

Example 4.1. Valve element configured in the jboss-web.xml file

2. Configure a Custom Valve
If the valve has configurable parameters, add a param child element to the valve element for
each parameter, specifying the param-name and param-value for each.

Example 4.2. Custom valve element configured in the jboss-web.xml file

When the application is deployed, the valve will be enabled for the application with the specified
configuration.

<valve>
 <class-name>VALVE_CLASS_NAME</class-name>
</valve>

<valve>
 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
</valve>

<valve>
 <class-name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-name>
 <param>
 <param-name>httpHeaderForSSOAuth</param-name>
 <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
 </param>
 <param>
 <param-name>sessionCookieForSSOAuth</param-name>
 <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
 </param>
</valve>

CHAPTER 4. VALVES

83

Example 4.3. jboss-web.xml valve configuration

Report a bug

4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR
VALVE

Configuring an application to use an authenticator valve requires the valve to be installed and configured
(either local to the application or as a global valve) and the web.xml deployment descriptor of the
application to be configured. In the simplest case, the web.xml configuration is the same as using BASIC
authentication except the auth-method child element of login-config is set to the name of the valve
performing the configuration.

Prerequisites

Authentication valve must already be created.

If the authentication valve is a global valve then it must already be installed and configured, and
you must know the name that it was configured as.

You need to know the realm name of the security realm that the application will use.

If you do not know the valve or security realm name to use, ask your server administrator for this
information.

Procedure 4.2. Configure an Application to use an Authenticator Valve

1. Configure the valve
When using a local valve, it must be configured in the application's jboss-web.xml deployment
descriptor. See Section 4.4, “Configure a Web Application to use a Valve” .

When using a global valve, this is not necessary.

2. Add security configuration to web.xml
Add the security configuration to the web.xml file for your application, using the standard
elements such as security-constraint, login-config, and security-role. In the login-config
element, set the value of auth-method to the name of the authenticator valve. The realm-name
element must also be set to the name of the JBoss security realm being used by the application.

When the application is deployed, the authentication of requests is handled by the configured

<valve>
 <class-name>org.jboss.samplevalves.RestrictedUserAgentsValve</class-name>
 <param>
 <param-name>restrictedUserAgents</param-name>
 <param-value>^.*MS Web Services Client Protocol.*$</param-value>
 </param>
 </valve>

<login-config>
 <auth-method>VALVE_NAME</auth-method>
 <realm-name>REALM_NAME</realm-name>
</login-config>

Development Guide

84

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14173-759135+%5BLatest%5D&comment=Title%3A+Configure+a+Web+Application+to+use+a+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14173-759135+22+May+2015+00%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

When the application is deployed, the authentication of requests is handled by the configured
authentication valve.

Report a bug

4.6. CREATE A CUSTOM VALVE

A Valve is a Java class that gets inserted into the request processing pipeline for an application before
the application's servlet filters. This can be used to modify the request or perform any other behavior.
This task demonstrates the basic steps required for implementing a valve.

Procedure 4.3. Create a Custom Valve

1. Configure the Maven dependencies.
Add the following dependency configuration to the project pom.xml file.

NOTE

The jbossweb-VERSION.jar file should not be included in the application. It is
available to the JBoss EAP server runtime classpath as a JBoss module at this
location:
EAP_HOME/modules/system/layers/base/org/jboss/as/web/main/jbossweb-
7.5.7.Final-redhat-1.jar.

2. Create the Valve class
Create a subclass of org.apache.catalina.valves.ValveBase.

3. Implement the invoke method.
The invoke() method is called when this valve is executed in the pipeline. The request and
response objects are passed as parameters. Perform any processing and modification of the
request and response here.

<dependency>
 <groupId>org.jboss.web</groupId>
 <artifactId>jbossweb</artifactId>
 <version>7.5.7.Final-redhat-1</version>
 <scope>provided</scope>
</dependency>

package org.jboss.samplevalves;

import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;

public class RestrictedUserAgentsValve extends ValveBase {

}

public void invoke(Request request, Response response)
{

}

CHAPTER 4. VALVES

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14174-759154+%5BLatest%5D&comment=Title%3A+Configure+a+Web+Application+to+use+an+Authenticator+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14174-759154+22+May+2015+02%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

4. Invoke the next pipeline step.
The last thing the invoke method must do is invoke the next step of the pipeline and pass the
modified request and response objects along. This is done using the getNext().invoke() method

5. Optional: Specify parameters.
If the valve must be configurable, enable this by adding a parameter. Do this by adding an
instance variable and a setter method for each parameter.

6. Review the completed code example.
The class should now look like the following example.

Example 4.4. Sample Custom Valve

getNext().invoke(request, response);

private String restrictedUserAgents = null;

public void setRestricteduserAgents(String mystring)
{
 this.restrictedUserAgents = mystring;
}

package org.jboss.samplevalves;

import java.io.IOException;
import java.util.regex.Pattern;

import javax.servlet.ServletException;
import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;

public class RestrictedUserAgentsValve extends ValveBase
{
 private String restrictedUserAgents = null;

 public void setRestrictedUserAgents(String mystring)
 {
 this.restrictedUserAgents = mystring;
 }

 public void invoke(Request request, Response response) throws IOException,
ServletException
 {
 String agent = request.getHeader("User-Agent");
 System.out.println("user-agent: " + agent + " : " + restrictedUserAgents);
 if (Pattern.matches(restrictedUserAgents, agent))
 {
 System.out.println("user-agent: " + agent + " matches: " + restrictedUserAgents);
 response.addHeader("Connection", "close");
 }
 getNext().invoke(request, response);
 }
}

Development Guide

86

Report a bug

CHAPTER 4. VALVES

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14175-771123+%5BLatest%5D&comment=Title%3A+Create+a+Custom+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14175-771123+29+Sep+2015+13%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 5. LOGGING FOR DEVELOPERS

5.1. INTRODUCTION

5.1.1. About Logging

Logging is the practice of recording a series of messages from an application that provide a record (or
log) of the application's activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern logging frameworks in Java also include other details such as the exact time and the origin
of the message.

Report a bug

5.1.2. Application Logging Frameworks Supported By JBoss LogManager

JBoss LogManager supports the following logging frameworks:

JBoss Logging - included with JBoss EAP 6

Apache Commons Logging - http://commons.apache.org/logging/

Simple Logging Facade for Java (SLF4J) - http://www.slf4j.org/

Apache log4j - http://logging.apache.org/log4j/1.2/

Java SE Logging (java.util.logging) -
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

JBoss LogManager supports the following APIs:

java.util.logging

JBoss Logging

Log4j

SLF4J

commons-logging

JBoss LogManager also supports the following SPIs:

java.util.logging Handler

Log4j Appender

NOTE

If you are using the Log4j API and a Log4J Appender, then Objects will be converted to
string before being passed.

Development Guide

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4576-591666+%5BLatest%5D&comment=Title%3A+About+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4576-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

Report a bug

5.1.3. About Log Levels

Log levels are an ordered set of enumerated values that indicate the nature and severity of a log
message. The level of a given log message is specified by the developer using the appropriate methods
of their chosen logging framework to send the message.

JBoss EAP 6 supports all the log levels used by the supported application logging frameworks. The most
commonly used six log levels are (in order of lowest to highest): TRACE, DEBUG, INFO, WARN, ERROR
and FATAL.

Log levels are used by log categories and handlers to limit the messages they are responsible for. Each
log level has an assigned numeric value which indicates its order relative to other log levels. Log
categories and handlers are assigned a log level and they only process log messages of that level or
higher. For example a log handler with the level of WARN will only record messages of the levels WARN,
ERROR and FATAL.

Report a bug

5.1.4. Supported Log Levels

Table 5.1. Supported Log Levels

Log Level Value Description

FINEST 300 -

FINER 400 -

TRACE 400 Use for messages that provide detailed information about the running state of an
application. Log messages of TRACE are usually only captured when debugging
an application.

DEBUG 500 Use for messages that indicate the progress individual requests or activities of an
application. Log messages of DEBUG are usually only captured when debugging
an application.

FINE 500 -

CONFIG 700 -

INFO 800 Use for messages that indicate the overall progress of the application. Often used
for application startup, shutdown and other major lifecycle events.

WARN 900 Use to indicate a situation that is not in error but is not considered ideal. May
indicate circumstances that may lead to errors in the future.

WARNING 900 -

ERROR 1000 Use to indicate an error that has occurred that could prevent the current activity or
request from completing but will not prevent the application from running.

CHAPTER 5. LOGGING FOR DEVELOPERS

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4496-765884+%5BLatest%5D&comment=Title%3A+Application+Logging+Frameworks+Supported+By+JBoss+LogManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4496-765884+24+Jul+2015+06%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8869-591853+%5BLatest%5D&comment=Title%3A+About+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8869-591853+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

SEVERE 1000 -

FATAL 1100 Use to indicate events that could cause critical service failure and application
shutdown and possibly cause JBoss EAP 6 to shutdown.

Log Level Value Description

Report a bug

5.1.5. Default Log File Locations

These are the log files that get created for the default logging configurations. The default configuration
writes the server log files using periodic log handlers

Table 5.2. Default Log File for a standalone server

Log File Description

EAP_HOME/standalone/log/server.log Server Log. Contains all server log messages,
including server startup messages.

EAP_HOME/standalone/log/gc.log Garbage collection log. Contains details of all
garbage collection.

Table 5.3. Default Log Files for a managed domain

Log File Description

EAP_HOME/domain/log/host-controller.log Host Controller boot log. Contains log messages
related to the startup of the host controller.

EAP_HOME/domain/log/process-
controller.log

Process controller boot log. Contains log messages
related to the startup of the process controller.

EAP_HOME/domain/servers/SERVERNAME/l
og/server.log

The server log for the named server. Contains all log
messages for that server, including server startup
messages.

Report a bug

5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

5.2.1. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss EAP 6.

JBoss Logging provide an easy way to add logging to an application. You add code to your application
that uses the framework to send log messages in a defined format. When the application is deployed to
an application server, these messages can be captured by the server and displayed and/or written to file
according to the server's configuration.

Development Guide

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8872-591853+%5BLatest%5D&comment=Title%3A+Supported+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8872-591853+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4495-635317+%5BLatest%5D&comment=Title%3A+Default+Log+File+Locations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4495-635317+30+Apr+2014+09%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

5.2.2. Features of JBoss Logging

Provides an innovative, easy to use "typed" logger.

Full support for internationalization and localization. Translators work with message bundles in
properties files while developers can work with interfaces and annotations.

Build-time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development.

Report a bug

5.2.3. Add Logging to an Application with JBoss Logging

To log messages from your application you create a Logger object (org.jboss.logging.Logger) and call
the appropriate methods of that object. This task describes the steps required to add support for this to
your application.

Prerequisites

If you are using Maven as your build system, the project must be configured to include the
JBoss Maven Repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository
Using the Maven Settings”

The JBoss Logging JAR files must be in the build path for your application. How you do this
depends on whether you build your application using Red Hat JBoss Developer Studio or with
Maven.

When building using Red Hat JBoss Developer Studio select Properties from the Project
menu, then select Targeted Runtimes and ensure the runtime for JBoss EAP 6 is checked.

When building using Maven add the following dependency configuration to your project's
pom.xml file.

You do not need to include the JARs in your built application because JBoss EAP 6 provides
them to deployed applications.

Procedure 5.1. Add Logging to an Application

Complete the following procedure for each class to which you want to add logging:

1. Add imports
Add the import statements for the JBoss Logging class namespaces that you will be using. At a
minimum you will need to import import org.jboss.logging.Logger.

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <version>3.1.2.GA-redhat-1</version>
 <scope>provided</scope>
</dependency>

import org.jboss.logging.Logger;

CHAPTER 5. LOGGING FOR DEVELOPERS

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4575-591666+%5BLatest%5D&comment=Title%3A+About+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4575-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4578-591669+%5BLatest%5D&comment=Title%3A+Features+of+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4578-591669+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Create a Logger object
Create an instance of org.jboss.logging.Logger and initialize it by calling the static method
Logger.getLogger(Class). Red Hat recommends creating this as a single instance variable for
each class.

3. Add logging messages
Add calls to the methods of the Logger object to your code where you want it to send log
messages. The Logger object has many different methods with different parameters for
different types of messages. The easiest to use are:

debug(Object message)

info(Object message)

error(Object message)

trace(Object message)

fatal(Object message)

These methods send a log message with the corresponding log level and the message
parameter as a string.

For the complete list of JBoss Logging methods refer to the org.jboss.logging package in the
JBoss EAP 6 API Documentation.

Example 5.1. Using JBoss Logging when opening a properties file

This example shows an extract of code from a class that loads customized configuration for an
application from a properties file. If the specified file is not found, an ERROR level log message is
recorded.

private static final Logger LOGGER = Logger.getLogger(HelloWorld.class);

LOGGER.error("Configuration file not found.");

import org.jboss.logging.Logger;
public class LocalSystemConfig
{
 private static final Logger LOGGER = Logger.getLogger(LocalSystemConfig.class);

 public Properties openCustomProperties(String configname) throws
CustomConfigFileNotFoundException
 {
 Properties props = new Properties();
 try
 {
 LOGGER.info("Loading custom configuration from "+configname);
 props.load(new FileInputStream(configname));
 }
 catch(IOException e) //catch exception in case properties file does not exist

Development Guide

92

Report a bug

5.3. PER-DEPLOYMENT LOGGING

5.3.1. About Per-deployment Logging

Per-deployment logging allows a developer to configure in advance the logging configuration for their
application. When the application is deployed, logging begins according to the defined configuration.
The log files created through this configuration contain information only about the behavior of the
application.

This approach has advantages and disadvantages over using system-wide logging. An advantage is that
the administrator of the JBoss EAP instance does not need to configure logging. A disadvantage is that
the per-deployment logging configuration is read only on startup and so cannot be changed at runtime.

Report a bug

5.3.2. Add Per-deployment Logging to an Application

To configure per-deployment logging, add the logging configuration file logging.properties into the
deployment. This configuration file is recommended because it can be used with any logging facade as
the JBoss Log Manager is the underlying log manager used.

If you are using Simple Logging Facade for Java (SLF4J) or Apache log4j, the logging.properties
configuration file is suitable. If you are using Apache log4j appenders then the configuration file
log4j.properties is required. The configuration file jboss-logging.properties is supported only for
legacy deployments.

Procedure 5.2. Add Configuration File to the Application

The directory into which the configuration file is added depends on the deployment
method: EAR, WAR or JAR.

EAR deployment
Copy the logging configuration file to the META-INF directory.

WAR or JAR deployment
Copy the logging configuration file to either the META-INF or WEB-INF/classes directory.

Report a bug

5.3.3. Example logging.properties File

Additional loggers to configure (the root logger is always configured)
loggers=

 {
 LOGGER.error("Custom configuration file ("+configname+") not found. Using defaults.");
 throw new CustomConfigFileNotFoundException(configname);
 }

 return props;
 }

CHAPTER 5. LOGGING FOR DEVELOPERS

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4501-759166+%5BLatest%5D&comment=Title%3A+Add+Logging+to+an+Application+with+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4501-759166+22+May+2015+08%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+34418-707569+%5BLatest%5D&comment=Title%3A+About+Per-deployment+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34418-707569+09+Sep+2014+02%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+34424-665446+%5BLatest%5D&comment=Title%3A+Add+Per-deployment+Logging+to+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34424-665446+09+Jun+2014+13%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Root logger configuration
logger.level=INFO
logger.handlers=FILE

A handler configuration
handler.FILE=org.jboss.logmanager.handlers.FileHandler
handler.FILE.level=ALL
handler.FILE.formatter=PATTERN
handler.FILE.properties=append,autoFlush,enabled,suffix,fileName
handler.FILE.constructorProperties=fileName,append
handler.FILE.append=true
handler.FILE.autoFlush=true
handler.FILE.enabled=true
handler.FILE.fileName=${jboss.server.log.dir}/app.log

The formatter to use
formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.constructorProperties=pattern
formatter.PATTERN.pattern=%d %-5p %c: %m%n

Report a bug

5.4. LOGGING PROFILES

5.4.1. About Logging Profiles

IMPORTANT

Logging profiles are only available in version 6.1.0 and later. They cannot be configured
using the management console.

Logging profiles are independent sets of logging configuration that can be assigned to deployed
applications. As with the regular logging subsystem, a logging profile can define handlers, categories and
a root logger but cannot refer to configuration in other profiles or the main logging subsystem. The
design of logging profiles mimics the logging subsystem for ease of configuration.

The use of logging profiles allows administrators to create logging configuration that are specific to one
or more applications without affecting any other logging configuration. Because each profile is defined
in the server configuration, the logging configuration can be changed without requiring that the
affected applications be redeployed.

Each logging profile can have the following configuration:

A unique name. This is required.

Any number of log handlers.

Any number of log categories.

Up to one root logger.

An application can specify a logging profile to use in its MANIFEST.MF file, using the logging-profile
attribute.

Development Guide

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+34426-665446+%5BLatest%5D&comment=Title%3A+Example+logging.properties+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34426-665446+09+Jun+2014+13%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

5.4.2. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST.MF file.

Prerequisites:

1. You must know the name of the logging profile that has been setup on the server for this
application to use. Ask your server administrator for the name of the profile to use.

Procedure 5.3. Add Logging Profile configuration to an Application

Edit MANIFEST.MF
If your application does not have a MANIFEST.MF file: create one with the following content,
replacing NAME with the required profile name.

Manifest-Version: 1.0
Logging-Profile: NAME

If your application already has a MANIFEST.MF file: add the following line to it, replacing NAME
with the required profile name.

Logging-Profile: NAME

NOTE

If you are using Maven and the maven-war-plugin, you can put your MANIFEST.MF file in
src/main/resources/META-INF/ and add the following configuration to your pom.xml
file.

When the application is deployed it will use the configuration in the specified logging profile for its log
messages.

Report a bug

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestFile>src/main/resources/META-INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
</plugin>

CHAPTER 5. LOGGING FOR DEVELOPERS

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14116-648922+%5BLatest%5D&comment=Title%3A+About+Logging+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14116-648922+01+Jun+2014+22%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14120-647035+%5BLatest%5D&comment=Title%3A+Specify+a+Logging+Profile+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14120-647035+30+May+2014+00%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.1. INTRODUCTION

6.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different
languages and regions without engineering changes.

Report a bug

6.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

Report a bug

6.2. JBOSS LOGGING TOOLS

6.2.1. Overview

6.2.1.1. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated using org.jboss.logging annotations. It is not necessary to implement the interfaces, JBoss
Logging Tools does this at compile time. Once defined you can use these methods to log messages or
obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized by
creating a properties file for each bundle containing the translations for a specific language and region.
JBoss Logging Tools can generate template property files for each bundle that can then be edited by a
translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.

Message ids and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log messages.
With adequate documentation, the meaning of a log message can be determined from the identifiers
regardless of the language that the message was written in.

Report a bug

6.2.1.2. JBoss Logging Tools Quickstart

The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that demonstrates

Development Guide

96

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4891-591677+%5BLatest%5D&comment=Title%3A+About+Internationalization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4891-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4892-591677+%5BLatest%5D&comment=Title%3A+About+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4892-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4890-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Internationalization+and+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4890-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that demonstrates
the features of JBoss Logging Tools. It has been used extensively in this documentation for code
samples.

Refer to this quickstart for a complete working demonstration of all the features described in this
documentation.

Report a bug

6.2.1.3. Message Logger

A Message Logger is an interface that is used to define internationalized log messages. A Message
Logger interface is annotated with @org.jboss.logging.MessageLogger.

Report a bug

6.2.1.4. Message Bundle

A message bundle is an interface that can be used to define generic translatable messages and
Exception objects with internationalized messages . A message bundle is not used for creating log
messages.

A message bundle interface is annotated with @org.jboss.logging.MessageBundle.

Report a bug

6.2.1.5. Internationalized Log Messages

Internationalized Log Messages are log messages created by defining a method in a Message Logger.
The method must be annotated with the @LogMessage and @Message annotations and specify the
log message using the value attribute of @Message. Internationalized log messages are localized by
providing translations in a properties file.

JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Report a bug

6.2.1.6. Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a message
bundle. Message bundle methods that return Java Exception objects can be annotated to define a
default exception message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale. Internationalized exceptions can also have project codes
and message ids assigned to them.

Report a bug

6.2.1.7. Internationalized Messages

An internationalized message is a string returned from a method defined in a message bundle. Message
bundle methods that return Java String objects can be annotated to define the default content of that
String, known as the message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale.

Report a bug

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6715-591753+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6715-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6716-591753+%5BLatest%5D&comment=Title%3A+Message+Logger%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6716-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6717-591753+%5BLatest%5D&comment=Title%3A+Message+Bundle%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6717-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6714-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6714-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6718-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6718-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6719-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6719-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

6.2.1.8. Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from one
interface for one locale, country, and variant. Translation properties files are used by the JBoss Logging
Tools to generated the classes that return the messages.

Report a bug

6.2.1.9. JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message Id. Project codes are defined with the
projectCode attribute of the @MessageLogger annotation.

Report a bug

6.2.1.10. JBoss Logging Tools Message IDs

Message IDs are numbers, that when combined with a project code, uniquely identify a log message.
Message IDs are displayed at the beginning of each log message, appended to the project code for the
message. Message IDs are defined with the id attribute of the @Message annotation.

Report a bug

6.2.2. Creating Internationalized Loggers, Messages and Exceptions

6.2.2.1. Create Internationalized Log Messages

This task shows you how to use JBoss Logging Tools to create internationalized log messages by
creating MessageLogger interfaces. It does not cover all optional features or the localization of those
log messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project. Refer to Section 6.2.6.1, “JBoss Logging Tools
Maven Configuration”.

2. The project must have the required Maven configuration for JBoss Logging Tools.

Procedure 6.1. Create an Internationalized Log Message Bundle

1. Create an Message Logger interface
Add a Java interface to your project to contain the log message definitions. Name the interface
descriptively for the log messages that will be defined in it.

The log message interface has the following requirements:

It must be annotated with @org.jboss.logging.MessageLogger.

It must extend org.jboss.logging.BasicLogger.

The interface must define a field of that is a typed logger that implements this interface. Do
this with the getMessageLogger() method of org.jboss.logging.Logger.

Development Guide

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6720-591752+%5BLatest%5D&comment=Title%3A+Translation+Properties+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6720-591752+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5148-591684+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Project+Codes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5148-591684+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5149-759175+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Message+IDs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5149-759175+22+May+2015+08%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Add method definitions
Add a method definition to the interface for each log message. Name each method
descriptively for the log message that it represents.

Each method has the following requirements:

The method must return void.

It must be annotated with the @org.jboss.logging.LogMessage annotation.

It must be annotated with the @org.jboss.logging.Message annotation.

The value attribute of @org.jboss.logging.Message contains the default log message.
This is the message that is used if no translation is available.

The default log level is INFO.

3. Invoke the methods
Add the calls to the interface methods in your code where the messages must be logged from. It
is not necessary to create implementations of the interfaces, the annotation processor does this
for you when the project is compiled.

The custom loggers are sub-classed from BasicLogger so the logging methods of BasicLogger
(debug(), error() etc) can also be used. It is not necessary to create other loggers to log non-
internationalized messages.

Result

The project now supports one or more internationalized loggers that can be localized.

Report a bug

package com.company.accounts.loggers;

import org.jboss.logging.BasicLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.MessageLogger;

@MessageLogger(projectCode="")
interface AccountsLogger extends BasicLogger
{
 AccountsLogger LOGGER = Logger.getMessageLogger(
 AccountsLogger.class,
 AccountsLogger.class.getPackage().getName());
}

@LogMessage
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

AccountsLogger.LOGGER.customerQueryFailDBClosed();

AccountsLogger.LOGGER.error("Invalid query syntax.");

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4898-759189+%5BLatest%5D&comment=Title%3A+Create+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4898-759189+22+May+2015+09%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

6.2.2.2. Create and Use Internationalized Messages

This task shows you how to create internationalized messages and how to use them. This task does not
cover all optional features or the process of localizing those messages.

Refer to the logging-tools quickstart for a complete example.

Prerequisites

1. You have a working Maven project using the JBoss EAP 6 repository. Refer to Section 2.3.2,
“Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The required Maven configuration for JBoss Logging Tools has been added. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration” .

Procedure 6.2. Create and Use Internationalized Messages

1. Create an interface for the exceptions
JBoss Logging Tools defines internationalized messages in interfaces. Name each interface
descriptively for the messages that will be defined in it.

The interface has the following requirements:

It must be declared as public

It must be annotated with @org.jboss.logging.MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

2. Add method definitions
Add a method definition to the interface for each message. Name each method descriptively for
the message that it represents.

Each method has the following requirements:

It must return an object of type String.

It must be annotated with the @org.jboss.logging.Message annotation.

The value attribute of @org.jboss.logging.Message must be set to the default message.
This is the message that is used if no translation is available.

3. Invoke methods
Invoke the interface methods in your application where you need to obtain the message.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle
{
 GreetingMessageBundle MESSAGES =
Messages.getBundle(GreetingMessageBundle.class);
}

@Message(value = "Hello world.")
 String helloworldString();

Development Guide

100

RESULT: the project now supports internationalized message strings that can be localized.

Report a bug

6.2.2.3. Create Internationalized Exceptions

This task shows you how to create internationalized exceptions and how to use them. This task does not
cover all optional features or the process of localization of those exceptions.

Refer to the logging-tools quick start for a complete example.

For this task it is assumed that you already have a software project, that is being built in either Red Hat
JBoss Developer Studio or Maven, to which you want to add internationalized exceptions.

Procedure 6.3. Create and use Internationalized Exceptions

1. Add JBoss Logging Tools configuration
Add the required project configuration to support JBoss Logging Tools. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”

2. Create an interface for the exceptions
JBoss Logging Tools defines internationalized exceptions in interfaces. Name each interface
descriptively for the exceptions that will be defined in it.

The interface has the following requirements:

It must be declared as public.

It must be annotated with @org.jboss.logging.MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

3. Add method definitions
Add a method definition to the interface for each exception. Name each method descriptively
for the exception that it represents.

Each method has the following requirements:

It must return an object of type Exception or a sub-type of Exception.

It must be annotated with the @org.jboss.logging.Message annotation.

The value attribute of @org.jboss.logging.Message must be set to the default exception
message. This is the message that is used if no translation is available.

If the exception being returned has a constructor that requires parameters in addition to a

System.console.out.println(helloworldString());

@MessageBundle(projectCode="")
public interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
}

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4900-591677+%5BLatest%5D&comment=Title%3A+Create+and+Use+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4900-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

If the exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as the constructor.

4. Invoke methods
Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object which you can then
throw.

RESULT: the project now supports internationalized exceptions that can be localized.

Report a bug

6.2.3. Localizing Internationalized Loggers, Messages and Exceptions

6.2.3.1. Generate New Translation Properties Files with Maven

Projects that are being built with Maven can generate empty translation property files for each Message
Logger and Message Bundle it contains. These files can then be used as new translation property files.

The following procedure shows how to configure a Maven project to generate new translation property
files.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project.

2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Procedure 6.4. Generate New Translation Properties Files with Maven

1. Add Maven configuration

Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler plug-in

@Message(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = "Date string '%s' was invalid.")
ParseException dateWasInvalid(String dateString, @Param int errorOffset);

try
{
 propsInFile=new File(configname);
 props.load(new FileInputStream(propsInFile));
}
catch(IOException ioex) //in case props file does not exist
{
 throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
}

Development Guide

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4899-681267+%5BLatest%5D&comment=Title%3A+Create+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4899-681267+03+Jul+2014+12%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler plug-in
configuration and assign it the path where the new files will be created.

The above configuration will create the new files in the target/generated-translation-files
directory of your Maven project.

2. Build the project
Build the project using Maven.

[Localhost]$ mvn compile

One properties files is created per interface annotated with @MessageBundle or @MessageLogger.
The new files are created in a subdirectory corresponding to the Java package that each interface is
declared in.

Each new file is named using the following syntax where InterfaceName is the name of the interface
that this file was generated for: InterfaceName.i18n_locale_COUNTRY_VARIANT.properties.

These files can now be copied into your project as the basis for new translations.

Report a bug

6.2.3.2. Translate an Internationalized Logger, Exception or Message

Logging and Exception messages defined in interfaces using JBoss Logging Tools can have translations
provided in properties files.

The following procedure shows how to create and use a translation properties file. It is assumed that you
already have a project with one or more interfaces defined for internationalized exceptions or log
messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites

1. You must already have a working Maven project.

2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or interfaces that define internationalized log messages or
exceptions.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <compilerArgument>
 -AgeneratedTranslationFilesPath=${project.basedir}/target/generated-translation-files
 </compilerArgument>
 <showDeprecation>true</showDeprecation>
 </configuration>
</plugin>

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5127-591683+%5BLatest%5D&comment=Title%3A+Generate+New+Translation+Properties+Files+with+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5127-591683+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

4. The project must be configured to generate template translation property files.

Procedure 6.5. Translate an internationalized logger, exception or message

1. Generate the template properties files
Run the mvn compile command to create the template translation properties files.

2. Add the template file to your project
Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files must
be in the same package as the interfaces they are translating.

3. Rename the copied template file
Rename the copy of the template file according to the translation it will contain. E.g.
GreeterLogger.i18n_fr_FR.properties.

4. Translate the contents of the template.
Edit the new translation properties file to contain the appropriate translation.

Repeat steps two, three, and four for each translation of each bundle being performed.

RESULT: The project now contains translations for one or more message or logger bundles. Building the
project will generate the appropriate classes to log messages with the supplied translations. It is not
necessary to explicitly invoke methods or supply parameters for specific languages, JBoss Logging
Tools automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

Report a bug

6.2.4. Customizing Internationalized Log Messages

6.2.4.1. Add Message IDs and Project Codes to Log Messages

This task shows how to add message IDs and project codes to internationalized log messages created
using JBoss Logging Tools. A log message must have both a project code and message ID for them to
be displayed in the log. If a message does not have both a project code and a message ID, then neither is
displayed.

Refer to the logging-tools quick start for a complete example.

Prerequisites

1. You must already have a project with internationalized log messages. Refer to Section 6.2.2.1,
“Create Internationalized Log Messages”.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

Development Guide

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4901-591677+%5BLatest%5D&comment=Title%3A+Translate+an+Internationalized+Logger%2C+Exception+or+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4901-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 6.6. Add message IDs and Project Codes to Log Messages

1. Specify the project code for the interface.
Specify the project code using the projectCode attribute of the @MessageLogger annotation
attached to a custom logger interface. All messages that are defined in the interface will use
that project code.

2. Specify Message IDs
Specify a message ID for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

The log messages that have both a message ID and project code associated with them will prepend
these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4) ACCNTS000043:
Customer query failed, Database not available.

Report a bug

6.2.4.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the level attribute of the @LogMessage annotation attached to the
logging method.

Procedure 6.7. Specify the log level for a message

1. Specify level attribute
Add the level attribute to the @LogMessage annotation of the log message method definition.

2. Assign log level
Assign the level attribute the value of the log level for this message. The valid values for level
are the six enumerated constants defined in org.jboss.logging.Logger.Level: DEBUG,
ERROR, FATAL, INFO, TRACE, and WARN.

Invoking the logging method in the above sample will produce a log message at the level of ERROR.

@MessageLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasicLogger
{

}

@LogMessage
@Message(id=43, value = "Customer query failed, Database not available.") void
customerQueryFailDBClosed();

Import org.jboss.logging.Logger.Level;

@LogMessage(level=Level.ERROR)
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5171-759169+%5BLatest%5D&comment=Title%3A+Add+Message+IDs+and+Project+Codes+to+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5171-759169+22+May+2015+08%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
 Customer query failed, Database not available.

Report a bug

6.2.4.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Procedure 6.8. Customize log messages with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message
References can use explicit or ordinary indexes.

To use ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

To use explicit indexes, insert the characters %{#$}s in the message, where # indicates the
number of the parameter you wish to appear.

IMPORTANT

Using explicit indexes allows the parameter references in the message to be in a different
order than they are defined in the method. This is important for translated messages
which may require different ordering of parameters.

The number of parameters must match the number of references to the parameters in the specified
message or the code will not compile. A parameter marked with the @Cause annotation is not included
in the number of parameters.

Example 6.1. Message parameters using ordinary indexes

Example 6.2. Message parameters using explicit indexes

Report a bug

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

Development Guide

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5174-591685+%5BLatest%5D&comment=Title%3A+Specify+the+Log+Level+for+a+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5174-591685+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5172-745775+%5BLatest%5D&comment=Title%3A+Customize+Log+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5172-745775+04+Mar+2015+01%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

6.2.4.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of
the message. This parameter must be of the type Throwable or any of its sub-classes and is marked
with the @Cause annotation. This parameter cannot be referenced in the log message like other
parameters and is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to
indicate the "causing" exception. It is assumed that you have already created internationalized logging
messages to which you want to add this functionality.

Procedure 6.9. Specify an exception as the cause of a log message

1. Add the parameter
Add a parameter of the type Throwable or a sub-class to the method.

2. Add the annotation
Add the @Cause annotation to the parameter.

3. Invoke the method
When the method is invoked in your code, an object of the correct type must be passed and will
be displayed after the log message.

Below is the output of the above code samples if the code threw an exception of type
FileNotFoundException.

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3) Loading configuration
failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:120)
 at com.company.app.demo.Main.openCustomProperties(Main.java:70)
 at com.company.app.Main.go(Main.java:53)
 at com.company.app.Main.main(Main.java:43)

@LogMessage
@Message(id=404, value="Loading configuration failed. Config file:%s")
void loadConfigFailed(Exception ex, File file);

import org.jboss.logging.Cause

@LogMessage
@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

try
{
 confFile=new File(filename);
 props.load(new FileInputStream(confFile));
}
catch(Exception ex) //in case properties file cannot be read
{
 ConfigLogger.LOGGER.loadConfigFailed(ex, filename);
}

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

107

Report a bug

6.2.5. Customizing Internationalized Exceptions

6.2.5.1. Add Message IDs and Project Codes to Exception Messages

The following procedure shows the steps required to add message IDs and project codes to
internationalized Exception messages created using JBoss Logging Tools.

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference of all the
exception messages for an application so that someone can lookup the meaning of an exception
message written in language that they do not understand.

Prerequisites

1. You must already have a project with internationalized exceptions. Refer to Section 6.2.2.3,
“Create Internationalized Exceptions”.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Procedure 6.10. Add Message IDs and Project Codes to Exception Messages

1. Specify a project code
Specify the project code using the projectCode attribute of the @MessageBundle annotation
attached to a exception bundle interface. All messages that are defined in the interface will use
that project code.

2. Specify message IDs
Specify a message ID for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example 6.3. Creating internationalized exceptions

This exception bundle interface has the project code of ACCTS, with a single exception method with
the ID of 143.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);
}

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

Development Guide

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5175-675496+%5BLatest%5D&comment=Title%3A+Specify+an+Exception+as+the+Cause+of+a+Log+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5175-675496+23+Jun+2014+14%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The exception object can be obtained and thrown using the following code.

This would display an exception message like the following:

Exception in thread "main" java.io.IOException: ACCTS000143: The config file could not be
opened.
at com.company.accounts.Main.openCustomProperties(Main.java:78)
at com.company.accounts.Main.go(Main.java:53)
at com.company.accounts.Main.main(Main.java:43)

Report a bug

6.2.5.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional information
to be displayed in the exception message. Where the parameters appear in the exception message is
specified in the message itself using either explicit or ordinary indexing.

The following procedure shows the steps required to use method parameters to customize method
exceptions.

Procedure 6.11. Customize an exception message with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the exception message
References can use explicit or ordinary indexes.

To use ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

To use explicit indexes, insert the characters %{#$}s in the message where #indicates the
number of the parameter which you wish to appear.

Using explicit indexes allows the parameter references in the message to be in a different order
than they are defined in the method. This is important for translated messages which may
require different ordering of parameters.

IMPORTANT

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);

 @Message(id=143, value = "The config file could not be opened.")
 IOException configFileAccessError();
}

throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5191-759421+%5BLatest%5D&comment=Title%3A+Add+Message+IDs+and+Project+Codes+to+Exception+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5191-759421+26+May+2015+13%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

IMPORTANT

The number of parameters must match the number of references to the parameters in
the specified message or the code will not compile. A parameter marked with the
@Cause annotation is not included in the number of parameters.

Example 6.4. Using ordinary indexes

Example 6.5. Using explicit indexes

Report a bug

6.2.5.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter with
@Cause. This parameter is used to pass the causing exception. This parameter cannot be referenced in
the exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause
parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

Procedure 6.12. Specify one exception as the cause of another exception

1. Add the parameter
Add the a parameter of the type Throwable or a sub-class to the method.

2. Add the annotation
Add the @Cause annotation to the parameter.

3. Invoke the method
Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block using the caught exception as the cause.

@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(Throwable cause, String msg);

import org.jboss.logging.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(@Cause Throwable cause, String msg);

Development Guide

110

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5195-745772+%5BLatest%5D&comment=Title%3A+Customize+Exception+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5195-745772+04+Mar+2015+01%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 6.6. Specify one exception as the cause of another exception

This exception bundle defines a single method that returns an exception of type
ArithmeticException.

This code snippet performs an operation that throws an exception because it attempts to divide an
integer by zero. The exception is caught and a new exception is created using the first one as the
cause.

This is what the exception message looks like:

Exception in thread "main" java.lang.ArithmeticException: TPS000328: Error calculating:
payments per day.
 at com.company.accounts.Main.go(Main.java:58)
 at com.company.accounts.Main.main(Main.java:43)
Caused by: java.lang.ArithmeticException: / by zero
 at com.company.accounts.Main.go(Main.java:54)
 ... 1 more

Report a bug

try
{
 ...
}
catch(Exception ex)
{
 throw ExceptionBundle.EXCEPTIONS.calculationError(
 ex, "calculating payment due per day");
}

@MessageBundle(projectCode = "TPS")
interface CalcExceptionBundle
{
 CalcExceptionBundle EXCEPTIONS = Messages.getBundle(CalcExceptionBundle.class);

 @Message(id=328, value = "Error calculating: %s.")
 ArithmeticException calcError(@Cause Throwable cause, String value);

}

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;

try
{
 amountPerDay = totalDue/daysToPay;
}
catch (Exception ex)
{
 throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per day");
}

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

111

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5206-591686+%5BLatest%5D&comment=Title%3A+Specify+One+Exception+as+the+Cause+of+Another+Exception%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5206-591686+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

6.2.6. Reference

6.2.6.1. JBoss Logging Tools Maven Configuration

To build a Maven project that uses JBoss Logging Tools for internationalization you must make the
following changes to the project's configuration in the pom.xml file.

Refer to the logging-tools quick start for an example of a complete working pom.xml file.

1. JBoss Maven Repository must be enabled for the project. Refer to Section 2.3.2, “Configure the
JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The Maven dependencies for jboss-logging and jboss-logging-processor must be added.
Both of dependencies are available in JBoss EAP 6 so the scope element of each can be set to
provided as shown.

3. The maven-compiler-plugin must be at least version 2.2 and be configured for target and
generated sources of 1.6.

Report a bug

6.2.6.2. Translation Property File Format

The property files used for translations of messages in JBoss Logging Tools are standard Java property
files. The format of the file is the simple line-oriented, key=value pair format described in the
documentation for the java.util.Properties class,
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.

The file name format has the following format:

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging-processor</artifactId>
 <version>1.0.0.Final</version>
 <scope>provided</scope>
</dependency>

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <version>3.1.0.GA</version>
 <scope>provided</scope>
</dependency>

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
</plugin>

Development Guide

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4896-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Maven+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4896-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html

InterfaceName.i18n_locale_COUNTRY_VARIANT.properties

InterfaceName is the name of the interface that the translations apply to.

locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

locale and COUNTRY specify the language and country using the ISO-639 and ISO-3166
Language and Country codes respectively. COUNTRY is optional.

VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Example 6.7. Sample Translation Properties File

File name: GreeterService.i18n_fr_FR_POSIX.properties.

Report a bug

6.2.6.3. JBoss Logging Tools Annotations Reference

The following annotations are defined in JBoss Logging for use with internationalization and localization
of log messages, strings, and exceptions.

Table 6.1. JBoss Logging Tools Annotations

Annotation Target Description Attributes

@MessageBundle Interface Defines the interface as a
Message Bundle.

projectCode

@MessageLogger Interface Defines the interface as a
Message Logger.

projectCode

@Message Method Can be used in Message Bundles
and Message Loggers. In a
Message Logger it defines a
method as being a localized
logger. In a Message Bundle it
defines the method as being one
that returns a localized String or
Exception object.

value, id

@LogMessage Method Defines a method in a Message
Logger as being a logging
method.

level (default
INFO)

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6723-591752+%5BLatest%5D&comment=Title%3A+Translation+Property+File+Format%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6723-591752+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

@Cause Parameter Defines a parameter as being one
that passes an Exception as the
cause of either a Log message or
another Exception.

-

@Param Parameter Defines a parameter as being one
that is passed to the constructor
of the Exception.

-

Annotation Target Description Attributes

Report a bug

Development Guide

114

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4895-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Annotations+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4895-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 7. REMOTE JNDI LOOKUP

7.1. REGISTERING OBJECTS TO JNDI

The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows Java
software clients to discover and look up objects using a name. To look up an object, you must first
register that object to JNDI using the java:jboss/exported context.

The following is an example of how to register a JMS queue to JNDI in the messaging subsystem so
that it can be looked up by remote JNDI clients.

java:jboss/exported/jms/queue/myTestQueue

Remote JNDI clients can then look up the object using the above name; however, it is not necessary to
specify the java:jboss/exported/ prefix when looking up a remote client. The remote JNDI clients can
look up the remote object up using the following name.

jms/queue/myTestQueue

Example 7.1. Example of Standalone Server JMS Queue Configuration

Report a bug

7.2. CONFIGURING A REMOTE JNDI CLIENT

Remote JNDI clients can look up and connect to objects by name using JNDI. The client must have
jboss-client.jar on its class path.

The following example shows how to look up the myTestQueue JMS queue from a remote JNDI client:

Example 7.2. Example Remote JNDI Lookup

<subsystem xmlns="urn:jboss:domain:messaging:1.4">
 <hornetq-server>
 ...
 <jms-destinations>
 <jms-queue name="myTestQueue">
 <entry name="java:jboss/exported/jms/queue/myTestQueue"/>
 </jms-queue>
 </jms-destinations>
 </hornetq-server>
</subsystem>

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
properties.put(Context.PROVIDER_URL, "remote://<hostname>:4447");
context = new InitialContext(properties);
Queue myTestQueue = (Queue) context.lookup("jms/queue/myTestQueue");

CHAPTER 7. REMOTE JNDI LOOKUP

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44408-778566+%5BLatest%5D&comment=Title%3A+Registering+Objects+to+JNDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44408-778566+11+Jul+2016+08%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

Development Guide

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44409-778567+%5BLatest%5D&comment=Title%3A+Configuring+a+Remote+JNDI+Client%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44409-778567+11+Jul+2016+08%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

8.1. INTRODUCTION

8.1.1. Overview of Enterprise JavaBeans

Enterprise JavaBeans (EJB) 3.1 is an API for developing distributed, transactional, secure and portable
Java EE applications through the use of server-side components called Enterprise Beans. Enterprise
Beans implement the business logic of an application in a decoupled manner that encourages reuse.
Enterprise JavaBeans 3.1 is documented as the Java EE specification JSR-318.

JBoss EAP 6 has full support for applications built using the Enterprise JavaBeans 3.1 specification.

Report a bug

8.1.2. EJB 3.1 Feature Set

The following features are supported in EJB 3.1

Session Beans

Message Driven Beans

No-interface views

local interfaces

remote interfaces

JAX-WS web services

JAX-RS web services

Timer Service

Asynchronous Calls

Interceptors

RMI/IIOP interoperability

Transaction support

Security

Embeddable API

The following features are supported in EJB 3.1 but are proposed for "pruning". This means that these
features may become optional in Java EE 7.

Entity Beans (container and bean-managed persistence)

EJB 2.1 Entity Bean client views

EJB Query Language (EJB QL)

CHAPTER 8. ENTERPRISE JAVABEANS

117

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4525-591667+%5BLatest%5D&comment=Title%3A+Overview+of+Enterprise+JavaBeans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4525-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

JAX-RPC based Web Services (endpoints and client views)

Report a bug

8.1.3. EJB 3.1 Lite

EJB Lite is a sub-set of the EJB 3.1 specification. It provides a simpler version of the full EJB 3.1
specification as part of the Java EE 6 web profile.

EJB Lite simplifies the implementation of business logic in web applications with enterprise beans by:

1. Only supporting the features that make sense for web-applications, and

2. allowing EJBs to be deployed in the same WAR file as a web-application.

Report a bug

8.1.4. EJB 3.1 Lite Features

EJB Lite includes the following features:

Stateless, stateful, and singleton session beans

Local business interfaces and "no interface" beans

Interceptors

Container-managed and bean-managed transactions

Declarative and programmatic security

Embeddable API

The following features of EJB 3.1 are specifically not included:

Remote interfaces

RMI-IIOP Interoperability

JAX-WS Web Service Endpoints

EJB Timer Service

Asynchronous session bean invocations

Message-driven beans

Report a bug

8.1.5. Enterprise Beans

Enterprise beans are server-side application components as defined in the Enterprise JavaBeans (EJB)
3.1 specification, JSR-318. Enterprise beans are designed for the implementation of application business
logic in a decoupled manner to encourage reuse.

Enterprise beans are written as Java classes and annotated with the appropriate EJB annotations. They

Development Guide

118

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4533-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Feature+Set%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4533-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4529-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Lite%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4529-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4531-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Lite+Features%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4531-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

can be deployed to the application server in their own archive (a JAR file) or be deployed as part of a
Java EE application. The application server manages the lifecycle of each enterprise bean and provides
services to them such as security, transactions, and concurrency management.

An enterprise bean can also define any number of business interfaces. Business interfaces provide
greater control over which of the bean's methods are available to clients and can also allow access to
clients running in remote JVMs.

There are three types of Enterprise Bean: Session beans, Message-driven beans and Entity beans.

IMPORTANT

Entity beans are now deprecated in EJB 3.1 and Red Hat recommends the use of JPA
entities instead. Red Hat only recommends the use of Entity beans for backwards
compatibility with legacy systems.

Report a bug

8.1.6. Overview of Writing Enterprise Beans

Enterprise beans are server-side components designed to encapsulate business logic in a manner
decoupled from any one specific application client. By implementing your business logic within
enterprise beans you will be able to reuse those beans in multiple applications.

Enterprise beans are written as annotated Java classes and do not have to implement any specific EJB
interfaces or be sub-classed from any EJB super classes to be considered an enterprise bean.

EJB 3.1 enterprise beans are packaged and deployed in Java archive (JAR) files. An enterprise bean
JAR file can be deployed to your application server, or included in an enterprise archive (EAR) file and
deployed with that application. It is also possible to deploy enterprise beans in a WAR file along side a
web application.

Report a bug

8.1.7. Session Bean Business Interfaces

8.1.7.1. Enterprise Bean Business Interfaces

An EJB business interface is a Java interface written by the bean developer which provides declarations
of the public methods of a session bean that are available for clients. Session beans can implement any
number of interfaces including none (a "no-interface" bean).

Business interfaces can be declared as local or remote interfaces but not both.

Report a bug

8.1.7.2. EJB Local Business Interfaces

An EJB local business interface declares the methods which are available when the bean and the client
are in the same JVM. When a session bean implements a local business interface only the methods
declared in that interface will be available to clients.

Report a bug

CHAPTER 8. ENTERPRISE JAVABEANS

119

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5089-591681+%5BLatest%5D&comment=Title%3A+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5089-591681+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5090-626311+%5BLatest%5D&comment=Title%3A+Overview+of+Writing+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5090-626311+31+Mar+2014+01%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5096-591681+%5BLatest%5D&comment=Title%3A+Enterprise+Bean+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5096-591681+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5354-591693+%5BLatest%5D&comment=Title%3A+EJB+Local+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5354-591693+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

8.1.7.3. EJB Remote Business Interfaces

An EJB remote business interface declares the methods which are available to remote clients. Remote
access to a session bean that implements a remote interface is automatically provided by the EJB
container.

A remote client is any client running in a different JVM and can include desktop applications as well as
web applications, services and enterprise beans deployed to a different application server.

Local clients can access the methods exposed by a remote business interface.

Report a bug

8.1.7.4. EJB No-interface Beans

A session bean that does not implement any business interfaces is called a no-interface bean. All of the
public methods of no-interface beans are accessible to local clients.

A session bean that implements a business interface can also be written to expose a "no-interface" view.

Report a bug

8.2. CREATING ENTERPRISE BEAN PROJECTS

8.2.1. Create an EJB Archive Project Using Red Hat JBoss Developer Studio

This task describes how to create an Enterprise JavaBeans (EJB) project in Red Hat JBoss Developer
Studio.

Prerequisites

A server and server runtime for JBoss EAP 6 has been set up. See Section 1.3.1.5, “Add the
JBoss EAP Server Using Define New Server” .

Procedure 8.1. Create an EJB Project in Red Hat JBoss Developer Studio

1. Create new project
To open the New EJB Project wizard, navigate to the File menu, select New, and then EJB
Project.

Development Guide

120

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5355-741424+%5BLatest%5D&comment=Title%3A+EJB+Remote+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5355-741424+05+Feb+2015+01%3A01+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5356-591693+%5BLatest%5D&comment=Title%3A+EJB+No-interface+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5356-591693+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 8.1. New EJB Project wizard

2. Specify Details
Supply the following details:

Project name.

As well as the being the name of the project that appears in Red Hat JBoss Developer

CHAPTER 8. ENTERPRISE JAVABEANS

121

As well as the being the name of the project that appears in Red Hat JBoss Developer
Studio this is also the default filename for the deployed JAR file.

Project location.

The directory where the project's files will be saved. The default is a directory in the current
workspace.

Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

EJB module version. This is the version of the EJB specification that your enterprise beans
will comply with. Red Hat recommends using 3.1.

Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Java Build Configuration
This screen allows you to customize the directories will contain Java source files and the
directory where the built output is placed.

Leave this configuration unchanged and click Next.

4. EJB Module settings
Check the Generate ejb-jar.xml deployment descriptor checkbox if a deployment descriptor
is required. The deployment descriptor is optional in EJB 3.1 and can be added later if required.

Click Finish and the project is created and will be displayed in the Project Explorer.

Development Guide

122

Figure 8.2. Newly created EJB Project in the Project Explorer

5. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking on the server you want to deploy the built
artifact to in the server tab, and select "Add and Remove".

Select the resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

CHAPTER 8. ENTERPRISE JAVABEANS

123

Figure 8.3. Add and Remove dialog

Result

You now have an EJB Project in Red Hat JBoss Developer Studio that can build and deploy to the
specified server.

If no enterprise beans are added to the project then Red Hat JBoss Developer Studio will display the
warning "An EJB module must contain one or more enterprise beans." This warning will disappear once
one or more enterprise beans have been added to the project.

Report a bug

8.2.2. Create an EJB Archive Project in Maven

This task demonstrates how to create a project using Maven that contains one or more enterprise beans
packaged in a JAR file.

Prerequisites:

Maven is already installed.

You understand the basic usage of Maven.

Development Guide

124

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5385-744622+%5BLatest%5D&comment=Title%3A+Create+an+EJB+Archive+Project+Using+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5385-744622+24+Feb+2015+14%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 8.2. Create an EJB Archive project in Maven

1. Create the Maven project
An EJB project can be created using Maven's archetype system and the ejb-javaee6 archetype.
To do this run the mvn command with parameters as shown:

 mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6

Maven will prompt you for the groupId, artifactId, version and package for your project.

[localhost]$ mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --
[INFO]
[INFO] >>> maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom >>>
[INFO]
[INFO] <<< maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom <<<
[INFO]
[INFO] --- maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom ---
[INFO] Generating project in Interactive mode
[INFO] Archetype [org.codehaus.mojo.archetypes:ejb-javaee6:1.5] found in catalog remote
Define value for property 'groupId': : com.shinysparkly
Define value for property 'artifactId': : payment-arrangments
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': com.shinysparkly: :
Confirm properties configuration:
groupId: com.company
artifactId: payment-arrangments
version: 1.0-SNAPSHOT
package: com.company.collections
Y: :
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 32.440s
[INFO] Finished at: Mon Oct 31 10:11:12 EST 2011
[INFO] Final Memory: 7M/81M
[INFO] --
[localhost]$

2. Add your enterprise beans
Write your enterprise beans and add them to the project under the src/main/java directory in
the appropriate sub-directory for the bean's package.

3. Build the project
To build the project, run the mvn package command in the same directory as the pom.xml file.
This will compile the Java classes and package the JAR file. The built JAR file is named
artifactId-version.jar and is placed in the target/ directory.

RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain

CHAPTER 8. ENTERPRISE JAVABEANS

125

RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain
enterprise beans and the JAR file can be deployed to an application server.

Report a bug

8.2.3. Create an EAR Project containing an EJB Project

This task describes how to create a new Enterprise Archive (EAR) project in Red Hat JBoss Developer
Studio that contains an EJB Project.

Prerequisites

A server and server runtime for JBoss EAP 6 has been set up. See Section 1.3.1.5, “Add the
JBoss EAP Server Using Define New Server”.

Procedure 8.3. Create an EAR Project containing an EJB Project

1. Open the New EAR Application Project Wizard
Navigate to the File menu, select New, then Project and the New Project wizard appears.
Select Java EE/Enterprise Application Project and click Next.

Development Guide

126

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5099-591683+%5BLatest%5D&comment=Title%3A+Create+an+EJB+Archive+Project+in+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5099-591683+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 8.4. New EAR Application Project Wizard

2. Supply details
Supply the following details:

Project name.

As well as the being the name of the project that appears in Red Hat JBoss Developer
Studio this is also the default filename for the deployed EAR file.

Project location.

The directory where the project's files will be saved. The default is a directory in the current

CHAPTER 8. ENTERPRISE JAVABEANS

127

The directory where the project's files will be saved. The default is a directory in the current
workspace.

Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

EAR version.

This is the version of the Java Enterprise Edition specification that your project will comply
with. Red Hat recommends using 6.

Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Add a new EJB Module
New Modules can be added from the Enterprise Application page of the wizard. To add a new
EJB Project as a module follow the steps below:

a. Add new EJB Module
Click New Module, uncheck Create Default Modules checkbox, select the Enterprise Java
Bean and click Next. The New EJB Project wizard appears.

b. Create EJB Project
New EJB Project wizard is the same as the wizard used to create new standalone EJB
Projects and is described in Section 8.2.1, “Create an EJB Archive Project Using Red Hat
JBoss Developer Studio”.

The minimal details required to create the project are:

Project name

Target Runtime

EJB Module version

Configuration

All the other steps of the wizard are optional. Click Finish to complete creating the EJB
Project.

The newly created EJB project is listed in the Java EE module dependencies and the checkbox
is checked.

4. Optional: add an application.xml deployment descriptor
Check the Generate application.xml deployment descriptor checkbox if one is required.

5. Click Finish
Two new project will appear, the EJB project and the EAR project

6. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking in the Servers tab on the server you want
to deploy the built artifact to in the server tab, and select Add and Remove.

Development Guide

128

Select the EAR resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

Figure 8.5. Add and Remove dialog

Result

You now have an Enterprise Application Project with a member EJB Project. This will build and deploy to
the specified server as a single EAR deployment containing an EJB subdeployment.

Report a bug

8.2.4. Add a Deployment Descriptor to an EJB Project

An EJB deployment descriptor can be added to an EJB project that was created without one. To do
this, follow the procedure below.

Perquisites:

You have a EJB Project in Red Hat JBoss Developer Studio to which you want to add an EJB
deployment descriptor.

Procedure 8.4. Add an Deployment Descriptor to an EJB Project

CHAPTER 8. ENTERPRISE JAVABEANS

129

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5098-744621+%5BLatest%5D&comment=Title%3A+Create+an+EAR+Project+containing+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5098-744621+24+Feb+2015+14%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

1. Open the Project
Open the project in Red Hat JBoss Developer Studio.

2. Add Deployment Descriptor
Right-click on the Deployment Descriptor folder in the project view and select Generate
Deployment Descriptor Stub.

Figure 8.6. Adding a Deployment Descriptor

The new file, ejb-jar.xml, is created in ejbModule/META-INF/. Double-clicking on the Deployment
Descriptor folder in the project view will also open this file.

Report a bug

8.3. SESSION BEANS

8.3.1. Session Beans

Session Beans are Enterprise Beans that encapsulate a set of related business processes or tasks and
are injected into the classes that request them. There are three types of session bean: stateless,
stateful, and singleton.

Report a bug

8.3.2. Stateless Session Beans

Stateless session beans are the simplest yet most widely used type of session bean. They provide
business methods to client applications but do not maintain any state between method calls. Each
method is a complete task that does not rely on any shared state within that session bean. Because
there is no state, the application server is not required to ensure that each method call is performed on
the same instance. This makes stateless session beans very efficient and scalable.

Report a bug

8.3.3. Stateful Session Beans

Stateful session beans are Enterprise Beans that provide business methods to client applications and

Development Guide

130

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5386-681237+%5BLatest%5D&comment=Title%3A+Add+a+Deployment+Descriptor+to+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5386-681237+03+Jul+2014+10%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4527-591667+%5BLatest%5D&comment=Title%3A+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4527-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5236-591689+%5BLatest%5D&comment=Title%3A+Stateless+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5236-591689+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Stateful session beans are Enterprise Beans that provide business methods to client applications and
maintain conversational state with the client. They should be used for tasks that must be done in several
steps (method calls), each of which relies on the state of the previous step being maintained. The
application server ensures that each client receives the same instance of a stateful session bean for
each method call.

Report a bug

8.3.4. Singleton Session Beans

Singleton session beans are session beans that are instantiated once per application and every client
request for a singleton bean goes to the same instance. Singleton beans are an implementation of the
Singleton Design Pattern as described in the book Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; published by
Addison-Wesley in 1994.

Singleton beans provide the smallest memory footprint of all the session bean types but must be
designed as thread-safe. EJB 3.1 provides container-managed concurrency (CMC) to allow developers
to implement thread safe singleton beans easily. However singleton beans can also be written using
traditional multi-threaded code (bean-managed concurrency or BMC) if CMC does not provide enough
flexibility.

Report a bug

8.3.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

Red Hat JBoss Developer Studio has several wizards that can be used to quickly create enterprise bean
classes. The following procedure shows how to use the Red Hat JBoss Developer Studio wizards to add
a session bean to a project.

Prerequisites:

You have a EJB or Dynamic Web Project in Red Hat JBoss Developer Studio to which you want
to add one or more session beans.

Procedure 8.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

1. Open the Project
Open the project in Red Hat JBoss Developer Studio.

2. Open the "Create EJB 3.x Session Bean" wizard
To open the Create EJB 3.x Session Bean wizard, navigate to the File menu, select New, and
then Session Bean (EJB 3.x).

CHAPTER 8. ENTERPRISE JAVABEANS

131

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5237-759201+%5BLatest%5D&comment=Title%3A+Stateful+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5237-759201+24+May+2015+19%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5238-591689+%5BLatest%5D&comment=Title%3A+Singleton+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5238-591689+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 8.7. Create EJB 3.x Session Bean wizard

3. Specify class information
Supply the following details:

Project

Verify the correct project is selected.

Source folder

This is the folder that the Java source files will be created in. This should not usually need to
be changed.

Package

Specify the package that the class belongs to.

Class name

Specify the name of the class that will be the session bean.

Development Guide

132

Superclass

The session bean class can inherit from a super class. Specify that here if your session has a
super class.

State type

Specify the state type of the session bean: stateless, stateful, or singleton.

Business Interfaces

By default the No-interface box is checked so no interfaces will be created. Check the
boxes for the interfaces you wish to define and adjust the names if necessary.

Remember that enterprise beans in a web archive (WAR) only support EJB 3.1 Lite and this
does not include remote business interfaces.

Click Next.

4. Session Bean Specific Information
You can enter in additional information here to further customize the session bean. It is not
required to change any of the information here.

Items that you can change are:

Bean name.

Mapped name.

Transaction type (Container managed or Bean managed).

Additional interfaces can be supplied that the bean must implement.

You can also specify EJB 2.x Home and Component interfaces if required.

5. Finish
Click Finish and the new session bean will be created and added to the project. The files for any
new business interfaces will also be created if they were specified.

CHAPTER 8. ENTERPRISE JAVABEANS

133

Figure 8.8. New Session Bean in Red Hat JBoss Developer Studio

Report a bug

8.4. MESSAGE-DRIVEN BEANS

8.4.1. Message-Driven Beans

Message-driven Beans (MDBs) provide an event driven model for application development. The
methods of MDBs are not injected into or invoked from client code but are triggered by the receipt of
messages from a messaging service such as a Java Messaging Service (JMS) server. The Java EE 6
specification requires that JMS is supported but other messaging systems can be supported as well.

Report a bug

8.4.2. Resource Adapters

A resource adapter is a deployable Java EE component that provides communication between a Java
EE application and an Enterprise Information System (EIS) using the Java Connector Architecture
(JCA) specification. A resource adapter is often provided by EIS vendors to allow easy integration of
their products with Java EE applications.

An Enterprise Information System can be any other software system within an organization. Examples
include Enterprise Resource Planning (ERP) systems, database systems, e-mail servers and proprietary
messaging systems.

A resource adapter is packaged in a Resource Adapter Archive (RAR) file which can be deployed to
JBoss EAP 6. A RAR file may also be included in an Enterprise Archive (EAR) deployment.

Report a bug

8.4.3. Create a JMS-based Message-Driven Bean in Red Hat JBoss Developer
Studio

This procedure shows how to add a JMS-based Message-Driven Bean to a project in Red Hat JBoss

Development Guide

134

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5440-759202+%5BLatest%5D&comment=Title%3A+Add+Session+Beans+to+a+Project+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5440-759202+24+May+2015+19%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4528-591667+%5BLatest%5D&comment=Title%3A+Message-Driven+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4528-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4516-591663+%5BLatest%5D&comment=Title%3A+Resource+Adapters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4516-591663+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This procedure shows how to add a JMS-based Message-Driven Bean to a project in Red Hat JBoss
Developer Studio. This procedure creates an EJB 3.x Message-Driven Bean that uses annotations.

Prerequisites:

1. You must have an existing project open in Red Hat JBoss Developer Studio.

2. You must know the name and type of the JMS destination that the bean will be listening to.

3. Support for Java Messaging Service (JMS) must be enabled in the JBoss EAP 6 configuration
to which this bean will be deployed.

Procedure 8.6. Add a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio

1. Open the Create EJB 3.x Message-Driven Bean Wizard
Go to File → New → Other. Select EJB/Message-Driven Bean (EJB 3.x) and click the Next
button.

Figure 8.9. Create EJB 3.x Message-Driven Bean Wizard

2. Specify class file destination details
There are three sets of details to specify for the bean class here: Project, Java class, and
message destination.

CHAPTER 8. ENTERPRISE JAVABEANS

135

Project

If multiple projects exist in the Workspace, ensure that the correct one is selected in the
Project menu.

The folder where the source file for the new bean will be created is ejbModule under the
selected project's directory. Only change this if you have a specific requirement.

Java class

The required fields are: Java package and class name.

It is not necessary to supply a Superclass unless the business logic of your application
requires it.

Message Destination

These are the details you must supply for a JMS-based Message-Driven Bean:

Destination name. This is the queue or topic name that contains the messages that the
bean will respond to.

By default the JMS checkbox is selected. Do not change this.

Set Destination type to Queue or Topic as required.

Click the Next button.

3. Enter Message-Driven Bean specific information
The default values here are suitable for a JMS-based Message-Driven bean using Container-
managed transactions.

Change the Transaction type to Bean if the Bean will use Bean-managed transactions.

Change the Bean name if a different bean name than the class name is required.

The JMS Message Listener interface will already be listed. You do not need to add or
remove any interfaces unless they are specific to your applications business logic.

Leave the checkboxes for creating method stubs selected.

Click the Finish button.

Result: The Message-Driven Bean is created with stub methods for the default constructor and the
onMessage() method. A Red Hat JBoss Developer Studio editor window opened with the
corresponding file.

Report a bug

8.4.4. Specifying a Resource Adapter in jboss-ejb3.xml for an MDB

In the jboss-ejb3.xml deployment descriptor you can specify a resource adapter for an MDB to use.
Alternatively, to configure a JBoss EAP 6 server-wide default resource adapter for MDBs, see
Configuring Message-Driven Beans in the Administration and Configuration Guide .

To specify a resource adapter in jboss-ejb3.xml for an MDB, use the following example.

Development Guide

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5094-681244+%5BLatest%5D&comment=Title%3A+Create+a+JMS-based+Message-Driven+Bean+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5094-681244+03+Jul+2014+11%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 8.1. jboss-ejb3.xml Configuration for an MDB Resource Adapter

For a resource adapter located in an EAR, you must use the following syntax for <mdb:resource-
adapter-name>:

For a resource adapter that is in another EAR:

For a resource adapter that is in the same EAR as the MDB, you can omit the EAR name:

Report a bug

8.4.5. Enable EJB and MDB Property Substitution in an Application

A new feature in Red Hat JBoss Enterprise Application Platform allows you to enable property
substitution in EJBs and MDBs using the @ActivationConfigProperty and @Resource annotations.
Property substitution requires the following configuration and code changes.

You must enable property substitution in the JBoss EAP server configuration file.

You must define the system properties in the server configuration file or pass them as
arguments when you start the JBoss EAP server.

You must modify the code to use the substitution variables.

Procedure 8.7. Implement Property Substitution in an MDB Application

The following code examples are based on the helloworld-mdb quickstart that ships with JBoss EAP
6.3 or later. This topic shows you how to modify that quickstart to enable property substitution.

1. Configure the JBoss EAP server to enable property substitution.
The JBoss EAP server must be configured to enable property substitution. To do this, set the
<annotation-property-replacement> attribute in the ee subsystem of the server configuration
file to true.

a. Back up the server configuration file. The helloworld-mdb quickstart example requires the
full profile for a standalone server, so this is the standalone/configuration/standalone-
full.xml file. If you are running your server in a managed domain, this is the

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:jee="http://java.sun.com/xml/ns/javaee"
 xmlns:mdb="urn:resource-adapter-binding">
 <jee:assembly-descriptor>
 <mdb:resource-adapter-binding>
 <jee:ejb-name>MyMDB</jee:ejb-name>
 <mdb:resource-adapter-name>MyResourceAdapter.rar</mdb:resource-adapter-name>
 </mdb:resource-adapter-binding>
 </jee:assembly-descriptor>
</jboss>

<mdb:resource-adapter-
name>OtherDeployment.ear#MyResourceAdapter.rar</mdb:resource-adapter-name>

<mdb:resource-adapter-name>#MyResourceAdapter.rar</mdb:resource-adapter-name>

CHAPTER 8. ENTERPRISE JAVABEANS

137

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42008-759203+%5BLatest%5D&comment=Title%3A+Specifying+a+Resource+Adapter+in+%3Cfilename%3Ejboss-ejb3.xml%3C%2Ffilename%3E+for+an+MDB%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42008-759203+24+May+2015+19%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

domain/configuration/domain.xml file.

b. Start the JBoss EAP server with the full profile.

For Linux:

EAP_HOME/bin/standalone.sh -c standalone-full.xml

For Windows:

EAP_HOMEbin\standalone.bat -c standalone-full.xml

c. Launch the Management CLI using the command for your operating system.

For Linux:

EAP_HOME/bin/jboss-cli.sh --connect

For Windows:

EAP_HOME\bin\jboss-cli.bat --connect

d. Type the following command to enable annotation property substitution.

/subsystem=ee:write-attribute(name=annotation-property-replacement,value=true)

e. You should see the following result:

{"outcome" => "success"}

f. Review the changes to the JBoss EAP server configuration file. The ee subsystem should
now contain the following XML.

2. Define the system properties.
You can specify the system properties in the server configuration file or you can pass them as
command line arguments when you start the JBoss EAP server. System properties defined in
the server configuration file take precedence over those passed on the command line when you
start the server.

Define the system properties in the server configuration file.

a. Start the JBoss EAP server and Management API as described in the previous step.

b. Use the following command syntax to configure a system property in the JBoss EAP
server:

/system-property=PROPERTY_NAME:add(value=PROPERTY_VALUE)

<subsystem xmlns="urn:jboss:domain:ee:1.2">
 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>
 <jboss-descriptor-property-replacement>true</jboss-descriptor-property-replacement>
 <annotation-property-replacement>true</annotation-property-replacement>
</subsystem>

Development Guide

138

For the helloworld-mdb quickstart, we configure the following system properties:

/system-
property=property.helloworldmdb.queue:add(value=java:/queue/HELLOWORLDMDBP
ropQueue)
/system-
property=property.helloworldmdb.topic:add(value=java:/topic/HELLOWORLDMDBProp
Topic)
/system-property=property.connection.factory:add(value=java:/ConnectionFactory)

c. Review the changes to the JBoss EAP server configuration file. The following system
properties should now appear in the after the <extensions>.

Pass the system properties as arguments on the command line when you start the JBoss
EAP server in the form of -DPROPERTY_NAME=PROPERTY_VALUE. The following is an
example of how to pass the arguments for the system properties defined in the previous
step.

EAP_HOME/bin/standalone.sh -c standalone-full.xml -
Dproperty.helloworldmdb.queue=java:/queue/HELLOWORLDMDBPropQueue -
Dproperty.helloworldmdb.topic=java:/topic/HELLOWORLDMDBPropTopic -
Dproperty.connection.factory=java:/ConnectionFactory

3. Modify the code to use the system property substitutions.
Replace hard-coded @ActivationConfigProperty and @Resource annotation values with
substitutions for the newly defined system properties. The following are examples of how to
change the helloworld-mdb quickstart to use the newly defined system property substitutions
within the annotations in the source code.

a. Change the @ActivationConfigProperty destination property value in the
HelloWorldQueueMDB class to use the substitution for the system property. The
@MessageDriven annotation should now look like this:

b. Change the @ActivationConfigProperty destination property value in the
HelloWorldTopicMDB class to use the substitution for the system property. The
@MessageDriven annotation should now look like this:

<system-properties>
 <property name="property.helloworldmdb.queue"
value="java:/queue/HELLOWORLDMDBPropQueue"/>
 <property name="property.helloworldmdb.topic"
value="java:/topic/HELLOWORLDMDBPropTopic"/>
 <property name="property.connection.factory" value="java:/ConnectionFactory"/>
</system-properties>

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Queue"),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
"${property.helloworldmdb.queue}"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =
"Auto-acknowledge") })

@MessageDriven(name = "HelloWorldQTopicMDB", activationConfig = {

CHAPTER 8. ENTERPRISE JAVABEANS

139

c. Change the @Resource annotations in the HelloWorldMDBServletClient class to use the
system property substitutions. The code should now look like this:

d. Modify the hornetq-jms.xml file to use the system property substitution values.

4. Deploy the application. The application will now use the values specified by the system
properties for the @Resource and @ActivationConfigProperty property values.

Report a bug

8.5. INVOKING SESSION BEANS

8.5.1. Invoke a Session Bean Remotely using JNDI

This task describes how to add support to a remote client for the invocation of session beans using JNDI.
The task assumes that the project is being built using Maven.

The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The
quickstart contains projects for both the session beans to deploy and the remote client. The code
samples below are taken from the remote client project.

This task assumes that the session beans do not require authentication.

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Topic"),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
"${property.helloworldmdb.topic}"),
 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =
"Auto-acknowledge") })

@Resource(mappedName = "${property.connection.factory}")
private ConnectionFactory connectionFactory;

@Resource(mappedName = "${property.helloworldmdb.queue}")
private Queue queue;

@Resource(mappedName = "${property.helloworldmdb.topic}")
private Topic topic;

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
 <hornetq-server>
 <jms-destinations>
 <jms-queue name="HELLOWORLDMDBQueue">
 <entry name="${property.helloworldmdb.queue}"/>
 </jms-queue>
 <jms-topic name="HELLOWORLDMDBTopic">
 <entry name="${property.helloworldmdb.topic}"/>
 </jms-topic>
 </jms-destinations>
 </hornetq-server>
</messaging-deployment>

Development Guide

140

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30840-744610+%5BLatest%5D&comment=Title%3A+Enable+EJB+and+MDB+Property+Substitution+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30840-744610+24+Feb+2015+11%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Prerequisites

The following prerequisites must be satisfied before beginning:

You must already have a Maven project created ready to use.

Configuration for the JBoss EAP 6 Maven repository has already been added.

The session beans that you want to invoke are already deployed.

The deployed session beans implement remote business interfaces.

The remote business interfaces of the session beans are available as a Maven dependency. If
the remote business interfaces are only available as a JAR file then it is recommended to add
the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the
install:install-file goal for directions, http://maven.apache.org/plugins/maven-install-
plugin/usage.html

You need to know the hostname and JNDI port of the server hosting the session beans.

To invoke a session bean from a remote client you must first configure the project correctly.

Procedure 8.8. Add Maven Project Configuration for Remote Invocation of Session Beans

1. Add the required project dependencies

The pom.xml for the project must be updated to include the necessary dependencies.

2. Add the jboss-ejb-client.properties file

The JBoss EJB client API expects to find a file in the root of the project named jboss-ejb-
client.properties that contains the connection information for the JNDI service. Add this file to
the src/main/resources/ directory of your project with the following content.



In the following line, set SSL_ENABLED to true for SSL
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default
Uncomment the following line to set SSL_STARTTLS to true for SSL
remote.connection.default.connect.options.org.xnio.Options.SSL_STARTTLS=true
remote.connection.default.host=localhost
remote.connection.default.port = 4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS
=false
Add any of the following SASL options if required

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS
=false

CHAPTER 8. ENTERPRISE JAVABEANS

141

http://maven.apache.org/plugins/maven-install-plugin/usage.html

Change the host name and port to match your server. 4447 is the default port number. For a
secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS
line. The Remoting interface in the container supports secured and unsecured connections
using the same port.

3. Add dependencies for the remote business interfaces

Add the Maven dependencies to the pom.xml for the remote business interfaces of the session
beans.

Now that the project has been configured correctly, you can add the code to access and invoke the
session beans.

Procedure 8.9. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean

1. Handle checked exceptions

Two of the methods used in the following code (InitialContext() and lookup()) have a checked
exception of type javax.naming.NamingException. These method calls must either be
enclosed in a try/catch block that catches NamingException or in a method that is declared to
throw NamingException. The ejb-remote quickstart uses the second technique.

2. Create a JNDI Context

A JNDI Context object provides the mechanism for requesting resources from the server.
Create a JNDI context using the following code:

The connection properties for the JNDI service are read from the jboss-ejb-client.properties
file.

3. Use the JNDI Context's lookup() method to obtain a bean proxy

Invoke the lookup() method of the bean proxy and pass it the JNDI name of the session bean
you require. This will return an object that must be cast to the type of the remote business
interface that contains the methods you want to invoke.

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=f
alse

remote.connection.default.connect.options.org.xnio.Options.SASL_DISALLOWED_MECHANIS
MS=JBOSS-LOCAL-USER

<dependency>
 <groupId>org.jboss.as.quickstarts</groupId>
 <artifactId>jboss-ejb-remote-server-side</artifactId>
 <type>ejb-client</type>
 <version>${project.version}</version>
</dependency>

final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
final Context context = new InitialContext(jndiProperties);

Development Guide

142

Session bean JNDI names are defined using a special syntax. For more information, see
Section 8.8.1, “EJB JNDI Naming Reference” .

4. Invoke methods

Now that you have a proxy bean object you can invoke any of the methods contained in the
remote business interface.

The proxy bean passes the method invocation request to the session bean on the server, where
it is executed. The result is returned to the proxy bean which then returns it to the caller. The
communication between the proxy bean and the remote session bean is transparent to the
caller.

You should now be able to configure a Maven project to support invoking session beans on a remote
server and write the code invoke the session beans methods using a proxy bean retrieved from the
server using JNDI.

Report a bug

8.5.2. About EJB Client Contexts

JBoss EAP 6 introduced the EJB client API for managing remote EJB invocations. The JBoss EJB client
API uses the EJBClientContext, which may be associated with and be used by one or more threads
concurrently. The means an EJBClientContext can potentially contain any number of EJB receivers. An
EJB receiver is a component that knows how to communicate with a server that is capable of handling
the EJB invocation. Typically, EJB remote applications can be classified into the following:

A remote client, which runs as a standalone Java application.

A remote client, which runs within another JBoss EAP 6 instance.

Depending on the type of remote client, from an EJB client API point of view, there can potentially be
more than one EJBClientContext within a JVM.

While standalone applications typically have a single EJBClientContext that may be backed by any
number of EJB receivers, this isn't mandatory. If a standalone application has more than one
EJBClientContext, an EJB client context selector is responsible for returning the appropriate context.

In case of remote clients that run within another JBoss EAP 6 instance, each deployed application will
have a corresponding EJB client context. Whenever that application invokes another EJB, the
corresponding EJB client context is used to find the correct EJB receiver, which then handles the
invocation.

Report a bug

final RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
 "ejb:/jboss-ejb-remote-server-side//CalculatorBean!" +
 RemoteCalculator.class.getName());

int a = 204;
int b = 340;
System.out.println("Adding " + a + " and " + b + " via the remote stateless calculator deployed
on the server");
int sum = statelessRemoteCalculator.add(a, b);
System.out.println("Remote calculator returned sum = " + sum);

CHAPTER 8. ENTERPRISE JAVABEANS

143

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5719-766863+%5BLatest%5D&comment=Title%3A+Invoke+a+Session+Bean+Remotely+using+JNDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5719-766863+05+Aug+2015+11%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14184-592104+%5BLatest%5D&comment=Title%3A+About+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14184-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

8.5.3. Considerations When Using a Single EJB Context

Summary

You must consider your application requirements when using a single EJB client context with standalone
remote clients. For more information about the different types of remote clients, refer to: Section 8.5.2,
“About EJB Client Contexts” .

Typical Process for a Remote Standalone Client with a Single EJB Client Context

A remote standalone client typically has just one EJB client context backed by any number of EJB
receivers. The following is an example of a standalone remote client application:

Remote client JNDI lookups are usually backed by a jboss-ejb-client.properties file, which is used to set
up the EJB client context and the EJB receivers. This configuration also includes the security
credentials, which are then used to create the EJB receiver that connects to the JBoss EAP 6 server.
When the above code is invoked, the EJB client API looks for the EJB client context, which is then used
to select the EJB receiver that will receive and process the EJB invocation request. In this case, there is
just the single EJB client context, so that context is used by the above code to invoke the bean. The
procedure to invoke a session bean remotely using JNDI is described in greater detail here: Section 8.5.1,
“Invoke a Session Bean Remotely using JNDI” .

Remote Standalone Client Requiring Different Credentials

A user application may want to invoke a bean more than once, but connect to the JBoss EAP 6 server
using different security credentials. The following is an example of a standalone remote client
application that invokes the same bean twice:

In this case, the application wants to connect to the same server instance to invoke the EJB hosted on
that server, but wants to use two different credentials while connecting to the server. Because the client
application has a single EJB client context, which can have only one EJB receiver for each server

public class MyApplication {
 public static void main(String args[]) {
 final javax.naming.Context ctxOne = new javax.naming.InitialContext();
 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");
 beanOne.doSomething();
 ...
 }
}

public class MyApplication {
 public static void main(String args[]) {
 // Use the "foo" security credential connect to the server and invoke this bean instance
 final javax.naming.Context ctxOne = new javax.naming.InitialContext();
 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");
 beanOne.doSomething();
 ...

 // Use the "bar" security credential to connect to the server and invoke this bean instance
 final javax.naming.Context ctxTwo = new javax.naming.InitialContext();
 final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");
 beanTwo.doSomething();
 ...
 }
}

Development Guide

144

instance, this means the above code uses just one credential to connect to the server and the code
does not execute as the application expects it to.

Solution

Scoped EJB client contexts offer a solution to this issue. They provide a way to have more control over
the EJB client contexts and their associated JNDI contexts, which are typically used for EJB invocations.
For more information about scoped EJB client contexts, refer to Section 8.5.4, “Using Scoped EJB
Client Contexts” and Section 8.5.5, “Configure EJBs Using a Scoped EJB Client Context” .

Report a bug

8.5.4. Using Scoped EJB Client Contexts

Summary

To invoke an EJB In earlier versions of JBoss EAP 6, you would typically create a JNDI context and pass
it the PROVIDER_URL, which would point to the target server. Any invocations done on EJB proxies that
were looked up using that JNDI context, would end up on that server. With scoped EJB client contexts,
user applications have control over which EJB receiver is used for a specific invocation.

Use Scoped EJB Client Context in a Remote Standalone Client

Prior to the introduction of scoped EJB client contexts, the context was typically scoped to the client
application. Scoped client contexts now allow the EJB client contexts to be scoped with the JNDI
contexts. The following is an example of a standalone remote client application that invokes the same
bean twice using a scoped EJB client context:

To use the scoped EJB client context, you configure EJB client properties programmatically and pass
the properties on context creation. The properties are the same set of properties that are used in the
standard jboss-ejb-client.properties file. To scope the EJB client context to the JNDI context, you
must also specify the org.jboss.ejb.client.scoped.context property and set its value to true. This
property notifies the EJB client API that it must create an EJB client context, which is backed by EJB
receivers, and that the created context is then scoped or visible only to the JNDI context that created it.

public class MyApplication {
 public static void main(String args[]) {

 // Use the "foo" security credential connect to the server and invoke this bean instance
 final Properties ejbClientContextPropsOne = getPropsForEJBClientContextOne():
 final javax.naming.Context ctxOne = new
javax.naming.InitialContext(ejbClientContextPropsOne);
 final MyBeanInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/bean!interface");
 beanOne.doSomething();
 ...
 ctxOne.close();

 // Use the "bar" security credential to connect to the server and invoke this bean instance
 final Properties ejbClientContextPropsTwo = getPropsForEJBClientContextTwo():
 final javax.naming.Context ctxTwo = new
javax.naming.InitialContext(ejbClientContextPropsTwo);
 final MyBeanInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/bean!interface");
 beanTwo.doSomething();
 ...
 ctxTwo.close();
 }
}

CHAPTER 8. ENTERPRISE JAVABEANS

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14185-592104+%5BLatest%5D&comment=Title%3A+Considerations+When+Using+a+Single+EJB+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14185-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Any EJB proxies looked up or invoked using this JNDI context will only know of the EJB client context
associated with this JNDI context. Other JNDI contexts used by the application to lookup and invoke
EJBs will not know about the other scoped EJB client contexts.

JNDI contexts that do not pass the org.jboss.ejb.client.scoped.context property and aren't scoped to
an EJB client context will use the default behavior, which is to use the existing EJB client context that is
typically tied to the entire application.

Scoped EJB client contexts provide user applications with the flexibility that was associated with the
JNP based JNDI invocations in previous versions of JBoss EAP. It provides user applications with more
control over which JNDI context communicates to which server and how it connects to that server.

NOTE

With the scoped context, the underlying resources are no longer handled by the
container or the API, so you must close the InitialContext when it is no longer needed.
When the InitialContext is closed, the resources are released immediately. The proxies
that are bound to it are no longer valid and any invocation will throw an Exception. Failure
to close the InitialContext may result in resource and performance issues.

Report a bug

8.5.5. Configure EJBs Using a Scoped EJB Client Context

Summary

EJBs can be configured using a map-based scoped context. This is achieved by programmatically
populating a Properties map using the standard properties found in the jboss-ejb-client.properties,
specifying true for the org.jboss.ejb.client.scoped.context property, and passing the properties on
the InitialContext creation.

The benefit of using a scoped context is that it allows you to configure access without directly
referencing the EJB or importing JBoss classes. It also provides a way to configure and load balance a
host at runtime in a multithreaded environment.

Procedure 8.10. Configure an EJB Using a Map-Based Scoped Context

1. Set the Properties
Configure the EJB client properties programmatically, specifying the same set of properties
that are used in the standard jboss-ejb-client.properties file. To enable the scoped context,
you must specify the org.jboss.ejb.client.scoped.context property and set its value to true.
The following is an example that configures the properties programmatically.

2. Pass the Properties on the Context Creation

// Configure EJB Client properties for the InitialContext
Properties ejbClientContextProps = new Properties();
ejbClientContextProps.put(“remote.connections”,”name1”);
ejbClientContextProps.put(“remote.connection.name1.host”,”localhost”);
ejbClientContextProps.put(“remote.connection.name1.port”,”4447”);
// Property to enable scoped EJB client context which will be tied to the JNDI context
ejbClientContextProps.put("org.jboss.ejb.client.scoped.context", “true”);

Development Guide

146

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14186-592104+%5BLatest%5D&comment=Title%3A+Using+Scoped+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14186-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Additional Information

Contexts generated by lookup EJB proxies are bound by this scoped context and use only the
relevant connection parameters. This makes it possible to create different contexts to access
data within a client application or to independently access servers using different logins.

In the client, both the scoped InitialContext and the scoped proxy are passed to threads,
allowing each thread to work with the given context. It is also possible to pass the proxy to
multiple threads that can use it concurrently.

The scoped context EJB proxy is serialized on the remote call and then deserialized on the
server. When it is deserialized, the scoped context information is removed and it returns to its
default state. If the deserialized proxy is used on the remote server, because it no longer has the
scoped context that was used when it was created, this can result in an EJBCLIENT000025
error or possibly call an unwanted target by using the EJB name.

Report a bug

8.5.6. EJB Client Properties

Summary

The following tables list properties that can be configured programmatically or in the jboss-ejb-
client.properties file.

EJB Client Global Properties

The following table lists properties that are valid for the whole library within the same scope.

Table 8.1. Global Properties

Property Name Description

endpoint.name Name of the client endpoint. If not set, the default
value is client-endpoint

This can be helpful to distinguish different endpoint
settings because the thread name contains this
property.

// Create the context using the configured properties
InitialContext ic = new InitialContext(ejbClientContextProps);
MySLSB bean = ic.lookup("ejb:myapp/ejb//MySLSBBean!" + MySLSB.class.getName());

CHAPTER 8. ENTERPRISE JAVABEANS

147

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14110-592100+%5BLatest%5D&comment=Title%3A+Configure+EJBs+Using+a+Scoped+EJB+Client+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14110-592100+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

remote.connectionprovider.create.options.or
g.xnio.Options.SSL_ENABLED

Boolean value that specifies whether the SSL
protocol is enabled for all connections.

WARNING

Red Hat recommends that you
explicitly disable SSL in favor
of TLSv1.1 or TLSv1.2 in all
affected packages.

deployment.node.selector The fully qualified name of the implementation of
org.jboss.ejb.client.DeploymentNodeSelector
.

This is used to load balance the invocation for the
EJBs.

invocation.timeout The timeout for the EJB handshake or method
invocation request/response cycle. The value is in
milliseconds.

The invocation of any method throws a
java.util.concurrent.TimeoutException if the
execution takes longer than the timeout period. The
execution completes and the server is not
interrupted.

reconnect.tasks.timeout The timeout for the background reconnect tasks. The
value is in milliseconds.

If a number of connections are down, the next client
EJB invocation will use an algorithm to decide if a
reconnect is necessary to find the right node.

org.jboss.ejb.client.scoped.context Boolean value that specifies whether to enable the
scoped EJB client context. The default value is
false.

If set to true, the EJB Client will use the scoped
context that is tied to the JNDI context. Otherwise
the EJB client context will use the global selector in
the JVM to determine the properties used to call the
remote EJB and host.

Property Name Description

EJB Client Connection Properties

The connection properties start with the prefix remote.connection.CONNECTION_NAME where the
CONNECTION_NAME is a local identifier only used to uniquely identify the connection.

Table 8.2. Connection Properties



Development Guide

148

Property Name Description

remote.connections A comma-separated list of active connection-
names. Each connection is configured by using this
name.

remote.connection.CONNECTION_NAME.hos
t

The host name or IP for the connection.

remote.connection.CONNECTION_NAME.port The port for the connection. The default value is
4447.

remote.connection.CONNECTION_NAME.use
rname

The user name used to authenticate connection
security.

remote.connection.CONNECTION_NAME.pas
sword

The password used to authenticate the user.

remote.connection.CONNECTION_NAME.con
nect.timeout

The timeout period for the initial connection. After
that, the reconnect task will periodically check
whether the connection can be established. The
value is in milliseconds.

remote.connection.CONNECTION_NAME.call
back.handler.class

Fully qualified name of the CallbackHandler class.
It will be used to establish the connection and can not
be changed as long as the connection is open.

remote.connection.CONNECTION_NAME.cha
nnel.options.org.jboss.remoting3.RemotingO
ptions.MAX_OUTBOUND_MESSAGES

Integer value specifying the maximum number of
outbound requests. The default is 80.

There is only one connection from the client (JVM)
to the server to handle all invocations.

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SASL_POLICY
_NOANONYMOUS

Boolean value that determines whether credentials
must be provided by the client to connect
successfully. The default value is true.

If set to true, the client must provide credentials. If
set to false, invocation is allowed as long as the
remoting connector does not request a security
realm.

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SASL_DISALL
OWED_MECHANISMS

Disables certain SASL mechanisms used for
authenticating during connection creation.

JBOSS-LOCAL-USER means the silent
authentication mechanism, used when the client and
server are on the same machine, is disabled.

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SASL_POLICY
_NOPLAINTEXT

Boolean value that enables or disables the use of
plain text messages during the authentication. If
using JAAS, it must be set to false to allow a plain
text password.

CHAPTER 8. ENTERPRISE JAVABEANS

149

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SSL_ENABLE
D

Boolean value that specifies whether the SSL
protocol is enabled for this connection.

WARNING

Red Hat recommends that you
explicitly disable SSL in favor
of TLSv1.1 or TLSv1.2 in all
affected packages.

remote.connection.CONNECTION_NAME.con
nect.options.org.jboss.remoting3.RemotingO
ptions.HEARTBEAT_INTERVAL

Interval to send a heartbeat between client and
server to prevent automatic close, for example, in the
case of a firewall. The value is in milliseconds.

Property Name Description

EJB Client Cluster Properties

If the initial connection connects to a clustered environment, the topology of the cluster is received
automatically and asynchronously. These properties are used to connect to each received member.
Each property starts with the prefix remote.cluster.CLUSTER_NAME where the CLUSTER_NAME
refers to the related to the servers Infinispan subsystem configuration.

Table 8.3. Cluster Properties

Property Name Description

remote.cluster.CLUSTER_NAME.clusternode.
selector

The fully qualified name of the implementation of
org.jboss.ejb.client.ClusterNodeSelector.

This class, rather than
org.jboss.ejb.client.DeploymentNodeSelector
, is used to load balance EJB invocations in a
clustered environment. If the cluster is completely
down, the invocation will fail with No ejb receiver
available.

remote.cluster.CLUSTER_NAME.channel.opti
ons.org.jboss.remoting3.RemotingOptions.M
AX_OUTBOUND_MESSAGES

Integer value specifying the maximum number of
outbound requests that can be made to the entire
cluster.

remote.cluster.CLUSTER_NAME.node.NODE
_NAME.
channel.options.org.jboss.remoting3.Remoti
ngOptions.MAX_OUTBOUND_MESSAGES

Integer value specifying the maximum number of
outbound requests that can be made to this specific
cluster-node.

Report a bug



Development Guide

150

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14113-744801+%5BLatest%5D&comment=Title%3A+EJB+Client+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14113-744801+25+Feb+2015+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

8.5.7. Remote EJB Data Compression

Previous versions of JBoss EAP included a feature where the message stream that contained the EJB
protocol message could be compressed. This feature has been included in JBoss EAP 6.3 and later.

NOTE

Compression currently can only be specified by annotations on the EJB interface which
should be on the client and server side. There is not currently an XML equivalent to
specify compression hints.

Data compression hints can be specified via the JBoss annotation
org.jboss.ejb.client.annotation.CompressionHint. The hint values specify whether to compress the
request, response or request and response. Adding @CompressionHint defaults to
compressResponse=true and compressRequest=true.

The annotation can be specified at the interface level to apply to all methods in the EJB's interface such
as:

Or the annotation can be applied to specific methods in the EJB's interface such as:

The compressionLevel setting shown above can have the following values:

BEST_COMPRESSION

BEST_SPEED

DEFAULT_COMPRESSION

NO_COMPRESSION

import org.jboss.ejb.client.annotation.CompressionHint;

@CompressionHint(compressResponse = false)
public interface ClassLevelRequestCompressionRemoteView {
 String echo(String msg);
}

import org.jboss.ejb.client.annotation.CompressionHint;

public interface CompressableDataRemoteView {

 @CompressionHint(compressResponse = false, compressionLevel =
Deflater.BEST_COMPRESSION)
 String echoWithRequestCompress(String msg);

 @CompressionHint(compressRequest = false)
 String echoWithResponseCompress(String msg);

 @CompressionHint
 String echoWithRequestAndResponseCompress(String msg);

 String echoWithNoCompress(String msg);
}

CHAPTER 8. ENTERPRISE JAVABEANS

151

The compressionLevel setting defaults to Deflater.DEFAULT_COMPRESSION.

Class level annotation with method level overrides:

On the client side ensure the org.jboss.ejb.client.view.annotation.scan.enabled system property is
set to true. This property tells JBoss EJB Client to scan for annotations.

Report a bug

8.6. CONTAINER INTERCEPTORS

8.6.1. About Container Interceptors

Standard Java EE interceptors, as defined by the JSR 318, Enterprise JavaBeans 3.1 specification, are
expected to run after the container has completed security context propagation, transaction
management, and other container provided invocation processing. This is a problem if the application
must intercept a call before a specific container interceptor is run.

Releases prior to JBoss EAP 6.0 provided a way to plug server side interceptors into the invocation flow
so you could run specific application logic before the container completed the invocation processing.
This feature was implemented in JBoss EAP 6.1. This implementation allows standard Java EE
interceptors to be used as container interceptors, meaning they use the same XSD elements that are
allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.

Positioning of the Container Interceptor in the Interceptor Chain

The container interceptors configured for an EJB are guaranteed to be run before the JBoss EAP
provided security interceptors, transaction management interceptors, and other server provided
interceptors. This allows specific application container interceptors to process or configure relevant
context data before the invocation proceeds.

Differences Between the Container Interceptor and the Java EE Interceptor API

Although container interceptors are modeled to be similar to Java EE interceptors, there are some
differences in the semantics of the API. For example, it is illegal for container interceptors to invoke the
javax.interceptor.InvocationContext.getTarget() method because these interceptors are invoked long
before the EJB components are setup or instantiated.

Report a bug

8.6.2. Create a Container Interceptor Class

Summary

Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the

@CompressionHint
public interface MethodOverrideDataCompressionRemoteView {

 @CompressionHint(compressRequest = false)
 String echoWithResponseCompress(final String msg);

 @CompressionHint(compressResponse = false)
 String echoWithRequestCompress(final String msg);

 String echoWithNoExplicitDataCompressionHintOnMethod(String msg);
}

Development Guide

152

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44808-768517+%5BLatest%5D&comment=Title%3A+Remote+EJB+Data+Compression%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44808-768517+25+Aug+2015+23%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/en/jsr/detail?id=318
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13885-676196+%5BLatest%5D&comment=Title%3A+About+Container+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13885-676196+24+Jun+2014+09%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that is invoked during the invocation on the
bean.

The following is an example of a container interceptor class that marks the iAmAround method for
invocation:

Example 8.2. Container Interceptor Class Example

For an example of a container interceptor descriptor file configured to use this class, see the jboss-
ejb3.xml file described here: Section 8.6.3, “Configure a Container Interceptor” .

Report a bug

8.6.3. Configure a Container Interceptor

Summary

Container interceptors use the standard Java EE interceptor libraries, meaning they use the same XSD
elements that are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.
Because they are based on the standard Jave EE interceptor libraries, container interceptors may only
be configured using deployment descriptors. This was done by design so applications would not require
any JBoss specific annotation or other library dependencies. For more information about container
interceptors, refer to: Section 8.6.1, “About Container Interceptors” .

Procedure 8.11. Create the Descriptor File to Configure the Container Interceptor

1. Create a jboss-ejb3.xml file in the META-INF directory of the EJB deployment.

2. Configure the container interceptor elements in the descriptor file.

a. Use the urn:container-interceptors:1.0 namespace to specify configuration of container
interceptor elements.

b. Use the <container-interceptors> element to specify the container interceptors.

c. Use the <interceptor-binding> elements to bind the container interceptor to the EJBs.
The interceptors can be bound in either of the following ways:

Bind the interceptor to all the EJBs in the deployment using the * wildcard.

Bind the interceptor at the individual bean level using the specific EJB name.

Bind the interceptor at the specific method level for the EJBs.

NOTE

public class ClassLevelContainerInterceptor {
 @AroundInvoke
 private Object iAmAround(final InvocationContext invocationContext) throws Exception {
 return this.getClass().getName() + " " + invocationContext.proceed();
 }
}

CHAPTER 8. ENTERPRISE JAVABEANS

153

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13887-621655+%5BLatest%5D&comment=Title%3A+Create+a+Container+Interceptor+Class%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13887-621655+14+Mar+2014+16%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

These elements are configured using the EJB 3.1 XSD in the same way it is
done for Java EE interceptors.

3. Review the following descriptor file for examples of the above elements.

Example 8.3. jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:jee="http://java.sun.com/xml/ns/javaee"
 xmlns:ci ="urn:container-interceptors:1.0">

 <jee:assembly-descriptor>
 <ci:container-interceptors>
 <!-- Default interceptor -->
 <jee:interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</inte
rceptor-class>
 </jee:interceptor-binding>
 <!-- Class level container-interceptor -->
 <jee:interceptor-binding>
 <ejb-name>AnotherFlowTrackingBean</ejb-name>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor
</interceptor-class>
 </jee:interceptor-binding>
 <!-- Method specific container-interceptor -->
 <jee:interceptor-binding>
 <ejb-name>AnotherFlowTrackingBean</ejb-name>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterce
ptor</interceptor-class>
 <method>
 <method-name>echoWithMethodSpecificContainerInterceptor</method-
name>
 </method>
 </jee:interceptor-binding>
 <!-- container interceptors in a specific order -->
 <jee:interceptor-binding>
 <ejb-name>AnotherFlowTrackingBean</ejb-name>
 <interceptor-order>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerInterceptor
</interceptor-class>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterce
ptor</interceptor-class>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerInterceptorOne</inte
rceptor-class>
 </interceptor-order>
 <method>

Development Guide

154

The XSD for the urn:container-interceptors:1.0 namespace is available at
EAP_HOME/docs/schema/jboss-ejb-container-interceptors_1_0.xsd.

Report a bug

8.6.4. Change the Security Context Identity

Summary

By default, when you make a remote call to an EJB deployed to the application server, the connection to
the server is authenticated and any request received over this connection is executed as the identity
that authenticated the connection. This is true for both client-to-server and server-to-server calls. If you
need to use different identities from the same client, you normally need to open multiple connections to
the server so that each one is authenticated as a different identity. Rather than open multiple client
connections, you can give permission to the authenticated user to execute a request as a different user.

This topic describes how to switch identities on the existing client connection. The code examples are
abridged versions of the code in the quickstart. Refer to the ejb-security-interceptors quickstart for a
complete working example.

Procedure 8.12. Change the Identity of the Security Context

To change the identity of a secured connection, you must create the following 3 components.

1. Create the client side interceptor
The client side interceptor must implement the org.jboss.ejb.client.EJBClientInterceptor
interface. The interceptor must pass the requested identity through the context data map,
which can be obtained via a call to EJBClientInvocationContext.getContextData(). The
following is an example of client side interceptor code:

 <method-name>echoInSpecificOrderOfContainerInterceptors</method-
name>
 </method>
 </jee:interceptor-binding>
 </ci:container-interceptors>
 </jee:assembly-descriptor>
</jboss>

public class ClientSecurityInterceptor implements EJBClientInterceptor {

 public void handleInvocation(EJBClientInvocationContext context) throws Exception {
 Principal currentPrincipal = SecurityActions.securityContextGetPrincipal();

 if (currentPrincipal != null) {
 Map<String, Object> contextData = context.getContextData();
 contextData.put(ServerSecurityInterceptor.DELEGATED_USER_KEY,
currentPrincipal.getName());
 }
 context.sendRequest();
 }

 public Object handleInvocationResult(EJBClientInvocationContext context) throws
Exception {

CHAPTER 8. ENTERPRISE JAVABEANS

155

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13886-606491+%5BLatest%5D&comment=Title%3A+Configure+a+Container+Interceptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13886-606491+26+Feb+2014+15%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

User applications can insert the interceptor into the interceptor chain in the EJBClientContext
in one of the following ways:

Programmatically
With this approach, you call the
org.jboss.ejb.client.EJBClientContext.registerInterceptor(int order,
EJBClientInterceptor interceptor) method and pass the order and the interceptor
instance. The order determines where this client interceptor is placed in the interceptor
chain.

ServiceLoader Mechanism
With this approach, you create a META-
INF/services/org.jboss.ejb.client.EJBClientInterceptor file and place or package it in the
classpath of the client application. The rules for the file are dictated by the Java
ServiceLoader Mechanism. This file is expected to contain a separate line for each fully
qualified class name of the EJB client interceptor implementation. The EJB client
interceptor classes must be available in the classpath. EJB client interceptors added using
the ServiceLoader mechanism are added to the end of the client interceptor chain, in the
order they are found in the classpath. The ejb-security-interceptors quickstart uses this
approach.

2. Create and configure the server side container interceptor
Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that will be invoked during the
invocation on the bean. For more information about container interceptors, refer to:
Section 8.6.1, “About Container Interceptors” .

a. Create the container interceptor
This interceptor receives the InvocationContext with the identity and requests the switch
to that new identity. The following is an abridged version of the actual code example:

 return context.getResult();
 }
}

 public class ServerSecurityInterceptor {

 private static final Logger logger = Logger.getLogger(ServerSecurityInterceptor.class);

 static final String DELEGATED_USER_KEY =
ServerSecurityInterceptor.class.getName() + ".DelegationUser";

 @AroundInvoke
 public Object aroundInvoke(final InvocationContext invocationContext) throws
Exception {
 Principal desiredUser = null;
 UserPrincipal connectionUser = null;

 Map<String, Object> contextData = invocationContext.getContextData();
 if (contextData.containsKey(DELEGATED_USER_KEY)) {
 desiredUser = new SimplePrincipal((String)
contextData.get(DELEGATED_USER_KEY));

 Collection<Principal> connectionPrincipals =
SecurityActions.getConnectionPrincipals();

Development Guide

156

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

b. Configure the container interceptor
For information on how to configure server side container interceptors, refer to:
Section 8.6.3, “Configure a Container Interceptor” .

3. Create the JAAS LoginModule
This component is responsible for verifying that user is allowed to execute requests as the
requested identity. The following abridged code examples show the methods that peform the
login and validation:

 if (connectionPrincipals != null) {
 for (Principal current : connectionPrincipals) {
 if (current instanceof UserPrincipal) {
 connectionUser = (UserPrincipal) current;
 break;
 }
 }

 } else {
 throw new IllegalStateException("Delegation user requested but no user on
connection found.");
 }
 }

 ContextStateCache stateCache = null;
 try {
 if (desiredUser != null && connectionUser != null
 && (desiredUser.getName().equals(connectionUser.getName()) == false)) {
 // The final part of this check is to verify that the change does actually indicate a
change in user.
 try {
 // We have been requested to use an authentication token
 // so now we attempt the switch.
 stateCache = SecurityActions.pushIdentity(desiredUser, new
OuterUserCredential(connectionUser));
 } catch (Exception e) {
 logger.error("Failed to switch security context for user", e);
 // Don't propagate the exception stacktrace back to the client for security
reasons
 throw new EJBAccessException("Unable to attempt switching of user.");
 }
 }

 return invocationContext.proceed();
 } finally {
 // switch back to original context
 if (stateCache != null) {
 SecurityActions.popIdentity(stateCache);;
 }
 }
 }

 @SuppressWarnings("unchecked")
 @Override
 public boolean login() throws LoginException {
 if (super.login() == true) {

CHAPTER 8. ENTERPRISE JAVABEANS

157

 log.debug("super.login()==true");
 return true;
 }

 // Time to see if this is a delegation request.
 NameCallback ncb = new NameCallback("Username:");
 ObjectCallback ocb = new ObjectCallback("Password:");

 try {
 callbackHandler.handle(new Callback[] { ncb, ocb });
 } catch (Exception e) {
 if (e instanceof RuntimeException) {
 throw (RuntimeException) e;
 }
 return false; // If the CallbackHandler can not handle the required callbacks then no
chance.
 }

 String name = ncb.getName();
 Object credential = ocb.getCredential();

 if (credential instanceof OuterUserCredential) {
 // This credential type will only be seen for a delegation request, if not seen then the
request is not for us.

 if (delegationAcceptable(name, (OuterUserCredential) credential)) {

 identity = new SimplePrincipal(name);
 if (getUseFirstPass()) {
 String userName = identity.getName();
 if (log.isDebugEnabled())
 log.debug("Storing username '" + userName + "' and empty password");
 // Add the username and an empty password to the shared state map
 sharedState.put("javax.security.auth.login.name", identity);
 sharedState.put("javax.security.auth.login.password", "");
 }
 loginOk = true;
 return true;
 }
 }

 return false; // Attempted login but not successful.
 }

 protected boolean delegationAcceptable(String requestedUser, OuterUserCredential
connectionUser) {
 if (delegationMappings == null) {
 return false;
 }

 String[] allowedMappings = loadPropertyValue(connectionUser.getName(),
connectionUser.getRealm());
 if (allowedMappings.length == 1 && "*".equals(allowedMappings[1])) {
 // A wild card mapping was found.
 return true;
 }

Development Guide

158

See the ejb-security-interceptors quickstart README.html file for complete instructions and more
detailed information about the code.

Report a bug

8.6.5. Use a Client Side Interceptor in an Application

You can plug a client-side interceptor into an application programmatically or using a ServiceLoader
mechanism. The following procedure describes the two methods.

Plug the Interceptor into an Application Programmatically

With this approach, you call the org.jboss.ejb.client.EJBClientContext.registerInterceptor(int order,
EJBClientInterceptor interceptor) API and pass the order and the interceptor instance. The order is
used to determine where exactly in the client interceptor chain this interceptor is placed.

Plug the Interceptor into an Application via the ServiceLoader Mechanism

With this approach, you create a META-INF/services/org.jboss.ejb.client.EJBClientInterceptor file
and place or package it in the classpath of the client application. The rules for the file are dictated by the
Java ServiceLoader Mechanism . This file is expected to contain a separate line for each fully qualified
class name of the EJB client interceptor implementation. The EJB client interceptor classes must be
available in the classpath. EJB client interceptors added using the ServiceLoader mechanism are added
to the end of the client interceptor chain, in the order they are found in the classpath. The ejb-security-
interceptors quickstart uses this approach.

Report a bug

8.7. CLUSTERED ENTERPRISE JAVABEANS

8.7.1. About Clustered Enterprise JavaBeans (EJBs)

EJB components can be clustered for high-availability scenarios. They use different protocols than
HTTP components, so they are clustered in different ways. EJB 2 and 3 stateful and stateless beans can
be clustered.

For information on singletons, refer here: Section 10.3, “Implement an HA Singleton” .

NOTE

EJB 2 entity beans cannot be clustered in EAP 6 and henceforth. This is a migration issue.

Report a bug

8.7.2. Standalone and In-server Client Configuration

 for (String current : allowedMappings) {
 if (requestedUser.equals(current)) {
 return true;
 }
 }
 return false;
}

CHAPTER 8. ENTERPRISE JAVABEANS

159

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13166-665343+%5BLatest%5D&comment=Title%3A+Change+the+Security+Context+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13166-665343+06+Jun+2014+15%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14138-759204+%5BLatest%5D&comment=Title%3A+Use+a+Client+Side+Interceptor+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14138-759204+24+May+2015+20%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4663-680486+%5BLatest%5D&comment=Title%3A+About+Clustered+Enterprise+JavaBeans+%28EJBs%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4663-680486+01+Jul+2014+01%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

To connect an EJB client to a clustered EJB application, you need to expand the existing configuration
in standalone EJB client or in-server EJB client to include cluster connection configuration. The jboss-
ejb-client.properties for standalone EJB client, or even jboss-ejb-client.xml file for a server-side
application must be expanded to include a cluster configuration.

NOTE

An EJB client is any program that uses an EJB on a remote server. A client is in-server
when the JVM doing the calling to the remote server is itself running inside of a server. In
other words, an EAP instance calling out to another EAP instance would be considered an
in-server client.

Example 8.4. Standalone client with jboss-ejb-client.properties configuration

This example shows the additional cluster configuration required for a standalone EJB client.

If an application uses the remote-outbound-connection, you need to configure jboss-ejb-client.xml file
and add cluster configuration as shown in the following example:

Example 8.5. Client application which is deployed in another EAP 6 instance (Configuring jboss-
ejb-client.xml file)

remote.clusters=ejb
remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
remote.cluster.ejb.username=test
remote.cluster.ejb.password=password

<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.2" xsi:noNamespaceSchemaLocation="jboss-
ejb-client_1_2.xsd">
 <client-context>
 <ejb-receivers>
 <!-- this is the connection to access the app-one -->
 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-1" />
 <!-- this is the connection to access the app-two -->
 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-2" />
 </ejb-receivers>

<!-- if an outbound connection connects to a cluster; a list of members is provided after successful
connection.
To connect to this node this cluster element must be defined. -->

 <clusters>
 <!-- cluster of remote-ejb-connection-1 -->
 <cluster name="ejb" security-realm="ejb-security-realm-1" username="quickuser1">
 <connection-creation-options>
 <property name="org.xnio.Options.SSL_ENABLED" value="false" />
 <property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS" value="false" />
 </connection-creation-options>
 </cluster>
 </clusters>
 </client-context>
</jboss-ejb-client>

Development Guide

160

NOTE

For a secure connection you need to add the credentials to cluster configuration in order
to avoid an authentication exception.

Report a bug

8.7.3. Implementing a Custom Load Balancing Policy for EJB Calls

It is possible to implement a custom/alternate load balancing policy so that servers for the application
do not handle the same amount of EJB calls in general or for a specific time period.

You can implement AllClusterNodeSelector for EJB calls. The node selection behavior of
AllClusterNodeSelector is similar to default selector except that AllClusterNodeSelector uses all
available cluster nodes even in case of a large cluster (number of nodes>20). If an unconnected cluster
node is returned it is opened automatically. The following example shows AllClusterNodeSelector
implementation:

You can also implement the SimpleLoadFactorNodeSelector for EJB calls. Load balancing in
SimpleLoadFactorNodeSelector happens based on a load factor. The load factor (2/3/4) is calculated
based on the names of nodes (A/B/C) irrespective of the load on each node. The following example
shows SimpleLoadFactorNodeSelector implementation:

package org.jboss.as.quickstarts.ejb.clients.selector;

import java.util.Arrays;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;

import org.jboss.ejb.client.ClusterNodeSelector;
public class AllClusterNodeSelector implements ClusterNodeSelector {
 private static final Logger LOGGER = Logger.getLogger(AllClusterNodeSelector.class.getName());

 @Override
 public String selectNode(final String clusterName, final String[] connectedNodes, final String[]
availableNodes) {
 if(LOGGER.isLoggable(Level.FINER)) {
 LOGGER.finer("INSTANCE "+this+ " : cluster:"+clusterName+"
connected:"+Arrays.deepToString(connectedNodes)+"
available:"+Arrays.deepToString(availableNodes));
 }

 if (availableNodes.length == 1) {
 return availableNodes[0];
 }
 final Random random = new Random();
 final int randomSelection = random.nextInt(availableNodes.length);
 return availableNodes[randomSelection];
 }

}

CHAPTER 8. ENTERPRISE JAVABEANS

161

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+40832-769949+%5BLatest%5D&comment=Title%3A+Standalone+and+In-server+Client+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40832-769949+07+Sep+2015+03%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

package org.jboss.as.quickstarts.ejb.clients.selector;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

import org.jboss.ejb.client.DeploymentNodeSelector;
public class SimpleLoadFactorNodeSelector implements DeploymentNodeSelector {
 private static final Logger LOGGER =
Logger.getLogger(SimpleLoadFactorNodeSelector.class.getName());
 private final Map<String, List<String>[]> nodes = new HashMap<String, List<String>[]>();
 private final Map<String, Integer> cursor = new HashMap<String, Integer>();

 private ArrayList<String> calculateNodes(Collection<String> eligibleNodes) {
 ArrayList<String> nodeList = new ArrayList<String>();

 for (String string : eligibleNodes) {
 if(string.contains("A") || string.contains("2")) {
 nodeList.add(string);
 nodeList.add(string);
 } else if(string.contains("B") || string.contains("3")) {
 nodeList.add(string);
 nodeList.add(string);
 nodeList.add(string);
 } else if(string.contains("C") || string.contains("4")) {
 nodeList.add(string);
 nodeList.add(string);
 nodeList.add(string);
 nodeList.add(string);
 }
 }
 return nodeList;
 }

 @SuppressWarnings("unchecked")
 private void checkNodeNames(String[] eligibleNodes, String key) {
 if(!nodes.containsKey(key) || nodes.get(key)[0].size() != eligibleNodes.length || !nodes.get(key)
[0].containsAll(Arrays.asList(eligibleNodes))) {
 // must be synchronized as the client might call it concurrent
 synchronized (nodes) {
 if(!nodes.containsKey(key) || nodes.get(key)[0].size() != eligibleNodes.length || !nodes.get(key)
[0].containsAll(Arrays.asList(eligibleNodes))) {
 ArrayList<String> nodeList = new ArrayList<String>();
 nodeList.addAll(Arrays.asList(eligibleNodes));

 nodes.put(key, new List[] { nodeList, calculateNodes(nodeList) });
 }
 }
 }
 }
 private synchronized String nextNode(String key) {

Development Guide

162

Configuration with jboss-ejb-client.properties

You need to add the property remote.cluster.ejb.clusternode.selector with the name of your
implementation class (AllClusterNodeSelector or SimpleLoadFactorNodeSelector). The selector will
see all configured servers which are available at the invocation time. The following example uses
AllClusterNodeSelector as the deployment node selector:

 Integer c = cursor.get(key);
 List<String> nodeList = nodes.get(key)[1];

 if(c == null || c >= nodeList.size()) {
 c = Integer.valueOf(0);
 }

 String node = nodeList.get(c);
 cursor.put(key, Integer.valueOf(c + 1));

 return node;
 }

 @Override
 public String selectNode(String[] eligibleNodes, String appName, String moduleName, String
distinctName) {
 if (LOGGER.isLoggable(Level.FINER)) {
 LOGGER.finer("INSTANCE " + this + " : nodes:" + Arrays.deepToString(eligibleNodes) + "
appName:" + appName + " moduleName:" + moduleName
 + " distinctName:" + distinctName);
 }

 // if there is only one there is no sense to choice
 if (eligibleNodes.length == 1) {
 return eligibleNodes[0];
 }
 final String key = appName + "|" + moduleName + "|" + distinctName;

 checkNodeNames(eligibleNodes, key);
 return nextNode(key);
 }
}

remote.clusters=ejb
remote.cluster.ejb.clusternode.selector=org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelect
or
remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
remote.cluster.ejb.username=test
remote.cluster.ejb.password=password

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=one,two
remote.connection.one.host=localhost
remote.connection.one.port = 4447
remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.connection.one.username=user
remote.connection.one.password=user123

CHAPTER 8. ENTERPRISE JAVABEANS

163

Using JBoss ejb-client API

You need to add the property remote.cluster.ejb.clusternode.selector to the list for the
PropertiesBasedEJBClientConfiguration constructor. The following example uses
AllClusterNodeSelector as the deployment node selector:

Server application side configuration with jboss-ejb-client.xml

To use the load balancing policy for server to server communication; package the class together with
the application and configure it within the jboss-ejb-client.xml settings (located in META-INF folder).
The following example uses AllClusterNodeSelector as the deployment node selector:

remote.connection.two.host=localhost
remote.connection.two.port = 4547
remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

Properties p = new Properties();
p.put("remote.clusters", "ejb");
p.put("remote.cluster.ejb.clusternode.selector",
"org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector");
p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS",
"false");
p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED", "false");
p.put("remote.cluster.ejb.username", "test");
p.put("remote.cluster.ejb.password", "password");

p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED", "false");
p.put("remote.connections", "one,two");
p.put("remote.connection.one.port", "4447");
p.put("remote.connection.one.host", "localhost");
p.put("remote.connection.two.port", "4547");
p.put("remote.connection.two.host", "localhost");

EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);
ContextSelector<EJBClientContext> selector = new ConfigBasedEJBClientContextSelector(cc);
EJBClientContext.setSelector(selector);

p = new Properties();
p.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
InitialContext context = new InitialContext(p);

<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.2" xsi:noNamespaceSchemaLocation="jboss-ejb-
client_1_2.xsd">
 <client-context deployment-node-selector="org.jboss.ejb.client.DeploymentNodeSelector">
 <ejb-receivers>
 <!-- this is the connection to access the app -->
 <remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-1" />
 </ejb-receivers>

 <!-- if an outbound connection connect to a cluster a list of members is provided after successful
connection.
To connect to this node this cluster element must be defined.
-->
 <clusters>
 <!-- cluster of remote-ejb-connection-1 -->
 <cluster name="ejb" security-realm="ejb-security-realm-1" username="test" cluster-node-

Development Guide

164

To use the above configuration with security, you will need to add ejb-security-realm-1 to client-server
configuration. The following example shows the CLI commands for adding security realm (ejb-security-
realm-1) the value is the base64 encoded password for the user "test":

NOTE

If you are using standalone mode use the start option -Djboss.node.name= or the
server configuration file standalone.xml to configure the server name (server name="").
Ensure that the server name is unique. In domain mode, the controller automatically
validates that the names are unique.

Report a bug

8.7.4. Transaction Behavior of EJB Invocations

Server to Server Invocations

Transaction attributes for distributed JBoss EAP applications need to be handled in a way as if the
application is called on the same server. To discontinue a transaction, the destination method must be
marked REQUIRES_NEW using different interfaces.

NOTE

JBoss EAP 6 does not require Java Transaction Services (JTS) for transaction
propagation on server-to-server EJB invocations if both servers are JBoss EAP 6. JBoss
EJB client API library handles it itself.

Client Side Invocations

To invoke EJB session beans with a JBoss EAP 6 standalone client, the client must have a reference to
the InitialContext object while the EJB proxies or UserTransaction are used. It is also important to
keep the InitialContext object open while EJB proxies or UserTransaction are being used. Control of
the connections will be inside the classes created by the InitialContext with the properties.

The following example shows EJB client API which holds a reference to the InitialContext object.

Example 8.6. EJB client API referencing InitialContext object

selector="org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector">
 <connection-creation-options>
 <property name="org.xnio.Options.SSL_ENABLED" value="false" />
 <property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS" value="false" />
 </connection-creation-options>
 </cluster>
 </clusters>
 </client-context>
</jboss-ejb-client>

core-service=management/security-realm=ejb-security-realm-1:add()
core-service=management/security-realm=ejb-security-realm-1/server-
identity=secret:add(value=cXVpY2sxMjMr)

package org.jboss.as.quickstarts.ejb.multi.server;

CHAPTER 8. ENTERPRISE JAVABEANS

165

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+40838-781122+%5BLatest%5D&comment=Title%3A+Implementing+a+Custom+Load+Balancing+Policy+for+EJB+Calls%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40838-781122+27+Jan+2017+08%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

import java.util.Date;
import java.util.Properties;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.naming.Context;
import javax.naming.InitialContext;

import org.jboss.as.quickstarts.ejb.multi.server.app.MainApp;
import org.jboss.ejb.client.ContextSelector;
import org.jboss.ejb.client.EJBClientConfiguration;
import org.jboss.ejb.client.EJBClientContext;
import org.jboss.ejb.client.PropertiesBasedEJBClientConfiguration;
import org.jboss.ejb.client.remoting.ConfigBasedEJBClientContextSelector;

public class Client {

/**
* @param args no args needed
* @throws Exception
*/
 public static void main(String[] args) throws Exception {
 // suppress output of client messages
 Logger.getLogger("org.jboss").setLevel(Level.OFF);
 Logger.getLogger("org.xnio").setLevel(Level.OFF);

 Properties p = new Properties();
 p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED", "false");
 p.put("remote.connections", "one");
 p.put("remote.connection.one.port", "4447");
 p.put("remote.connection.one.host", "localhost");
 p.put("remote.connection.one.username", "quickuser");
 p.put("remote.connection.one.password", "quick-123");

 EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);
 ContextSelector<EJBClientContext> selector = new
ConfigBasedEJBClientContextSelector(cc);
 EJBClientContext.setSelector(selector);

 Properties props = new Properties();
 props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
 InitialContext context = new InitialContext(props);

 final String rcal = "ejb:jboss-ejb-multi-server-app-main/ejb//" + ("MainAppBean") + "!" +
MainApp.class.getName();
 final MainApp remote = (MainApp) context.lookup(rcal);
 final String result = remote.invokeAll("Client call at "+new Date());

 System.out.println("InvokeAll succeed: "+result);
 }

}

Development Guide

166

NOTE

Obtaining a UserTransaction reference on the client is unsupported for scenarios with a
scoped EJB client context and for invocations which use the remote-naming protocol.
This is because in these scenarios, InitialContext encapsulates its own EJB client context
instance; which cannot be accessed using the static methods of the EJBClient class.
When EJBClient.getUserTransaction() is called, it returns a transaction from default
(global) EJB client context (which might not be initialized) and not from the desired one.

UserTransaction reference on the Client Side

The following example shows how to get UserTransaction reference on a standalone client.

Example 8.7. Standalone client referencing UserTransaction object

NOTE

import org.jboss.ejb.client.EJBClient;
import javax.transaction.UserTransaction;
.
.
 Context context=null;
 UserTransaction tx=null;
 try {
 Properties props = new Properties();
 // REMEMBER: there must be a jboss-ejb-client.properties with the connection parameter
 // in the clients classpath
 props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
 context = new InitialContext(props);
 System.out.println("\n\tGot initial Context: "+context);
 tx=EJBClient.getUserTransaction("yourServerName");
 System.out.println("UserTransaction = "+tx.getStatus());
 tx.begin();
 // do some work
 ...
 }catch (Exception e) {
 e.printStackTrace();
 tx.rollback();
 }finally{
 if(context != null) {
 context.close();
 }
 }

CHAPTER 8. ENTERPRISE JAVABEANS

167

NOTE

To get UserTransaction reference on the client side; start your server with the following
system property -Djboss.node.name=yourServerName and then use it on client side as
following:

Replace "yourServerName" with the name of your server. If a user transaction is started
on a node all invocations are sticky on the node and the node must have all the needed
EJBs. It is not possible to use UserTransaction with remote-naming protocol and
scoped-context.

Report a bug

8.8. REFERENCE

8.8.1. EJB JNDI Naming Reference

The JNDI lookup name for a session bean has the syntax of:

 ejb:<appName>/<moduleName>/<distinctName>/<beanName>!<viewClassName>?stateful

<appName>

If the session bean's JAR file has been deployed within an enterprise archive (EAR) then this is the
name of that EAR. By default, the name of an EAR is its filename without the .ear suffix. The
application name can also be overridden in its application.xml file. If the session bean is not
deployed in an EAR then leave this blank.

<moduleName>

The module name is the name of the JAR file that the session bean is deployed in. By the default, the
name of the JAR file is its filename without the .jar suffix. The module name can also be overridden
in the JAR's ejb-jar.xml file.

<distinctName>

JBoss EAP 6 allows each deployment to specify an optional distinct name. If the deployment does
not have a distinct name then leave this blank.

<beanName>

The bean name is the classname of the session bean to be invoked.

<viewClassName>

The view class name is the fully qualified classname of the remote interface. This includes the
package name of the interface.

?stateful

The ?stateful suffix is required when the JNDI name refers to a stateful session bean. It is not
included for other bean types.

tx=EJBClient.getUserTransaction("yourServerName");

Development Guide

168

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+40839-759592+%5BLatest%5D&comment=Title%3A+Transaction+Behavior+of+EJB+Invocations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40839-759592+28+May+2015+02%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

8.8.2. EJB Reference Resolution

This section covers how JBoss implements @EJB and @Resource. Please note that XML always
overrides annotations but the same rules apply.

Rules for the @EJB annotation

The @EJB annotation also has a mappedName() attribute. The specification leaves this as
vendor specific metadata, but JBoss recognizes mappedName() as the global JNDI name of
the EJB you are referencing. If you have specified a mappedName(), then all other attributes are
ignored and this global JNDI name is used for binding.

If you specify @EJB with no attributes defined:

Then the following rules apply:

The EJB jar of the referencing bean is searched for an EJB with the interface used in the
@EJB injection. If there are more than one EJB that publishes same business interface,
then an exception is thrown. If there is only one bean with that interface then that one is
used.

Search the EAR for EJBs that publish that interface. If there are duplicates, then an
exception is thrown. Otherwise the matching bean is returned.

Search globally in JBoss runtime for an EJB of that interface. Again, if duplicates are found,
an exception is thrown.

@EJB.beanName() corresponds to <ejb-link>. If the beanName() is defined, then use the
same algorithm as @EJB with no attributes defined except use the beanName() as a key in the
search. An exception to this rule is if you use the ejb-link '#' syntax. The '#' syntax allows you to
put a relative path to a jar in the EAR where the EJB you are referencing is located. Refer to the
EJB 3.1 specification for more details.

Report a bug

8.8.3. Project dependencies for Remote EJB Clients

Maven projects that include the invocation of session beans from remote clients require the following
dependencies from the JBoss EAP 6 Maven repository.

Table 8.4. Maven dependencies for Remote EJB Clients

GroupID ArtifactID

org.jboss.spec jboss-javaee-6.0

org.jboss.as jboss-as-ejb-client-bom

@EJB
ProcessPayment myEjbref;

CHAPTER 8. ENTERPRISE JAVABEANS

169

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5119-591683+%5BLatest%5D&comment=Title%3A+EJB+JNDI+Naming+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5119-591683+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4543-591667+%5BLatest%5D&comment=Title%3A+EJB+Reference+Resolution%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4543-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

org.jboss.spec.javax.transaction jboss-transaction-api_1.1_spec

org.jboss.spec.javax.ejb jboss-ejb-api_3.1_spec

org.jboss jboss-ejb-client

org.jboss.xnio xnio-api

org.jboss.xnio xnio-nio

org.jboss.remoting3 jboss-remoting

org.jboss.sasl jboss-sasl

org.jboss.marshalling jboss-marshalling-river

GroupID ArtifactID

With the exception of jboss-javaee-6.0 and jboss-as-ejb-client-bom, these dependencies must be
added to the <dependencies> section of the pom.xml file.

The jboss-javaee-6.0 and jboss-as-ejb-client-bom dependencies should be added to the
<dependencyManagement> section of your pom.xml with the scope of import.

NOTE

The artifactID's versions are subject to change. Refer to the Maven repository for the
relevant version.

Refer to ejb-remote/client/pom.xml in the quickstart files for a complete example of dependency

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-6.0</artifactId>
 <version>3.0.0.Final-redhat-1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-ejb-client-bom</artifactId>
 <version>7.1.1.Final-redhat-1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Development Guide

170

Refer to ejb-remote/client/pom.xml in the quickstart files for a complete example of dependency
configuration for remote session bean invocation.

Report a bug

8.8.4. jboss-ejb3.xml Deployment Descriptor Reference

jboss-ejb3.xml is a custom deployment descriptor that can be used in either EJB JAR or WAR archives.
In an EJB JAR archive it must be located in the META-INF/ directory. In a WAR archive it must be
located in the WEB-INF/ directory.

The format is similar to ejb-jar.xml, using some of the same namespaces and providing some other
additional namespaces. The contents of jboss-ejb3.xml are merged with the contents of ejb-jar.xml,
with the jboss-ejb3.xml items taking precedence.

This document only covers the additional non-standard namespaces used by jboss-ejb3.xml. Refer to
http://java.sun.com/xml/ns/javaee/ for documentation on the standard namespaces.

The root namespace is http://www.jboss.com/xml/ns/javaee.

Assembly descriptor namespaces

The following namespaces can all be used in the <assembly-descriptor> element. They can be used to
apply their configuration to a single bean, or to all beans in the deployment by using * as the ejb-name.

The clustering namespace: urn:clustering:1.0

This allows you to mark EJB's as clustered. It is the deployment descriptor equivalent to
@org.jboss.ejb3.annotation.Clustered.

The security namespace (urn:security)

This allows you to set the security-domain and the run-as-principal for an EJB.

The resource adapter namespace: urn:resource-adapter-binding

This allows you to set the resource adapter for a Message-Driven Bean.

xmlns:c="urn:clustering:1.0"

<c:clustering>
 <ejb-name>DDBasedClusteredSFSB</ejb-name>
 <c:clustered>true</c:clustered>
</c:clustering>

xmlns:s="urn:security"

<s:security>
 <ejb-name>*</ejb-name>
 <s:security-domain>myDomain</s:security-domain>
 <s:run-as-principal>myPrincipal</s:run-as-principal>
</s:security>

xmlns:r="urn:resource-adapter-binding"

CHAPTER 8. ENTERPRISE JAVABEANS

171

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5726-606308+%5BLatest%5D&comment=Title%3A+Project+dependencies+for+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5726-606308+25+Feb+2014+22%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://java.sun.com/xml/ns/javaee/

The IIOP namespace: urn:iiop

The IIOP namespace is where IIOP settings are configured.

The pool namespace: urn:ejb-pool:1.0

This allows you to select the pool that is used by the included stateless session beans or Message-
Driven Beans. Pools are defined in the server configuration.

The cache namespace: urn:ejb-cache:1.0

This allows you to select the cache that is used by the included stateful session beans. Caches are
defined in the server configuration.

Example 8.8. jboss-ejb3.xml file

<r:resource-adapter-binding>
 <ejb-name>*</ejb-name>
 <r:resource-adapter-name>myResourceAdapter</r:resource-adapter-name>
</r:resource-adapter-binding>

xmlns:u="urn:iiop"

xmlns:p="urn:ejb-pool:1.0"

<p:pool>
 <ejb-name>*</ejb-name>
 <p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>
</p:pool>

xmlns:c="urn:ejb-cache:1.0"

<c:cache>
 <ejb-name>*</ejb-name>
 <c:cache-ref>my-cache</c:cache-ref>
</c:cache>

<?xml version="1.1" encoding="UTF-8"?>
<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="urn:clustering:1.0"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd"
 version="3.1" impl-version="2.0">
 <enterprise-beans>
 <message-driven>
 <ejb-name>ReplyingMDB</ejb-name>
 <ejb-class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingMDB</ejb-
class>
 <activation-config>
 <activation-config-property>

Development Guide

172

NOTE

There are known issues with the jboss-ejb3-spec-2_0.xsd that may result in schema
validation errors. You can ignore these errors. For more information, see
https://bugzilla.redhat.com/show_bug.cgi?id=1192591.

Report a bug

 <activation-config-property-name>destination</activation-config-property-name>
 <activation-config-property-value>java:jboss/mdbtest/messageDestinationQueue
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <c:clustering>
 <ejb-name>DDBasedClusteredSFSB</ejb-name>
 <c:clustered>true</c:clustered>
 </c:clustering>
 </assembly-descriptor>
</jboss:ejb-jar>

CHAPTER 8. ENTERPRISE JAVABEANS

173

https://bugzilla.redhat.com/show_bug.cgi?id=1192591
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9019-781126+%5BLatest%5D&comment=Title%3A+jboss-ejb3.xml+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9019-781126+27+Jan+2017+11%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 9. JBOSS MBEAN SERVICES

9.1. WRITING JBOSS MBEAN SERVICES

Writing a custom MBean service that relies on a JBoss service requires the service interface method
pattern. JBoss MBean service interface method pattern consists of a set of life cycle operations which
inform an MBean service when it can create, start, stop, and destroy itself.

You can manage the dependency state using any of the following approaches:

If you want specific methods to be called on your MBean, declare those methods in your MBean
interface. This approach allows your MBean implementation to avoid dependencies on JBoss
specific classes

If you are not bothered about dependencies on JBoss specific classes then you may have your
MBean interface extend the ServiceMBean interface and ServiceMBeanSupport class. The
ServiceMBeanSupport class provides implementations of the service lifecycle methods like
create, start and stop. To handle a specific event like the start()event, you need to override
startService() method provided by the ServiceMBeanSupport class.

Report a bug

9.2. A STANDARD MBEAN EXAMPLE

This section develops two sample MBean services packaged together in a service archive (.sar).

ConfigServiceMBean interface declares specific methods like the start, getTimeout and stop methods
to start, hold and stop the MBean correctly without using any JBoss specific classes. ConfigService
class implements ConfigServiceMBean interface and consequently implements the methods used
within that interface.

PlainThread class extends ServiceMBeanSupport class and implements PlainThreadMBean interface.
PlainThread starts a thread and uses ConfigServiceMBean.getTimeout() to determine how long the
thread should sleep.

Example 9.1. Sample MBean services

package org.jboss.example.mbean.support;

public interface ConfigServiceMBean {

 int getTimeout();

 void start();

 void stop();

}

package org.jboss.example.mbean.support;

public class ConfigService implements ConfigServiceMBean {
 int timeout;

Development Guide

174

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30497-633356+%5BLatest%5D&comment=Title%3A+Writing+JBoss+MBean+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30497-633356+23+Apr+2014+20%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 @Override
 public int getTimeout() {
 return timeout;
 }

 @Override
 public void start() {
 //Create a random number between 3000 and 6000 milliseconds
 timeout = (int)Math.round(Math.random() * 3000) + 3000;
 System.out.println("Random timeout set to " + timeout + " seconds");
 }

 @Override
 public void stop() {
 timeout = 0;
 }

}

package org.jboss.example.mbean.support;

import org.jboss.system.ServiceMBean;

public interface PlainThreadMBean extends ServiceMBean {
 void setConfigService(ConfigServiceMBean configServiceMBean);
}

package org.jboss.example.mbean.support;

import org.jboss.system.ServiceMBeanSupport;

public class PlainThread extends ServiceMBeanSupport implements PlainThreadMBean {

 private ConfigServiceMBean configService;
 private Thread thread;
 private volatile boolean done;

 @Override
 public void setConfigService(ConfigServiceMBean configService) {
 this.configService = configService;
 }

 @Override
 protected void startService() throws Exception {
 System.out.println("Starting Plain Thread MBean");
 done = false;
 thread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 while (!done) {
 System.out.println("Sleeping....");
 Thread.sleep(configService.getTimeout());
 System.out.println("Slept!");
 }

CHAPTER 9. JBOSS MBEAN SERVICES

175

The jboss-service.xml descriptor shows how ConfigService class is injected into PlainThread class
using inject tag. The inject tag establishes a dependency between PlainThreadMBean and
ConfigServiceMBean and thus allows PlainThreadMBean use ConfigServiceMBean easily.

Example 9.2. JBoss-service.xml Service Descriptor

After writing the sample MBeans you can package the classes and the jboss-service.xml descriptor in
the META-INF folder of a service archive (.sar).

Report a bug

9.3. DEPLOYING JBOSS MBEAN SERVICES

To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Domain mode use the following
commands:

To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Standalone mode use the

 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 });
 thread.start();
 }

 @Override
 protected void stopService() throws Exception {
 System.out.println("Stopping Plain Thread MBean");
 done = true;
 }

}

<server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:jboss:service:7.0 jboss-service_7_0.xsd"
 xmlns="urn:jboss:service:7.0">
 <mbean code="org.jboss.example.mbean.support.ConfigService"
name="jboss.support:name=ConfigBean"/>
 <mbean code="org.jboss.example.mbean.support.PlainThread"
name="jboss.support:name=ThreadBean">
 <attribute name="configService">
 <inject bean="jboss.support:name=ConfigBean"/>
 </attribute>
 </mbean>
</server>

[domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar

[domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar --all-server-groups

Development Guide

176

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30498-635265+%5BLatest%5D&comment=Title%3A+A+Standard+MBean+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30498-635265+30+Apr+2014+04%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Standalone mode use the
following command:

To undeploy the sample MBeans use the following command:

Report a bug

[standalone@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar

[standalone@localhost:9999 /] undeploy ServiceMBeanTest.sar

CHAPTER 9. JBOSS MBEAN SERVICES

177

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30548-634331+%5BLatest%5D&comment=Title%3A+Deploying+JBoss+MBean+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30548-634331+29+Apr+2014+02%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

10.1. SESSION REPLICATION

10.1.1. About HTTP Session Replication

Session replication ensures that client sessions of distributable applications are not disrupted by
failovers of nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and
can take them over if the originally-involved node disappears.

Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI
clusters provide high availability.

Report a bug

10.1.2. About the Web Session Cache

The web session cache can be configured when you use any of the HA profiles, including the
standalone-ha.xml profile, or the managed domain profiles ha or full-ha. The most commonly
configured elements are the cache mode and the number of cache owners for a distributed cache. The
owners parameter works only in the DIST mode.

Cache Mode

The cache mode can either be REPL (the default) or DIST.

REPL

The REPL mode replicates the entire cache to every other node in the cluster. This is the safest
option, but introduces more overhead.

DIST

The DIST mode is similar to the buddy mode provided in previous implementations. It reduces
overhead by distributing the cache to the number of nodes specified in the owners parameter. This
number of owners defaults to 2.

Owners

The owners parameter controls how many cluster nodes hold replicated copies of the session. The
default is 2.

Report a bug

10.1.3. Configure the Web Session Cache

The web session cache defaults to REPL. If you wish to use DIST mode, run the following two
commands in the Management CLI. If you use a different profile, change the profile name in the
commands. If you use a standalone server, remove the /profile=ha portion of the commands.

Procedure 10.1. Configure the Web Session Cache

1. Change the default cache mode to DIST.

Development Guide

178

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4686-734586+%5BLatest%5D&comment=Title%3A+About+HTTP+Session+Replication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4686-734586+06+Jan+2015+06%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+12554-762956+%5BLatest%5D&comment=Title%3A+About+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12554-762956+25+Jun+2015+04%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

/profile=ha/subsystem=infinispan/cache-container=web/:write-attribute(name=default-
cache,value=dist)

2. Set the number of owners for a distributed cache.
The following command sets 5 owners. The default is 2.

/profile=ha/subsystem=infinispan/cache-container=web/distributed-cache=dist/:write-
attribute(name=owners,value=5)

3. Change the default cache mode back to REPL.

/profile=ha/subsystem=infinispan/cache-container=web/:write-attribute(name=default-
cache,value=repl)

4. Restart the Server
After changing the web cache mode, you must restart the server.

Result

Your server is configured for session replication. To use session replication in your own applications,
refer to the following topic: Section 10.1.4, “Enable Session Replication in Your Application” .

Report a bug

10.1.4. Enable Session Replication in Your Application

Summary

To take advantage of JBoss EAP 6 High Availability (HA) features, you must configure your application
to be distributable. This procedure shows how to do that, and then explains some of the advanced
configuration options you can use.

Procedure 10.2. Make your Application Distributable

1. Required: Indicate that your application is distributable.
If your application is not marked as distributable, its sessions will never be distributed. Add the
<distributable/> element inside the <web-app> tag of your application's web.xml descriptor
file. Here is an example.

Example 10.1. Minimum Configuration for a Distributable Application

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <distributable/>

</web-app>

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

179

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+12555-592028+%5BLatest%5D&comment=Title%3A+Configure+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12555-592028+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Modify the default replication behavior if desired.
If you want to change any of the values affecting session replication, you can override them
inside a <replication-config> element which is a child element of the <jboss-web> element of
your application's jboss-web.xml file. For a given element, only include it if you want to override
the defaults. The following example lists all of the default settings, and is followed by a table
which explains the most commonly changed options.

Example 10.2. Example <replication-config>Values

Table 10.1. Common Options for Session Replication

Option Description

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

 <replication-config>
 <replication-trigger>SET_AND_NON_PRIMITIVE_GET</replication-trigger>
 <replication-granularity>SESSION</replication-granularity>
 <use-jk>false</use-jk>
 <max-unreplicated-interval>30</max-unreplicated-interval>
 <snapshot-mode>INSTANT</snapshot-mode>
 <snapshot-interval>1000</snapshot-interval>
 <session-notification-policy>com.example.CustomSessionNotificationPolicy</session-
notification-policy>
 </replication-config>

</jboss-web>

Development Guide

180

<replication-trigger> Controls which conditions should trigger session data replication across
the cluster. This option is necessary because after a mutable object
(stored as a session attribute) is accessed from the session, the
container has no clear way to know if the object has been modified and
needs to be replicated, unless method setAttribute() is called directly.

Valid Values for <replication-trigger>

SET_AND_GET
This is the safest but worst-performing option. Session data is always
replicated, even if its content has only been accessed, and not
modified. This setting is preserved for legacy purposes only. To get
the same behavior with better performance, you may, instead of
using this setting, set <max-unreplicated-interval> to 0.

SET_AND_NON_PRIMITIVE_GET
The default value. Session data is only replicated if an object of a
non-primitive type is accessed. This means that the object is not of a
well-known Java type such as Integer, Long, or String.

SET
This option assumes that the application will explicitly call
setAttribute on the session when the data needs to be replicated. It
prevents unnecessary replication and can benefit overall
performance, but is inherently unsafe.

Regardless of the setting, you can always trigger session replication by
calling setAttribute().

<replication-granularity> Determines the granularity of data that is replicated. It defaults to
SESSION, but can be set to ATTRIBUTE instead, to increase
performance on sessions where most attributes remain unchanged.

Valid values for <replication-granularity>

ATTRIBUTE
This is only for dirty attributes in the session and for some session
data like the last-accessed timestamp.

SESSION
The default value. The entire session object is replicated if any
attribute is dirty. The shared object references are maintained on
remote nodes since the entire session is serialized in one unit.

NOTE

FIELD is not supported in JBoss EAP 6.

Option Description

The following options rarely need to be changed.

Table 10.2. Less Commonly Changed Options for Session Replication

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

181

Option Description

<use-jk> Whether to assume that a load balancer such as mod_cluster, mod_jk,
or mod_proxy is in use. The default is false. If set to true, the
container examines the session ID associated with each request and
replaces the jvmRoute portion of the session ID if there is a failover.

<max-unreplicated-interval> The maximum interval (in seconds) to wait after a session was accessed
before triggering a replication of a session's timestamp, even if it is
considered to be unchanged. This ensures that cluster nodes are aware
of each session's timestamp and that an unreplicated session will not
expire incorrectly during a failover. It also ensures that you can rely on a
correct value for calls to method
HttpSession.getLastAccessedTime()during a failover.

By default, no value is specified. A value of 0 causes the timestamp to be
replicated whenever the session is accessed. A value of -1 causes the
timestamp to be replicated only if other activity during the request
triggers a replication. A positive value greater than
HttpSession.getMaxInactiveInterval() is treated as a
misconfiguration and converted to 0.

<snapshot-mode> Specifies when sessions are replicated to other nodes. The default is
INSTANT and the other possible value is INTERVAL.

In INSTANT mode, changes are replicated at the end of a request, by
means of the request processing thread. The <snapshot-interval>
option is ignored.

In INTERVAL mode, a background task runs at the interval specified by
<snapshot-interval>, and replicates modified sessions.

<snapshot-interval> The interval, in milliseconds, at which modified sessions should be
replicated when using INTERVAL for the value of <snapshot-mode>.

<session-notification-
policy>

The fully-qualified class name of the implementation of interface
ClusteredSessionNotificationPolicy which governs whether servlet
specification notifications are emitted to any registered
HttpSessionListener, HttpSessionAttributeListener, or
HttpSessionBindingListener.

Report a bug

10.2. HTTPSESSION PASSIVATION AND ACTIVATION

10.2.1. About HTTP Session Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage.

Activation is when passivated data is retrieved from persisted storage and put back into memory.

Passivation occurs at three different times in a HTTP session's lifetime:

When the container requests the creation of a new session, if the number of currently active

Development Guide

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4687-765781+%5BLatest%5D&comment=Title%3A+Enable+Session+Replication+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4687-765781+23+Jul+2015+02%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

When the container requests the creation of a new session, if the number of currently active
session exceeds a configurable limit, the server attempts to passivate some sessions to make
room for the new one.

Periodically, at a configured interval, a background task checks to see if sessions should be
passivated.

When a web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager, sessions may be passivated.

A session is passivated if it meets the following conditions:

The session has not been in use for longer than a configurable maximum idle time.

The number of active sessions exceeds a configurable maximum and the session has not been in
use for longer than a configurable minimum idle time.

Sessions are always passivated using a Least Recently Used (LRU) algorithm.

Report a bug

10.2.2. Configure HttpSession Passivation in Your Application

Overview

HttpSession passivation is configured in your application's WEB_INF/jboss-web.xml or
META_INF/jboss-web.xml file.

Example 10.3. jboss-web.xml File

Passivation Configuration Elements

<max-active-sessions>

The maximum number of active sessions allowed. If the number of sessions managed by the session

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web version="6.0"
 xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_6_0.xsd">

 <max-active-sessions>20</max-active-sessions>
 <passivation-config>
 <use-session-passivation>true</use-session-passivation>
 <passivation-min-idle-time>60</passivation-min-idle-time>
 <passivation-max-idle-time>600</passivation-max-idle-time>
 </passivation-config>

</jboss-web>

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

183

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4689-591671+%5BLatest%5D&comment=Title%3A+About+HTTP+Session+Passivation+and+Activation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4689-591671+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

manager exceeds this value and passivation is enabled, the excess will be passivated based on the
configured <passivation-min-idle-time>. Then, if the number of active sessions still exceeds this
limit, attempts to create new sessions will fail. The default value of -1 sets no limit on the maximum
number of active sessions.

<passivation-config>

This element holds the rest of the passivation configuration parameters, as child elements.

<passivation-config> Child Elements

<use-session-passivation>

Whether or not to use session passivation. The default value is false.

<passivation-min-idle-time>

The minimum time, in seconds, that a session must be inactive before the container will consider
passivating it in order to reduce the active session count to conform to value defined by max-active-
sessions. The default value of -1 disables passivating sessions before <passivation-max-idle-time>
has elapsed. Neither a value of -1 nor a high value are recommended if <max-active-sessions> is set.

<passivation-max-idle-time>

The maximum time, in seconds, that a session can be inactive before the container attempts to
passivate it to save memory. Passivation of such sessions takes place regardless of whether the
active session count exceeds <max-active-sessions>. This value should be less than the <session-
timeout> setting in the web.xml. The default value of -1 disables passivation based on maximum
inactivity.

NOTE

The total number of sessions in memory includes sessions replicated from other cluster
nodes that are not being accessed on this node. Take this into account when setting
<max-active-sessions>. The number of sessions replicated from other nodes also
depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each
session is replicated to each node. In DIST cache mode, each session is replicated only to
the number of nodes specified by the owners parameter. See Section 10.1.2, “About the
Web Session Cache” and Section 10.1.3, “Configure the Web Session Cache” for
information on configuring session cache modes.

For example, consider an eight node cluster, where each node handles requests from 100
users. With REPL cache mode, each node would store 800 sessions in memory. With
DIST cache mode enabled, and the default owners setting of 2, each node stores 200
sessions in memory.

Report a bug

10.3. IMPLEMENT AN HA SINGLETON

Summary

The following procedure demonstrates how to deploy a service that is wrapped with the
SingletonService decorator and used as a cluster-wide singleton service. The service activates a
scheduled timer, which is started only once in the cluster.

Development Guide

184

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4690-759594+%5BLatest%5D&comment=Title%3A+Configure+HttpSession+Passivation+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4690-759594+28+May+2015+02%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 10.3. Implement an HA Singleton Service

1. Write the HA singleton service application.

The following is a simple example of a Service that is wrapped with the SingletonService
decorator to be deployed as a singleton service. A complete example can be found in the
cluster-ha-singleton quickstart that ships with Red Hat JBoss Enterprise Application Platform
6. This quickstart contains all the instructions to build and deploy the application.

a. Create a service.

The following listing is an example of a service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import java.util.Date;
import java.util.concurrent.atomic.AtomicBoolean;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.logging.Logger;
import org.jboss.msc.service.Service;
import org.jboss.msc.service.ServiceName;
import org.jboss.msc.service.StartContext;
import org.jboss.msc.service.StartException;
import org.jboss.msc.service.StopContext;

/**
 * @author Wolf-Dieter Fink
 */
public class HATimerService implements Service<String> {
 private static final Logger LOGGER = Logger.getLogger(HATimerService.class);
 public static final ServiceName SINGLETON_SERVICE_NAME =
ServiceName.JBOSS.append("quickstart", "ha", "singleton", "timer");

 /**
 * A flag whether the service is started.
 */
 private final AtomicBoolean started = new AtomicBoolean(false);

 /**
 * @return the name of the server node
 */
 public String getValue() throws IllegalStateException, IllegalArgumentException {
 LOGGER.infof("%s is %s at %s", HATimerService.class.getSimpleName(),
(started.get() ? "started" : "not started"), System.getProperty("jboss.node.name"));
 return "";
 }

 public void start(StartContext arg0) throws StartException {
 if (!started.compareAndSet(false, true)) {
 throw new StartException("The service is still started!");
 }
 LOGGER.info("Start HASingleton timer service '" + this.getClass().getName() + "'");

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

185

b. Create an activator that installs the Service as a clustered singleton.

The following listing is an example of a Service activator that installs the HATimerService
as a clustered singleton service:

 final String node = System.getProperty("jboss.node.name");
 try {
 InitialContext ic = new InitialContext();
 ((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-
service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler"
)).initialize("HASingleton timer @" + node + " " + new Date());
 } catch (NamingException e) {
 throw new StartException("Could not initialize timer", e);
 }
 }

 public void stop(StopContext arg0) {
 if (!started.compareAndSet(true, false)) {
 LOGGER.warn("The service '" + this.getClass().getName() + "' is not active!");
 } else {
 LOGGER.info("Stop HASingleton timer service '" + this.getClass().getName() +
"'");
 try {
 InitialContext ic = new InitialContext();
 ((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-
service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler"
)).stop();
 } catch (NamingException e) {
 LOGGER.error("Could not stop timer", e);
 }
 }
 }
}

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import org.jboss.as.clustering.singleton.SingletonService;
import org.jboss.logging.Logger;
import org.jboss.msc.service.DelegatingServiceContainer;
import org.jboss.msc.service.ServiceActivator;
import org.jboss.msc.service.ServiceActivatorContext;
import org.jboss.msc.service.ServiceController;

/**
 * Service activator that installs the HATimerService as a clustered singleton service
 * during deployment.
 *
 * @author Paul Ferraro
 */
public class HATimerServiceActivator implements ServiceActivator {
 private final Logger log = Logger.getLogger(this.getClass());

 @Override
 public void activate(ServiceActivatorContext context) {

Development Guide

186

NOTE

The above code example uses a class,
org.jboss.as.clustering.singleton.SingletonService, that is part of the
JBoss EAP private API. A public API will become available in the JBoss EAP 7
release and the private class will be deprecated, but these classes will be
maintained and available for the duration of the JBoss EAP 6.x release cycle.

c. Create a ServiceActivator File

Create a file named org.jboss.msc.service.ServiceActivator in the application's
resources/META-INF/services/ directory. Add a line containing the fully qualified name of
the ServiceActivator class created in the previous step.

org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.HATimerServiceActivator

d. Create a Singleton bean that implements a timer to be used as a cluster-wide singleton
timer.

This Singleton bean must not have a remote interface and you must not reference its local
interface from another EJB in any application. This prevents a lookup by a client or other
component and ensures the SingletonService has total control of the Singleton.

i. Create the Scheduler interface

 log.info("HATimerService will be installed!");

 HATimerService service = new HATimerService();
 SingletonService<String> singleton = new SingletonService<String>(service,
HATimerService.SINGLETON_SERVICE_NAME);
 /*
 * To pass a chain of election policies to the singleton, for example,
 * to tell JGroups to prefer running the singleton on a node with a
 * particular name, uncomment the following line:
 */
 // singleton.setElectionPolicy(new PreferredSingletonElectionPolicy(new
SimpleSingletonElectionPolicy(), new NamePreference("node1/singleton")));

 singleton.build(new DelegatingServiceContainer(context.getServiceTarget(),
context.getServiceRegistry()))
 .setInitialMode(ServiceController.Mode.ACTIVE)
 .install()
 ;
 }
}

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

/**
 * @author Wolf-Dieter Fink
 */
public interface Scheduler {

 void initialize(String info);

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

187

ii. Create the Singleton bean that implements the cluster-wide singleton timer.

 void stop();

}

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import javax.annotation.Resource;
import javax.ejb.ScheduleExpression;
import javax.ejb.Singleton;
import javax.ejb.Timeout;
import javax.ejb.Timer;
import javax.ejb.TimerConfig;
import javax.ejb.TimerService;

import org.jboss.logging.Logger;

/**
 * A simple example to demonstrate a implementation of a cluster-wide singleton
timer.
 *
 * @author Wolf-Dieter Fink
 */
@Singleton
public class SchedulerBean implements Scheduler {
 private static Logger LOGGER = Logger.getLogger(SchedulerBean.class);
 @Resource
 private TimerService timerService;

 @Timeout
 public void scheduler(Timer timer) {
 LOGGER.info("HASingletonTimer: Info=" + timer.getInfo());
 }

 @Override
 public void initialize(String info) {
 ScheduleExpression sexpr = new ScheduleExpression();
 // set schedule to every 10 seconds for demonstration
 sexpr.hour("*").minute("*").second("0/10");
 // persistent must be false because the timer is started by the HASingleton
service
 timerService.createCalendarTimer(sexpr, new TimerConfig(info, false));
 }

 @Override
 public void stop() {
 LOGGER.info("Stop all existing HASingleton timers");
 for (Timer timer : timerService.getTimers()) {
 LOGGER.trace("Stop HASingleton timer: " + timer.getInfo());
 timer.cancel();
 }
 }
}

Development Guide

188

2. Start each JBoss EAP 6 instance with clustering enabled.

To enable clustering for standalone servers, you must start each server with the HA profile,
using a unique node name and port offset for each instance.

For Linux, use the following command syntax to start the servers:

EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -
Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-
offset=PORT_OFFSET

Example 10.4. Start multiple standalone servers on Linux

$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -
Djboss.node.name=node1
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -
Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

For Microsoft Windows, use the following command syntax to start the servers:

EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -
Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-
offset=PORT_OFFSET

Example 10.5. Start multiple standalone servers on Microsoft Windows

C:> EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -
Djboss.node.name=node1
C:> EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -
Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

NOTE

If you prefer not to use command line arguments, you can configure the
standalone-ha.xml file for each server instance to bind on a separate interface.

3. Deploy the application to the servers

The following Maven command deploys the application to a standalone server running on the
default ports.

mvn clean install jboss-as:deploy

To deploy to additional servers, pass the server name. if it is on a different host, pass the host
name and port number on the command line:

mvn clean package jboss-as:deploy -Djboss-as.hostname=localhost -Djboss-as.port=10099

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

189

See the cluster-ha-singleton quickstart that ships with JBoss EAP 6 for Maven configuration
and deployment details.

Report a bug

10.4. APACHE MOD_CLUSTER-MANAGER APPLICATION

10.4.1. About mod_cluster-manager Application

The mod_cluster-manager application is an administration web page which is available on Apache HTTP
Server. It is used for monitoring the connected worker nodes and performing various administration
tasks like enabling/disabling contexts and configuring the load-balancing properties of worker nodes in
a cluster.

Report a bug

10.4.2. Exploring mod_cluster-manager Application

The mod_cluster-manager application can be used for performing various administration tasks on
worker nodes.

The figure shown below represents the mod_cluster-manager application web page with annotations to
highlight important components and administration options on the page.

Figure 10.1. mod_cluster Administration Web Page

The annotations are explained below:

[1] mod_cluster/1.2.8.Final: This denotes the version of the mod_cluster native library

[2] ajp://192.168.122.204:8099: This denotes the protocol used (either one of AJP, HTTP,
HTTPS), hostname or IP address of the worker node and the port

[3] jboss-eap-6.3-2: This denotes the worker node's JVMRoute.

Development Guide

190

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9154-766862+%5BLatest%5D&comment=Title%3A+Implement+an+HA+Singleton%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9154-766862+05+Aug+2015+11%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+31323-644221+%5BLatest%5D&comment=Title%3A+About+mod_cluster-manager+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=31323-644221+26+May+2014+19%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

[4] Virtual Host 1: This denotes the virtual host(s) configured on the worker node

[5] Disable : This is an administration option which can be used to disable the creation of new
sessions on the particular context. However the ongoing sessions do not get disabled and
remain intact

[6] Stop : This is an administration option which can be used to stop the routing of session
requests to the context. The remaining sessions will failover to another node unless the
property sticky-session-force is set to "true"

[7] Enable Contexts Disable Contexts Stop Contexts: These denote operations which can be
performed on the whole node. Selecting one of these options affects all the contexts of a node
in all its virtual hosts.

[8] Load balancing group (LBGroup): The load-balancing-group property is set in the
mod_cluster subsystem in EAP configuration to group all worker nodes into custom load
balancing groups. Load balancing group (LBGroup) is an informational field which gives
information about all set load balancing groups. If this field is not set, then all worker nodes are
grouped into a single default load balancing group

NOTE

This is only an informational field and thus cannot be used to set load-balancing-
group property. The property has to be set in mod_cluster subsystem in EAP
configuration.

[9] Load (value): This indicates the load factor on the worker node. The load factor(s) are
evaluated as below:

Report a bug

-load > 0 : A load factor with value 1 indicates that the worker node is overloaded. A load
factor of 100 denotes a free and not-loaded node.
-load = 0 :A load factor of value 0 indicates that the worker node is in a standby mode. This
means that no session requests will be routed to this node until and unless the other worker
nodes are unavailable
-load = -1 : A load factor of value -1 indicates that the worker node is in an error state.
-load = -2 : A load factor of value -2 indicates that the worker node is undergoing
CPing/CPong and is in a transition state

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

191

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+31324-661207+%5BLatest%5D&comment=Title%3A+Exploring+mod_cluster-manager+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=31324-661207+06+Jun+2014+00%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 11. CDI

11.1. OVERVIEW OF CDI

11.1.1. Overview of CDI

Section 11.1.2, “About Contexts and Dependency Injection (CDI)”

Section 11.1.5, “Relationship Between Weld, Seam 2, and JavaServer Faces”

Section 11.1.3, “Benefits of CDI”

Report a bug

11.1.2. About Contexts and Dependency Injection (CDI)

Contexts and Dependency Injection (CDI) is a specification designed to enable EJB 3.0 components "to
be used as Java Server Faces (JSF) managed beans, unifying the two component models and enabling
a considerable simplification to the programming model for web-based applications in Java." The
preceding quote is taken from the JSR-299 specification, which can be found at
http://www.jcp.org/en/jsr/detail?id=299.

JBoss EAP 6 includes Weld, which is the reference implementation of JSR-299. For more information,
about type-safe dependency injection, see Section 11.1.4, “About Type-safe Dependency Injection”.

Report a bug

11.1.3. Benefits of CDI

Following are the benefits of CDI:

It simplifies and shrinks your code base by replacing big chunks of code with annotations.

It is flexible, allowing you to disable and enable injections and events, use alternative beans, and
inject non-CDI objects easily.

It is easy to use your old code with CDI. You only need to include a beans.xml in your META-
INF/ or WEB-INF/ directory. The file can be empty.

It simplifies packaging and deployments and reduces the amount of XML you need to add to
your deployments.

It provides lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

It also provides type-safe dependency injection, which is safer and easier to debug than string-
based injection.

It decouples interceptors from beans.

It provides complex event notification.

Report a bug

Development Guide

192

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4436-591662+%5BLatest%5D&comment=Title%3A+Overview+of+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4436-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://www.jcp.org/en/jsr/detail?id=299
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4437-591662+%5BLatest%5D&comment=Title%3A+About+Contexts+and+Dependency+Injection+%28CDI%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4437-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4447-759597+%5BLatest%5D&comment=Title%3A+Benefits+of+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4447-759597+28+May+2015+04%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

11.1.4. About Type-safe Dependency Injection

Before JSR-299 and CDI, the only way to inject dependencies in Java was to use strings. This was prone
to errors. CDI introduces the ability to inject dependencies in a type-safe way.

For more information about CDI, refer to Section 11.1.2, “About Contexts and Dependency Injection
(CDI)”.

Report a bug

11.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

The goal of Seam 2 was to unify Enterprise Java Beans (EJBs) and JavaServer Faces (JSF) managed
beans.

JavaServer Faces (JSF) implements JSR-314. It is an API for building server-side user interfaces. JBoss
Web Framework Kit includes RichFaces, which is an implementation of JavaServer Faces and AJAX.

Weld is the reference implementation of Contexts and Dependency Injection (CDI) , which is defined in
JSR-299. Weld was inspired by Seam 2 and other dependency injection frameworks. Weld is included in
JBoss EAP 6.

Report a bug

11.2. USE CDI

11.2.1. First Steps

11.2.1.1. Enable CDI

Summary

Contexts and Dependency Injection (CDI) is one of the core technologies in JBoss EAP 6, and is
enabled by default. If for some reason it is disabled and you need to enable it, follow this procedure.

Procedure 11.1. Enable CDI in JBoss EAP 6

1. Check to see if the CDI subsystem details are commented out of the configuration file.
A subsystem can be disabled by commenting out the relevant section of the domain.xml or
standalone.xml configuration files, or by removing the relevant section altogether.

To find the CDI subsystem in EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml, search them for the following string. If
it exists, it is located inside the <extensions> section.

<extension module="org.jboss.as.weld"/>

The following line must also be present in the profile you are using. Profiles are in individual
<profile> elements within the <profiles> section.

<subsystem xmlns="urn:jboss:domain:weld:1.0"/>

2. Before editing any files, stop JBoss EAP 6.

JBoss EAP 6 modifies the configuration files during the time it is running, so you must stop the

CHAPTER 11. CDI

193

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4438-591662+%5BLatest%5D&comment=Title%3A+About+Type-safe+Dependency+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4438-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4445-591664+%5BLatest%5D&comment=Title%3A+Relationship+Between+Weld%2C+Seam+2%2C+and+JavaServer+Faces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4445-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

JBoss EAP 6 modifies the configuration files during the time it is running, so you must stop the
server before you edit the configuration files directly.

3. Edit the configuration file to restore the CDI subsystem.
If the CDI subsystem was commented out, remove the comments.

If it was removed entirely, restore it by adding this line to the file in a new line directly above the
</extensions> tag:

<extension module="org.jboss.as.weld"/>

4. You also need to add the following line to the relevant profile in the <profiles> section.

<subsystem xmlns="urn:jboss:domain:weld:1.0"/>

5. Restart JBoss EAP 6.
Start JBoss EAP 6 with your updated configuration.

Result

JBoss EAP 6 starts with the CDI subsystem enabled.

Report a bug

11.2.2. Use CDI to Develop an Application

11.2.2.1. Use CDI to Develop an Application

Introduction

Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications,
reusing code, adapting your code at deployment or run-time, and unit testing. JBoss EAP 6 includes
Weld, the reference implementation of CDI. These tasks show you how to use CDI in your enterprise
applications.

Section 11.2.1.1, “Enable CDI”

Section 11.2.2.2, “Use CDI with Existing Code”

Section 11.2.2.3, “Exclude Beans From the Scanning Process”

Section 11.2.2.4, “Use an Injection to Extend an Implementation”

Section 11.2.3.3, “Use a Qualifier to Resolve an Ambiguous Injection”

Section 11.2.7.4, “Override an Injection with an Alternative”

Section 11.2.7.2, “Use Named Beans”

Section 11.2.6.1, “Manage the Lifecycle of a Bean”

Section 11.2.6.2, “Use a Producer Method”

Section 11.2.10.2, “Use Interceptors with CDI”

Section 11.2.8.2, “Use Stereotypes”

Development Guide

194

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4451-591664+%5BLatest%5D&comment=Title%3A+Enable+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4451-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Section 11.2.9.3, “Fire and Observe Events”

Report a bug

11.2.2.2. Use CDI with Existing Code

Almost every concrete Java class that has a constructor with no parameters, or a constructor designated
with the annotation @Inject, is a bean. The only thing you need to do before you can start injecting beans
is create a file called beans.xml in the META-INF/ or WEB-INF/ directory of your archive. The file can be
empty.

Procedure 11.2. Use legacy beans in CDI applications

1. Package your beans into an archive.
Package your beans into a JAR or WAR archive.

2. Include a beans.xml file in your archive.
Place a beans.xml file into your JAR archive's META-INF/ or your WAR archive's WEB-INF/
directory. The file can be empty.

Result:

You can use these beans with CDI. The container can create and destroy instances of your beans and
associate them with a designated context, inject them into other beans, use them in EL expressions,
specialize them with qualifier annotations, and add interceptors and decorators to them, without any
modifications to your existing code. In some circumstances, you may need to add some annotations.

Report a bug

11.2.2.3. Exclude Beans From the Scanning Process

Summary

One of the features of Weld, the JBoss EAP 6 implementation of CDI, is the ability to exclude classes in
your archive from scanning, having container lifecycle events fired, and being deployed as beans. This is
not part of the JSR-299 specification.

Example 11.1. Exclude packages from your bean

The following example has several <weld:exclude> tags.

1. The first one excludes all Swing classes.

2. The second excludes Google Web Toolkit classes if Google Web Toolkit is not installed.

3. The third excludes classes which end in the string Blether (using a regular expression), if the
system property verbosity is set to low.

4. The fourth excludes Java Server Faces (JSF) classes if Wicket classes are present and the
viewlayer system property is not set.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:weld="http://jboss.org/schema/weld/beans"
 xsi:schemaLocation="

CHAPTER 11. CDI

195

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4454-591664+%5BLatest%5D&comment=Title%3A+Use+CDI+to+Develop+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4454-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4452-591664+%5BLatest%5D&comment=Title%3A+Use+CDI+with+Existing+Code%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4452-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The formal specification of Weld-specific configuration options can be found at
http://jboss.org/schema/weld/beans_1_1.xsd.

Report a bug

11.2.2.4. Use an Injection to Extend an Implementation

Summary

You can use an injection to add or change a feature of your existing code. This example shows you how
to add a translation ability to an existing class. The translation is a hypothetical feature and the way it is
implemented in the example is pseudo-code, and only provided for illustration.

The example assumes you already have a Welcome class, which has a method buildPhrase. The
buildPhrase method takes as an argument the name of a city, and outputs a phrase like "Welcome to
Boston." Your goal is to create a version of the Welcome class which can translate the greeting into a
different language.

Example 11.2. Inject a Translator Bean Into the Welcome Class

The following pseudo-code injects a hypothetical Translator object into the Welcome class. The
Translator object may be an EJB stateless bean or another type of bean, which can translate

 http://java.sun.com/xml/ns/javaee http://docs.jboss.org/cdi/beans_1_0.xsd
 http://jboss.org/schema/weld/beans http://jboss.org/schema/weld/beans_1_1.xsd">

 <weld:scan>

 <!-- Don't deploy the classes for the swing app! -->
 <weld:exclude name="com.acme.swing.**" />

 <!-- Don't include GWT support if GWT is not installed -->
 <weld:exclude name="com.acme.gwt.**">
 <weld:if-class-available name="!com.google.GWT"/>
 </weld:exclude>

 <!--
 Exclude classes which end in Blether if the system property verbosity is set to low
 i.e.
 java ... -Dverbosity=low
 -->
 <weld:exclude pattern="^(.*)Blether$">
 <weld:if-system-property name="verbosity" value="low"/>
 </weld:exclude>

 <!--
 Don't include JSF support if Wicket classes are present, and the viewlayer system
 property is not set
 -->
 <weld:exclude name="com.acme.jsf.**">
 <weld:if-class-available name="org.apache.wicket.Wicket"/>
 <weld:if-system-property name="!viewlayer"/>
 </weld:exclude>
 </weld:scan>
</beans>

Development Guide

196

http://jboss.org/schema/weld/beans_1_1.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4453-591664+%5BLatest%5D&comment=Title%3A+Exclude+Beans+From+the+Scanning+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4453-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

sentences from one language to another. In this instance, the Translator is used to translate the
entire greeting, without actually modifying the original Welcome class at all. The Translator is
injected before the buildPhrase method is implemented.

The code sample below is an example Translating Welcome class.

Report a bug

11.2.3. Ambiguous or Unsatisfied Dependencies

11.2.3.1. About Ambiguous or Unsatisfied Dependencies

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one bean.

Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.

The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws
an exception.

To fix an ambiguous dependency, see Section 11.2.3.3, “Use a Qualifier to Resolve an Ambiguous
Injection”.

Report a bug

11.2.3.2. About Qualifiers

A qualifier is an annotation which ties a bean to a bean type. It allows you to specify exactly which bean
you mean to inject. Qualifiers have a retention and a target, which are defined as in the example below.

Example 11.3. Define the @Synchronous and @Asynchronous Qualifiers

public class TranslatingWelcome extends Welcome {

 @Inject Translator translator;

 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Synchronous {}

CHAPTER 11. CDI

197

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4457-591664+%5BLatest%5D&comment=Title%3A+Use+an+Injection+to+Extend+an+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4457-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4477-591661+%5BLatest%5D&comment=Title%3A+About+Ambiguous+or+Unsatisfied+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4477-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 11.4. Use the @Synchronous and @Asynchronous Qualifiers

Report a bug

11.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

Summary

This task shows an ambiguous injection and removes the ambiguity with a qualifier. Read more about
ambiguous injections at Section 11.2.3.1, “About Ambiguous or Unsatisfied Dependencies” .

Example 11.5. Ambiguous injection

You have two implementations of Welcome, one which translates and one which does not. In that
situation, the injection below is ambiguous and needs to be specified to use the translating
Welcome.

Procedure 11.3. Resolve an Ambiguous Injection with a Qualifier

1. Create a qualifier annotation called @Translating.

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }
}

public class Greeter {
 private Welcome welcome;

 @Inject
 void init(Welcome welcome) {
 this.welcome = welcome;
 }
 ...
}

Development Guide

198

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4478-591661+%5BLatest%5D&comment=Title%3A+About+Qualifiers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4478-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Annotate your translating Welcome with the @Translating annotation.

3. Request the translating Welcome in your injection.
You must request a qualified implementation explicitly, similar to the factory method pattern.
The ambiguity is resolved at the injection point.

Result

The TranslatingWelcome is used, and there is no ambiguity.

Report a bug

11.2.4. Managed Beans

11.2.4.1. About Managed Beans

Prior to Java EE 6, there was no clear definition of the term bean in the Java EE platform. There were
several concepts referred to as beans in the Java EE specifications, including EJB beans and JSF
managed beans. Third-party frameworks such as Spring and Seam introduced their own ideas of what
defined a bean.

Java EE 6 established a common definition in the Managed Beans specification. Managed Beans are
defined as container-managed objects with minimal programming restrictions, otherwise known by the
acronym POJO (Plain Old Java Object). They support a small set of basic services, such as resource
injection, lifecycle callbacks and interceptors. Companion specifications, such as EJB and CDI, build on
this basic model.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters
(or a constructor designated with the annotation @Inject) is a bean. This includes every JavaBean and

@Qualifier
@Retention(RUNTIME)
@Target({TYPE,METHOD,FIELD,PARAMETERS})
public @interface Translating{}

@Translating
public class TranslatingWelcome extends Welcome {
 @Inject Translator translator;
 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

public class Greeter {
 private Welcome welcome;
 @Inject
 void init(@Translating Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

CHAPTER 11. CDI

199

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4458-591664+%5BLatest%5D&comment=Title%3A+Use+a+Qualifier+to+Resolve+an+Ambiguous+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4458-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

every EJB session bean. The only requirement to enable the mentioned services in beans is that they
reside in an archive (a JAR, or a Java EE module such as a WAR or EJB JAR) that contains a special
marker file: META-INF/beans.xml.

Report a bug

11.2.4.2. Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the
Managed Beans specification. You can explicitly declare a managed bean by annotating the bean class
@ManagedBean, but in CDI you do not need to. According to the specification, the CDI container treats
any class that satisfies the following conditions as a managed bean:

It is not a non-static inner class.

It is a concrete class, or is annotated @Decorator.

It is not annotated with an EJB component-defining annotation or declared as an EJB bean
class in ejb-jar.xml.

It does not implement interface javax.enterprise.inject.spi.Extension.

It has either a constructor with no parameters, or a constructor annotated with @Inject.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all
interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

Report a bug

11.2.4.3. Use CDI to Inject an Object Into a Bean

When your deployment archive includes a META-INF/beans.xml or WEB-INF/beans.xml file, each
object in your deployment can be injected using CDI.

This procedure introduces the main ways to inject objects into other objects.

1. Inject an object into any part of a bean with the @Inject annotation.
To obtain an instance of a class, within your bean, annotate the field with @Inject.

Example 11.6. Injecting a TextTranslator instance into a TranslateController

2. Use your injected object's methods
You can use your injected object's methods directly. Assume that TextTranslator has a method
translate.

Example 11.7. Use your injected object's methods

public class TranslateController {

 @Inject TextTranslator textTranslator;
 ...

Development Guide

200

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4439-686949+%5BLatest%5D&comment=Title%3A+About+Managed+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4439-686949+22+Jul+2014+00%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4482-591661+%5BLatest%5D&comment=Title%3A+Types+of+Classes+That+are+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4482-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. Use injection in the constructor of a bean
You can inject objects into the constructor of a bean, as an alternative to using a factory or
service locator to create them.

Example 11.8. Using injection in the constructor of a bean

4. Use the Instance(<T>) interface to get instances programmatically.
The Instance interface can return an instance of TextTranslator when parameterized with the
bean type.

Example 11.9. Obtaining an instance programmatically

// in TranslateController class

public void translate() {

 translation = textTranslator.translate(inputText);

}

public class TextTranslator {

 private SentenceParser sentenceParser;

 private Translator sentenceTranslator;

 @Inject

 TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {

 this.sentenceParser = sentenceParser;

 this.sentenceTranslator = sentenceTranslator;

 }

 // Methods of the TextTranslator class
 ...
}

@Inject Instance<TextTranslator> textTranslatorInstance;

...

public void translate() {

 textTranslatorInstance.get().translate(inputText);

}

CHAPTER 11. CDI

201

Result:

When you inject an object into a bean all of the object's methods and properties are available to your
bean. If you inject into your bean's constructor, instances of the injected objects are created when your
bean's constructor is called, unless the injection refers to an instance which already exists. For instance,
a new instance would not be created if you inject a session-scoped bean during the lifetime of the
session.

Report a bug

11.2.5. Contexts, Scopes, and Dependencies

11.2.5.1. Contexts and Scopes

A context, in terms of CDI, is a storage area which holds instances of beans associated with a specific
scope.

A scope is the link between a bean and a context. A scope/context combination may have a specific
lifecycle. Several pre-defined scopes exist, and you can create your own scopes. Examples of pre-
defined scopes are @RequestScoped, @SessionScoped, and @ConversationScope.

Report a bug

11.2.5.2. Available Contexts

Table 11.1. Available contexts

Context Description

@Dependent The bean is bound to the lifecycle of the bean holding
the reference.

@ApplicationScoped Bound to the lifecycle of the application.

@RequestScoped Bound to the lifecycle of the request.

@SessionScoped Bound to the lifecycle of the session.

@ConversationScoped Bound to the lifecycle of the conversation. The
conversation scope is between the lengths of the
request and the session, and is controlled by the
application.

Custom scopes If the above contexts do not meet your needs, you
can define custom scopes.

Report a bug

11.2.6. Bean Lifecycle

Development Guide

202

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4563-591666+%5BLatest%5D&comment=Title%3A+Use+CDI+to+Inject+an+Object+Into+a+Bean%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4563-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4440-591662+%5BLatest%5D&comment=Title%3A+Contexts+and+Scopes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4440-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4484-591661+%5BLatest%5D&comment=Title%3A+Available+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4484-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

11.2.6.1. Manage the Lifecycle of a Bean

Summary

This task shows you how to save a bean for the life of a request. Several other scopes exist, and you can
define your own scopes.

The default scope for an injected bean is @Dependent. This means that the bean's lifecycle is
dependent upon the lifecycle of the bean which holds the reference. For more information, see
Section 11.2.5.1, “Contexts and Scopes”.

Procedure 11.4. Manage Bean Lifecycles

1. Annotate the bean with the scope corresponding to your desired scope.

2. When your bean is used in the JSF view, it holds state.

Result:

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

Section 11.2.13.1, “About Bean Proxies”

Section 11.2.13.2, “Use a Proxy in an Injection”

Report a bug

11.2.6.2. Use a Producer Method

Summary

This task shows how to use producer methods to produce a variety of different objects which are not
beans for injection.

Example 11.10. Use a producer method instead of an alternative, to allow polymorphism after
deployment

The @Preferred annotation in the example is a qualifier annotation. For more information about

@RequestScoped
@Named("greeter")
public class GreeterBean {
 private Welcome welcome;
 private String city; // getter & setter not shown
 @Inject void init(Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(city));
 }
}

<h:form>
 <h:inputText value="#{greeter.city}"/>
 <h:commandButton value="Welcome visitors" action="#{greeter.welcomeVisitors}"/>
</h:form>

CHAPTER 11. CDI

203

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4462-591664+%5BLatest%5D&comment=Title%3A+Manage+the+Lifecycle+of+a+Bean%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4462-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The @Preferred annotation in the example is a qualifier annotation. For more information about
qualifiers, refer to: Section 11.2.3.2, “About Qualifiers”.

The following injection point has the same type and qualifier annotations as the producer method, so
it resolves to the producer method using the usual CDI injection rules. The producer method is called
by the container to obtain an instance to service this injection point.

Example 11.11. Assign a scope to a producer method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound
to the appropriate context. The producer method in this example is only called once per session.

Example 11.12. Use an injection inside a producer method

Objects instantiated directly by an application cannot take advantage of dependency injection and
do not have interceptors. However, you can use dependency injection into the producer method to
obtain bean instances.

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes

@SessionScoped
public class Preferences implements Serializable {
 private PaymentStrategyType paymentStrategy;
 ...
 @Produces @Preferred
 public PaymentStrategy getPaymentStrategy() {
 switch (paymentStrategy) {
 case CREDIT_CARD: return new CreditCardPaymentStrategy();
 case CHECK: return new CheckPaymentStrategy();
 default: return null;
 }
 }
}

@Inject @Preferred PaymentStrategy paymentStrategy;

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy() {
 ...
}

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,
 CheckPaymentStrategy cps) {
 switch (paymentStrategy) {
 case CREDIT_CARD: return ccps;
 case CHEQUE: return cps;
 default: return null;
 }
}

Development Guide

204

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes
the current request-scoped instance into session scope. This is almost certainly not the desired
behavior, so use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

Result

Producer methods allow you to inject non-bean objects and change your code dynamically.

Report a bug

11.2.7. Named Beans and Alternative Beans

11.2.7.1. About Named Beans

A bean is named by using the @Named annotation. Naming a bean allows you to use it directly in Java
Server Faces (JSF).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the lower-cased bean name is used as the name.

Report a bug

11.2.7.2. Use Named Beans

1. Use the @Named annotation to assign a name to a bean.

The bean name itself is optional. If it is omitted, the bean is named after the class name, with the
first letter decapitalized. In the example above, the default name would be greeterBean.

2. Use the named bean in a JSF view.

@Named("greeter")
public class GreeterBean {
 private Welcome welcome;

 @Inject
 void init (Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

<h:form>
 <h:commandButton value="Welcome visitors" action="#{greeter.welcomeVisitors}"/>
</h:form>

CHAPTER 11. CDI

205

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4463-591664+%5BLatest%5D&comment=Title%3A+Use+a+Producer+Method%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4463-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4480-591661+%5BLatest%5D&comment=Title%3A+About+Named+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4480-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Result:

Your named bean is assigned as an action to the control in your JSF view, with a minimum of coding.

Report a bug

11.2.7.3. About Alternative Beans

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

Example 11.13. Defining Alternatives

This alternative defines a mock implementation of both @Synchronous PaymentProcessor and
@Asynchronous PaymentProcessor, all in one:

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its
beans.xml file.

Report a bug

11.2.7.4. Override an Injection with an Alternative

Summary

Alternative beans let you override existing beans. They can be thought of as a way to plug in a class which
fills the same role, but functions differently. They are disabled by default. This task shows you how to
specify and enable an alternative.

Procedure 11.5. Override an Injection

This task assumes that you already have a TranslatingWelcome class in your project, but you want to
override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment, where
the true Translator bean cannot be used.

1. Define the alternative.

2. Substitute the alternative.

To activate the substitute implementation, add the fully-qualified class name to your META-

@Alternative @Synchronous @Asynchronous

public class MockPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
 public String buildPhrase(string city) {
 return "Bienvenue Ã " + city + "!");
 }
}

Development Guide

206

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4461-591664+%5BLatest%5D&comment=Title%3A+Use+Named+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4461-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4479-591661+%5BLatest%5D&comment=Title%3A+About+Alternative+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4479-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

To activate the substitute implementation, add the fully-qualified class name to your META-
INF/beans.xml or WEB-INF/beans.xml file.

Result

The alternative implementation is now used instead of the original one.

Report a bug

11.2.8. Stereotypes

11.2.8.1. About Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that role in a
central place.

A stereotype encapsulates any combination of:

default scope

a set of interceptor bindings

A stereotype may also specify either of these two scenarios:

all beans with the stereotype have defaulted bean EL names

all beans with the stereotype are alternatives

A bean may declare zero, one or multiple stereotypes. Stereotype annotations may be applied to a bean
class or producer method or field.

A stereotype is an annotation, annotated @Stereotype, that packages several other annotations.

A class that inherits a scope from a stereotype may override that stereotype and specify a scope directly
on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean may override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Section 11.2.7.1, “About Named Beans”.

Report a bug

11.2.8.2. Use Stereotypes

Summary

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes to
reduce the clutter and streamline your code. For more information about what stereotypes are, see
Section 11.2.8.1, “About Stereotypes”.

<beans>
 <alternatives>
 <class>com.acme.MockTranslatingWelcome</class>
 </alternatives>
</beans>

CHAPTER 11. CDI

207

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4460-591664+%5BLatest%5D&comment=Title%3A+Override+an+Injection+with+an+Alternative%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4460-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4481-591661+%5BLatest%5D&comment=Title%3A+About+Stereotypes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4481-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 11.14. Annotation clutter

Procedure 11.6. Define and Use Stereotypes

1. Define the stereotype,

2. Use the stereotype.

Result:

Stereotypes streamline and simplify your code.

Report a bug

11.2.9. Observer Methods

11.2.9.1. About Observer Methods

Observer methods receive notifications when events occur.

CDI also provides transactional observer methods , which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

Report a bug

@Secure
@Transactional
@RequestScoped
@Named
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
public @interface BusinessComponent {
 ...
}

@BusinessComponent
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

Development Guide

208

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4465-591664+%5BLatest%5D&comment=Title%3A+Use+Stereotypes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4465-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4441-732457+%5BLatest%5D&comment=Title%3A+About+Observer+Methods%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4441-732457+12+Dec+2014+01%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

11.2.9.2. Transactional Observers

Transactional observers receive the event notifications before or after the completion phase of the
transaction in which the event was raised. For example, the following observer method refreshes a query
result set cached in the application context, but only when transactions that update the Category tree
are successful:

There are five kinds of transactional observers:

IN_PROGRESS: By default, observers are invoked immediately.

AFTER_SUCCESS: Observers are invoked after the completion phase of the transaction, but
only if the transaction completes successfully.

AFTER_FAILURE: Observers are invoked after the completion phase of the transaction only if
the transaction fails to complete successfully.

AFTER_COMPLETION: Observers are invoked after the completion phase of the transaction.

BEFORE_COMPLETION: Observers are invoked before the completion phase of the
transaction.

Transactional observers are important in a stateful object model because state is often held for longer
than a single atomic transaction.

Assume we have cached a JPA query result set in the application scope:

Occasionally a Product is created or deleted. When this occurs, we need to refresh the Product catalog.
But we have to wait for the transaction to complete successfully before performing this refresh.

The bean that creates and deletes Products triggers events, for example:

public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS) CategoryUpdateEvent
event) { ... }

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;

@ApplicationScoped @Singleton

public class Catalog {
 @PersistenceContext EntityManager em;
 List<Product> products;
 @Produces @Catalog
 List<Product> getCatalog() {
 if (products==null) {
 products = em.createQuery("select p from Product p where p.deleted = false")
 .getResultList();
 }
 return products;
 }
}

import javax.enterprise.event.Event;

CHAPTER 11. CDI

209

The Catalog can now observe the events after successful completion of the transaction:

Report a bug

11.2.9.3. Fire and Observe Events

Example 11.15. Fire an event

This code shows an event being injected and used in a method.

@Stateless

public class ProductManager {
 @PersistenceContext EntityManager em;
 @Inject @Any Event<Product> productEvent;
 public void delete(Product product) {
 em.delete(product);
 productEvent.select(new AnnotationLiteral<Deleted>(){}).fire(product);
 }

 public void persist(Product product) {
 em.persist(product);
 productEvent.select(new AnnotationLiteral<Created>(){}).fire(product);
 }
 ...
}

import javax.ejb.Singleton;

@ApplicationScoped @Singleton
public class Catalog {
 ...
 void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product product) {
 products.add(product);
 }

 void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product product) {
 products.remove(product);
 }

}

public class AccountManager {
 @Inject Event<Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

Development Guide

210

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42340-735532+%5BLatest%5D&comment=Title%3A+Transactional+Observers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42340-735532+13+Jan+2015+05%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 11.16. Fire an event with a qualifier

You can annotate your event injection with a qualifier, to make it more specific. For more information
about qualifiers, see Section 11.2.3.2, “About Qualifiers”.

Example 11.17. Observe an event

To observe an event, use the @Observes annotation.

Example 11.18. Observe a qualified event

You can use qualifiers to observe only specific types of events. For more information about
qualifiers, see Section 11.2.3.2, “About Qualifiers”.

Report a bug

11.2.10. Interceptors

11.2.10.1. About Interceptors

Interceptors are defined as part of the Enterprise JavaBeans specification, which can be found at
http://jcp.org/aboutJava/communityprocess/final/jsr318/. Interceptors allow you to add functionality
to the business methods of a bean without modifying the bean's method directly. The interceptor is
executed before any of the business methods of the bean.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.

Interception points

public class AccountManager {
 @Inject @Suspicious Event <Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountObserver {
 void checkTran(@Observes Withdrawal w) {
 ...
 }
}

public class AccountObserver {
 void checkTran(@Observes @Suspicious Withdrawal w) {
 ...
 }
}

CHAPTER 11. CDI

211

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4466-591664+%5BLatest%5D&comment=Title%3A+Fire+and+Observe+Events%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4466-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/aboutJava/communityprocess/final/jsr318/

business method interception

A business method interceptor applies to invocations of methods of the bean by clients of the bean.

lifecycle callback interception

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container.

timeout method interception

A timeout method interceptor applies to invocations of the EJB timeout methods by the container.

Report a bug

11.2.10.2. Use Interceptors with CDI

Example 11.19. Interceptors without CDI

Without CDI, interceptors have two problems.

The bean must specify the interceptor implementation directly.

Every bean in the application must specify the full set of interceptors in the correct order.
This makes adding or removing interceptors on an application-wide basis time-consuming
and error-prone.

Procedure 11.7. Use interceptors with CDI

1. Define the interceptor binding type.

2. Mark the interceptor implementation.

@Interceptors({
 SecurityInterceptor.class,
 TransactionInterceptor.class,
 LoggingInterceptor.class
})
@Stateful public class BusinessComponent {
 ...
}

@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
public @interface Secure {}

@Secure
@Interceptor
public class SecurityInterceptor {
 @AroundInvoke
 public Object aroundInvoke(InvocationContext ctx) throws Exception {
 // enforce security ...

Development Guide

212

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4442-591662+%5BLatest%5D&comment=Title%3A+About+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4442-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. Use the interceptor in your business code.

4. Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-
INF/beans.xml.

The interceptors are applied in the order listed.

Result:

CDI simplifies your interceptor code and makes it easier to apply to your business code.

Report a bug

11.2.11. About Decorators

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. They are a bean, or even an abstract class, that implements the
type it decorates, and are annotated with @Decorator. To invoke a decorator in a CDI application, it
must be specified in the beans.xml file.

Example 11.20. Example Decorator

 return ctx.proceed();
 }
}

@Secure
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

<beans>
 <interceptors>
 <class>com.acme.SecurityInterceptor</class>
 <class>com.acme.TransactionInterceptor</class>
 </interceptors>
</beans>

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {

 ...

CHAPTER 11. CDI

213

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4464-591664+%5BLatest%5D&comment=Title%3A+Use+Interceptors+with+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4464-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

A decorator must have exactly one @Delegate injection point to obtain a reference to the decorated
object.

Report a bug

11.2.12. About Portable Extensions

CDI is intended to be a foundation for frameworks, extensions and integration with other technologies.
Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to CDI.
Extensions can provide the following types of functionality:

integration with Business Process Management engines

integration with third-party frameworks such as Spring, Seam, GWT or Wicket

new technology based upon the CDI programming model

According to the JSR-299 specification, a portable extension may integrate with the container in the
following ways:

Providing its own beans, interceptors and decorators to the container

Injecting dependencies into its own objects using the dependency injection service

Providing a context implementation for a custom scope

Augmenting or overriding the annotation-based metadata with metadata from some other
source

Report a bug

11.2.13. Bean Proxies

11.2.13.1. About Bean Proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance. Unless the bean is a
dependent object (scope @Dependent), the container must redirect all injected references to the bean
using a proxy object.

This bean proxy referred to as client proxy is responsible for ensuring the bean instance that receives a
method invocation is the instance associated with the current context. The client proxy also allows beans
bound to contexts such as the session context to be serialized to disk without recursively serializing
other injected beans.

Due to Java limitations, some Java types cannot be proxied by the container. If an injection point

 }

 public void deposit(BigDecimal amount);

 ...

 }

}

Development Guide

214

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4443-741456+%5BLatest%5D&comment=Title%3A+About+Decorators%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4443-741456+05+Feb+2015+05%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4444-591664+%5BLatest%5D&comment=Title%3A+About+Portable+Extensions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4444-591664+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Due to Java limitations, some Java types cannot be proxied by the container. If an injection point
declared with one of these types resolves to a bean with any scope other than @Dependent, the
container aborts the deployment.

Java types that cannot be proxied by the container

Classes which do not have a non-private constructor with no parameters

Classes which are declared final or have a final method

Arrays and primitive types

Report a bug

11.2.13.2. Use a Proxy in an Injection

Overview

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy is
a subclass of the bean that is created at run-time, and overrides all the non-private methods of the
bean class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment() method is called, the proxy looks up the current
PaymentProcessor bean instance and calls the processPayment() method on it.

Example 11.21. Proxy Injection

Fore more information about proxies, including which types of classes can be proxied, refer to
Section 11.2.13.1, “About Bean Proxies”.

Report a bug

@ConversationScoped
class PaymentProcessor
{
 public void processPayment(int amount)
 {
 System.out.println("I'm taking $" + amount);
 }
}

@ApplicationScoped
public class Shop
{

 @Inject
 PaymentProcessor paymentProcessor;

 public void buyStuff()
 {
 paymentProcessor.processPayment(100);
 }
}

CHAPTER 11. CDI

215

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4584-769928+%5BLatest%5D&comment=Title%3A+About+Bean+Proxies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4584-769928+07+Sep+2015+01%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4585-591669+%5BLatest%5D&comment=Title%3A+Use+a+Proxy+in+an+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4585-591669+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 12. JAVA TRANSACTION API (JTA)

12.1. OVERVIEW

12.1.1. Overview of Java Transactions API (JTA)

Introduction

These topics provide a foundational understanding of the Java Transactions API (JTA).

Section 12.2.5, “About Java Transactions API (JTA)”

Section 12.5.2, “Lifecycle of a JTA Transaction”

Section 12.9.2, “JTA Transaction Example”

Report a bug

12.2. TRANSACTION CONCEPTS

12.2.1. About Transactions

A transaction consists of two or more actions which must either all succeed or all fail. A successful
outcome is a commit, and a failed outcome is a roll-back. In a roll-back, each member's state is reverted
to its state before the transaction attempted to commit.

The typical standard for a well-designed transaction is that it is Atomic, Consistent, Isolated, and Durable
(ACID).

Report a bug

12.2.2. About ACID Properties for Transactions

ACID is an acronym which stands for Atomicity, Consistency, Isolation, and Durability. This
terminology is usually used in the context of databases or transactional operations.

ACID Definitions

Atomicity

For a transaction to be atomic, all transaction members must make the same decision. Either they all
commit, or they all roll back. If atomicity is broken, what results is termed a heuristic outcome.

Consistency

Consistency means that data written to the database is guaranteed to be valid data, in terms of the
database schema. The database or other data source must always be in a consistent state. One
example of an inconsistent state would be a field in which half of the data is written before an
operation aborts. A consistent state would be if all the data were written, or the write were rolled
back when it could not be completed.

Isolation

Isolation means that data being operated on by a transaction must be locked before modification, to
prevent processes outside the scope of the transaction from modifying the data.

Development Guide

216

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4377-591665+%5BLatest%5D&comment=Title%3A+Overview+of+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4377-591665+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4268-591658+%5BLatest%5D&comment=Title%3A+About+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4268-591658+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Durability

Durability means that in the event of an external failure after transaction members have been
instructed to commit, all members will be able to continue committing the transaction when the
failure is resolved. This failure may be related to hardware, software, network, or any other involved
system.

Report a bug

12.2.3. About the Transaction Coordinator or Transaction Manager

The terms Transaction Coordinator and Transaction Manager are mostly interchangeable in terms of
transactions with JBoss EAP 6. The term Transaction Coordinator is usually used in the context of
distributed transactions.

In JTA transactions, The Transaction Manager runs within JBoss EAP 6 and communicates with
transaction participants during the two-phase commit protocol.

The Transaction Manager tells transaction participants whether to commit or roll back their data,
depending on the outcome of other transaction participants. In this way, it ensures that transactions
adhere to the ACID standard.

In JTS transactions, the Transaction Coordinator manages interactions between transaction managers
on different servers.

Section 12.2.4, “About Transaction Participants”

Section 12.2.2, “About ACID Properties for Transactions”

Section 12.2.9, “About the 2-Phase Commit Protocol”

Report a bug

12.2.4. About Transaction Participants

A transaction participant is any process within a transaction, which has the ability to commit or roll back
state. This may be a database or other application. Each participant of a transaction independently
decides whether it is able to commit or roll back its state, and only if all participants can commit, does
the transaction as a whole succeed. Otherwise, each participant rolls back its state, and the transaction
as a whole fails. The Transaction Manager coordinates the commit or rollback operations and
determines the outcome of the transaction.

Section 12.2.1, “About Transactions”

Section 12.2.3, “About the Transaction Coordinator or Transaction Manager”

Report a bug

12.2.5. About Java Transactions API (JTA)

Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.

Implementation of JTA is done using Transaction manager, which is covered by project Narayana for
JBoss EAP application server. Transaction manager allows application to assign various resources, for
example, database or JMS brokers, through a single global transaction. The global transaction is
referred as XA transaction. Only resources with XA capabilities can be included in a transaction.

CHAPTER 12. JAVA TRANSACTION API (JTA)

217

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4271-591658+%5BLatest%5D&comment=Title%3A+About+ACID+Properties+for+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4271-591658+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4269-591658+%5BLatest%5D&comment=Title%3A+About+the+Transaction+Coordinator+or+Transaction+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4269-591658+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4270-591658+%5BLatest%5D&comment=Title%3A+About+Transaction+Participants%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4270-591658+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In this document, JTA refers to Java Transaction API, this term is used to indicate how the transaction
manager processes the transactions. Transaction manager works in JTA transactions mode, the data is
shared via memory and transaction context is transferred by remote EJB calls. In JTS mode, the data is
shared by sending Common Object Request Broker Architecture (CORBA)messages and transaction
context is transferred by IIOP calls. Both modes support distribution of transaction over multiple EAP
servers.

Annotations is a method for creating and controlling transactions within your code.

Section 12.2.7, “About XA Datasources and XA Transactions”

Section 12.2.11, “About Distributed Transactions”

Section 12.8.2, “Configure the ORB for JTS Transactions”

Report a bug

12.2.6. About Java Transaction Service (JTS)

Java Transaction Service (JTS) is a mapping of the Object Transaction Service (OTS) to Java. Java
applications use the JTA API to manage transactions. JTA then interacts with a JTS transaction
implementation when the transaction manager is switched to JTS mode. To use special JTS capabilities,
for example, nested transactions, you need to manually use the JTS API.

JTS works over the IIOP protocol. Transaction managers that use JTS, communicate with each other
using a process called an Object Request Broker (ORB), using a communication standard called
Common Object Request Broker Architecture (CORBA).

Using JTA API from an application standpoint, a JTS transaction behaves in the same way as a JTA
transaction.

NOTE

The implementation of JTS included in JBoss EAP 6 supports distributed transactions.
The difference from fully-compliant JTS transactions is interoperability with external
third-party ORBs. This feature is unsupported with JBoss EAP 6. Supported
configurations distribute transactions across multiple JBoss EAP 6 containers only.

Section 12.2.3, “About the Transaction Coordinator or Transaction Manager”

Report a bug

12.2.7. About XA Datasources and XA Transactions

An XA datasource is a datasource which can participate in an XA global transaction.

An XA transaction is a transaction which can span multiple resources. It involves a coordinating
transaction manager, with one or more databases or other transactional resources, all involved in a single
global transaction.

Report a bug

12.2.8. About XA Recovery

The Java Transaction API (JTA) allows distributed transactions across multiple X/Open XA resources .

Development Guide

218

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4300-697973+%5BLatest%5D&comment=Title%3A+About+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4300-697973+13+Aug+2014+02%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4318-759598+%5BLatest%5D&comment=Title%3A+About+Java+Transaction+Service+%28JTS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4318-759598+28+May+2015+05%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4286-591656+%5BLatest%5D&comment=Title%3A+About+XA+Datasources+and+XA+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4286-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

XA stands for Extended Architecture which was developed by the X/Open Group to define a transaction
which uses more than one back-end data store. The XA standard describes the interface between a
global Transaction Manager (TM) and a local resource manager. XA allows multiple resources, such as
application servers, databases, caches, and message queues, to participate in the same transaction,
while preserving atomicity of the transaction. Atomicity means that if one of the participants fails to
commit its changes, the other participants abort the transaction, and restore their state to the same
status as before the transaction occurred.

XA Recovery is the process of ensuring that all resources affected by a transaction are updated or rolled
back, even if any of the resources are transaction participants crash or become unavailable. Within the
scope of JBoss EAP 6, the Transaction subsystem provides the mechanisms for XA Recovery to any XA
resources or subsystems which use them, such as XA datasources, JMS message queues, and JCA
resource adapters.

XA Recovery happens without user intervention. In the event of an XA Recovery failure, errors are
recorded in the log output. Contact Red Hat Global Support Services if you need assistance.

Report a bug

12.2.9. About the 2-Phase Commit Protocol

The Two-phase commit protocol (2PC) refers to an algorithm to determine the outcome of a
transaction.

Phase 1

In the first phase, the transaction participants notify the transaction coordinator whether they are able
to commit the transaction or must roll back.

Phase 2

In the second phase, the transaction coordinator makes the decision about whether the overall
transaction should commit or roll back. If any one of the participants cannot commit, the transaction
must roll back. Otherwise, the transaction can commit. The coordinator directs the transactions about
what to do, and they notify the coordinator when they have done it. At that point, the transaction is
finished.

Report a bug

12.2.10. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock parts of datasources when they
commit, and the transaction manager needs to wait to hear back from each transaction participant
before it can direct them all whether to commit or roll back. Hardware or network failures can cause
resources to be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout
threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be
rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

Report a bug

CHAPTER 12. JAVA TRANSACTION API (JTA)

219

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4821-591676+%5BLatest%5D&comment=Title%3A+About+XA+Recovery%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4821-591676+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4272-591658+%5BLatest%5D&comment=Title%3A+About+the+2-Phase+Commit+Protocol%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4272-591658+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4378-591665+%5BLatest%5D&comment=Title%3A+About+Transaction+Timeouts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4378-591665+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

12.2.11. About Distributed Transactions

A distributed transaction, is a transaction with participants on multiple JBoss EAP 6 servers. Java
Transaction Service (JTS) specification mandates that JTS transactions be able to be distributed across
application servers from different vendors (transaction distribution among servers from different
vendors is not a supported feature). Java Transaction API (JTA) does not define that but JBoss EAP 6
supports distributed JTA transactions among JBoss EAP6 servers.

NOTE

In other app server vendor documentation, you can find that term distributed transaction
means XA transaction. In context of JBoss EAP 6 documentation, the distributed
transaction refers transactions distributed among several application servers. Transaction
which consists from different resources (for example, database resource and jms
resource) are referred as XA transactions in this document. For more information, refer
Section 12.2.6, “About Java Transaction Service (JTS)” and Section 12.2.7, “About XA
Datasources and XA Transactions”.

Report a bug

12.2.12. About the ORB Portability API

The Object Request Broker (ORB) is a process which sends and receives messages to transaction
participants, coordinators, resources, and other services distributed across multiple application servers.
An ORB uses a standardized Interface Description Language (IDL) to communicate and interpret
messages. Common Object Request Broker Architecture (CORBA) is the IDL used by the ORB in JBoss
EAP 6.

The main type of service which uses an ORB is a system of distributed Java Transactions, using the Java
Transaction Service (JTS) protocol. Other systems, especially legacy systems, may choose to use an
ORB for communication, rather than other mechanisms such as remote Enterprise JavaBeans or JAX-
WS or JAX-RS Web Services.

The ORB Portability API provides mechanisms to interact with an ORB. This API provides methods for
obtaining a reference to the ORB, as well as placing an application into a mode where it listens for
incoming connections from an ORB. Some of the methods in the API are not supported by all ORBs. In
those cases, an exception is thrown.

The API consists of two different classes:

ORB Portability API Classes

com.arjuna.orbportability.orb

com.arjuna.orbportability.oa

Refer to the JBoss EAP 6 Javadocs bundle from the Red Hat Customer Portal for specific details about
the methods and properties included in the ORB Portability API.

Report a bug

12.2.13. About Nested Transactions

Nested transactions are transactions where some participants are also transactions.

Development Guide

220

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4279-687031+%5BLatest%5D&comment=Title%3A+About+Distributed+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4279-687031+22+Jul+2014+05%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4320-763588+%5BLatest%5D&comment=Title%3A+About+the+ORB+Portability+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4320-763588+02+Jul+2015+00%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Benefits of Nested Transactions

Fault Isolation

If a subtransaction rolls back, perhaps because an object it is using fails, the enclosing transaction
does not need to roll back.

Modularity

If a transaction is already associated with a call when a new transaction begins, the new transaction is
nested within it. Therefore, if you know that an object requires transactions, you can create them
within the object. If the object's methods are invoked without a client transaction, then the object's
transactions are top-level. Otherwise, they are nested within the scope of the client's transactions.
Likewise, a client does not need to know whether an object is transactional. It can begin its own
transaction.

Nested Transactions are only supported as part of the Java Transaction Service (JTS) API, and not part
of the Java Transaction API (JTA). Attempting to nest (non-distributed) JTA transactions results in an
exception.

Modifying JBoss EAP 6 configuration of transaction subsystem to use JTS does not indicate that
nested transaction will be used or activated. If you need to use them, you have to directly use ORB API
as JTA API does not provide any method to start the nested transaction.

Report a bug

12.2.14. About XML Transaction Service

The XML Transaction Service (XTS) component supports the coordination of private and public Web
Services in a business transaction. Using XTS, you can coordinate complex business transactions in a
controlled and reliable manner. The XTS API supports a transactional coordination model based on the
WS-Coordination, WS-Atomic Transaction, and WS-Business Activity protocols.

Section 12.2.14.1, “Overview of Protocols Used by XTS”

Section 12.2.14.2, “Web Services-Atomic Transaction Process”

Section 12.2.14.3, “Web Services-Business Activity Process”

Section 12.2.14.4, “Transaction Bridging Overview”

Report a bug

12.2.14.1. Overview of Protocols Used by XTS

This topic describes the fundamental concepts associated with the WS-Coordination (WS-C), WS-
Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA) protocols, as defined in the
specifications of each protocol.

The WS-C specification defines a framework that allows different coordination protocols to be plugged
in to coordinate work between clients, services, and participants.

WS-T protocol comprises the pair of transaction coordination protocols, WS-Atomic Transaction (WS-
AT) and WS-Business Activity (WS-BA) , which utilize the coordination framework provided by WS-C.
WS-T is developed to unify existing traditional transaction processing systems, allowing them to
communicate reliably with one another.

CHAPTER 12. JAVA TRANSACTION API (JTA)

221

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4287-687477+%5BLatest%5D&comment=Title%3A+About+Nested+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4287-687477+23+Jul+2014+02%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A45519-781197+%5BLatest%5D&comment=Title%3A+About+XML+Transaction+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Section 12.2.14.2, “Web Services-Atomic Transaction Process”

Section 12.2.14.3, “Web Services-Business Activity Process”

Report a bug

12.2.14.2. Web Services-Atomic Transaction Process

An atomic transaction (AT) is designed to support short duration interactions where ACID semantics are
appropriate. Within the scope of an AT, Web Services typically employ bridging to access XA resources,
such as databases and message queues, under the control of the WS-T. When the transaction
terminates, the participant propagates the outcome decision of the AT to the XA resources, and the
appropriate commit or rollback actions are taken by each participant.

Atomic Transaction Process

1. To initiate an AT, the client application first locates a WS-C Activation Coordinator Web Service
that supports WS-T.

2. The client sends a WS-C CreateCoordinationContext message to the service, specifying
http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination type.

3. The client receives an appropriate WS-T context from the activation service.

4. The response to the CreateCoordinationContext message, the transaction context, has its
CoordinationType element set to the WS-AT namespace,
http://schemas.xmlsoap.org/ws/2004/10/wsat. It also contains a reference to the atomic
transaction coordinator endpoint, the WS-C Registration Service, where participants can be
enlisted.

5. The client normally proceeds to invoke Web Services and complete the transaction, either
committing all the changes made by the Web Services, or rolling them back. In order to be able
to drive this completion, the client must register itself as a participant for the Completion
protocol, by sending a register message to the Registration Service whose endpoint was
returned in the Coordination Context.

6. Once registered for completion, the client application then interacts with Web Services to
accomplish its business-level work. With each invocation of a business Web Service, the client
inserts the transaction context into a SOAP header block, such that each invocation is implicitly
scoped by the transaction. The toolkits that support WS-AT aware Web Services provide
facilities to correlate contexts found in SOAP header blocks with back-end operations. This
ensures that modifications made by the Web Service are done within the scope of the same
transaction as the client and subject to commit or rollback by the Transaction Coordinator.

7. Once all the necessary application work is complete, the client can terminate the transaction,
with the intent of making any changes to the service state permanent. The completion
participant instructs the coordinator to try to commit or roll back the transaction. When the
commit or rollback operation completes, a status is returned to the participant to indicate the
outcome of the transaction.

For more details, see Web Services-Transaction Documentation.

Report a bug

12.2.14.3. Web Services-Business Activity Process

Web Services-Business Activity (WS-BA) defines a protocol for Web Services based applications to

Development Guide

222

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+45515-781200+%5BLatest%5D&comment=Title%3A+Overview+of+Protocols+Used+by+XTS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=45515-781200+09+Feb+2017+06%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat
http://narayana.io//docs/project/index.html#d0e14935
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+45516-781199+%5BLatest%5D&comment=Title%3A+Web+Services-Atomic+Transaction+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=45516-781199+09+Feb+2017+05%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Web Services-Business Activity (WS-BA) defines a protocol for Web Services based applications to
enable existing business processing and workflow systems to wrap their proprietary mechanisms and
interoperate across implementations and business boundaries.

Unlike the WS-AT protocol model, where participants inform the transaction coordinator of their state
only when asked, a child activity within a BA can specify its outcome to the coordinator directly, without
waiting for a request. A participant may choose to exit the activity or notify the coordinator of a failure
at any point. This feature is useful when tasks fail because the notification can be used to modify the
goals and drive processing forward, without waiting until the end of the transaction to identify failures.

WS-BA Process

1. Services are requested to do work.

2. Wherever these services have the ability to undo any work, they inform the BA, in case the BA
later decides the cancel the work. If the BA suffers a failure. it can instruct the service to execute
its undo behavior.

The BA protocols employ a compensation-based transaction model. When a participant in a business
activity completes its work, it may choose to exit the activity. This choice does not allow any subsequent
rollback. Alternatively, the participant can complete its activity, signaling to the coordinator that the
work it has done can be compensated if, at some later point, another participant notifies a failure to the
coordinator. In this latter case, the coordinator asks each non-exited participant to compensate for the
failure, giving them the opportunity to execute whatever compensating action they consider
appropriate. If all participants exit or complete without failure, the coordinator notifies each completed
participant that the activity has been closed.

For more details, see Web Services-Transaction Documentation.

Report a bug

12.2.14.4. Transaction Bridging Overview

Transaction Bridging describes the process of linking the Java EE and WS-T domains. The transaction
bridge component txbridge provides bi-directional linkage, such that either type of transaction may
encompass business logic designed for use with the other type. The technique used by the bridge is a
combination of interposition and protocol mapping.

In the transaction bridge, an interposed coordinator is registered into the existing transaction and
performs the additional task of protocol mapping; that is, it appears to its parent coordinator to be a
resource of its native transaction type, whilst appearing to its children to be a coordinator of their native
transaction type, even though these transaction types differ.

The transaction bridge resides in the package org.jboss.jbossts.txbridge and its sub-packages. It
consists of two distinct sets of classes, one for bridging in each direction.

For more details, see Transaction Bridge Documentation .

Report a bug

12.3. TRANSACTION OPTIMIZATIONS

12.3.1. Overview of Transaction Optimizations

Introduction

The Transactions subsystem of JBoss EAP 6 includes several optimizations which you can take

CHAPTER 12. JAVA TRANSACTION API (JTA)

223

http://narayana.io//docs/project/index.html#d0e14935
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+45517-781201+%5BLatest%5D&comment=Title%3A+Web+Services-Business+Activity+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=45517-781201+09+Feb+2017+06%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://narayana.io//docs/product/index.html#txbridge
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+45518-781202+%5BLatest%5D&comment=Title%3A+Transaction+Bridging+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=45518-781202+09+Feb+2017+06%3A22+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The Transactions subsystem of JBoss EAP 6 includes several optimizations which you can take
advantage of in your applications.

Section 12.3.2, “About the LRCO Optimization for Single-phase Commit (1PC)”

Section 12.3.3, “About the Presumed-Abort Optimization”

Section 12.3.4, “About the Read-Only Optimization”

Report a bug

12.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Although the 2-phase commit protocol (2PC) is more commonly encountered with transactions, some
situations do not require, or cannot accommodate, both phases. In these cases, you can use the single
phase commit (1PC) protocol. One situation where this might happen is when a non-XA-aware
datasource needs to participate in the transaction.

In these situations, an optimization known as the Last Resource Commit Optimization (LRCO) is
employed. The single-phase resource is processed last in the prepare phase of the transaction, and an
attempt is made to commit it. If the commit succeeds, the transaction log is written and the remaining
resources go through the 2PC. If the last resource fails to commit, the transaction is rolled back.

While this protocol allows for most transactions to complete normally, certain types of error can cause
an inconsistent transaction outcome. Therefore, use this approach only as a last resort.

Where a single local TX datasource is used in a transaction, the LRCO is automatically applied to it.

Section 12.2.9, “About the 2-Phase Commit Protocol”

Report a bug

12.3.2.1. Commit Markable Resource

Summary

Configuring access to a resource manager via the Commit Markable Resource (CMR) interface ensures
that a 1PC resource manager can be reliably enlisted in a 2PC transaction. It is an implementation of the
LRCO algorithm, which makes non-XA resource fully recoverable.

Previously, adding 1PC resources to a 2PC transaction was achieved via the LRCO method, however
there is a window of failure in LRCO. Following the procedure below for adding 1PC resources to a 2PC
transaction via the LRCO method:

1. Prepare 2PC

2. Commit LRCO

3. Write tx log

4. Commit 2PC

If the procedure crashes between steps 2 and step 3, you cannot commit the 2PC. CMR eliminates this
restriction and allows 1PC to be reliably enlisted in a 2PC transaction.

NOTE

Development Guide

224

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4274-591656+%5BLatest%5D&comment=Title%3A+Overview+of+Transaction+Optimizations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4274-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A4273-591656+%5BLatest%5D&comment=Title%3A+About+the+LRCO+Optimization+for+Single-phase+Commit+%281PC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

Use the exception-sorter parameter in the datasource configuration. You can follow the
datasource configuration examples mentioned in the JBoss EAP Administration and
Configuration Guide.

Restrictions

A transaction may contain only one CMR resource.

Prerequisites

You must have a table created for which the following SQL would work:

SELECT xid,actionuid FROM _tableName_ WHERE transactionManagerID IN (String[])
DELETE FROM _tableName_ WHERE xid IN (byte[[]])
INSERT INTO _tableName_ (xid, transactionManagerID, actionuid) VALUES (byte[],String,byte[])

Example 12.1. Some examples of the SQL query

Sybase:

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64), actionuid
varbinary(28))

Oracle:

CREATE TABLE xids (xid RAW(144), transactionManagerID varchar(64), actionuid RAW(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

IBM:

CREATE TABLE xids (xid VARCHAR(255) for bit data not null, transactionManagerID
varchar(64), actionuid VARCHAR(255) for bit data not null)
CREATE UNIQUE INDEX index_xid ON xids (xid)

SQL Server:

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64), actionuid
varbinary(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Postgres:

CREATE TABLE xids (xid bytea, transactionManagerID varchar(64), actionuid bytea)
CREATE UNIQUE INDEX index_xid ON xids (xid)

Enabling a resource manager as CMR

By default, the CMR feature is disabled for datasources. To enable it, you must create or modify the
datasource configuration and ensure that the connectible attribute is set to true. An example
configuration entry in the datasources section of a server xml configuration file could be as follows:

CHAPTER 12. JAVA TRANSACTION API (JTA)

225

<datasource enabled="true" jndi-name="java:jboss/datasources/ConnectableDS" pool-
name="ConnectableDS" jta="true" use-java-context="true" spy="false" use-ccm="true"
connectable="true"/>

NOTE

This feature is not applicable to XA datasources.

You can also enable a resource manager as CMR using CLI as follows:

/subsystem=datasources/data-source=ConnectableDS:add(enabled="true", jndi-
name="java:jboss/datasources/ConnectableDS", jta="true", use-java-context="true", spy="false", use-
ccm="true", connectable="true", connection-url="validConnectionURL", exception-
sorter="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter", driver-name="h2")

Updating an existing resource to use the new CMR feature

If you only need to update an existing resource to use the new CMR feature, then simply modifiy the
connectable attribute:

/subsystem=datasources/data-source=ConnectableDS:write-attribute(name=connectable,value=true)

Identifying CMR capable datasources

The transaction subsystem identifies the datasources that are CMR capable through an entry to the
transaction subsystem config section as shown below:

<subsystem xmlns="urn:jboss:domain:transactions:3.0">
 ...
 <commit-markable-resources>
 <commit-markable-resource jndi-name="java:jboss/datasources/ConnectableDS">
 <xid-location name="xids" batch-size="100" immediate-cleanup="false"/>
 </commit-markable-resource>
 ...
 </commit-markable-resources>
</subsystem>

NOTE

You must restart the server after adding the CMR.

Report a bug

12.3.3. About the Presumed-Abort Optimization

If a transaction is going to roll back, it can record this information locally and notify all enlisted
participants. This notification is only a courtesy, and has no effect on the transaction outcome. After all
participants have been contacted, the information about the transaction can be removed.

If a subsequent request for the status of the transaction occurs there will be no information available. In
this case, the requester assumes that the transaction has aborted and rolled back. This presumed-abort
optimization means that no information about participants needs to be made persistent until the

Development Guide

226

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30533-769448+%5BLatest%5D&comment=Title%3A+Commit+Markable+Resource%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30533-769448+01+Sep+2015+06%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

transaction has decided to commit, since any failure prior to this point will be assumed to be an abort of
the transaction.

Report a bug

12.3.4. About the Read-Only Optimization

When a participant is asked to prepare, it can indicate to the coordinator that it has not modified any
data during the transaction. Such a participant does not need to be informed about the outcome of the
transaction, since the fate of the participant has no affect on the transaction. This read-only participant
can be omitted from the second phase of the commit protocol.

Report a bug

12.4. TRANSACTION OUTCOMES

12.4.1. About Transaction Outcomes

There are three possible outcomes for a transaction.

Roll-back

If any transaction participant cannot commit, or the transaction coordinator cannot direct
participants to commit, the transaction is rolled back. See Section 12.4.3, “About Transaction Roll-
Back” for more information.

Commit

If every transaction participant can commit, the transaction coordinator directs them to do so. See
Section 12.4.2, “About Transaction Commit” for more information.

Heuristic outcome

If some transaction participants commit and others roll back. it is termed a heuristic outcome.
Heuristic outcomes require human intervention. See Section 12.4.4, “About Heuristic Outcomes” for
more information.

Report a bug

12.4.2. About Transaction Commit

When a transaction participant commits, it makes its new state durable. The new state is created by the
participant doing the work involved in the transaction. The most common example is when a transaction
member writes records to a database.

After commit, information about the transaction is removed from the transaction coordinator, and the
newly-written state is now the durable state.

Report a bug

12.4.3. About Transaction Roll-Back

A transaction participant rolls back by restoring its state to reflect the state before the transaction
began. After a roll-back, the state is the same as if the transaction had never been started.

CHAPTER 12. JAVA TRANSACTION API (JTA)

227

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4275-591656+%5BLatest%5D&comment=Title%3A+About+the+Presumed-Abort+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4275-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4277-591656+%5BLatest%5D&comment=Title%3A+About+the+Read-Only+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4277-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4283-591656+%5BLatest%5D&comment=Title%3A+About+Transaction+Outcomes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4283-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4282-591656+%5BLatest%5D&comment=Title%3A+About+Transaction+Commit%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4282-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

12.4.4. About Heuristic Outcomes

A heuristic outcome, or non-atomic outcome, is a transaction anomaly. It refers to a situation where
some transaction participants committed their state, and others rolled back. A heuristic outcome causes
state to be inconsistent.

Heuristic outcomes typically happen during the second phase of the 2-phase commit (2PC) protocol.
They are often caused by failures to the underlying hardware or communications subsystems of the
underlying servers.

There are four different types of heuristic outcome.

Heuristic rollback

The commit operation failed because some or all of the participants unilaterally rolled back the
transaction.

Heuristic commit

An attempted rollback operation failed because all of the participants unilaterally committed. This
may happen if, for example, the coordinator is able to successfully prepare the transaction but then
decides to roll it back because of a failure on its side, such as a failure to update its log. In the interim,
the participants may decide to commit.

Heuristic mixed

Some participants committed and others rolled back.

Heuristic hazard

The outcome of some of the updates is unknown. For the ones that are known, they have either all
committed or all rolled back.

Heuristic outcomes can cause loss of integrity to the system, and usually require human intervention to
resolve. Do not write code which relies on them.

Section 12.2.9, “About the 2-Phase Commit Protocol”

Report a bug

12.4.5. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the UserTransaction
API specification at http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html.

Report a bug

12.5. OVERVIEW OF JTA TRANSACTIONS

12.5.1. About Java Transactions API (JTA)

Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.

Implementation of JTA is done using Transaction manager, which is covered by project Narayana for

Development Guide

228

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4281-591656+%5BLatest%5D&comment=Title%3A+About+Transaction+Roll-Back%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4281-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4285-591656+%5BLatest%5D&comment=Title%3A+About+Heuristic+Outcomes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4285-591656+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4299-689191+%5BLatest%5D&comment=Title%3A+JBoss+Transactions+Errors+and+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4299-689191+30+Jul+2014+02%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

JBoss EAP application server. Transaction manager allows application to assign various resources, for
example, database or JMS brokers, through a single global transaction. The global transaction is
referred as XA transaction. Only resources with XA capabilities can be included in a transaction.

In this document, JTA refers to Java Transaction API, this term is used to indicate how the transaction
manager processes the transactions. Transaction manager works in JTA transactions mode, the data is
shared via memory and transaction context is transferred by remote EJB calls. In JTS mode, the data is
shared by sending Common Object Request Broker Architecture (CORBA)messages and transaction
context is transferred by IIOP calls. Both modes support distribution of transaction over multiple EAP
servers.

Annotations is a method for creating and controlling transactions within your code.

Section 12.2.7, “About XA Datasources and XA Transactions”

Section 12.2.11, “About Distributed Transactions”

Section 12.8.2, “Configure the ORB for JTS Transactions”

Report a bug

12.5.2. Lifecycle of a JTA Transaction

When a resource asks to participate in a transaction, a chain of events is set in motion. The Transaction
Manager is a process that lives within the application server and manages transactions. Transaction
participants are objects which participate in a transaction. Resources are datasources, JMS connection
factories, or other JCA connections.

1. Your application starts a new transaction
To begin a transaction, your application obtains an instance of class UserTransaction from
JNDI or, if it is an EJB, from an annotation. The UserTransaction interface includes methods
for beginning, committing, and rolling back top-level transactions. Newly-created transactions
are automatically associated with their invoking thread. Nested transactions are not supported in
JTA, so all transactions are top-level transactions.

Calling UserTransaction.begin() using annotations starts a transaction when an EJB method is
called (driven by TransactionAttribute rules). Any resource that is used after that point is
associated with the transaction. If more than one resource is enlisted, your transaction becomes
an XA transaction, and participates in the two-phase commit protocol at commit time.

NOTE

The UserTransaction object is used only for BMT transactions. In CMT, the
UserTransaction object is not permitted.

2. Your application modifies its state.
In the next step, your application performs its work and makes changes to its state.

3. Your application decides to commit or roll back
When your application has finished changing its state, it decides whether to commit or roll back.
It calls the appropriate method, either UserTransaction.commit() or
UserTransaction.rollback().

4. The transaction manager removes the transaction from its records.

After the commit or rollback completes, the transaction manager cleans up its records and

CHAPTER 12. JAVA TRANSACTION API (JTA)

229

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4300-697973+%5BLatest%5D&comment=Title%3A+About+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4300-697973+13+Aug+2014+02%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

After the commit or rollback completes, the transaction manager cleans up its records and
removes information about your transaction from the transaction log.

Failure recovery

Failure recovery happens automatically. If a resource, transaction participant, or the application server
become unavailable, the Transaction Manager handles recovery when the underlying failure is resolved
and the resource is available again.

Section 12.2.1, “About Transactions”

Section 12.2.3, “About the Transaction Coordinator or Transaction Manager”

Section 12.2.4, “About Transaction Participants”

Section 12.2.9, “About the 2-Phase Commit Protocol”

Section 12.2.7, “About XA Datasources and XA Transactions”

Report a bug

12.6. TRANSACTION SUBSYSTEM CONFIGURATION

12.6.1. Transactions Configuration Overview

Introduction

The following procedures show you how to configure the transactions subsystem of JBoss EAP 6.

Section 12.6.2.3, “Configure Your Datasource to Use JTA Transaction API”

Section 12.6.2.1, “Configure an XA Datasource”

Section 12.7.8.2, “Configure the Transaction Manager”

Section 12.6.3.2, “Configure Logging for the Transaction Subsystem”

Report a bug

12.6.2. Transactional Datasource Configuration

12.6.2.1. Configure an XA Datasource

Prerequisites

Log into the Management Console.

1. Add a new datasource.
Add a new datasource to JBoss EAP 6. Click the XA Datasource tab at the top.

NOTE

Refer to Create an XA Datasource with the Management Interfaces section of the
Administration and Configuration Guide on the Red Hat Customer Portal for
information on how to add a new datasource to JBoss EAP 6.

Development Guide

230

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4301-759692+%5BLatest%5D&comment=Title%3A+Lifecycle+of+a+JTA+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4301-759692+29+May+2015+01%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4374-591665+%5BLatest%5D&comment=Title%3A+Transactions+Configuration+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4374-591665+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Configure additional properties as appropriate.
All datasource parameters are listed in Section 12.6.2.5, “Datasource Parameters”.

Result

Your XA Datasource is configured and ready to use.

Report a bug

12.6.2.2. Create a Non-XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to create a non-XA datasource, using either the Management
Console or the Management CLI.

Prerequisites

The JBoss EAP 6 server must be running.

NOTE

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter
was required, as mixing non-transactional and transactional connections would result in an
error. This parameter may no longer be required for certain applications.

NOTE

To prevent issues such as duplication of driver listing, selected driver not available in a
profile, or driver not displayed if a server for the profile is not running, in JBoss EAP 6.4
onwards, only JDBC drivers that are installed as modules and correctly referenced from
profiles are detectable while creating a datasource using the Management Console in
domain mode.

Procedure 12.1. Create a Datasource using either the Management CLI or the Management Console

Management CLI

a. Launch the CLI tool and connect to your server.

b. Run the following Management CLI command to create a non-XA datasource,
configuring the variables as appropriate:

NOTE

CHAPTER 12. JAVA TRANSACTION API (JTA)

231

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4303-765631+%5BLatest%5D&comment=Title%3A+Configure+an+XA+Datasource%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4303-765631+22+Jul+2015+01%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

The value for DRIVER_NAME depends on the number of classes listed in
the /META-INF/services/java.sql.Driver file located in the JDBC driver
JAR. If there is only one class, the value is the name of the JAR. If there
are multiple classes, the value is the name of the JAR + driverClassName
+ "_" + majorVersion +"_" + minorVersion. Failure to do so will result in the
following error being logged:

JBAS014775: New missing/unsatisfied dependencies

For example, the DRIVER_NAME value required for the MySQL 5.1.31
driver, is mysql-connector-java-5.1.31-
bin.jarcom.mysql.jdbc.Driver_5_1.

data-source add --name=DATASOURCE_NAME --jndi-name=JNDI_NAME --driver-
name=DRIVER_NAME --connection-url=CONNECTION_URL

c. Enable the datasource:

data-source enable --name=DATASOURCE_NAME

Management Console

a. Login to the Management Console.

b. Navigate to the Datasources panel in the Management Console

i. Select the Configuration tab from the top of the console.

ii. For Domain mode only, select a profile from the drop-down box in the top left.

iii. Expand the Subsystems menu on the left of the console, then expand the
Connector menu.

iv. Select Datasources from the menu on the left of the console.

c. Create a new datasource

i. Click Add at the top of the Datasources panel.

ii. Enter the new datasource attributes in the Create Datasource wizard and proceed
with the Next button.

iii. Enter the JDBC driver details in the Create Datasource wizard and click Next to
continue.

iv. Enter the connection settings in the Create Datasource wizard.

v. Click the Test Connection button to test the connection to the datasource and
verify the settings are correct.

vi. Click Done to finish

Result

Development Guide

232

The non-XA datasource has been added to the server. It is now visible in either the standalone.xml or
domain.xml file, as well as the management interfaces.

Report a bug

12.6.2.3. Configure Your Datasource to Use JTA Transaction API

Summary

This task shows you how to enable Java Transaction API (JTA) on your datasource.

Prerequisites

You must meet the following conditions before continuing with this task:

Your database or other resource must support Java Transaction API. If in doubt, consult the
documentation for your database or other resource.

Create a datasource. Refer to Section 12.6.2.2, “Create a Non-XA Datasource with the
Management Interfaces”.

Stop JBoss EAP 6.

Have access to edit the configuration files directly, in a text editor.

Procedure 12.2. Configure the Datasource to use Java Transaction API

1. Open the configuration file in a text editor.
Depending on whether you run JBoss EAP 6 in a managed domain or standalone server, your
configuration file will be in a different location.

Managed domain
The default configuration file for a managed domain is in
EAP_HOME/domain/configuration/domain.xml for Red Hat Enterprise Linux, and
EAP_HOME\domain\configuration\domain.xml for Microsoft Windows Server.

Standalone server
The default configuration file for a standalone server is in
EAP_HOME/standalone/configuration/standalone.xml for Red Hat Enterprise Linux, and
EAP_HOME\standalone\configuration\standalone.xml for Microsoft Windows Server.

2. Locate the <datasource> tag that corresponds to your datasource.
The datasource will have the jndi-name attribute set to the one you specified when you created
it. For example, the ExampleDS datasource looks like this:

<datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="H2DS"
enabled="true" jta="true" use-java-context="true" use-ccm="true">

3. Set the jta attribute to true.
Add the following to the contents of your <datasource> tag, as they appear in the previous
step: jta="true"

Unless you have a specific use case (such as defining a read only datasource) Red Hat
discourages overriding the default value of jta=true. This setting indicates that the datasource
will honor the Java Transaction API and allows better tracking of connections by the JCA
implementation.

CHAPTER 12. JAVA TRANSACTION API (JTA)

233

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4805-762760+%5BLatest%5D&comment=Title%3A+Create+a+Non-XA+Datasource+with+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4805-762760+24+Jun+2015+00%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

4. Save the configuration file.
Save the configuration file and exit the text editor.

5. Start JBoss EAP 6.
Relaunch the JBoss EAP 6 server.

Result:

JBoss EAP 6 starts, and your datasource is configured to use Java Transaction API.

Report a bug

12.6.2.4. Configure Database Connection Validation Settings

Overview

Database maintenance, network problems, or other outage events may cause JBoss EAP 6 to lose the
connection to the database. You enable database connection validation using the <validation> element
within the <datasource> section of the server configuration file. Follow the steps below to configure
the datasource settings to enable database connection validation in JBoss EAP 6.

Procedure 12.3. Configure Database Connection Validation Settings

1. Choose a Validation Method
Select one of the following validation methods.

<validate-on-match>true</validate-on-match>
When the <validate-on-match> option is set to true, the database connection is validated
every time it is checked out from the connection pool using the validation mechanism
specified in the next step.

If a connection is not valid, a warning is written to the log and it retrieves the next
connection in the pool. This process continues until a valid connection is found. If you prefer
not to cycle through every connection in the pool, you can use the <use-fast-fail> option. If
a valid connection is not found in the pool, a new connection is created. If the connection
creation fails, an exception is returned to the requesting application.

This setting results in the quickest recovery but creates the highest load on the database.
However, this is the safest selection if the minimal performance hit is not a concern.

<background-validation>true</background-validation>
When the <background-validation> option is set to true, it is used in combination with the
<background-validation-millis> value to determine how often background validation runs.
The default value for the <background-validation-millis> parameter is 0 milliseconds,
meaning it is disabled by default. This value should not be set to the same value as your
<idle-timeout-minutes> setting.

It is a balancing act to determine the optimum <background-validation-millis> value for a
particular system. The lower the value, the more frequently the pool is validated and the
sooner invalid connections are removed from the pool. However, lower values take more
database resources. Higher values result in less frequent connection validation checks and
use less database resources, but dead connections are undetected for longer periods of
time.

NOTE

Development Guide

234

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4295-741398+%5BLatest%5D&comment=Title%3A+Configure+Your+Datasource+to+Use+JTA+Transaction+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4295-741398+04+Feb+2015+22%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

If the <validate-on-match> option is set to true, the <background-validation>
option should be set to false. The reverse is also true. If the <background-
validation> option is set to true, the <validate-on-match> option should be set
to false.

2. Choose a Validation Mechanism
Select one of the following validation mechanisms.

Specify a <valid-connection-checker> Class Name
This is the preferred mechanism as it optimized for the particular RDBMS in use. JBoss EAP
6 provides the following connection checkers:

org.jboss.jca.adapters.jdbc.extensions.db2.DB2ValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLReplicationValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.novendor.JDBC4ValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.novendor.NullValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseValidConnectionChecker

Specify SQL for <check-valid-connection-sql>
You provide the SQL statement used to validate the connection.

The following is an example of how you might specify a SQL statement to validate a
connection for Oracle:

For MySQL or PostgreSQL, you might specify the following SQL statement:

3. Set the <exception-sorter> Class Name
When an exception is marked as fatal, the connection is closed immediately, even if the
connection is participating in a transaction. Use the exception sorter class option to properly
detect and clean up after fatal connection exceptions. JBoss EAP 6 provides the following
exception sorters:

org.jboss.jca.adapters.jdbc.extensions.db2.DB2ExceptionSorter

org.jboss.jca.adapters.jdbc.extensions.informix.InformixExceptionSorter

org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter

<check-valid-connection-sql>select 1 from dual</check-valid-connection-sql>

<check-valid-connection-sql>select 1</check-valid-connection-sql>

CHAPTER 12. JAVA TRANSACTION API (JTA)

235

org.jboss.jca.adapters.jdbc.extensions.novendor.NullExceptionSorter

org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter

org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter

org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseExceptionSorter

org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter

Report a bug

12.6.2.5. Datasource Parameters

Table 12.1. Datasource parameters common to non-XA and XA datasources

Parameter Description

jndi-name The unique JNDI name for the datasource.

pool-name The name of the management pool for the
datasource.

enabled Whether or not the datasource is enabled.

use-java-context Whether to bind the datasource to global JNDI.

spy Enable spy functionality on the JDBC layer. This
logs all JDBC traffic to the datasource. Note that the
logging category jboss.jdbc.spy must also be set
to the log level DEBUG in the logging subsystem.

use-ccm Enable the cached connection manager.

new-connection-sql A SQL statement which executes when the
connection is added to the connection pool.

transaction-isolation One of the following:

TRANSACTION_READ_UNCOMMITTED

TRANSACTION_READ_COMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

TRANSACTION_NONE

url-selector-strategy-class-name A class that implements interface
org.jboss.jca.adapters.jdbc.URLSelectorStrat
egy.

Development Guide

236

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+41672-769442+%5BLatest%5D&comment=Title%3A+Configure+Database+Connection+Validation+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41672-769442+01+Sep+2015+05%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

security Contains child elements which are security settings.
See Table 12.6, “Security parameters”.

validation Contains child elements which are validation settings.
See Table 12.7, “Validation parameters”.

timeout Contains child elements which are timeout settings.
See Table 12.8, “Timeout parameters”.

statement Contains child elements which are statement
settings. See Table 12.9, “Statement parameters”.

Parameter Description

Table 12.2. Non-XA datasource parameters

Parameter Description

jta Enable JTA integration for non-XA datasources.
Does not apply to XA datasources.

connection-url The JDBC driver connection URL.

driver-class The fully-qualified name of the JDBC driver class.

connection-property Arbitrary connection properties passed to the
method Driver.connect(url,props). Each
connection-property specifies a string name/value
pair. The property name comes from the name, and
the value comes from the element content.

pool Contains child elements which are pooling settings.
See Table 12.4, “Pool parameters common to non-XA
and XA datasources”.

url-delimiter The delimiter for URLs in a connection-url for High
Availability (HA) clustered databases.

Table 12.3. XA datasource parameters

Parameter Description

xa-datasource-property A property to assign to implementation class
XADataSource. Specified by name=value. If a
setter method exists, in the format setName, the
property is set by calling a setter method in the
format of setName(value).

xa-datasource-class The fully-qualified name of the implementation class
javax.sql.XADataSource.

CHAPTER 12. JAVA TRANSACTION API (JTA)

237

driver A unique reference to the class loader module which
contains the JDBC driver. The accepted format is
driverName#majorVersion.minorVersion.

xa-pool Contains child elements which are pooling settings.
See Table 12.4, “Pool parameters common to non-XA
and XA datasources” and Table 12.5, “XA pool
parameters”.

recovery Contains child elements which are recovery settings.
See Table 12.10, “Recovery parameters”.

Parameter Description

Table 12.4. Pool parameters common to non-XA and XA datasources

Parameter Description

min-pool-size The minimum number of connections a pool holds.

max-pool-size The maximum number of connections a pool can
hold.

prefill Whether to try to prefill the connection pool. The
default is false.

use-strict-min Whether the idle connection scan should strictly stop
marking for closure of any further connections, once
the min-pool-size has been reached. The default
value is false.

flush-strategy Whether the pool is flushed in the case of an error.
Valid values are:

FailingConnectionOnly

IdleConnections

EntirePool

The default is FailingConnectionOnly.

allow-multiple-users Specifies if multiple users will access the datasource
through the getConnection(user, password) method,
and whether the internal pool type accounts for this
behavior.

Table 12.5. XA pool parameters

Parameter Description

Development Guide

238

is-same-rm-override Whether the
javax.transaction.xa.XAResource.isSameRM(
XAResource) class returns true or false.

interleaving Whether to enable interleaving for XA connection
factories.

no-tx-separate-pools Whether to create separate sub-pools for each
context. This is required for Oracle datasources,
which do not allow XA connections to be used both
inside and outside of a JTA transaction.

Using this option will cause your total pool size to be
twice max-pool-size, because two actual pools will
be created.

pad-xid Whether to pad the Xid.

wrap-xa-resource Whether to wrap the XAResource in an
org.jboss.tm.XAResourceWrapper instance.

Parameter Description

Table 12.6. Security parameters

Parameter Description

user-name The username to use to create a new connection.

password The password to use to create a new connection.

security-domain Contains the name of a JAAS security-manager
which handles authentication. This name correlates
to the application-policy/name attribute of the
JAAS login configuration.

reauth-plugin Defines a reauthentication plug-in to use to
reauthenticate physical connections.

Table 12.7. Validation parameters

Parameter Description

valid-connection-checker An implementation of interface
org.jboss.jca.adaptors.jdbc.ValidConnection
Checker which provides a
SQLException.isValidConnection(Connectio
n e) method to validate a connection. An exception
means the connection is destroyed. This overrides
the parameter check-valid-connection-sql if it is
present.

CHAPTER 12. JAVA TRANSACTION API (JTA)

239

check-valid-connection-sql An SQL statement to check validity of a pool
connection. This may be called when a managed
connection is taken from a pool for use.

validate-on-match Indicates whether connection level validation is
performed when a connection factory attempts to
match a managed connection for a given set.

Specifying "true" for validate-on-match is typically
not done in conjunction with specifying "true" for
background-validation. Validate-on-match is
needed when a client must have a connection
validated prior to use. This parameter is false by
default.

background-validation Specifies that connections are validated on a
background thread. Background validation is a
performance optimization when not used with
validate-on-match. If validate-on-match is true,
using background-validation could result in
redundant checks. Background validation does leave
open the opportunity for a bad connection to be
given to the client for use (a connection goes bad
between the time of the validation scan and prior to
being handed to the client), so the client application
must account for this possibility.

background-validation-millis The amount of time, in milliseconds, that background
validation runs.

use-fast-fail If true, fail a connection allocation on the first
attempt, if the connection is invalid. Defaults to
false.

stale-connection-checker An instance of
org.jboss.jca.adapters.jdbc.StaleConnection
Checker which provides a Boolean
isStaleConnection(SQLException e) method. If
this method returns true, the exception is wrapped in
an
org.jboss.jca.adapters.jdbc.StaleConnection
Exception, which is a subclass of SQLException.

exception-sorter An instance of
org.jboss.jca.adapters.jdbc.ExceptionSorter
which provides a Boolean
isExceptionFatal(SQLException e) method.
This method validates whether an exception is
broadcast to all instances of
javax.resource.spi.ConnectionEventListener
as a connectionErrorOccurred message.

Parameter Description

Table 12.8. Timeout parameters

Development Guide

240

Parameter Description

use-try-lock Uses tryLock() instead of lock(). This attempts to
obtain the lock for the configured number of
seconds, before timing out, rather than failing
immediately if the lock is unavailable. Defaults to 60
seconds. As an example, to set a timeout of 5
minutes, set <use-try-lock>300</use-try-lock>.

blocking-timeout-millis The maximum time, in milliseconds, to block while
waiting for a connection. After this time is exceeded,
an exception is thrown. This blocks only while waiting
for a permit for a connection, and does not throw an
exception if creating a new connection takes a long
time. Defaults to 30000, which is 30 seconds.

idle-timeout-minutes The maximum time, in minutes, before an idle
connection is closed. If not specified, the default is
30 minutes. The actual maximum time depends upon
the idleRemover scan time, which is half of the
smallest idle-timeout-minutes of any pool.

set-tx-query-timeout Whether to set the query timeout based on the time
remaining until transaction timeout. Any configured
query timeout is used if no transaction exists.
Defaults to false.

query-timeout Timeout for queries, in seconds. The default is no
timeout.

allocation-retry The number of times to retry allocating a connection
before throwing an exception. The default is 0, so an
exception is thrown upon the first failure.

allocation-retry-wait-millis How long, in milliseconds, to wait before retrying to
allocate a connection. The default is 5000, which is 5
seconds.

xa-resource-timeout If non-zero, this value is passed to method
XAResource.setTransactionTimeout.

Table 12.9. Statement parameters

Parameter Description

CHAPTER 12. JAVA TRANSACTION API (JTA)

241

track-statements Whether to check for unclosed statements when a
connection is returned to a pool and a statement is
returned to the prepared statement cache. If false,
statements are not tracked.

Valid values

true: statements and result sets are
tracked, and a warning is issued if they are
not closed.

false: neither statements or result sets are
tracked.

nowarn: statements are tracked but no
warning is issued. This is the default.

prepared-statement-cache-size The number of prepared statements per connection,
in a Least Recently Used (LRU) cache.

share-prepared-statements Whether JBoss EAP should cache, instead of close
or terminate, the underlying physical statement when
the wrapper supplied to the application is closed by
application code. The default is false.

Parameter Description

Table 12.10. Recovery parameters

Parameter Description

recover-credential A username/password pair or security domain to use
for recovery.

recover-plugin An implementation of the
org.jboss.jca.core.spi.recoveryRecoveryPlugi
n class, to be used for recovery.

Report a bug

12.6.3. Transaction Logging

12.6.3.1. About Transaction Log Messages

To track transaction status while keeping the log files readable, use the DEBUG log level for the
transaction logger. For detailed debugging, use the TRACE log level. Refer to Section 12.6.3.2,
“Configure Logging for the Transaction Subsystem” for information on configuring the transaction
logger.

The transaction manager can generate a lot of logging information when configured to log in the

Development Guide

242

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2772-781124+%5BLatest%5D&comment=Title%3A+Datasource+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2772-781124+27+Jan+2017+11%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The transaction manager can generate a lot of logging information when configured to log in the
TRACE log level. Following are some of the most commonly-seen messages. This list is not
comprehensive, so you may see other messages than these.

Table 12.11. Transaction State Change

Transaction Begin When a transaction begins, the following code is
executed:

com.arjuna.ats.arjuna.coordinator.BasicAction:
:Begin:1342

tsLogger.logger.trace("BasicAction::Begin()
for action-id "+ get_uid());

Transaction Commit When a transaction commits, the following code is
executed:

com.arjuna.ats.arjuna.coordinator.BasicAction:
:End:1342

tsLogger.logger.trace("BasicAction::End() for
action-id "+ get_uid());

Transaction Rollback When a transaction rolls back, the following code is
executed:

com.arjuna.ats.arjuna.coordinator.BasicAction:
:Abort:1575

tsLogger.logger.trace("BasicAction::Abort()
for action-id "+ get_uid());

Transaction Timeout When a transaction times out, the following code is
executed:

com.arjuna.ats.arjuna.coordinator.Transaction
Reaper::doCancellations:349

tsLogger.logger.trace("Reaper Worker " +
Thread.currentThread() + " attempting to
cancel " + e._control.get_uid());

You will then see the same thread rolling back the
transaction as shown above.

Report a bug

12.6.3.2. Configure Logging for the Transaction Subsystem

Summary

CHAPTER 12. JAVA TRANSACTION API (JTA)

243

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9018-591860+%5BLatest%5D&comment=Title%3A+About+Transaction+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9018-591860+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use this procedure to control the amount of information logged about transactions, independent of
other logging settings in JBoss EAP 6. The main procedure shows how to do this in the web-based
Management Console. The Management CLI command is given afterward.

Procedure 12.4. Configure the Transaction Logger Using the Management Console

1. Navigate to the Logging configuration area.
In the Management Console, click the Configuration tab. If you use a managed domain, choose
the server profile you wish to configure, from the Profile selection box at the top left.

Expand the Core menu, and select Logging.

2. Edit the com.arjuna attributes.
Select the Log Categories tab. Select com.arjuna and lick Edit in the Details section. This is
where you can add class-specific logging information. The com.arjuna class is already present.
You can change the log level and whether to use parent handlers.

Log Level

The log level is WARN by default. Because transactions can produce a large quantity of
logging output, the meaning of the standard logging levels is slightly different for the
transaction logger. In general, messages tagged with levels at a lower severity than the
chosen level are discarded.

Transaction Logging Levels, from Most to Least Verbose

TRACE

DEBUG

INFO

WARN

ERROR

FAILURE

Use Parent Handlers

Whether the logger should send its output to its parent logger. The default behavior is true.

3. Changes take effect immediately.

Report a bug

12.6.3.3. Browse and Manage Transactions

The Management CLI supports the ability to browse and manipulate transaction records. This
functionality is provided by the interaction between the Transaction Manager and the management API
of JBoss EAP 6.

The Transaction Manager stores information about each pending transaction and the participants
involved the transaction, in a persistent storage called the object store. The management API exposes
the object store as a resource called the log-store. An API operation called probe reads the transaction

Development Guide

244

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4311-632600+%5BLatest%5D&comment=Title%3A+Configure+Logging+for+the+Transaction+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4311-632600+21+Apr+2014+21%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

logs and creates a node for each log. You can call the probe command manually, whenever you need to
refresh the log-store. It is normal for transaction logs to appear and disappear quickly.

Example 12.2. Refresh the Log Store

This command refreshes the log store for server groups which use the profile default in a managed
domain. For a standalone server, remove the profile=default from the command.

/profile=default/subsystem=transactions/log-store=log-store/:probe

Example 12.3. View All Prepared Transactions

To view all prepared transactions, first refresh the log store (see Example 12.2, “Refresh the Log
Store”), then run the following command, which functions similarly to a filesystem ls command.

ls /profile=default/subsystem=transactions/log-store=log-store/transactions

Each transaction is shown, along with its unique identifier. Individual operations can be run against an
individual transaction (see Manage a Transaction).

Manage a Transaction

View a transaction's attributes.

To view information about a transaction, such as its JNDI name, EIS product name and version, or its
status, use the :read-resource CLI command.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9:read-resource

View the participants of a transaction.

Each transaction log contains a child element called participants. Use the read-resource CLI
command on this element to see the participants of the transaction. Participants are identified by
their JNDI names.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA:read-resource

The result may look similar to this:

{
 "outcome" => "success",
 "result" => {
 "eis-product-name" => "HornetQ",
 "eis-product-version" => "2.0",
 "jndi-name" => "java:/JmsXA",
 "status" => "HEURISTIC",
 "type" => "/StateManager/AbstractRecord/XAResourceRecord"
 }
}

CHAPTER 12. JAVA TRANSACTION API (JTA)

245

The outcome status shown here is in a HEURISTIC state and is eligible for recovery. See Recover a
transaction. for more details.

In special cases it is possible to create orphan records in the object store, that is
XAResourceRecords, which do not have any corresponding transaction record in the log. For
example, XA resource prepared but crashed before the TM recorded and is inaccessible for the
domain management API. To access such records you need to set management option expose-all-
logs to true. This option is not saved in management model and is restored to false when the server
is restarted.

/profile=default/subsystem=transactions/log-store=log-store:write-attribute(name=expose-all-logs,
value=true)

Delete a transaction.

Each transaction log supports a :delete operation, to delete the transaction log representing the
transaction.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9:delete

Recover a transaction.

Each transaction participant supports recovery via the :recover CLI command.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=2:recover

Recovery of heuristic transactions and participants

If the transaction's status is HEURISTIC, the recovery operation changes the state to
PREPARE and triggers a recovery.

If one of the transaction's participants is heuristic, the recovery operation tries to replay the
commit operation. If successful, the participant is removed from the transaction log. You can
verify this by re-running the :probe operation on the log-store and checking that the
participant is no longer listed. If this is the last participant, the transaction is also deleted.

Refresh the status of a transaction which needs recovery.

If a transaction needs recovery, you can use the :refresh CLI command to be sure it still requires
recovery, before attempting the recovery.

/profile=default/subsystem=transactions/log-store=log-store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=2:refresh

View Transaction Statistics

If Transaction Manager statistics are enabled, you can view statistics about the Transaction Manager and
transaction subsystem. See Section 12.7.8.2, “Configure the Transaction Manager” for information about
how to enable Transaction Manager statistics.

You can view statistics either via the management console or the Management CLI. In the management
console, transaction statistics are available via Runtime → Status → Subsystems → Transactions.

Development Guide

246

Transaction statistics are available for each server in a managed domain. To view the status of a
different server, select Change Server in the left-hand menu and select the server from the list.

The following table shows each available statistic, its description, and the Management CLI command to
view the statistic.

Table 12.12. Transaction Subsystem Statistics

Statistic Description CLI Command

Total The total number of transactions
processed by the Transaction
Manager on this server.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
transactions,include-
defaults=true)

Committed The number of committed
transactions processed by the
Transaction Manager on this
server.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
committed-
transactions,include-
defaults=true)

Aborted The number of aborted
transactions processed by the
Transaction Manager on this
server.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
aborted-
transactions,include-
defaults=true)

Timed Out The number of timed out
transactions processed by the
Transaction Manager on this
server.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
timed-out-
transactions,include-
defaults=true)

CHAPTER 12. JAVA TRANSACTION API (JTA)

247

Heuristics Not available in the Management
Console. Number of transactions
in a heuristic state.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
heuristics,include-
defaults=true)

In-Flight Transactions Not available in the Management
Console. Number of transactions
which have begun but not yet
terminated.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
inflight-transactions,include-
defaults=true)

Failure Origin - Applications The number of failed transactions
whose failure origin was an
application.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
application-
rollbacks,include-
defaults=true)

Failure Origin - Resources The number of failed transactions
whose failure origin was a
resource.

/host=master/server=server
-
one/subsystem=transactions/
:read-
attribute(name=number-of-
resource-rollbacks,include-
defaults=true)

Statistic Description CLI Command

Development Guide

248

Participant ID The ID of the participant.

/host=master/server=server
-
one/subsystem=transactions/
log-store=log-
store/transactions=0\:ffff7f00
0001\:-
b66efc2\:4f9e6f8f\:9:read-
children-names(child-
type=participants)

List of all transactions The complete list of transactions.

/host=master/server=server
-
one/subsystem=transactions/
log-store=log-store:read-
children-names(child-
type=transactions)

Statistic Description CLI Command

Report a bug

12.7. USE JTA TRANSACTIONS

12.7.1. Transactions JTA Task Overview

Introduction

The following procedures are useful when you need to use transactions in your application.

Section 12.7.2, “Control Transactions”

Section 12.7.3, “Begin a Transaction”

Section 12.7.5, “Commit a Transaction”

Section 12.7.6, “Roll Back a Transaction”

Section 12.7.7, “Handle a Heuristic Outcome in a Transaction”

Section 12.7.8.2, “Configure the Transaction Manager”

Section 12.7.9.1, “Handle Transaction Errors”

Report a bug

12.7.2. Control Transactions

Introduction

This list of procedures outlines the different ways to control transactions in your applications which use

CHAPTER 12. JAVA TRANSACTION API (JTA)

249

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4312-760806+%5BLatest%5D&comment=Title%3A+Browse+and+Manage+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4312-760806+09+Jun+2015+04%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4375-591665+%5BLatest%5D&comment=Title%3A+Transactions+JTA+Task+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4375-591665+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This list of procedures outlines the different ways to control transactions in your applications which use
JTA or JTS APIs.

Section 12.7.3, “Begin a Transaction”

Section 12.7.5, “Commit a Transaction”

Section 12.7.6, “Roll Back a Transaction”

Section 12.7.7, “Handle a Heuristic Outcome in a Transaction”

Report a bug

12.7.3. Begin a Transaction

This procedure shows how to begin a new transaction. The API is the same either you run Transaction
Manager configured with JTA or JTS.

1. Get an instance of UserTransaction.
You can get the instance using JNDI, injection, or an EJB's context, if the EJB uses bean-
managed transactions, by means of a
@TransactionManagement(TransactionManagementType.BEAN) annotation.

JNDI

Injection

Context

In a stateless/stateful bean:

In a message-driven bean:

2. Call UserTransaction.begin() after you connect to your datasource.

new InitialContext().lookup("java:comp/UserTransaction")

@Resource UserTransaction userTransaction;

@Resource SessionContext ctx;
ctx.getUserTransaction();

@Resource MessageDrivenContext ctx;
ctx.getUserTransaction()

...
try {
 System.out.println("\nCreating connection to database: "+url);
 stmt = conn.createStatement(); // non-tx statement
 try {
 System.out.println("Starting top-level transaction.");
 userTransaction.begin();
 stmtx = conn.createStatement(); // will be a tx-statement

Development Guide

250

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4313-591659+%5BLatest%5D&comment=Title%3A+Control+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4313-591659+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Participate in an existing transaction using the JTS API.

One of the benefits of EJBs (either used with CMT or BMT) is that the container manages all the
internals of the transactional processing, that is, you are free from taking care of transaction being part
of XA transaction or transaction distribution amongst EAP containers.

Result:

The transaction begins. All uses of your datasource until you commit or roll back the transaction are
transactional.

NOTE

For a full example, see Section 12.9.2, “JTA Transaction Example” .

Report a bug

12.7.4. Nested Transactions

Nested transactions allow an application to create a transaction that is embedded in an existing
transaction. In this model, multiple subtransactions can be embedded recursively in a transaction.
Subtransactions can be committed or rolled back without committing or rolling back the parent
transaction. However, the results of a commit operation are contingent upon the commitment of all the
transaction's ancestors.

For implementation specific information, refer JBossTS JTS Development guide at
https://docs.jboss.org/jbosstm/latest/guides/narayana-jts-development_guide.

Nested transactions are available only when used with the JTS API. Nested transaction are not a
supported feature of EAP application server. In addition, many database vendors do not support nested
transactions, so consult your database vendor before you add nested transactions to your application.

Report a bug

12.7.5. Commit a Transaction

This procedure shows how to commit a transaction using the Java Transaction API (JTA).

Prerequisites

You must begin a transaction before you can commit it. For information on how to begin a transaction,
refer to Section 12.7.3, “Begin a Transaction” .

1. Call the commit() method on the UserTransaction.
When you call the commit() method on the UserTransaction, the Transaction Manager
attempts to commit the transaction.

 ...
 }
}

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager = entityManagerFactory.createEntityManager();

CHAPTER 12. JAVA TRANSACTION API (JTA)

251

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4304-744140+%5BLatest%5D&comment=Title%3A+Begin+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4304-744140+20+Feb+2015+02%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://docs.jboss.org/jbosstm/latest/guides/narayana-jts-development_guide
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4308-742124+%5BLatest%5D&comment=Title%3A+Nested+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4308-742124+09+Feb+2015+01%3A36+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. If you use Container Managed Transactions (CMT), you do not need to manually commit.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

Result

Your datasource commits and your transaction ends, or an exception is thrown.

NOTE

For a full example, see Section 12.9.2, “JTA Transaction Example” .

Report a bug

12.7.6. Roll Back a Transaction

This procedure shows how to roll back a transaction using the Java Transaction API (JTA).

Prerequisites

You must begin a transaction before you can roll it back. For information on how to begin a transaction,
refer to Section 12.7.3, “Begin a Transaction” .

1. Call the rollback() method on the UserTransaction.
When you call the rollback() method on the UserTransaction, the Transaction Manager
attempts to roll back the transaction and return the data to its previous state.

 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

@PersistenceContext
private EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updateTable(String key, String value)
 <!-- Perform some data manipulation using entityManager -->
 ...
}

Development Guide

252

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4305-741706+%5BLatest%5D&comment=Title%3A+Commit+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4305-741706+05+Feb+2015+22%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. If you use Container Managed Transactions (CMT), you do not need to manually roll back
the transaction.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

NOTE

Rollback for CMT occurs if RuntimeException is thrown. You can also explicitly
call the setRollbackOnly method to gain the rollback. Or, use the
@ApplicationException(rollback=true) for application exception to rollback.

Result

Your transaction is rolled back by the Transaction Manager.

NOTE

For a full example, see Section 12.9.2, “JTA Transaction Example” .

Report a bug

12.7.7. Handle a Heuristic Outcome in a Transaction

This procedure shows how to handle a heuristic outcome of a transaction using the Java Transaction API
(JTA).

Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager = entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

CHAPTER 12. JAVA TRANSACTION API (JTA)

253

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4306-741705+%5BLatest%5D&comment=Title%3A+Roll+Back+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4306-741705+05+Feb+2015+22%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic
means "by hand", and that is the way that these outcomes usually have to be handled. Refer to
Section 12.4.4, “About Heuristic Outcomes” for more information about heuristic transaction outcomes.

Procedure 12.5. Handle a heuristic outcome in a transaction

1. Determine the cause
The over-arching cause of a heuristic outcome in a transaction is that a resource manager
promised it could commit or roll-back, and then failed to fulfill the promise. This could be due to
a problem with a third-party component, the integration layer between the third-party
component and JBoss EAP 6, or JBoss EAP 6 itself.

By far, the most common two causes of heuristic errors are transient failures in the environment
and coding errors in the code dealing with resource managers.

2. Fix transient failures in the environment
Typically, if there is a transient failure in your environment, you will know about it before you find
out about the heuristic error. This could be a network outage, hardware failure, database failure,
power outage, or a host of other things.

If you experienced the heuristic outcome in a test environment, during stress testing, it provides
information about weaknesses in your environment.

WARNING

JBoss EAP 6 will automatically recover transactions that were in a non-
heuristic state at the time of the failure, but it does not attempt to recover
heuristic transactions.

3. Contact resource manager vendors
If you have no obvious failure in your environment, or the heuristic outcome is easily
reproducible, it is probably a coding error. Contact third-party vendors to find out if a solution is
available. If you suspect the problem is in the transaction manager of JBoss EAP 6 itself, contact
Red Hat Global Support Services.

4. In a test environment, delete the logs and restart JBoss EAP 6.
In a test environment, or if you do not care about the integrity of the data, deleting the
transaction logs and restarting JBoss EAP 6 gets rid of the heuristic outcome. The transaction
logs are located in EAP_HOME/standalone/data/tx-object-store/ for a standalone server, or
EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-store in a managed domain, by
default. In the case of a managed domain, SERVER_NAME refers to the name of the individual
server participating in a server group.

NOTE

The location of the transaction log also depends on the object store in use and
the values set for the oject-store-relative-to and object-store-path parameters.
For file system logs (such as a standard shadow and HornetQ logs) the default
direction location is used, but when using a JDBC object store, the transaction
logs are stored in a database.



Development Guide

254

5. Resolve the outcome by hand
The process of resolving the transaction outcome by hand is very dependent on the exact
circumstance of the failure. Typically, you need to take the following steps, applying them to
your situation:

a. Identify which resource managers were involved.

b. Examine the state in the transaction manager and the resource managers.

c. Manually force log cleanup and data reconciliation in one or more of the involved
components.

The details of how to perform these steps are out of the scope of this documentation.

Report a bug

12.7.8. Transaction Timeouts

12.7.8.1. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock parts of datasources when they
commit, and the transaction manager needs to wait to hear back from each transaction participant
before it can direct them all whether to commit or roll back. Hardware or network failures can cause
resources to be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout
threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be
rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

Report a bug

12.7.8.2. Configure the Transaction Manager

You can configure the Transaction Manager (TM) using the web-based Management Console or the
command-line Management CLI. For each command or option given, the assumption is made that you
are running JBoss EAP 6 as a Managed Domain. If you use a Standalone Server or you want to modify a
different profile than default, you may need to modify the steps and commands in the following ways.

Notes about the Example Commands

For the Management Console, the default profile is the one which is selected when you first log
into the console. If you need to modify the Transaction Manager's configuration in a different
profile, select your profile instead of default, in each instruction.

Similarly, substitute your profile for the default profile in the example CLI commands.

If you use a Standalone Server, only one profile exists. Ignore any instructions to choose a
specific profile. In CLI commands, remove the /profile=default portion of the sample
commands.

NOTE

CHAPTER 12. JAVA TRANSACTION API (JTA)

255

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4307-744629+%5BLatest%5D&comment=Title%3A+Handle+a+Heuristic+Outcome+in+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4307-744629+24+Feb+2015+19%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4378-591665+%5BLatest%5D&comment=Title%3A+About+Transaction+Timeouts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4378-591665+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

In order for the TM options to be visible in the Management Console or Management CLI,
the transactions subsystem must be enabled. It is enabled by default, and required for
many other subsystems to function properly, so it is very unlikely that it would be
disabled.

Configure the TM Using the Management Console

To configure the TM using the web-based Management Console, select the Configuration tab from the
top of the screen. If you use a managed domain, choose the correct profile from the Profile selection
box at the top left. Expand the Container menu and select Transactions.

Most options are shown in the Transaction Manager configuration page. The Recovery options are
hidden by default. Click the Recovery tab to see the recovery options. Click Edit to edit any of the
options. Changes take effect immediately.

Click the Need Help? label to display in-line help text.

Configure the TM using the Management CLI

In the Management CLI, you can configure the TM using a series of commands. The commands all begin
with /profile=default/subsystem=transactions/ for a managed domain with profile default, or
/subsystem=transactions for a Standalone Server.

IMPORTANT

If transaction subsystem is configured to use hornetq journal as storage type for
transaction logs, then two instances of JBoss EAP is not permitted to use the same
directory for storing the journal. Application server instances can't share the same
location and each has to configure unique location for it.

Table 12.13. TM Configuration Options

Option Description CLI Command

Enable Statistics Whether to enable transaction
statistics. These statistics can be
viewed in the Management
Console in the Subsystem
Metrics section of the Runtime
tab.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=enable-
statistics,value=true)

Enable TSM Status Whether to enable the transaction
status manager (TSM) service,
which is used for out-of-process
recovery. Running an out of
process recovery manager to
contact the ActionStatusService
from different process is not
supported (it is normally
contacted in memory).

This configuration option is
unsupported.

Development Guide

256

Default Timeout The default transaction timeout.
This defaults to 300 seconds. You
can override this
programmatically, on a per-
transaction basis.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=default-
timeout,value=300)

Object Store Path A relative or absolute filesystem
path where the TM object store
stores data. By default relative to
the object-store-relative-to
parameter's value.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=object-store-
path,value=tx-object-store)

Object Store Path Relative To References a global path
configuration in the domain
model. The default value is the
data directory for JBoss EAP 6,
which is the value of the property
jboss.server.data.dir, and
defaults to
EAP_HOME/domain/data/ for
a Managed Domain, or
EAP_HOME/standalone/data/
for a Standalone Server instance.
The value of the object store
object-store-path TM attribute
is relative to this path.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=object-store-
relative-
to,value=jboss.server.data.di
r)

Socket Binding Specifies the name of the socket
binding used by the Transaction
Manager for recovery and
generating transaction identifiers,
when the socket-based
mechanism is used. Refer to
process-id-socket-max-ports
for more information on unique
identifier generation. Socket
bindings are specified per server
group in the Server tab of the
Management Console.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=socket-
binding,value=txn-recovery-
environment)

Status Socket Binding Specifies the socket binding to
use for the Transaction Status
manager.

This configuration option is
unsupported.

Recovery Listener Whether or not the Transaction
Recovery process should listen on
a network socket. Defaults to
false.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=recovery-
listener,value=false)

Option Description CLI Command

The following options are for advanced use and can only be modified using the Management CLI. Be
cautious when changing them from the default configuration. Contact Red Hat Global Support Services
for more information.

Table 12.14. Advanced TM Configuration Options

CHAPTER 12. JAVA TRANSACTION API (JTA)

257

https://access.redhat.com/support/contact/technicalSupport/

Option Description CLI Command

jts Whether to use Java Transaction
Service (JTS) transactions.
Defaults to false, which uses JTA
transactions only.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=jts,value=fals
e)

node-identifier The node identifier for the
Transaction Manager. This option
is required in the following
situations:

For JTS to JTS
communications

When two Transaction
Managers access shared
resource managers

When two Transaction
Managers access shared
object stores

The node-identifier must be
unique for each Transaction
Manager as it is required to
enforce data integrity during
recovery. The node-identifier
must also be unique for JTA
because multiple nodes may
interact with the same resource
manager or share a transaction
object store.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=node-
identifier,value=1)

process-id-socket-max-ports The Transaction Manager creates
a unique identifier for each
transaction log. Two different
mechanisms are provided for
generating unique identifiers: a
socket-based mechanism and a
mechanism based on the process
identifier of the process.

In the case of the socket-based
identifier, a socket is opened and
its port number is used for the
identifier. If the port is already in
use, the next port is probed, until
a free one is found. The
process-id-socket-max-ports
represents the maximum number
of sockets the TM will try before
failing. The default value is 10.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=process-id-
socket-max-ports,value=10)

Development Guide

258

process-id-uuid Set to true to use the process
identifier to create a unique
identifier for each transaction.
Otherwise, the socket-based
mechanism is used. Defaults to
true. Refer to process-id-
socket-max-ports for more
information. To enable process-
id-socket-binding, set
process-id-uuid to false.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=process-id-
uuid,value=true)

process-id-socket-binding The name of the socket binding
configuration to use if the
transaction manager should use a
socket-based process id. Will be
undefined if process-id-uuid
is true; otherwise must be set.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=process-id-
socket-binding,value=true)

use-hornetq-store Use HornetQ's journaled storage
mechanisms instead of file-based
storage, for the transaction logs.
This is disabled by default, but can
improve I/O performance. It is not
recommended for JTS
transactions on separate
Transaction Managers. When
changing this option, the server
has to be restarted using the
shutdown command for the
change to take effect.

/profile=default/subsystem=t
ransactions/:write-
attribute(name=use-hornetq-
store,value=false)

Option Description CLI Command

Report a bug

12.7.9. JTA Transaction Error Handling

12.7.9.1. Handle Transaction Errors

Transaction errors are challenging to solve because they are often dependent on timing. Here are some
common errors and ideas for troubleshooting them.

NOTE

These guidelines do not apply to heuristic errors. If you experience heuristic errors, refer
to Section 12.7.7, “Handle a Heuristic Outcome in a Transaction” and contact Red Hat
Global Support Services for assistance.

The transaction timed out but the business logic thread did not notice

This type of error often manifests itself when Hibernate is unable to obtain a database connection for
lazy loading. If it happens frequently, you can lengthen the timeout value. Refer to Section 12.7.8.2,
“Configure the Transaction Manager”.

If that is not feasible, you may be able to tune your external environment to perform more quickly, or

CHAPTER 12. JAVA TRANSACTION API (JTA)

259

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4310-770221+%5BLatest%5D&comment=Title%3A+Configure+the+Transaction+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4310-770221+14+Sep+2015+07%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

If that is not feasible, you may be able to tune your external environment to perform more quickly, or
restructure your code to be more efficient. Contact Red Hat Global Support Services if you still have
trouble with timeouts.

The transaction is already running on a thread, or you receive a NotSupportedException exception

The NotSupportedException exception usually indicates that you attempted to nest a JTA
transaction, and this is not supported. If you were not attempting to nest a transaction, it is likely that
another transaction was started in a thread pool task, but finished the task without suspending or ending
the transaction.

Applications typically use UserTransaction, which handles this automatically. If so, there may be a
problem with a framework.

If your code does use TransactionManager or Transaction methods directly, be aware of the
following behavior when committing or rolling back a transaction. If your code uses
TransactionManager methods to control your transactions, committing or rolling back a transaction
disassociates the transaction from the current thread. However, if your code uses Transaction
methods, the transaction may not be associated with the running thread, and you need to disassociate it
from its threads manually, before returning it to the thread pool.

You are unable to enlist a second local resource

This error happens if you try to enlist a second non-XA resource into a transaction. If you need multiple
resources in a transaction, they must be XA.

Report a bug

12.8. ORB CONFIGURATION

12.8.1. About Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA) is a standard that enables applications and
services to work together even when they are written in multiple, otherwise-incompatible, languages or
hosted on separate platforms. CORBA requests are brokered by a server-side component called an
Object Request Broker (ORB) . JBoss EAP 6 provides an ORB instance, by means of the JacORB
component.

The ORB is used internally for Java Transaction Service (JTS) transactions, and is also available for use
by your own applications.

Report a bug

12.8.2. Configure the ORB for JTS Transactions

In a default installation of JBoss EAP 6, the ORB is disabled. You can enable the ORB using the
command-line Management CLI.

Procedure 12.6. Configure the ORB using the Management Console

1. View the profile settings.
Select Configuration from the top of the management console. If you use a managed domain,
select either the full or full-ha profile from the selection box at the top left.

2. Modify the Initializers Settings
Expand the Subsystems menu. Expand the Container menu and select JacORB.

Development Guide

260

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4376-591665+%5BLatest%5D&comment=Title%3A+Handle+Transaction+Errors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4376-591665+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4979-591675+%5BLatest%5D&comment=Title%3A+About+Common+Object+Request+Broker+Architecture+%28CORBA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4979-591675+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In the form that appears in the main screen, select the Initializers tab and click the Edit button.

Enable the security interceptors by setting the value of Security to on.

To enable the ORB for JTS, set the Transaction Interceptors value to on, rather than the
default spec.

Refer to the Need Help? link in the form for detailed explanations about these values. Click
Save when you have finished editing the values.

3. Advanced ORB Configuration
Refer to the other sections of the form for advanced configuration options. Each section
includes a Need Help? link with detailed information about the parameters.

Configure the ORB using the Management CLI

You can configure each aspect of the ORB using the Management CLI. The following commands
configure the initializers to the same values as the procedure above, for the Management Console. This
is the minimum configuration for the ORB to be used with JTS.

These commands are configured for a managed domain using the full profile. If necessary, change the
profile to suit the one you need to configure. If you use a standalone server, omit the /profile=full
portion of the commands.

Example 12.4. Enable the Security Interceptors

/profile=full/subsystem=jacorb/:write-attribute(name=security,value=on)

Example 12.5. Enable Transactions in the JacORB Subsystem

/profile=full/subsystem=jacorb/:write-attribute(name=transactions,value=on)

Example 12.6. Enable JTS in the Transaction Subsystem

/profile=full/subsystem=transactions:write-attribute(name=jts,value=true)

NOTE

For JTS activation, the server must be restarted as reload is not enough.

Report a bug

12.9. TRANSACTION REFERENCES

12.9.1. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the UserTransaction
API specification at http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html.

CHAPTER 12. JAVA TRANSACTION API (JTA)

261

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4981-766792+%5BLatest%5D&comment=Title%3A+Configure+the+ORB+for+JTS+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4981-766792+05+Aug+2015+07%3A33+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html

Report a bug

12.9.2. JTA Transaction Example

This example illustrates how to begin, commit, and roll back a JTA transaction. You need to adjust the
connection and datasource parameters to suit your environment, and set up two test tables in your
database.

Example 12.7. JTA Transaction example

public class JDBCExample {
 public static void main (String[] args) {
 Context ctx = new InitialContext();
 // Change these two lines to suit your environment.
 DataSource ds = (DataSource)ctx.lookup("jdbc/ExampleDS");
 Connection conn = ds.getConnection("testuser", "testpwd");
 Statement stmt = null; // Non-transactional statement
 Statement stmtx = null; // Transactional statement
 Properties dbProperties = new Properties();

 // Get a UserTransaction
 UserTransaction txn = new InitialContext().lookup("java:comp/UserTransaction");

 try {
 stmt = conn.createStatement(); // non-tx statement

 // Check the database connection.
 try {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e) {
 // assume not in database.
 }

 try {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b INTEGER)");
 }
 catch (Exception e) {
 }

 try {
 System.out.println("Starting top-level transaction.");

 txn.begin();

 stmtx = conn.createStatement(); // will be a tx-statement

 // First, we try to roll back changes

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

Development Guide

262

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4299-689191+%5BLatest%5D&comment=Title%3A+JBoss+Transactions+Errors+and+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4299-689191+30+Jul+2014+02%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }
 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES (3,4)");
 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.print("\nNow attempting to rollback changes.");

 txn.rollback();

 // Next, we try to commit changes
 txn.begin();
 stmtx = conn.createStatement();
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();

 res2 = stmtx.executeQuery("SELECT * FROM test_table2");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 txn.commit();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 System.exit(0);

CHAPTER 12. JAVA TRANSACTION API (JTA)

263

Report a bug

12.9.3. API Documentation for JBoss Transactions JTA

The API documentation for the Transaction subsystem of JBoss EAP 6 is available at the following
location:

UserTransaction -
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html

If you use Red Hat JBoss Developer Studio to develop your applications, the API documentation is
included in the Help menu.

Report a bug

12.9.4. Limitations of the XA Recovery Process

XA recovery has the following limitations.

The transaction log may not be cleared from a successfully committed transaction.

If the JBoss EAP server crashes after an XAResource commit method successfully completes and
commits the transaction, but before the coordinator can update the log, you may see the following
warning message in the log when you restart the server:

ARJUNA016037: Could not find new XAResource to use for recovering non-serializable
XAResource XAResourceRecord

This is because upon recovery, the JBoss Transaction Manager sees the transaction participants in
the log and attempts to retry the commit. Eventually the JBoss Transaction Manager assumes the
resources are committed and no longer retries the commit. In this situation, can safely ignore this
warning as the transaction is committed and there is no loss of data.

To prevent the warning, set the com.arjuna.ats.jta.xaAssumeRecoveryComplete property value to
true . This property is checked whenever a new XAResource instance cannot be located from any
registered XAResourceRecovery instance. When set to true, the recovery assumes that a previous
commit attempt succeeded and the instance can be removed from the log with no further recovery
attempts. This property must be used with care because it is global and when used incorrectly could
result in XAResource instances remaining in an uncommitted state.

Rollback is not called for JTS transaction when a server crashes at the end of
XAResource.prepare().

If the JBoss EAP server crashes after the completion of an XAResource prepare() method call, all
of the participating XAResources are locked in the prepared state and remain that way upon server
restart, The transaction is not rolled back and the resources remain locked until the transaction times

 }
 }
 catch (Exception sysEx) {
 sysEx.printStackTrace();
 System.exit(0);
 }
 }
}

Development Guide

264

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4314-591659+%5BLatest%5D&comment=Title%3A+JTA+Transaction+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4314-591659+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4315-689193+%5BLatest%5D&comment=Title%3A+API+Documentation+for+JBoss+Transactions+JTA%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4315-689193+30+Jul+2014+02%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

out or a DBA manually rolls back the resources and clears the transaction log.

Periodic recovery can occur on committed transactions.

When the server is under excessive load, the server log may contain the following warning message,
followed by a stacktrace:

ARJUNA016027: Local XARecoveryModule.xaRecovery got XA exception
XAException.XAER_NOTA: javax.transaction.xa.XAException

Under heavy load, the processing time taken by a transaction can overlap with the timing of the
periodic recovery process’s activity. The periodic recovery process detects the transaction still in
progress and attempts to initiate a rollback but in fact the transaction continues to completion. At
the time the periodic recovery attempts but fails the rollback, it records the rollback failure in the
server log. The underlying cause of this issue will be addressed in a future release, but in the
meantime a workaround is available.

Increase the interval between the two phases of the recovery process by setting the
com.arjuna.ats.jta.orphanSafetyInterval property to a value higher than the default value of 10000
milliseconds. A value of 40000 milliseconds is recommended. Please note that this does not solve
the issue, instead it decreases the probability that it will occur and that the warning message will be
shown in the log.

Report a bug

CHAPTER 12. JAVA TRANSACTION API (JTA)

265

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30617-634590+%5BLatest%5D&comment=Title%3A+Limitations+of+the+XA+Recovery+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30617-634590+29+Apr+2014+20%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 13. HIBERNATE

13.1. ABOUT HIBERNATE CORE

Hibernate Core is an object/relational mapping library. It provides the framework for mapping Java
classes to database tables, allowing applications to avoid direct interaction with the database.

For more information, refer to Section 13.2.2, “Hibernate EntityManager” and the Section 13.2.1, “About
JPA”.

Report a bug

13.2. JAVA PERSISTENCE API (JPA)

13.2.1. About JPA

The Java Persistence API (JPA) is the standard for using persistence in Java projects. Java EE 6
applications use the Java Persistence 2.0 specification, documented here:
http://www.jcp.org/en/jsr/detail?id=317.

Hibernate EntityManager implements the programming interfaces and life-cycle rules defined by the
specification. It provides JBoss EAP 6 with a complete Java Persistence solution.

JBoss EAP 6 is 100% compliant with the Java Persistence 2.0 specification. Hibernate also provides
additional features to the specification.

To get started with JPA and JBoss EAP 6, refer to the bean-validation, greeter, and kitchensink
quickstarts: Section 1.4.1.1, “Access the Quickstarts” .

Report a bug

13.2.2. Hibernate EntityManager

Hibernate EntityManager implements the programming interfaces and life-cycle rules defined by the
JPA 2.0 specification. It provides JBoss EAP 6 with a complete Java Persistence solution.

For more information about Java Persistence or Hibernate, refer to the Section 13.2.1, “About JPA” and
Section 13.1, “About Hibernate Core” .

Report a bug

13.2.3. Getting Started

13.2.3.1. Create a JPA project in Red Hat JBoss Developer Studio

Summary

This example covers the steps required to create a JPA project in Red Hat JBoss Developer Studio.

Procedure 13.1. Create a JPA project in Red Hat JBoss Developer Studio

1. In the Red Hat JBoss Developer Studio window, click File → New → Project. Find JPA in the
list, expand it, and select JPA Project. You are presented with the following dialog.

Development Guide

266

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2252-591649+%5BLatest%5D&comment=Title%3A+About+Hibernate+Core%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2252-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://www.jcp.org/en/jsr/detail?id=317
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1089-591647+%5BLatest%5D&comment=Title%3A+About+JPA%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1089-591647+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/en/jsr/detail?id=317
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2246-591649+%5BLatest%5D&comment=Title%3A+Hibernate+EntityManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2246-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Enter a Project name.

3. Select a Target runtime. If no target runtime is available, follow these instructions to define a
new server and runtime: Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server” .

CHAPTER 13. HIBERNATE

267

4. Under JPA version, ensure 2.1 is selected.

5. Under Configuration, choose Basic JPA Configuration.

6. Click Finish.

7. If prompted, choose whether you wish to associate this type of project with the JPA
perspective window.

Report a bug

13.2.3.2. Create the Persistence Settings File in Red Hat JBoss Developer Studio

Summary

This topic covers the process for creating the persistence.xml file in a Java project using Red Hat
JBoss Developer Studio.

Prerequisites

Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”

Procedure 13.2. Create and Configure a new Persistence Settings File

1. Open an EJB 3.x project in Red Hat JBoss Developer Studio.

2. Right click the project root directory in the Project Explorer panel.

3. Select New → Other....

4. Select XML File from the XML folder and click Next.

5. Select the ejbModule/META-INF folder as the parent directory.

6. Name the file persistence.xml and click Next.

7. Select Create XML file from an XML schema file and click Next.

8. Select http://java.sun.com/xml/ns/persistence/persistence_2.0.xsd from the Select XML
Catalog entry list and click Next.

Development Guide

268

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5462-747162+%5BLatest%5D&comment=Title%3A+Create+a+JPA+project+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5462-747162+13+Mar+2015+10%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

9. Click Finish to create the file.

Result:

The persistence.xml has been created in the META-INF/ folder and is ready to be configured. An
example file is available here: Section 13.2.3.3, “Example Persistence Settings File”

Report a bug

13.2.3.3. Example Persistence Settings File

Example 13.1. persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>TestApp.jar</jar-file>
 <class>org.test.Test</class>
 <shared-cache-mode>NONE</shared-cache-mode>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

CHAPTER 13. HIBERNATE

269

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4430-681248+%5BLatest%5D&comment=Title%3A+Create+the+Persistence+Settings+File+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4430-681248+03+Jul+2014+11%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.2.3.4. Create the Hibernate Configuration File in Red Hat JBoss Developer Studio

Prerequisites

Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”

Summary

This topic covers the process for creating the hibernate.cfg.xml file in a Java project using Red Hat
JBoss Developer Studio.

Procedure 13.3. Create a New Hibernate Configuration File

1. Open a Java project in Red Hat JBoss Developer Studio.

2. Right click the project root directory in the Project Explorer panel.

3. Select New → Other....

4. Select Hibernate Configuration File from the Hibernate folder and click Next.

5. Select the src/ directory and click Next.

6. Configure the following:

Session factory name

Database dialect

Driver class

Connection URL

Username

Password

7. Click Finish to create the file.

Result:

The hibernate.cfg.xml has been created in the src/ folder. An example file is available here:
Section 13.2.3.5, “Example Hibernate Configuration File” .

Report a bug

13.2.3.5. Example Hibernate Configuration File

 </properties>
 </persistence-unit>
</persistence>

Development Guide

270

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4431-591662+%5BLatest%5D&comment=Title%3A+Example+Persistence+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4431-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5177-681249+%5BLatest%5D&comment=Title%3A+Create+the+Hibernate+Configuration+File+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5177-681249+03+Jul+2014+11%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 13.2. hibernate.cfg.xml

Report a bug

13.2.4. Configuration

13.2.4.1. Hibernate Configuration Properties

Table 13.1. Hibernate Java Properties

Property Name Description

hibernate.dialect The classname of a Hibernate org.hibernate.dialect.Dialect.
Allows Hibernate to generate SQL optimized for a particular
relational database.

In most cases Hibernate will be able to choose the correct
org.hibernate.dialect.Dialect implementation, based on the
JDBC metadata returned by the JDBC driver.

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <!-- Datasource Name -->
 <property name="connection.datasource">ExampleDS</property>

 <!-- SQL dialect -->
 <property name="dialect">org.hibernate.dialect.H2Dialect</property>

 <!-- Enable Hibernate's automatic session context management -->
 <property name="current_session_context_class">thread</property>

 <!-- Disable the second-level cache -->
 <property
name="cache.region.factory_class">org.hibernate.cache.NoCacheProvider</property>

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>

 <!-- Update the database schema on startup -->
 <property name="hbm2ddl.auto">update</property>

 <mapping resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

CHAPTER 13. HIBERNATE

271

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4413-638622+%5BLatest%5D&comment=Title%3A+Example+Hibernate+Configuration+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4413-638622+06+May+2014+12%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

hibernate.show_sql Boolean. Writes all SQL statements to console. This is an
alternative to setting the log category org.hibernate.SQL to
debug.

hibernate.format_sql Boolean. Pretty print the SQL in the log and console.

hibernate.default_schema Qualify unqualified table names with the given
schema/tablespace in generated SQL.

hibernate.default_catalog Qualifies unqualified table names with the given catalog in
generated SQL.

hibernate.session_factory_name The org.hibernate.SessionFactory will be automatically
bound to this name in JNDI after it has been created. For
example, jndi/composite/name.

hibernate.max_fetch_depth Sets a maximum "depth" for the outer join fetch tree for single-
ended associations (one-to-one, many-to-one). A 0 disables
default outer join fetching. The recommended value is between
0 and 3.

hibernate.default_batch_fetch_size Sets a default size for Hibernate batch fetching of associations.
The recommended values are 4, 8, and 16.

hibernate.default_entity_mode Sets a default mode for entity representation for all sessions
opened from this SessionFactory. Values include: dynamic-
map, dom4j, pojo.

hibernate.order_updates Boolean. Forces Hibernate to order SQL updates by the primary
key value of the items being updated. This will result in fewer
transaction deadlocks in highly concurrent systems.

hibernate.generate_statistics Boolean. If enabled, Hibernate will collect statistics useful for
performance tuning.

hibernate.use_identifier_rollback Boolean. If enabled, generated identifier properties will be reset
to default values when objects are deleted.

hibernate.use_sql_comments Boolean. If turned on, Hibernate will generate comments inside
the SQL, for easier debugging. Default value is false.

hibernate.id.new_generator_mappings Boolean. This property is relevant when using
@GeneratedValue. It indicates whether or not the new
IdentifierGenerator implementations are used for
javax.persistence.GenerationType.AUTO,
javax.persistence.GenerationType.TABLE and
javax.persistence.GenerationType.SEQUENCE. Default
value is true.

Property Name Description

Development Guide

272

hibernate.ejb.naming_strategy Chooses the org.hibernate.cfg.NamingStrategy
implementation when using Hibernate EntityManager. This class
is deprecated and this property is only provided for backward
compatibility. This property must not be used with
hibernate.ejb.naming_strategy_delegator.

If the application does not use EntityManager, follow the
instructions here to configure the NamingStrategy: Hibernate
Reference Documentation - Implementing a Naming Strategy.

hibernate.ejb.naming_strategy_delegator Specifies an
org.hibernate.cfg.naming.NamingStrategyDelegator
implementation for database objects and schema elements
when using Hibernate EntityManager. This property has the
following possible values.

org.hibernate.cfg.naming.LegacyNamingStrate
gyDelegator: This is the default value. This class is
deprecated and is only provided for backward
compatibility.

org.hibernate.cfg.naming.ImprovedNamingStra
tegyDelegator: This is the preferred value. It
generates default table and column names that comply
with the JPA specification. It allows for specification of
both the entity and foreign key class names. This class
only affects entities that are mapped using Java
annotations or JPA XML descriptors. Entities mapped
using hbm.xml are not affected,

If you prefer, you can configure a custom class that
implements
org.hibernate.cfg.naming.ImprovedNamingStra
tegyDelegator

NOTE

This property must not be used with
hibernate.ejb.naming_strategy. It is a
temporary replacement for
org.hibernate.cfg.NamingStrategy to
address its limitations. A more comprehensive
solution is planned for Hibernate 5.0 that
replaces both
org.hibernate.cfg.NamingStrategy and
org.hibernate.cfg.naming.NamingStrateg
yDelegator.

If the application does not use EntityManager, follow the
instructions here to configure the NamingStrategy: Hibernate
Reference Documentation - Implementing a Naming Strategy.

Property Name Description

IMPORTANT

CHAPTER 13. HIBERNATE

273

http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html_single/#configuration-namingstrategy
http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html_single/#configuration-namingstrategy

IMPORTANT

For hibernate.id.new_generator_mappings, new applications should keep the default
value of true. Existing applications that used Hibernate 3.3.x may need to change it to
false to continue using a sequence object or table based generator, and maintain
backward compatibility.

Report a bug

13.2.4.2. Hibernate JDBC and Connection Properties

Table 13.2. Properties

Property Name Description

hibernate.jdbc.fetch_size A non-zero value that determines the JDBC fetch
size (calls Statement.setFetchSize()).

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate. The recommended values are
between 5 and 30.

hibernate.jdbc.batch_versioned_data Boolean. Set this property to true if the JDBC driver
returns correct row counts from executeBatch().
Hibernate will then use batched DML for
automatically versioned data. Default value is to
false.

hibernate.jdbc.factory_class Select a custom org.hibernate.jdbc.Batcher.
Most applications will not need this configuration
property.

hibernate.jdbc.use_scrollable_resultset Boolean. Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only necessary when
using user-supplied JDBC connections. Hibernate
uses connection metadata otherwise.

hibernate.jdbc.use_streams_for_binary Boolean. This is a system-level property. Use
streams when writing/reading binary or
serializable types to/from JDBC.

hibernate.jdbc.use_get_generated_keys Boolean. Enables use of JDBC3
PreparedStatement.getGeneratedKeys() to
retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+. Set to false if
JDBC driver has problems with the Hibernate
identifier generators. By default, it tries to determine
the driver capabilities using connection metadata.

hibernate.connection.provider_class The classname of a custom
org.hibernate.connection.ConnectionProvide
r which provides JDBC connections to Hibernate.

Development Guide

274

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7447-754202+%5BLatest%5D&comment=Title%3A+Hibernate+Configuration+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7447-754202+24+Apr+2015+00%3A36+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

hibernate.connection.isolation Sets the JDBC transaction isolation level. Check
java.sql.Connection for meaningful values, but
note that most databases do not support all isolation
levels and some define additional, non-standard
isolations. Standard values are 1, 2, 4, 8.

hibernate.connection.autocommit Boolean. This property is not recommended for use.
Enables autocommit for JDBC pooled connections.

hibernate.connection.release_mode Specifies when Hibernate should release JDBC
connections. By default, a JDBC connection is held
until the session is explicitly closed or disconnected.
The default value auto will choose after_statement
for the JTA and CMT transaction strategies, and
after_transaction for the JDBC transaction
strategy.

Available values are auto (default), on_close,
after_transaction, after_statement.

This setting only affects Session returned from
SessionFactory.openSession. For Session
obtained through
SessionFactory.getCurrentSession, the
CurrentSessionContext implementation
configured for use controls the connection release
mode for that Session.

hibernate.connection.<propertyName> Pass the JDBC property <propertyName> to
DriverManager.getConnection().

hibernate.jndi.<propertyName> Pass the property <propertyName> to the JNDI
InitialContextFactory.

Property Name Description

Report a bug

13.2.4.3. Hibernate Cache Properties

Table 13.3. Properties

Property Name Description

hibernate.cache.region.factory_class The classname of a custom CacheProvider.

hibernate.cache.use_minimal_puts Boolean. Optimizes second-level cache operation to
minimize writes, at the cost of more frequent reads.
This setting is most useful for clustered caches and, in
Hibernate3, is enabled by default for clustered cache
implementations.

hibernate.cache.use_query_cache Boolean. Enables the query cache. Individual queries
still have to be set cacheable.

CHAPTER 13. HIBERNATE

275

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7448-754032+%5BLatest%5D&comment=Title%3A+Hibernate+JDBC+and+Connection+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7448-754032+23+Apr+2015+23%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

hibernate.cache.use_second_level_cache Boolean. Used to completely disable the second level
cache, which is enabled by default for classes that
specify a <cache> mapping.

hibernate.cache.query_cache_factory The classname of a custom QueryCache interface.
The default value is the built-in
StandardQueryCache.

hibernate.cache.region_prefix A prefix to use for second-level cache region names.

hibernate.cache.use_structured_entries Boolean. Forces Hibernate to store data in the
second-level cache in a more human-friendly format.

hibernate.cache.default_cache_concurrency
_strategy

Setting used to give the name of the default
org.hibernate.annotations.CacheConcurrenc
yStrategy to use when either @Cacheable or
@Cache is used. @Cache(strategy="..") is used
to override this default.

Property Name Description

Report a bug

13.2.4.4. Hibernate Transaction Properties

Table 13.4. Properties

Property Name Description

hibernate.transaction.factory_class The classname of a TransactionFactory to use
with Hibernate Transaction API. Defaults to
JDBCTransactionFactory).

jta.UserTransaction A JNDI name used by JTATransactionFactory to
obtain the JTA UserTransaction from the
application server.

hibernate.transaction.manager_lookup_class The classname of a TransactionManagerLookup.
It is required when JVM-level caching is enabled or
when using hilo generator in a JTA environment.

hibernate.transaction.flush_before_completi
on

Boolean. If enabled, the session will be automatically
flushed during the before completion phase of the
transaction. Built-in and automatic session context
management is preferred.

hibernate.transaction.auto_close_session Boolean. If enabled, the session will be automatically
closed during the after completion phase of the
transaction. Built-in and automatic session context
management is preferred.

Report a bug

Development Guide

276

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7449-606745+%5BLatest%5D&comment=Title%3A+Hibernate+Cache+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7449-606745+27+Feb+2014+12%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7450-591790+%5BLatest%5D&comment=Title%3A+Hibernate+Transaction+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7450-591790+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

13.2.4.5. Miscellaneous Hibernate Properties

Table 13.5. Properties

Property Name Description

hibernate.current_session_context_class Supply a custom strategy for the scoping of the
"current" Session. Values include jta, thread,
managed, custom.Class.

hibernate.query.factory_class Chooses the HQL parser implementation:
org.hibernate.hql.internal.ast.ASTQueryTran
slatorFactory or
org.hibernate.hql.internal.classic.ClassicQue
ryTranslatorFactory.

hibernate.query.substitutions Used to map from tokens in Hibernate queries to
SQL tokens (tokens might be function or literal
names). For example, hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC.

hibernate.hbm2ddl.auto Automatically validates or exports schema DDL to
the database when the SessionFactory is created.
With create-drop, the database schema will be
dropped when the SessionFactory is closed
explicitly. Property value options are validate,
update, create, create-drop

hibernate.hbm2ddl.import_files Comma-separated names of the optional files
containing SQL DML statements executed during
the SessionFactory creation. This is useful for
testing or demonstrating. For example, by adding
INSERT statements, the database can be populated
with a minimal set of data when it is deployed. An
example value is /humans.sql,/dogs.sql.

File order matters, as the statements of a given file
are executed before the statements of the following
files. These statements are only executed if the
schema is created (i.e. if hibernate.hbm2ddl.auto
is set to create or create-drop).

hibernate.hbm2ddl.import_files_sql_extracto
r

The classname of a custom
ImportSqlCommandExtractor. Defaults to the
built-in SingleLineSqlCommandExtractor. This
is useful for implementing a dedicated parser that
extracts a single SQL statement from each import
file. Hibernate also provides
MultipleLinesSqlCommandExtractor, which
supports instructions/comments and quoted strings
spread over multiple lines (mandatory semicolon at
the end of each statement).

hibernate.bytecode.use_reflection_optimizer Boolean. This is a system-level property, which
cannot be set in the hibernate.cfg.xml file. Enables
the use of bytecode manipulation instead of runtime
reflection. Reflection can sometimes be useful when
troubleshooting. Hibernate always requires either
cglib or javassist even if the optimizer is turned off.

CHAPTER 13. HIBERNATE

277

hibernate.bytecode.provider Both javassist or cglib can be used as byte
manipulation engines. The default is javassist.
Property value is either javassist or cglib

Property Name Description

Report a bug

13.2.4.6. Hibernate SQL Dialects

IMPORTANT

The hibernate.dialect property should be set to the correct
org.hibernate.dialect.Dialect subclass for the application database. If a dialect is
specified, Hibernate will use sensible defaults for some of the other properties. This
means that they do not have to be specified manually.

Table 13.6. SQL Dialects (hibernate.dialect)

RDBMS Dialect

DB2 org.hibernate.dialect.DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

Firebird org.hibernate.dialect.FirebirdDialect

FrontBase org.hibernate.dialect.FrontbaseDialect

H2 Database org.hibernate.dialect.H2Dialect

HypersonicSQL org.hibernate.dialect.HSQLDialect

Informix org.hibernate.dialect.InformixDialect

Ingres org.hibernate.dialect.IngresDialect

Interbase org.hibernate.dialect.InterbaseDialect

Mckoi SQL org.hibernate.dialect.MckoiDialect

Microsoft SQL Server 2000 org.hibernate.dialect.SQLServerDialect

Microsoft SQL Server 2005 org.hibernate.dialect.SQLServer2005Dialect

Development Guide

278

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7451-754048+%5BLatest%5D&comment=Title%3A+Miscellaneous+Hibernate+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7451-754048+23+Apr+2015+23%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Microsoft SQL Server 2008 org.hibernate.dialect.SQLServer2008Dialect

Microsoft SQL Server 2012 org.hibernate.dialect.SQLServer2008Dialect

MySQL5 org.hibernate.dialect.MySQL5Dialect

MySQL5 with InnoDB org.hibernate.dialect.MySQL5InnoDBDialect

MySQL with MyISAM org.hibernate.dialect.MySQLMyISAMDialect

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i org.hibernate.dialect.Oracle9iDialect

Oracle 10g org.hibernate.dialect.Oracle10gDialect

Oracle 11g org.hibernate.dialect.Oracle10gDialect

Pointbase org.hibernate.dialect.PointbaseDialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect

PostgreSQL 9.2 org.hibernate.dialect.PostgreSQL82Dialect

Postgres Plus Advanced Server org.hibernate.dialect.PostgresPlusDialect

Progress org.hibernate.dialect.ProgressDialect

SAP DB org.hibernate.dialect.SAPDBDialect

Sybase org.hibernate.dialect.SybaseASE15Dialect

Sybase 15.7 org.hibernate.dialect.SybaseASE157Dialect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhereDialec
t

RDBMS Dialect

Report a bug

13.2.5. Second-Level Caches

13.2.5.1. About Second-Level Caches

A second-level cache is a local data store that holds information persisted outside the application

CHAPTER 13. HIBERNATE

279

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7452-591790+%5BLatest%5D&comment=Title%3A+Hibernate+SQL+Dialects%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7452-591790+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

A second-level cache is a local data store that holds information persisted outside the application
session. The cache is managed by the persistence provider, improving run-time by keeping the data
separate from the application.

JBoss EAP 6 supports caching for the following purposes:

Web Session Clustering

Stateful Session Bean Clustering

SSO Clustering

Hibernate Second Level Cache

Each cache container defines a "repl" and a "dist" cache. These caches should not be used directly by
user applications.

Report a bug

13.2.5.2. Configure a Second Level Cache for Hibernate

This topic covers the configuration requirements for enabling Infinispan to act as the second level cache
for Hibernate.

Procedure 13.4. Create and Edit the hibernate.cfg.xml file

1. Create the hibernate.cfg.xml file
Create the hibernate.cfg.xml in the deployment's classpath. For specifics, refer to
Section 13.2.3.4, “Create the Hibernate Configuration File in Red Hat JBoss Developer Studio” .

2. Add these lines of XML to the hibernate.cfg.xml file in your application. The XML needs to be
inside the <session-factory> tags:

3. Add one of the following to the <session-factory> section of the hibernate.cfg.xml file:

If the Infinispan CacheManager is bound to JNDI:

If the Infinispan CacheManager is standalone:

Result

<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>

<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.infinispan.JndiInfinispanRegionFactory
</property>
<property name="hibernate.cache.infinispan.cachemanager">
 java:CacheManager
</property>

<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.infinispan.InfinispanRegionFactory
</property>

Development Guide

280

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1411-591647+%5BLatest%5D&comment=Title%3A+About+Second-Level+Caches%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1411-591647+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Infinispan is configured as the Second Level Cache for Hibernate.

Report a bug

13.3. HIBERNATE ANNOTATIONS

13.3.1. Hibernate Annotations

Table 13.7. Hibernate Defined Annotations

Annotation Description

AccessType Property Access type.

Any Defines a ToOne association pointing to several
entity types. Matching the according entity type is
done through a metadata discriminator column. This
kind of mapping should be only marginal.

AnyMetaDef Defines @Any and @ManyToAny metadata.

AnyMedaDefs Defines @Any and @ManyToAny set of metadata.
Can be defined at the entity level or the package
level.

BatchSize Batch size for SQL loading.

Cache Add caching strategy to a root entity or a collection.

Cascade Apply a cascade strategy on an association.

Check Arbitrary SQL check constraints which can be
defined at the class, property or collection level.

Columns Support an array of columns. Useful for component
user type mappings.

ColumnTransformer Custom SQL expression used to read the value from
and write a value to a column. Use for direct object
loading/saving as well as queries. The write
expression must contain exactly one '?' placeholder
for the value.

ColumnTransformers Plural annotation for @ColumnTransformer. Useful
when more than one column is using this behavior.

DiscriminatorFormula Discriminator formula to be placed at the root entity.

DiscriminatorOptions Optional annotation to express Hibernate specific
discriminator properties.

CHAPTER 13. HIBERNATE

281

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4362-591660+%5BLatest%5D&comment=Title%3A+Configure+a+Second+Level+Cache+for+Hibernate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4362-591660+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Entity Extends Entity with Hibernate features.

Fetch Defines the fetching strategy used for the given
association.

FetchProfile Defines the fetching strategy profile.

FetchProfiles Plural annotation for @FetchProfile.

Filter Adds filters to an entity or a target entity of a
collection.

FilterDef Filter definition.

FilterDefs Array of filter definitions.

FilterJoinTable Adds filters to a join table collection.

FilterJoinTables Adds multiple @FilterJoinTable to a collection.

Filters Adds multiple @Filters.

Formula To be used as a replacement for @Column in most
places. The formula has to be a valid SQL fragment.

Generated This annotated property is generated by the
database.

GenericGenerator Generator annotation describing any kind of
Hibernate generator in a detyped manner.

GenericGenerators Array of generic generator definitions.

Immutable Mark an Entity or a Collection as immutable. No
annotation means the element is mutable.

An immutable entity may not be updated by the
application. Updates to an immutable entity will be
ignored, but no exception is thrown.

@Immutable placed on a collection makes the
collection immutable, meaning additions and
deletions to and from the collection are not allowed.
A HibernateException is thrown in this case.

Annotation Description

Development Guide

282

Index Defines a database index.

JoinFormula To be used as a replacement for @JoinColumn in
most places. The formula has to be a valid SQL
fragment.

LazyCollection Defines the lazy status of a collection.

LazyToOne Defines the lazy status of a ToOne association (i.e.
OneToOne or ManyToOne).

Loader Overwrites Hibernate default FIND method.

ManyToAny Defines a ToMany association pointing to different
entity types. Matching the according entity type is
done through a metadata discriminator column. This
kind of mapping should be only marginal.

MapKeyType Defines the type of key of a persistent map.

MetaValue Represents a discriminator value associated to a
given entity type.

NamedNativeQueries Extends NamedNativeQueries to hold Hibernate
NamedNativeQuery objects.

NamedNativeQuery Extends NamedNativeQuery with Hibernate
features.

NamedQueries Extends NamedQueries to hold Hibernate
NamedQuery objects.

NamedQuery Extends NamedQuery with Hibernate features.

NaturalId Specifies that a property is part of the natural id of
the entity.

NotFound Action to do when an element is not found on an
association.

OnDelete Strategy to use on collections, arrays and on joined
subclasses delete. OnDelete of secondary tables is
currently not supported.

Annotation Description

CHAPTER 13. HIBERNATE

283

OptimisticLock Whether or not a change of the annotated property
will trigger an entity version increment. If the
annotation is not present, the property is involved in
the optimistic lock strategy (default).

OptimisticLocking Used to define the style of optimistic locking to be
applied to an entity. In a hierarchy, only valid on the
root entity.

OrderBy Order a collection using SQL ordering (not HQL
ordering).

ParamDef A parameter definition.

Parameter Key/value pattern.

Parent Reference the property as a pointer back to the
owner (generally the owning entity).

Persister Specify a custom persister.

Polymorphism Used to define the type of polymorphism Hibernate
will apply to entity hierarchies.

Proxy Lazy and proxy configuration of a particular class.

RowId Support for ROWID mapping feature of Hibernate.

Sort Collection sort (Java level sorting).

Source Optional annotation in conjunction with Version and
timestamp version properties. The annotation value
decides where the timestamp is generated.

SQLDelete Overwrites the Hibernate default DELETE method.

SQLDeleteAll Overwrites the Hibernate default DELETE ALL
method.

SQLInsert Overwrites the Hibernate default INSERT INTO
method.

SQLUpdate Overwrites the Hibernate default UPDATE method.

Subselect Maps an immutable and read-only entity to a given
SQL subselect expression.

Annotation Description

Development Guide

284

Synchronize Ensures that auto-flush happens correctly and that
queries against the derived entity do not return stale
data. Mostly used with Subselect.

Table Complementary information to a table either primary
or secondary.

Tables Plural annotation of Table.

Target Defines an explicit target, avoiding reflection and
generics resolving.

Tuplizer Defines a tuplizer for an entity or a component.

Tuplizers Defines a set of tuplizers for an entity or a
component.

Type Hibernate Type.

TypeDef Hibernate Type definition.

TypeDefs Hibernate Type definition array.

Where Where clause to add to the element Entity or target
entity of a collection. The clause is written in SQL.

WhereJoinTable Where clause to add to the collection join table. The
clause is written in SQL.

Annotation Description

NOTE

The annotation "Entity" is deprecated and scheduled for removal in future releases.

Report a bug

13.4. HIBERNATE QUERY LANGUAGE

13.4.1. About Hibernate Query Language

The Hibernate Query Language (HQL) and Java Persistence Query Language (JPQL) are both object
model focused query languages similar in nature to SQL. HQL is a superset of JPQL. A HQL query is not
always a valid JPQL query, but a JPQL query is always a valid HQL query.

Both HQL and JPQL are non-type-safe ways to perform query operations. Criteria queries offer a type-
safe approach to querying.

Report a bug

CHAPTER 13. HIBERNATE

285

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7345-745126+%5BLatest%5D&comment=Title%3A+Hibernate+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7345-745126+27+Feb+2015+07%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11474-591978+%5BLatest%5D&comment=Title%3A+About+Hibernate+Query+Language%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11474-591978+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

13.4.2. HQL Statements

HQL allows SELECT, UPDATE, DELETE, and INSERT statements. The HQL INSERT statement has no
equivalent in JPQL.

IMPORTANT

Care should be taken as to when an UPDATE or DELETE statement is executed.

Table 13.8. HQL Statements

Statement Description

SELECT The BNF for SELECT statements in HQL is:

The simplest possible HQL SELECT statement is of
the form:

UDPATE The BNF for UPDATE statement in HQL is the same
as it is in JPQL

DELETE The BNF for DELETE statements in HQL is the same
as it is in JPQL

Report a bug

13.4.3. About the INSERT Statement

HQL adds the ability to define INSERT statements. There is no JPQL equivalent to this. The BNF for an
HQL INSERT statement is:

The attribute_list is analogous to the column specification in the SQL INSERT statement. For entities
involved in mapped inheritance, only attributes directly defined on the named entity can be used in the
attribute_list. Superclass properties are not allowed and subclass properties do not make sense. In other
words, INSERT statements are inherently non-polymorphic.

select_statement :: =
 [select_clause]
 from_clause
 [where_clause]
 [groupby_clause]
 [having_clause]
 [orderby_clause]

from com.acme.Cat

insert_statement ::= insert_clause select_statement

insert_clause ::= INSERT INTO entity_name (attribute_list)

attribute_list ::= state_field[, state_field]*

Development Guide

286

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11476-591978+%5BLatest%5D&comment=Title%3A+HQL+Statements%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11476-591978+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WARNING

select_statement can be any valid HQL select query, with the caveat that the
return types must match the types expected by the insert. Currently, this is checked
during query compilation rather than allowing the check to relegate to the database.
This may cause problems between Hibernate Types which are equivalent as
opposed to equal. For example, this might cause lead to issues with mismatches
between an attribute mapped as a org.hibernate.type.DateType and an attribute
defined as a org.hibernate.type.TimestampType, even though the database might
not make a distinction or might be able to handle the conversion.

For the id attribute, the insert statement gives you two options. You can either explicitly specify the id
property in the attribute_list, in which case its value is taken from the corresponding select expression,
or omit it from the attribute_list in which case a generated value is used. This latter option is only
available when using id generators that operate "in the database"; attempting to use this option with any
"in memory" type generators will cause an exception during parsing.

For optimistic locking attributes, the insert statement again gives you two options. You can either
specify the attribute in the attribute_list in which case its value is taken from the corresponding select
expressions, or omit it from the attribute_list in which case the seed value defined by the
corresponding org.hibernate.type.VersionType is used.

Example 13.3. INSERT Query Statements

Report a bug

13.4.4. About the FROM Clause

The FROM clause is responsible defining the scope of object model types available to the rest of the
query. It also is responsible for defining all the "identification variables" available to the rest of the query.

Report a bug

13.4.5. About the WITH Clause

HQL defines a WITH clause to qualify the join conditions. This is specific to HQL; JPQL does not define
this feature.

Example 13.4. With Clause



String hqlInsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer c
where ...";
int createdEntities = s.createQuery(hqlInsert).executeUpdate();

select distinct c
from Customer c
 left join c.orders o
 with o.value > 5000.00

CHAPTER 13. HIBERNATE

287

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11618-766229+%5BLatest%5D&comment=Title%3A+About+the+INSERT+Statement%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11618-766229+28+Jul+2015+20%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11478-591978+%5BLatest%5D&comment=Title%3A+About+the+FROM+Clause%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11478-591978+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The important distinction is that in the generated SQL the conditions of the with clause are made part
of the on clause in the generated SQL as opposed to the other queries in this section where the
HQL/JPQL conditions are made part of the where clause in the generated SQL. The distinction in this
specific example is probably not that significant. The with clause is sometimes necessary in more
complicated queries.

Explicit joins may reference association or component/embedded attributes. In the case of
component/embedded attributes, the join is logical and does not correlate to a physical (SQL) join.

Report a bug

13.4.6. About Bulk Update, Insert and Delete

Hibernate allows the use of Data Manipulation Language (DML) to bulk insert, update and delete data
directly in the mapped database through the Hibernate Query Language.

WARNING

Using DML may violate the object/relational mapping and may affect object state.
Object state stays in memory and by using DML, the state of an in-memory object is
not affected depending on the operation that is performed on the underlying
database. In-memory data must be used with care if DML is used.

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM?
EntityName (WHERE where_conditions)?.

NOTE

The FROM keyword and the WHERE Clause are optional.

The result of execution of a UPDATE or DELETE statement is the number of rows that are actually
affected (updated or deleted).

Example 13.5. Bulk Update Statement



Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Company set name = :newName where name = :oldName";
int updatedEntities = s.createQuery(hqlUpdate)
 .setString("newName", newName)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

Development Guide

288

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11736-766228+%5BLatest%5D&comment=Title%3A+About+the+WITH+Clause%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11736-766228+28+Jul+2015+20%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 13.6. Bulk Delete statement

The int value returned by the Query.executeUpdate() method indicates the number of entities within
the database that were affected by the operation.

Internally, the database might use multiple SQL statements to execute the operation in response to a
DML Update or Delete request. This might be because of relationships that exist between tables and
the join tables that may need to be updated or deleted.

For example, issuing a delete statement (as in the example above) may actually result in deletes being
executed against not just the Company table for companies that are named with oldName, but also
against joined tables. Thus, a Company table in a BiDirectional ManyToMany relationship with an
Employee table, would lose rows from the corresponding join table Company_Employee as a result of
the successful execution of the previous example.

The int deletedEntries value above will contain a count of all the rows affected due to this operation,
including the rows in the join tables.

The pseudo-syntax for INSERT statements is: INSERT INTO EntityName properties_list
select_statement.

NOTE

Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES
... form.

Example 13.7. Bulk Insert statement

If you do not supply the value for the id attribute via the SELECT statement, an identifier is generated
for you, as long as the underlying database supports auto-generated keys. The return value of this bulk
insert operation is the number of entries actually created in the database.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Company where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlInsert = "insert into Account (id, name) select c.id, c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert)
 .executeUpdate();
tx.commit();
session.close();

CHAPTER 13. HIBERNATE

289

Report a bug

13.4.7. About Collection Member References

References to collection-valued associations actually refer to the values of that collection.

Example 13.8. Collection References

In the example, the identification variable o actually refers to the object model type Order which is the
type of the elements of the Customer#orders association.

The example also shows the alternate syntax for specifying collection association joins using the IN
syntax. Both forms are equivalent. Which form an application chooses to use is simply a matter of taste.

Report a bug

13.4.8. About Qualified Path Expressions

It was previously stated that collection-valued associations actually refer to the values of that collection.
Based on the type of collection, there are also available a set of explicit qualification expressions.

Table 13.9. Qualified Path Expressions

Expression Description

VALUE Refers to the collection value. Same as not specifying
a qualifier. Useful to explicitly show intent. Valid for
any type of collection-valued reference.

INDEX According to HQL rules, this is valid for both Maps
and Lists which specify a
javax.persistence.OrderColumn annotation to
refer to the Map key or the List position (aka the
OrderColumn value). JPQL however, reserves this for
use in the List case and adds KEY for the MAP case.
Applications interested in JPA provider portability
should be aware of this distinction.

select c
from Customer c
 join c.orders o
 join o.lineItems l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

// alternate syntax
select c
from Customer c,
 in(c.orders) o,
 in(o.lineItems) l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

Development Guide

290

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14122-766226+%5BLatest%5D&comment=Title%3A+About+Bulk+Update%2C+Insert+and+Delete%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14122-766226+28+Jul+2015+20%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11737-766225+%5BLatest%5D&comment=Title%3A+About+Collection+Member+References%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11737-766225+28+Jul+2015+20%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

KEY Valid only for Maps. Refers to the map's key. If the
key is itself an entity, can be further navigated.

ENTRY Only valid only for Maps. Refers to the Map's logical
java.util.Map.Entry tuple (the combination of its
key and value). ENTRY is only valid as a terminal
path and only valid in the select clause.

Expression Description

Example 13.9. Qualified Collection References

Report a bug

13.4.9. About Scalar Functions

HQL defines some standard functions that are available regardless of the underlying database in use.
HQL can also understand additional functions defined by the dialect and the application.

// Product.images is a Map<String,String> : key = a name, value = file path

// select all the image file paths (the map value) for Product#123
select i
from Product p
 join p.images i
where p.id = 123

// same as above
select value(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names (the map key) for Product#123
select key(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names and file paths (the 'Map.Entry') for Product#123
select entry(i)
from Product p
 join p.images i
where p.id = 123

// total the value of the initial line items for all orders for a customer
select sum(li.amount)
from Customer c
 join c.orders o
 join o.lineItems li
where c.id = 123
 and index(li) = 1

CHAPTER 13. HIBERNATE

291

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11738-766224+%5BLatest%5D&comment=Title%3A+About+Qualified+Path+Expressions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11738-766224+28+Jul+2015+20%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.4.10. HQL Standardized Functions

The following functions are available in HQL regardless of the underlying database in use.

Table 13.10. HQL Standardized Functions

Function Description

BIT_LENGTH Returns the length of binary data.

CAST Performs a SQL cast. The cast target should name
the Hibernate mapping type to use.

EXTRACT Performs a SQL extraction on datetime values. An
extraction extracts parts of the datetime (the year,
for example). See the abbreviated forms below.

SECOND Abbreviated extract form for extracting the second.

MINUTE Abbreviated extract form for extracting the minute.

HOUR Abbreviated extract form for extracting the hour.

DAY Abbreviated extract form for extracting the day.

MONTH Abbreviated extract form for extracting the month.

YEAR Abbreviated extract form for extracting the year.

STR Abbreviated form for casting a value as character
data.

Application developers can also supply their own set of functions. This would usually represent either
custom SQL functions or aliases for snippets of SQL. Such function declarations are made by using the
addSqlFunction method of org.hibernate.cfg.Configuration

Report a bug

13.4.11. About the Concatenation Operation

HQL defines a concatenation operator in addition to supporting the concatenation (CONCAT) function.
This is not defined by JPQL, so portable applications should avoid using it. The concatenation operator
is taken from the SQL concatenation operator - ||.

Example 13.10. Concatenation Operation Example

select 'Mr. ' || c.name.first || ' ' || c.name.last
from Customer c
where c.gender = Gender.MALE

Development Guide

292

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11780-766223+%5BLatest%5D&comment=Title%3A+About+Scalar+Functions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11780-766223+28+Jul+2015+20%3A01+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11479-767312+%5BLatest%5D&comment=Title%3A+HQL+Standardized+Functions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11479-767312+12+Aug+2015+22%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.4.12. About Dynamic Instantiation

There is a particular expression type that is only valid in the select clause. Hibernate calls this "dynamic
instantiation". JPQL supports some of this feature and calls it a "constructor expression".

Example 13.11. Dynamic Instantiation Example - Constructor

So rather than dealing with the Object[] here we are wrapping the values in a type-safe java object that
will be returned as the results of the query. The class reference must be fully qualified and it must have a
matching constructor.

The class here need not be mapped. If it does represent an entity, the resulting instances are returned in
the NEW state (not managed!).

This is the part JPQL supports as well. HQL supports additional "dynamic instantiation" features. First,
the query can specify to return a List rather than an Object[] for scalar results:

Example 13.12. Dynamic Instantiation Example - List

The results from this query will be a List<List> as opposed to a List<Object[]>

HQL also supports wrapping the scalar results in a Map.

Example 13.13. Dynamic Instantiation Example - Map

The results from this query will be a List<Map<String,Object>> as opposed to a List<Object[]>. The keys
of the map are defined by the aliases given to the select expressions.

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(mother as mother, offspr as offspr, mate as mate)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(max(c.bodyWeight) as max, min(c.bodyWeight) as min, count(*) as n)
from Cat cxt

CHAPTER 13. HIBERNATE

293

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11783-591992+%5BLatest%5D&comment=Title%3A+About+the+Concatenation+Operation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11783-591992+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.4.13. About HQL Predicates

Predicates form the basis of the where clause, the having clause and searched case expressions. They
are expressions which resolve to a truth value, generally TRUE or FALSE, although boolean
comparisons involving NULLs generally resolve to UNKNOWN.

HQL Predicates

Nullness Predicate

Check a value for nullness. Can be applied to basic attribute references, entity references and
parameters. HQL additionally allows it to be applied to component/embeddable types.

Example 13.14. Nullness Checking Examples

Like Predicate

Performs a like comparison on string values. The syntax is:

The semantics follow that of the SQL like expression. The pattern_value is the pattern to attempt to
match in the string_expression. Just like SQL, pattern_value can use "_" and "%" as wildcards. The
meanings are the same. "_" matches any single character. "%" matches any number of characters.

The optional escape_character is used to specify an escape character used to escape the special
meaning of "_" and "%" in the pattern_value. This is useful when needing to search on patterns
including either "_" or "%".

Example 13.15. Like Predicate Examples

// select everyone with an associated address
select p
from Person p
where p.address is not null

// select everyone without an associated address
select p
from Person p
where p.address is null

like_expression ::=
 string_expression
 [NOT] LIKE pattern_value
 [ESCAPE escape_character]

select p
from Person p
where p.name like '%Schmidt'

select p
from Person p
where p.name not like 'Jingleheimmer%'

Development Guide

294

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11480-745127+%5BLatest%5D&comment=Title%3A+About+Dynamic+Instantiation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11480-745127+27+Feb+2015+09%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Between Predicate

Analogous to the SQL BETWEEN expression. Perform a evaluation that a value is within the range of
2 other values. All the operands should have comparable types.

Example 13.16. Between Predicate Examples

Report a bug

13.4.14. About Relational Comparisons

Comparisons involve one of the comparison operators - =, >, >=, <, <=, <>. HQL also defines != as a
comparison operator synonymous with <>. The operands should be of the same type.

Example 13.17. Relational Comparison Examples

// find any with name starting with "sp_"
select sp
from StoredProcedureMetadata sp
where sp.name like 'sp|_%' escape '|'

select p
from Customer c
 join c.paymentHistory p
where c.id = 123
 and index(p) between 0 and 9

select c
from Customer c
where c.president.dateOfBirth
 between {d '1945-01-01'}
 and {d '1965-01-01'}

select o
from Order o
where o.total between 500 and 5000

select p
from Person p
where p.name between 'A' and 'E'

// numeric comparison
select c
from Customer c
where c.chiefExecutive.age < 30

// string comparison
select c
from Customer c
where c.name = 'Acme'

CHAPTER 13. HIBERNATE

295

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11481-591978+%5BLatest%5D&comment=Title%3A+About+HQL+Predicates%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11481-591978+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Comparisons can also involve subquery qualifiers - ALL, ANY, SOME. SOME and ANY are synonymous.

The ALL qualifier resolves to true if the comparison is true for all of the values in the result of the
subquery. It resolves to false if the subquery result is empty.

Example 13.18. ALL Subquery Comparison Qualifier Example

The ANY/SOME qualifier resolves to true if the comparison is true for some of (at least one of) the
values in the result of the subquery. It resolves to false if the subquery result is empty.

Report a bug

13.4.15. About the IN Predicate

The IN predicate performs a check that a particular value is in a list of values. Its syntax is:

// datetime comparison
select c
from Customer c
where c.inceptionDate < {d '2000-01-01'}

// enum comparison
select c
from Customer c
where c.chiefExecutive.gender = com.acme.Gender.MALE

// boolean comparison
select c
from Customer c
where c.sendEmail = true

// entity type comparison
select p
from Payment p
where type(p) = WireTransferPayment

// entity value comparison
select c
from Customer c
where c.chiefExecutive = c.chiefTechnologist

// select all players that scored at least 3 points
// in every game.
select p
from Player p
where 3 > all (
 select spg.points
 from StatsPerGame spg
 where spg.player = p
)

in_expression ::= single_valued_expression

Development Guide

296

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11784-706658+%5BLatest%5D&comment=Title%3A+About+Relational+Comparisons%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11784-706658+04+Sep+2014+21%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The types of the single_valued_expression and the individual values in the single_valued_list must
be consistent. JPQL limits the valid types here to string, numeric, date, time, timestamp, and enum
types. In JPQL, single_valued_expression can only refer to:

"state fields", which is its term for simple attributes. Specifically this excludes association and
component/embedded attributes.

entity type expressions.

In HQL, single_valued_expression can refer to a far more broad set of expression types. Single-valued
association are allowed. So are component/embedded attributes, although that feature depends on the
level of support for tuple or "row value constructor syntax" in the underlying database. Additionally, HQL
does not limit the value type in any way, though application developers should be aware that different
types may incur limited support based on the underlying database vendor. This is largely the reason for
the JPQL limitations.

The list of values can come from a number of different sources. In the constructor_expression and
collection_valued_input_parameter, the list of values must not be empty; it must contain at least one
value.

Example 13.19. In Predicate Examples

 [NOT] IN single_valued_list

single_valued_list ::= constructor_expression |
 (subquery) |
 collection_valued_input_parameter

constructor_expression ::= (expression[, expression]*)

select p
from Payment p
where type(p) in (CreditCardPayment, WireTransferPayment)

select c
from Customer c
where c.hqAddress.state in ('TX', 'OK', 'LA', 'NM')

select c
from Customer c
where c.hqAddress.state in ?

select c
from Customer c
where c.hqAddress.state in (
 select dm.state
 from DeliveryMetadata dm
 where dm.salesTax is not null
)

// Not JPQL compliant!
select c
from Customer c
where c.name in (
 ('John','Doe'),
 ('Jane','Doe')

CHAPTER 13. HIBERNATE

297

Report a bug

13.4.16. About HQL Ordering

The results of the query can also be ordered. The ORDER BY clause is used to specify the selected
values to be used to order the result. The types of expressions considered valid as part of the order-by
clause include:

state fields

component/embeddable attributes

scalar expressions such as arithmetic operations, functions, etc.

identification variable declared in the select clause for any of the previous expression types

HQL does not mandate that all values referenced in the order-by clause must be named in the select
clause, but it is required by JPQL. Applications desiring database portability should be aware that not all
databases support referencing values in the order-by clause that are not referenced in the select clause.

Individual expressions in the order-by can be qualified with either ASC (ascending) or DESC
(descending) to indicated the desired ordering direction.

Example 13.20. Order-by Examples

Report a bug

13.5. HIBERNATE SERVICES

)

// Not JPQL compliant!
select c
from Customer c
where c.chiefExecutive in (
 select p
 from Person p
 where ...
)

// legal because p.name is implicitly part of p
select p
from Person p
order by p.name

select c.id, sum(o.total) as t
from Order o
 inner join o.customer c
group by c.id
order by t

Development Guide

298

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11785-591992+%5BLatest%5D&comment=Title%3A+About+the+IN+Predicate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11785-591992+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11482-591978+%5BLatest%5D&comment=Title%3A+About+HQL+Ordering%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11482-591978+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

13.5.1. About Hibernate Services

Services are classes that provide Hibernate with pluggable implementations of various types of
functionality. Specifically they are implementations of certain service contract interfaces. The interface
is known as the service role; the implementation class is know as the service implementation. Generally
speaking, users can plug in alternate implementations of all standard service roles (overriding); they can
also define additional services beyond the base set of service roles (extending).

Report a bug

13.5.2. About Service Contracts

The basic requirement for a service is to implement the marker interface
org.hibernate.service.Service. Hibernate uses this internally for some basic type safety.

Optionally, the service can also implement the org.hibernate.service.spi.Startable and
org.hibernate.service.spi.Stoppable interfaces to receive notifications of being started and stopped.
Another optional service contract is org.hibernate.service.spi.Manageable which marks the service as
manageable in JMX provided the JMX integration is enabled.

Report a bug

13.5.3. Types of Service Dependencies

Services are allowed to declare dependencies on other services using either of 2 approaches:

@org.hibernate.service.spi.InjectService

Any method on the service implementation class accepting a single parameter and annotated with
@InjectService is considered requesting injection of another service.

By default the type of the method parameter is expected to be the service role to be injected. If the
parameter type is different than the service role, the serviceRole attribute of the InjectService
should be used to explicitly name the role.

By default injected services are considered required, that is the start up will fail if a named dependent
service is missing. If the service to be injected is optional, the required attribute of the InjectService
should be declared as false (default is true).

org.hibernate.service.spi.ServiceRegistryAwareService

The second approach is a pull approach where the service implements the optional service interface
org.hibernate.service.spi.ServiceRegistryAwareService which declares a single injectServices
method.

During startup, Hibernate will inject the org.hibernate.service.ServiceRegistry itself into services
which implement this interface. The service can then use the ServiceRegistry reference to locate
any additional services it needs.

Report a bug

13.5.4. The ServiceRegistry

13.5.4.1. About the ServiceRegistry

The central service API, aside from the services themselves, is the

CHAPTER 13. HIBERNATE

299

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9992-591906+%5BLatest%5D&comment=Title%3A+About+Hibernate+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9992-591906+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9993-591906+%5BLatest%5D&comment=Title%3A+About+Service+Contracts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9993-591906+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9994-591907+%5BLatest%5D&comment=Title%3A+Types+of+Service+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9994-591907+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The central service API, aside from the services themselves, is the
org.hibernate.service.ServiceRegistry interface. The main purpose of a service registry is to hold,
manage and provide access to services.

Service registries are hierarchical. Services in one registry can depend on and utilize services in that
same registry as well as any parent registries.

Use org.hibernate.service.ServiceRegistryBuilder to build a org.hibernate.service.ServiceRegistry
instance.

Example 13.21. Use ServiceRegistryBuilder to create a ServiceRegistry

Report a bug

13.5.5. Custom Services

13.5.5.1. About Custom Services

Once a org.hibernate.service.ServiceRegistry is built it is considered immutable; the services
themselves might accept re-configuration, but immutability here means adding/replacing services. So
another role provided by the org.hibernate.service.ServiceRegistryBuilder is to allow tweaking of the
services that will be contained in the org.hibernate.service.ServiceRegistry generated from it.

There are two means to tell a org.hibernate.service.ServiceRegistryBuilder about custom services.

Implement a org.hibernate.service.spi.BasicServiceInitiator class to control on-demand
construction of the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder via its addInitiator method.

Just instantiate the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder via its addService method.

Either approach the adding a service approach or the adding an initiator approach are valid for
extending a registry (adding new service roles) and overriding services (replacing service
implementations).

Example 13.22. Use ServiceRegistryBuilder to Replace an Existing Service with a Custom Service

ServiceRegistryBuilder registryBuilder = new ServiceRegistryBuilder(bootstrapServiceRegistry);
 ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

 ServiceRegistryBuilder registryBuilder = new ServiceRegistryBuilder(bootstrapServiceRegistry
);
 registryBuilder.addService(JdbcServices.class, new FakeJdbcService());
 ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

 public class FakeJdbcService implements JdbcServices{

 @Override
 public ConnectionProvider getConnectionProvider() {
 return null;
 }

Development Guide

300

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9995-591907+%5BLatest%5D&comment=Title%3A+About+the+ServiceRegistry%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9995-591907+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.5.6. The Bootstrap Registry

13.5.6.1. About the Boot-strap Registry

The boot-strap registry holds services that absolutely have to be available for most things to work. The
main service here is the ClassLoaderService which is a perfect example. Even resolving configuration
files needs access to class loading services (resource look ups). This is the root registry (no parent) in
normal use.

Instances of boot-strap registries are built using the
org.hibernate.service.BootstrapServiceRegistryBuilder class.

Report a bug

13.5.6.2. Using BootstrapServiceRegistryBuilder

Example 13.23. Using BootstrapServiceRegistryBuilder

 @Override
 public Dialect getDialect() {
 return null;
 }

 @Override
 public SqlStatementLogger getSqlStatementLogger() {
 return null;
 }

 @Override
 public SqlExceptionHelper getSqlExceptionHelper() {
 return null;
 }

 @Override
 public ExtractedDatabaseMetaData getExtractedMetaDataSupport() {
 return null;
 }

 @Override
 public LobCreator getLobCreator(LobCreationContext lobCreationContext) {
 return null;
 }

 @Override
 public ResultSetWrapper getResultSetWrapper() {
 return null;
 }
 }

BootstrapServiceRegistry bootstrapServiceRegistry = new BootstrapServiceRegistryBuilder()

CHAPTER 13. HIBERNATE

301

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9997-707094+%5BLatest%5D&comment=Title%3A+About+Custom+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9997-707094+08+Sep+2014+00%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9998-591907+%5BLatest%5D&comment=Title%3A+About+the+Boot-strap+Registry%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9998-591907+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.5.6.3. BootstrapRegistry Services

org.hibernate.service.classloading.spi.ClassLoaderService

Hibernate needs to interact with class loaders. However, the manner in which Hibernate (or any library)
should interact with class loaders varies based on the runtime environment which is hosting the
application. Application servers, OSGi containers, and other modular class loading systems impose very
specific class loading requirements. This service is provides Hibernate an abstraction from this
environmental complexity. And just as importantly, it does so in a single-swappable-component manner.

In terms of interacting with a class loader, Hibernate needs the following capabilities:

the ability to locate application classes

the ability to locate integration classes

the ability to locate resources (properties files, xml files, etc)

the ability to load java.util.ServiceLoader

NOTE

Currently, the ability to load application classes and the ability to load integration classes
are combined into a single "load class" capability on the service. That may change in a
later release.

org.hibernate.integrator.spi.IntegratorService

Applications, add-ons and other modules need to integrate with Hibernate. The previous approach
required a component, usually an application, to coordinate the registration of each individual module.
This registration was conducted on behalf of each module's integrator.

This service focuses on the discovery aspect. It leverages the standard Java java.util.ServiceLoader
capability provided by the org.hibernate.service.classloading.spi.ClassLoaderService in order to
discover implementations of the org.hibernate.integrator.spi.Integrator contract.

Integrators would simply define a file named /META-
INF/services/org.hibernate.integrator.spi.Integrator and make it available on the classpath.

This file is used by the java.util.ServiceLoader mechanism. It lists, one per line, the fully qualified names

 // pass in org.hibernate.integrator.spi.Integrator instances which are not
 // auto-discovered (for whatever reason) but which should be included
 .with(anExplicitIntegrator)
 // pass in a class loader that Hibernate should use to load application classes
 .with(anExplicitClassLoaderForApplicationClasses)
 // pass in a class loader that Hibernate should use to load resources
 .with(anExplicitClassLoaderForResources)
 // see BootstrapServiceRegistryBuilder for rest of available methods
 ...
 // finally, build the bootstrap registry with all the above options
 .build();

Development Guide

302

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9999-765012+%5BLatest%5D&comment=Title%3A+Using+BootstrapServiceRegistryBuilder%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9999-765012+14+Jul+2015+13%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This file is used by the java.util.ServiceLoader mechanism. It lists, one per line, the fully qualified names
of classes which implement the org.hibernate.integrator.spi.Integrator interface.

Report a bug

13.5.7. The SessionFactory Registry

13.5.7.1. SessionFactory Registry

While it is best practice to treat instances of all the registry types as targeting a given
org.hibernate.SessionFactory, the instances of services in this group explicitly belong to a single
org.hibernate.SessionFactory.

The difference is a matter of timing in when they need to be initiated. Generally they need access to the
org.hibernate.SessionFactory to be initiated. This special registry is
org.hibernate.service.spi.SessionFactoryServiceRegistry

Report a bug

13.5.7.2. SessionFactory Services

org.hibernate.event.service.spi.EventListenerRegistry

Description

Service for managing event listeners.

Initiator

org.hibernate.event.service.internal.EventListenerServiceInitiator

Implementations

org.hibernate.event.service.internal.EventListenerRegistryImpl

Report a bug

13.5.8. Integrators

13.5.8.1. Integrators

The org.hibernate.integrator.spi.Integrator is intended to provide a simple means for allowing
developers to hook into the process of building a functioning SessionFactory. The
org.hibernate.integrator.spi.Integrator interface defines 2 methods of interest: integrate allows us to
hook into the building process; disintegrate allows us to hook into a SessionFactory shutting down.

NOTE

There is a 3rd method defined on org.hibernate.integrator.spi.Integrator, an overloaded
form of integrate accepting a org.hibernate.metamodel.source.MetadataImplementor
instead of org.hibernate.cfg.Configuration. This form is intended for use with the new
metamodel code scheduled for completion in 5.0.

In addition to the discovery approach provided by the IntegratorService, applications can manually

CHAPTER 13. HIBERNATE

303

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+10000-765000+%5BLatest%5D&comment=Title%3A+BootstrapRegistry+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10000-765000+14+Jul+2015+11%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+10001-591907+%5BLatest%5D&comment=Title%3A+SessionFactory+Registry%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10001-591907+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+10002-591907+%5BLatest%5D&comment=Title%3A+SessionFactory+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10002-591907+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In addition to the discovery approach provided by the IntegratorService, applications can manually
register Integrator implementations when building the BootstrapServiceRegistry.

Report a bug

13.5.8.2. Integrator use-cases

The main use cases for an org.hibernate.integrator.spi.Integrator right now are registering event
listeners and providing services (see org.hibernate.integrator.spi.ServiceContributingIntegrator).
With 5.0 we plan on expanding that to allow altering the metamodel describing the mapping between
object and relational models.

Example 13.24. Registering event listeners

Report a bug

13.6. BEAN VALIDATION

13.6.1. About Bean Validation

Bean Validation, or JavaBeans Validation, is a model for validating data in Java objects. The model uses
built-in and custom annotation constraints to ensure the integrity of application data. The specification
is documented here: http://jcp.org/en/jsr/detail?id=303.

Hibernate Validator is the JBoss EAP 6 implementation of Bean Validation. It is also the reference

public class MyIntegrator implements org.hibernate.integrator.spi.Integrator {

 public void integrate(
 Configuration configuration,
 SessionFactoryImplementor sessionFactory,
 SessionFactoryServiceRegistry serviceRegistry) {
 // As you might expect, an EventListenerRegistry is the thing with which event listeners are
registered It is a
 // service so we look it up using the service registry
 final EventListenerRegistry eventListenerRegistry = serviceRegistry.getService(
EventListenerRegistry.class);

 // If you wish to have custom determination and handling of "duplicate" listeners, you would
have to add an
 // implementation of the org.hibernate.event.service.spi.DuplicationStrategy contract like this
 eventListenerRegistry.addDuplicationStrategy(myDuplicationStrategy);

 // EventListenerRegistry defines 3 ways to register listeners:
 // 1) This form overrides any existing registrations with
 eventListenerRegistry.setListeners(EventType.AUTO_FLUSH, myCompleteSetOfListeners);
 // 2) This form adds the specified listener(s) to the beginning of the listener chain
 eventListenerRegistry.prependListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledFirst);
 // 3) This form adds the specified listener(s) to the end of the listener chain
 eventListenerRegistry.appendListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledLast);
 }
}

Development Guide

304

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+10004-591907+%5BLatest%5D&comment=Title%3A+Integrators%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10004-591907+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+10267-591920+%5BLatest%5D&comment=Title%3A+Integrator+use-cases%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10267-591920+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/en/jsr/detail?id=303

Hibernate Validator is the JBoss EAP 6 implementation of Bean Validation. It is also the reference
implementation of the JSR.

JBoss EAP 6 is 100% compliant with JSR 303 - Bean Validation. Hibernate Validator also provides
additional features to the specification.

To get started with Bean Validation, refer to the bean-validation quickstart example: Section 1.4.1.1,
“Access the Quickstarts”.

Report a bug

13.6.2. Hibernate Validator

Hibernate Validator is the reference implementation of JSR 303 - Bean Validation .

Bean Validation provides users with a model for validating Java object data. For more information, refer
to Section 13.6.1, “About Bean Validation” and Section 13.6.3.1, “About Validation Constraints”.

Report a bug

13.6.3. Validation Constraints

13.6.3.1. About Validation Constraints

Validation constraints are rules applied to a java element, such as a field, property or bean. A constraint
will usually have a set of attributes used to set its limits. There are predefined constraints, and custom
ones can be created. Each constraint is expressed in the form of an annotation.

The built-in validation constraints for Hibernate Validator are listed here: Section 13.6.3.3, “Hibernate
Validator Constraints”

For more information, refer to Section 13.6.2, “Hibernate Validator” and Section 13.6.1, “About Bean
Validation”.

Report a bug

13.6.3.2. Create a Constraint Annotation in Red Hat JBoss Developer Studio

Summary

This task covers the process of creating a constraint annotation in Red Hat JBoss Developer Studio, for
use within a Java application.

Prerequisites

Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”

Procedure 13.5. Create a Constraint Annotation

1. Open a Java project in Red Hat JBoss Developer Studio.

2. Create a Data Set
A constraint annotation requires a data set that defines the acceptable values.

a. Right click on the project root folder in the Project Explorer panel.

CHAPTER 13. HIBERNATE

305

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2243-591649+%5BLatest%5D&comment=Title%3A+About+Bean+Validation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2243-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/en/jsr/detail?id=303
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4416-591662+%5BLatest%5D&comment=Title%3A+Hibernate+Validator%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4416-591662+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2396-591649+%5BLatest%5D&comment=Title%3A+About+Validation+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2396-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

b. Select New → Enum.

c. Configure the following elements:

Package:

Name:

d. Click the Add... button to add any required interfaces.

e. Click Finish to create the file.

f. Add a set of values to the data set and click Save.

Example 13.25. Example Data Set

3. Create the Annotation File
Create a new Java class.

4. Configure the constraint annotation and click Save.

Example 13.26. Example Constraint Annotation File

package com.example;

public enum CaseMode {
 UPPER,
 LOWER;
}

package com.mycompany;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.validation.Constraint;
import javax.validation.Payload;

@Target({ METHOD, FIELD, ANNOTATION_TYPE })
@Retention(RUNTIME)
@Constraint(validatedBy = CheckCaseValidator.class)
@Documented
public @interface CheckCase {

 String message() default "{com.mycompany.constraints.checkcase}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

Development Guide

306

Result

A custom constraint annotation with a set of possible values has been created, ready to be used in
the Java project.

Report a bug

13.6.3.3. Hibernate Validator Constraints

Table 13.11. Built-in Constraints

Annotation Apply on Runtime checking Hibernate Metadata
impact

@Length(min=, max=) property (String) Check if the string
length matches the
range.

Column length will be
set to max.

@Max(value=) property (numeric or
string representation of
a numeric)

Check if the value is less
than or equal to max.

Add a check constraint
on the column.

@Min(value=) property (numeric or
string representation of
a numeric)

Check if the value is
more than or equal to
Min.

Add a check constraint
on the column.

@NotNull property Check if the value is not
null.

Column(s) are not null.

@NotEmpty property Check if the string is not
null nor empty. Check if
the connection is not
null nor empty.

Column(s) are not null
(for String).

@Past property (date or
calendar)

Check if the date is in
the past.

Add a check constraint
on the column.

@Future property (date or
calendar)

Check if the date is in
the future.

None.

@Pattern(regex="regex
p", flag=) or @Patterns(
{@Pattern(...)})

property (string) Check if the property
matches the regular
expression given a
match flag (see
java.util.regex.Patter
n).

None.

 CaseMode value();

}

CHAPTER 13. HIBERNATE

307

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2448-744241+%5BLatest%5D&comment=Title%3A+Create+a+Constraint+Annotation+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2448-744241+22+Feb+2015+18%3A22+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

@Range(min=, max=) property (numeric or
string representation of
a numeric)

Check if the value is
between min and max
(included).

Add a check constraint
on the column.

@Size(min=, max=) property (array,
collection, map)

Check if the element
size is between min and
max (included).

None.

@AssertFalse property Check that the method
evaluates to false
(useful for constraints
expressed in code rather
than annotations).

None.

@AssertTrue property Check that the method
evaluates to true (useful
for constraints
expressed in code rather
than annotations).

None.

@Valid property (object) Perform validation
recursively on the
associated object. If the
object is a Collection or
an array, the elements
are validated recursively.
If the object is a Map,
the value elements are
validated recursively.

None.

@Email property (String) Check whether the
string is conform to the
e-mail address
specification.

None.

@CreditCardNumber property (String) Check whether the
string is a well formatted
credit card number
(derivative of the Luhn
algorithm).

None.

@Digits(integerDigits=1) property (numeric or
string representation of
a numeric)

Check whether the
property is a number
having up to
integerDigits integer
digits and
fractionalDigits
fractional digits.

Define column precision
and scale.

Annotation Apply on Runtime checking Hibernate Metadata
impact

Development Guide

308

@EAN property (string) Check whether the
string is a properly
formatted EAN or UPC-
A code.

None.

Annotation Apply on Runtime checking Hibernate Metadata
impact

Report a bug

13.6.4. Configuration

13.6.4.1. Example Validation Configuration File

Example 13.27. validation.xml

Report a bug

13.7. ENVERS

13.7.1. About Hibernate Envers

Hibernate Envers is an auditing and versioning system, providing JBoss EAP 6 with a means to track
historical changes to persistent classes. Audit tables are created for entities annotated with @Audited,
which store the history of changes made to the entity. The data can then be retrieved and queried.

Envers allows developers to:

<validation-config xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">

 <default-provider>
 org.hibernate.validator.HibernateValidator
 </default-provider>
 <message-interpolator>
 org.hibernate.validator.messageinterpolation.ResourceBundleMessageInterpolator
 </message-interpolator>
 <constraint-validator-factory>
 org.hibernate.validator.engine.ConstraintValidatorFactoryImpl
 </constraint-validator-factory>

 <constraint-mapping>
 /constraints-example.xml
 </constraint-mapping>

 <property name="prop1">value1</property>
 <property name="prop2">value2</property>
</validation-config>

CHAPTER 13. HIBERNATE

309

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2432-591649+%5BLatest%5D&comment=Title%3A+Hibernate+Validator+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2432-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4623-591670+%5BLatest%5D&comment=Title%3A+Example+Validation+Configuration+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4623-591670+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

audit all mappings defined by the JPA specification,

audit all hibernate mappings that extend the JPA specification,

audit entities mapped by or using the native Hibernate API

log data for each revision using a revision entity, and

query historical data.

Report a bug

13.7.2. About Auditing Persistent Classes

Auditing of persistent classes is done in JBoss EAP 6 through Hibernate Envers and the @Audited
annotation. When the annotation is applied to a class, a table is created, which stores the revision history
of the entity.

Each time a change is made to the class, an entry is added to the audit table. The entry contains the
changes to the class, and is given a revision number. This means that changes can be rolled back, or
previous revisions can be viewed.

Report a bug

13.7.3. Auditing Strategies

13.7.3.1. About Auditing Strategies

Auditing strategies define how audit information is persisted, queried and stored. There are currently
two audit strategies available with Hibernate Envers:

Default Audit Strategy

This strategy persists the audit data together with a start revision. For each row that is inserted,
updated or deleted in an audited table, one or more rows are inserted in the audit tables, along with
the start revision of its validity.

Rows in the audit tables are never updated after insertion. Queries of audit information use
subqueries to select the applicable rows in the audit tables, which are slow and difficult to index.

Validity Audit Strategy

This strategy stores the start revision, as well as the end revision of the audit information. For each
row that is inserted, updated or deleted in an audited table, one or more rows are inserted in the audit
tables, along with the start revision of its validity.

At the same time, the end revision field of the previous audit rows (if available) is set to this revision.
Queries on the audit information can then use between start and end revision, instead of subqueries.
This means that persisting audit information is a little slower because of the extra updates, but
retrieving audit information is a lot faster.

This can also be improved by adding extra indexes.

For more information on auditing, refer to Section 13.7.2, “About Auditing Persistent Classes”. To set the
auditing strategy for the application, refer here: Section 13.7.3.2, “Set the Auditing Strategy”.

Development Guide

310

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5010-591675+%5BLatest%5D&comment=Title%3A+About+Hibernate+Envers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5010-591675+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5011-591675+%5BLatest%5D&comment=Title%3A+About+Auditing+Persistent+Classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5011-591675+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

13.7.3.2. Set the Auditing Strategy

Summary

There are two audit strategies supported by JBoss EAP 6: the default and validity audit strategies. This
task covers the steps required to define the auditing strategy for an application.

Procedure 13.6. Define a Auditing Strategy

Configure the org.hibernate.envers.audit_strategy property in the persistence.xml file of the
application. If the property is not set in the persistence.xml file, then the default audit strategy
is used.

Example 13.28. Set the Default Audit Strategy

Example 13.29. Set the Validity Audit Strategy

Report a bug

13.7.4. Getting Started with Entity Auditing

13.7.4.1. Add Auditing Support to a JPA Entity

JBoss EAP 6 uses entity auditing, through Section 13.7.1, “About Hibernate Envers”, to track the
historical changes of a persistent class. This topic covers adding auditing support for a JPA entity.

Procedure 13.7. Add Auditing Support to a JPA Entity

1. Configure the available auditing parameters to suit the deployment: Section 13.7.5.1, “Configure
Envers Parameters”.

2. Open the JPA entity to be audited.

3. Import the org.hibernate.envers.Audited interface.

4. Apply the @Audited annotation to each field or property to be audited, or apply it once to the
whole class.

Example 13.30. Audit Two Fields

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.DefaultAuditStrategy"/>

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.ValidityAuditStrategy"/>

import org.hibernate.envers.Audited;

import javax.persistence.Entity;

CHAPTER 13. HIBERNATE

311

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5028-591680+%5BLatest%5D&comment=Title%3A+About+Auditing+Strategies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5028-591680+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5014-591680+%5BLatest%5D&comment=Title%3A+Set+the+Auditing+Strategy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5014-591680+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 13.31. Audit an entire Class

Result

The JPA entity has been configured for auditing. A table called Entity_AUD will be created to store the
historical changes.

import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
public class Person {
 @Id
 @GeneratedValue
 private int id;

 @Audited
 private String name;

 private String surname;

 @ManyToOne
 @Audited
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
@Audited
public class Person {
 @Id
 @GeneratedValue
 private int id;

 private String name;

 private String surname;

 @ManyToOne
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

Development Guide

312

Report a bug

13.7.5. Configuration

13.7.5.1. Configure Envers Parameters

JBoss EAP 6 uses entity auditing, through Hibernate Envers, to track the historical changes of a
persistent class. This topic covers configuring the available Envers parameters.

Procedure 13.8. Configure Envers Parameters

1. Open the persistence.xml file for the application.

2. Add, remove or configure Envers properties as required. For a list of available properties, refer
to Section 13.7.5.4, “Envers Configuration Properties” .

Example 13.32. Example Envers Parameters

Result

Auditing has been configured for all JPA entities in the application.

Report a bug

13.7.5.2. Enable or Disable Auditing at Runtime

Summary

This task covers the configuration steps required to enable/disable entity version auditing at runtime.

Procedure 13.9. Enable/Disable Auditing

1. Subclass the AuditEventListener class.

2. Override the following methods that are called on Hibernate events:

onPostInsert

<persistence-unit name="mypc">
 <description>Persistence Unit.</description>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.cache.use_second_level_cache" value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="org.hibernate.envers.versionsTableSuffix" value="_V" />
 <property name="org.hibernate.envers.revisionFieldName" value="ver_rev" />
 </properties>
</persistence-unit>

CHAPTER 13. HIBERNATE

313

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5016-591680+%5BLatest%5D&comment=Title%3A+Add+Auditing+Support+to+a+JPA+Entity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5016-591680+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5013-591675+%5BLatest%5D&comment=Title%3A+Configure+Envers+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5013-591675+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

onPostUpdate

onPostDelete

onPreUpdateCollection

onPreRemoveCollection

onPostRecreateCollection

3. Specify the subclass as the listener for the events.

4. Determine if the change should be audited.

5. Pass the call to the superclass if the change should be audited.

Report a bug

13.7.5.3. Configure Conditional Auditing

Summary

Hibernate Envers persists audit data in reaction to various Hibernate events, using a series of event
listeners. These listeners are registered automatically if the Envers jar is in the class path. This task
covers the steps required to implement conditional auditing, by overriding some of the Envers event
listeners.

Procedure 13.10. Implement Conditional Auditing

1. Set the hibernate.listeners.envers.autoRegister Hibernate property to false in the
persistence.xml file.

2. Subclass each event listener to be overridden. Place the conditional auditing logic in the
subclass, and call the super method if auditing should be performed.

3. Create a custom implementation of org.hibernate.integrator.spi.Integrator, similar to
org.hibernate.envers.event.EnversIntegrator. Use the event listener subclasses created in
step two, rather than the default classes.

4. Add a META-INF/services/org.hibernate.integrator.spi.Integrator file to the jar. This file
should contain the fully qualified name of the class implementing the interface.

Result

Conditional auditing has been configured, overriding the default Envers event listeners.

Report a bug

13.7.5.4. Envers Configuration Properties

Table 13.12. Entity Data Versioning Configuration Parameters

Property Name Default Value Description

Development Guide

314

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5025-591680+%5BLatest%5D&comment=Title%3A+Enable+or+Disable+Auditing+at+Runtime%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5025-591680+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5023-591680+%5BLatest%5D&comment=Title%3A+Configure+Conditional+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5023-591680+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

org.hibernate.envers.audit_table_
prefix

A string that is prepended to the
name of an audited entity, to
create the name of the entity that
will hold the audit information.

org.hibernate.envers.audit_table_s
uffix

_AUD A string that is appended to the
name of an audited entity to
create the name of the entity that
will hold the audit information. For
example, if an entity with a table
name of Person is audited,
Envers will generate a table called
Person_AUD to store the
historical data.

org.hibernate.envers.revision_field
_name

REV The name of the field in the audit
entity that holds the revision
number.

org.hibernate.envers.revision_type
_field_name

REVTYPE The name of the field in the audit
entity that holds the type of
revision. The current types of
revisions possible are: add, mod
and del.

org.hibernate.envers.revision_on_
collection_change

true This property determines if a
revision should be generated if a
relation field that is not owned
changes. This can either be a
collection in a one-to-many
relation, or the field using the
mappedBy attribute in a one-
to-one relation.

org.hibernate.envers.do_not_audit
_optimistic_locking_field

true When true, properties used for
optimistic locking (annotated with
@Version) will automatically be
excluded from auditing.

org.hibernate.envers.store_data_a
t_delete

false This property defines whether or
not entity data should be stored in
the revision when the entity is
deleted, instead of only the ID,
with all other properties marked as
null. This is not usually necessary,
as the data is present in the last-
but-one revision. Sometimes,
however, it is easier and more
efficient to access it in the last
revision. However, this means the
data the entity contained before
deletion is stored twice.

Property Name Default Value Description

CHAPTER 13. HIBERNATE

315

org.hibernate.envers.default_sche
ma

null (same as normal tables) The default schema name used
for audit tables. Can be
overridden using the
@AuditTable(schema="...")
annotation. If not present, the
schema will be the same as the
schema of the normal tables.

org.hibernate.envers.default_catal
og

null (same as normal tables) The default catalog name that
should be used for audit tables.
Can be overridden using the
@AuditTable(catalog="...")
annotation. If not present, the
catalog will be the same as the
catalog of the normal tables.

org.hibernate.envers.audit_strateg
y

org.hibernate.envers.strategy.Def
aultAuditStrategy

This property defines the audit
strategy that should be used
when persisting audit data. By
default, only the revision where an
entity was modified is stored.
Alternatively,
org.hibernate.envers.strateg
y.ValidityAuditStrategy stores
both the start revision and the
end revision. Together, these
define when an audit row was
valid.

org.hibernate.envers.audit_strateg
y_validity_end_rev_field_name

REVEND The column name that will hold
the end revision number in audit
entities. This property is only valid
if the validity audit strategy is
used.

org.hibernate.envers.audit_strateg
y_validity_store_revend_timestam
p

false This property defines whether the
timestamp of the end revision,
where the data was last valid,
should be stored in addition to the
end revision itself. This is useful to
be able to purge old audit records
out of a relational database by
using table partitioning.
Partitioning requires a column
that exists within the table. This
property is only evaluated if the
ValidityAuditStrategy is used.

org.hibernate.envers.audit_strateg
y_validity_revend_timestamp_field
_name

REVEND_TSTMP Column name of the timestamp
of the end revision at which point
the data was still valid. Only used
if the ValidityAuditStrategy is
used, and
org.hibernate.envers.audit_s
trategy_validity_store_reven
d_timestamp evaluates to true.

Property Name Default Value Description

Development Guide

316

Report a bug

13.7.6. Queries

13.7.6.1. Retrieve Auditing Information

Summary

Hibernate Envers provides the functionality to retrieve audit information through queries. This topic
provides examples of those queries.

NOTE

Queries on the audited data will be, in many cases, much slower than corresponding
queries on live data, as they involve correlated subselects.

Example 13.33. Querying for Entities of a Class at a Given Revision

The entry point for this type of query is:

Constraints can then be specified, using the AuditEntity factory class. The query below only selects
entities where the name property is equal to John:

The queries below only select entities that are related to a given entity:

The results can then be ordered, limited, and have aggregations and projections (except grouping)
set. The example below is a full query.

Example 13.34. Query Revisions where Entities of a Given Class Changed

The entry point for this type of query is:

AuditQuery query = getAuditReader()
 .createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber);

query.add(AuditEntity.property("name").eq("John"));

query.add(AuditEntity.property("address").eq(relatedEntityInstance));
// or
query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

List personsAtAddress = getAuditReader().createQuery()
 .forEntitiesAtRevision(Person.class, 12)
 .addOrder(AuditEntity.property("surname").desc())
 .add(AuditEntity.relatedId("address").eq(addressId))
 .setFirstResult(4)
 .setMaxResults(2)
 .getResultList();

CHAPTER 13. HIBERNATE

317

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5015-591680+%5BLatest%5D&comment=Title%3A+Envers+Configuration+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5015-591680+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Constraints can be added to this query in the same way as the previous example. There are additional
possibilities for this query:

AuditEntity.revisionNumber()

Specify constraints, projections and order on the revision number in which the audited entity was
modified.

AuditEntity.revisionProperty(propertyName)

Specify constraints, projections and order on a property of the revision entity, corresponding to
the revision in which the audited entity was modified.

AuditEntity.revisionType()

Provides accesses to the type of the revision (ADD, MOD, DEL).

The query results can then be adjusted as necessary. The query below selects the smallest revision
number at which the entity of the MyEntity class, with the entityId ID has changed, after revision
number 42:

Queries for revisions can also minimize/maximize a property. The query below selects the revision at
which the value of the actualDate for a given entity was larger than a given value, but as small as
possible:

The minimize() and maximize() methods return a criteria, to which constraints can be added, which
must be met by the entities with the maximized/minimized properties.

There are two boolean parameters passed when creating the query.

selectEntitiesOnly

This parameter is only valid when an explicit projection is not set.

If true, the result of the query will be a list of entities that changed at revisions satisfying the
specified constraints.

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true);

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.id().eq(entityId))
 .add(AuditEntity.revisionNumber().gt(42))
 .getSingleResult();

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 // We are only interested in the first revision
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.property("actualDate").minimize()
 .add(AuditEntity.property("actualDate").ge(givenDate))
 .add(AuditEntity.id().eq(givenEntityId)))
 .getSingleResult();

Development Guide

318

If false, the result will be a list of three element arrays. The first element will be the changed entity
instance. The second will be an entity containing revision data. If no custom entity is used, this will
be an instance of DefaultRevisionEntity. The third element array will be the type of the revision
(ADD, MOD, DEL).

selectDeletedEntities

This parameter specifies if revisions in which the entity was deleted must be included in the
results. If true, the entities will have the revision type DEL, and all fields, except id, will have the
value null.

Example 13.35. Query Revisions of an Entity that Modified a Given Property

The query below will return all revisions of MyEntity with a given id, where the actualDate property
has been changed.

The hasChanged condition can be combined with additional criteria. The query below will return a
horizontal slice for MyEntity at the time the revisionNumber was generated. It will be limited to the
revisions that modified prop1, but not prop2.

The result set will also contain revisions with numbers lower than the revisionNumber. This means
that this query cannot be read as "Return all MyEntities changed in revisionNumber with prop1
modified and prop2 untouched."

The query below shows how this result can be returned, using the forEntitiesModifiedAtRevision
query:

Example 13.36. Query Entities Modified in a Given Revision

The example below shows the basic query for entities modified in a given revision. It allows entity
names and corresponding Java classes changed in a specified revision to be retrieved:

There are a number of other queries that are also accessible from

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .add(AuditEntity.id().eq(id));
 .add(AuditEntity.property("actualDate").hasChanged())

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesModifiedAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

Set<Pair<String, Class>> modifiedEntityTypes = getAuditReader()
 .getCrossTypeRevisionChangesReader().findEntityTypes(revisionNumber);

CHAPTER 13. HIBERNATE

319

There are a number of other queries that are also accessible from
org.hibernate.envers.CrossTypeRevisionChangesReader:

List<Object> findEntities(Number)

Returns snapshots of all audited entities changed (added, updated and removed) in a given
revision. Executes n+1 SQL queries, where n is a number of different entity classes modified
within the specified revision.

List<Object> findEntities(Number, RevisionType)

Returns snapshots of all audited entities changed (added, updated or removed) in a given revision
filtered by modification type. Executes n+1 SQL queries, where n is a number of different entity
classes modified within specified revision.

Map<RevisionType, List<Object>> findEntitiesGroupByRevisionType(Number)

Returns a map containing lists of entity snapshots grouped by modification operation (e.g.
addition, update and removal). Executes 3n+1 SQL queries, where n is a number of different
entity classes modified within specified revision.

Report a bug

13.8. PERFORMANCE TUNING

13.8.1. Alternative Batch Loading Algorithms

Hibernate allows you to load data for associations using one of four fetching strategies: join, select,
subselect and batch. Out of these four strategies, batch loading allows for the biggest performance
gains as it is an optimization strategy for select fetching. In this strategy, Hibernate retrieves a batch of
entity instances or collections in a single SELECT statement by specifying a list of primary or foreign
keys. Batch fetching is an optimization of the lazy select fetching strategy.

There are two ways to configure batch fetching: per-class level or per-collection level.

Per-Class Level

When Hibernate loads data on a per-class level, it requires the batch size of the association to
pre-load when queried. For example, consider that at runtime you have 30 instances of a car
object loaded in session. Each car object belongs to an owner object. If you were to iterate
through all the car objects and request their owners, with lazy loading, Hibernate will issue 30
select statements - one for each owner. This is a performance bottleneck.

You can instead, tell Hibernate to pre-load the data for the next batch of owners before they
have been sought via a query. When an owner object has been queried, Hibernate will query
many more of these objects in the same SELECT statement.

The number of owner objects to query in advance depends upon the batch-size parameter
specified at configuration time:

This tells Hibernate to query at least 10 more owner objects in expectation of them being
needed in the near future. When a user queries the owner of car A, the owner of car B may

<class name="owner" batch-size="10"></class>

Development Guide

320

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5017-745436+%5BLatest%5D&comment=Title%3A+Retrieve+Auditing+Information%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5017-745436+02+Mar+2015+06%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

already have been loaded as part of batch loading. When the user actually needs the owner of
car B, instead of going to the database (and issuing a SELECT statement), the value can be
retrieved from the current session.

In addition to the batch-size parameter, Hibernate 4.2.0 has introduced a new configuration
item to improve in batch loading performance. The configuration item is called Batch Fetch
Style configuration and specified by the hibernate.batch_fetch_style parameter.

Three different batch fetch styles are supported: LEGACY, PADDED and DYNAMIC. To specify
which style to use, use org.hibernate.cfg.AvailableSettings#BATCH_FETCH_STYLE.

LEGACY: In the legacy style of loading, a set of pre-built batch sizes based on
ArrayHelper.getBatchSizes(int) are utilized. Batches are loaded using the next-smaller
pre-built batch size from the number of existing batchable identifiers.

Continuing with the above example, with a batch-size setting of 30, the pre-built batch
sizes would be [30, 15, 10, 9, 8, 7, .., 1]. An attempt to batch load 29 identifiers would result in
batches of 15, 10, and 4. There will be 3 corresponding SQL queries, each loading 15, 10 and
4 owners from the database.

PADDED - Padded is similar to LEGACY style of batch loading. It still utilizes pre-built
batch sizes, but uses the next-bigger batch size and pads the extra identifier placeholders.

As with the example above, if 30 owner objects are to be initialized, there will only be one
query executed against the database.

However, if 29 owner objects are to be initialized, Hibernate will still execute only 1 SQL
select statement of batch size 30, with the extra space padded with a repeated identifier.

Dynamic - While still conforming to batch-size restrictions, this style of batch loading
dynamically builds its SQL SELECT statement using the actual number of objects to be
loaded.

For example, for 30 owner objects, and a maximum batch size of 30, a call to retrieve 30
owner objects will result in one SQL SELECT statement. A call to retrieve 35 will result in
two SQL statements, of batch sizes 30 and 5 respectively. Hibernate will dynamically alter
the second SQL statement to keep at 5, the required number, while still remaining under the
restriction of 30 as the batch-size. This is different to the PADDED version, as the second
SQL will not get PADDED, and unlike the LEGACY style, there is no fixed size for the
second SQL statement - the second SQL is created dynamically.

For a query of less than 30 identifiers, this style will dynamically only load the number of
identifiers requested.

Per-Collection Level

Hibernate can also batch load collections honoring the batch fetch size and styles as listed in
the per-class section above.

To reverse the example used in the previous section, consider that you need to load all the car
objects owned by each owner object. If 10 owner objects are loaded in the current session
iterating through all owners will generate 10 SELECT statements, one for every call to getCars()
method. If you enable batch fetching for the cars collection in the mapping of Owner, Hibernate
can pre-fetch these collections, as shown below.

Thus, with a batch-size of 5 and using legacy batch style to load 10 collections, Hibernate will

<class name="Owner"><set name="cars" batch-size="5"></set></class>

CHAPTER 13. HIBERNATE

321

Thus, with a batch-size of 5 and using legacy batch style to load 10 collections, Hibernate will
execute two SELECT statements, each retrieving 5 collections.

Report a bug

13.8.2. Second Level Caching of Object References for Non-mutable Data

Hibernate automatically caches data within memory for improved performance. This is accomplished by
an in-memory cache which reduces the number of times that database lookups are required, especially
for data that rarely changes.

Hibernate maintains two types of caches. The primary cache (also called the first-level cache) is
mandatory. This cache is associated with the current session and all requests must pass through it. The
secondary cache (also called the second-level cache) is optional, and is only consulted after the primary
cache has been consulted first.

Data is stored in the second-level cache by first disassembling it into a state array. This array is deep
copied, and that deep copy is put into the cache. The reverse is done for reading from the cache. This
works well for data that changes (mutable data), but is inefficient for immutable data.

Deep copying data is an expensive operation in terms of memory usage and processing speed. For large
data sets, memory and processing speed become a performance-limiting factor. Hibernate allows you to
specify that immutable data be referenced rather than copied. Instead of copying entire data sets,
Hibernate can now store the reference to the data in the cache.

This can be done by changing the value of the configuration setting
hibernate.cache.use_reference_entries to true. By default, hibernate.cache.use_reference_entries
is set to false.

When hibernate.cache.use_reference_entries is set to true, an immutable data object that does not
have any associations is not copied into the second-level cache, and only a reference to it is stored.

WARNING

When hibernate.cache.use_reference_entries is set to true, immutable data
objects with associations are still deep copied into the second-level cache.

Report a bug



Development Guide

322

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+21769-745445+%5BLatest%5D&comment=Title%3A+Alternative+Batch+Loading+Algorithms%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=21769-745445+02+Mar+2015+09%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+20657-742326+%5BLatest%5D&comment=Title%3A+Second+Level+Caching+of+Object+References+for+Non-mutable+Data%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=20657-742326+09+Feb+2015+22%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 14. HIBERNATE SEARCH

14.1. GETTING STARTED WITH HIBERNATE SEARCH

14.1.1. About Hibernate Search

Hibernate Search provides full-text search capability to Hibernate applications. It is especially suited to
search applications for which SQL-based solutions are not suited, including: full-text, fuzzy and
geolocation searches. Hibernate Search uses Apache Lucene as its full-text search engine, but is
designed to minimize the maintenance overhead. Once it is configured, indexing, clustering and data
synchronization is maintained transparently, allowing you to focus on meeting your business
requirements.

Report a bug

14.1.2. First Steps with Hibernate Search

To get started with Hibernate Search for your application, follow these topics.

See Configuration in the JBoss EAP Administration and Configuration Guide to configure
Hibernate Search.

Section 14.1.3, “Enable Hibernate Search using Maven”

Section 14.1.5, “Indexing”

Section 14.1.6, “Searching”

Section 14.1.7, “Analyzer”

Report a bug

14.1.3. Enable Hibernate Search using Maven

Use the following configuration in your Maven project to add hibernate-search-orm dependencies:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <version>4.6.0.Final-redhat-2</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <scope>provided</scope>
 </dependency>
</dependencies>

CHAPTER 14. HIBERNATE SEARCH

323

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42279-743936+%5BLatest%5D&comment=Title%3A+About+Hibernate+Search%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42279-743936+18+Feb+2015+23%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+43176-749462+%5BLatest%5D&comment=Title%3A+First+Steps+with+Hibernate+Search%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43176-749462+31+Mar+2015+22%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.1.4. Add Annotations

For this section, consider the example in which you have a database containing details of books. Your
application contains the Hibernate managed classes example.Book and example.Author and you want
to add free text search capabilities to your application to enable searching for books.

Example 14.1. Entities Book and Author Before Adding Hibernate Search Specific Annotations

To achieve this you have to add a few annotations to the Book and Author class. The first annotation
@Indexed marks Book as indexable. By design Hibernate Search stores an untokenized ID in the index

package example;
...
@Entity
public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 private Date publicationDate;

 public Book() {}

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 private String name;

 public Author() {}

 // standard getters/setters follow here
 ...
}

Development Guide

324

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+43166-750091+%5BLatest%5D&comment=Title%3A+Enable+Hibernate+Search+using+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43166-750091+08+Apr+2015+06%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

to ensure index unicity for a given entity. @DocumentId marks the property to use for this purpose and
is in most cases the same as the database primary key. The @DocumentId annotation is optional in the
case where an @Id annotation exists.

Next the fields you want to make searchable must be marked as such. In this example, start with title and
subtitle and annotate both with @Field. The parameter index=Index.YES will ensure that the text will
be indexed, while analyze=Analyze.YES ensures that the text will be analyzed using the default Lucene
analyzer. Usually, analyzing means chunking a sentence into individual words and potentially excluding
common words like 'a' or 'the'. We will talk more about analyzers a little later on. The third parameter we
specify within @Field, store=Store.NO, ensures that the actual data will not be stored in the index.
Whether this data is stored in the index or not has nothing to do with the ability to search for it. From
Lucene's perspective it is not necessary to keep the data once the index is created. The benefit of
storing it is the ability to retrieve it via projections (see Section 14.3.1.10.5, “Projection”).

Without projections, Hibernate Search will per default execute a Lucene query in order to find the
database identifiers of the entities matching the query criteria and use these identifiers to retrieve
managed objects from the database. The decision for or against projection has to be made on a case to
case basis. The default behavior is recommended since it returns managed objects whereas projections
only return object arrays.

Note that index=Index.YES, analyze=Analyze.YES and store=Store.NO are the default values for
these parameters and could be omitted.

Another annotation not yet discussed is @DateBridge. This annotation is one of the built-in field
bridges in Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search
must convert the data types of the indexed fields to strings and vice-versa. A range of predefined
bridges are provided, including the DateBridge which will convert a java.util.Date into a String with the
specified resolution. For more details see Section 14.2.4, “Bridges”.

This leaves us with @IndexedEmbedded.This annotation is used to index associated entities
(@ManyToMany, @*ToOne, @Embedded and @ElementCollection) as part of the owning entity. This
is needed since a Lucene index document is a flat data structure which does not know anything about
object relations. To ensure that the authors' name will be searchable you have to ensure that the names
are indexed as part of the book itself. On top of @IndexedEmbedded you will also have to mark all
fields of the associated entity you want to have included in the index with @Indexed. For more details
see Section 14.2.1.3, “Embedded and Associated Objects”

These settings should be sufficient for now. For more details on entity mapping see Section 14.2.1,
“Mapping an Entity”.

Example 14.2. Entities After Adding Hibernate Search Annotations

package example;
...
@Entity
@Indexed
public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)
 private String title;

 @Field(index=Index.YES, analyze=Analyze.YES, store=Store.NO)

CHAPTER 14. HIBERNATE SEARCH

325

Report a bug

14.1.5. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through Hibernate
Core. However, you have to create an initial Lucene index for the data already present in your database.
Once you have added the above properties and annotations it is time to trigger an initial batch index of
your books. You can achieve this by using one of the following code snippets (see also Section 14.4.3,
“Rebuilding the Index”):

Example 14.3. Using the Hibernate Session to Index Data

 private String subtitle;

 @Field(index = Index.YES, analyze=Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 @IndexedEmbedded
 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 @Field
 private String name;

 public Author() {
 }

 // standard getters/setters follow here
 ...
}

FullTextSession fullTextSession = org.hibernate.search.Search.getFullTextSession(session);
fullTextSession.createIndexer().startAndWait();

Development Guide

326

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14257-749464+%5BLatest%5D&comment=Title%3A+Add+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14257-749464+31+Mar+2015+23%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.4. Using JPA to Index Data

After executing the above code, you should be able to see a Lucene index under
/var/lucene/indexes/example.Book. Go ahead an inspect this index with Luke. It will help you to
understand how Hibernate Search works.

Report a bug

14.1.6. Searching

To execute a search, create a Lucene query using either the Lucene API (Section 14.3.1.1, “Building a
Lucene Query Using the Lucene API”) or the Hibernate Search query DSL (Section 14.3.1.2, “Building a
Lucene Query”). Wrap the query in a org.hibernate.Query to get the required functionality from the
Hibernate API. The following code prepares a query against the indexed fields. Executing the code
returns a list of Books.

Example 14.5. Using a Hibernate Search Session to Create and Execute a Search

Example 14.6. Using JPA to Create and Execute a Search

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
fullTextEntityManager.createIndexer().startAndWait();

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended though
QueryBuilder qb = fullTextSession.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a org.hibernate.Query
org.hibernate.Query hibQuery =
 fullTextSession.createFullTextQuery(query, Book.class);

// execute search
List result = hibQuery.list();

tx.commit();
session.close();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =

CHAPTER 14. HIBERNATE SEARCH

327

http://code.google.com/p/luke/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14225-746032+%5BLatest%5D&comment=Title%3A+Indexing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14225-746032+05+Mar+2015+20%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.1.7. Analyzer

Assuming that the title of an indexed book entity is Refactoring: Improving the Design of Existing
Code and that hits are required for the following queries: refactor, refactors, refactored, and
refactoring. Select an analyzer class in Lucene that applies word stemming when indexing and searching.
Hibernate Search offers several ways to configure the analyzer (see Section 14.2.3.1, “Default Analyzer
and Analyzer by Class” for more information):

Set the analyzer property in the configuration file. The specified class becomes the default
analyzer.

Set the @Analyzer annotation at the entity level.

Set the @Analyzer annotation at the field level.

Specify the fully qualified classname or the analyzer to use, or see an analyzer defined by the
@AnalyzerDef annotation with the @Analyzer annotation. The Solr analyzer framework with its
factories are utilized for the latter option. For more information about factory classes, see the Solr
JavaDoc or read the corresponding section on the Solr Wiki
(http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters)

In the example, a StandardTokenizerFactory is used by two filter factories: LowerCaseFilterFactory
and SnowballPorterFilterFactory. The tokenizer splits words at punctuation characters and hyphens
but keeping email addresses and internet hostnames intact. The standard tokenizer is ideal for this and
other general operations. The lowercase filter converts all letters in the token into lowercase and the
snowball filter applies language specific stemming.

If using the Solr framework, use the tokenizer with an arbitrary number of filters.

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
em.getTransaction().begin();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended though
QueryBuilder qb = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a javax.persistence.Query
javax.persistence.Query persistenceQuery =
 fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search
List result = persistenceQuery.getResultList();

em.getTransaction().commit();
em.close();

Development Guide

328

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14248-750185+%5BLatest%5D&comment=Title%3A+Searching%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14248-750185+09+Apr+2015+00%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Example 14.7. Using @AnalyzerDef and the Solr Framework to Define and Use an Analyzer

Use @AnalyzerDef to define an analyzer, then apply it to entities and properties using @Analyzer. In
the example, the customanalyzer is defined but not applied on the entity. The analyzer is only applied
to the title and subtitle properties. An analyzer definition is global. Define the analyzer for an entity and
reuse the definition for other entities as required.

Report a bug

14.2. MAPPING ENTITIES TO THE INDEX STRUCTURE

14.2.1. Mapping an Entity

All the metadata information required to index entities is described through annotations, so there is no
need for XML mapping files. You can still use Hibernate mapping files for the basic Hibernate
configuration, but the Hibernate Search specific configuration has to be expressed via annotations.

Report a bug

14.2.1.1. Basic Mapping

@Indexed
@AnalyzerDef(
 name = "customanalyzer",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = SnowballPorterFilterFactory.class,
 params = { @Parameter(name = "language", value = "English") })
 })
public class Book implements Serializable {

 @Field
 @Analyzer(definition = "customanalyzer")
 private String title;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String subtitle;

 @IndexedEmbedded
 private Set authors = new HashSet();

 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

CHAPTER 14. HIBERNATE SEARCH

329

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14251-592108+%5BLatest%5D&comment=Title%3A+Analyzer%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14251-592108+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14214-747229+%5BLatest%5D&comment=Title%3A+Mapping+an+Entity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Lets start with the most commonly used annotations for mapping an entity.

The Lucene-based Query API uses the following common annotations to map entities:

@Indexed

@Field

@NumericField

@Id

Report a bug

14.2.1.1.1. @Indexed

Foremost we must declare a persistent class as indexable. This is done by annotating the class with
@Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):

Example 14.8. Making a class indexable with @Indexed

You can optionally specify the index attribute of the @Indexed annotation to change the default name
of the index.

Report a bug

14.2.1.1.2. @Field

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed.
The default (no annotation present) means that the property is ignored by the indexing process. @Field
does declare a property as indexed and allows to configure several aspects of the indexing process by
setting one or more of the following attributes:

name : describe under which name, the property should be stored in the Lucene Document. The
default value is the property name (following the JavaBeans convention)

store : describe whether or not the property is stored in the Lucene index. You can store the
value Store.YES (consuming more space in the index but allowing projection, see
Section 14.3.1.10.5, “Projection”), store it in a compressed way Store.COMPRESS (this does
consume more CPU), or avoid any storage Store.NO (this is the default value). When a property
is stored, you can retrieve its original value from the Lucene Document. This is not related to
whether the element is indexed or not.

index: describe whether the property is indexed or not. The different values are Index.NO (no
indexing, ie cannot be found by a query), Index.YES (the element gets indexed and is
searchable). The default value is Index.YES. Index.NO can be useful for cases where a property
is not required to be searchable, but should be available for projection.

NOTE

@Entity
@Indexed
public class Essay {
 ...
}

Development Guide

330

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14272-592110+%5BLatest%5D&comment=Title%3A+Basic+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14287-747234+%5BLatest%5D&comment=Title%3A+%40Indexed%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14287-747234+16+Mar+2015+00%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

Index.NO in combination with Analyze.YES or Norms.YES is not useful, since
analyze and norms require the property to be indexed

analyze: determines whether the property is analyzed (Analyze.YES) or not (Analyze.NO).
The default value is Analyze.YES.

NOTE

Whether or not you want to analyze a property depends on whether you wish to
search the element as is, or by the words it contains. It make sense to analyze a
text field, but probably not a date field.

NOTE

Fields used for sorting must not be analyzed.

norms: describes whether index time boosting information should be stored (Norms.YES) or
not (Norms.NO). Not storing it can save a considerable amount of memory, but there won't be
any index time boosting information available. The default value is Norms.YES.

termVector: describes collections of term-frequency pairs. This attribute enables the storing of
the term vectors within the documents during indexing. The default value is TermVector.NO.

The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document. This
produces two synchronized arrays, one contains
document terms and the other contains the
term's frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset
information. This is the same as TermVector.YES
plus it contains the starting and ending offset
position information for the terms.

TermVector.WITH_POSITIONS Store the term vector and token position
information. This is the same as TermVector.YES
plus it contains the ordinal positions of each
occurrence of a term in a document.

TermVector.WITH_POSITION_OFFSETS Store the term vector, token position and offset
information. This is a combination of the YES,
WITH_OFFSETS and WITH_POSITIONS.

indexNullAs : Per default null values are ignored and not indexed. However, using indexNullAs

CHAPTER 14. HIBERNATE SEARCH

331

you can specify a string which will be inserted as token for the null value. Per default this value
is set to Field.DO_NOT_INDEX_NULL indicating that null values should not be indexed. You
can set this value to Field.DEFAULT_NULL_TOKEN to indicate that a default null token
should be used. This default null token can be specified in the configuration using
hibernate.search.default_null_token. If this property is not set and you specify
Field.DEFAULT_NULL_TOKEN the string "_null_" will be used as default.

NOTE

When the indexNullAs parameter is used it is important to use the same token in
the search query to search for null values. It is also advisable to use this feature
only with un-analyzed fields (analyze=Analyze.NO).

WARNING

When implementing a custom FieldBridge or TwoWayFieldBridge it is up
to the developer to handle the indexing of null values (see JavaDocs of
LuceneOptions.indexNullAs()).

Report a bug

14.2.1.1.3. @NumericField

There is a companion annotation to @Field called @NumericField that can be specified in the same
scope as @Field or @DocumentId. It can be specified for Integer, Long, Float, and Double properties.
At index time the value will be indexed using a Trie structure. When a property is indexed as numeric
field, it enables efficient range query and sorting, orders of magnitude faster than doing the same query
on standard @Field properties. The @NumericField annotation accept the following parameters:

Value Definition

forField (Optional) Specify the name of the related @Field
that will be indexed as numeric. It's only mandatory
when the property contains more than a @Field
declaration

precisionStep (Optional) Change the way that the Trie structure is
stored in the index. Smaller precisionSteps lead to
more disk space usage and faster range and sort
queries. Larger values lead to less space used and
range query performance more close to the range
query in normal @Fields. Default value is 4.

@NumericField supports only Double, Long, Integer and Float. It is not possible to take any advantage
from similar functionality in Lucene for the other numeric types, so remaining types should use the
string encoding via the default or custom TwoWayFieldBridge.

It is possible to use a custom NumericFieldBridge assuming you can deal with the approximation during
type transformation:



Development Guide

332

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14285-750175+%5BLatest%5D&comment=Title%3A+%40Field%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14285-750175+08+Apr+2015+23%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.9. Defining a custom NumericFieldBridge

Report a bug

14.2.1.1.4. @Id

Finally, the id (identifier) property of an entity is a special property used by Hibernate Search to ensure
index uniqueness of a given entity. By design, an id must be stored and must not be tokenized. To mark a
property as an index identifier, use the @DocumentId annotation. If you are using JPA and you have
specified @Id you can omit @DocumentId. The chosen entity identifier will also be used as the
document identifier.

Example 14.10. Specifying indexed properties

public class BigDecimalNumericFieldBridge extends NumericFieldBridge {
 private static final BigDecimal storeFactor = BigDecimal.valueOf(100);

 @Override
 public void set(String name, Object value, Document document, LuceneOptions luceneOptions)
{
 if (value != null) {
 BigDecimal decimalValue = (BigDecimal) value;
 Long indexedValue = Long.valueOf(decimalValue.multiply(storeFactor).longValue());
 luceneOptions.addNumericFieldToDocument(name, indexedValue, document);
 }
 }

 @Override
 public Object get(String name, Document document) {
 String fromLucene = document.get(name);
 BigDecimal storedBigDecimal = new BigDecimal(fromLucene);
 return storedBigDecimal.divide(storeFactor);
 }

}

@Entity
@Indexed
public class Essay {
 ...

 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES)
 public String getSummary() { return summary; }

 @Lob
 @Field
 public String getText() { return text; }

CHAPTER 14. HIBERNATE SEARCH

333

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14284-748751+%5BLatest%5D&comment=Title%3A+%40NumericField%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14284-748751+26+Mar+2015+00%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.10, “Specifying indexed properties” defines an index with four fields: id , Abstract, text and
grade . Note that by default the field name is not capitalized, following the JavaBean specification. The
grade field is annotated as numeric with a slightly larger precision step than the default.

Report a bug

14.2.1.2. Mapping Properties Multiple Times

Sometimes you need to map a property multiple times per index, with slightly different indexing
strategies. For example, sorting a query by field requires the field to be un-analyzed. To search by words
on this property and still sort it, it needs to be indexed - once analyzed and once un-analyzed. @Fields
allows you to achieve this goal.

Example 14.11. Using @Fields to map a property multiple times

In this example the field summary is indexed twice, once as summary in a tokenized way, and once as
summary_forSort in an untokenized way.

Report a bug

14.2.1.3. Embedded and Associated Objects

Associated objects as well as embedded objects can be indexed as part of the root entity index. This is
useful if you expect to search a given entity based on properties of associated objects. In Example 14.12,
“Indexing associations” the aim is to return places where the associated city is Atlanta (In the Lucene
query parser language, it would translate into address.city:Atlanta). The place fields will be indexed in
the Place index. The Place index documents will also contain the fields address.id, address.street, and
address.city which you will be able to query.

Example 14.12. Indexing associations

 @Field @NumericField(precisionStep = 6)
 public float getGrade() { return grade; }
}

@Entity
@Indexed(index = "Book")
public class Book {
 @Fields({
 @Field,
 @Field(name = "summary_forSort", analyze = Analyze.NO, store = Store.YES)
 })
 public String getSummary() {
 return summary;
 }

 ...
}

@Entity
@Indexed
public class Place {

Development Guide

334

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14286-747435+%5BLatest%5D&comment=Title%3A+%40Id%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14286-747435+16+Mar+2015+21%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14278-748752+%5BLatest%5D&comment=Title%3A+Mapping+Properties+Multiple+Times%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14278-748752+26+Mar+2015+00%3A33+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Because the data is denormalized in the Lucene index when using the @IndexedEmbedded technique,
Hibernate Search must be aware of any change in the Place object and any change in the Address
object to keep the index up to date. To ensure the Place Lucene document is updated when it's
Address changes, mark the other side of the bidirectional relationship with @ContainedIn.

NOTE

@ContainedIn is useful on both associations pointing to entities and on embedded
(collection of) objects.

To expand upon this, the following example demonstrates nesting @IndexedEmbedded.

Example 14.13. Nested usage of @IndexedEmbedded and @ContainedIn

 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {
 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

CHAPTER 14. HIBERNATE SEARCH

335

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded.
The attributes of the associated class will then be added to the main entity index. In Example 14.13,
“Nested usage of @IndexedEmbedded and @ContainedIn” the index will contain the following fields:

id

name

address.street

address.city

address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention. You can
override it using the prefix attribute as it is shown on the ownedBy property.

NOTE

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {
 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")
 private Owner ownedBy;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Embeddable
public class Owner {
 @Field
 private String name;
 ...
}

Development Guide

336

NOTE

The prefix cannot be set to the empty string.

The depth property is necessary when the object graph contains a cyclic dependency of classes (not
instances). For example, if Owner points to Place. Hibernate Search will stop including Indexed
embedded attributes after reaching the expected depth (or the object graph boundaries are reached).
A class having a self reference is an example of cyclic dependency. In our example, because depth is set
to 1, any @IndexedEmbedded attribute in Owner (if any) will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries (using Lucene's query
syntax) such as:

Return places where name contains JBoss and where address city is Atlanta. In Lucene query
this would be

Return places where name contains JBoss and where owner's name contain Joe. In Lucene
query this would be

This behavior mimics the relational join operation in a more efficient way (at the cost of data
duplication). Remember that, out of the box, Lucene indexes have no notion of association, the join
operation does not exist. It might help to keep the relational model normalized while benefiting from the
full text index speed and feature richness.

NOTE

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other side
has to be annotated @ContainedIn (as seen in the previous example). If not, Hibernate Search has no
way to update the root index when the associated entity is updated (in our example, a Place index
document has to be updated when the associated Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by
Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu of their
implementation. For this reason you can override the object type targeted by Hibernate Search using
the targetElement parameter.

Example 14.14. Using the targetElement property of @IndexedEmbedded

+name:jboss +address.city:atlanta

+name:jboss +address.ownedBy_name:joe

@Entity
@Indexed
public class Address {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field

CHAPTER 14. HIBERNATE SEARCH

337

Report a bug

14.2.1.4. Limiting Object Embedding to Specific Paths

The @IndexedEmbedded annotation provides also an attribute includePaths which can be used as an
alternative to depth, or be combined with it.

When using only depth all indexed fields of the embedded type will be added recursively at the same
depth. This makes it harder to select only a specific path without adding all other fields as well, which
might not be needed.

To avoid unnecessarily loading and indexing entities you can specify exactly which paths are needed. A
typical application might need different depths for different paths, or in other words it might need to
specify paths explicitly, as shown in Example 14.15, “Using the includePaths property of
@IndexedEmbedded”

Example 14.15. Using the includePaths property of @IndexedEmbedded

 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)
 @Target(Owner.class)
 private Person ownedBy;

 ...
}

@Embeddable
public class Owner implements Person { ... }

@Entity
@Indexed
public class Person {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(includePaths = { "name" })
 public Set<Person> getParents() {
 return parents;

Development Guide

338

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14202-750418+%5BLatest%5D&comment=Title%3A+Embedded+and+Associated+Objects%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14202-750418+10+Apr+2015+05%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Using a mapping as in Example 14.15, “Using the includePaths property of @IndexedEmbedded”, you
would be able to search on a Person by name and/or surname, and/or the name of the parent. It will
not index the surname of the parent, so searching on parent's surnames will not be possible but speeds
up indexing, saves space and improve overall performance.

The @IndexedEmbeddedincludePaths will include the specified paths in addition to what you would
index normally specifying a limited value for depth. When using includePaths, and leaving depth
undefined, behavior is equivalent to setting depth=0: only the included paths are indexed.

Example 14.16. Using the includePaths property of @IndexedEmbedded

 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

@Entity
@Indexed
public class Human {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(depth = 2, includePaths = { "parents.parents.name" })
 public Set<Human> getParents() {
 return parents;
 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

CHAPTER 14. HIBERNATE SEARCH

339

In Example 14.16, “Using the includePaths property of @IndexedEmbedded”, every human will have its
name and surname attributes indexed. The name and surname of parents will also be indexed,
recursively up to second line because of the depth attribute. It will be possible to search by name or
surname, of the person directly, his parents or of his grand parents. Beyond the second level, we will in
addition index one more level but only the name, not the surname.

This results in the following fields in the index:

id - as primary key

_hibernate_class - stores entity type

name - as direct field

surname - as direct field

parents.name - as embedded field at depth 1

parents.surname - as embedded field at depth 1

parents.parents.name - as embedded field at depth 2

parents.parents.surname - as embedded field at depth 2

parents.parents.parents.name - as additional path as specified by includePaths. The first
parents. is inferred from the field name, the remaining path is the attribute of includePaths

Having explicit control of the indexed paths might be easier if you are designing your application by
defining the needed queries first, as at that point you might know exactly which fields you need, and
which other fields are unnecessary to implement your use case.

Report a bug

14.2.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or less
importance than others. Lucene differentiates between index and search time boosting. The following
sections show you how you can achieve index time boosting using Hibernate Search.

Report a bug

14.2.2.1. Static Index Time Boosting

To define a static boost value for an indexed class or property you can use the @Boost annotation. You
can use this annotation within @Field or specify it directly on method or class level.

Example 14.17. Different ways of using @Boost

@Entity
@Indexed
@Boost(1.7f)
public class Essay {
 ...

 @Id
 @DocumentId

Development Guide

340

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14290-748758+%5BLatest%5D&comment=Title%3A+Limiting+Object+Embedding+to+Specific+Paths%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14290-748758+26+Mar+2015+00%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14275-592110+%5BLatest%5D&comment=Title%3A+Boosting%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In Example 14.17, “Different ways of using @Boost” , Essay's probability to reach the top of the search list
will be multiplied by 1.7. The summary field will be 3.0 (2 * 1.5, because @Field.boost and @Boost on a
property are cumulative) more important than the isbn field. The text field will be 1.2 times more
important than the isbn field. Note that this explanation is wrong in strictest terms, but it is simple and
close enough to reality for all practical purposes.

Report a bug

14.2.2.2. Dynamic Index Time Boosting

The @Boost annotation used in Section 14.2.2.1, “Static Index Time Boosting” defines a static boost
factor which is independent of the state of the indexed entity at runtime. However, there are usecases in
which the boost factor may depend on the actual state of the entity. In this case you can use the
@DynamicBoost annotation together with an accompanying custom BoostStrategy.

Example 14.18. Dynamic boost example

 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES, boost=@Boost(2f))
 @Boost(1.5f)
 public String getSummary() { return summary; }

 @Lob
 @Field(boost=@Boost(1.2f))
 public String getText() { return text; }

 @Field
 public String getISBN() { return isbn; }

}

public enum PersonType {
 NORMAL,
 VIP
}

@Entity
@Indexed
@DynamicBoost(impl = VIPBoostStrategy.class)
public class Person {
 private PersonType type;

 //
}

public class VIPBoostStrategy implements BoostStrategy {
 public float defineBoost(Object value) {
 Person person = (Person) value;
 if (person.getType().equals(PersonType.VIP)) {
 return 2.0f;
 }
 else {
 return 1.0f;

CHAPTER 14. HIBERNATE SEARCH

341

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14203-592106+%5BLatest%5D&comment=Title%3A+Static+Index+Time+Boosting%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14203-592106+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In Example 14.18, “Dynamic boost example” a dynamic boost is defined on class level specifying
VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing time. You
can place the @DynamicBoost either at class or field level. Depending on the placement of the
annotation either the whole entity is passed to the defineBoost method or just the annotated
field/property value. It's up to you to cast the passed object to the correct type. In the example all
indexed values of a VIP person would be double as important as the values of a normal person.

NOTE

The specified BoostStrategy implementation must define a public no-arg constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All defined
boost factors are cumulative.

Report a bug

14.2.3. Analysis

Analysis is the process of converting text into single terms (words) and can be considered as one of the
key features of a full-text search engine. Lucene uses the concept of Analyzers to control this process.
In the following section we cover the multiple ways Hibernate Search offers to configure the analyzers.

Report a bug

14.2.3.1. Default Analyzer and Analyzer by Class

The default analyzer class used to index tokenized fields is configurable through the
hibernate.search.analyzer property. The default value for this property is
org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when multiple
fields are indexed from a single property).

Example 14.19. Different ways of using @Analyzer

 }
 }
}

@Entity
@Indexed
@Analyzer(impl = EntityAnalyzer.class)
public class MyEntity {
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 private String name;

 @Field
 @Analyzer(impl = PropertyAnalyzer.class)

Development Guide

342

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14196-761327+%5BLatest%5D&comment=Title%3A+Dynamic+Index+Time+Boosting%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14196-761327+11+Jun+2015+05%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14243-592107+%5BLatest%5D&comment=Title%3A+Analysis%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In this example, EntityAnalyzer is used to index tokenized property (name), except summary and body
which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

WARNING

Mixing different analyzers in the same entity is most of the time a bad practice. It
makes query building more complex and results less predictable (for the novice),
especially if you are using a QueryParser (which uses the same analyzer for the
whole query). As a rule of thumb, for any given field the same analyzer should be
used for indexing and querying.

Report a bug

14.2.3.2. Named Analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search the
notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer declarations
and is composed of:

a name: the unique string used to refer to the definition

a list of char filters: each char filter is responsible to pre-process input characters before the
tokenization. Char filters can add, change, or remove characters; one common usage is for
characters normalization

a tokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify, or sometimes even add words into
the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows for easy
reuse of each individual component and let you build your customized analyzer in a very flexible way (like
Lego). Generally speaking the char filters do some pre-processing in the character input, then the
Tokenizer starts the tokenizing process by turning the character input into tokens which are then
further processed by the TokenFilters. Hibernate Search supports this infrastructure by utilizing the Solr
analyzer framework.

NOTE

 private String summary;

 @Field(analyzer = @Analyzer(impl = FieldAnalyzer.class)
 private String body;

 ...
}



CHAPTER 14. HIBERNATE SEARCH

343

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14259-750729+%5BLatest%5D&comment=Title%3A+Default+Analyzer+and+Analyzer+by+Class%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14259-750729+14+Apr+2015+07%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

Some of the analyzers and filters will require additional dependencies. For example to
use the snowball stemmer you have to also include the lucene-snowball jar and for the
PhoneticFilterFactory you need the commons-codec jar. Your distribution of Hibernate
Search provides these dependencies in its lib/optional directory.

When using Maven all required Solr dependencies are now defined as dependencies of
the artifact org.hibernate:hibernate-search-analyzers; add the following dependency :

Let's review a concrete example now - Example 14.20, “@AnalyzerDef and the Solr framework” . First a
char filter is defined by its factory. In our example, a mapping char filter is used, and will replace
characters in the input based on the rules specified in the mapping file. Next a tokenizer is defined. This
example uses the standard tokenizer. Last but not least, a list of filters is defined by their factories. In our
example, the StopFilter filter is built reading the dedicated words property file. The filter is also
expected to ignore case.

Example 14.20. @AnalyzerDef and the Solr framework

NOTE

Filters and char filters are applied in the order they are defined in the @AnalyzerDef
annotation. Order matters!

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-analyzers</artifactId>
 <version>4.6.0.Final-redhat-2</version>
 <scope>provided</scope>
<dependency>

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value= "org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

Development Guide

344

http://commons.apache.org/codec

Some tokenizers, token filters or char filters load resources like a configuration or metadata file. This is
the case for the stop filter and the synonym filter. If the resource charset is not using the VM default, you
can explicitly specify it by adding a resource_charset parameter.

Example 14.21. Use a specific charset to load the property file

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in
Example 14.22, “Referencing an analyzer by name” .

Example 14.22. Referencing an analyzer by name

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value= "org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="resource_charset", value = "UTF-16BE"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

@Entity
@Indexed
@AnalyzerDef(name="customanalyzer", ...)
public class Team {
 @Id
 @DocumentId
 @GeneratedValue
 private Integer id;

 @Field
 private String name;

 @Field
 private String location;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String description;
}

CHAPTER 14. HIBERNATE SEARCH

345

Analyzer instances declared by @AnalyzerDef are also available by their name in the SearchFactory
which is quite useful when building queries.

Fields in queries must be analyzed with the same analyzer used to index the field so that they speak a
common "language": the same tokens are reused between the query and the indexing process. This rule
has some exceptions but is true most of the time. Respect it unless you know what you are doing.

Report a bug

14.2.3.3. Available Analyzers

Solr and Lucene come with a lot of useful default char filters, tokenizers, and filters. You can find a
complete list of char filter factories, tokenizer factories and filter factories at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let's check a few of them.

Table 14.1. Example of available char filters

Factory Description Parameters Additional
dependencies

MappingCharFilterFa
ctory

Replaces one or more
characters with one or
more characters, based
on mappings specified in
the resource file

mapping: points to a
resource file containing
the mappings using the
format:

 "á" => "a"
 "ñ" => "n"
 "ø" => "o"

none

HTMLStripCharFilter
Factory

Remove HTML standard
tags, keeping the text

none none

Table 14.2. Example of available tokenizers

Factory Description Parameters Additional
dependencies

StandardTokenizerF
actory

Use the Lucene
StandardTokenizer

none none

HTMLStripCharFilter
Factory

Remove HTML tags,
keep the text and pass it
to a StandardTokenizer.

none solr-core

PatternTokenizerFac
tory

Breaks text at the
specified regular
expression pattern.

pattern: the regular
expression to use for
tokenizing

group: says which
pattern group to extract
into tokens

solr-core

Analyzer analyzer = fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

Development Guide

346

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14252-750252+%5BLatest%5D&comment=Title%3A+Named+Analyzers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14252-750252+09+Apr+2015+03%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Table 14.3. Examples of available filters

Factory Description Parameters Additional
dependencies

StandardFilterFactor
y

Remove dots from
acronyms and 's from
words

none solr-core

LowerCaseFilterFact
ory

Lowercases all words none solr-core

StopFilterFactory Remove words (tokens)
matching a list of stop
words

words: points to a
resource file containing
the stop words

ignoreCase: true if case
should be ignored when
comparing stop words,
false otherwise

solr-core

SnowballPorterFilter
Factory

Reduces a word to it's
root in a given language.
(example: protect,
protects, protection
share the same root).
Using such a filter allows
searches matching
related words.

language: Danish,
Dutch, English, Finnish,
French, German, Italian,
Norwegian, Portuguese,
Russian, Spanish,
Swedish and a few more

solr-core

ISOLatin1AccentFilt
erFactory

Remove accents for
languages like French

none solr-core

PhoneticFilterFactor
y

Inserts phonetically
similar tokens into the
token stream

encoder: One of
DoubleMetaphone,
Metaphone, Soundex or
RefinedSoundex

inject: true will add
tokens to the stream,
false will replace the
existing token

maxCodeLength: sets
the maximum length of
the code to be
generated. Supported
only for Metaphone and
DoubleMetaphone
encodings

solr-core and
commons-codec

CHAPTER 14. HIBERNATE SEARCH

347

CollationKeyFilterFa
ctory

Converts each token
into its
java.text.CollationKe
y, and then encodes the
CollationKey with
IndexableBinaryStrin
gTools, to allow it to be
stored as an index term.

custom, language,
country, variant,
strength,
decomposition
For more information,
see Lucene's
CollationKeyFilter
javadocs

solr-core and
commons-io

Factory Description Parameters Additional
dependencies

We recommend to check all the implementations of org.apache.solr.analysis.TokenizerFactory and
org.apache.solr.analysis.TokenFilterFactory in your IDE to see the implementations available.

Report a bug

14.2.3.4. Dynamic Analyzer Selection

So far all the introduced ways to specify an analyzer were static. However, there are use cases where it is
useful to select an analyzer depending on the current state of the entity to be indexed, for example in a
multilingual applications. For an BlogEntry class for example the analyzer could depend on the
language property of the entry. Depending on this property the correct language specific stemmer
should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the AnalyzerDiscriminator
annotation. Example 14.23, “Usage of @AnalyzerDiscriminator” demonstrates the usage of this
annotation.

Example 14.23. Usage of @AnalyzerDiscriminator

@Entity
@Indexed
@AnalyzerDefs({
 @AnalyzerDef(name = "en",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = EnglishPorterFilterFactory.class
)
 }),
 @AnalyzerDef(name = "de",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = GermanStemFilterFactory.class)
 })
})
public class BlogEntry {

 @Id
 @GeneratedValue

Development Guide

348

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14291-759344+%5BLatest%5D&comment=Title%3A+Available+Analyzers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14291-759344+26+May+2015+06%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to be used
dynamically are predefined via @AnalyzerDef definitions. If this is the case, one can place the
@AnalyzerDiscriminator annotation either on the class or on a specific property of the entity for which
to dynamically select an analyzer. Via the impl parameter of the AnalyzerDiscriminator you specify a
concrete implementation of the Discriminator interface. It is up to you to provide an implementation
for this interface. The only method you have to implement is getAnalyzerDefinitionName() which gets
called for each field added to the Lucene document. The entity which is getting indexed is also passed
to the interface method. The value parameter is only set if the AnalyzerDiscriminator is placed on
property level instead of class level. In this case the value represents the current value of this property.

An implementation of the Discriminator interface has to return the name of an existing analyzer
definition or null if the default analyzer should not be overridden. Example 14.23, “Usage of
@AnalyzerDiscriminator” assumes that the language parameter is either 'de' or 'en' which matches the
specified names in the @AnalyzerDefs.

Report a bug

14.2.3.5. Retrieving an Analyzer

Retrieving an analyzer can be used when multiple analyzers have been used in a domain model, in order
to benefit from stemming or phonetic approximation, etc. In this case, use the same analyzers to
building a query. Alternatively, use the Hibernate Search query DSL, which selects the correct analyzer
automatically. See Section 14.3.1.2, “Building a Lucene Query”

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve the
scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right analyzers
depending on the field indexed. Remember, multiple analyzers can be defined on a given entity each one

 @DocumentId
 private Integer id;

 @Field
 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)
 private String language;

 @Field
 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter
 ...
}

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value, Object entity, String field) {
 if (value == null || !(entity instanceof BlogEntry)) {
 return null;
 }
 return (String) value;

 }
}

CHAPTER 14. HIBERNATE SEARCH

349

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14244-759341+%5BLatest%5D&comment=Title%3A+Dynamic+Analyzer+Selection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14244-759341+26+May+2015+03%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

working on an individual field. A scoped analyzer unifies all these analyzers into a context-aware analyzer.
While the theory seems a bit complex, using the right analyzer in a query is very easy.

NOTE

When you use programmatic mapping for a child entity, you can only see the fields
defined by the child entity. Fields or methods inherited from a parent entity (annotated
with @MappedSuperclass) are not configurable. To configure properties inherited from a
parent entity, either override the property in the child entity or create a programmatic
mapping for the parent entity. This mimics the usage of annotations where you cannot
annotate a field or method of a parent entity unless it is redefined in the child entity.

Example 14.24. Using the scoped analyzer when building a full-text query

In the example above, the song title is indexed in two fields: the standard analyzer is used in the field title
and a stemming analyzer is used in the field title_stemmed. By using the analyzer provided by the search
factory, the query uses the appropriate analyzer depending on the field targeted.

NOTE

You can also retrieve analyzers defined via @AnalyzerDef by their definition name using
searchFactory.getAnalyzer(String).

Report a bug

14.2.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In Lucene all
index fields have to be represented as strings. All entity properties annotated with @Field have to be
converted to strings to be indexed. The reason we have not mentioned it so far is, that for most of your
properties Hibernate Search does the translation job for you thanks to set of built-in bridges. However,
in some cases you need a more fine grained control over the translation process.

Report a bug

14.2.4.1. Built-in Bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and its full

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(
 "title",
 fullTextSession.getSearchFactory().getAnalyzer(Song.class)
);

org.apache.lucene.search.Query luceneQuery =
 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed objects

Development Guide

350

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14240-592107+%5BLatest%5D&comment=Title%3A+Retrieving+an+Analyzer%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14240-592107+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14260-592108+%5BLatest%5D&comment=Title%3A+Bridges%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and its full
text representation.

null

Per default null elements are not indexed. Lucene does not support null elements. However, in some
situation it can be useful to insert a custom token representing the null value. See Section 14.2.1.1.2,
“@Field” for more information.

java.lang.String

Strings are indexed as are

short, Short, integer, Integer, long, Long, float, Float, double, Double, BigInteger, BigDecimal

Numbers are converted into their string representation. Note that numbers cannot be compared by
Lucene (that is, used in ranged queries) out of the box: they have to be padded.

NOTE

Using a Range query has drawbacks, an alternative approach is to use a Filter query
which will filter the result query to the appropriate range.

Hibernate Search also supports the use of a custom StringBridge as described in
Section 14.2.4.2, “Custom Bridges” .

java.util.Date

Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of 2006
4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is important is that
when using a TermRangeQuery, you should know that the dates have to be expressed in GMT time.

Usually, storing the date up to the millisecond is not necessary. @DateBridge defines the
appropriate resolution you are willing to store in the index
(@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated accordingly.

WARNING

A Date whose resolution is lower than MILLISECOND cannot be a
@DocumentId.

IMPORTANT

@Entity
@Indexed
public class Meeting {
 @Field(analyze=Analyze.NO)
 @DateBridge(resolution=Resolution.MINUTE)
 private Date date;
 ...



CHAPTER 14. HIBERNATE SEARCH

351

IMPORTANT

The default Date bridge uses Lucene's DateTools to convert from and to String. This
means that all dates are expressed in GMT time. If your requirements are to store
dates in a fixed time zone you have to implement a custom date bridge. Make sure you
understand the requirements of your applications regarding to date indexing and
searching.

java.net.URI, java.net.URL

URI and URL are converted to their string representation.

java.lang.Class

Class are converted to their fully qualified class name. The thread context class loader is used when
the class is rehydrated.

Report a bug

14.2.4.2. Custom Bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types, or the
String representation used by the bridge does not meet your requirements. The following paragraphs
describe several solutions to this problem.

Report a bug

14.2.4.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of your expected Object to
String bridge. To do so you need to implement the org.hibernate.search.bridge.StringBridge
interface. All implementations have to be thread-safe as they are used concurrently.

Example 14.25. Custom StringBridge implementation

/**
 * Padding Integer bridge.
 * All numbers will be padded with 0 to match 5 digits
 *
 * @author Emmanuel Bernard
 */
public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > PADDING)
 throw new IllegalArgumentException("Try to pad on a number too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < PADDING ; padIndex++) {
 paddedInteger.append('0');
 }

Development Guide

352

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14232-764999+%5BLatest%5D&comment=Title%3A+Built-in+Bridges%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14232-764999+14+Jul+2015+11%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14191-592106+%5BLatest%5D&comment=Title%3A+Custom+Bridges%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Given the string bridge defined in Example 14.25, “Custom StringBridge implementation”, any property
or field can use this bridge thanks to the @FieldBridge annotation:

Report a bug

14.2.4.2.2. Parameterized Bridge

Parameters can also be passed to the bridge implementation making it more flexible. Example 14.26,
“Passing parameters to your bridge implementation” implements a ParameterizedBridge interface and
parameters are passed through the @FieldBridge annotation.

Example 14.26. Passing parameters to your bridge implementation

The ParameterizedBridge interface can be implemented by StringBridge, TwoWayStringBridge,
FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and no

 return paddedInteger.append(rawInteger).toString();
 }
}

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map<String,String> parameters) {
 String padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = Integer.parseInt(padding);
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }
}

//property
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
)
private Integer length;

CHAPTER 14. HIBERNATE SEARCH

353

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14297-592111+%5BLatest%5D&comment=Title%3A+StringBridge%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14297-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

All implementations have to be thread-safe, but the parameters are set during initialization and no
special care is required at this stage.

Report a bug

14.2.4.2.3. Type Aware Bridge

It is sometimes useful to get the type the bridge is applied on:

the return type of the property for field/getter-level bridges.

the class type for class-level bridges.

An example is a bridge that deals with enums in a custom fashion but needs to access the actual enum
type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is applied on
injected. Like parameters, the type injected needs no particular care with regard to thread-safety.

Report a bug

14.2.4.2.4. Two-Way Bridge

If you expect to use your bridge implementation on an id property (that is, annotated with
@DocumentId), you need to use a slightly extended version of StringBridge named
TwoWayStringBridge. Hibernate Search needs to read the string representation of the identifier and
generate the object out of it. There is no difference in the way the @FieldBridge annotation is used.

Example 14.27. Implementing a TwoWayStringBridge usable for id properties

public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map parameters) {
 Object padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = (Integer) padding;
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }

 public Object stringToObject(String stringValue) {
 return new Integer(stringValue);
 }
}

//id property

Development Guide

354

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14294-592111+%5BLatest%5D&comment=Title%3A+Parameterized+Bridge%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14294-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14296-592111+%5BLatest%5D&comment=Title%3A+Type+Aware+Bridge%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14296-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

IMPORTANT

It is important for the two-way process to be idempotent (ie object = stringToObject(
objectToString(object))).

Report a bug

14.2.4.2.5. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property to a
Lucene index. To give you the greatest possible flexibility you can also implement a bridge as a
FieldBridge. This interface gives you a property value and let you map it the way you want in your
Lucene Document. You can for example store a property in two different document fields. The
interface is very similar in its concept to the Hibernate UserTypes.

Example 14.28. Implementing the FieldBridge Interface

@DocumentId
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
private Integer id;

/**
 * Store the date in 3 different fields - year, month, day - to ease Range Query per
 * year, month or day (eg get all the elements of December for the last 5 years).
 * @author Emmanuel Bernard
 */
public class DateSplitBridge implements FieldBridge {
 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document, LuceneOptions
luceneOptions) {
 Date date = (Date) value;
 Calendar cal = GregorianCalendar.getInstance(GMT);
 cal.setTime(date);
 int year = cal.get(Calendar.YEAR);
 int month = cal.get(Calendar.MONTH) + 1;
 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year
 luceneOptions.addFieldToDocument(
 name + ".year",
 String.valueOf(year),
 document);

 // set month and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".month",
 month < 10 ? "0" : "" + String.valueOf(month),
 document);

 // set day and pad it if needed
 luceneOptions.addFieldToDocument(

CHAPTER 14. HIBERNATE SEARCH

355

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14293-592111+%5BLatest%5D&comment=Title%3A+Two-Way+Bridge%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14293-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In Example 14.28, “Implementing the FieldBridge Interface” the fields are not added directly to
Document. Instead the addition is delegated to the LuceneOptions helper; this helper will apply the
options you have selected on @Field, like Store or TermVector, or apply the choosen @Boost value. It
is especially useful to encapsulate the complexity of COMPRESS implementations. Even though it is
recommended to delegate to LuceneOptions to add fields to the Document, nothing stops you from
editing the Document directly and ignore the LuceneOptions in case you need to.

NOTE

Classes like LuceneOptions are created to shield your application from changes in
Lucene API and simplify your code. Use them if you can, but if you need more flexibility
you're not required to.

Report a bug

14.2.4.2.6. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this combination in
a specific way into the Lucene index. The @ClassBridge and @ClassBridges annotations can be
defined at the class level, as opposed to the property level. In this case the custom field bridge
implementation receives the entity instance as the value parameter instead of a particular property.
Though not shown in Example 14.29, “Implementing a class bridge” , @ClassBridge supports the
termVector attribute discussed in section Section 14.2.1.1, “Basic Mapping”.

Example 14.29. Implementing a class bridge

 name + ".day",
 day < 10 ? "0" : "" + String.valueOf(day),
 document);
 }
}

//property
@FieldBridge(impl = DateSplitBridge.class)
private Date date;

@Entity
@Indexed
@ClassBridge(name="branchnetwork",
 store=Store.YES,
 impl = CatFieldsClassBridge.class,
 params = @Parameter(name="sepChar", value=" "))
public class Department {
 private int id;
 private String network;
 private String branchHead;
 private String branch;
 private Integer maxEmployees
 ...
}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {
 private String sepChar;

Development Guide

356

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14292-592111+%5BLatest%5D&comment=Title%3A+FieldBridge%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14292-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In this example, the particular CatFieldsClassBridge is applied to the department instance, the field
bridge then concatenate both branch and network and index the concatenation.

Report a bug

14.3. QUERYING

Hibernate Search can execute Lucene queries and retrieve domain objects managed by an Hibernate
session. The search provides the power of Lucene without leaving the Hibernate paradigm, giving
another dimension to the Hibernate classic search mechanisms (HQL, Criteria query, native SQL query).

Preparing and executing a query consists of following four steps:

Creating a FullTextSession

Creating a Lucene query using either Hibernate Search query DSL (recommended) or using the
Lucene Query API

Wrapping the Lucene query using an org.hibernate.Query

Executing the search by calling for example list() or scroll()

To access the querying facilities, use a FullTextSession. This Search specific session wraps a regular
org.hibernate.Session in order to provide query and indexing capabilities.

Example 14.30. Creating a FullTextSession

 public void setParameterValues(Map parameters) {
 this.sepChar = (String) parameters.get("sepChar");
 }

 public void set(String name, Object value, Document document, LuceneOptions
luceneOptions) {
 // In this particular class the name of the new field was passed
 // from the name field of the ClassBridge Annotation. This is not
 // a requirement. It just works that way in this instance. The
 // actual name could be supplied by hard coding it below.
 Department dep = (Department) value;
 String fieldValue1 = dep.getBranch();
 if (fieldValue1 == null) {
 fieldValue1 = "";
 }
 String fieldValue2 = dep.getNetwork();
 if (fieldValue2 == null) {
 fieldValue2 = "";
 }
 String fieldValue = fieldValue1 + sepChar + fieldValue2;
 Field field = new Field(name, fieldValue, luceneOptions.getStore(),
 luceneOptions.getIndex(), luceneOptions.getTermVector());
 field.setBoost(luceneOptions.getBoost());
 document.add(field);
 }
}

CHAPTER 14. HIBERNATE SEARCH

357

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14295-781575+%5BLatest%5D&comment=Title%3A+ClassBridge%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14295-781575+15+Nov+2017+14%3A44+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use the FullTextSession to build a full-text query using either the Hibernate Search query DSL or the
native Lucene query.

Use the following code when using the Hibernate Search query DSL:

As an alternative, write the Lucene query using either the Lucene query parser or the Lucene
programmatic API.

Example 14.31. Creating a Lucene query via the QueryParser

A Hibernate query built on the Lucene query is a org.hibernate.Query. This query remains in the same
paradigm as other Hibernate query facilities, such as HQL (Hibernate Query Language), Native, and
Criteria. Use methods such as list(), uniqueResult(), iterate() and scroll() with the query.

The same extensions are available with the Hibernate Java Persistence APIs:

Example 14.32. Creating a Search query using the JPA API

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.getFullTextSession(session);

final QueryBuilder b = fullTextSession.getSearchFactory().buildQueryBuilder().forEntity(Myth.class
).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

SearchFactory searchFactory = fullTextSession.getSearchFactory();
org.apache.lucene.queryParser.QueryParser parser =
 new QueryParser("title", searchFactory.getAnalyzer(Myth.class));
try {
 org.apache.lucene.search.Query luceneQuery = parser.parse("history:storm^3");
}
catch (ParseException e) {
 //handle parsing failure
}

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

Development Guide

358

NOTE

In these examples, the Hibernate API has been used. The same examples can also be
written with the Java Persistence API by adjusting the way the FullTextQuery is
retrieved.

Report a bug

14.3.1. Building Queries

Hibernate Search queries are built on Lucene queries, allowing users to use any Lucene query type.
When the query is built, Hibernate Search uses org.hibernate.Query as the query manipulation API for
further query processing.

Report a bug

14.3.1.1. Building a Lucene Query Using the Lucene API

With the Lucene API, use either the query parser (simple queries) or the Lucene programmatic API
(complex queries). Building a Lucene query is out of scope for the Hibernate Search documentation.
For details, see the online Lucene documentation or a copy of Lucene in Action or Hibernate Search in
Action.

Report a bug

14.3.1.2. Building a Lucene Query

The Lucene programmatic API enables full-text queries. However, when using the Lucene programmatic
API, the parameters must be converted to their string equivalent and must also apply the correct
analyzer to the right field. A ngram analyzer for example uses several ngrams as the tokens for a given
word and should be searched as such. It is recommended to use the QueryBuilder for this task.

The Hibernate Search query API is fluent, with the following key characteristics:

Method names are in English. As a result, API operations can be read and understood as a series
of English phrases and instructions.

It uses IDE autocompletion which helps possible completions for the current input prefix and
allows the user to choose the right option.

...
final QueryBuilder b = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();
javax.persistence.Query fullTextQuery = fullTextEntityManager.createFullTextQuery(
luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed objects

CHAPTER 14. HIBERNATE SEARCH

359

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14227-781573+%5BLatest%5D&comment=Title%3A+Querying%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14256-592108+%5BLatest%5D&comment=Title%3A+Building+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14236-592107+%5BLatest%5D&comment=Title%3A+Building+a+Lucene+Query+Using+the+Lucene+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14236-592107+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

It often uses the chaining method pattern.

It is easy to use and read the API operations.

To use the API, first create a query builder that is attached to a given indexedentitytype. This
QueryBuilder knows what analyzer to use and what field bridge to apply. Several QueryBuilders (one
for each entity type involved in the root of your query) can be created. The QueryBuilder is derived
from the SearchFactory.

The analyzer used for a given field or fields can also be overridden.

The query builder is now used to build Lucene queries. Customized queries generated using Lucene's
query parser or Query objects assembled using the Lucene programmatic API are used with the
Hibernate Search DSL.

Report a bug

14.3.1.3. Keyword Queries

The following example shows how to search for a specific word:

Table 14.4. Keyword query parameters

Parameter Description

keyword() Use this parameter to find a specific word

onField() Use this parameter to specify in which lucene field to
search the word

matching() use this parameter to specify the match for search
string

createQuery() creates the Lucene query object

The value "storm" is passed through the history FieldBridge. This is useful when numbers or
dates are involved.

The field bridge value is then passed to the analyzer used to index the field history. This ensures
that the query uses the same term transformation than the indexing (lower case, ngram,
stemming and so on). If the analyzing process generates several terms for a given word, a
boolean query is used with the SHOULD logic (roughly an OR logic).

QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(Myth.class).get();

QueryBuilder mythQB = searchFactory.buildQueryBuilder()
 .forEntity(Myth.class)
 .overridesForField("history","stem_analyzer_definition")
 .get();

Query luceneQuery = mythQB.keyword().onField("history").matching("storm").createQuery();

Development Guide

360

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14228-748329+%5BLatest%5D&comment=Title%3A+Building+a+Lucene+Query%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14228-748329+23+Mar+2015+22%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

To search a property that is not of type string.

NOTE

In plain Lucene, the Date object had to be converted to its string representation (in this
case the year)

This conversion works for any object, provided that the FieldBridge has an objectToString method
(and all built-in FieldBridge implementations do).

The next example searches a field that uses ngram analyzers. The ngram analyzers index succession of
ngrams of words, which helps to avoid user typos. For example, the 3-grams of the word hibernate are
hib, ibe, ber, ern, rna, nat, ate.

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, iph, phu, hus.

@Indexed
public class Myth {
 @Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 public Date getCreationDate() { return creationDate; }
 public Date setCreationDate(Date creationDate) { this.creationDate = creationDate; }
 private Date creationDate;

 ...
}

Date birthdate = ...;
Query luceneQuery = mythQb.keyword().onField("creationDate").matching(birthdate).createQuery();

@AnalyzerDef(name = "ngram",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = StandardFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class),
 @TokenFilterDef(factory = NGramFilterFactory.class,
 params = {
 @Parameter(name = "minGramSize", value = "3"),
 @Parameter(name = "maxGramSize", value = "3") })
 }
)

public class Myth {
 @Field(analyzer=@Analyzer(definition="ngram")
 public String getName() { return name; }
 public String setName(String name) { this.name = name; }
 private String name;

 ...
}

Date birthdate = ...;
Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus")
 .createQuery();

CHAPTER 14. HIBERNATE SEARCH

361

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, iph, phu, hus.
Each of these ngram will be part of the query. The user is then able to find the Sysiphus myth (with a y).
All that is transparently done for the user.

NOTE

If the user does not want a specific field to use the field bridge or the analyzer then the
ignoreAnalyzer() or ignoreFieldBridge() functions can be called.

To search for multiple possible words in the same field, add them all in the matching clause.

To search the same word on multiple fields, use the onFields method.

Sometimes, one field should be treated differently from another field even if searching the same term,
use the andField() method for that.

In the previous example, only field name is boosted to 5.

Report a bug

14.3.1.4. Fuzzy Queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start with a keyword query
and add the fuzzy flag.

The threshold is the limit above which two terms are considering matching. It is a decimal between 0

//search document with storm or lightning in their history
Query luceneQuery =
 mythQB.keyword().onField("history").matching("storm lightning").createQuery();

Query luceneQuery = mythQB
 .keyword()
 .onFields("history","description","name")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB.keyword()
 .onField("history")
 .andField("name")
 .boostedTo(5)
 .andField("description")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB
 .keyword()
 .fuzzy()
 .withThreshold(.8f)
 .withPrefixLength(1)
 .onField("history")
 .matching("starm")
 .createQuery();

Development Guide

362

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14301-750422+%5BLatest%5D&comment=Title%3A+Keyword+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14301-750422+10+Apr+2015+05%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

and 1 and the default value is 0.5. The prefixLength is the length of the prefix ignored by the
"fuzzyness". While the default value is 0, a nonzero value is recommended for indexes containing a huge
number of distinct terms.

Report a bug

14.3.1.5. Wildcard Queries

Wildcard queries are useful in circumstances where only part of the word is known. The ? represents a
single character and * represents multiple characters. Note that for performance purposes, it is
recommended that the query does not start with either ? or *.

NOTE

Wildcard queries do not apply the analyzer on the matching terms. The risk of * or ? being
mangled is too high.

Report a bug

14.3.1.6. Phrase Queries

So far we have been looking for words or sets of words, the user can also search exact or approximate
sentences. Use phrase() to do so.

Approximate sentences can be searched by adding a slop factor. The slop factor represents the number
of other words permitted in the sentence: this works like a within or near operator.

Report a bug

14.3.1.7. Range Queries

A range query searches for a value in between given boundaries (included or not) or for a value below or
above a given boundary (included or not).

Query luceneQuery = mythQB
 .keyword()
 .wildcard()
 .onField("history")
 .matching("sto*")
 .createQuery();

Query luceneQuery = mythQB
 .phrase()
 .onField("history")
 .sentence("Thou shalt not kill")
 .createQuery();

Query luceneQuery = mythQB
 .phrase()
 .withSlop(3)
 .onField("history")
 .sentence("Thou kill")
 .createQuery();

CHAPTER 14. HIBERNATE SEARCH

363

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14303-748331+%5BLatest%5D&comment=Title%3A+Fuzzy+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14303-748331+23+Mar+2015+23%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14304-748332+%5BLatest%5D&comment=Title%3A+Wildcard+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14304-748332+23+Mar+2015+23%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14300-592111+%5BLatest%5D&comment=Title%3A+Phrase+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14300-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.3.1.8. Combining Queries

Queries can be aggregated (combined) to create more complex queries. The following aggregation
operators are available:

SHOULD: the query should contain the matching elements of the subquery.

MUST: the query must contain the matching elements of the subquery.

MUST NOT: the query must not contain the matching elements of the subquery.

The subqueries can be any Lucene query including a boolean query itself.

Example 14.33. MUST NOT Query

Example 14.34. SHOULD Query

//look for 0 <= starred < 3
Query luceneQuery = mythQB
 .range()
 .onField("starred")
 .from(0).to(3).excludeLimit()
 .createQuery();

//look for myths strictly BC
Date beforeChrist = ...;
Query luceneQuery = mythQB
 .range()
 .onField("creationDate")
 .below(beforeChrist).excludeLimit()
 .createQuery();

//look for popular modern myths that are not urban
Date twentiethCentury = ...;
Query luceneQuery = mythQB
 .bool()
 .must(mythQB.keyword().onField("description").matching("urban").createQuery())
 .not()
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .must(mythQB
 .range()
 .onField("creationDate")
 .above(twentiethCentury)
 .createQuery())
 .createQuery();

//look for popular myths that are preferably urban
Query luceneQuery = mythQB
 .bool()

Development Guide

364

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14299-592111+%5BLatest%5D&comment=Title%3A+Range+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14299-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.35. NOT Query

Report a bug

14.3.1.9. Query Options

The Hibernate Search query DSL is an easy to use and easy to read query API. In accepting and
producing Lucene queries, you can incorporate query types not yet supported by the DSL.

The following is a summary of query options for query types and fields:

boostedTo (on query type and on field) boosts the whole query or the specific field to a given
factor.

withConstantScore (on query) returns all results that match the query have a constant score
equals to the boost.

filteredBy(Filter)(on query) filters query results using the Filter instance.

ignoreAnalyzer (on field) ignores the analyzer when processing this field.

ignoreFieldBridge (on field) ignores field bridge when processing this field.

Example 14.36. Combination of Query Options

 .should(mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

//look for all myths except religious ones
Query luceneQuery = mythQB
 .all()
 .except(monthQb
 .keyword()
 .onField("description_stem")
 .matching("religion")
 .createQuery()
)
 .createQuery();

Query luceneQuery = mythQB
 .bool()
 .should(mythQB.keyword().onField("description").matching("urban").createQuery())
 .should(mythQB
 .keyword()
 .onField("name")
 .boostedTo(3)
 .ignoreAnalyzer()
 .matching("urban").createQuery())
 .must(mythQB
 .range()

CHAPTER 14. HIBERNATE SEARCH

365

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14302-748333+%5BLatest%5D&comment=Title%3A+Combining+Queries%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14302-748333+23+Mar+2015+23%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.3.1.10. Build a Hibernate Search Query

14.3.1.10.1. Generality

After building the Lucene query, wrap it within a Hibernate query. The query searches all indexed entities
and returns all types of indexed classes unless explicitly configured not to do so.

Example 14.37. Wrapping a Lucene Query in a Hibernate Query

For improved performance, restrict the returned types as follows:

Example 14.38. Filtering the Search Result by Entity Type

The first part of the second example only returns the matching Customers. The second part of the
same example returns matching Actors and Items. The type restriction is polymorphic. As a result, if the
two subclasses Salesman and Customer of the base class Person return, specify Person.class to filter
based on result types.

Report a bug

14.3.1.10.2. Pagination

To avoid performance degradation, it is recommended to restrict the number of returned objects per
query. A user navigating from one page to another page is a very common use case. The way to define
pagination is similar to defining pagination in a plain HQL or Criteria query.

Example 14.39. Defining pagination for a search query

 .boostedTo(5).withConstantScore()
 .onField("starred").above(4).createQuery())
 .createQuery();

FullTextSession fullTextSession = Search.getFullTextSession(session);
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Item.class, Actor.class);

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
fullTextQuery.setFirstResult(15); //start from the 15th element
fullTextQuery.setMaxResults(10); //return 10 elements

Development Guide

366

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14298-748334+%5BLatest%5D&comment=Title%3A+Query+Options%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14298-748334+23+Mar+2015+23%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14309-592109+%5BLatest%5D&comment=Title%3A+Generality%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14309-592109+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

It is still possible to get the total number of matching elements regardless of the
pagination via fulltextQuery.getResultSize()

Report a bug

14.3.1.10.3. Sorting

Apache Lucene contains a flexible and powerful result sorting mechanism. The default sorting is by
relevance and is appropriate for a large variety of use cases. The sorting mechanism can be changed to
sort by other properties using the Lucene Sort object to apply a Lucene sorting strategy.

Example 14.40. Specifying a Lucene Sort

NOTE

Fields used for sorting must not be tokenized. For more information about tokenizing, see
Section 14.2.1.1.2, “@Field”.

Report a bug

14.3.1.10.4. Fetching Strategy

Hibernate Search loads objects using a single query if the return types are restricted to one class.
Hibernate Search is restricted by the static fetching strategy defined in the domain model. It is useful to
refine the fetching strategy for a specific use case as follows:

Example 14.41. Specifying FetchMode on a query

In this example, the query will return all Books matching the LuceneQuery. The authors collection will be
loaded from the same query using an SQL outer join.

In a criteria query definition, the type is guessed based on the provided criteria query. As a result, it is
not necessary to restrict the return entity types.

IMPORTANT

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query, Book.class);
org.apache.lucene.search.Sort sort = new Sort(
 new SortField("title", SortField.STRING));
query.setSort(sort);
List results = query.list();

Criteria criteria =
 s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN);
s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

CHAPTER 14. HIBERNATE SEARCH

367

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14305-592111+%5BLatest%5D&comment=Title%3A+Pagination%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14305-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14312-592109+%5BLatest%5D&comment=Title%3A+Sorting%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14312-592109+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

IMPORTANT

The fetch mode is the only adjustable property. Do not use a restriction (a where clause)
on the Criteria query because the getResultSize() throws a SearchException if used in
conjunction with a Criteria with restriction.

If more than one entity is expected, do not use setCriteriaQuery.

Report a bug

14.3.1.10.5. Projection

In some cases, only a small subset of the properties is required. Use Hibernate Search to return a subset
of properties as follows:

Hibernate Search extracts properties from the Lucene index and converts them to their object
representation and returns a list of Object[]. Projections prevent a time consuming database round-trip.
However, they have following constraints:

The properties projected must be stored in the index (@Field(store=Store.YES)), which
increases the index size.

The properties projected must use a FieldBridge implementing
org.hibernate.search.bridge.TwoWayFieldBridge or
org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version.

NOTE

All Hibernate Search built-in types are two-way.

Only the simple properties of the indexed entity or its embedded associations can be projected.
Therefore a whole embedded entity cannot be projected.

Projection does not work on collections or maps which are indexed via @IndexedEmbedded

Lucene provides metadata information about query results. Use projection constants to retrieve the
metadata.

Example 14.42. Using Projection to Retrieve Metadata

Fields can be mixed with the following projection constants:

FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would
have done).

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection(FullTextQuery.SCORE, FullTextQuery.THIS, "mainAuthor.name");
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[0];
Book book = firstResult[1];
String authorName = firstResult[2];

Development Guide

368

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14310-592109+%5BLatest%5D&comment=Title%3A+Fetching+Strategy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14310-592109+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare
one result against an other for a given query but are useless when comparing the result of
different queries.

FullTextQuery.ID: the ID property value of the projected object.

FullTextQuery.DOCUMENT_ID: the Lucene document ID. Be careful in using this value as a
Lucene document ID can change over time between two different IndexReader opening.

FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching
object/document in the given query. This is not suitable for retrieving large amounts of data.
Running explanation typically is as costly as running the whole Lucene query per matching
element. As a result, projection is recommended.

Report a bug

14.3.1.10.6. Customizing Object Initialization Strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities matching the full
text query. It executes one (or several) queries to retrieve the required entities. This approach minimizes
database trips where few of the retrieved entities are present in the persistence context (the session) or
the second level cache.

If entities are present in the second level cache, force Hibernate Search to look into the cache before
retrieving a database object.

Example 14.43. Check the second-level cache before using a query

ObjectLookupMethod defines the strategy to check if an object is easily accessible (without fetching it
from the database). Other options are:

ObjectLookupMethod.PERSISTENCE_CONTEXT is used if many matching entities are already
loaded into the persistence context (loaded in the Session or EntityManager).

ObjectLookupMethod.SECOND_LEVEL_CACHE checks the persistence context and then the
second-level cache.

Set the following to search in the second-level cache:

Correctly configure and activate the second-level cache.

Enable the second-level cache for the relevant entity. This is done using annotations such as
@Cacheable.

Enable second-level cache read access for either Session, EntityManager or Query. Use

FullTextQuery query = session.createFullTextQuery(luceneQuery, User.class);
query.initializeObjectWith(
 ObjectLookupMethod.SECOND_LEVEL_CACHE,
 DatabaseRetrievalMethod.QUERY
);

CHAPTER 14. HIBERNATE SEARCH

369

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14307-748344+%5BLatest%5D&comment=Title%3A+Projection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14307-748344+24+Mar+2015+01%3A33+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Enable second-level cache read access for either Session, EntityManager or Query. Use
CacheMode.NORMAL in Hibernate native APIs or CacheRetrieveMode.USE in Java
Persistence APIs.

WARNING

Unless the second-level cache implementation is EHCache or Infinispan, do not use
ObjectLookupMethod.SECOND_LEVEL_CACHE. Other second-level cache
providers do not implement this operation efficiently.

Customize how objects are loaded from the database using DatabaseRetrievalMethod as follows:

QUERY (default) uses a set of queries to load several objects in each batch. This approach is
recommended.

FIND_BY_ID loads one object at a time using the Session.get or EntityManager.find semantic.
This is recommended if the batch size is set for the entity, which allows Hibernate Core to load
entities in batches.

Report a bug

14.3.1.10.7. Limiting the Time of a Query

Limit the time a query takes in Hibernate Guide as follows:

Raise an exception when arriving at the limit.

Limit to the number of results retrieved when the time limit is raised.

Report a bug

14.3.1.10.8. Raise an Exception on Time Limit

If a query uses more than the defined amount of time, a QueryTimeoutException is raised
(org.hibernate.QueryTimeoutException or javax.persistence.QueryTimeoutException depending
on the programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches:

Example 14.44. Defining a Timeout in Query Execution



Query luceneQuery = ...;
FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds
query.setTimeout(5);

//alternatively, define the timeout in any given time unit
query.setTimeout(450, TimeUnit.MILLISECONDS);

try {

Development Guide

370

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14311-748488+%5BLatest%5D&comment=Title%3A+Customizing+Object+Initialization+Strategies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14311-748488+24+Mar+2015+20%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14308-592109+%5BLatest%5D&comment=Title%3A+Limiting+the+Time+of+a+Query%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14308-592109+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The getResultSize(), iterate() and scroll() honor the timeout until the end of the method call. As a
result, Iterable or the ScrollableResults ignore the timeout. Additionally, explain() does not honor this
timeout period. This method is used for debugging and to check the reasons for slow performance of a
query.

The following is the standard way to limit execution time using the Java Persistence API (JPA):

Example 14.45. Defining a Timeout in Query Execution

IMPORTANT

The example code does not guarantee that the query stops at the specified results
amount.

Report a bug

14.3.2. Retrieving the Results

After building the Hibernate query, it is executed the same way as a HQL or Criteria query. The same
paradigm and object semantic apply to a Lucene Query query and the common operations like: list(),
uniqueResult(), iterate(), scroll() are available.

Report a bug

14.3.2.1. Performance Considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on all of
them, list() or uniqueResult() are recommended. list() work best if the entity batch-size is set up
properly. Note that Hibernate Search has to process all Lucene Hits elements (within the pagination)
when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Don't forget to close the

 query.list();
}
catch (org.hibernate.QueryTimeoutException e) {
 //do something, too slow
}

Query luceneQuery = ...;
FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery, User.class);

//define the timeout in milliseconds
query.setHint("javax.persistence.query.timeout", 450);

try {
 query.getResultList();
}
catch (javax.persistence.QueryTimeoutException e) {
 //do something, too slow
}

CHAPTER 14. HIBERNATE SEARCH

371

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14306-592111+%5BLatest%5D&comment=Title%3A+Raise+an+Exception+on+Time+Limit%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14306-592111+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14245-748489+%5BLatest%5D&comment=Title%3A+Retrieving+the+Results%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

ScrollableResults object when you're done, since it keeps Lucene resources. If you expect to use
scroll, but wish to load objects in batch, you can use query.setFetchSize(). When an object is accessed,
and if not already loaded, Hibernate Search will load the next fetchSize objects in one pass.

IMPORTANT

Pagination is preferred over scrolling.

Report a bug

14.3.2.2. Result Size

It is sometimes useful to know the total number of matching documents:

to provide a total search results feature, as provided by Google searches. For example, "1-10 of
about 888,000,000 results"

to implement a fast pagination navigation

to implement a multi-step search engine that adds approximation if the restricted query returns
zero or not enough results

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows you to
retrieve the total number of matching documents regardless of the pagination parameters. Even more
interesting, you can retrieve the number of matching elements without triggering a single object load.

Example 14.46. Determining the Result Size of a Query

NOTE

Like Google, the number of results is approximation if the index is not fully up-to-date
with the database (asynchronous cluster for example).

Report a bug

14.3.2.3. ResultTransformer

Projection results are returned as Object arrays. If the data structure used for the object does not match
the requirements of the application, apply a ResultTransformer. The ResultTransformer builds the
required data structure after the query execution.

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
//return the number of matching books without loading a single one
assert 3245 == query.getResultSize();

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setMaxResult(10);
List results = query.list();
//return the total number of matching books regardless of pagination
assert 3245 == query.getResultSize();

Development Guide

372

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14253-592108+%5BLatest%5D&comment=Title%3A+Performance+Considerations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14253-592108+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14247-765405+%5BLatest%5D&comment=Title%3A+Result+Size%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14247-765405+20+Jul+2015+07%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.47. Using ResultTransformer with Projections

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

Report a bug

14.3.2.4. Understanding Results

If the results of a query are not what you expected, the Luke tool is useful in understanding the
outcome. However, Hibernate Search also gives you access to the Lucene Explanation object for a
given result (in a given query). This class is considered fairly advanced to Lucene users but can provide a
good understanding of the scoring of an object. You have two ways to access the Explanation object for
a given result:

Use the fullTextQuery.explain(int) method

Use projection

The first approach takes a document ID as a parameter and return the Explanation object. The
document ID can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

WARNING

The Document ID is unrelated to the entity ID. Be careful not to confuse these
concepts.

In the second approach you project the Explanation object using the FullTextQuery.EXPLANATION
constant.

Example 14.48. Retrieving the Lucene Explanation Object Using Projection

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(new StaticAliasToBeanResultTransformer(BookView.class,
"title", "author"));
List<BookView> results = (List<BookView>) query.list();
for(BookView view : results) {
 log.info("Book: " + view.getTitle() + ", " + view.getAuthor());
}



FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)
 .setProjection(
 FullTextQuery.DOCUMENT_ID,
 FullTextQuery.EXPLANATION,
 FullTextQuery.THIS);
@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();

CHAPTER 14. HIBERNATE SEARCH

373

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14266-748490+%5BLatest%5D&comment=Title%3A+ResultTransformer%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14266-748490+24+Mar+2015+20%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use the Explanation object only when required as it is roughly as expensive as running the Lucene query
again.

Report a bug

14.3.3. Filters

Apache Lucene has a powerful feature that allows you to filter query results according to a custom
filtering process. This is a very powerful way to apply additional data restrictions, especially since filters
can be cached and reused. Use cases include:

security

temporal data (example, view only last month's data)

population filter (example, search limited to a given category)

Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters
which are transparently cached. For people familiar with the notion of Hibernate Core filters, the API is
very similar:

Example 14.49. Enabling Fulltext Filters for a Query

In this example we enabled two filters on top of the query. You can enable (or disable) as many filters as
you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on any
@Indexed entity regardless of the query the filter is later applied to. This implies that filter definitions
are global and their names must be unique. A SearchException is thrown in case two different
@FullTextFilterDef annotations with the same name are defined. Each named filter has to specify its
actual filter implementation.

Example 14.50. Defining and Implementing a Filter

for (Object[] result : results) {
 Explanation e = (Explanation) result[1];
 display(e.toString());
}

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("bestDriver");
fullTextQuery.enableFullTextFilter("security").setParameter("login", "andre");
fullTextQuery.list(); //returns only best drivers where andre has credentials

@FullTextFilterDefs({
 @FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),
 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)
})
public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

Development Guide

374

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14255-748491+%5BLatest%5D&comment=Title%3A+Understanding+Results%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14255-748491+24+Mar+2015+20%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

BestDriversFilter is an example of a simple Lucene filter which reduces the result set to drivers whose
score is 5. In this example the specified filter implements the org.apache.lucene.search.Filter directly
and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-arg
constructor, you can use the factory pattern:

Example 14.51. Creating a filter using the factory pattern

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance. The
factory must have a no-arg constructor.

Named filters come in handy where parameters have to be passed to the filter. For example a security
filter might want to know which security level you want to apply:

Example 14.52. Passing parameters to a defined filter

Each parameter name should have an associated setter on either the filter or filter factory of the
targeted named filter definition.

Example 14.53. Using parameters in the actual filter implementation

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());
 TermDocs termDocs = reader.termDocs(new Term("score", "5"));
 while (termDocs.next()) {
 bitSet.set(termDocs.doc());
 }
 return bitSet;
 }
}

@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)
public class Driver { ... }

public class BestDriversFilterFactory {

 @Factory
 public Filter getFilter() {
 //some additional steps to cache the filter results per IndexReader
 Filter bestDriversFilter = new BestDriversFilter();
 return new CachingWrapperFilter(bestDriversFilter);
 }
}

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

CHAPTER 14. HIBERNATE SEARCH

375

Note the method annotated @Key returns a FilterKey object. The returned object has a special
contract: the key object must implement equals() / hashCode() so that two keys are equal if and only if
the given Filter types are the same and the set of parameters are the same. In other words, two filter
keys are equal if and only if the filters from which the keys are generated can be interchanged. The key
object is used as a key in the cache mechanism.

@Key methods are needed only if:

the filter caching system is enabled (enabled by default)

the filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates the
equals() / hashCode() implementation to each of the parameters equals and hashcode methods.

As mentioned before the defined filters are per default cached and the cache uses a combination of
hard and soft references to allow disposal of memory when needed. The hard reference cache keeps
track of the most recently used filters and transforms the ones least used to SoftReferences when
needed. Once the limit of the hard reference cache is reached additional filters are cached as
SoftReferences. To adjust the size of the hard reference cache, use
hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced use of filter caching,
implement your own FilterCachingStrategy. The classname is defined by
hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter results. In Lucene it is
common practice to wrap filters using the IndexReader around a CachingWrapperFilter. The wrapper
will cache the DocIdSet returned from the getDocIdSet(IndexReader reader) method to avoid
expensive recomputation. It is important to mention that the computed DocIdSet is only cachable for
the same IndexReader instance, because the reader effectively represents the state of the index at the
moment it was opened. The document list cannot change within an opened IndexReader. A

public class SecurityFilterFactory {
 private Integer level;

 /**
 * injected parameter
 */
 public void setLevel(Integer level) {
 this.level = level;
 }

 @Key public FilterKey getKey() {
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(level);
 return key;
 }

 @Factory
 public Filter getFilter() {
 Query query = new TermQuery(new Term("level", level.toString()));
 return new CachingWrapperFilter(new QueryWrapperFilter(query));
 }
}

Development Guide

376

different/new IndexReader instance, however, works potentially on a different set of Documents
(either from a different index or simply because the index has changed), hence the cached DocIdSet
has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag of
@FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which will
automatically cache the filter instance as well as wrap the specified filter around a Hibernate specific
implementation of CachingWrapperFilter. In contrast to Lucene's version of this class SoftReferences
are used together with a hard reference count (see discussion about filter cache). The hard reference
count can be adjusted using hibernate.search.filter.cache_docidresults.size (defaults to 5). The
wrapping behaviour can be controlled using the @FullTextFilterDef.cache parameter. There are three
different values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by
Hibernate Search. For every filter call, a new filter
instance is created. This setting might be useful for
rapidly changing data sets or heavily memory
constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused across
concurrent Filter.getDocIdSet() calls. DocIdSet
results are not cached. This setting is useful when a
filter uses its own specific caching mechanism or the
filter results change dynamically due to application
specific events making DocIdSet caching in both
cases unnecessary.

FilterCacheModeType.INSTANCE_AND_DOCIDSET
RESULTS

Both the filter instance and the DocIdSet results are
cached. This is the default value.

Last but not least - why should filters be cached? There are two areas where filter caching shines:

Filters should be cached in the following situations:

the system does not update the targeted entity index often (in other words, the IndexReader is
reused a lot)

the Filter's DocIdSet is expensive to compute (compared to the time spent to execute the
query)

Report a bug

14.3.3.1. Using Filters in a Sharded Environment

In a sharded environment it is possible to execute queries on a subset of the available shards. This can
be done in two steps:

Procedure 14.1. Query a Subset of Index Shards

1. Create a sharding strategy that does select a subset of IndexManagers depending on a filter
configuration.

CHAPTER 14. HIBERNATE SEARCH

377

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14239-768544+%5BLatest%5D&comment=Title%3A+Filters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Activate the filter at query time.

Example 14.54. Query a Subset of Index Shards

In this example the query is run against a specific customer shard if the customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored IndexManagers in a array indexed by customerID
 private IndexManager[] indexManagers;

 public void initialize(Properties properties, IndexManager[] indexManagers) {
 this.indexManagers = indexManagers;
 }

 public IndexManager[] getIndexManagersForAllShards() {
 return indexManagers;
 }

 public IndexManager getIndexManagerForAddition(
 Class<?> entity, Serializable id, String idInString, Document document) {
 Integer customerID = Integer.parseInt(document.getFieldable("customerID").stringValue());
 return indexManagers[customerID];
 }

 public IndexManager[] getIndexManagersForDeletion(
 Class<?> entity, Serializable id, String idInString) {
 return getIndexManagersForAllShards();
 }

 /**
 * Optimization; don't search ALL shards and union the results; in this case, we
 * can be certain that all the data for a particular customer Filter is in a single
 * shard; simply return that shard by customerID.
 */
 public IndexManager[] getIndexManagersForQuery(
 FullTextFilterImplementor[] filters) {
 FullTextFilter filter = getCustomerFilter(filters, "customer");
 if (filter == null) {
 return getIndexManagersForAllShards();
 }
 else {
 return new IndexManager[] { indexManagers[Integer.parseInt(
 filter.getParameter("customerID").toString())] };
 }
 }

 private FullTextFilter getCustomerFilter(FullTextFilterImplementor[] filters, String name) {
 for (FullTextFilterImplementor filter: filters) {
 if (filter.getName().equals(name)) return filter;
 }
 return null;
 }
 }

Development Guide

378

In this example, if the filter named customer is present, only the shard dedicated to this customer is
queried, otherwise, all shards are returned. A given Sharding strategy can react to one or more filters
and depends on their parameters.

The second step is to activate the filter at query time. While the filter can be a regular filter (as defined
in Section 14.3.3, “Filters”) which also filters Lucene results after the query, you can make use of a
special filter that will only be passed to the sharding strategy (and is otherwise ignored).

To use this feature, specify the ShardSensitiveOnlyFilter class when declaring your filter.

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene filter.
Using filters and sharding strategy reacting to these filters is recommended to speed up queries in a
sharded environment.

Report a bug

14.3.4. Faceting

Faceted search is a technique which allows the results of a query to be divided into multiple categories.
This categorization includes the calculation of hit counts for each category and the ability to further
restrict search results based on these facets (categories). Example 14.55, “Search for Hibernate Search
on Amazon” shows a faceting example. The search results in fifteen hits which are displayed on the main
part of the page. The navigation bar on the left, however, shows the category Computers & Internet with
its subcategories Programming, Computer Science, Databases, Software, Web Development, Networking
and Home Computing. For each of these subcategories the number of books is shown matching the
main search criteria and belonging to the respective subcategory. This division of the category
Computers & Internet is one concrete search facet. Another one is for example the average customer
review.

Example 14.55. Search for Hibernate Search on Amazon

In Hibernate Search, the classes QueryBuilder and FullTextQuery are the entry point into the
faceting API. The former creates faceting requests and the latter accesses the FacetManager. The
FacetManager applies faceting requests on a query and selects facets that are added to an existing
query to refine search results. The examples use the entity Cd as shown in Example 14.56, “Entity
Cd”:

@Indexed
@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)
public class Customer {
 ...
}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);
query.enableFulltextFilter("customer").setParameter("CustomerID", 5);
@SuppressWarnings("unchecked")
List<Customer> results = query.getResultList();

CHAPTER 14. HIBERNATE SEARCH

379

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14193-765525+%5BLatest%5D&comment=Title%3A+Using+Filters+in+a+Sharded+Environment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14193-765525+21+Jul+2015+01%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 14.1. Search for Hibernate Search on Amazon

Example 14.56. Entity Cd

@Indexed
public class Cd {

 private int id;

 @Fields({
 @Field,
 @Field(name = "name_un_analyzed", analyze = Analyze.NO)
 })
 private String name;

Development Guide

380

Report a bug

14.3.4.1. Creating a Faceting Request

The first step towards a faceted search is to create the FacetingRequest. Currently two types of
faceting requests are supported. The first type is called discrete faceting and the second type range
faceting request. In the case of a discrete faceting request you specify on which index field you want to
facet (categorize) and which faceting options to apply. An example for a discrete faceting request can
be seen in Example 14.57, “Creating a discrete faceting request” :

Example 14.57. Creating a discrete faceting request

When executing this faceting request a Facet instance will be created for each discrete value for the
indexed field label. The Facet instance will record the actual field value including how often this
particular field value occurs within the original query results. orderedBy, includeZeroCounts and
maxFacetCount are optional parameters which can be applied on any faceting request. orderedBy
allows to specify in which order the created facets will be returned. The default is
FacetSortOrder.COUNT_DESC, but you can also sort on the field value or the order in which ranges
were specified. includeZeroCount determines whether facets with a count of 0 will be included in the
result (per default they are) and maxFacetCount allows to limit the maximum amount of facets
returned.

NOTE

 @Field(analyze = Analyze.NO)
 @NumericField
 private int price;

 Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 private Date releaseYear;

 @Field(analyze = Analyze.NO)
 private String label;

// setter/getter
...

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest labelFacetingRequest = builder.facet()
 .name("labelFaceting")
 .onField("label")
 .discrete()
 .orderedBy(FacetSortOrder.COUNT_DESC)
 .includeZeroCounts(false)
 .maxFacetCount(1)
 .createFacetingRequest();

CHAPTER 14. HIBERNATE SEARCH

381

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14277-748497+%5BLatest%5D&comment=Title%3A+Faceting%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

At the moment there are several preconditions an indexed field has to meet in order to
apply faceting on it. The indexed property must be of type String, Date or a subtype of
Number and null values should be avoided. Furthermore the property has to be indexed
with Analyze.NO and in case of a numeric property @NumericField needs to be
specified.

The creation of a range faceting request is quite similar except that we have to specify ranges for the
field values we are faceting on. A range faceting request can be seen in Example 14.58, “Creating a range
faceting request” where three different price ranges are specified. below and above can only be
specified once, but you can specify as many from - to ranges as you want. For each range boundary you
can also specify via excludeLimit whether it is included into the range or not.

Example 14.58. Creating a range faceting request

Report a bug

14.3.4.2. Applying a Faceting Request

A faceting request is applied to a query via the FacetManager class which can be retrieved via the
FullTextQuery class.

You can enable as many faceting requests as you like and retrieve them afterwards via getFacets()
specifying the faceting request name. There is also a disableFaceting() method which allows you to
disable a faceting request by specifying its name.

Example 14.59. Applying a faceting request

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest priceFacetingRequest = builder.facet()
 .name("priceFaceting")
 .onField("price")
 .range()
 .below(1000)
 .from(1001).to(1500)
 .above(1500).excludeLimit()
 .createFacetingRequest();

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Cd.class);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cds
List<Cd> cds = fullTextQuery.list();
...

Development Guide

382

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14271-592110+%5BLatest%5D&comment=Title%3A+Creating+a+Faceting+Request%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14271-592110+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.3.4.3. Restricting Query Results

Last but not least, you can apply any of the returned Facets as additional criteria on your original query
in order to implement a "drill-down" functionality. For this purpose FacetSelection can be utilized.
FacetSelections are available via the FacetManager and allow you to select a facet as query criteria
(selectFacets), remove a facet restriction (deselectFacets), remove all facet restrictions
(clearSelectedFacets) and retrieve all currently selected facets (getSelectedFacets). Example 14.60,
“Restricting query results via the application of a FacetSelection” shows an example.

Example 14.60. Restricting query results via the application of a FacetSelection

Report a bug

14.3.5. Optimizing the Query Process

Query performance depends on several criteria:

The Lucene query.

The number of objects loaded: use pagination (always) or index projection (if needed).

The way Hibernate Search interacts with the Lucene readers: defines the appropriate reader

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
...

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, clazz);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cd
List<Cd> cds = fullTextQuery.list();
assertTrue(cds.size() == 10);

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
assertTrue(facets.get(0).getCount() == 2)

// apply first facet as additional search criteria
facetManager.getFacetGroup("priceFaceting").selectFacets(facets.get(0));

// re-execute the query
cds = fullTextQuery.list();
assertTrue(cds.size() == 2);

CHAPTER 14. HIBERNATE SEARCH

383

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14249-748527+%5BLatest%5D&comment=Title%3A+Applying+a+Faceting+Request%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14249-748527+24+Mar+2015+23%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14258-592108+%5BLatest%5D&comment=Title%3A+Restricting+Query+Results%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14258-592108+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The way Hibernate Search interacts with the Lucene readers: defines the appropriate reader
strategy.

Caching frequently extracted values from the index: see Section 14.3.5.1, “Caching Index Values:
FieldCache”

Report a bug

14.3.5.1. Caching Index Values: FieldCache

The primary function of a Lucene index is to identify matches to your queries. After the query is
performed the results must be analyzed to extract useful information. Hibernate Search would typically
need to extract the Class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases might be very
low and not noticeable, but in some other cases might be a good candidate for caching.

The requirements depend on the kind of Projections being used (see Section 14.3.1.10.5, “Projection”), as
in some cases the Class type is not needed as it can be inferred from the query context or other means.

Using the @CacheFromIndex annotation you can experiment with different kinds of caching of the main
metadata fields required by Hibernate Search:

It is possible to cache Class types and IDs using this annotation:

CLASS: Hibernate Search will use a Lucene FieldCache to improve peformance of the Class
type extraction from the index.

This value is enabled by default, and is what Hibernate Search will apply if you don't specify the
@CacheFromIndex annotation.

ID: Extracting the primary identifier will use a cache. This is likely providing the best performing
queries, but will consume much more memory which in turn might reduce performance.

NOTE

Measure the performance and memory consumption impact after warmup (executing
some queries). Performance may improve by enabling Field Caches but this is not always
the case.

Using a FieldCache has two downsides to consider:

Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has lower
requirements than the ID cache.

Index warmup: when using field caches, the first query on a new index or segment will be slower
than when you don't have caching enabled.

With some queries the classtype won't be needed at all, in that case even if you enabled the CLASS

import static org.hibernate.search.annotations.FieldCacheType.CLASS;
import static org.hibernate.search.annotations.FieldCacheType.ID;

@Indexed
@CacheFromIndex({ CLASS, ID })
public class Essay {
 ...

Development Guide

384

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14242-748532+%5BLatest%5D&comment=Title%3A+Optimizing+the+Query+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

With some queries the classtype won't be needed at all, in that case even if you enabled the CLASS
field cache, this might not be used; for example if you are targeting a single class, obviously all returned
values will be of that type (this is evaluated at each Query execution).

For the ID FieldCache to be used, the ids of targeted entities must be using a TwoWayFieldBridge (as
all builting bridges), and all types being loaded in a specific query must use the fieldname for the id, and
have ids of the same type (this is evaluated at each Query execution).

Report a bug

14.4. MANUAL INDEX CHANGES

As Hibernate Core applies changes to the database, Hibernate Search detects these changes and will
update the index automatically (unless the EventListeners are disabled). Sometimes changes are made
to the database without using Hibernate, as when backup is restored or your data is otherwise affected.
In these cases Hibernate Search exposes the Manual Index APIs to explicitly update or remove a single
entity from the index, rebuild the index for the whole database, or remove all references to a specific
type.

All these methods affect the Lucene Index only, no changes are applied to the database.

Report a bug

14.4.1. Adding Instances to the Index

Using FullTextSession.index(T entity) you can directly add or update a specific object instance to the
index. If this entity was already indexed, then the index will be updated. Changes to the index are only
applied at transaction commit.

Example 14.61. Indexing an entity via FullTextSession.index(T entity)

In case you want to add all instances for a type, or for all indexed types, the recommended approach is to
use a MassIndexer: see Section 14.4.3.2, “Using a MassIndexer” for more details.

Report a bug

14.4.2. Deleting Instances from the Index

It is equally possible to remove an entity or all entities of a given type from a Lucene index without the
need to physically remove them from the database. This operation is named purging and is also done
through the FullTextSession.

Example 14.62. Purging a specific instance of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
Object customer = fullTextSession.load(Customer.class, 8);
fullTextSession.index(customer);
tx.commit(); //index only updated at commit time

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {

CHAPTER 14. HIBERNATE SEARCH

385

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14198-748547+%5BLatest%5D&comment=Title%3A+Caching+Index+Values%3A+FieldCache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14198-748547+24+Mar+2015+23%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14218-748554+%5BLatest%5D&comment=Title%3A+Manual+Index+Changes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14274-592110+%5BLatest%5D&comment=Title%3A+Adding+Instances+to+the+Index%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14274-592110+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Purging will remove the entity with the given id from the Lucene index but will not touch the database.

If you need to remove all entities of a given type, you can use the purgeAll method. This operation
removes all entities of the type passed as a parameter as well as all its subtypes.

Example 14.63. Purging all instances of an entity from the index

It is recommended to optimize the index after such an operation.

NOTE

Methods index, purge, and purgeAll are available on FullTextEntityManager as well.

NOTE

All manual indexing methods (index, purge, and purgeAll) only affect the index, not the
database, nevertheless they are transactional and as such they won't be applied until the
transaction is successfully committed, or you make use of flushToIndexes.

Report a bug

14.4.3. Rebuilding the Index

If you change the entity mapping to the index, chances are that the whole Index needs to be updated;
For example if you decide to index a an existing field using a different analyzer you'll need to rebuild the
index for affected types. Also if the Database is replaced (like restored from a backup, imported from a
legacy system) you'll want to be able to rebuild the index from existing data. Hibernate Search provides
two main strategies to choose from:

Using FullTextSession.flushToIndexes() periodically, while using FullTextSession.index() on
all entities.

Use a MassIndexer.

Report a bug

14.4.3.1. Using flushToIndexes()

This strategy consists of removing the existing index and then adding all entities back to the index using
FullTextSession.purgeAll() and FullTextSession.index(), however there are some memory and

 fullTextSession.purge(Customer.class, customer.getId());
}
tx.commit(); //index is updated at commit time

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
fullTextSession.purgeAll(Customer.class);
//optionally optimize the index
//fullTextSession.getSearchFactory().optimize(Customer.class);
tx.commit(); //index changes are applied at commit time

Development Guide

386

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14200-592106+%5BLatest%5D&comment=Title%3A+Deleting+Instances+from+the+Index%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14200-592106+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14210-592105+%5BLatest%5D&comment=Title%3A+Rebuilding+the+Index%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

efficiency constraints. For maximum efficiency Hibernate Search batches index operations and
executes them at commit time. If you expect to index a lot of data you need to be careful about memory
consumption since all documents are kept in a queue until the transaction commit. You can potentially
face an OutOfMemoryException if you don't empty the queue periodically; to do this use
fullTextSession.flushToIndexes(). Every time fullTextSession.flushToIndexes() is called (or if the
transaction is committed), the batch queue is processed, applying all index changes. Be aware that, once
flushed, the changes cannot be rolled back.

Example 14.64. Index rebuilding using index() and flushToIndexes()

NOTE

hibernate.search.default.worker.batch_size has been deprecated in favor of this
explicit API which provides better control

Try to use a batch size that guarantees that your application will not be out of memory: with a bigger
batch size objects are fetched faster from database but more memory is needed.

Report a bug

14.4.3.2. Using a MassIndexer

Hibernate Search's MassIndexer uses several parallel threads to rebuild the index. You can optionally
select which entities need to be reloaded or have it reindex all entities. This approach is optimized for
best performance but requires to set the application in maintenance mode. Querying the index is not
recommended when a MassIndexer is busy.

Example 14.65. Rebuild the Index Using a MassIndexer

This will rebuild the index, deleting it and then reloading all entities from the database. Although it is
simple to use, some tweaking is recommended to speed up the process.

fullTextSession.setFlushMode(FlushMode.MANUAL);
fullTextSession.setCacheMode(CacheMode.IGNORE);
transaction = fullTextSession.beginTransaction();
//Scrollable results will avoid loading too many objects in memory
ScrollableResults results = fullTextSession.createCriteria(Email.class)
 .setFetchSize(BATCH_SIZE)
 .scroll(ScrollMode.FORWARD_ONLY);
int index = 0;
while(results.next()) {
 index++;
 fullTextSession.index(results.get(0)); //index each element
 if (index % BATCH_SIZE == 0) {
 fullTextSession.flushToIndexes(); //apply changes to indexes
 fullTextSession.clear(); //free memory since the queue is processed
 }
}
transaction.commit();

fullTextSession.createIndexer().startAndWait();

CHAPTER 14. HIBERNATE SEARCH

387

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14192-748558+%5BLatest%5D&comment=Title%3A+Using+flushToIndexes%28%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14192-748558+25+Mar+2015+00%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WARNING

During the progress of a MassIndexer the content of the index is undefined! If a
query is performed while the MassIndexer is working most likely some results will be
missing.

Example 14.66. Using a Tuned MassIndexer

This will rebuild the index of all User instances (and subtypes), and will create 12 parallel threads to load
the User instances using batches of 25 objects per query. These same 12 threads will also need to
process indexed embedded relations and custom FieldBridges or ClassBridges to output a Lucene
document. The threads trigger lazyloading of additional attributes during the conversion process.
Because of this, a high number of threads working in parallel is required. The number of threads working
on actual index writing is defined by the backend configuration of each index.

It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most reindexing
situations the cache will be a useless additional overhead. It might be useful to enable some other
CacheMode depending on your data as it could increase performance if the main entity is relating to
enum-like data included in the index.

NOTE

The ideal of number of threads to achieve best performance is highly dependent on your
overall architecture, database design and data values. All internal thread groups have
meaningful names so they should be easily identified with most diagnostic tools, including
threaddumps.

NOTE

The MassIndexer is unaware of transactions, therefore there is no need to begin one or
commit afterward. Because it is not transactional it is not recommended to let users use
the system during its processing, as it is unlikely people will be able to find results and the
system load might be too high anyway.

Other parameters which affect indexing time and memory consumption are:

hibernate.search.[default|<indexname>].exclusive_index_use

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs



fullTextSession
 .createIndexer(User.class)
 .batchSizeToLoadObjects(25)
 .cacheMode(CacheMode.NORMAL)
 .threadsToLoadObjects(12)
 .idFetchSize(150)
 .progressMonitor(monitor) //a MassIndexerProgressMonitor implementation
 .startAndWait();

Development Guide

388

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.merge_min_size

hibernate.search.[default|<indexname>].indexwriter.merge_max_size

hibernate.search.[default|<indexname>].indexwriter.merge_max_optimize_size

hibernate.search.[default|<indexname>].indexwriter.merge_calibrate_by_deletes

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

Previous versions also had a max_field_length but this was removed from Lucene, it's possible to
obtain a similar effect by using a LimitTokenCountAnalyzer.

All .indexwriter parameters are Lucene specific and Hibernate Search passes these parameters
through.

The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be loaded, but
MySQL's JDBC driver will load all values in memory. To avoid this "optimization" set idFetchSize to
Integer.MIN_VALUE.

Report a bug

14.5. INDEX OPTIMIZATION

From time to time, the Lucene index needs to be optimized. The process is essentially a
defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such, no
physical are applied. During the optimization process the deletions will be applied which also affects the
number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)
performance. During an optimization, searches can be performed, but will most likely be slowed down. All
index updates will be stopped. It is recommended to schedule optimization:

On an idle system or when searches are least frequent.

After a large number of index modifications are applied.

MassIndexer (see Section 14.4.3.2, “Using a MassIndexer”) optimizes indexes by default at the start and
at the end of processing. Use MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish
to change this default behavior.

Report a bug

14.5.1. Automatic Optimization

Hibernate Search can automatically optimize an index after either:

a certain amount of operations (insertion or deletion).

a certain amount of transactions.

CHAPTER 14. HIBERNATE SEARCH

389

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14235-750257+%5BLatest%5D&comment=Title%3A+Using+a+MassIndexer%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14235-750257+09+Apr+2015+07%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A14215-765622+%5BLatest%5D&comment=Title%3A+Index+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The configuration for automatic index optimization can be defined either globally or per index:

Example 14.67. Defining automatic optimization parameters

An optimization will be triggered to the Animal index as soon as either:

the number of additions and deletions reaches 1000.

the number of transactions reaches 50
(hibernate.search.Animal.optimizer.transaction_limit.max has priority over
hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed automatically.

The default implementation of OptimizerStrategy can be overridden by implementing
org.hibernate.search.store.optimization.OptimizerStrategy and setting the
optimizer.implementation property to the fully qualified name of your implementation. This
implementation must implement the interface, be a public class and have a public constructor taking no
arguments.

Example 14.68. Loading a custom OptimizerStrategy

The keyword default can be used to select the Hibernate Search default implementation; all properties
after the .optimizer key separator will be passed to the implementation's initialize method at start.

Report a bug

14.5.2. Manual Optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through the
SearchFactory:

Example 14.69. Programmatic Index Optimization

The first example optimizes the Lucene index holding Orders and the second optimizes all indexes.

hibernate.search.default.optimizer.operation_limit.max = 1000
hibernate.search.default.optimizer.transaction_limit.max = 100
hibernate.search.Animal.optimizer.transaction_limit.max = 50

hibernate.search.default.optimizer.implementation = com.acme.worlddomination.SmartOptimizer
hibernate.search.default.optimizer.SomeOption = CustomConfigurationValue
hibernate.search.humans.optimizer.implementation = default

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);
// or
searchFactory.optimize();

Development Guide

390

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14262-748574+%5BLatest%5D&comment=Title%3A+Automatic+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14262-748574+25+Mar+2015+00%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

searchFactory.optimize() has no effect on a JMS backend. You must apply the optimize
operation on the Master node.

Report a bug

14.5.3. Adjusting Optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate Search
exposes those parameters.

Further index optimization parameters include:

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

Report a bug

14.6. ADVANCED FEATURES

14.6.1. Accessing the SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search. It is a
convenient way to access Lucene natively. The SearchFactory can be accessed from a
FullTextSession:

Example 14.70. Accessing the SearchFactory

Report a bug

14.6.2. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search might cache index readers to
maximize performance, or provide other efficient strategies to retrieve an updated IndexReader
minimizing I/O operations. Your code can access these cached resources, but there are several
requirements.

Example 14.71. Accessing an IndexReader

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

IndexReader reader = searchFactory.getIndexReaderAccessor().open(Order.class);
try {

CHAPTER 14. HIBERNATE SEARCH

391

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14233-592107+%5BLatest%5D&comment=Title%3A+Manual+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14233-592107+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14237-747226+%5BLatest%5D&comment=Title%3A+Adjusting+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14237-747226+16+Mar+2015+00%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14208-592105+%5BLatest%5D&comment=Title%3A+Accessing+the+SearchFactory%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14208-592105+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In this example the SearchFactory determines which indexes are needed to query this entity
(considering a Sharding strategy). Using the configured ReaderProvider on each index, it returns a
compound IndexReader on top of all involved indexes. Because this IndexReader is shared amongst
several clients, you must adhere to the following rules:

Never call indexReader.close(), instead use readerProvider.closeReader(reader) when
necessary, preferably in a finally block.

Don not use this IndexReader for modification operations (it is a readonly IndexReader, and
any such attempt will result in an exception).

Aside from those rules, you can use the IndexReader freely, especially to do native Lucene queries.
Using the shared IndexReaders will make most queries more efficient than by opening one directly
from, for example, the filesystem.

As an alternative to the method open(Class... types) you can use open(String... indexNames), allowing
you to pass in one or more index names. Using this strategy you can also select a subset of the indexes
for any indexed type if sharding is used.

Example 14.72. Accessing an IndexReader by index names

Report a bug

14.6.3. Accessing a Lucene Directory

A Directory is the most common abstraction used by Lucene to represent the index storage; Hibernate
Search doesn't interact directly with a Lucene Directory but abstracts these interactions via an
IndexManager: an index does not necessarily need to be implemented by a Directory.

If you know your index is represented as a Directory and need to access it, you can get a reference to
the Directory via the IndexManager. Cast the IndexManager to a DirectoryBasedIndexManager and
then use getDirectoryProvider().getDirectory() to get a reference to the underlying Directory. This is
not recommended, we would encourage to use the IndexReader instead.

Report a bug

14.6.4. Sharding Indexes

In some cases it can be useful to split (shard) the indexed data of a given entity into several Lucene
indexes.

 //perform read-only operations on the reader
}
finally {
 searchFactory.getIndexReaderAccessor().close(reader);
}

IndexReader reader = searchFactory.getIndexReaderAccessor().open("Products.1", "Products.3");

Development Guide

392

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14220-748732+%5BLatest%5D&comment=Title%3A+Using+an+IndexReader%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14220-748732+25+Mar+2015+22%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14204-592106+%5BLatest%5D&comment=Title%3A+Accessing+a+Lucene+Directory%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14204-592106+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WARNING

Sharding should only be implemented if the advantages outweigh the
disadvantages. Searching sharded indexes will typically be slower as all shards have
to be opened for a single search.

Possible use cases for sharding are:

A single index is so large that index update times are slowing the application down.

A typical search will only hit a subset of the index, such as when data is naturally segmented by
customer, region or application.

By default sharding is not enabled unless the number of shards is configured. To do this use the
hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property.

Example 14.73. Enabling Index Sharding

In this example 5 shards are enabled.

Responsible for splitting the data into sub-indexes is the IndexShardingStrategy. The default sharding
strategy splits the data according to the hash value of the ID string representation (generated by the
FieldBridge). This ensures a fairly balanced sharding. You can replace the default strategy by
implementing a custom IndexShardingStrategy. To use your custom strategy you have to set the
hibernate.search.<indexName>.sharding_strategy property.

Example 14.74. Specifying a Custom Sharding Strategy

The IndexShardingStrategy property also allows for optimizing searches by selecting which shard to
run the query against. By activating a filter a sharding strategy can select a subset of the shards used to
answer a query (IndexShardingStrategy.getIndexManagersForQuery) and thus speed up the query
execution.

Each shard has an independent IndexManager and so can be configured to use a different directory
provider and back end configuration. The IndexManager index names for the Animal entity in
Example 14.75, “Sharding Configuration for Entity Animal” are Animal.0 to Animal.4. In other words,
each shard has the name of its owning index followed by . (dot) and its index number.

Example 14.75. Sharding Configuration for Entity Animal



hibernate.search.<indexName>.sharding_strategy.nbr_of_shards = 5

hibernate.search.<indexName>.sharding_strategy = my.shardingstrategy.Implementation

hibernate.search.default.indexBase = /usr/lucene/indexes
hibernate.search.Animal.sharding_strategy.nbr_of_shards = 5
hibernate.search.Animal.directory_provider = filesystem

CHAPTER 14. HIBERNATE SEARCH

393

In Example 14.75, “Sharding Configuration for Entity Animal” , the configuration uses the default id string
hashing strategy and shards the Animal index into 5 sub-indexes. All sub-indexes are filesystem
instances and the directory where each sub-index is stored is as followed:

for sub-index 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden indexName)

for sub-index 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

for sub-index 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

for sub-index 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden indexName)

for sub-index 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

When implementing a IndexShardingStrategy any field can be used to determine the sharding
selection. Consider that to handle deletions, purge and purgeAll operations, the implementation might
need to return one or more indexes without being able to read all the field values or the primary
identifier. In that case the information is not enough to pick a single index, all indexes should be returned,
so that the delete operation will be propagated to all indexes potentially containing the documents to be
deleted.

Report a bug

14.6.5. Customizing Lucene's Scoring Formula

Lucene allows the user to customize its scoring formula by extending
org.apache.lucene.search.Similarity. The abstract methods defined in this class match the factors of
the following formula calculating the score of query q for document d:

score(q,d) = coord(q,d) · queryNorm(q) · ∑ t in q (tf(t in d) · idf(t) 2 · t.getBoost() · norm(t,d))

Factor Description

tf(t ind) Term frequency factor for the term (t) in the
document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query terms
are found in the specified document.

queryNorm(q) Normalizing factor used to make scores between
queries comparable.

t.getBoost() Field boost.

hibernate.search.Animal.0.indexName = Animal00
hibernate.search.Animal.3.indexBase = /usr/lucene/sharded
hibernate.search.Animal.3.indexName = Animal03

Development Guide

394

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14190-748889+%5BLatest%5D&comment=Title%3A+Sharding+Indexes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14190-748889+26+Mar+2015+18%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

norm(t,d) Encapsulates a few (indexing time) boost and length
factors.

Factor Description

It is beyond the scope of this manual to explain this formula in more detail. Please refer to Similarity's
Javadocs for more information.

Hibernate Search provides three ways to modify Lucene's similarity calculation.

First you can set the default similarity by specifying the fully specified classname of your Similarity
implementation using the property hibernate.search.similarity. The default value is
org.apache.lucene.search.DefaultSimilarity.

You can also override the similarity used for a specific index by setting the similarity property

Finally you can override the default similarity on class level using the @Similarity annotation.

As an example, let's assume it is not important how often a term appears in a document. Documents with
a single occurrence of the term should be scored the same as documents with multiple occurrences. In
this case your custom implementation of the method tf(float freq) should return 1.0.

WARNING

When two entities share the same index they must declare the same Similarity
implementation. Classes in the same class hierarchy always share the index, so it's
not allowed to override the Similarity implementation in a subtype.

Likewise, it does not make sense to define the similarity via the index setting and
the class-level setting as they would conflict. Such a configuration will be rejected.

Report a bug

14.6.6. Exception Handling Configuration

Hibernate Search allows you to configure how exceptions are handled during the indexing process. If no
configuration is provided then exceptions are logged to the log output by default. It is possible to
explicitly declare the exception logging mechanism as follows:

hibernate.search.default.similarity = my.custom.Similarity

@Entity
@Indexed
@Similarity(impl = DummySimilarity.class)
public class Book {
...
}



CHAPTER 14. HIBERNATE SEARCH

395

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14268-765747+%5BLatest%5D&comment=Title%3A+Customizing+Lucene%27s+Scoring+Formula%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14268-765747+22+Jul+2015+19%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The default exception handling occurs for both synchronous and asynchronous indexing. Hibernate
Search provides an easy mechanism to override the default error handling implementation.

In order to provide your own implementation you must implement the ErrorHandler interface, which
provides the handle(ErrorContext context) method. ErrorContext provides a reference to the primary
LuceneWork instance, the underlying exception and any subsequent LuceneWork instances that could
not be processed due to the primary exception.

To register this error handler with Hibernate Search you must declare the fully qualified classname of
your ErrorHandler implementation in the configuration properties:

Report a bug

14.6.7. Disable Hibernate Search

Hibernate Search can be partially or completely disabled as required. Hibernate Search's indexing can
be disabled, for example, if the index is read-only, or you prefer to perform indexing manually, rather
than automatically. It is also possible to completely disable Hibernate Search, preventing indexing and
searching.

Disable Indexing

To disable Hibernate Search indexing, change the indexing_strategy configuration option to manual,
then restart JBoss EAP.

hibernate.search.indexing_strategy = manual

Disable Hibernate Search Completely

To disable Hibernate Search completely, disable all listeners by changing the autoregister_listeners
configuration option to false, then restart JBoss EAP.

hibernate.search.autoregister_listeners = false

Report a bug

hibernate.search.error_handler = log

public interface ErrorContext {
 List<LuceneWork> getFailingOperations();
 LuceneWork getOperationAtFault();
 Throwable getThrowable();
 boolean hasErrors();
}

hibernate.search.error_handler = CustomerErrorHandler

Development Guide

396

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14222-592105+%5BLatest%5D&comment=Title%3A+Exception+Handling+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14222-592105+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+43111-747741+%5BLatest%5D&comment=Title%3A+Disable+Hibernate+Search%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=43111-747741+18+Mar+2015+21%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 15. JAX-RS WEB SERVICES

15.1. ABOUT JAX-RS

JAX-RS is the Java API for RESTful web services. It provides support for building web services using
REST, through the use of annotations. These annotations simplify the process of mapping Java objects
to web resources. The specification is defined here: http://www.jcp.org/en/jsr/detail?id=311.

RESTEasy is the JBoss EAP 6 implementation of JAX-RS. It also provides additional features to the
specification.

JBoss EAP 6 is compliant with JSR 311 - JAX-RS.

To get started with JAX-RS and JBoss EAP 6, refer to the helloworld-rs, jax-rs-client, and
kitchensink quickstart: Section 1.4.1.1, “Access the Quickstarts” .

Report a bug

15.2. ABOUT RESTEASY

RESTEasy is a portable implementation of the JAX-RS Java API. It also provides additional features,
including a client side framework (the RESTEasy JAX-RS Client Framework) for mapping outgoing
requests to remote servers, allowing JAX-RS to operate as a client or server-side specification.

Report a bug

15.3. ABOUT RESTFUL WEB SERVICES

RESTful web services are designed to expose APIs on the web. They aim to provide better performance,
scalability, and flexibility than traditional web services by allowing clients to access data and resources
using predictable URLs.

The Java Enterprise Edition 6 specification for RESTful services is JAX-RS. For more information about
JAX-RS, refer to Section 15.1, “About JAX-RS” and Section 15.2, “About RESTEasy” .

Report a bug

15.4. RESTEASY DEFINED ANNOTATIONS

Table 15.1. JAX-RS/RESTEasy Annotations

Annotation Usage

ClientResponseType This is an annotation that you can add to a RESTEasy
client interface that has a return type of Response.

ContentEncoding Meta annotation that specifies a Content-Encoding
to be applied via the annotated annotation.

DecorateTypes Must be placed on a DecoratorProcessor class to
specify the supported types.

CHAPTER 15. JAX-RS WEB SERVICES

397

http://www.jcp.org/en/jsr/detail?id=311
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1759-591647+%5BLatest%5D&comment=Title%3A+About+JAX-RS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1759-591647+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1760-591647+%5BLatest%5D&comment=Title%3A+About+RESTEasy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1760-591647+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1758-591647+%5BLatest%5D&comment=Title%3A+About+RESTful+Web+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1758-591647+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Decorator Meta-annotation to be placed on another annotation
that triggers decoration.

Form This can be used as a value object for
incoming/outgoing request/responses.

StringParameterUnmarshallerBinder Meta-annotation to be placed on another annotation
that triggers a StringParameterUnmarshaller to be
applied to a string based annotation injector.

Cache Set response Cache-Control header automatically.

NoCache Set Cache-Control response header of "nocache".

ServerCached Specifies that the response to this jax-rs method
should be cached on the server.

ClientInterceptor Identifies an interceptor as a client-side interceptor.

DecoderPrecedence This interceptor is an Content-Encoding decoder.

EncoderPrecedence This interceptor is an Content-Encoding encoder.

HeaderDecoratorPrecedence HeaderDecoratorPrecedence interceptors should
always come first as they decorate a response (on
the server), or an outgoing request (on the client)
with special, user-defined, headers.

RedirectPrecedence Should be placed on a PreProcessInterceptor.

SecurityPrecedence Should be placed on a PreProcessInterceptor.

ServerInterceptor Identifies an interceptor as a server-side interceptor.

NoJackson Placed on class, parameter, field or method when you
don't want the Jackson provider to be triggered.

ImageWriterParams An annotation that a resource class can use to pass
parameters to the IIOImageProvider.

DoNotUseJAXBProvider Put this on a class or parameter when you do not
want the JAXB MessageBodyReader/Writer used
but instead have a more specific provider you want
to use to marshall the type.

Formatted Format XML output with indentations and newlines.
This is a JAXB Decorator.

Annotation Usage

Development Guide

398

IgnoreMediaTypes Placed on a type, method, parameter, or field to tell
JAXRS not to use JAXB provider for a certain media
type

Stylesheet Specifies an XML stylesheet header.

Wrapped Put this on a method or parameter when you want to
marshal or unmarshal a collection or array of JAXB
objects.

WrappedMap Put this on a method or parameter when you want to
marshal or unmarshal a map of JAXB objects.

XmlHeader Sets an XML header for the returned document.

BadgerFish A JSONConfig.

Mapped A JSONConfig.

XmlNsMap A JSONToXml.

MultipartForm This can be used as a value object for
incoming/outgoing request/responses of the
multipart/form-data mime type.

PartType Must be used in conjunction with Multipart providers
when writing out a List or Map as a multipart/* type.

XopWithMultipartRelated This annotation can be used to process/produce
incoming/outgoing XOP messages (packaged as
multipart/related) to/from JAXB annotated objects.

After Used to add an expiration attribute when signing or
as a stale check for verification.

Signed Convenience annotation that triggers the signing of
a request or response using the DOSETA
specification.

Verify Verification of input signature specified in a signature
header.

Path This must exist either in the class or resource method.
If it exists in both, the relative path to the resource
method is a concatenation of the class and method.

Annotation Usage

CHAPTER 15. JAX-RS WEB SERVICES

399

PathParam Allows you to map variable URI path fragments into a
method call.

QueryParam Allows you to map URI query string parameter or
URL form encoded parameter to the method
invocation.

CookieParam Allows you to specify the value of a cookie or object
representation of an HTTP request cookie into the
method invocation.

DefaultValue Can be combined with the other @*Param
annotations to define a default value when the HTTP
request item does not exist.

Context Allows you to specify instances of
javax.ws.rs.core.HttpHeaders, javax.ws.rs.core.UriInfo,
javax.ws.rs.core.Request,
javax.servlet.HttpServletRequest,
javax.servlet.HttpServletResponse, and
javax.ws.rs.core.SecurityContext objects.

Encoded Can be used on a class, method, or param. By
default, inject @PathParam and @QueryParams are
decoded. By adding the @Encoded annotation, the
value of these params are provided in encoded form.

Annotation Usage

Report a bug

15.5. RESTEASY CONFIGURATION

15.5.1. RESTEasy Configuration Parameters

Table 15.2. Elements

Option Name Default Value Description

resteasy.servlet.mapping.prefix No default If the url-pattern for the Resteasy servlet-
mapping is not /*.

resteasy.scan false Automatically scan WEB-INF/lib jars and
WEB-INF/classes directory for both
@Provider and JAX-RS resource classes
(@Path, @GET, @POST etc..) and register
them.

Development Guide

400

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5368-762762+%5BLatest%5D&comment=Title%3A+RESTEasy+Defined+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5368-762762+24+Jun+2015+03%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

resteasy.scan.providers false Scan for @Provider classes and register
them.

resteasy.scan.resources false Scan for JAX-RS resource classes.

resteasy.providers no default A comma delimited list of fully qualified
@Provider class names you want to
register.

resteasy.use.builtin.providers true Whether or not to register default, built-in
@Provider classes.

resteasy.resources No default A comma delimited list of fully qualified
JAX-RS resource class names you want
to register.

resteasy.jndi.resources No default A comma delimited list of JNDI names
which reference objects you want to
register as JAX-RS resources.

javax.ws.rs.Application No default Fully qualified name of Application class
to bootstrap in a spec portable way.

resteasy.media.type.mappings No default Replaces the need for an Accept header
by mapping file name extensions (like .xml
or .txt) to a media type. Used when the
client is unable to use a Accept header to
choose a representation (i.e. a browser).

resteasy.language.mappings No default Replaces the need for an Accept-
Language header by mapping file name
extensions (like .en or .fr) to a language.
Used when the client is unable to use a
Accept-Language header to choose a
language (i.e. a browser).

resteasy.document.expand.entity.referen
ces

false Whether to expand external entities or
replace them with an empty string. In
JBoss EAP 6, this parameter defaults to
false, so it replaces them with an empty
string.

resteasy.document.secure.processing.fea
ture

true Impose security constraints in processing
org.w3c.dom.Document documents and
JAXB object representations.

resteasy.document.secure.disableDTDs true Prohibit DTDs in org.w3c.dom.Document
documents and JAXB object
representations.

Option Name Default Value Description

IMPORTANT

CHAPTER 15. JAX-RS WEB SERVICES

401

IMPORTANT

In a Servlet 3.0 container, the resteasy.scan.* configurations in the web.xml file are
ignored, and all JAX-RS annotated components will be automatically scanned.

Report a bug

15.6. JAX-RS WEB SERVICE SECURITY

15.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods.
However, it does not recognize these annotations by default. Follow these steps to configure the
web.xml file and enable role-based security.

WARNING

Changing the default values of the following RESTEasy parameters may cause
RESTEasy applications to be potentially vulnerable against XXE attacks.

resteasy.document.expand.entity.references

resteasy.document.secure.processing.feature

resteasy.document.secure.disableDTDs

For more information about these parameters, see Section 15.5.1, “RESTEasy
Configuration Parameters”.

WARNING

Do not activate role-based security if the application uses EJBs. The EJB container
will provide the functionality, instead of RESTEasy.

Procedure 15.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

1. Open the web.xml file for the application in a text editor.

2. Add the following <context-param> to the file, within the web-app tags:

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>





Development Guide

402

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5555-741843+%5BLatest%5D&comment=Title%3A+RESTEasy+Configuration+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5555-741843+06+Feb+2015+04%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

</context-param>

3. Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:

<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

4. Authorize access to all URLs handled by the JAX-RS runtime for all roles:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ROLE_NAME</role-name>
 <role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

Role-based security has been enabled within the application, with a set of defined roles.

Example 15.1. Example Role-Based Security Configuration

<web-app>

 <context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
 </context-param>

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/security</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>admin</role-name>

CHAPTER 15. JAX-RS WEB SERVICES

403

Report a bug

15.6.2. Secure a JAX-RS Web Service using Annotations

Summary

This topic covers the steps to secure a JAX-RS web service using the supported security annotations

Procedure 15.2. Secure a JAX-RS Web Service using Supported Security Annotations

1. Enable role-based security. For more information, refer to: Section 15.6.1, “Enable Role-Based
Security for a RESTEasy JAX-RS Web Service”

2. Add security annotations to the JAX-RS web service. RESTEasy supports the following
annotations:

@RolesAllowed

Defines which roles can access the method. All roles should be defined in the web.xml file.

@PermitAll

Allows all roles defined in the web.xml file to access the method.

@DenyAll

Denies all access to the method.

Report a bug

15.7. EXCEPTION HANDLING

15.7.1. Create an Exception Mapper

Summary

Exception mappers are custom, application provided components that catch thrown exceptions and
write specific HTTP responses.

Example 15.2. Exception Mapper

An exception mapper is a class that is annotated with the @Provider annotation, and implements the
ExceptionMapper interface.

An example exception mapper is shown below.

 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>

</web-app>

@Provider

Development Guide

404

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5945-781125+%5BLatest%5D&comment=Title%3A+Enable+Role-Based+Security+for+a+RESTEasy+JAX-RS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5945-781125+27+Jan+2017+11%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6095-591722+%5BLatest%5D&comment=Title%3A+Secure+a+JAX-RS+Web+Service+using+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6095-591722+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

To register an exception mapper, list it in the web.xml file under the resteasy.providers context-
param, or register it programmatically through the ResteasyProviderFactory class.

Report a bug

15.7.2. RESTEasy Internally Thrown Exceptions

Table 15.3. Exception List

Exception HTTP Code Description

BadRequestException 400 Bad Request. The request was
not formatted correctly, or there
was a problem processing the
request input.

UnauthorizedException 401 Unauthorized. Security exception
thrown if you are using
RESTEasy's annotation-based
role-based security.

InternalServerErrorException 500 Internal Server Error.

MethodNotAllowedException 405 There is no JAX-RS method for
the resource that can handle the
invoked HTTP operation.

NotAcceptableException 406 There is no JAX-RS method that
can produce the media types
listed in the Accept header.

NotFoundException 404 There is no JAX-RS method that
serves the request path/resource.

ReaderException 400 All exceptions thrown from
MessageBodyReaders are
wrapped within this exception. If
there is no ExceptionMapper
for the wrapped exception, or if
the exception is not a
WebApplicationException,
then RESTEasy will return a 400
code by default.

public class EJBExceptionMapper implements ExceptionMapper<javax.ejb.EJBException>
 {
 Response toResponse(EJBException exception) {
 return Response.status(500).build();
 }
}

CHAPTER 15. JAX-RS WEB SERVICES

405

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6097-591722+%5BLatest%5D&comment=Title%3A+Create+an+Exception+Mapper%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6097-591722+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WriterException 500 All exceptions thrown from
MessageBodyWriters are
wrapped within this exception. If
there is no ExceptionMapper
for the wrapped exception, or if
the exception is not a
WebApplicationException,
then RESTEasy will return a 400
code by default.

JAXBUnmarshalException 400 The JAXB providers (XML and
Jettison) throw this exception on
reads. They may be wrapping
JAXBExceptions. This class
extends ReaderException.

JAXBMarshalException 500 The JAXB providers (XML and
Jettison) throw this exception on
writes. They may be wrapping
JAXBExceptions. This class
extends WriterException.

ApplicationException N/A Wraps all exceptions thrown from
application code. It functions in
the same way as
InvocationTargetException. If
there is an ExceptionMapper for
wrapped exception, then that is
used to handle the request.

Failure N/A Internal RESTEasy error. Not
logged.

LoggableFailure N/A Internal RESTEasy error. Logged.

DefaultOptionsMethodException N/A If the user invokes HTTP
OPTIONS and no JAX-RS
method for it, RESTEasy provides
a default behavior by throwing this
exception.

Exception HTTP Code Description

Report a bug

15.8. RESTEASY INTERCEPTORS

15.8.1. Intercept JAX-RS Invocations

Summary

RESTEasy can intercept JAX-RS invocations and route them through listener-like objects called

Development Guide

406

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2811-591651+%5BLatest%5D&comment=Title%3A+RESTEasy+Internally+Thrown+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2811-591651+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

RESTEasy can intercept JAX-RS invocations and route them through listener-like objects called
interceptors. This topic covers descriptions of the four types of interceptors.

Example 15.3. MessageBodyReader/Writer Interceptors

MessageBodyReaderInterceptors and MessageBodyWriterInterceptors can be used on the either
the server or client side. They are annotated with @Provider, as well as either @ServerInterceptor or
@ClientInterceptor so that RESTEasy knows whether or not to add them to the interceptor list.

These interceptors wrap around the invocation of MessageBodyReader.readFrom() or
MessageBodyWriter.writeTo(). They can be used to wrap the Output or Input streams.

RESTEasy GZIP support has interceptors that create and override the default Output and Input
streams with a GzipOutputStream or GzipInputStream so that gzip encoding can work. They can also
be used to append headers to the response, or the outgoing request on the client side.

The interceptors and the MessageBodyReader or Writer is invoked in one big Java call stack.
MessageBodyReaderContext.proceed() or MessageBodyWriterContext.proceed() is called in
order to go to the next interceptor or, if there are no more interceptors to invoke, the readFrom() or
writeTo() method of the MessageBodyReader or MessageBodyWriter. This wrapping allows objects
to be modified before they get to the Reader or Writer, and then cleaned up after proceed() returns.

The example below is a server side interceptor, that adds a header value to the response.

Example 15.4. PreProcessInterceptor

PreProcessInterceptors run after a JAX-RS resource method is found to invoke on, but before the
actual invocation happens. They are annotated with @ServerInterceptor, and run in sequence.

public interface MessageBodyReaderInterceptor
 {
 Object read(MessageBodyReaderContext context) throws IOException,
WebApplicationException;

 }

public interface MessageBodyWriterInterceptor
 {
 void write(MessageBodyWriterContext context) throws IOException, WebApplicationException;

 }

@Provider
@ServerInterceptor
public class MyHeaderDecorator implements MessageBodyWriterInterceptor {

 public void write(MessageBodyWriterContext context) throws IOException,
WebApplicationException
 {
 context.getHeaders().add("My-Header", "custom");
 context.proceed();
 }
}

CHAPTER 15. JAX-RS WEB SERVICES

407

These interfaces are only usable on the server. They can be used to implement security features, or
to handle the Java request. The RESTEasy security implementation uses this type of interceptor to
abort requests before they occur if the user does not pass authorization. The RESTEasy caching
framework also uses this to return cached responses to avoid invoking methods again.

If the preProcess() method returns a ServerResponse then the underlying JAX-RS method will not
get invoked, and the runtime will process the response and return to the client. If the preProcess()
method does not return a ServerResponse, the underlying JAX-RS method will be invoked.

Example 15.5. PostProcessInterceptors

PostProcessInterceptors run after the JAX-RS method was invoked, but before
MessageBodyWriters are invoked. They are used if a response header needs to be set when a
MessageBodyWriter may not be invoked.

They can only be used on the server side. They do not wrap anything, and are invoked in sequence.

Example 15.6. ClientExecutionInterceptors

ClientExecutionInterceptors are only usable on the client side. They wrap around the HTTP
invocation that goes to the server. They must be annotated with @ClientInterceptor and
@Provider. These interceptors run after the MessageBodyWriter, and after the ClientRequest has
been built on the client side.

RESTEasy GZIP support uses ClientExecutionInterceptors to set the Accept header to contain "gzip,
deflate" before the request goes out. The RESTEasy client cache uses it to check to see if its cache
contains the resource before going over the wire.

public interface PreProcessInterceptor
 {
 ServerResponse preProcess(HttpRequest request, ResourceMethod method) throws Failure,
WebApplicationException;
 }

public interface PostProcessInterceptor
 {
 void postProcess(ServerResponse response);
 }

public interface ClientExecutionInterceptor
{
 ClientResponse execute(ClientExecutionContext ctx) throws Exception;
}

public interface ClientExecutionContext
{
 ClientRequest getRequest();

 ClientResponse proceed() throws Exception;
}

Development Guide

408

Report a bug

15.8.2. Bind an Interceptor to a JAX-RS Method

Summary

All registered interceptors are invoked for every request by default. The AcceptedByMethod interface
can be implemented to fine tune this behavior.

Example 15.7. Binding Interceptors Example

RESTEasy will call the accept() method for interceptors that implement the AcceptedByMethod
interface. If the method returns true, the interceptor will be added to the JAX-RS method's call
chain; otherwise it will be ignored for that method.

In the example below, accept() determines if the @GET annotation is present on the JAX-RS
method. If it is, the interceptor will be applied to the method's call chain.

Report a bug

15.8.3. Register an Interceptor

Summary

This topic covers how to register a RESTEasy JAX-RS interceptor in an application.

Procedure 15.3. Register an Interceptor

To register an interceptor, list it in the web.xml file under the resteasy.providers context-
param, or return it as a class or as an object in the Application.getClasses() or
Application.getSingletons() method.

Example 15.8. Registering an interceptor by listing it in the web.xml file:

@Provider
@ServerInterceptor
public class MyHeaderDecorator implements MessageBodyWriterInterceptor, AcceptedByMethod
{

 public boolean accept(Class declaring, Method method) {
 return method.isAnnotationPresent(GET.class);
 }

 public void write(MessageBodyWriterContext context) throws IOException,
WebApplicationException
 {
 context.getHeaders().add("My-Header", "custom");
 context.proceed();
 }
}

<context-param>
 <param-name>resteasy.providers</param-name>
 <param-value>my.app.CustomInterceptor</paramvalue>

CHAPTER 15. JAX-RS WEB SERVICES

409

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2924-591651+%5BLatest%5D&comment=Title%3A+Intercept+JAX-RS+Invocations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2924-591651+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2927-591651+%5BLatest%5D&comment=Title%3A+Bind+an+Interceptor+to+a+JAX-RS+Method%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2927-591651+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 15.9. Registering an interceptor using the Application.getClasses() method:

Example 15.10. Registering an interceptor using the Application.getSingletons() method:

Report a bug

15.8.4. Interceptor Precedence Families

15.8.4.1. About Interceptor Precedence Families

Summary

</context-param>

package org.jboss.resteasy.example;

import javax.ws.rs.core.Application;
import java.util.HashSet;
import java.util.Set;

public class MyApp extends Application {

 public java.util.Set<java.lang.Class<?>> getClasses() {
 Set<Class<?>> resources = new HashSet<Class<?>>();
 resources.add(MyResource.class);
 resources.add(MyProvider.class);
 return resources;
 }
}

package org.jboss.resteasy.example;

import javax.ws.rs.core.Application;
import java.util.HashSet;
import java.util.Set;

public class MyApp extends Application {

 protected Set<Object> singletons = new HashSet<Object>();

 public PubSubApplication() {
 singletons.add(new MyResource());
 singletons.add(new MyProvider());
 }

 @Override
 public Set<Object> getSingletons() {
 return singletons;
 }
}

Development Guide

410

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2935-769863+%5BLatest%5D&comment=Title%3A+Register+an+Interceptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2935-769863+04+Sep+2015+05%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Interceptors can be sensitive to the order they are invoked. RESTEasy groups interceptors in families to
make ordering them simpler. This reference topic covers the built-in interceptor precedence families
and the interceptors associated with each.

There are five predefined families. They are invoked in the following order:

SECURITY

SECURITY interceptors are usually PreProcessInterceptors. They are invoked first because as little
as possible should be done before the invocation is authorized.

HEADER_DECORATOR

HEADER_DECORATOR interceptors add headers to a response or an outgoing request. They follow
the security interceptors as the added headers may affect the behavior of other interceptor families.

ENCODER

ENCODER interceptors change the OutputStream. For example, the GZIP interceptor creates a
GZIPOutputStream to wrap the real OutputStream for compression.

REDIRECT

REDIRECT interceptors are usually used in PreProcessInterceptors, as they may reroute the request
and totally bypass the JAX-RS method.

DECODER

DECODER interceptors wrap the InputStream. For example, the GZIP interceptor decoder wraps the
InputStream in a GzipInputStream instance.

For complete type safety, there are convenience annotations in the
org.jboss.resteasy.annotations.interception package: @DecoredPrecedence,
@EncoderPrecedence, @HeaderDecoratorPrecedence, @RedirectPrecedence,
@SecurityPrecedence. Use these instead of the @Precedence annotation. For more information, refer
Section 15.4, “RESTEasy Defined Annotations” .

Report a bug

15.8.4.2. Define a Custom Interceptor Precedence Family

Summary

Custom precedence families can be created and registered in the web.xml file. This topic covers
examples of the context params available for defining interceptor precedence families.

There are three context params that can be used to define a new precedence family.

Example 15.11. resteasy.append.interceptor.precedence

The resteasy.append.interceptor.precedence context param appends the new precedence family
to the default precedence family list.

<context-param>
 <param-name>resteasy.append.interceptor.precedence</param-name>
 <param-value>CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

CHAPTER 15. JAX-RS WEB SERVICES

411

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6092-743183+%5BLatest%5D&comment=Title%3A+About+Interceptor+Precedence+Families%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6092-743183+16+Feb+2015+00%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 15.12. resteasy.interceptor.before.precedence

The resteasy.interceptor.before.precedence context param defines the default precedence family
that the custom family is executed before. The parameter value takes the form
DEFAULT_PRECEDENCE_FAMILY/CUSTOM_PRECEDENCE_FAMILY, delimited by a ':'.

Example 15.13. resteasy.interceptor.after.precedence

The resteasy.interceptor.after.precedence context param defines the default precedence family
that the custom family is executed after. The parameter value takes the form
DEFAULT_PRECEDENCE_FAMILY/CUSTOM_PRECEDENCE_FAMILY, delimited by a :.

Precedence families are applied to interceptors using the @Precedence annotation. For the default
precedence family list, refer to: Section 15.8.4.1, “About Interceptor Precedence Families”.

Report a bug

15.9. STRING BASED ANNOTATIONS

15.9.1. Convert String Based @*Param Annotations to Objects

JAX-RS @*Param annotations, including @QueryParam, @MatrixParam, @HeaderParam, @PathParam,
and @FormParam, are represented as strings in a raw HTTP request. These types of injected parameters
can be converted to objects if these objects have a valueOf(String) static method or a constructor that
takes one String parameter.

RESTEasy provides two proprietary @Provider interfaces to handle this conversion for classes that
don't have either a valueOf(String) static method, or a string constructor.

Example 15.14. StringConverter

The StringConverter interface is implemented to provide custom string marshalling. It is registered
under the resteasy.providers context-param in the web.xml file. It can also be registered manually by
calling the ResteasyProviderFactory.addStringConverter() method.

The example below is a simple example of using StringConverter.

<context-param>
 <param-name>resteasy.interceptor.before.precedence</param-name>
 <param-value>DEFAULT_PRECEDENCE_FAMILY :
CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

<context-param>
 <param-name>resteasy.interceptor.after.precedence</param-name>
 <param-value>DEFAULT_PRECEDENCE_FAMILY :
CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

Development Guide

412

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2939-591651+%5BLatest%5D&comment=Title%3A+Define+a+Custom+Interceptor+Precedence+Family%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2939-591651+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

import org.jboss.resteasy.client.ProxyFactory;
import org.jboss.resteasy.spi.StringConverter;
import org.jboss.resteasy.test.BaseResourceTest;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import javax.ws.rs.HeaderParam;
import javax.ws.rs.MatrixParam;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.ext.Provider;

public class StringConverterTest extends BaseResourceTest
{
 public static class POJO
 {
 private String name;

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }
 }

 @Provider
 public static class POJOConverter implements StringConverter<POJO>
 {
 public POJO fromString(String str)
 {
 System.out.println("FROM STRNG: " + str);
 POJO pojo = new POJO();
 pojo.setName(str);
 return pojo;
 }

 public String toString(POJO value)
 {
 return value.getName();
 }
 }

 @Path("/")
 public static class MyResource
 {
 @Path("{pojo}")
 @PUT
 public void put(@QueryParam("pojo")POJO q, @PathParam("pojo")POJO pp,
 @MatrixParam("pojo")POJO mp, @HeaderParam("pojo")POJO hp)

CHAPTER 15. JAX-RS WEB SERVICES

413

Example 15.15. StringParameterUnmarshaller

The StringParameterUnmarshaller interface is sensitive to the annotations placed on the
parameter or field you are injecting into. It is created per injector. The setAnnotations() method is
called by resteasy to initialize the unmarshaller.

This interface can be added by creating and registering a provider that implements the interface. It
can also be bound using a meta-annotation called
org.jboss.resteasy.annotations.StringsParameterUnmarshallerBinder.

The example below formats a java.util.Date based @PathParam.

 {
 Assert.assertEquals(q.getName(), "pojo");
 Assert.assertEquals(pp.getName(), "pojo");
 Assert.assertEquals(mp.getName(), "pojo");
 Assert.assertEquals(hp.getName(), "pojo");
 }
 }

 @Before
 public void setUp() throws Exception
 {
 dispatcher.getProviderFactory().addStringConverter(POJOConverter.class);
 dispatcher.getRegistry().addPerRequestResource(MyResource.class);
 }

 @Path("/")
 public static interface MyClient
 {
 @Path("{pojo}")
 @PUT
 void put(@QueryParam("pojo")POJO q, @PathParam("pojo")POJO pp,
 @MatrixParam("pojo")POJO mp, @HeaderParam("pojo")POJO hp);
 }

 @Test
 public void testIt() throws Exception
 {
 MyClient client = ProxyFactory.create(MyClient.class, "http://localhost:8081");
 POJO pojo = new POJO();
 pojo.setName("pojo");
 client.put(pojo, pojo, pojo, pojo);
 }
}

public class StringParamUnmarshallerTest extends BaseResourceTest
{
 @Retention(RetentionPolicy.RUNTIME)
 @StringParameterUnmarshallerBinder(DateFormatter.class)
 public @interface DateFormat
 {
 String value();
 }

Development Guide

414

It defines a new annotation called @DateFormat. The annotation is annotated with the meta-

 public static class DateFormatter implements StringParameterUnmarshaller<Date>
 {
 private SimpleDateFormat formatter;

 public void setAnnotations(Annotation[] annotations)
 {
 DateFormat format = FindAnnotation.findAnnotation(annotations, DateFormat.class);
 formatter = new SimpleDateFormat(format.value());
 }

 public Date fromString(String str)
 {
 try
 {
 return formatter.parse(str);
 }
 catch (ParseException e)
 {
 throw new RuntimeException(e);
 }
 }
 }

 @Path("/datetest")
 public static class Service
 {
 @GET
 @Produces("text/plain")
 @Path("/{date}")
 public String get(@PathParam("date") @DateFormat("MM-dd-yyyy") Date date)
 {
 System.out.println(date);
 Calendar c = Calendar.getInstance();
 c.setTime(date);
 Assert.assertEquals(3, c.get(Calendar.MONTH));
 Assert.assertEquals(23, c.get(Calendar.DAY_OF_MONTH));
 Assert.assertEquals(1977, c.get(Calendar.YEAR));
 return date.toString();
 }
 }

 @BeforeClass
 public static void setup() throws Exception
 {
 addPerRequestResource(Service.class);
 }

 @Test
 public void testMe() throws Exception
 {
 ClientRequest request = new ClientRequest(generateURL("/datetest/04-23-1977"));
 System.out.println(request.getTarget(String.class));
 }
}

CHAPTER 15. JAX-RS WEB SERVICES

415

It defines a new annotation called @DateFormat. The annotation is annotated with the meta-
annotation StringParameterUnmarshallerBinder with a reference to the DateFormater classes.

The Service.get() method has a @PathParam parameter that is also annotated with @DateFormat.
The application of @DateFormat triggers the binding of the DateFormatter. The DateFormatter will
now be run to unmarshal the path parameter into the date parameter of the get() method.

Report a bug

15.10. CONFIGURE FILE EXTENSIONS

15.10.1. Map File Extensions to Media Types in the web.xml File

Summary

Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiate the
representation's media type or language. RESTEasy can map file name suffixes to media types and
languages to deal with this issue. Follow these steps to map media types to file extensions, in the
web.xml file.

Procedure 15.4. Map Media Types to File Extensions

1. Open the web.xml file for the application in a text editor.

2. Add the context-param resteasy.media.type.mappings to the file, inside the web-app tags:

<context-param>
 <param-name>resteasy.media.type.mappings</param-name>
</context-param>

3. Configure the parameter values. The mappings form a comma delimited list. Each mapping is
delimited by a ::

Example 15.16. Example Mapping

Report a bug

15.10.2. Map File Extensions to Languages in the web.xml File

Summary

Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiate the
representation's media type or language. RESTEasy can map file name suffixes to media types and
languages to deal with this issue. Follow these steps to map languages to file extensions, in the web.xml
file.

Procedure 15.5. Map File Extensions to Languages in the web.xml File

<context-param>
 <param-name>resteasy.media.type.mappings</param-name>
 <param-value>html : text/html, json : application/json, xml : application/xml</param-
value>
</context-param>

Development Guide

416

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2792-741817+%5BLatest%5D&comment=Title%3A+Convert+String+Based+%40*Param+Annotations+to+Objects%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2792-741817+06+Feb+2015+01%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5416-591696+%5BLatest%5D&comment=Title%3A+Map+File+Extensions+to+Media+Types+in+the+web.xml+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5416-591696+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 15.5. Map File Extensions to Languages in the web.xml File

1. Open the web.xml file for the application in a text editor.

2. Add the context-param resteasy.language.mappings to the file, inside the web-app tags:

<context-param>
 <param-name>resteasy.language.mappings</param-name>
</context-param>

3. Configure the parameter values. The mappings form a comma delimited list. Each mapping is
delimited by a ::

Example 15.17. Example Mapping

Report a bug

15.10.3. RESTEasy Supported Media Types

Table 15.4. Media Types

Media Type Java Type

application/*+xml, text/*+xml, application/*+json,
application/*+fastinfoset, application/atom+*

JaxB annotated classes

application/*+xml, text/*+xml org.w3c.dom.Document

/ java.lang.String

/ java.io.InputStream

text/plain primitives, java.lang.String, or any type that has a
String constructor, or static valueOf(String) method
for input, toString() for output

/ javax.activation.DataSource

/ byte[]

/ java.io.File

application/x-www-form-urlencoded javax.ws.rs.core.MultivaluedMap

<context-param>
 <param-name>resteasy.language.mappings</param-name>
 <param-value> en : en-US, es : es, fr : fr</param-name>
</context-param>

CHAPTER 15. JAX-RS WEB SERVICES

417

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5944-591719+%5BLatest%5D&comment=Title%3A+Map+File+Extensions+to+Languages+in+the+web.xml+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5944-591719+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

15.11. RESTEASY JAVASCRIPT API

15.11.1. About the RESTEasy JavaScript API

RESTEasy can generate a JavaScript API that uses AJAX calls to invoke JAX-RS operations. Each JAX-
RS resource class will generate a JavaScript object of the same name as the declaring class or interface.
The JavaScript object contains each JAX-RS method as properties.

Example 15.18. Simple JAX-RS JavaScript API Example

We can use the previous JAX-RS API in JavaScript using the following code:

Each JavaScript API method takes an optional object as single parameter where each property is a
cookie, header, path, query or form parameter as identified by their name, or the API parameter
properties. The properties are available here: Section 15.11.3, “RESTEasy Javascript API Parameters” .

Report a bug

15.11.2. Enable the RESTEasy JavaScript API Servlet

Summary

The RESTEasy JavaScript API is not enabled by default. Follow these steps to enable it using the
web.xml file.

Procedure 15.6. Edit web.xml to enable RESTEasy JavaScript API

1. Open the web.xml file of the application in a text editor.

2. Add the following configuration to the file, inside the web-app tags:

<servlet>
 <servlet-name>RESTEasy JSAPI</servlet-name>

@Path("foo")
public class Foo{
 @Path("{id}")
 @GET
 public String get(@QueryParam("order") String order, @HeaderParam("X-Foo") String header,
 @MatrixParam("colour") String colour, @CookieParam("Foo-Cookie") String cookie){
 &
 }
 @POST
 public void post(String text){
 }
}

var text = Foo.get({order: 'desc', 'X-Foo': 'hello',
 colour: 'blue', 'Foo-Cookie': 123987235444});
Foo.put({$entity: text});

Development Guide

418

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1822-591649+%5BLatest%5D&comment=Title%3A+RESTEasy+Supported+Media+Types%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1822-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6102-743185+%5BLatest%5D&comment=Title%3A+About+the+RESTEasy+JavaScript+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6102-743185+16+Feb+2015+00%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 <servlet-class>org.jboss.resteasy.jsapi.JSAPIServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>RESTEasy JSAPI</servlet-name>
 <url-pattern>/URL</url-pattern>
</servlet-mapping>

Report a bug

15.11.3. RESTEasy Javascript API Parameters

Table 15.5. Parameter Properties

Property Default Value Description

$entity The entity to send as a PUT,
POST request.

$contentType The MIME type of the body entity
sent as the Content-Type header.
Determined by the @Consumes
annotation.

$accepts */* The accepted MIME types sent as
the Accept header. Determined
by the @Provides annotation.

$callback Set to a function (httpCode,
xmlHttpRequest, value) for an
asynchronous call. If not present,
the call will be synchronous and
return the value.

$apiURL Set to the base URI of the JAX-
RS endpoint, not including the last
slash.

$username If username and password are set,
they will be used for credentials
for the request.

$password If username and password are set,
they will be used for credentials
for the request.

Report a bug

15.11.4. Build AJAX Queries with the JavaScript API

Summary

The RESTEasy JavaScript API can be used to manually construct requests. This topic covers examples

CHAPTER 15. JAX-RS WEB SERVICES

419

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4921-591678+%5BLatest%5D&comment=Title%3A+Enable+the+RESTEasy+JavaScript+API+Servlet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4921-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4922-591678+%5BLatest%5D&comment=Title%3A+RESTEasy+Javascript+API+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4922-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The RESTEasy JavaScript API can be used to manually construct requests. This topic covers examples
of this behavior.

Example 15.19. The REST Object

The REST object can be used to override RESTEasy JavaScript API client behavior:

The REST object contains the following read-write properties:

apiURL

Set by default to the JAX-RS root URL. Used by every JavaScript client API functions when
constructing the requests.

log

Set to a function(string) in order to receive RESTEasy client API logs. This is useful if you want to
debug your client API and place the logs where you can see them.

Example 15.20. The REST.Request Class

The REST.Request class can be used to build custom requests:

Report a bug

15.11.5. REST.Request Class Members

Table 15.6. REST.Request Class

Member Description

// Change the base URL used by the API:
REST.apiURL = "http://api.service.com";

// log everything in a div element
REST.log = function(text){
 jQuery("#log-div").append(text);
};

var r = new REST.Request();
r.setURI("http://api.service.com/orders/23/json");
r.setMethod("PUT");
r.setContentType("application/json");
r.setEntity({id: "23"});
r.addMatrixParameter("JSESSIONID", "12309812378123");
r.execute(function(status, request, entity){
 log("Response is "+status);
});

Development Guide

420

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5415-591697+%5BLatest%5D&comment=Title%3A+Build+AJAX+Queries+with+the+JavaScript+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5415-591697+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

execute(callback) Executes the request with all the information set in
the current object. The value is passed to the
optional argument callback, not returned.

setAccepts(acceptHeader) Sets the Accept request header. Defaults to */*.

setCredentials(username, password) Sets the request credentials.

setEntity(entity) Sets the request entity.

setContentType(contentTypeHeader) Sets the Content-Type request header.

setURI(uri) Sets the request URI. This should be an absolute URI.

setMethod(method) Sets the request method. Defaults to GET.

setAsync(async) Controls whether the request should be
asynchronous. Defaults to true.

addCookie(name, value) Sets the given cookie in the current document when
executing the request. This will be persistent in the
browser.

addQueryParameter(name, value) Adds a query parameter to the URI query part.

addMatrixParameter(name, value) Adds a matrix parameter (path parameter) to the last
path segment of the request URI.

addHeader(name, value) Adds a request header.

Member Description

Report a bug

15.12. RESTEASY ASYNCHRONOUS JOB SERVICE

15.12.1. About the RESTEasy Asynchronous Job Service

The RESTEasy Asynchronous Job Service is designed to add asynchronous behavior to the HTTP
protocol. While HTTP is a synchronous protocol it does have a faint idea of asynchronous invocations.
The HTTP 1.1 response code 202, "Accepted" means that the server has received and accepted the
response for processing, but the processing has not yet been completed. The Asynchronous Job
Service builds around this.

To enable the service, refer to: Section 15.12.2, “Enable the Asynchronous Job Service” . For examples of
how the service works, refer to Section 15.12.3, “Configure Asynchronous Jobs for RESTEasy” .

Report a bug

CHAPTER 15. JAX-RS WEB SERVICES

421

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5435-591696+%5BLatest%5D&comment=Title%3A+REST.Request+Class+Members%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5435-591696+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6103-591723+%5BLatest%5D&comment=Title%3A+About+the+RESTEasy+Asynchronous+Job+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6103-591723+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

15.12.2. Enable the Asynchronous Job Service

Procedure 15.7. Modify the web.xml file

Enable the asynchronous job service in the web.xml file:

Result

The asynchronous job service has been enabled. For configuration options, refer to: Section 15.12.4,
“Asynchronous Job Service Configuration Parameters”.

Report a bug

15.12.3. Configure Asynchronous Jobs for RESTEasy

Summary

This topic covers examples of the query parameters for asynchronous jobs with RESTEasy.

WARNING

Role based security does not work with the Asynchronous Job Service, as it cannot
be implemented portably. If the Asynchronous Job Service is used, application
security must be done through XML declarations in the web.xml file instead.

IMPORTANT

While GET, DELETE, and PUT methods can be invoked asynchronously, this breaks the
HTTP 1.1 contract of these methods. While these invocations may not change the state of
the resource if invoked more than once, they do change the state of the server as new
Job entries with each invocation.

Example 15.21. The Asynch Parameter

The asynch query parameter is used to run invocations in the background. A 202 Accepted response
is returned, as well as a Location header with a URL pointing to where the response of the
background method is located.

POST http://example.com/myservice?asynch=true

The example above will return a 202 Accepted response. It will also return a Location header with a
URL pointing to where the response of the background method is located. An example of the
location header is shown below:

<context-param>
 <param-name>resteasy.async.job.service.enabled</param-name>
 <param-value>true</param-value>
</context-param>



Development Guide

422

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2968-591651+%5BLatest%5D&comment=Title%3A+Enable+the+Asynchronous+Job+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2968-591651+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

HTTP/1.1 202 Accepted
Location: http://example.com/asynch/jobs/3332334

The URI will take the form of:

/asynch/jobs/{job-id}?wait={millisconds}|nowait=true

GET, POST and DELETE operations can be performed on this URL.

GET returns the JAX-RS resource method invoked as a response if the job was completed. If
the job has not been completed, this GET will return a 202 Accepted response code. Invoking
GET does not remove the job, so it can be called multiple times.

POST does a read of the job response and removes the job if it has been completed.

DELETE is called to manually clean up the job queue.

NOTE

When the Job queue is full, it will evict the earliest job from memory
automatically, without needing to call DELETE.

Example 15.22. Wait / Nowait

The GET and POST operations allow for the maximum wait time to be defined, using the wait and
nowait query parameters. If the wait parameter is not specified, the operation will default to
nowait=true, and will not wait at all if the job is not complete. The wait parameter is defined in
milliseconds.

POST http://example.com/asynch/jobs/122?wait=3000

Example 15.23. The Oneway Parameter

RESTEasy supports fire and forget jobs, using the oneway query parameter.

POST http://example.com/myservice?oneway=true

The example above will return a 202 Accepted response, but no job will be created.

Report a bug

15.12.4. Asynchronous Job Service Configuration Parameters

Summary

The table below details the configurable context-params for the Asynchronous Job Service. These
parameters can be configured in the web.xml file.

Table 15.7. Configuration Parameters

CHAPTER 15. JAX-RS WEB SERVICES

423

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+2965-715960+%5BLatest%5D&comment=Title%3A+Configure+Asynchronous+Jobs+for+RESTEasy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2965-715960+10+Oct+2014+00%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Parameter Description

resteasy.async.job.service.max.job.results Number of job results that can be held in the memory
at any one time. Default value is 100.

resteasy.async.job.service.max.wait Maximum wait time on a job when a client is querying
for it. Default value is 300000.

resteasy.async.job.service.thread.pool.size Thread pool size of the background threads that run
the job. Default value is 100.

resteasy.async.job.service.base.path Sets the base path for the job URIs. Default value is
/asynch/jobs

Example 15.24. Example Asynchronous Jobs Configuration

<web-app>
 <context-param>
 <param-name>resteasy.async.job.service.enabled</param-name>
 <param-value>true</param-value>
 </context-param>

 <context-param>
 <param-name>resteasy.async.job.service.max.job.results</param-name>
 <param-value>100</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.max.wait</param-name>
 <param-value>300000</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.thread.pool.size</param-name>
 <param-value>100</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.base.path</param-name>
 <param-value>/asynch/jobs</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>Resteasy</servlet-name>
 <servlet-class>
 org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
 </servlet-class>
 </servlet>

 <servlet-mapping>

Development Guide

424

Report a bug

15.13. RESTEASY JAXB

15.13.1. Create a JAXB Decorator

Summary

RESTEasy's JAXB providers have a pluggable way to decorate Marshaller and Unmarshaller instances.
An annotation is created that can trigger either a Marshaller or Unmarshaller instance. This topic covers
the steps to create a JAXB decorator with RESTEasy.

Procedure 15.8. Create a JAXB Decorator with RESTEasy

1. Create the Processor Class

a. Create a class that implements DecoratorProcessor<Target, Annotation>. The target is
either the JAXB Marshaller or Unmarshaller class. The annotation is created in step two.

b. Annotate the class with @DecorateTypes, and declare the MIME Types the decorator
should decorate.

c. Set properties or values within the decorate function.

Example 15.25. Example Processor Class

2. Create the Annotation

 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

</web-app>

import org.jboss.resteasy.core.interception.DecoratorProcessor;
import org.jboss.resteasy.annotations.DecorateTypes;

import javax.xml.bind.Marshaller;
import javax.xml.bind.PropertyException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.Produces;
import java.lang.annotation.Annotation;

@DecorateTypes({"text/*+xml", "application/*+xml"})
public class PrettyProcessor implements DecoratorProcessor<Marshaller, Pretty>
{
 public Marshaller decorate(Marshaller target, Pretty annotation,
 Class type, Annotation[] annotations, MediaType mediaType)
 {
 target.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
 }
}

CHAPTER 15. JAX-RS WEB SERVICES

425

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6614-591747+%5BLatest%5D&comment=Title%3A+Asynchronous+Job+Service+Configuration+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6614-591747+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

a. Create a custom interface that is annotated with the @Decorator annotation.

b. Declare the processor and target for the @Decorator annotation. The processor is created
in step one. The target is either the JAXB Marshaller or Unmarshaller class.

Example 15.26. Example Annotation

3. Add the annotation created in step two to a function so that either the input or output is
decorated when it is marshalled.

Result

The JAXB decorator has been created and applied within the JAX-RS web service.

Report a bug

15.13.2. JAXB and XML Provider

RESTEasy facilitates JAXB provider support for XML.

@XmlHeader and @Stylesheet

RESTEasy provides setting an XML header using the
@org.jboss.resteasy.annotations.providers.jaxb.XmlHeader annotation. For example:

import org.jboss.resteasy.annotations.Decorator;

@Target({ElementType.TYPE, ElementType.METHOD, ElementType.PARAMETER,
ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Decorator(processor = PrettyProcessor.class, target = Marshaller.class)
public @interface Pretty {}

@XmlRootElement
public static class Thing
{
 private String name;

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }
}

@Path("/test")
public static class TestService
{

 @GET
 @Path("/header")

Development Guide

426

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6099-591723+%5BLatest%5D&comment=Title%3A+Create+a+JAXB+Decorator%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6099-591723+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The @XmlHeader ensures that the XML output has an XML-stylesheet header.

RESTEasy has a convenience annotation for stylesheet headers. For example:

Report a bug

15.13.3. JAXB and JSON Provider

RESTEasy allows you to marshal JAXB annotated POJOs to and from JSON. This provider wraps the
Jettison JSON library to accomplish this task. For more information about Jettison and how it works,
refer to: http://jettison.codehaus.org/.

 @Produces("application/xml")
 @XmlHeader("<?xml-stylesheet type='text/xsl' href='${baseuri}foo.xsl' ?>")
 public Thing get()
 {
 Thing thing = new Thing();
 thing.setName("bill");
 return thing;
 }
}

@XmlRootElement
public static class Thing
{
 private String name;

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }
}

@Path("/test")
public static class TestService
{

 @GET
 @Path("/stylesheet")
 @Produces("application/xml")
 @Stylesheet(type="text/css", href="${basepath}foo.xsl")
 @Junk
 public Thing getStyle()
 {
 Thing thing = new Thing();
 thing.setName("bill");
 return thing;
 }
}

CHAPTER 15. JAX-RS WEB SERVICES

427

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44664-766637+%5BLatest%5D&comment=Title%3A+JAXB+and+XML+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44664-766637+04+Aug+2015+07%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jettison.codehaus.org/

Jettison has two mapping formats. One is BadgerFish the other is a Jettison mapped convention
format. The mapped convention is the default. For more details on the JAXB + JSON Provider
integration with Jettison, refer to:
http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html

Report a bug

15.14. RESTEASY ATOM SUPPORT

15.14.1. About the Atom API and Provider

The RESTEasy Atom API and Provider is a simple object model that RESTEasy defines to represent
Atom. The main classes for the API are in the org.jboss.resteasy.plugins.providers.atom package.
RESTEasy uses JAXB to marshal and unmarshal the API. The provider is JAXB based, and is not limited
to sending atom objects using XML. All JAXB providers that RESTEasy has can be reused by the Atom
API and provider, including JSON. Refer to the javadocs available from the Customer Service Portal for
more information on the API.

<dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-jettison-provider</artifactId>
 <version>${version.org.jboss.resteasy}</version>
 <scope>provided</scope>
</dependency>

import org.jboss.resteasy.plugins.providers.atom.Content;
import org.jboss.resteasy.plugins.providers.atom.Entry;
import org.jboss.resteasy.plugins.providers.atom.Feed;
import org.jboss.resteasy.plugins.providers.atom.Link;
import org.jboss.resteasy.plugins.providers.atom.Person;

@Path("atom")
public class MyAtomService
{

 @GET
 @Path("feed")
 @Produces("application/atom+xml")
 public Feed getFeed() throws URISyntaxException
 {
 Feed feed = new Feed();
 feed.setId(new URI("http://example.com/42"));
 feed.setTitle("My Feed");
 feed.setUpdated(new Date());
 Link link = new Link();
 link.setHref(new URI("http://localhost"));
 link.setRel("edit");
 feed.getLinks().add(link);
 feed.getAuthors().add(new Person("John Brown"));
 Entry entry = new Entry();
 entry.setTitle("Hello World");
 Content content = new Content();
 content.setType(MediaType.TEXT_HTML_TYPE);
 content.setText("Nothing much");

Development Guide

428

http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44665-770629+%5BLatest%5D&comment=Title%3A+JAXB+and+JSON+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44665-770629+24+Sep+2015+05%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Report a bug

15.14.2. Using JAXB with Atom Provider

The org.jboss.resteasy.plugins.providers.atom.Content class allows you to unmarshal and marshal JAXB
annotated objects that are the body of the content. You can refer the example of sending an Entry with
a Customer object attached as the body of the entry's content.

The Content.setJAXBObject() method is used to specify the content object you are sending back to

 entry.setContent(content);
 feed.getEntries().add(entry);
 return feed;
 }
}

@XmlRootElement(namespace = "http://jboss.org/Customer")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer
{
 @XmlElement
 private String name;

 public Customer()
 {
 }

 public Customer(String name)
 {
 this.name = name;
 }

 public String getName()
 {
 return name;
 }
}

@Path("atom")
public static class AtomServer
{
 @GET
 @Path("entry")
 @Produces("application/atom+xml")
 public Entry getEntry()
 {
 Entry entry = new Entry();
 entry.setTitle("Hello World");
 Content content = new Content();
 content.setJAXBObject(new Customer("bill"));
 entry.setContent(content);
 return entry;
 }
}

CHAPTER 15. JAX-RS WEB SERVICES

429

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6849-763596+%5BLatest%5D&comment=Title%3A+About+the+Atom+API+and+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6849-763596+02+Jul+2015+01%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Java JAXB object to marshal appropriately. If you are using a different base format other than XML, i.e.
"application/atom+json", the attached JAXB object is marshalled in the same format. If you have an
atom document as your input, you can also extract JAXB objects from Content using the
Content.getJAXBObject(Class clazz) method. Here is an example of an input atom document and
extracting a Customer object from the content.

Report a bug

15.15. YAML PROVIDER

RESTEasy comes with built in support for YAML using the SnakeYAML library. To enable YAML
support, you must insert the following dependencies into the project pom file of your application:

YAML provider recognizes three mime types:

text/x-yaml

text/yaml

application/x-yaml

The following example demonstrates how to use YAML in a resource method:

@Path("atom")
public static class AtomServer
{
 @PUT
 @Path("entry")
 @Produces("application/atom+xml")
 public void putCustomer(Entry entry)
 {
 Content content = entry.getContent();
 Customer cust = content.getJAXBObject(Customer.class);
 }
}

<dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-yaml-provider</artifactId>
 <version>${version.org.jboss.resteasy}</version>
 <scope>provided</scope>
</dependency>

<dependency>
 <groupId>org.yaml</groupId>
 <artifactId>snakeyaml</artifactId>
 <version>${version.org.yaml.snakeyaml}</version>
</dependency>

import javax.ws.rs.Consumes;
 import javax.ws.rs.GET;
 import javax.ws.rs.Path;
 import javax.ws.rs.Produces;

Development Guide

430

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44396-759590+%5BLatest%5D&comment=Title%3A+Using+JAXB+with+Atom+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44396-759590+28+May+2015+02%3A25+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

15.16. EJB INTEGRATION

In order to integrate RESTEasy with EJB, you must first modify the published interfaces of your EJB.
Currently, RESTEasy only has simple portable integration with EJBs, so you must also manually
configure your RESTEasy war file.

To make an EJB function as a JAX-RS resource, you must annotate an SLSB's @Remote or @Local
interface with JAX-RS annotations:

Next, in RESTEasy's web.xml file, you must manually register the EJB with RESTEasy using the
resteasy.jndi.resources <context-param>

 @Path("/yaml")
 public class YamlResource
 {

@GET
@Produces("text/x-yaml")
public MyObject getMyObject() {
 return createMyObject();
}
...
 }

@Local
@Path("/Library")
public interface Library {
 @GET
 @Path("/books/{isbn}")
 public String getBook(@PathParam("isbn") String isbn);
}
@Stateless
public class LibraryBean implements Library {
...
}

<web-app>
 <display-name>Archetype Created Web Application</display-name>
 <context-param>
 <param-name>resteasy.jndi.resources</param-name>
 <param-value>LibraryBean/local</param-value>
 </context-param>
 <listener>
 <listener-class>org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap</listener-class>
 </listener>
 <servlet>
 <servlet-name>Resteasy</servlet-name>
 <servlet-class>org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>

CHAPTER 15. JAX-RS WEB SERVICES

431

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44655-770633+%5BLatest%5D&comment=Title%3A+YAML+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44655-770633+24+Sep+2015+06%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

15.17. JSON SUPPORT VIA JACKSON

Besides the Jettison JAXB adapter for JSON, RESTEasy also supports integration with the Jackson
project. Jackson allows you to marshal Java objects to and from JSON. It has a Java bean based model
as well as JAXB like APIs.

While Jackson comes with its own JAX-RS integration, RESTEasy expands it. In order to include it in
your project, add the following Maven dependency to your build:

For more information on JSON support via Jackson project, refer to
http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html

Report a bug

15.18. RESTEASY/SPRING INTEGRATION

15.18.1. RESTEasy/Spring integration

Prerequisites

Your application must have an existing JAX-WS service and client configuration.

Procedure 15.9. Enable the RESTEasy/Spring integration functionality

RESTEasy integrates with Spring 3.0.x.

Maven users must use the resteasy-spring artifact. Alternatively, the jar is available as a module
in JBoss EAP 6.

RESTEasy comes with its own Spring ContextLoaderListener that registers a RESTEasy specific
BeanPostProcessor that processes JAX-RS annotations when a bean is created by a
BeanFactory.This means that RESTEasy will automatically scan for @Provider and JAX-RS
resource annotations on your bean class and register them as JAX-RS resources.

Example 15.27. Edit web.xml

Add the following to your web.xml file to enable the RESTEasy/Spring integration

 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

<repository>
 <id>jboss</id>
 <url>>http://repository.jboss.org/nexus/content/groups/public/</url>
</repository>
...
<dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-jackson-provider</artifactId>
 <version>${version.org.jboss.resteasy}</version>
 <scope>provided</scope>
</dependency>

Development Guide

432

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44657-766648+%5BLatest%5D&comment=Title%3A+EJB+Integration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44657-766648+04+Aug+2015+08%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44661-770628+%5BLatest%5D&comment=Title%3A+JSON+Support+via+Jackson%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44661-770628+24+Sep+2015+05%3A36+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Add the following to your web.xml file to enable the RESTEasy/Spring integration
functionality:

The SpringContextLoaderListener must be declared after ResteasyBootstrap as it uses
ServletContext attributes initialized by it.

For more information regarding RestEasy and Spring integration, see
http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/

Report a bug

<web-app>
 <display-name>
 Archetype Created Web Application
 </display-name>
 <listener>
 <listener-class>
 org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
 </listener-class>
 </listener>

 <listener>
 <listener-class>
 org.jboss.resteasy.plugins.spring.SpringContextLoaderListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>Resteasy
 </servlet-name>
 <servlet-class>
 org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>
 Resteasy
 </servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

CHAPTER 15. JAX-RS WEB SERVICES

433

http://docs.jboss.org/resteasy/docs/2.3.7.Final/userguide/html_single/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30885-642312+%5BLatest%5D&comment=Title%3A+RESTEasy%2FSpring+integration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30885-642312+21+May+2014+11%3A36+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 16. JAX-WS WEB SERVICES

16.1. ABOUT JAX-WS WEB SERVICES

Java API for XML Web Services (JAX-WS) is an API included in the Java Enterprise Edition (EE)
platform, and is used to create Web Services. Web Services are applications designed to communicate
with each other over a network, typically exchanging information in XML or other structured text
formats. Web Services are platform-independent. A typical JAX-WS application uses a client/server
model. The server component is called a Web Service Endpoint .

JAX-WS has a counterpart for smaller and simpler Web Services, which use a protocol called JAX-RS.
JAX-RS is a protocol for Representational State Transfer , or REST. JAX-RS applications are typically
light-weight, and rely only on the HTTP protocol itself for communication. JAX-WS makes it easier to
support various Web Service oriented protocols, such as WS-Notification, WS-Addressing, WS-Policy,
WS-Security, and WS-Trust. They communicate using a specialized XML language called Simple Object
Access Protocol (SOAP), which defines a message architecture and message formats.

A JAX-WS Web Service also includes a machine-readable description of the operations it provides,
written in Web Services Description Language (WSDL) , which is a specialized XML document type.

A Web Service Endpoint consists of a class which implements WebService and WebMethod interfaces.

A Web Service Client consists of a client which depends upon several classes called stubs, which are
generated from the WSDL definition. JBoss EAP 6 includes the tools to generate the classes from
WSDL.

In a JAX-WS Web service, a formal contract is established to describe the interface that the Web
Service offers. The contract is typically written in WSDL, but may be written in SOAP messages. The
architecture of the Web Service typically addresses business requirements, such as transactions,
security, messaging, and coordination. JBoss EAP 6 provides mechanisms for handling these business
concerns.

Web Services Description Language (WSDL) is an XML-based language used to describe Web Services
and how to access them. The Web Service itself is written in Java or another programming language.
The WSDL definition consists of references to the interface, port definitions, and instructions for how
other Web Services should interact with it over a network. Web Services communicate with each other
using Simple Object Access Protocol (SOAP) . This type of Web Service contrasts with RESTful Web
Services, built using Representative State Transfer (REST) design principles. These RESTful Web
Services do not require the use of WSDL or SOAP, but rely on the structure of the HTTP protocol itself
to define how other services interact with them.

JBoss EAP 6 includes support for deploying JAX-WS Web Service endpoints. This support is provided
by JBossWS. Configuration of the Web Services subsystem, such as endpoint configuration, handler
chains, and handlers, is provided through the webservices subsystem.

Working Examples

The JBoss EAP Quickstarts include several fully-functioning JAX-WS Web Service applications. These
examples include:

wsat-simple

wsba-coordinator-completion-simple

wsba-participant-completion-simple

Development Guide

434

Report a bug

16.2. CONFIGURE THE WEBSERVICES SUBSYSTEM

Many configuration options are available for the webservices subsystem, which controls the behavior of
Web Services deployed into JBoss EAP 6. The command to modify each element in the Management
CLI script (EAP_HOME/bin/jboss-cli.sh or EAP_HOME/bin/jboss-cli.bat) is provided. Remove the
/profile=default portion of the command for a standalone server, or replace default with the name of
profile to configure.

Published Endpoint Address

You can rewrite the <soap:address> element in endpoint-published WSDL contracts. This ability can
be used to control the server address that is advertised to clients for each endpoint. Each of the
following optional elements can be modified to suit your requirements. If there is any active WS
deployment then modification of any of these elements requires a server reload.

Table 16.1. Configuration Elements for Published Endpoint Addresses

Element Description CLI Command

modify-wsdl-address Whether to always modify the
WSDL address. If true, the
content of <soap:address> will
always be overwritten. If false, the
content of <soap:address> will
only be overwritten if it is not a
valid URL. The values used will be
the wsdl-host, wsdl-port, and
wsdl-secure-port described
below.

/profile=default/subsystem=
webservices/:write-
attribute(name=modify-wsdl-
address,value=true)

wsdl-host The hostname / IP address to be
used for rewriting
<soap:address>. If wsdl-host
is set to the string
jbossws.undefined.host, the
requester's host is used when
rewriting the <soap:address>.

/profile=default/subsystem=
webservices/:write-
attribute(name=wsdl-
host,value=10.1.1.1)

wsdl-port An integer which explicitly defines
the HTTP port that will be used
for rewriting the SOAP address. If
undefined, the HTTP port is
identified by querying the list of
installed HTTP connectors.

/profile=default/subsystem=
webservices/:write-
attribute(name=wsdl-
port,value=8080)

wsdl-secure-port An integer which explicitly defines
the HTTPS port that will be used
for rewriting the SOAP address. If
undefined, the HTTPS port is
identified by querying the list of
installed HTTPS connectors.

/profile=default/subsystem=
webservices/:write-
attribute(name=wsdl-secure-
port,value=8443)

Predefined Endpoint Configurations

You can define endpoint configurations which can be referenced by endpoint implementations. One way

CHAPTER 16. JAX-WS WEB SERVICES

435

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8420-679140+%5BLatest%5D&comment=Title%3A+About+JAX-WS+Web+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8420-679140+25+Jun+2014+07%3A22+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

You can define endpoint configurations which can be referenced by endpoint implementations. One way
this might be used is to add a given handler to any WS endpoint that is marked with a given endpoint
configuration with the annotation @org.jboss.ws.api.annotation.EndpointConfig.

JBoss EAP 6 includes a default Standard-Endpoint-Config. An example of a custom configuration,
Recording-Endpoint-Config, is also included. This provides an example of a recording handler. The
Standard-Endpoint-Config is automatically used for any endpoint which is not associated with any
other configuration.

To read the Standard-Endpoint-Config using the Management CLI, use the following command:

/profile=default/subsystem=webservices/endpoint-config=Standard-Endpoint-Config/:read-
resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)

Endpoint Configurations

An endpoint configuration, referred to as an endpoint-config in the Management API, includes a pre-
handler-chain, post-handler-chain and some properties, which are applied to a particular endpoint.
The following commands read and add and endpoint config.

Example 16.1. Read an Endpoint Config

/profile=default/subsystem=webservices/endpoint-config=Recording-Endpoint-Config:read-
resource

Example 16.2. Add an Endpoint Config

/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-Config:add

Handler Chains

Each endpoint config may be associated with PRE and POST handler chains. Each handler chain may
include JAXWS-compliant handlers. For outbound messages, PRE handler chain handlers are executed
before any handler attached to the endpoints using standard JAXWS means, such as the
@HandlerChain annotation. POST handler chain handlers are executed after usual endpoint handlers.
For inbound messages, the opposite applies. JAX-WS is a standard API for XML-based web services,
and is documented at http://jcp.org/en/jsr/detail?id=224.

A handler chain may also include a protocol-bindings attribute, which sets the protocols which trigger
the chain to start.

Example 16.3. Read a Handler Chain

/profile=default/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-
chain=recording-handlers:read-resource

Example 16.4. Add a Handler Chain

/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-
chain=my-handlers:add(protocol-bindings="##SOAP11_HTTP")

Development Guide

436

http://jcp.org/en/jsr/detail?id=224

Handlers

A JAXWS handler is a child element handler within a handler chain. The handler takes a class attribute,
which is the fully-qualified classname of the handler class. When the endpoint is deployed, an instance
of that class is created for each referencing deployment. Either the deployment class loader or the class
loader for module org.jboss.as.webservices.server.integration must be able to load the handler class.

Example 16.5. Read a Handler

/profile=default/subsystem=webservices/endpoint-config=Recording-Endpoint-Config/pre-handler-
chain=recording-handlers/handler=RecordingHandler:read-resource

Example 16.6. Add a Handler

/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-Config/post-handler-
chain=my-handlers/handler=foo-
handler:add(class="org.jboss.ws.common.invocation.RecordingServerHandler")

Web Services Runtime Information

You can view runtime information about Web Services, such as the web context and the WSDL URL, by
querying the endpoints themselves. You can use the * character to query all endpoints at once. The
following examples show the command for a both a server in a managed domain and for a standalone
server.

Example 16.7. View Runtime Information about All Web Service Endpoints on A Server in a
Managed Domain

This command displays information about all endpoints on a server named server-one, which is
hosted on physical host master and running in a managed domain.

/host=master/server=server-one/deployment="*"/subsystem=webservices/endpoint="*":read-
resource

Example 16.8. View Runtime Information about All Web Service Endpoints on a Standalone
Server

This command displays information about all Web Service endpoints on a standalone server.

/deployment="*"/subsystem=webservices/endpoint="*":read-resource

Example 16.9. Example Endpoint Information

The following is an example displaying hypothetical output.

{
 "outcome" => "success",

CHAPTER 16. JAX-WS WEB SERVICES

437

 "result" => [{
 "address" => [
 ("deployment" => "jaxws-samples-handlerchain.war"),
 ("subsystem" => "webservices"),
 ("endpoint" => "jaxws-samples-handlerchain:TestService")
],
 "outcome" => "success",
 "result" => {
 "class" => "org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",
 "context" => "jaxws-samples-handlerchain",
 "name" => "TestService",
 "type" => "JAXWS_JSE",
 "wsdl-url" => "http://localhost:8080/jaxws-samples-handlerchain?wsdl"
 }
 }]
}

Report a bug

16.3. CONFIGURE THE HTTP TIMEOUT PER APPLICATION

The HTTP session timeout defines the period after which a HTTP session is considered to have become
invalid because there was no activity within the specified period.

The HTTP session timeout can be configured in several places. In order of precedence these are:

Application - defined in the application's web.xml configuration file.

Server - specified via the default-session-timeout attribute.

Default - 30 minutes.

Procedure 16.1. Configure the HTTP Timeout per Application

1. Edit the application's WEB-INF/web.xml file.

2. Add the following configuration XML to the file, changing 30 to the desired timeout (in minutes).

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

3. If you modified the WAR file, redeploy the application. If you exploded the WAR file, no further
action is required because JBoss EAP will automatically undeploy and redeploy the application.

Report a bug

16.4. JAX-WS WEB SERVICE ENDPOINTS

16.4.1. About JAX-WS Web Service Endpoints

This topic is an overview of JAX-WS web service endpoints and accompanying concepts. A JAX-WS
Web Service endpoint is the server component of a Web Service. Clients and other Web Services

Development Guide

438

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8421-765001+%5BLatest%5D&comment=Title%3A+Configure+the+webservices+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8421-765001+14+Jul+2015+11%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42090-723825+%5BLatest%5D&comment=Title%3A+Configure+the+HTTP+Timeout+per+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42090-723825+04+Nov+2014+20%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

communicate it over the HTTP protocol using an XML language called Simple Object Access Protocol
(SOAP). The endpoint itself is deployed into the JBoss EAP 6 container.

WSDL descriptors can be created in one of two ways:

1. You can write WSDL descriptors manually.

2. You can use JAX-WS annotations that create the WSDL descriptors automatically for you. This
is the most common method for creating WSDL descriptors.

An endpoint implementation bean is annotated with JAX-WS annotations and deployed to the server.
The server automatically generates and publishes the abstract contract in WSDL format for client
consumption. All marshalling and unmarshalling is delegated to the Java Architecture for XML Binding
(JAXB) service.

The endpoint itself may be a POJO (Plain Old Java Object) or a Java EE Web Application. You can also
expose endpoints using an EJB3 stateless session bean. It is packaged into a Web Archive (WAR) file.
The specification for packaging the endpoint, called a Java Service Endpoint (JSE) is defined in JSR-181,
which can be found at http://jcp.org/aboutJava/communityprocess/mrel/jsr181/index2.html.

Development Requirements

A Web Service must fulfill the requirements of the JAX-WS API and the Web Services metadata
specification at http://www.jcp.org/en/jsr/summary?id=181. A valid implementation meets the following
requirements:

It contains a javax.jws.WebService annotation.

All method parameters and return types are compatible with the JAXB 2.0 specification, JSR-
222. Refer to http://www.jcp.org/en/jsr/summary?id=222 for more information.

Example 16.10. Example POJO Endpoint

Example 16.11. Example Web Services Endpoint

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class JSEBean01
{
 @WebMethod
 public String echo(String input)
 {
 ...
 }
}

<web-app ...>
 <servlet>
 <servlet-name>TestService</servlet-name>
 <servlet-class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>TestService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

CHAPTER 16. JAX-WS WEB SERVICES

439

http://jcp.org/aboutJava/communityprocess/mrel/jsr181/index2.html
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222

Example 16.12. Exposing an Endpoint in an EJB

This EJB3 stateless session bean exposes the same method on the remote interface and as an
endpoint operation.

Endpoint Providers

JAX-WS services typically implement a Java service endpoint interface (SEI), which may be mapped
from a WSDL port type, either directly or using annotations. This SEI provides a high-level abstraction
which hides the details between Java objects and their XML representations. However, in some cases,
services need the ability to operate at the XML message level. The endpoint Provider interface
provides this functionality to Web Services which implement it.

Consuming and Accessing the Endpoint

After you deploy your Web Service, you can consume the WSDL to create the component stubs which
will be the basis for your application. Your application can then access the endpoint to do its work.

Working Examples

The JBoss EAP Quickstarts include several fully-functioning JAX-WS Web Service applications. These
examples include:

wsat-simple

wsba-coordinator-completion-simple

wsba-participant-completion-simple

Report a bug

16.4.2. Write and Deploy a JAX-WS Web Service Endpoint

Introduction

</web-app>

@Stateless
@Remote(EJB3RemoteInterface.class)
@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class EJB3Bean01 implements EJB3RemoteInterface
{
 @WebMethod
 public String echo(String input)
 {
 ...
 }
}

Development Guide

440

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8793-679964+%5BLatest%5D&comment=Title%3A+About+JAX-WS+Web+Service+Endpoints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8793-679964+27+Jun+2014+09%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This topic discusses the development of a simple JAX-WS service endpoint, which is the server-side
component, which responds to requests from JAX-WS clients and publishes the WSDL definition for
itself. For more in-depth information about JAX-WS service endpoints, refer to Section 16.6.2, “JAX-
WS Common API Reference” and the API documentation bundle in Javadoc format, distributed with
JBoss EAP 6.

Development Requirements

A Web Service must fulfill the requirements of the JAXWS API and the Web Services meta data
specification at http://www.jcp.org/en/jsr/summary?id=181. A valid implementation meets the following
requirements:

It contains a javax.jws.WebService annotation.

All method parameters and return types are compatible with the JAXB 2.0 specification, JSR-
222. Refer to http://www.jcp.org/en/jsr/summary?id=222 for more information.

Example 16.13. Example Service Implementation

Example 16.14. Example XML Payload

The following is an example of the DiscountRequest class which is used by the ProfileMgmtBean
bean in the previous example. The annotations are included for verbosity. Typically, the JAXB
defaults are reasonable and do not need to be specified.

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

@Stateless
@WebService(
 name="ProfileMgmt",
 targetNamespace = "http://org.jboss.ws/samples/retail/profile",
 serviceName = "ProfileMgmtService")
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
public class ProfileMgmtBean {

 @WebMethod
 public DiscountResponse getCustomerDiscount(DiscountRequest request) {
 return new DiscountResponse(request.getCustomer(), 10.00);
 }
}

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlType;

CHAPTER 16. JAX-WS WEB SERVICES

441

http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222

More complex mappings are possible. Refer to the JAXB API specification at https://jaxb.java.net/
for more information.

Package Your Deployment

The implementation class is wrapped in a JAR deployment. Any metadata required for deployment is
taken from the annotations on the implementation class and the service endpoint interface. Deploy the
JAR using the Management CLI or the Management Interface, and the HTTP endpoint is created
automatically.

The following listing shows an example of the correct structure for JAR deployment of an EJB Web
Service.

Example 16.15. Example JAR Structure for a Web Service Deployment

[user@host ~]$ jar -tf jaxws-samples-retail.jar
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class
org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtBean.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class
org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

import org.jboss.test.ws.jaxws.samples.retail.Customer;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(
 name = "discountRequest",
 namespace="http://org.jboss.ws/samples/retail/profile",
 propOrder = { "customer" }
)
public class DiscountRequest {

 protected Customer customer;

 public DiscountRequest() {
 }

 public DiscountRequest(Customer customer) {
 this.customer = customer;
 }

 public Customer getCustomer() {
 return customer;
 }

 public void setCustomer(Customer value) {
 this.customer = value;
 }

}

Development Guide

442

https://jaxb.java.net/

Report a bug

16.5. JAX-WS WEB SERVICE CLIENTS

16.5.1. Consume and Access a JAX-WS Web Service

After creating a Web Service endpoint, either manually or using JAX-WS annotations, you can access its
WSDL, which can be used to create the basic client application which will communicate with the Web
Service. The process of generating Java code from the published WSDL is called consuming the Web
service. This happens in the following phases:

1. Create the client artifacts.

2. Construct a service stub.

Create the Client Artifacts

Before you can create client artifacts, you need to create your WSDL contract. The following WSDL
contract is used for the examples presented in the rest of this topic.

The examples below rely on having this WSDL contract in the ProfileMgmtService.wsdl file.

Example 16.16. Example WSDL Contract

<definitions
 name='ProfileMgmtService'
 targetNamespace='http://org.jboss.ws/samples/retail/profile'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:ns1='http://org.jboss.ws/samples/retail'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:tns='http://org.jboss.ws/samples/retail/profile'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <types>

 <xs:schema targetNamespace='http://org.jboss.ws/samples/retail'
 version='1.0' xmlns:xs='http://www.w3.org/2001/XMLSchema'>
 <xs:complexType name='customer'>
 <xs:sequence>
 <xs:element minOccurs='0' name='creditCardDetails' type='xs:string'/>
 <xs:element minOccurs='0' name='firstName' type='xs:string'/>
 <xs:element minOccurs='0' name='lastName' type='xs:string'/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

 <xs:schema
 targetNamespace='http://org.jboss.ws/samples/retail/profile'
 version='1.0'
 xmlns:ns1='http://org.jboss.ws/samples/retail'
 xmlns:tns='http://org.jboss.ws/samples/retail/profile'
 xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:import namespace='http://org.jboss.ws/samples/retail'/>

CHAPTER 16. JAX-WS WEB SERVICES

443

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8422-734936+%5BLatest%5D&comment=Title%3A+Write+and+Deploy+a+JAX-WS+Web+Service+Endpoint%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8422-734936+08+Jan+2015+09%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 <xs:element name='getCustomerDiscount'
 nillable='true' type='tns:discountRequest'/>
 <xs:element name='getCustomerDiscountResponse'
 nillable='true' type='tns:discountResponse'/>
 <xs:complexType name='discountRequest'>
 <xs:sequence>
 <xs:element minOccurs='0' name='customer' type='ns1:customer'/>

 </xs:sequence>
 </xs:complexType>
 <xs:complexType name='discountResponse'>
 <xs:sequence>
 <xs:element minOccurs='0' name='customer' type='ns1:customer'/>
 <xs:element name='discount' type='xs:double'/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

 </types>

 <message name='ProfileMgmt_getCustomerDiscount'>
 <part element='tns:getCustomerDiscount' name='getCustomerDiscount'/>
 </message>
 <message name='ProfileMgmt_getCustomerDiscountResponse'>
 <part element='tns:getCustomerDiscountResponse'
 name='getCustomerDiscountResponse'/>
 </message>
 <portType name='ProfileMgmt'>
 <operation name='getCustomerDiscount'
 parameterOrder='getCustomerDiscount'>

 <input message='tns:ProfileMgmt_getCustomerDiscount'/>
 <output message='tns:ProfileMgmt_getCustomerDiscountResponse'/>
 </operation>
 </portType>
 <binding name='ProfileMgmtBinding' type='tns:ProfileMgmt'>
 <soap:binding style='document'
 transport='http://schemas.xmlsoap.org/soap/http'/>
 <operation name='getCustomerDiscount'>
 <soap:operation soapAction=''/>
 <input>

 <soap:body use='literal'/>
 </input>
 <output>
 <soap:body use='literal'/>
 </output>
 </operation>
 </binding>
 <service name='ProfileMgmtService'>
 <port binding='tns:ProfileMgmtBinding' name='ProfileMgmtPort'>

 <soap:address
 location='SERVER:PORT/jaxws-samples-retail/ProfileMgmtBean'/>
 </port>

Development Guide

444

NOTE

If you use JAX-WS annotations to create your Web Service endpoint, the WSDL contract
is generated automatically, and you only need its URL. You can get this URL from the
Webservices section of the Runtime section of the web-based Management Console,
after the endpoint is deployed.

The wsconsume.sh or wsconsume.bat tool is used to consume the abstract contract (WSDL) and
produce annotated Java classes and optional sources that define it. The command is located in the
EAP_HOME/bin/ directory of the JBoss EAP 6 installation.

Example 16.17. Syntax of the wsconsume.sh Command

[user@host bin]$./wsconsume.sh --help
WSConsumeTask is a cmd line tool that generates portable JAX-WS artifacts from a WSDL file.

usage: org.jboss.ws.tools.cmd.WSConsume [options] <wsdl-url>

options:
 -h, --help Show this help message
 -b, --binding=<file> One or more JAX-WS or JAXB binding files
 -k, --keep Keep/Generate Java source
 -c --catalog=<file> Oasis XML Catalog file for entity resolution
 -p --package=<name> The target package for generated source
 -w --wsdlLocation=<loc> Value to use for @WebService.wsdlLocation
 -o, --output=<directory> The directory to put generated artifacts
 -s, --source=<directory> The directory to put Java source
 -t, --target=<2.0|2.1|2.2> The JAX-WS specification target
 -q, --quiet Be somewhat more quiet
 -v, --verbose Show full exception stack traces
 -l, --load-consumer Load the consumer and exit (debug utility)
 -e, --extension Enable SOAP 1.2 binding extension
 -a, --additionalHeaders Enable processing of implicit SOAP headers
 -n, --nocompile Do not compile generated sources

The following command generates the source .java files listed in the output, from the
ProfileMgmtService.wsdl file. The sources use the directory structure of the package, which is
specified with the -p switch.

[user@host bin]$ wsconsume.sh -k -p org.jboss.test.ws.jaxws.samples.retail.profile
ProfileMgmtService.wsdl
output/org/jboss/test/ws/jaxws/samples/retail/profile/Customer.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.java

 </service>
</definitions>

CHAPTER 16. JAX-WS WEB SERVICES

445

output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/package-info.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/Customer.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

Both .java source files and compiled .class files are generated into the output/ directory within the
directory where you run the command.

Table 16.2. Descriptions of Artifacts Created by wsconsume.sh

File Description

ProfileMgmt.java Service endpoint interface.

Customer.java Custom data type.

Discount*.java Custom data types.

ObjectFactory.java JAXB XML registry.

package-info.java JAXB package annotations.

ProfileMgmtService.java Service factory.

The wsconsume.sh command generates all custom data types (JAXB annotated classes), the service
endpoint interface and a service factory class. These artifacts are used to build web service client
implementations.

Construct a Service Stub

Web service clients use service stubs to abstract the details of a remote web service invocation. To a
client application, a WS invocation looks like an invocation of any other business component. In this case
the service endpoint interface acts as the business interface, and a service factory class is not used to
construct it as a service stub.

Example 16.18. Constructing a Service Stub and Accessing the Endpoint

The following example first creates a service factory using the WSDL location and the service name.
Next, it uses the service endpoint interface created by the wsconsume.sh command to build the
service stub. Finally, the stub can be used just as any other business interface would be.

You can find the WSDL URL for your endpoint in the web-based Management Console. Choose the
Runtime menu item in the top bar then the Webservices entry under Subsystems in the left pane.
View the Attributes tab to review your deployments details.

import javax.xml.ws.Service;
[...]
Service service = Service.create(

Development Guide

446

Report a bug

16.5.2. Develop a JAX-WS Client Application

This topic discusses JAX-WS Web Service clients in general. The client communicates with, and
requests work from, the JAX-WS endpoint, which is deployed in the Java Enterprise Edition 6 container.
For detailed information about the classes, methods, and other implementation details mentioned
below, refer to Section 16.6.2, “JAX-WS Common API Reference” and the relevant sections of the
Javadocs bundle included with JBoss EAP 6.

Service

Overview

A Service is an abstraction which represents a WSDL service. A WSDL service is a collection of
related ports, each of which includes a port type bound to a particular protocol and a particular
endpoint address.

Usually, the Service is generated when the rest of the component stubs are generated from an
existing WSDL contract. The WSDL contract is available via the WSDL URL of the deployed
endpoint, or can be created from the endpoint source using the wsprovide.sh command in the
EAP_HOME/bin/ directory.

This type of usage is referred to as the static use case. In this case, you create instances of the
Service class which is created as one of the component stubs.

You can also create the service manually, using the Service.create method. This is referred to as the
dynamic use case.

Usage

Static Use Case

The static use case for a JAX-WS client assumes that you already have a WSDL contract. This
may be generated by an external tool or generated by using the correct JAX-WS annotations
when you create your JAX-WS endpoint.

To generate your component stubs, you use the wsconsume.sh or wsconsume.bat script which
is included in EAP_HOME/bin/. The script takes the WSDL URL or file as a parameter, and
generates multiple of files, structured in a directory tree. The source and class files representing
your Service are named CLASSNAME_Service.java and CLASSNAME_Service.class,
respectively.

The generated implementation class has two public constructors, one with no arguments and one
with two arguments. The two arguments represent the WSDL location (a java.net.URL) and the
service name (a javax.xml.namespace.QName) respectively.

The no-argument constructor is the one used most often. In this case the WSDL location and

new URL("http://example.org/service?wsdl"),
new QName("MyService")
);
ProfileMgmt profileMgmt = service.getPort(ProfileMgmt.class);

// Use the service stub in your application

CHAPTER 16. JAX-WS WEB SERVICES

447

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8423-764434+%5BLatest%5D&comment=Title%3A+Consume+and+Access+a+JAX-WS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8423-764434+09+Jul+2015+17%3A01+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The no-argument constructor is the one used most often. In this case the WSDL location and
service name are those found in the WSDL. These are set implicitly from the
@WebServiceClient annotation that decorates the generated class.

Example 16.19. Example Generated Service Class

Dynamic Use Case

In the dynamic case, no stubs are generated automatically. Instead, a web service client uses the
Service.create method to create Service instances. The following code fragment illustrates this
process.

Example 16.20. Creating Services Manually

Handler Resolver

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers.
These handlers extend the capabilities of a JAX-WS runtime system. A Service instance provides
access to a HandlerResolver via a pair of getHandlerResolver and setHandlerResolver methods
that can configure a set of handlers on a per-service, per-port or per-protocol binding basis.

When a Service instance creates a proxy or a Dispatch instance, the handler resolver currently
registered with the service creates the required handler chain. Subsequent changes to the handler
resolver configured for a Service instance do not affect the handlers on previously created proxies
or Dispatch instances.

Executor

@WebServiceClient(name="StockQuoteService",
targetNamespace="http://example.com/stocks",
wsdlLocation="http://example.com/stocks.wsdl")
public class StockQuoteService extends javax.xml.ws.Service
{
 public StockQuoteService()
 {
 super(new URL("http://example.com/stocks.wsdl"), new
QName("http://example.com/stocks", "StockQuoteService"));
 }

 public StockQuoteService(String wsdlLocation, QName serviceName)
 {
 super(wsdlLocation, serviceName);
 }

 ...
}

URL wsdlLocation = new URL("http://example.org/my.wsdl");
QName serviceName = new QName("http://example.org/sample", "MyService");
Service service = Service.create(wsdlLocation, serviceName);

Development Guide

448

Service instances can be configured with a java.util.concurrent.Executor. The Executor invokes
any asynchronous callbacks requested by the application. The setExecutor and getExecutor
methods of Service can modify and retrieve the Executor configured for a service.

Dynamic Proxy

A dynamic proxy is an instance of a client proxy using one of the getPort methods provided in the
Service. The portName specifies the name of the WSDL port the service uses. The
serviceEndpointInterface specifies the service endpoint interface supported by the created dynamic
proxy instance.

Example 16.21. getPort Methods

The Service Endpoint Interface is usually generated using the wsconsume.sh command, which parses
the WSDL and creates Java classes from it.

A typed method which returns a port is also provided. These methods also return dynamic proxies that
implement the SEI. See the following example.

Example 16.22. Returning the Port of a Service

@WebServiceRef

The @WebServiceRef annotation declares a reference to a Web Service. It follows the resource pattern
shown by the javax.annotation.Resource annotation defined in http://www.jcp.org/en/jsr/summary?
id=250.

Use Cases for @WebServiceRef

public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)
public <T> T getPort(Class<T> serviceEndpointInterface)

@WebServiceClient(name = "TestEndpointService", targetNamespace =
"http://org.jboss.ws/wsref",
 wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-webserviceref?wsdl")

public class TestEndpointService extends Service
{
 ...

 public TestEndpointService(URL wsdlLocation, QName serviceName) {
 super(wsdlLocation, serviceName);
 }

 @WebEndpoint(name = "TestEndpointPort")
 public TestEndpoint getTestEndpointPort()
 {
 return (TestEndpoint)super.getPort(TESTENDPOINTPORT, TestEndpoint.class);
 }
}

CHAPTER 16. JAX-WS WEB SERVICES

449

http://www.jcp.org/en/jsr/summary?id=250

You can use it to define a reference whose type is a generated Service class. In this case, the
type and value element each refer to the generated Service class type. Moreover, if the
reference type can be inferred by the field or method declaration the annotation is applied to,
the type and value elements may (but are not required to) have the default value of
Object.class. If the type cannot be inferred, then at least the type element must be present
with a non-default value.

You can use it to define a reference whose type is an SEI. In this case, the type element may
(but is not required to) be present with its default value if the type of the reference can be
inferred from the annotated field or method declaration. However, the value element must
always be present and refer to a generated service class type, which is a subtype of
javax.xml.ws.Service. The wsdlLocation element, if present, overrides the WSDL location
information specified in the @WebService annotation of the referenced generated service
class.

Example 16.23. @WebServiceRef Examples

Dispatch

XML Web Services use XML messages for communication between the endpoint, which is deployed in
the Java EE container, and any clients. The XML messages use an XML language called Simple Object
Access Protocol (SOAP). The JAX-WS API provides the mechanisms for the endpoint and clients to
each be able to send and receive SOAP messages. Marshalling is the process of converting a Java
Object into a SOAP XML message. Unmarshalling is the process of converting the SOAP XML message
back into a Java Object.

In some cases, you need access to the raw SOAP messages themselves, rather than the result of the
conversion. The Dispatch class provides this functionality. Dispatch operates in one of two usage
modes, which are identified by one of the following constants.

javax.xml.ws.Service.Mode.MESSAGE - This mode directs client applications to work directly
with protocol-specific message structures. When used with a SOAP protocol binding, a client
application works directly with a SOAP message.

javax.xml.ws.Service.Mode.PAYLOAD - This mode causes the client to work with the payload
itself. For instance, if it is used with a SOAP protocol binding, a client application would work
with the contents of the SOAP body rather than the entire SOAP message.

Dispatch is a low-level API which requires clients to structure messages or payloads as XML, with strict
adherence to the standards of the individual protocol and a detailed knowledge of message or payload
structure. Dispatch is a generic class which supports input and output of messages or message payloads
of any type.

Example 16.24. Dispatch Usage

public class EJB3Client implements EJB3Remote
{
 @WebServiceRef
 public TestEndpointService service4;

 @WebServiceRef
 public TestEndpoint port3;

Service service = Service.create(wsdlURL, serviceName);
Dispatch dispatch = service.createDispatch(portName, StreamSource.class, Mode.PAYLOAD);

Development Guide

450

Asynchronous Invocations

The BindingProvider interface represents a component that provides a protocol binding which clients
can use. It is implemented by proxies and is extended by the Dispatch interface.

BindingProvider instances may provide asynchronous operation capabilities.Asynchronous operation
invocations are decoupled from the BindingProvider instance at invocation time. The response context
is not updated when the operation completes. Instead, a separate response context is made available
using the Response interface.

Example 16.25. Example Asynchronous Invocation

@Oneway Invocations

The @Oneway annotation indicates that the given web method takes an input message but returns no
output message. Usually, a @Oneway method returns the thread of control to the calling application
before the business method is executed.

Example 16.26. Example @Oneway Invocation

String payload = "<ns1:ping xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));

payload = "<ns1:feedback xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
Source retObj = (Source)dispatch.invoke(new StreamSource(new StringReader(payload)));

public void testInvokeAsync() throws Exception
{
 URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-samples-asynchronous?
wsdl");
 QName serviceName = new QName(targetNS, "TestEndpointService");
 Service service = Service.create(wsdlURL, serviceName);
 TestEndpoint port = service.getPort(TestEndpoint.class);
 Response response = port.echoAsync("Async");
 // access future
 String retStr = (String) response.get();
 assertEquals("Async", retStr);
}

@WebService (name="PingEndpoint")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class PingEndpointImpl
{
 private static String feedback;

 @WebMethod
 @Oneway
 public void ping()
 {
 log.info("ping");
 feedback = "ok";
 }

CHAPTER 16. JAX-WS WEB SERVICES

451

Timeout Configuration

Two different properties control the timeout behavior of the HTTP connection and the timeout of a
client which is waiting to receive a message. The first is javax.xml.ws.client.connectionTimeout and
the second is javax.xml.ws.client.receiveTimeout. Each is expressed in milliseconds, and the correct
syntax is shown below.

Example 16.27. JAX-WS Timeout Configuration

Report a bug

16.6. JAX-WS DEVELOPMENT REFERENCE

16.6.1. Enable Web Services Addressing (WS-Addressing)

Prerequisites

Your application must have an existing JAX-WS service and client configuration.

Procedure 16.2. Annotate and Update client code

1. Annotate the service endpoint
Add the @Addressing annotation to the application's endpoint code.

Example 16.28. @Addressing annotation

This example demonstrates a regular JAX-WS endpoint with the @Addressing annotation
added.

 @WebMethod
 public String feedback()
 {
 log.info("feedback");
 return feedback;
 }
}

public void testConfigureTimeout() throws Exception
{
 //Set timeout until a connection is established
 ((BindingProvider)port).getRequestContext().put("javax.xml.ws.client.connectionTimeout",
"6000");

 //Set timeout until the response is received
 ((BindingProvider) port).getRequestContext().put("javax.xml.ws.client.receiveTimeout", "1000");

 port.echo("testTimeout");
}

package org.jboss.test.ws.jaxws.samples.wsa;

Development Guide

452

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8843-698206+%5BLatest%5D&comment=Title%3A+Develop+a+JAX-WS+Client+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8843-698206+14+Aug+2014+10%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Update client code
Update the client code in the application so that it configures WS-Addressing.

Example 16.29. Client configuration for WS-Addressing

This example demonstrates a regular JAX-WS client updated to configure WS-Addressing.

import javax.jws.WebService;
import javax.xml.ws.soap.Addressing;

@WebService
(
 portName = "AddressingServicePort",
 serviceName = "AddressingService",
 wsdlLocation = "WEB-INF/wsdl/AddressingService.wsdl",
 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wsaddressing",
 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsa.ServiceIface"
)
@Addressing(enabled=true, required=true)
public class ServiceImpl implements ServiceIface
{
 public String sayHello()
 {
 return "Hello World!";
 }
}

package org.jboss.test.ws.jaxws.samples.wsa;

import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.soap.AddressingFeature;

public final class AddressingTestCase
{
 private final String serviceURL =
 "http://localhost:8080/jaxws-samples-wsa/AddressingService";

 public static void main(String[] args) throws Exception
 {
 // construct proxy
 QName serviceName =
 new QName("http://www.jboss.org/jbossws/ws-extensions/wsaddressing",
 "AddressingService");
 URL wsdlURL = new URL(serviceURL + "?wsdl");
 Service service = Service.create(wsdlURL, serviceName);
 ServiceIface proxy =
 (ServiceIface)service.getPort(ServiceIface.class,
 new AddressingFeature());
 // invoke method

CHAPTER 16. JAX-WS WEB SERVICES

453

Result

The client and endpoint are now communicating using WS-Addressing.

Report a bug

16.6.2. JAX-WS Common API Reference

Several JAX-WS development concepts are shared between Web Service endpoints and clients. These
include the handler framework, message context, and fault handling.

Handler Framework

The handler framework is implemented by a JAX-WS protocol binding in the runtime of the client and
the endpoint, which is the server component. Proxies and Dispatch instances, known collectively as
binding providers, each use protocol bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The handlers
within a handler chain are invoked each time a message is sent or received. Inbound messages are
processed by handlers before the binding provider processes them. Outbound messages are processed
by handlers after the binding provider processes them.

Handlers are invoked with a message context which provides methods to access and modify inbound
and outbound messages and to manage a set of properties. Message context properties facilitate
communication between individual handlers, as well as between handlers and client and service
implementations. Different types of handlers are invoked with different types of message contexts.

Types of Message Handlers

Logical Handler

Logical handlers only operate on message context properties and message payloads. Logical
handlers are protocol-independent and cannot affect protocol-specific parts of a message. Logical
handlers implement interface javax.xml.ws.handler.LogicalHandler.

Protocol Handler

Protocol handlers operate on message context properties and protocol-specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol-specific aspects
of a message. Protocol handlers implement any interface derived from
javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.

Service Endpoint Handler

On a service endpoint, handlers are defined using the @HandlerChain annotation. The location of
the handler chain file can be either an absolute java.net.URL in externalForm or a relative path from
the source file or class file.

Example 16.30. Example Service Endpoint Handler

 proxy.sayHello();
 }
}

@WebService
@HandlerChain(file = "jaxws-server-source-handlers.xml")

Development Guide

454

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+3581-591655+%5BLatest%5D&comment=Title%3A+Enable+Web+Services+Addressing+%28WS-Addressing%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3581-591655+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Service Client Handler

On a JAX-WS client, handlers are defined either by using the @HandlerChain annotation, as in
service endpoints, or dynamically, using the JAX-WS API.

Example 16.31. Defining a Service Client Handler Using the API

The call to the setHandlerChain method is required.

Message Context

The MessageContext interface is the super interface for all JAX-WS message contexts. It extends
Map<String,Object> with additional methods and constants to manage a set of properties that enable
handlers in a handler chain to share processing related state. For example, a handler may use the put
method to insert a property into the message context. One or more other handlers in the handler chain
may subsequently obtain the message via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers
for an instance of a message exchange pattern (MEP) of a particular endpoint. For instance, if a logical
handler puts a property into the message context, that property is also available to any protocol
handlers in the chain during the execution of an MEP instance.

NOTE

An asynchronous Message Exchange Pattern (MEP) allows for sending and receiving
messages asynchronously at the HTTP connection level. You can enable it by setting
additional properties in the request context.

Properties scoped at the APPLICATION level are also made available to client applications and service
endpoint implementations. The defaultscope for a property is HANDLER.

Logical amd SOAP messages use different contexts.

Logical Message Context

When logical handlers are invoked, they receive a message context of type LogicalMessageContext.
LogicalMessageContext extends MessageContext with methods which obtain and modify the

public class SOAPEndpointSourceImpl
{
 ...
}

Service service = Service.create(wsdlURL, serviceName);
Endpoint port = (Endpoint)service.getPort(Endpoint.class);

BindingProvider bindingProvider = (BindingProvider)port;
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new LogHandler());
handlerChain.add(new AuthorizationHandler());
handlerChain.add(new RoutingHandler());
bindingProvider.getBinding().setHandlerChain(handlerChain);

CHAPTER 16. JAX-WS WEB SERVICES

455

message payload. It does not provide access to the protocol-specific aspects of a message. A
protocol binding defines which components of a message are available via a logical message context.
A logical handler deployed in a SOAP binding can access the contents of the SOAP body but not the
SOAP headers. On the other hand, the XML/HTTP binding defines that a logical handler can access
the entire XML payload of a message.

SOAP Message Context

When SOAP handlers are invoked, they receive a SOAPMessageContext. SOAPMessageContext
extends MessageContext with methods which obtain and modify the SOAP message payload.

Fault Handling

An application may throw a SOAPFaultException or an application-specific user exception. In the case
of the latter, the required fault wrapper beans are generated at run-time if they are not already part of
the deployment.

Example 16.32. Fault Handling Examples

JAX-WS Annotations

The annotations available via the JAX-WS API are defined in JSR-224, which can be found at
http://www.jcp.org/en/jsr/detail?id=224. These annotations are in package javax.xml.ws.

The annotations available via the JWS API are defined in JSR-181, which can be found at
http://www.jcp.org/en/jsr/detail?id=181. These annotations are in package javax.jws.

Report a bug

public void throwSoapFaultException()
{
 SOAPFactory factory = SOAPFactory.newInstance();
 SOAPFault fault = factory.createFault("this is a fault string!", new QName("http://foo",
"FooCode"));
 fault.setFaultActor("mr.actor");
 fault.addDetail().addChildElement("test");
 throw new SOAPFaultException(fault);
}

public void throwApplicationException() throws UserException
{
 throw new UserException("validation", 123, "Some validation error");
}

Development Guide

456

http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=181
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8841-646560+%5BLatest%5D&comment=Title%3A+JAX-WS+Common+API+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8841-646560+28+May+2014+14%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 17. WEBSOCKETS

17.1. ABOUT WEBSOCKETS

The WebSocket protocol provides two way communication between web clients and servers.
Communications between clients and the server are event-based, allowing for faster processing and
smaller bandwidth compared with polling-based methods. WebSocket is available for use in web
applications via a JavaScript API.

A connection is first established between client and server as an HTTP connection. The client then
requests a WebSocket connection using the Upgrade header. All communications are then full-duplex
over the same TCP/IP connection, with minimal data overhead. Because each message does not include
unnecessary HTTP header content, Websocket communications require smaller bandwidth. The result is
a low latency communications path, suited to applications which require real-time responsiveness.

The JBoss EAP 6 WebSocket implementation provides full dependency injection support for server
endpoints, however, it does not provide CDI services for client endpoints. CDI support is limited to that
required by the Java EE 6 platform, and as a result, Java EE 7 features such as interceptors on
endpoints are not supported.

Report a bug

17.2. CREATE A WEBSOCKET APPLICATION

A WebSocket application requires the following components and configuration changes:

A Java client or a WebSocket enabled HTML client. You can verify HTML client browser support
at this location: http://caniuse.com/websockets

A WebSocket server endpoint class.

A jboss-web.xml file configured to enable WebSockets.

Project dependencies configured to declare a dependency on the WebSocket API.

Enable the NIO2 connector in the web subsystem of the Red Hat JBoss Enterprise Application
Platform server configuration file.

NOTE

WebSocket applications require Java Runtime Environment version 7 or greater.
Otherwise the WebSocket will not be enabled.

Procedure 17.1. Create the WebSocket Application

The following is a simple example of a WebSocket application. It provides buttons to open a connection,
send a message, and close a connection. It does not implement any other functions or include any error
handling, which would be required for a real world application.

1. Create the JavaScript HTML client.
The following is an example of a WebSocket client. It contains these JavaScript functions:

connect(): This function creates the WebSocket connection passing the WebSocket URI.
The resource location matches the resource defined in the server endpoint class. This
function also intercepts and handles the WebSocket onopen, onmessage, onerror, and

CHAPTER 17. WEBSOCKETS

457

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30495-737038+%5BLatest%5D&comment=Title%3A+About+WebSockets%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30495-737038+19+Jan+2015+10%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://caniuse.com/websockets

onclose.

sendMessage(): This function gets the name entered in the form, creates a message, and
sends it using a WebSocket.send() command.

disconnect(): This function issues the WebSocket.close() command.

displayMessage(): This function sets the display message on the page to the value
returned by the WebSocket endpoint method.

displayStatus(): This function displays the WebSocket connection status.

l

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>WebSocket: Say Hello</title>
 <link rel="stylesheet" type="text/css" href="resources/css/hello.css" />
 <script type="text/javascript">
 var websocket = null;

 function connect() {
 var wsURI = 'ws://' + window.location.host + '/jboss-websocket-
hello/websocket/helloName';
 websocket = new WebSocket(wsURI);

 websocket.onopen = function() {
 displayStatus('Open');
 document.getElementById('sayHello').disabled = false;
 displayMessage('Connection is now open. Type a name and click Say Hello to
send a message.');
 };
 websocket.onmessage = function(event) {
 // log the event
 displayMessage('The response was received! ' + event.data, 'success');
 };
 websocket.onerror = function(event) {
 // log the event
 displayMessage('Error! ' + event.data, 'error');
 };
 websocket.onclose = function() {
 displayStatus('Closed');
 displayMessage('The connection was closed or timed out. Please click the Open
Connection button to reconnect.');
 document.getElementById('sayHello').disabled = true;
 };
 }

 function disconnect() {
 if (websocket !== null) {
 websocket.close();
 websocket = null;
 }
 message.setAttribute("class", "message");
 message.value = 'WebSocket closed.';
 // log the event

Development Guide

458

 }

 function sendMessage() {
 if (websocket !== null) {
 var content = document.getElementById('name').value;
 websocket.send(content);
 } else {
 displayMessage('WebSocket connection is not established. Please click the
Open Connection button.', 'error');
 }
 }

 function displayMessage(data, style) {
 var message = document.getElementById('hellomessage');
 message.setAttribute("class", style);
 message.value = data;
 }

 function displayStatus(status) {
 var currentStatus = document.getElementById('currentstatus');
 currentStatus.value = status;
 }

 </script>
 </head>
 <body>

 <div>
 <h1>Welcome to JBoss!</h1>
 <div>This is a simple example of a WebSocket implementation.</div>
 <div id="connect-container">
 <div>
 <fieldset>
 <legend>Connect or disconnect using WebSocket :</legend>
 <input type="button" id="connect" onclick="connect();" value="Open
Connection" />
 <input type="button" id="disconnect" onclick="disconnect();" value="Close
Connection" />
 </fieldset>
 </div>
 <div>
 <fieldset>
 <legend>Type your name below. then click the `Say Hello` button :</legend>
 <input id="name" type="text" size="40" style="width: 40%"/>
 <input type="button" id="sayHello" onclick="sendMessage();" value="Say
Hello" disabled="disabled"/>
 </fieldset>
 </div>
 <div>Current WebSocket Connection Status: <output id="currentstatus"
class="message">Closed</output></div>
 <div>
 <output id="hellomessage" />
 </div>
 </div>

CHAPTER 17. WEBSOCKETS

459

2. Create the WebSocket server endpoint.
You can create a WebSocket server endpoint using either of the following methods.

Programmatic Endpoint: The endpoint extends the Endpoint class.

Annotated Endpoint: The endpoint class uses annotations to interact with the WebSocket
events. It is simpler to code than the programmatic endpoint

The code example below uses the annotated endpoint approach and handles the following
events.

The @ServerEndpoint annotation identifies this class as a WebSocket server endpoint and
specifies the path.

The @OnOpen annotation is triggered when the WebSocket connection is opened.

The @OnMessage annotation is triggered when a message is sent to the WebSocket
connection.

The @OnClose annotation is triggered when the WebSocket connection is closed.

3. Configure the jboss-web.xml file.

You must create the <enable-websockets> element in the application WEB-INF/jboss-

 </div>
 </body>
</html>

package org.jboss.as.quickstarts.websocket_hello;

import javax.websocket.CloseReason;
import javax.websocket.OnClose;
import javax.websocket.OnMessage;
import javax.websocket.OnOpen;
import javax.websocket.Session;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/websocket/helloName")
public class HelloName {

 @OnMessage
 public String sayHello(String name) {
 System.out.println("Say hello to '" + name + "'");
 return ("Hello" + name);
 }

 @OnOpen
 public void helloOnOpen(Session session) {
 System.out.println("WebSocket opened: " + session.getId());
 }

 @OnClose
 public void helloOnClose(CloseReason reason) {
 System.out.println("Closing a WebSocket due to " + reason.getReasonPhrase());
 }
}

Development Guide

460

You must create the <enable-websockets> element in the application WEB-INF/jboss-
web.xml and set it to true.

4. Declare the WebSocket API dependency in your project POM file.
If you use Maven, you add the following dependency to the project pom.xml file.

5. Configure the JBoss EAP server.
Configure the http <connector> in the web subsystem of the server configuration file to use
the NIO2 protocol.

a. Start the JBoss EAP server.

b. Launch the Management CLI using the command for your operating system.

For Linux:

EAP_HOME/bin/jboss-cli.sh --connect

For Windows:

EAP_HOME\bin\jboss-cli.bat --connect

c. To enable the non blocking Java NIO2 connector protocol in the web subsystem of the
JBoss EAP server configuration file, type the following command .

/subsystem=web/connector=http/:write-
attribute(name=protocol,value=org.apache.coyote.http11.Http11NioProtocol)

For either command, you should see the following result:

{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

d. Notify the server to reload the configuration.

reload

<?xml version="1.0" encoding="UTF-8"?>
<!--Enable WebSockets -->
<jboss-web>
 <enable-websockets>true</enable-websockets>
</jboss-web>

<dependency>
 <groupId>org.jboss.spec.javax.websocket</groupId>
 <artifactId>jboss-websocket-api_1.0_spec</artifactId>
 <version>1.0.0.Final</version>
 <scope>provided</scope>
</dependency>

CHAPTER 17. WEBSOCKETS

461

You should see the following result:

{
 "outcome" => "success",
 "result" => undefined
}

e. Review the changes to the JBoss EAP server configuration file. The web subsystem should
now contain the following XML for the http <connector>.

Report a bug

<subsystem xmlns="urn:jboss:domain:web:2.1" default-virtual-server="default-host"
native="false">
 <connector name="http" protocol="org.apache.coyote.http11.Http11NioProtocol"
scheme="http" socket-binding="http"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 </virtual-server>
</subsystem>

Development Guide

462

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30607-764499+%5BLatest%5D&comment=Title%3A+Create+a+WebSocket+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30607-764499+10+Jul+2015+04%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 18. APPLICATION SECURITY

18.1. FOUNDATIONAL CONCEPTS

18.1.1. About Encryption

Encryption refers to obfuscating sensitive information by applying mathematical algorithms to it.
Encryption is one of the foundations of securing your infrastructure from data breaches, system
outages, and other risks.

Encryption can be applied to simple string data, such as passwords. It can also be applied to data
communication streams. The HTTPS protocol, for instance, encrypts all data before transferring it from
one party to another. If you connect from one server to another using the Secure Shell (SSH) protocol,
all of your communication is sent in an encrypted tunnel .

Report a bug

18.1.2. About Security Domains

Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now
managed centrally, by the domain controller of a managed domain, or by the standalone server.

A security domain consists of configurations for authentication, authorization, security mapping, and
auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.

Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as
a principal. Although authentication and authorization are different, many of the included authentication
modules also handle authorization.

Authorization is a process by which the server determines if an authenticated user has permission or
privileges to access specific resources in the system or operation.

Security mapping refers to the ability to add, modify, or delete information from a principal, role, or
attribute before passing the information to your application.

The auditing manager allows you to configure provider modules to control the way that security events
are reported.

If you use security domains, you can remove all specific security configuration from your application
itself. This allows you to change security parameters centrally. One common scenario that benefits from
this type of configuration structure is the process of moving applications between testing and
production environments.

Report a bug

18.1.3. About SSL Encryption

Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the two
systems is encrypted using a two-way key, generated during the handshake phase of the connection
and known only by those two systems.

For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure (PKI), a
method of encryption that utilizes a key pair . A key pair consists of two separate but matching
cryptographic keys - a public key and a private key. The public key is shared with others and is used to

CHAPTER 18. APPLICATION SECURITY

463

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4774-591672+%5BLatest%5D&comment=Title%3A+About+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4774-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4721-687641+%5BLatest%5D&comment=Title%3A+About+Security+Domains%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4721-687641+23+Jul+2014+20%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

encrypt data, and the private key is kept secret and is used to decrypt data that has been encrypted
using the public key.

When a client requests a secure connection, a handshake phase takes place before secure
communication can begin. During the SSL handshake the server passes its public key to the client in the
form of a certificate. The certificate contains the identity of the server (its URL), the public key of the
server, and a digital signature that validates the certificate. The client then validates the certificate and
makes a decision about whether the certificate is trusted or not. If the certificate is trusted, the client
generates the two-way encryption key for the SSL connection, encrypts it using the public key of the
server, and sends it back to the server. The server decrypts the two-way encryption key, using its private
key, and further communication between the two machines over this connection is encrypted using the
two-way encryption key.

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Report a bug

18.1.4. About Declarative Security

Declarative security is a method to separate security concerns from your application code by using the
container to manage security. The container provides an authorization system based on either file
permissions or users, groups, and roles. This approach is usually superior to programmatic security,
which gives the application itself all of the responsibility for security.

JBoss EAP 6 provides declarative security via security domains.

Report a bug

18.2. ROLE-BASED SECURITY IN APPLICATIONS

18.2.1. About Application Security

Securing your applications is a multi-faceted and important concern for every application developer.
JBoss EAP 6 provides all the tools you need to write secure applications, including the following abilities:

Section 18.2.2, “About Authentication”

Section 18.2.3, “About Authorization”

Section 18.2.4, “About Security Auditing”

Section 18.2.5, “About Security Mapping”

Section 18.1.4, “About Declarative Security”

Section 18.4.2.1, “About EJB Method Permissions”



Development Guide

464

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4775-724692+%5BLatest%5D&comment=Title%3A+About+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4775-724692+09+Nov+2014+23%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4766-591673+%5BLatest%5D&comment=Title%3A+About+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4766-591673+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Section 18.4.3.1, “About EJB Security Annotations”

See also Section 18.2.8, “Use a Security Domain in Your Application” .

Report a bug

18.2.2. About Authentication

Authentication refers to identifying a subject and verifying the authenticity of the identification. The
most common authentication mechanism is a username and password combination. Other common
authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful
authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.

JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration
with the authentication systems you already use in your organization. Each security domain may contain
one or more configured authentication modules. Each module includes additional configuration
parameters to customize its behavior. The easiest way to configure the authentication subsystem is
within the web-based management console.

Authentication is not the same as authorization, although they are often linked. Many of the included
authentication modules can also handle authorization.

Report a bug

18.2.3. About Authorization

Authorization is a mechanism for granting or denying access to a resource based on identity. It is
implemented as a set of declarative security roles which can be added to principals.

JBoss EAP 6 uses a modular system to configure authorization. Each security domain may contain one
or more authorization policies. Each policy has a basic module which defines its behavior. It is configured
through specific flags and attributes. The easiest way to configure the authorization subsystem is by
using the web-based management console.

Authorization is different from authentication, and usually happens after authentication. Many of the
authentication modules also handle authorization.

Report a bug

18.2.4. About Security Auditing

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details.

Auditing uses provider modules. You can use one of the included ones, or implement your own.

Report a bug

18.2.5. About Security Mapping

Security mapping allows you to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application.

You can map principals (authentication), roles (authorization), or credentials (attributes which are not

CHAPTER 18. APPLICATION SECURITY

465

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4771-591672+%5BLatest%5D&comment=Title%3A+About+Application+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4771-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4723-742133+%5BLatest%5D&comment=Title%3A+About+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4723-742133+09+Feb+2015+02%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4725-744990+%5BLatest%5D&comment=Title%3A+About+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4725-744990+26+Feb+2015+05%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4727-591674+%5BLatest%5D&comment=Title%3A+About+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4727-591674+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

You can map principals (authentication), roles (authorization), or credentials (attributes which are not
principals or roles).

Role Mapping is used to add, replace, or remove roles to the subject after authentication.

Principal mapping is used to modify a principal after authentication.

Attribute mapping is used to convert attributes from an external system to be used by your application,
and vice versa.

Report a bug

18.2.6. Java Authentication and Authorization Service (JAAS)

Java Authentication and Authorization Service (JAAS) is a security API which consists of a set of Java
packages designed for user authentication and authorization. The API is a Java implementation of the
standard Pluggable Authentication Modules (PAM) framework. It extends the Java Enterprise Edition
access control architecture to support user-based authorization.

In JBoss EAP 6, JAAS only provides declarative role-based security. For more information about
declarative security, refer to Section 18.1.4, “About Declarative Security” .

JAAS is independent of any underlying authentication technologies, such as Kerberos or LDAP. You can
change your underlying security structure without changing your application. You only need to change
the JAAS configuration.

Report a bug

18.2.7. About Java Authentication and Authorization Service (JAAS)

The security architecture of JBoss EAP 6 is comprised of the security configuration subsystem, and
application-specific security configurations which are included in several configuration files within the
application.

Domain, Server Group, and Server Specific Configuration

Server groups (in a managed domain) and servers (in a standalone server) include the configuration for
security domains. A security domain includes information about a combination of authentication,
authorization, mapping, and auditing modules, with configuration details. An application specifies which
security domain it requires, by name, in its jboss-web.xml.

Application-specific Configuration

Application-specific configuration takes place in one or more of the following four files.

Table 18.1. Application-Specific Configuration Files

File Description

ejb-jar.xml The deployment descriptor for an Enterprise
JavaBean (EJB) application, located in the META-
INF directory of the archive. Use the ejb-jar.xml to
specify roles and map them to principals, at the
application level. You can also limit specific methods
and classes to certain roles. It is also used for other
EJB-specific configuration not related to security.

Development Guide

466

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4729-686016+%5BLatest%5D&comment=Title%3A+About+Security+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4729-686016+18+Jul+2014+08%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4769-591672+%5BLatest%5D&comment=Title%3A+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4769-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

web.xml The deployment descriptor for a Java Enterprise
Edition (EE) web application. Use the web.xml to
declare the resource and transport constraints for
the application, such as limiting the type of HTTP
requests that are allowed. You can also configure
simple web-based authentication in this file. It is also
used for other application-specific configuration not
related to security. The security domain the
application uses for authentication and authorization
is defined in jboss-web.xml.

jboss-ejb3.xml Contains JBoss-specific extensions to the ejb-
jar.xml descriptor.

jboss-web.xml Contains JBoss-specific extensions to the web.xml
descriptor.

File Description

NOTE

The ejb-jar.xml and web.xml are defined in the Java Enterprise Edition (Java EE)
specification. The jboss-ejb3.xml provides JBoss-specific extensions for the ejb-
jar.xml, and the jboss-web.xml provides JBoss-specific extensions for the web.xml.

Report a bug

18.2.8. Use a Security Domain in Your Application

Overview

To use a security domain in your application, first you need to define the security domain in the server's
configuration and then enable it for an application in the application's deployment descriptor. Then you
must add the required annotations to the EJB that uses it. This topic covers the steps required to use a
security domain in your application.

WARNING

If an application is part of a security domain that uses an authentication cache, user
authentications for that application will also be available to other applications in that
security domain.

Procedure 18.1. Configure Your Application to Use a Security Domain

1. Define the Security Domain
You need to define the security domain in the server's configuration file, and then enable it for
an application in the application's descriptor file.



CHAPTER 18. APPLICATION SECURITY

467

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4797-685271+%5BLatest%5D&comment=Title%3A+About+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4797-685271+15+Jul+2014+02%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

a. Configure the security domain in the server's configuration file
The security domain is configured in the security subsystem of the server's configuration
file. If the JBoss EAP 6 instance is running in a managed domain, this is the
domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a
standalone server, this is the standalone/configuration/standalone.xml file.

The other, jboss-web-policy, and jboss-ejb-policy security domains are provided by
default in JBoss EAP 6. The following XML example was copied from the security
subsystem in the server's configuration file.

The cache-type attribute of a security domain specifies a cache for faster authentication
checks. Allowed values are default to use a simple map as the cache, or infinispan to use an
Infinispan cache.

You can configure additional security domains as needed using the Management Console
or CLI.

b. Enable the security domain in the application's descriptor file
The security domain is specified in the <security-domain> child element of the <jboss-
web> element in the application's WEB-INF/jboss-web.xml file. The following example
configures a security domain named my-domain.

This is only one of many settings which you can specify in the WEB-INF/jboss-web.xml
descriptor.

2. Add the Required Annotation to the EJB

You configure security in the EJB using the @SecurityDomain and @RolesAllowed

<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 <login-module code="RealmDirect" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
</subsystem>

<jboss-web>
 <security-domain>my-domain</security-domain>
</jboss-web>

Development Guide

468

You configure security in the EJB using the @SecurityDomain and @RolesAllowed
annotations. The following EJB code example limits access to the other security domain by
users in the guest role.

For more code examples, see the ejb-security quickstart in the JBoss EAP 6 Quickstarts
bundle, which is available from the Red Hat Customer Portal.

NOTE

The security domain for an EJB can also be set using the jboss-ejb3.xml
deployment descriptor. See Section 8.8.4, “jboss-ejb3.xml Deployment
Descriptor Reference” for details.

Procedure 18.2. Configure JBoss EAP 6 to access custom principal in EJB 3 bean

1. Configure the ApplicationRealm to defer to JAAS:

package example.ejb3;

import java.security.Principal;

import javax.annotation.Resource;
import javax.annotation.security.RolesAllowed;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import org.jboss.ejb3.annotation.SecurityDomain;

/**
 * Simple secured EJB using EJB security annotations
 * Allow access to "other" security domain by users in a "guest" role.
 */
@Stateless
@RolesAllowed({ "guest" })
@SecurityDomain("other")
public class SecuredEJB {

 // Inject the Session Context
 @Resource
 private SessionContext ctx;

 /**
 * Secured EJB method using security annotations
 */
 public String getSecurityInfo() {
 // Session context injected using the resource annotation
 Principal principal = ctx.getCallerPrincipal();
 return principal.toString();
 }
}

<security-realm name="MyDomainRealm">
 <authentication>
 <jaas name="my-security-domain"/>
</security-realm>

CHAPTER 18. APPLICATION SECURITY

469

2. Configure the JAAS security-domain to use the custom principal:

3. Deploy the custom principal as a JBoss module.

4. Configure the org.jboss.as.remoting module
(modules/org/jboss/as/remoting/main/module.xml) to depend on the module that contains
the custom principal:

5. Configure the client to use org.jboss.ejb.client.naming, the jboss-ejb-client.properties file
should look like the following:

<security-domain name="my-security-domain" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
value="file:///${jboss.server.config.dir}/users.properties"/>
 <module-option name="rolesProperties"
value="file:///${jboss.server.config.dir}/roles.properties"/>
 <module-option name="principalClass"
value="org.jboss.example.CustomPrincipalImpl"/>
 </login-module>
 </authentication>
</security-domain>

<resources>
 <resource-root path="jboss-as-remoting-7.1.2.Final-redhat-1.jar"/>
 <!-- Insert resources here -->
</resources>

<dependencies>
 <module name="org.jboss.staxmapper"/>
 <module name="org.jboss.as.controller"/>
 <module name="org.jboss.as.domain-management"/>
 <module name="org.jboss.as.network"/>
 <module name="org.jboss.as.protocol"/>
 <module name="org.jboss.as.server"/>
 <module name="org.jboss.as.security" optional="true"/>
 <module name="org.jboss.as.threads"/>
 <module name="org.jboss.logging"/>
 <module name="org.jboss.modules"/>
 <module name="org.jboss.msc"/>
 <module name="org.jboss.remoting3"/>
 <module name="org.jboss.sasl"/>
 <module name="org.jboss.threads"/>
 <module name="org.picketbox" optional="true"/>
 <module name="javax.api" />
 <module name="org.jboss.example" /> <!--FIXME: dependency on custom principal
added here -->
</dependencies>

remote.connections=default
endpoint.name=client-endpoint
remote.connection.default.port=4447

Development Guide

470

Report a bug

18.2.9. Use Role-Based Security In Servlets

To add security to a servlet, you map each servlet to a URL pattern, and create security constraints on
the URL patterns which need to be secured. The security constraints limit access to the URLs to roles.
The authentication and authorization are handled by the security domain specified in the WAR's jboss-
web.xml.

Prerequisites

Before you use role-based security in a servlet, the security domain used to authenticate and authorize
access needs to be configured in the JBoss EAP 6 container.

Procedure 18.3. Add Role-Based Security to Servlets

1. Add mappings between servlets and URL patterns.
Use <servlet-mapping> elements in the web.xml to map individual servlets to URL patterns.
The following example maps the servlet called DisplayOpResult to the URL pattern
/DisplayOpResult.

2. Add security constraints to the URL patterns.
To map the URL pattern to a security constraint, use a <security-constraint>. The following
example constrains access from the URL pattern /DisplayOpResult to be accessed by
principals with the role eap_admin. The role needs to be present in the security domain.

remote.connection.default.host=localhost
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS
=false
The following setting is required when deferring to JAAS
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=f
alse

remote.connection.default.username=admin
remote.connection.default.password=testing

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>
 </auth-constraint>
</security-constraint>

<security-role>

CHAPTER 18. APPLICATION SECURITY

471

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4765-771120+%5BLatest%5D&comment=Title%3A+Use+a+Security+Domain+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4765-771120+29+Sep+2015+11%3A36+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

You need to specify the authentication method, which can be any of the following: BASIC,
FORM, DIGEST, CLIENT-CERT, SPNEGO. This example uses BASIC authentication.

3. Specify the security domain in the WAR's jboss-web.xml
Add the security domain to the WAR's jboss-web.xml in order to connect the servlets to the
configured security domain, which knows how to authenticate and authorize principals against
the security constraints. The following example uses the security domain called acme_domain.

Example 18.1. Example web.xml with Role-Based Security Configured

 <role-name>eap_admin</role-name>
</security-role>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<jboss-web>
 ...
 <security-domain>acme_domain</security-domain>
 ...
</jboss-web>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

<display-name>Use Role-Based Security In Servlets</display-name>

<welcome-file-list>
 <welcome-file>/index.jsp</welcome-file>
</welcome-file-list>

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>

Development Guide

472

Report a bug

18.2.10. Use A Third-Party Authentication System In Your Application

You can integrate third-party security systems with JBoss EAP 6. These types of systems are usually
token-based. The external system performs the authentication and passes a token back to the Web
application through the request headers. This is often referred to as perimeter authentication. To
configure perimeter authentication in your application, add a custom authentication valve. If you have a
valve from a third-party provider, be sure it is in your classpath and follow the examples below, along
with the documentation for your third-party authentication module.

NOTE

The location for configuring valves has changed in JBoss EAP 6. There is no longer a
context.xml deployment descriptor. Valves are configured directly in the jboss-web.xml
descriptor instead. The context.xml is now ignored.

Example 18.2. Basic Authentication Valve

This valve is used for Kerberos-based SSO. It also shows the most simple pattern for specifying a
third-party authenticator for your Web application.

Example 18.3. Custom Valve With Header Attributes Set

 <role-name>eap_admin</role-name>
 </security-role>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

</web-app>

<jboss-web>
 <valve>
 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
 </valve>
</jboss-web>

<jboss-web>
 <valve>
 <class-name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-name>
 <param>
 <param-name>httpHeaderForSSOAuth</param-name>
 <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
 </param>
 <param>
 <param-name>sessionCookieForSSOAuth</param-name>
 <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>

CHAPTER 18. APPLICATION SECURITY

473

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4927-591678+%5BLatest%5D&comment=Title%3A+Use+Role-Based+Security+In+Servlets%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4927-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This example shows how to set custom attributes on your valve. The authenticator checks for the
presence of the header ID and the session key, and passes them into the JAAS framework which
drives the security layer, as the username and password value. You need a custom JAAS login
module which can process the username and password and populate the subject with the correct
roles. If no header values match the configured values, regular form-based authentication semantics
apply.

Writing a Custom Authenticator

Writing your own authenticator is out of scope of this document. However, the following Java code is
provided as an example.

Example 18.4. GenericHeaderAuthenticator.java

 </param>
 </valve>
</jboss-web>

/*
 * JBoss, Home of Professional Open Source.
 * Copyright 2006, Red Hat Middleware LLC, and individual contributors
 * as indicated by the @author tags. See the copyright.txt file in the
 * distribution for a full listing of individual contributors.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this software; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
 */

package org.jboss.web.tomcat.security;

import java.io.IOException;
import java.security.Principal;
import java.util.StringTokenizer;

import javax.management.JMException;
import javax.management.ObjectName;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.catalina.Realm;
import org.apache.catalina.Session;
import org.apache.catalina.authenticator.Constants;

Development Guide

474

import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;
import org.apache.catalina.deploy.LoginConfig;
import org.jboss.logging.Logger;

import org.jboss.as.web.security.ExtendedFormAuthenticator;

/**
 * JBAS-2283: Provide custom header based authentication support
 *
 * Header Authenticator that deals with userid from the request header Requires
 * two attributes configured on the Tomcat Service - one for the http header
 * denoting the authenticated identity and the other is the SESSION cookie
 *
 * @author Anil Saldhana
 * @author Stefan Guilhen
 * @version $Revision$
 * @since Sep 11, 2006
 */
public class GenericHeaderAuthenticator extends ExtendedFormAuthenticator {
 protected static Logger log = Logger
 .getLogger(GenericHeaderAuthenticator.class);

 protected boolean trace = log.isTraceEnabled();

 // JBAS-4804: GenericHeaderAuthenticator injection of ssoid and
 // sessioncookie name.
 private String httpHeaderForSSOAuth = null;

 private String sessionCookieForSSOAuth = null;

 /**
 * <p>
 * Obtain the value of the <code>httpHeaderForSSOAuth</code> attribute. This
 * attribute is used to indicate the request header ids that have to be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @return a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public String getHttpHeaderForSSOAuth() {
 return httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>httpHeaderForSSOAuth</code> attribute. This
 * attribute is used to indicate the request header ids that have to be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @param httpHeaderForSSOAuth
 * a <code>String</code> containing the value of the

CHAPTER 18. APPLICATION SECURITY

475

 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public void setHttpHeaderForSSOAuth(String httpHeaderForSSOAuth) {
 this.httpHeaderForSSOAuth = httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Obtain the value of the <code>sessionCookieForSSOAuth</code> attribute.
 * This attribute is used to indicate the names of the SSO cookies that may
 * be present in the request object.
 * </p>
 *
 * @return a <code>String</code> containing the names (separated by a
 * <code>','</code>) of the SSO cookies that may have been set by a
 * third party security system in the request.
 */
 public String getSessionCookieForSSOAuth() {
 return sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>sessionCookieForSSOAuth</code> attribute. This
 * attribute is used to indicate the names of the SSO cookies that may be
 * present in the request object.
 * </p>
 *
 * @param sessionCookieForSSOAuth
 * a <code>String</code> containing the names (separated by a
 * <code>','</code>) of the SSO cookies that may have been set by
 * a third party security system in the request.
 */
 public void setSessionCookieForSSOAuth(String sessionCookieForSSOAuth) {
 this.sessionCookieForSSOAuth = sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Creates an instance of <code>GenericHeaderAuthenticator</code>.
 * </p>
 */
 public GenericHeaderAuthenticator() {
 super();
 }

 public boolean authenticate(Request request, HttpServletResponse response,
 LoginConfig config) throws IOException {
 log.trace("Authenticating user");

 Principal principal = request.getUserPrincipal();
 if (principal != null) {
 if (trace)
 log.trace("Already authenticated '" + principal.getName() + "'");
 return true;
 }

Development Guide

476

 Realm realm = context.getRealm();
 Session session = request.getSessionInternal(true);

 String username = getUserId(request);
 String password = getSessionCookie(request);

 // Check if there is sso id as well as sessionkey
 if (username == null || password == null) {
 log.trace("Username is null or password(sessionkey) is null:fallback to form auth");
 return super.authenticate(request, response, config);
 }
 principal = realm.authenticate(username, password);

 if (principal == null) {
 forwardToErrorPage(request, response, config);
 return false;
 }

 session.setNote(Constants.SESS_USERNAME_NOTE, username);
 session.setNote(Constants.SESS_PASSWORD_NOTE, password);
 request.setUserPrincipal(principal);

 register(request, response, principal, HttpServletRequest.FORM_AUTH,
 username, password);
 return true;
 }

 /**
 * Get the username from the request header
 *
 * @param request
 * @return
 */
 protected String getUserId(Request request) {
 String ssoid = null;
 // We can have a comma-separated ids
 String ids = "";
 try {
 ids = this.getIdentityHeaderId();
 } catch (JMException e) {
 if (trace)
 log.trace("getUserId exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Http headers configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");
 while (st.hasMoreTokens()) {
 ssoid = request.getHeader(st.nextToken());
 if (ssoid != null)
 break;
 }
 if (trace)
 log.trace("SSOID-" + ssoid);

CHAPTER 18. APPLICATION SECURITY

477

 return ssoid;
 }

 /**
 * Obtain the session cookie from the request
 *
 * @param request
 * @return
 */
 protected String getSessionCookie(Request request) {
 Cookie[] cookies = request.getCookies();
 log.trace("Cookies:" + cookies);
 int numCookies = cookies != null ? cookies.length : 0;

 // We can have comma-separated ids
 String ids = "";
 try {
 ids = this.getSessionCookieId();
 log.trace("Session Cookie Ids=" + ids);
 } catch (JMException e) {
 if (trace)
 log.trace("checkSessionCookie exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Session cookies configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");
 while (st.hasMoreTokens()) {
 String cookieToken = st.nextToken();
 String val = getCookieValue(cookies, numCookies, cookieToken);
 if (val != null)
 return val;
 }
 if (trace)
 log.trace("Session Cookie not found");
 return null;
 }

 /**
 * Get the configured header identity id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getIdentityHeaderId() throws JMException {
 if (this.httpHeaderForSSOAuth != null)
 return this.httpHeaderForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "HttpHeaderForSSOAuth");
 }

 /**
 * Get the configured session cookie id in the tomcat service
 *
 * @return

Development Guide

478

Report a bug

18.3. LOGIN MODULES

Report a bug

18.3.1. Using Modules

JBoss EAP 6 includes several bundled login modules suitable for most user management needs. JBoss
EAP 6 can read user information from a relational database, an LDAP server, or flat files. In addition to
these core login modules, JBoss EAP 6 provides other login modules that provide user information for
very customized needs.

More login modules and their options can be found in Appendix A.1.

Report a bug

 * @throws JMException
 */
 protected String getSessionCookieId() throws JMException {
 if (this.sessionCookieForSSOAuth != null)
 return this.sessionCookieForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "SessionCookieForSSOAuth");
 }

 /**
 * Get the value of a cookie if the name matches the token
 *
 * @param cookies
 * array of cookies
 * @param numCookies
 * number of cookies in the array
 * @param token
 * Key
 * @return value of cookie
 */
 protected String getCookieValue(Cookie[] cookies, int numCookies,
 String token) {
 for (int i = 0; i < numCookies; i++) {
 Cookie cookie = cookies[i];
 log.trace("Matching cookieToken:" + token + " with cookie name="
 + cookie.getName());
 if (token.equals(cookie.getName())) {
 if (trace)
 log.trace("Cookie-" + token + " value=" + cookie.getValue());
 return cookie.getValue();
 }
 }
 return null;
 }
}

CHAPTER 18. APPLICATION SECURITY

479

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7825-591808+%5BLatest%5D&comment=Title%3A+Use+A+Third-Party+Authentication+System+In+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7825-591808+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A28308-608934+%5BLatest%5D&comment=Title%3A+Login+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A28309-638876+%5BLatest%5D&comment=Title%3A+Using+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

18.3.1.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing both the
credentials verification and role assignment during authentication. This works for many use cases, but
sometimes credentials verification and role assignment are split across multiple user management
stores.

Section 18.3.1.4, “Ldap Login Module” describes how to combine LDAP and a relational database,
allowing a user to be authenticated by either system. Consider the case where users are managed in a
central LDAP server but application-specific roles are stored in the application's relational database. The
password-stacking module option captures this relationship.

To use password stacking, each login module should set the <module-option> password-stacking
attribute to useFirstPass. If a previous module configured for password stacking has authenticated the
user, all the other stacking modules will consider the user authenticated and only attempt to provide a
set of roles for the authorization step.

When password-stacking option is set to useFirstPass, this module first looks for a shared user name
and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map.

If found, these properties are used as the principal name and password. If not found, the principal name
and password are set by this login module and stored under the property names
javax.security.auth.login.name and javax.security.auth.login.password respectively.

NOTE

When using password stacking, set all modules to be required. This ensures that all
modules are considered, and have the chance to contribute roles to the authorization
process.

Example 18.5. Password Stacking Sample

This management CLI example shows how password stacking could be used.

Report a bug

/subsystem=security/security-domain=pwdStack/authentication=classic/login-module=Ldap:add(\
 code=Ldap, \
 flag=required, \
 module-options=[\
 ("password-stacking"=>"useFirstPass"), \
 ... Ldap login module configuration
])
/subsystem=security/security-domain=pwdStack/authentication=classic/login-
module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("password-stacking"=>"useFirstPass"), \
 ... Database login module configuration
])

Development Guide

480

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28312-638661+%5BLatest%5D&comment=Title%3A+Password+Stacking%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28312-638661+06+May+2014+20%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

18.3.1.2. Password Hashing

Most login modules must compare a client-supplied password to a password stored in a user
management system. These modules generally work with plain text passwords, but can be configured to
support hashed passwords to prevent plain text passwords from being stored on the server side.

IMPORTANT

Red Hat JBoss Enterprise Application Platform Common Criteria certified release only
supports SHA-256 for password hashing.

Example 18.6. Password Hashing

The following is a login module configuration that assigns unauthenticated users the principal name
nobody and contains based64-encoded, SHA-256 hashes of the passwords in a
usersb64.properties file. The usersb64.properties file is part of the deployment classpath.

hashAlgorithm

Name of the java.security.MessageDigest algorithm to use to hash the password. There is no
default so this option must be specified to enable hashing. Typical values are SHA-256, SHA-1 and
MD5.

hashEncoding

String that specifies one of three encoding types: base64, hex or rfc2617. The default is base64.

hashCharset

Encoding character set used to convert the clear text password to a byte array. The platform default
encoding is the default.

hashUserPassword

Specifies the hashing algorithm must be applied to the password the user submits. The hashed user
password is compared against the value in the login module, which is expected to be a hash of the
password. The default is true.

hashStorePassword

Specifies the hashing algorithm must be applied to the password stored on the server side. This is

/subsystem=security/security-domain=testUsersRoles:add
/subsystem=security/security-domain=testUsersRoles/authentication=classic:add
/subsystem=security/security-domain=testUsersRoles/authentication=classic/login-
module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"usersb64.properties"), \
 ("rolesProperties"=>"test-users-roles.properties"), \
 ("unauthenticatedIdentity"=>"nobody"), \
 ("hashAlgorithm"=>"SHA-256"), \
 ("hashEncoding"=>"base64") \
])

CHAPTER 18. APPLICATION SECURITY

481

used for digest authentication, where the user submits a hash of the user password along with a
request-specific tokens from the server to be compare. The hash algorithm (for digest, this would be
rfc2617) is utilized to compute a server-side hash, which should match the hashed value sent from
the client.

If you must generate passwords in code, the org.jboss.security.auth.spi.Util class provides a static
helper method that will hash a password using the specified encoding. The following example produces a
base64-encoded, MD5 hashed password.

OpenSSL provides an alternative way to quickly generate hashed passwords at the command-line. The
following example also produces a base64-encoded, SHA-256 hashed password. Here the password in
plain text - password - is piped into the OpenSSL digest function then piped into another OpenSSL
function to convert into base64-encoded format.

In both cases, the hashed version of the password is the same:
XohImNooBHFR0OVvjcYpJ3NgPQ1qq73WKhHvch0VQtg=. This value must be stored in the users'
properties file specified in the security domain - usersb64.properties - in the example above.

Report a bug

18.3.1.3. Unauthenticated Identity

Not all requests are received in an authenticated format. unauthenticatedIdentity is a login module
configuration option that assigns a specific identity (guest, for example) to requests that are made with
no associated authentication information. This can be used to allow unprotected servlets to invoke
methods on EJBs that do not require a specific role. Such a principal has no associated roles and so can
only access either unsecured EJBs or EJB methods that are associated with the unchecked permission
constraint.

unauthenticatedIdentity: This defines the principal name that should be assigned to requests
that contain no authentication information.

Report a bug

18.3.1.4. Ldap Login Module

Ldap login module is a LoginModule implementation that authenticates against a Lightweight Directory
Access Protocol (LDAP) server. Use the Ldap login module if your user name and credentials are stored
in an LDAP server that is accessible using a Java Naming and Directory Interface (JNDI) LDAP provider.

NOTE

If you wish to use LDAP with the SPNEGO authentication or skip some of the
authentication phases while using an LDAP server, consider using the AdvancedLdap
login module chained with the SPNEGO login module or only the AdvancedLdap login
module.

Distinguished Name (DN)

String hashedPassword = Util.createPasswordHash("SHA-256",
 Util.BASE64_ENCODING, null, null, "password");

echo -n password | openssl dgst -sha256 -binary | openssl base64

Development Guide

482

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28313-638664+%5BLatest%5D&comment=Title%3A+Password+Hashing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28313-638664+06+May+2014+20%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28314-592747+%5BLatest%5D&comment=Title%3A+Unauthenticated+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28314-592747+23+Feb+2014+17%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In Lightweight Directory Access Protocol (LDAP), the distinguished name uniquely identifies an
object in a directory. Each distinguished name must have a unique name and location from all other
objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define
information such as common names, organization unit, among others. The combination of these
values results in a unique string required by the LDAP.

NOTE

This login module also supports unauthenticated identity and password stacking.

The LDAP connectivity information is provided as configuration options that are passed through to the
environment object used to create JNDI initial context. The standard LDAP JNDI properties used
include the following:

java.naming.factory.initial

InitialContextFactory implementation class name. This defaults to the Sun LDAP provider
implementation com.sun.jndi.ldap.LdapCtxFactory.

java.naming.provider.url

LDAP URL for the LDAP server.

java.naming.security.authentication

Security protocol level to use. The available values include none, simple, and strong. If the property
is undefined, the behavior is determined by the service provider.

java.naming.security.protocol

Transport protocol to use for secure access. Set this configuration option to the type of service
provider (for example, SSL). If the property is undefined, the behavior is determined by the service
provider.

java.naming.security.principal

Specifies the identity of the Principal for authenticating the caller to the service. This is built from
other properties as described below.

java.naming.security.credentials

Specifies the credentials of the Principal for authenticating the caller to the service. Credentials can
take the form of a hashed password, a clear-text password, a key, or a certificate. If the property is
undefined, the behavior is determined by the service provider.

For details of Ldap login module configuration options, see the Included Authentication Modules
reference in the Security Guide for JBoss EAP.

NOTE

In certain directory schemas (e.g., Microsoft Active Directory), role attributes in the user
object are stored as DNs to role objects instead of simple names. For implementations
that use this schema type, roleAttributeIsDN must be set to true.

User authentication is performed by connecting to the LDAP server, based on the login module

CHAPTER 18. APPLICATION SECURITY

483

User authentication is performed by connecting to the LDAP server, based on the login module
configuration options. Connecting to the LDAP server is done by creating an InitialLdapContext with
an environment composed of the LDAP JNDI properties described previously in this section.

The Context.SECURITY_PRINCIPAL is set to the distinguished name of the user obtained by the
callback handler in combination with the principalDNPrefix and principalDNSuffix option values, and the
Context.SECURITY_CREDENTIALS property is set to the respective String password.

Once authentication has succeeded (InitialLdapContext instance is created), the user's roles are
queried by performing a search on the rolesCtxDN location with search attributes set to the
roleAttributeName and uidAttributeName option values. The roles names are obtaining by invoking the
toString method on the role attributes in the search result set.

Example 18.7. LDAP Login Module Security Domain

This management CLI example shows how to use the parameters in a security domain authentication
configuration.

The java.naming.factory.initial, java.naming.factory.url and java.naming.security options in the
testLDAP security domain configuration indicate the following conditions:

The Sun LDAP JNDI provider implementation will be used

The LDAP server is located on host ldaphost.jboss.org on port 1389

The LDAP simple authentication method will be use to connect to the LDAP server.

The login module attempts to connect to the LDAP server using a Distinguished Name (DN)
representing the user it is trying to authenticate. This DN is constructed from the passed
principalDNPrefix, the user name of the user and the principalDNSuffix as described above. In
Example 18.8, “LDIF File Example”, the user name jsmith would map to
uid=jsmith,ou=People,dc=jboss,dc=org.

NOTE

/subsystem=security/security-domain=testLDAP:add(cache-type=default)
/subsystem=security/security-domain=testLDAP/authentication=classic:add
/subsystem=security/security-domain=testLDAP/authentication=classic/login-module=Ldap:add(\
 code=Ldap, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org:1389/"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("principalDNPrefix"=>"uid="), \
 ("principalDNSuffix"=>",ou=People,dc=jboss,dc=org"), \
 ("rolesCtxDN"=>"ou=Roles,dc=jboss,dc=org"), \
 ("uidAttributeID"=>"member"), \
 ("matchOnUserDN"=>true), \
 ("roleAttributeID"=>"cn"), \
 ("roleAttributeIsDN"=>false) \
])

Development Guide

484

NOTE

The example assumes the LDAP server authenticates users using the userPassword
attribute of the user's entry (theduke in this example). Most LDAP servers operate in this
manner, however if your LDAP server handles authentication differently you must ensure
LDAP is configured according to your production environment requirements.

Once authentication succeeds, the roles on which authorization will be based are retrieved by
performing a subtree search of the rolesCtxDN for entries whose uidAttributeID match the user. If
matchOnUserDN is true, the search will be based on the full DN of the user. Otherwise the search will be
based on the actual user name entered. In this example, the search is under
ou=Roles,dc=jboss,dc=org for any entries that have a member attribute equal to
uid=jsmith,ou=People,dc=jboss,dc=org. The search would locate cn=JBossAdmin under the roles
entry.

The search returns the attribute specified in the roleAttributeID option. In this example, the attribute is
cn. The value returned would be JBossAdmin, so the jsmith user is assigned to the JBossAdmin role.

A local LDAP server often provides identity and authentication services, but is unable to use
authorization services. This is because application roles do not always map well onto LDAP groups, and
LDAP administrators are often hesitant to allow external application-specific data in central LDAP
servers. The LDAP authentication module is often paired with another login module, such as the
database login module, that can provide roles more suitable to the application being developed.

An LDAP Data Interchange Format (LDIF) file representing the structure of the directory this data
operates against is shown in Example 18.8, “LDIF File Example”.

LDAP Data Interchange Format (LDIF)

Plain text data interchange format used to represent LDAP directory content and update requests.
Directory content is represented as one record for each object or update request. Content consists
of add, modify, delete, and rename requests.

Example 18.8. LDIF File Example

dn: dc=jboss,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization
dc: jboss
o: JBoss

dn: ou=People,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jsmith,ou=People,dc=jboss,dc=org
objectclass: top
objectclass: uidObject
objectclass: person
uid: jsmith
cn: John
sn: Smith
userPassword: theduke

CHAPTER 18. APPLICATION SECURITY

485

Report a bug

18.3.1.5. LdapExtended Login Module

Distinguished Name (DN)

In Lightweight Directory Access Protocol (LDAP), the distinguished name uniquely identifies an
object in a directory. Each distinguished name must have a unique name and location from all other
objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define
information such as common names, organization unit, among others. The combination of these
values results in a unique string required by the LDAP.

The LdapExtended (org.jboss.security.auth.spi.LdapExtLoginModule) searches for the user to bind,
as well as the associated roles, for authentication. The roles query recursively follows DNs to navigate a
hierarchical role structure.

The LoginModule options include whatever options are supported by the chosen LDAP JNDI provider
supports. Examples of standard property names are:

Context.INITIAL_CONTEXT_FACTORY = "java.naming.factory.initial"

Context.SECURITY_PROTOCOL = "java.naming.security.protocol"

Context.PROVIDER_URL = "java.naming.provider.url"

Context.SECURITY_AUTHENTICATION = "java.naming.security.authentication"

Context.REFERRAL = "java.naming.referral"

Login module implementation logic follows the order below:

1. The initial LDAP server bind is authenticated using the bindDN and bindCredential properties.
The bindDN is a user with permissions to search both the baseCtxDN and rolesCtxDN trees for
the user and roles. The user DN to authenticate against is queried using the filter specified by
the baseFilter property.

2. The resulting userDN is authenticated by binding to the LDAP server using the userDN as the
InitialLdapContext environment Context.SECURITY_PRINCIPAL. The
Context.SECURITY_CREDENTIALS property is either set to the String password obtained by
the callback handler.

3. If this is successful, the associated user roles are queried using the rolesCtxDN, roleAttributeID,

dn: ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=JBossAdmin,ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: groupOfNames
cn: JBossAdmin
member: uid=jsmith,ou=People,dc=jboss,dc=org
description: the JBossAdmin group

Development Guide

486

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28310-771113+%5BLatest%5D&comment=Title%3A+Ldap+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28310-771113+29+Sep+2015+11%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. If this is successful, the associated user roles are queried using the rolesCtxDN, roleAttributeID,
roleAttributeIsDN, roleNameAttributeID, and roleFilter options.

NOTE

AdvancedLdap Login Module differs from LdapExtended Login Module in the following
ways:

The top level role is queried only for roleAttributeID and not for
roleNameAttributeID.

When the roleAttributeIsDN module property is set to false, the recursive role
search is disabled even if the recurseRoles module option is set to true.

For details of LdapExtended login module options, see the Included Authentication Modules reference
in the Security Guide for JBoss EAP.

Figure 18.1. LDAP Structure Example

Example 18.9. Example 2 LDAP Configuration

version: 1
dn: o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organization
o: example2

dn: ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example2,dc=jboss,dc=org
objectClass: top

CHAPTER 18. APPLICATION SECURITY

487

objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke
employeeNumber: judke-123
sn: Duke
uid: jduke
userPassword:: dGhlZHVrZQ==

dn: uid=jduke2,ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke2
employeeNumber: judke2-123
sn: Duke2
uid: jduke2
userPassword:: dGhlZHVrZTI=

dn: ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: uid=jduke,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo,ou=Roles,o=example2,dc=jboss,dc=org
memberOf: cn=TheDuke,ou=Roles,o=example2,dc=jboss,dc=org
uid: jduke

dn: uid=jduke2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo2,ou=Roles,o=example2,dc=jboss,dc=org
memberOf: cn=TheDuke2,ou=Roles,o=example2,dc=jboss,dc=org
uid: jduke2

dn: cn=Echo,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo
description: the echo role
member: uid=jduke,ou=People,dc=jboss,dc=org

dn: cn=TheDuke,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke
description: the duke role
member: uid=jduke,ou=People,o=example2,dc=jboss,dc=org

dn: cn=Echo2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames

Development Guide

488

The module configuration for this LDAP structure example is outlined in the following management
CLI command.

Example 18.10. Example 3 LDAP Configuration

cn: Echo2
description: the Echo2 role
member: uid=jduke2,ou=People,dc=jboss,dc=org

dn: cn=TheDuke2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke2
description: the duke2 role
member: uid=jduke2,ou=People,o=example2,dc=jboss,dc=org

dn: cn=JBossAdmin,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: JBossAdmin
description: the JBossAdmin group
member: uid=jduke,ou=People,dc=jboss,dc=org

/subsystem=security/security-domain=testLdapExample2/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example2,dc=jboss,dc=org"), \
 ("baseFilter"=>"(uid={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example2,dc=jboss,dc=org"), \
 ("roleFilter"=>"(uid={0})"), \
 ("roleAttributeIsDN"=>"true"), \
 ("roleAttributeID"=>"memberOf"), \
 ("roleNameAttributeID"=>"cn") \
])

dn: o=example3,dc=jboss,dc=org
objectclass: top
objectclass: organization
o: example3

dn: ou=People,o=example3,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

CHAPTER 18. APPLICATION SECURITY

489

The module configuration for this LDAP structure example is outlined in the following management CLI
command.

dn: uid=jduke,ou=People,o=example3,dc=jboss,dc=org
objectclass: top
objectclass: uidObject
objectclass: person
objectClass: inetOrgPerson
uid: jduke
employeeNumber: judke-123
cn: Java Duke
sn: Duke
userPassword: theduke

dn: ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: uid=jduke,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo,ou=Roles,o=example3,dc=jboss,dc=org
memberOf: cn=TheDuke,ou=Roles,o=example3,dc=jboss,dc=org
uid: jduke

dn: cn=Echo,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo
description: the JBossAdmin group
member: uid=jduke,ou=People,o=example3,dc=jboss,dc=org

dn: cn=TheDuke,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke
member: uid=jduke,ou=People,o=example3,dc=jboss,dc=org

/subsystem=security/security-domain=testLdapExample3/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example3,dc=jboss,dc=org"), \
 ("baseFilter"=>"(cn={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example3,dc=jboss,dc=org"), \

Development Guide

490

Example 18.11. Example 4 LDAP Configuration

 ("roleFilter"=>"(member={1})"), \
 ("roleAttributeID"=>"cn") \
])

dn: o=example4,dc=jboss,dc=org
objectclass: top
objectclass: organization
o: example4

dn: ou=People,o=example4,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example4,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke
employeeNumber: jduke-123
sn: Duke
uid: jduke
userPassword:: dGhlZHVrZQ==

dn: ou=Roles,o=example4,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG1
member: cn=empty

dn: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG2
member: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: uid=jduke,ou=People,o=example4,dc=jboss,dc=org

dn: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG3
member: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top

CHAPTER 18. APPLICATION SECURITY

491

The module configuration for this LDAP structure example is outlined in the code sample.

Example 18.12. Default Active Directory Configuration

The example below represents the configuration for a default Active Directory configuration.

cn: R1
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R2,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R2
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R3,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R3
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R4,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R4
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R5,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R5
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: uid=jduke,ou=People,o=example4,dc=jboss,dc=org

/subsystem=security/security-domain=testLdapExample4/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example4,dc=jboss,dc=org"), \
 ("baseFilter"=>"(cn={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example4,dc=jboss,dc=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleRecursion"=>"1"), \
 ("roleAttributeID"=>"memberOf") \
])

Development Guide

492

Some Active Directory configurations may require searching against the Global Catalog on port
3268 instead of the usual port 389. This is most likely when the Active Directory forest includes
multiple domains.

Example 18.13. Recursive Roles Active Directory Configuration

The example below implements a recursive role search within Active Directory. The key difference
between this example and the default Active Directory example is that the role search has been
replaced to search the member attribute using the DN of the user. The login module then uses the
DN of the role to find groups of which the group is a member.

/subsystem=security/security-domain=AD_Default/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("bindDN"=>"JBOSS\searchuser"), \
 ("bindCredential"=>"password"), \
 ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("baseFilter"=>"(sAMAccountName={0})"), \
 ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("roleFilter"=>"(sAMAccountName={0})"), \
 ("roleAttributeID"=>"memberOf"), \
 ("roleAttributeIsDN"=>"true"), \
 ("roleNameAttributeID"=>"cn"), \
 ("searchScope"=>"ONELEVEL_SCOPE"), \
 ("allowEmptyPasswords"=>"false") \
])

/subsystem=security/security-domain=AD_Recursive/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.referral"=>"follow"), \
 ("bindDN"=>"JBOSS\searchuser"), \
 ("bindCredential"=>"password"), \
 ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("baseFilter"=>"(sAMAccountName={0})"), \
 ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleAttributeID"=>"cn"), \
 ("roleAttributeIsDN"=>"false"), \
 ("roleRecursion"=>"2"), \
 ("searchScope"=>"ONELEVEL_SCOPE"), \
 ("allowEmptyPasswords"=>"false") \
])

CHAPTER 18. APPLICATION SECURITY

493

Report a bug

18.3.1.6. UsersRoles Login Module

UsersRoles login module is a simple login module that supports multiple users and user roles loaded
from Java properties files. The default username-to-password mapping filename is users.properties
and the default username-to-roles mapping filename is roles.properties.

For details of UsersRoles login module options, see the Included Authentication Modules reference in
the Security Guide for JBoss EAP.

This login module supports password stacking, password hashing, and unauthenticated identity.

The properties files are loaded during initialization using the initialize method thread context class
loader. This means that these files can be placed on the classpath of the Java EE deployment (for
example, into the WEB-INF/classes folder in the WAR archive), or into any directory on the server
classpath. The primary purpose of this login module is to easily test the security settings of multiple
users and roles using properties files deployed with the application.

Example 18.14. UsersRoles Login Module

In Example 18.14, “UsersRoles Login Module” , the ejb3-sampleapp-users.properties file uses a
username=password format with each user entry on a separate line:

The ejb3-sampleapp-roles.properties file referenced in Example 18.14, “UsersRoles Login Module”
uses the pattern username=role1,role2, with an optional group name value. For example:

The user name.XXX property name pattern present in ejb3-sampleapp-roles.properties is used to
assign the user name roles to a particular named group of roles where the XXX portion of the property
name is the group name. The user name=... form is an abbreviation for user name.Roles=..., where the
Roles group name is the standard name the JBossAuthorizationManager expects to contain the roles
which define the permissions of users.

The following would be equivalent definitions for the jduke user name:

/subsystem=security/security-domain=ejb3-sampleapp/authentication=classic/login-
module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"ejb3-sampleapp-users.properties"), \
 ("rolesProperties"=>"ejb3-sampleapp-roles.properties") \
])

username1=password1
username2=password2
...

username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

Development Guide

494

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28311-771114+%5BLatest%5D&comment=Title%3A+LdapExtended+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28311-771114+29+Sep+2015+11%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

18.3.1.7. Database Login Module

The Database login module is a Java Database Connectivity-based (JDBC) login module that supports
authentication and role mapping. Use this login module if you have your user name, password and role
information stored in a relational database.

NOTE

This module supports password stacking, password hashing and unauthenticated identity.

The Database login module is based on two logical tables:

The Principals table associates the user PrincipalID with the valid password and the Roles table
associates the user PrincipalID with its role sets. The roles used for user permissions must be contained
in rows with a RoleGroup column value of Roles.

The tables are logical in that you can specify the SQL query that the login module uses. The only
requirement is that the java.sql.ResultSet has the same logical structure as the Principals and Roles
tables described previously. The actual names of the tables and columns are not relevant as the results
are accessed based on the column index.

To clarify this notion, consider a database with two tables, Principals and Roles, as already declared.
The following statements populate the tables with the following data:

PrincipalID java with a Password of echoman in the Principals table

PrincipalID java with a role named Echo in the RolesRoleGroup in the Roles table

PrincipalID java with a role named caller_java in the CallerPrincipalRoleGroup in the Roles
table

For details of Database login module options, see the Included Authentication Modules reference in the
Security Guide for JBoss EAP.

An example Database login module configuration could be constructed as follows:

A corresponding login module configuration in a security domain:

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), role VARCHAR(32))

CHAPTER 18. APPLICATION SECURITY

495

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28315-771115+%5BLatest%5D&comment=Title%3A+UsersRoles+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28315-771115+29+Sep+2015+11%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

18.3.1.8. Certificate Login Module

Certificate login module authenticates users based on X509 certificates. A typical use case for this login
module is CLIENT-CERT authentication in the web tier.

This login module only performs authentication: you must combine it with another login module capable
of acquiring authorization roles to completely define access to a secured web or EJB component. Two
subclasses of this login module, CertRolesLoginModule and DatabaseCertLoginModule extend the
behavior to obtain the authorization roles from either a properties file or database.

For details of Certificate login module options, see the Included Authentication Modules reference in
the Security Guide for JBoss EAP.

The Certificate login module needs a KeyStore to perform user validation. This is obtained from a JSSE
configuration of linked security domain as shown in the following configuration fragment:

Procedure 18.4. Secure Web Applications with Certificates and Role-based Authorization

This procedure describes how to secure a web application, such as the user-app.war, using client
certificates and role-based authorization. In this example the CertificateRoles login module is used for
authentication and authorization. Both the trusted-clients.keystore and the app-roles.properties
require an entry that maps to the principal associated with the client certificate.

By default, the principal is created using the client certificate distinguished name, such as the DN
specified in Example 18.15, “Certificate Example”.

1. Declare Resources and Roles

Modify web.xml to declare the resources to be secured along with the allowed roles and

/subsystem=security/security-domain=testDB/authentication=classic/login-module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("dsJndiName"=>"java:/MyDatabaseDS"), \
 ("principalsQuery"=>"select passwd from Users where username=?"), \
 ("rolesQuery"=>"select role, 'Roles' from UserRoles where username=?") \
])

/subsystem=security/security-domain=trust-domain:add
/subsystem=security/security-domain=trust-domain/jsse=classic:add(\
 truststore={ \
 password=>pass1234, \
 url=>/home/jbosseap/trusted-clients.jks \
 })

/subsystem=security/security-domain=testCert:add
/subsystem=security/security-domain=testCert/authentication=classic:add
/subsystem=security/security-domain=testCert/authentication=classic/login-module=Certificate:add(\
 code=Certificate, \
 flag=required, \
 module-options=[\
 ("securityDomain"=>"trust-domain"), \
])

Development Guide

496

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28316-771118+%5BLatest%5D&comment=Title%3A+Database+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28316-771118+29+Sep+2015+11%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Modify web.xml to declare the resources to be secured along with the allowed roles and
security domain to be used for authentication and authorization.

2. Specify the Security Domain
In the jboss-web.xml file, specify the required security domain.

3. Configure Login Module
Define the login module configuration for the app-sec-domain domain you just specified using
the management CLI.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Protect App</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>Secured area</realm-name>
 </login-config>

 <security-role>
 <role-name>Admin</role-name>
 </security-role>
</web-app>

<jboss-web>
 <security-domain>app-sec-domain</security-domain>
</jboss-web>

[
/subsystem=security/security-domain=trust-domain:add
/subsystem=security/security-domain=trust-domain/jsse=classic:add(\
 truststore={ \
 password=>pass1234, \
 url=>/home/jbosseap/trusted-clients.jks \
 })

/subsystem=security/security-domain=app-sec-domain:add
/subsystem=security/security-domain=app-sec-domain/authentication=classic:add

CHAPTER 18. APPLICATION SECURITY

497

Example 18.15. Certificate Example

[conf]$ keytool -printcert -file valid-client-cert.crt
Owner: CN=valid-client, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ
Issuer: CN=EAP Certification Authority, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ
Serial number: 2
Valid from: Mon Mar 24 18:21:55 CET 2014 until: Tue Mar 24 18:21:55 CET 2015
Certificate fingerprints:
 MD5: 0C:54:AE:6E:29:ED:E4:EF:46:B5:14:30:F2:E0:2A:CB
 SHA1: D6:FB:19:E7:11:28:6C:DE:01:F2:92:2F:22:EF:BB:5D:BF:73:25:3D
 SHA256:
CD:B7:B1:72:A3:02:42:55:A3:1C:30:E1:A6:F0:20:B0:2C:0F:23:4F:7A:8E:2F:2D:FA:AF:55:3E:A7:9B
:2B:F4
 Signature algorithm name: SHA1withRSA
 Version: 3

The trusted-clients.keystore would need the certificate in Example 18.15, “Certificate Example” stored
with an alias of CN=valid-client, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ. The app-
roles.properties must have the same entry. Since the DN contains characters that are normally treated
as delimiters, you must escape the problem characters using a backslash ('\') as illustrated below.

A sample app-roles.properties file
CN\=valid-client,\ OU\=Security\ QE,\ OU\=JBoss,\ O\=Red\ Hat,\ C\=CZ

Report a bug

18.3.1.9. Identity Login Module

Identity login module is a simple login module that associates a hard-coded user name to any subject
authenticated against the module. It creates a SimplePrincipal instance using the name specified by
the principal option.

NOTE

This module supports password stacking.

This login module is useful when you need to provide a fixed identity to a service, and in development
environments when you want to test the security associated with a given principal and associated roles.

For details of Identity login module options, see the Included Authentication Modules reference in the
Security Guide for JBoss EAP.

A sample security domain configuration is described below. It authenticates all users as the principal

/subsystem=security/security-domain=app-sec-domain/authentication=classic/login-
module=CertificateRoles:add(\
 code=CertificateRoles, \
 flag=required, \
 module-options=[\
 ("securityDomain"=>"trust-domain"), \
 ("rolesProperties"=>"app-roles.properties") \
])

Development Guide

498

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28317-771119+%5BLatest%5D&comment=Title%3A+Certificate+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28317-771119+29+Sep+2015+11%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

A sample security domain configuration is described below. It authenticates all users as the principal
named jduke and assigns role names of TheDuke, and AnimatedCharacter:.

Report a bug

18.3.1.10. RunAs Login Module

RunAs login module is a helper module that pushes a run as role onto the stack for the duration of the
login phase of authentication, then pops the run as role from the stack in either the commit or abort
phase.

The purpose of this login module is to provide a role for other login modules that must access secured
resources in order to perform their authentication (for example, a login module that accesses a secured
EJB). RunAs login module must be configured ahead of the login modules that require a run as role
established.

For details of RunAs login module options, see the Included Authentication Modules reference in the
Security Guide for JBoss EAP.

Report a bug

18.3.1.10.1. RunAsIdentity Creation

In order for JBoss EAP 6 to secure access to EJB methods, the identity of the user must be known at
the time the method call is made.

A user's identity in the server is represented either by a javax.security.auth.Subject instance or an
org.jboss.security.RunAsIdentity instance. Both these classes store one or more principals that
represent the identity and a list of roles that the identity possesses. In the case of the
javax.security.auth.Subject a list of credentials is also stored.

In the <assembly-descriptor> section of the ejb-jar.xml deployment descriptor, you specify one or more
roles that a user must have to access the various EJB methods. A comparison of these lists reveals
whether the user has one of the roles necessary to access the EJB method.

Example 18.16. org.jboss.security.RunAsIdentity Creation

In the ejb-jar.xml file, you specify a <security-identity> element with a <run-as> role defined as a child
of the <session> element.

/subsystem=security/security-domain=testIdentity:add
/subsystem=security/security-domain=testIdentity/authentication=classic:add
/subsystem=security/security-domain=testIdentity/authentication=classic/login-module=Identity:add(\
 code=Identity, \
 flag=required, \
 module-options=[\
 ("principal"=>"jduke"), \
 ("roles"=>"TheDuke,AnimatedCharacter") \
])

<session>
 ...
 <security-identity>
 <run-as>

CHAPTER 18. APPLICATION SECURITY

499

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28318-771116+%5BLatest%5D&comment=Title%3A+Identity+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28318-771116+29+Sep+2015+11%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A28319-771117+%5BLatest%5D&comment=Title%3A+RunAs+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This declaration signifies that an Admin RunAsIdentity role must be created.

To name a principal for the Admin role, you define a <run-as-principal> element in the jboss-
ejb3.xml file.

The <security-identity> element in both the ejb-jar.xml and <security> element in the jboss-
ejb3.xml files are parsed at deployment time. The <run-as> role name and the <run-as-principal>
name are then stored in the org.jboss.metadata.ejb.spec.SecurityIdentityMetaData class.

Example 18.17. Assigning multiple roles to a RunAsIdentity

You can assign more roles to RunAsIdentity by mapping roles to principals in the jboss-ejb3.xml
deployment descriptor <assembly-descriptor> element group.

In Example 18.16, “org.jboss.security.RunAsIdentity Creation” , the <run-as-principal> of John was
created. The configuration in this example extends the Admin role, by adding the Support role. The
new role contains extra principals, including the originally defined principal John.

 <role-name>Admin</role-name>
 </run-as>
 </security-identity>
 ...
</session>

<jboss:ejb-jar
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
 xmlns:s="urn:security:1.1"
 version="3.1" impl-version="2.0">
 <assembly-descriptor>
 <s:security>
 <ejb-name>WhoAmIBean</ejb-name>
 <s:run-as-principal>John</s:run-as-principal>
 </s:security>
 </assembly-descriptor>
</jboss:ejb-jar>

<jboss:ejb-jar xmlns:sr="urn:security-role"
 ...>
 <assembly-descriptor>
 ...
 <sr:security-role>
 <sr:role-name>Support</sr:role-name>
 <sr:principal-name>John</sr:principal-name>
 <sr:principal-name>Jill</sr:principal-name>
 <sr:principal-name>Tony</sr:principal-name>
 </sr:security-role>
 </assembly-descriptor>
</jboss:ejb-jar>

Development Guide

500

The <security-role> element in both the ejb-jar.xml and jboss-ejb3.xml files are parsed at
deployment time. The <role-name> and the <principal-name> data is stored in the
org.jboss.metadata.ejb.spec.SecurityIdentityMetaData class.

Report a bug

18.3.1.11. Client Login Module

Client login module (org.jboss.security.ClientLoginModule) is an implementation of LoginModule for
use by JBoss clients when establishing caller identity and credentials. This creates a new
SecurityContext assigns it a principal and a credential and sets the SecurityContext to the
ThreadLocal security context.

Client login module is the only supported mechanism for a client to establish the current thread's caller.
Both stand-alone client applications, and server environments (acting as JBoss EJB clients where the
security environment has not been configured to use the EAP security subsystem transparently) must
use Client login module.

Note that this login module does not perform any authentication. It merely copies the login information
provided to it into the server EJB invocation layer for subsequent authentication on the server. If you
need to perform client-side authentication of users you would need to configure another login module
in addition to the Client login module.

For details of Client login module options, see the Included Authentication Modules reference in the
Security Guide for JBoss EAP.

Report a bug

18.3.1.12. SPNEGO Login Module

SPNEGO login module (org.jboss.security.negotiation.spnego.SPNEGOLoginModule) is an
implementation of LoginModule that establishes caller identity and credentials with a KDC. The module
implements SPNEGO (Simple and Protected GSSAPI Negotiation mechanism) and is a part of the
JBoss Negotiation project. This authentication can be used in the chained configuration with the
AdvancedLdap login module to allow cooperation with an LDAP server.

For details of SPNEGO login module options, see the Included Authentication Modules reference in the
Security Guide for JBoss EAP.

The JBoss Negotiation module is not included as a standard dependency for deployed applications. To
use the SPNEGO or AdvancedLdap login modules in your project, you must add the dependency
manually by editing the META-INF/jboss-deployment-structure.xml deployment descriptor file.

Example 18.18. Add JBoss Negotiation Module as a Dependency

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.jboss.security.negotiation" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 18. APPLICATION SECURITY

501

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28320-640429+%5BLatest%5D&comment=Title%3A+RunAsIdentity+Creation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28320-640429+12+May+2014+18%3A32+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28321-771110+%5BLatest%5D&comment=Title%3A+Client+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28321-771110+29+Sep+2015+11%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

18.3.1.13. RoleMapping Login Module

RoleMapping login module supports mapping roles, that are the end result of the authentication
process, to one or more declarative roles. For example, if the authentication process has determined
that the user "A" has the roles "ldapAdmin" and "testAdmin", and the declarative role defined in the
web.xml or ejb-jar.xml file for access is admin, then this login module maps the admin roles to the user
A.

For details of RoleMapping login module options, see the Included Authentication Modules reference in
the Security Guide for JBoss EAP.

The RoleMapping login module must be defined as an optional module to a login module configuration
as it alters mapping of the previously mapped roles.

Example 18.19. Defining mapped roles

Another example achieving the same result, but using the mapping module. This is the preferred method
of role mapping:

Example 18.20. Preferred method of defining mapped roles

/subsystem=security/security-domain=test-domain-2/:add
/subsystem=security/security-domain=test-domain-2/authentication=classic:add
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test-2-
lm/:add(\
flag=required,\
code=UsersRoles,\
module-options=[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")]\
)
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test2-
map/:add(\
flag=optional,\
code=RoleMapping,\
module-options=[("rolesProperties"=>"rolesMapping-roles.properties")]\
)

/subsystem=security/security-domain=test-domain-2/:add
/subsystem=security/security-domain=test-domain-2/authentication=classic:add
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test-2-
lm/:add(\
flag=required,\
code=UsersRoles,\
module-options=[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")]\
)
/subsystem=security/security-domain=test-domain-2/mapping=classic/mapping-module=test2-
map/:add(\
code=PropertiesRoles,type=role,\
module-options=[("rolesProperties"=>"rolesMapping-roles.properties")]\
)

Development Guide

502

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28322-771112+%5BLatest%5D&comment=Title%3A+SPNEGO+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28322-771112+29+Sep+2015+11%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 18.21. Properties File used by a RoleMappingLoginModule

If the authenticated subject contains role ldapAdmin, then the roles admin and testAdmin are
added to or substitute the authenticated subject depending on the replaceRole property value.

Report a bug

18.3.1.14. bindCredential Module Option

The bindCredential module option is used to store the credentials for the DN and can be used by
several login and mapping modules. There are several methods for obtaining the password.

Plaintext in a management CLI command.

The password for the bindCredential module may be provided in plaintext, in a management CLI
command. For example: ("bindCredential"=>"secret1"). For security reasons, the password should
be encrypted using the JBoss EAP vault mechanism.

Use an external command.

To obtain the password from the output of an external command, use the format {EXT}... where the
... is the external command. The first line of the command output is used as the password.

To improve performance, the {EXTC[:expiration_in_millis]} variant caches the password for a
specified number of milliseconds. By default the cached password does not expire. If the value 0
(zero) is specified, the cached credentials do not expire.

The EXTC variant is only supported by the LdapExtended login module.

Example 18.22. Obtain a password from an external command

{EXT}cat /mysecretpasswordfile

Example 18.23. Obtain a password from an external file and cache it for 500 milliseconds

{EXTC:500}cat /mysecretpasswordfile

Report a bug

18.3.2. Custom Modules

If the login modules bundled with the EAP security framework do not work with your security
environment, you can write your own custom login module implementation. The
AuthenticationManager requires a particular usage pattern of the Subject principals set. You must
understand the JAAS Subject class's information storage features and the expected usage of these
features to write a login module that works with the AuthenticationManager.

ldapAdmin=admin, testAdmin

CHAPTER 18. APPLICATION SECURITY

503

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28323-771111+%5BLatest%5D&comment=Title%3A+RoleMapping+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28323-771111+29+Sep+2015+11%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+38715-681306+%5BLatest%5D&comment=Title%3A+bindCredential+Module+Option%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=38715-681306+03+Jul+2014+20%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

This section examines this requirement and introduces two abstract base LoginModule
implementations that can help you implement custom login modules.

You can obtain security information associated with a Subject by using the following methods:

For Subject identities and roles, EAP has selected the most logical choice: the principals sets obtained
via getPrincipals() and getPrincipals(java.lang.Class). The usage pattern is as follows:

User identities (for example; user name, social security number, employee ID) are stored as
java.security.Principal objects in the SubjectPrincipals set. The Principal implementation
that represents the user identity must base comparisons and equality on the name of the
principal. A suitable implementation is available as the org.jboss.security.SimplePrincipal
class. Other Principal instances may be added to the SubjectPrincipals set as needed.

Assigned user roles are also stored in the Principals set, and are grouped in named role sets
using java.security.acl.Group instances. The Group interface defines a collection of
Principals and/or Groups, and is a subinterface of java.security.Principal.

Any number of role sets can be assigned to a Subject.

The EAP security framework uses two well-known role sets with the names Roles and
CallerPrincipal.

The Roles group is the collection of Principals for the named roles as known in the
application domain under which the Subject has been authenticated. This role set is used by
methods like the EJBContext.isCallerInRole(String), which EJBs can use to see if the
current caller belongs to the named application domain role. The security interceptor logic
that performs method permission checks also uses this role set.

The CallerPrincipal Group consists of the single Principal identity assigned to the user in
the application domain. The EJBContext.getCallerPrincipal() method uses the
CallerPrincipal to allow the application domain to map from the operation environment
identity to a user identity suitable for the application. If a Subject does not have a
CallerPrincipal Group, the application identity is the same as operational environment
identity.

Report a bug

18.3.2.1. Subject Usage Pattern Support

To simplify correct implementation of the Subject usage patterns described in Section 18.3.2, “Custom
Modules”, EAP includes login modules that populate the authenticated Subject with a template pattern
that enforces correct Subject usage.

AbstractServerLoginModule

The most generic of the two is the org.jboss.security.auth.spi.AbstractServerLoginModule class.

It provides an implementation of the javax.security.auth.spi.LoginModule interface and offers
abstract methods for the key tasks specific to an operation environment security infrastructure. The key

java.util.Set getPrincipals()
java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()
java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()
java.util.Set getPublicCredentials(java.lang.Class c)

Development Guide

504

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+IDs%3A%0A28324-686361+%5BLatest%5D&comment=Title%3A+Custom+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

details of the class are highlighted in Example 18.24, “AbstractServerLoginModule Class Fragment”. The
JavaDoc comments detail the responsibilities of subclasses.

IMPORTANT

The loginOk instance variable is pivotal. This must be set to true if the log in succeeds, or
false by any subclasses that override the log in method. If this variable is incorrectly set,
the commit method will not correctly update the subject.

Tracking the log in phase outcomes allows login modules to be chained together with control flags.
These control flags do not require the login modules to succeed as part of the authentication process.

Example 18.24. AbstractServerLoginModule Class Fragment

package org.jboss.security.auth.spi;
/**
 * This class implements the common functionality required for a JAAS
 * server-side LoginModule and implements the PicketBox standard
 * Subject usage pattern of storing identities and roles. Subclass
 * this module to create your own custom LoginModule and override the
 * login(), getRoleSets(), and getIdentity() methods.
 */
public abstract class AbstractServerLoginModule
 implements javax.security.auth.spi.LoginModule
{
 protected Subject subject;
 protected CallbackHandler callbackHandler;
 protected Map sharedState;
 protected Map options;
 protected Logger log;

 /** Flag indicating if the shared credential should be used */
 protected boolean useFirstPass;
 /**
 * Flag indicating if the login phase succeeded. Subclasses that
 * override the login method must set this to true on successful
 * completion of login
 */
 protected boolean loginOk;

 // ...
 /**
 * Initialize the login module. This stores the subject,
 * callbackHandler and sharedState and options for the login
 * session. Subclasses should override if they need to process
 * their own options. A call to super.initialize(...) must be
 * made in the case of an override.
 *
 * <p>
 * The options are checked for the password-stacking parameter.
 * If this is set to "useFirstPass", the login identity will be taken from the
 * <code>javax.security.auth.login.name</code> value of the sharedState map,
 * and the proof of identity from the
 * <code>javax.security.auth.login.password</code> value of the sharedState map.
 *

CHAPTER 18. APPLICATION SECURITY

505

UsernamePasswordLoginModule

The second abstract base login module suitable for custom login modules is the

 * @param subject the Subject to update after a successful login.
 * @param callbackHandler the CallbackHandler that will be used to obtain the
 * the user identity and credentials.
 * @param sharedState a Map shared between all configured login module instances
 * @param options the parameters passed to the login module.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options)
 {
 // ...
 }

 /**
 * Looks for javax.security.auth.login.name and
 * javax.security.auth.login.password values in the sharedState
 * map if the useFirstPass option was true and returns true if
 * they exist. If they do not or are null this method returns
 * false.
 * Note that subclasses that override the login method
 * must set the loginOk var to true if the login succeeds in
 * order for the commit phase to populate the Subject. This
 * implementation sets loginOk to true if the login() method
 * returns true, otherwise, it sets loginOk to false.
 */
 public boolean login()
 throws LoginException
 {
 // ...
 }

 /**
 * Overridden by subclasses to return the Principal that
 * corresponds to the user primary identity.
 */
 abstract protected Principal getIdentity();

 /**
 * Overridden by subclasses to return the Groups that correspond
 * to the role sets assigned to the user. Subclasses should
 * create at least a Group named "Roles" that contains the roles
 * assigned to the user. A second common group is
 * "CallerPrincipal," which provides the application identity of
 * the user rather than the security domain identity.
 *
 * @return Group[] containing the sets of roles
 */
 abstract protected Group[] getRoleSets() throws LoginException;
}

Development Guide

506

The second abstract base login module suitable for custom login modules is the
org.jboss.security.auth.spi.UsernamePasswordLoginModule.

This login module further simplifies custom login module implementation by enforcing a string-based
user name as the user identity and a char[] password as the authentication credentials. It also supports
the mapping of anonymous users (indicated by a null user name and password) to a principal with no
roles. The key details of the class are highlighted in the following class fragment. The JavaDoc
comments detail the responsibilities of subclasses.

Example 18.25. UsernamePasswordLoginModule Class Fragment

package org.jboss.security.auth.spi;

/**
 * An abstract subclass of AbstractServerLoginModule that imposes a
 * an identity == String username, credentials == String password
 * view on the login process. Subclasses override the
 * getUsersPassword() and getUsersRoles() methods to return the
 * expected password and roles for the user.
 */
public abstract class UsernamePasswordLoginModule
 extends AbstractServerLoginModule
{
 /** The login identity */
 private Principal identity;
 /** The proof of login identity */
 private char[] credential;
 /** The principal to use when a null username and password are seen */
 private Principal unauthenticatedIdentity;

 /**
 * The message digest algorithm used to hash passwords. If null then
 * plain passwords will be used. */
 private String hashAlgorithm = null;

 /**
 * The name of the charset/encoding to use when converting the
 * password String to a byte array. Default is the platform's
 * default encoding.
 */
 private String hashCharset = null;

 /** The string encoding format to use. Defaults to base64. */
 private String hashEncoding = null;

 // ...

 /**
 * Override the superclass method to look for an
 * unauthenticatedIdentity property. This method first invokes
 * the super version.
 *
 * @param options,
 * @option unauthenticatedIdentity: the name of the principal to
 * assign and authenticate when a null username and password are
 * seen.

CHAPTER 18. APPLICATION SECURITY

507

Subclassing Login Modules

The choice of sub-classing the AbstractServerLoginModule versus
UsernamePasswordLoginModule is based on whether a string-based user name and credentials are
usable for the authentication technology you are writing the login module for. If the string-based
semantic is valid, then subclass UsernamePasswordLoginModule, otherwise subclass
AbstractServerLoginModule.

 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options)
 {
 super.initialize(subject, callbackHandler, sharedState,
 options);
 // Check for unauthenticatedIdentity option.
 Object option = options.get("unauthenticatedIdentity");
 String name = (String) option;
 if (name != null) {
 unauthenticatedIdentity = new SimplePrincipal(name);
 }
 }

 // ...

 /**
 * A hook that allows subclasses to change the validation of the
 * input password against the expected password. This version
 * checks that neither inputPassword or expectedPassword are null
 * and that inputPassword.equals(expectedPassword) is true;
 *
 * @return true if the inputPassword is valid, false otherwise.
 */
 protected boolean validatePassword(String inputPassword,
 String expectedPassword)
 {
 if (inputPassword == null || expectedPassword == null) {
 return false;
 }
 return inputPassword.equals(expectedPassword);
 }

 /**
 * Get the expected password for the current username available
 * via the getUsername() method. This is called from within the
 * login() method after the CallbackHandler has returned the
 * username and candidate password.
 *
 * @return the valid password String
 */
 abstract protected String getUsersPassword()
 throws LoginException;
}

Development Guide

508

Subclassing Steps

The steps your custom login module must execute depend on which base login module class you choose.
When writing a custom login module that integrates with your security infrastructure, you should start by
sub-classing AbstractServerLoginModule or UsernamePasswordLoginModule to ensure that your
login module provides the authenticated Principal information in the form expected by the EAP security
manager.

When sub-classing the AbstractServerLoginModule, you must override the following:

void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

boolean login(): to perform the authentication activity. Be sure to set the loginOk instance
variable to true if log in succeeds, false if it fails.

Principal getIdentity(): to return the Principal object for the user authenticated by the log()
step.

Group[] getRoleSets(): to return at least one Group named Roles that contains the roles
assigned to the Principal authenticated during login(). A second common Group is named
CallerPrincipal and provides the user's application identity rather than the security domain
identity.

When sub-classing the UsernamePasswordLoginModule, you must override the following:

void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

Group[] getRoleSets(): to return at least one Group named Roles that contains the roles
assigned to the Principal authenticated during login(). A second common Group is named
CallerPrincipal and provides the user's application identity rather than the security domain
identity.

String getUsersPassword(): to return the expected password for the current user name
available via the getUsername() method. The getUsersPassword() method is called from
within login() after the callbackhandler returns the user name and candidate password.

Report a bug

18.3.2.2. Custom LoginModule Example

The following information will help you to create a custom Login Module example that extends the
UsernamePasswordLoginModule and obtains a user's password and role names from a JNDI lookup.

At the end of this section you will have created a custom JNDI context login module that will return a
user's password if you perform a lookup on the context using a name of the form
password/<username> (where <username> is the current user being authenticated). Similarly, a
lookup of the form roles/<username> returns the requested user's roles. In Example 18.26,
“JndiUserAndPassLoginModule Custom Login Module” is the source code for the
JndiUserAndPassLoginModule custom login module.

Note that because this extends the JBoss UsernamePasswordLoginModule, the
JndiUserAndPassLoginModule obtains the user's password and roles from the JNDI store. The
JndiUserAndPassLoginModule does not interact with the JAAS LoginModule operations.

Example 18.26. JndiUserAndPassLoginModule Custom Login Module

package org.jboss.book.security.ex2;

CHAPTER 18. APPLICATION SECURITY

509

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28325-686362+%5BLatest%5D&comment=Title%3A+Subject+Usage+Pattern+Support%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28325-686362+21+Jul+2014+02%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

import java.security.acl.Group;
import java.util.Map;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;
import org.jboss.logging.Logger;
import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;
/**
 * An example custom login module that obtains passwords and roles for a user from a JNDI
lookup.
 *
 * @author Scott.Stark@jboss.org
 */
public class JndiUserAndPassLoginModule extends UsernamePasswordLoginModule {
 /** The JNDI name to the context that handles the password/username lookup */
 private String userPathPrefix;
 /** The JNDI name to the context that handles the roles/username lookup */
 private String rolesPathPrefix;
 private static Logger log = Logger.getLogger(JndiUserAndPassLoginModule.class);
 /**
 * Override to obtain the userPathPrefix and rolesPathPrefix options.
 */
 @Override
 public void initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options) {
 super.initialize(subject, callbackHandler, sharedState, options);
 userPathPrefix = (String) options.get("userPathPrefix");
 rolesPathPrefix = (String) options.get("rolesPathPrefix");
 }
 /**
 * Get the roles the current user belongs to by querying the rolesPathPrefix + '/' +
super.getUsername() JNDI location.
 */
 @Override
 protected Group[] getRoleSets() throws LoginException {
 try {
 InitialContext ctx = new InitialContext();
 String rolesPath = rolesPathPrefix + '/' + super.getUsername();
 String[] roles = (String[]) ctx.lookup(rolesPath);
 Group[] groups = { new SimpleGroup("Roles") };
 log.info("Getting roles for user=" + super.getUsername());
 for (int r = 0; r < roles.length; r++) {
 SimplePrincipal role = new SimplePrincipal(roles[r]);
 log.info("Found role=" + roles[r]);
 groups[0].addMember(role);
 }
 return groups;
 } catch (NamingException e) {
 log.error("Failed to obtain groups for user=" + super.getUsername(), e);
 throw new LoginException(e.toString(true));
 }

Development Guide

510

Example 18.27. Definition of security-ex2 security domain with the newly-created custom login
module

The choice of using the JndiUserAndPassLoginModule custom login module for the server side
authentication of the user is determined by the login configuration for the example security domain. The
EJB JAR META-INF/jboss-ejb3.xml descriptor sets the security domain. For a web application it is part
of the WEB-INF/jboss-web.xml file.

Example 18.28. jboss-ejb3.xml Example

 }
 /**
 * Get the password of the current user by querying the userPathPrefix + '/' +
super.getUsername() JNDI location.
 */
 @Override
 protected String getUsersPassword() throws LoginException {
 try {
 InitialContext ctx = new InitialContext();
 String userPath = userPathPrefix + '/' + super.getUsername();
 log.info("Getting password for user=" + super.getUsername());
 String passwd = (String) ctx.lookup(userPath);
 log.info("Found password=" + passwd);
 return passwd;
 } catch (NamingException e) {
 log.error("Failed to obtain password for user=" + super.getUsername(), e);
 throw new LoginException(e.toString(true));
 }
 }
}

/subsystem=security/security-domain=security-ex2/:add
/subsystem=security/security-domain=security-ex2/authentication=classic:add
/subsystem=security/security-domain=security-ex2/authentication=classic/login-module=ex2/:add(\
flag=required,\
code=org.jboss.book.security.ex2.JndiUserAndPassLoginModule,\
module-options=[("userPathPrefix"=>"/security/store/password"),\
("rolesPathPrefix"=>"/security/store/roles")]\
)

<?xml version="1.0"?>
<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:s="urn:security" version="3.1" impl-
version="2.0">
 <assembly-descriptor>
 <s:security>
 <ejb-name>*</ejb-name>
 <s:security-domain>security-ex2</s:security-domain>
 </s:security>
 </assembly-descriptor>
</jboss:ejb-jar>

CHAPTER 18. APPLICATION SECURITY

511

Example 18.29. jboss-web.xml example

Report a bug

18.4. EJB APPLICATION SECURITY

18.4.1. Security Identity

18.4.1.1. About EJB Security Identity

An EJB can specify an identity to use when invoking methods on other components. This is the EJB's
security identity (also known as invocation identity).

By default, the EJB uses its own caller identity. The identity can alternatively be set to a specific security
role. Using specific security roles is useful when you want to construct a segmented security model - for
example, restricting access to a set of components to internal EJBs only.

Report a bug

18.4.1.2. Set the Security Identity of an EJB

The security identity of the EJB is specified through the <security-identity> tag in the security
configuration.

By default - if no <security-identity> tag is present - the EJB's own caller identity is used.

Example 18.30. Set the security identity of an EJB to be the same as its caller

This example sets the security identity for method invocations made by an EJB to be the same as the
current caller's identity. This behavior is the default if you do not specify a <security-identity>
element declaration.

<?xml version="1.0"?>
<jboss-web>
 <security-domain>security-ex2</security-domain>
</jboss-web>

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <!-- ... -->
 </enterprise-beans>
</ejb-jar>

Development Guide

512

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28326-638684+%5BLatest%5D&comment=Title%3A+Custom+LoginModule+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28326-638684+06+May+2014+22%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4713-685873+%5BLatest%5D&comment=Title%3A+About+EJB+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4713-685873+17+Jul+2014+20%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 18.31. Set the security identity of an EJB to a specific role

To set the security identity to a specific role, use the <run-as> and <role-name> tags inside the
<security-identity> tag.

By default, when you use <run-as>, a principal named anonymous is assigned to outgoing calls. To
assign a different principal, uses the <run-as-principal>.

NOTE

You can also use the <run-as> and <run-as-principal> elements inside a servlet
element.

See also:

Section 18.4.1.1, “About EJB Security Identity”

Section 20.1, “EJB Security Parameter Reference”

Report a bug

18.4.2. EJB Method Permissions

18.4.2.1. About EJB Method Permissions

EJBs can restrict access to their methods to specific security roles.

The EJB <method-permission> element declaration specifies the roles that can invoke the EJB's
interface methods. You can specify permissions for the following combinations:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
 <!-- ... -->
</ejb-jar>

<session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
</session>

CHAPTER 18. APPLICATION SECURITY

513

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5052-685874+%5BLatest%5D&comment=Title%3A+Set+the+Security+Identity+of+an+EJB%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5052-685874+17+Jul+2014+20%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

All home and component interface methods of the named EJB

A specified method of the home or component interface of the named EJB

A specified method within a set of methods with an overloaded name

Report a bug

18.4.2.2. Use EJB Method Permissions

Overview

The <method-permission> element defines the logical roles that are allowed to access the EJB
methods defined by <method> elements. Several examples demonstrate the syntax of the XML.
Multiple method permission statements may be present, and they have a cumulative effect. The
<method-permission> element is a child of the <assembly-descriptor> element of the <ejb-jar>
descriptor.

The XML syntax is an alternative to using annotations for EJB method permissions.

Example 18.32. Allow roles to access all methods of an EJB

Example 18.33. Allow roles to access only specific methods of an EJB, and limiting which method
parameters can be passed.

<method-permission>
 <description>The employee and temp-employee roles may access any method
 of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>

Development Guide

514

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4767-685876+%5BLatest%5D&comment=Title%3A+About+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4767-685876+17+Jul+2014+20%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 18.34. Allow any authenticated user to access methods of EJBs

Using the <unchecked/> element allows any authenticated user to use the specified methods.

Example 18.35. Completely exclude specific EJB methods from being used

Example 18.36. A complete <assembly-descriptor> containing several <method-permission>
blocks

 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

<method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
</exclude-list>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>

CHAPTER 18. APPLICATION SECURITY

515

Report a bug

18.4.3. EJB Security Annotations

18.4.3.1. About EJB Security Annotations

EJB javax.annotation.security annotations are defined in JSR250.

EJBs use security annotations to pass information about security to the deployer. These include:

 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Development Guide

516

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4794-591676+%5BLatest%5D&comment=Title%3A+Use+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4794-591676+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

@DeclareRoles

Declares which roles are available.

@RunAs

Configures the propagated security identity of a component.

Report a bug

18.4.3.2. Use EJB Security Annotations

Overview

You can use either XML descriptors or annotations to control which security roles are able to call
methods in your Enterprise JavaBeans (EJBs). For information on using XML descriptors, refer to
Section 18.4.2.2, “Use EJB Method Permissions” .

Any method values explicitly specified in the deployment descriptor override annotation values. If a
method value is not specified in the deployment descriptor, those values set using annotations are used.
The overriding granularity is on a per-method basis.

Annotations for Controlling Security Permissions of EJBs

@DeclareRoles

Use @DeclareRoles to define which security roles to check permissions against. If no @DeclareRoles
is present, the list is built automatically from the @RolesAllowed annotation. For information about
configuring roles, refer to the Java EE 6 Tutorial Specifying Authorized Users by Declaring Security
Roles.

@RolesAllowed, @PermitAll, @DenyAll

Use @RolesAllowed to list which roles are allowed to access a method or methods. Use @PermitAll
or @DenyAll to either permit or deny all roles from using a method or methods. For information
about configuring annotation method permissions, refer to the Java EE 6 Tutorial Specifying
Authorized Users by Declaring Security Roles.

@RunAs

Use @RunAs to specify a role a method uses when making calls from the annotated method. For
information about configuring propagated security identities using annotations, refer to the Java EE
6 Tutorial Propagating a Security Identity (Run-As) .

Example 18.37. Security Annotations Example

@Stateless
@RolesAllowed({"admin"})
@SecurityDomain("other")
public class WelcomeEJB implements Welcome {
 @PermitAll
 public String WelcomeEveryone(String msg) {
 return "Welcome to " + msg;
 }
 @RunAs("tempemployee")
 public String GoodBye(String msg) {

CHAPTER 18. APPLICATION SECURITY

517

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4768-685879+%5BLatest%5D&comment=Title%3A+About+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4768-685879+17+Jul+2014+20%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#gjgcq
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#gjgcq
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#bnbyr

In this code, all roles can access method WelcomeEveryone. The GoodBye method uses the
tempemployee role when making calls. Only the admin role can access method GoodbyeAdmin,
and any other methods with no security annotation.

Report a bug

18.4.4. Remote Access to EJBs

18.4.4.1. About Remote Method Access

JBoss Remoting is the framework which provides remote access to EJBs, JMX MBeans, and other
similar services. It works within the following transport types, with or without SSL:

Supported Transport Types

Socket / Secure Socket

RMI / RMI over SSL

HTTP / HTTPS

Servlet / Secure Servlet

Bisocket / Secure Bisocket

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

JBoss Remoting also provides automatic discovery via Multicast or JNDI.

It is used by many of the subsystems within JBoss EAP 6, and also enables you to design, implement, and
deploy services that can be remotely invoked by clients over several different transport mechanisms. It
also allows you to access existing services in JBoss EAP 6.

Data Marshalling

The Remoting system also provides data marshalling and unmarshalling services. Data marshalling
refers to the ability to safely move data across network and platform boundaries, so that a separate
system can perform work on it. The work is then sent back to the original system and behaves as though
it were handled locally.

 return "Goodbye, " + msg;
 }
 public String GoodbyeAdmin(String msg) {
 return "See you later, " + msg;
 }
}



Development Guide

518

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4795-687321+%5BLatest%5D&comment=Title%3A+Use+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4795-687321+22+Jul+2014+18%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Architecture Overview

When you design a client application which uses Remoting, you direct your application to communicate
with the server by configuring it to use a special type of resource locator called an InvokerLocator,
which is a simple String with a URL-type format. The server listens for requests for remote resources on
a connector, which is configured as part of the remoting subsystem. The connector hands the request
off to a configured ServerInvocationHandler. Each ServerInvocationHandler implements a method
invoke(InvocationRequest), which knows how to handle the request.

The JBoss Remoting framework contains three layers that mirror each other on the client and server
side.

JBoss Remoting Framework Layers

The user interacts with the outer layer. On the client side, the outer layer is the Client class,
which sends invocation requests. On the server side, it is the InvocationHandler, which is
implemented by the user and receives invocation requests.

The transport is controlled by the invoker layer.

The lowest layer contains the marshaller and unmarshaller, which convert data formats to wire
formats.

Report a bug

18.4.4.2. About Remoting Callbacks

When a Remoting client requests information from the server, it can block and wait for the server to
reply, but this is often not the ideal behavior. To allow the client to listen for asynchronous events on the
server, and continue doing other work while waiting for the server to finish the request, your application
can ask the server to send a notification when it has finished. This is referred to as a callback. One client
can add itself as a listener for asynchronous events generated on behalf of another client, as well. There
are two different choices for how to receive callbacks: pull callbacks or push callbacks. Clients check for
pull callbacks synchronously, but passively listen for push callbacks.

In essence, a callback works by the server sending an InvocationRequest to the client. Your server-side
code works the same regardless of whether the callback is synchronous or asynchronous. Only the client
needs to know the difference. The server's InvocationRequest sends a responseObject to the client.
This is the payload that the client has requested. This may be a direct response to a request or an event
notification.

Your server also tracks listeners using an m_listeners object. It contains a list of all listeners that have
been added to your server handler. The ServerInvocationHandler interface includes methods that
allow you to manage this list.

The client handles pull and push callback in different ways. In either case, it must implement a callback
handler. A callback handler is an implementation of interface
org.jboss.remoting.InvokerCallbackHandler, which processes the callback data. After implementing
the callback handler, you either add yourself as a listener for a pull callback, or implement a callback
server for a push callback.

Pull Callbacks

For a pull callback, your client adds itself to the server's list of listeners using the Client.addListener()
method. It then polls the server periodically for synchronous delivery of callback data. This poll is
performed using the Client.getCallbacks().

CHAPTER 18. APPLICATION SECURITY

519

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7882-724703+%5BLatest%5D&comment=Title%3A+About+Remote+Method+Access%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7882-724703+09+Nov+2014+23%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Push Callback

A push callback requires your client application to run its own InvocationHandler. To do this, you need to
run a Remoting service on the client itself. This is referred to as a callback server . The callback server
accepts incoming requests asynchronously and processes them for the requester (in this case, the
server). To register your client's callback server with the main server, pass the callback server's
InvokerLocator as the second argument to the addListener method.

Report a bug

18.4.4.3. About Remoting Server Detection

Remoting servers and clients can automatically detect each other using JNDI or Multicast. A Remoting
Detector is added to both the client and server, and a NetworkRegistry is added to the client.

The Detector on the server side periodically scans the InvokerRegistry and pulls all server invokers it has
created. It uses this information to publish a detection message which contains the locator and
subsystems supported by each server invoker. It publishes this message via a multicast broadcast or a
binding into a JNDI server.

On the client side, the Detector receives the multicast message or periodically polls the JNDI server to
retrieve detection messages. If the Detector notices that a detection message is for a newly-detected
remoting server, it registers it into the NetworkRegistry. The Detector also updates the NetworkRegistry
if it detects that a server is no longer available.

Report a bug

18.4.4.4. Configure the Remoting Subsystem

Overview

JBoss Remoting has three top-level configurable elements: the worker thread pool, one or more
connectors, and a series of local and remote connection URIs. This topic presents an explanation of
each configurable item, example CLI commands for how to configure each item, and an XML example of
a fully-configured subsystem. This configuration only applies to the server. Most people will not need to
configure the Remoting subsystem at all, unless they use custom connectors for their own applications.
Applications which act as Remoting clients, such as EJBs, need separate configuration to connect to a
specific connector.

NOTE

The Remoting subsystem configuration is not exposed to the web-based Management
Console, but it is fully configurable from the command-line based Management CLI.
Editing the XML by hand is not recommended.

Adapting the CLI Commands

The CLI commands are formulated for a managed domain, when configuring the default profile. To
configure a different profile, substitute its name. For a standalone server, omit the /profile=default part
of the command.

Configuration Outside the Remoting Subsystem

There are a few configuration aspects which are outside of the remoting subsystem:

Network Interface

The network interface used by the remoting subsystem is the public interface defined in the

Development Guide

520

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7883-591811+%5BLatest%5D&comment=Title%3A+About+Remoting+Callbacks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7883-591811+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7890-591811+%5BLatest%5D&comment=Title%3A+About+Remoting+Server+Detection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7890-591811+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The network interface used by the remoting subsystem is the public interface defined in the
domain/configuration/domain.xml or standalone/configuration/standalone.xml.

The per-host definition of the public interface is defined in the host.xml in the same directory as
the domain.xml or standalone.xml. This interface is also used by several other subsystems. Exercise
caution when modifying it.

socket-binding

The default socket-binding used by the remoting subsystem binds to TCP port 4447. Refer to the
documentation about socket bindings and socket binding groups for more information if you need to
change this.

Information about socket binding and socket binding groups can be found in the Socket Binding
Groups chapter of JBoss EAP's Administration and Configuration Guide available at
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/?
version=6.4

Remoting Connector Reference for EJB

The EJB subsystem contains a reference to the remoting connector for remote method invocations.
The following is the default configuration:

Secure Transport Configuration

Remoting transports use StartTLS to use a secure (HTTPS, Secure Servlet, etc) connection if the
client requests it. The same socket binding (network port) is used for secured and unsecured
connections, so no additional server-side configuration is necessary. The client requests the secure
or unsecured transport, as its needs dictate. JBoss EAP 6 components which use Remoting, such as
EJBs, the ORB, and the JMS provider, request secured interfaces by default.

<interfaces>
 <interface name="management"/>
 <interface name="public"/>
 <interface name="unsecure"/>
</interfaces>

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 <interface name="unsecure">
 <!-- Used for IIOP sockets in the standard configuration.
 To secure JacORB you need to setup SSL -->
 <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/>
 </interface>
</interfaces>

<remote connector-ref="remoting-connector" thread-pool-name="default"/>

CHAPTER 18. APPLICATION SECURITY

521

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/?version=6.4

WARNING

StartTLS works by activating a secure connection if the client requests it, and
otherwise defaulting to an unsecured connection. It is inherently susceptible to a
Man in the Middle style exploit, wherein an attacker intercepts the client's request
and modifies it to request an unsecured connection. Clients must be written to fail
appropriately if they do not receive a secure connection, unless an unsecured
connection actually is an appropriate fall-back.

Worker Thread Pool

The worker thread pool is the group of threads which are available to process work which comes in
through the Remoting connectors. It is a single element <worker-thread-pool>, and takes several
attributes. Tune these attributes if you get network timeouts, run out of threads, or need to limit
memory usage. Specific recommendations depend on your specific situation. Contact Red Hat Global
Support Services for more information.

Table 18.2. Worker Thread Pool Attributes

Attribute Description CLI Command

read-threads The number of read threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-read-
threads,value=1)

write-threads The number of write threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-write-
threads,value=1)

task-keepalive The number of milliseconds to
keep non-core remoting worker
task threads alive. Defaults to 60.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
keepalive,value=60)

task-max-threads The maximum number of threads
for the remoting worker task
thread pool. Defaults to 16.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
max-threads,value=16)

task-core-threads The number of core threads for
the remoting worker task thread
pool. Defaults to 4.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
core-threads,value=4)

task-limit The maximum number of
remoting worker tasks to allow
before rejecting. Defaults to
16384.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
limit,value=16384)

Connector



Development Guide

522

The connector is the main Remoting configuration element. Multiple connectors are allowed. Each
consists of a element <connector> element with several sub-elements, as well as a few possible
attributes. The default connector is used by several subsystems of JBoss EAP 6. Specific settings for
the elements and attributes of your custom connectors depend on your applications, so contact Red
Hat Global Support Services for more information.

Table 18.3. Connector Attributes

Attribute Description CLI Command

socket-binding The name of the socket binding to
use for this connector.

/profile=default/subsystem=r
emoting/connector=remoting
-connector/:write-
attribute(name=socket-
binding,value=remoting)

authentication-provider The Java Authentication Service
Provider Interface for Containers
(JASPIC) module to use with this
connector. The module must be
in the classpath.

/profile=default/subsystem=r
emoting/connector=remoting
-connector/:write-
attribute(name=authenticatio
n-
provider,value=myProvider)

security-realm Optional. The security realm
which contains your application's
users, passwords, and roles. An
EJB or Web Application can
authenticate against a security
realm. ApplicationRealm is
available in a default JBoss EAP 6
installation.

/profile=default/subsystem=r
emoting/connector=remoting
-connector/:write-
attribute(name=security-
realm,value=ApplicationReal
m)

Table 18.4. Connector Elements

Attribute Description CLI Command

sasl Enclosing element for Simple
Authentication and Security Layer
(SASL) authentication
mechanisms

N/A

properties Contains one or more
<property> elements, each with
a name attribute and an optional
value attribute.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/property=myProp/
:add(value=myPropValue)

Outbound Connections

You can specify three different types of outbound connection:

Outbound connection to a URI.

Local outbound connection – connects to a local resource such as a socket.

Remote outbound connection – connects to a remote resource and authenticates using a
security realm.

CHAPTER 18. APPLICATION SECURITY

523

All of the outbound connections are enclosed in an <outbound-connections> element. Each of these
connection types takes an outbound-socket-binding-ref attribute. The outbound-connection takes a
uri attribute. The remote outbound connection takes optional username and security-realm attributes
to use for authorization.

Table 18.5. Outbound Connection Elements

Attribute Description CLI Command

outbound-connection Generic outbound connection. /profile=default/subsystem=r
emoting/outbound-
connection=my-
connection/:add(uri=http://m
y-connection)

local-outbound-connection Outbound connection with a
implicit local:// URI scheme.

/profile=default/subsystem=r
emoting/local-outbound-
connection=my-
connection/:add(outbound-
socket-binding-
ref=remoting2)

remote-outbound-connection Outbound connections for
remote:// URI scheme, using
basic/digest authentication with a
security realm.

/profile=default/subsystem=r
emoting/remote-outbound-
connection=my-
connection/:add(outbound-
socket-binding-
ref=remoting,username=myU
ser,security-
realm=ApplicationRealm)

SASL Elements

Before defining the SASL child elements, you need to create the initial SASL element. Use the following
command:

/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:add

The child elements of the SASL element are described in the table below.

Table 18.6. SASL child elements

Attribute Description CLI Command

include-mechanisms Contains a value attribute, which
is a list of SASL mechanisms. /profile=default/subsystem=r

emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=include-
mechanisms,value=
["DIGEST","PLAIN","GSSA
PI"])

Development Guide

524

qop Contains a value attribute, which
is a list of SASL Quality of
protection values, in decreasing
order of preference.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=qop,value=
["auth"])

strength Contains a value attribute, which
is a list of SASL cipher strength
values, in decreasing order of
preference.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-
attribute(name=strength,valu
e=["medium"])

reuse-session Contains a value attribute which
is a boolean value. If true, attempt
to reuse sessions.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=reuse-
session,value=false)

server-auth Contains a value attribute which
is a boolean value. If true, the
server authenticates to the client.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=server-
auth,value=false)

policy An enclosing element which
contains zero or more of the
following elements, which each
take a single value.

forward-secrecy –
whether mechanisms are
required to implement
forward secrecy
(breaking into one
session will not
automatically provide
information for breaking
into future sessions)

no-active – whether
mechanisms susceptible
to non-dictionary

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:add

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=forward-
secrecy,value=true)

Attribute Description CLI Command

CHAPTER 18. APPLICATION SECURITY

525

attacks are permitted. A
value of false permits,
and true denies.

no-anonymous –
whether mechanisms
that accept anonymous
login are permitted. A
value of false permits,
and true denies.

no-dictionary – whether
mechanisms susceptible
to passive dictionary
attacks are allowed. A
value of false permits,
and true denies.

no-plain-text – whether
mechanisms which are
susceptible to simple
plain passive attacks are
allowed. A value of false
permits, and true denies.

pass-credentials –
whether mechanisms
which pass client
credentials are allowed.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-
active,value=false)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-
anonymous,value=false)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-
dictionary,value=true)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-plain-
text,value=false)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=pass-
credentials,value=true)

Attribute Description CLI Command

Development Guide

526

properties Contains one or more
<property> elements, each with
a name attribute and an optional
value attribute.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/prop
erty=myprop:add(value=1)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/prop
erty=myprop2:add(value=2)

Attribute Description CLI Command

Example 18.38. Example Configurations

This example shows the default remoting subsystem that ships with JBoss EAP 6.

This example contains many hypothetical values, and is presented to put the elements and attributes
discussed previously into context.

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <connector name="remoting-connector" socket-binding="remoting" security-
realm="ApplicationRealm"/>
</subsystem>

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <worker-thread-pool read-threads="1" task-keepalive="60" task-max-threads="16" task-core-
thread="4" task-limit="16384" write-threads="1" />
 <connector name="remoting-connector" socket-binding="remoting" security-
realm="ApplicationRealm">
 <sasl>
 <include-mechanisms value="GSSAPI PLAIN DIGEST-MD5" />
 <qop value="auth" />
 <strength value="medium" />
 <reuse-session value="false" />
 <server-auth value="false" />
 <policy>
 <forward-secrecy value="true" />
 <no-active value="false" />
 <no-anonymous value="false" />
 <no-dictionary value="true" />
 <no-plain-text value="false" />
 <pass-credentials value="true" />
 </policy>
 <properties>
 <property name="myprop1" value="1" />
 <property name="myprop2" value="2" />
 </properties>
 </sasl>

CHAPTER 18. APPLICATION SECURITY

527

Configuration Aspects Not Yet Documented

JNDI and Multicast Automatic Detection

Report a bug

18.4.4.5. Use Security Realms with Remote EJB Clients

One way to add security to clients which invoke EJBs remotely is to use security realms. A security realm
is a simple database of username/password pairs and username/role pairs. The terminology is also used
in the context of web containers, with a slightly different meaning.

To authenticate a specific username/password pair that exists in a security realm against an EJB, follow
these steps:

Add a new security realm to the domain controller or standalone server.

Add the following parameters to the jboss-ejb-client.properties file, which is in the classpath of
the application. This example assumes the connection is referred to as default by the other
parameters in the file.

Create a custom Remoting connector on the domain or standalone server, which uses your new
security realm.

Deploy your EJB to the server group which is configured to use the profile with the custom
Remoting connector, or to your standalone server if you are not using a managed domain.

Report a bug

18.4.4.6. Add a New Security Realm

1. Run the Management CLI.
Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.

Run the following command to create a new security realm named MyDomainRealm on a

 <authentication-provider name="myprovider" />
 <properties>
 <property name="myprop3" value="propValue" />
 </properties>
 </connector>
 <outbound-connections>
 <outbound-connection name="my-outbound-connection" uri="http://myhost:7777/"/>
 <remote-outbound-connection name="my-remote-connection" outbound-socket-binding-
ref="my-remote-socket" username="myUser" security-realm="ApplicationRealm"/>
 <local-outbound-connection name="myLocalConnection" outbound-socket-binding-ref="my-
outbound-socket"/>
 </outbound-connections>
</subsystem>

remote.connection.default.username=appuser
remote.connection.default.password=apppassword

Development Guide

528

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7884-781534+%5BLatest%5D&comment=Title%3A+Configure+the+Remoting+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7884-781534+13+Nov+2017+12%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8270-680304+%5BLatest%5D&comment=Title%3A+Use+Security+Realms+with+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8270-680304+30+Jun+2014+08%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

For a domain instance, use this command:

/host=master/core-service=management/security-realm=MyDomainRealm:add()

For a standalone instance, use this command:

/core-service=management/security-realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

For a domain instance, use this command:

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

For a standalone instance, use this command:

/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

Result

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

18.4.4.7. Add a User to a Security Realm

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm, you
can type its name instead.

4. Type the username, password, and roles, when prompted.

Type the desired username, password, and optional roles when prompted. Verify your choice by

CHAPTER 18. APPLICATION SECURITY

529

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8272-719583+%5BLatest%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-719583+27+Oct+2014+21%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

18.4.4.8. About Remote EJB Access Using SSL Encryption

By default, the network traffic for Remote Method Invocation (RMI) of EJB2 and EJB3 Beans is not
encrypted. In instances where encryption is required, Secure Sockets Layer (SSL) can be utilized so that
the connection between the client and server is encrypted. Using SSL also has the added benefit of
allowing the network traffic to traverse some firewalls, depending on the firewall configuration.

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Report a bug

18.5. JAX-RS APPLICATION SECURITY

18.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods.
However, it does not recognize these annotations by default. Follow these steps to configure the
web.xml file and enable role-based security.

WARNING

Changing the default values of the following RESTEasy parameters may cause
RESTEasy applications to be potentially vulnerable against XXE attacks.

resteasy.document.expand.entity.references

resteasy.document.secure.processing.feature

resteasy.document.secure.disableDTDs

For more information about these parameters, see Section 15.5.1, “RESTEasy
Configuration Parameters”.





Development Guide

530

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8271-591829+%5BLatest%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-591829+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4786-724704+%5BLatest%5D&comment=Title%3A+About+Remote+EJB+Access+Using+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4786-724704+09+Nov+2014+23%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WARNING

Do not activate role-based security if the application uses EJBs. The EJB container
will provide the functionality, instead of RESTEasy.

Procedure 18.5. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

1. Open the web.xml file for the application in a text editor.

2. Add the following <context-param> to the file, within the web-app tags:

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
</context-param>

3. Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:

<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

4. Authorize access to all URLs handled by the JAX-RS runtime for all roles:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ROLE_NAME</role-name>
 <role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

Role-based security has been enabled within the application, with a set of defined roles.

Example 18.39. Example Role-Based Security Configuration



<web-app>

 <context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
 </context-param>

CHAPTER 18. APPLICATION SECURITY

531

Report a bug

18.5.2. Secure a JAX-RS Web Service using Annotations

Summary

This topic covers the steps to secure a JAX-RS web service using the supported security annotations

Procedure 18.6. Secure a JAX-RS Web Service using Supported Security Annotations

1. Enable role-based security. For more information, refer to: Section 18.5.1, “Enable Role-Based
Security for a RESTEasy JAX-RS Web Service”

2. Add security annotations to the JAX-RS web service. RESTEasy supports the following
annotations:

@RolesAllowed

Defines which roles can access the method. All roles should be defined in the web.xml file.

@PermitAll

Allows all roles defined in the web.xml file to access the method.

@DenyAll

Denies all access to the method.

Report a bug

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/security</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>

</web-app>

Development Guide

532

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5945-781125+%5BLatest%5D&comment=Title%3A+Enable+Role-Based+Security+for+a+RESTEasy+JAX-RS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5945-781125+27+Jan+2017+11%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6095-591722+%5BLatest%5D&comment=Title%3A+Secure+a+JAX-RS+Web+Service+using+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6095-591722+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

18.6. PASSWORD VAULTS FOR SENSITIVE STRINGS

18.6.1. Password Vault System

Configuration of JBoss EAP and associated applications requires potentially sensitive information, such
as usernames and passwords.

The Password Vault provides a feature to mask the password information and store it in an encrypted
keystore. You can include references of the encrypted keystore in Management CLI commands or
applications. The Password Vault uses the Java Keystore as its storage mechanism. The Password Vault
consists of two parts: storage and key storage. Java Keystore is used to store the key, which is used to
encrypt or decrypt sensitive strings in Vault storage.

Report a bug

18.6.2. Configure and Use Password Vault

The masked keystore password feature provided in Password Vault provides the option to obtain the
masked keystore password from Password Vault, which is stored on the JBoss EAP server. The
Password Vault uses the Java Keystore as its storage mechanism.

Procedure 18.7. Basic steps to configure and use Password Vault

1. Setup a Java Keystore to store key for password encryption.

For information on creating a keystore, refer Section 18.6.4, “Create a Java Keystore to Store
Sensitive Strings”.

2. Initialize the Password Vault.

For information on masking the password and initialize the password vault, refer Section 18.6.5,
“Initialize the Password Vault”.

3. Store a Sensitive String in the Password Vault.

For information on storing sensitive string in Password Vault, refer Section 18.6.8, “Store a
Sensitive String in the Password Vault”.

4. Configure JBoss EAP 6 to use the Password Vault.

For information on configuring JBoss EAP 6 to use the Password Vault, refer Section 18.6.6,
“Configure JBoss EAP 6 to Use the Password Vault”. For custom implementation, refer
Section 18.6.7, “Configure JBoss EAP 6 to Use a Custom Implementation of the Password
Vault”.

NOTE

CHAPTER 18. APPLICATION SECURITY

533

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9001-768433+%5BLatest%5D&comment=Title%3A+Password+Vault+System%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9001-768433+25+Aug+2015+04%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

To use an encrypted sensitive string in configuration, refer Section 18.6.9, “Use
an Encrypted Sensitive String in Configuration”.

To use an encrypted sensitive string in an application, refer Section 18.6.10, “Use
an Encrypted Sensitive String in an Application”.

To verify a sensitive string in Password Vault, refer Section 18.6.11, “Check if a
Sensitive String is in the Password Vault”.

To remove a sensitive string from Password Vault, refer Section 18.6.12, “Remove
a Sensitive String from the Password Vault”.

Report a bug

18.6.3. Obtain Keystore Password From External Source

You can also the use the EXT, EXTC, CMD, CMDC or CLASS methods in Vault configuration for
obtaining the Java keystore password.

The description for the methods are listed as:

{EXT}...: Refers to the exact command, where ‘…’ is the exact command. For example:
{EXT}/usr/bin/getmypassword --section 1 --query company, run the
/usr/bin/getmypassword command, which displays the password on standard output and use it
as password for Security Vault's keystore. In this example, the command is using two options: --
section 1 and --query company.

{EXTC[:expiration_in_millis]}...: Refers to the exact command, where the '...' is the exact
command line that is passed to the Runtime.exec(String) method to execute a platform
command. The first line of the command output is used as the password. EXTC variant caches
the passwords for expiration_in_millis milliseconds. Default cache expiration is 0 (zero), meaning
items in the cache never expire. For example: {EXTC:120000}/usr/bin/getmypassword --
section 1 --query company Verify if cache contains /usr/bin/getmypassword output, if it
contains the output then use it. If it does not contain the output, run the command to output it
to cache and use it. In this example, the cache expires in 2 minute (120000 milliseconds).

{CMD}... or {CMDC[:expiration_in_millis]}...: The general command is a string delimited by ','
where the first part is the actual command and further parts represents the parameters. The
comma can be backslashed to keep it as a part of the parameter. For example,
{CMD}/usr/bin/getmypassword,--section,1,--query,company

{CLASS[@jboss_module_spec]}classname[:ctorargs]: Where the '[:ctorargs]' is an optional
string delimited by the ':' from the classname is passed to the classname ctor. The ctorargs is a
comma delimited list of strings. For example,
{CLASS@org.test.passwd}org.test.passwd.ExternamPassworProvider. In this example, we
load org.test.passwd.ExternamPassworProvider class from org.test.passwd module and
use the toCharArray() method to get the password. If toCharArray() is not available use
toString() method. The org.test.passwd.ExternamPassworProvider class must have the
default constructor.

Report a bug

<vault-option name="KEYSTORE_PASSWORD" value="[here]"

Development Guide

534

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42241-766000+%5BLatest%5D&comment=Title%3A+Configure+and+Use+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42241-766000+26+Jul+2015+23%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42239-738014+%5BLatest%5D&comment=Title%3A+Obtain+Keystore+Password+From+External+Source%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42239-738014+23+Jan+2015+00%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

18.6.4. Create a Java Keystore to Store Sensitive Strings

Prerequisites

The keytool utility, provided by the Java Runtime Environment (JRE). Locate the path for the
file, which on Red Hat Enterprise Linux is /usr/bin/keytool.

WARNING

JCEKS keystore implementations differ between Java vendors so you must
generate the keystore using the keytool utility from the same vendor as the Java
development kit you use.

Using a keystore generated by the keytool from one vendor's Java development kit
in a JBoss EAP instance running on a Java development kit from a different vendor
results in the following exception:

java.io.IOException: com.sun.crypto.provider.SealedObjectForKeyProtector

Procedure 18.8. Set up a Java Keystore

1. Create a directory to store your keystore and other encrypted information.
Create a directory to store your keystore and other important information. The rest of this
procedure assumes that the directory is EAP_HOME/vault/. Since this directory will contain
sensitive information it should be accessible to only limited users. At a minimum the user
account under which JBoss EAP is running requires read-write access.

2. Determine the parameters to use with keytool utility.
Decide on values for the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. Aliases are
case-insensitive.

storetype

The storetype specifies the keystore type. The value jceks is recommended.

keyalg

The algorithm to use for encryption. Use the documentation for your JRE and operating
system to see which other choices may be available to you.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. For
information on appropriate values, see the documentation distributed with the keytool
utility.

storepass



CHAPTER 18. APPLICATION SECURITY

535

The value of storepass is the password is used to authenticate to the keystore so that the
key can be read. The password must be at least 6 characters long and must be provided
when the keystore is accessed. If you omit this parameter, you will be prompted to enter it
when you execute the command.

keypass

The value of keypass is the password used to access the specific key and must match the
value of the storepass parameter.

validity

The value of validity is the period (in days) for which the key will be valid.

keystore

The value of keystore is the filepath and filename in which the keystore's values are to be
stored. The keystore file is created when data is first added to it.

Ensure you use the correct file path separator: / (forward slash) for Red Hat Enterprise Linux
and similar operating systems, \ (backslash) for Microsoft Windows Server.

The keytool utility has many other options. See the documentation for your JRE or your
operating system for more details.

3. Run the keytool command
Launch your operating system's command line interface and run the keytool utility, supplying
the information that you gathered.

Example 18.40. Create a Java Keystore

$ keytool -genseckey -alias vault -storetype jceks -keyalg AES -keysize 128 -storepass vault22 -
keypass vault22 -validity 730 -keystore EAP_HOME/vault/vault.keystore

Result

In this a keystore has been created in the file EAP_HOME/vault/vault.keystore. It stores a single key,
with the alias vault, which will be used to store encrypted strings, such as passwords, for JBoss EAP.

Report a bug

18.6.5. Initialize the Password Vault

Prerequisites

Section 18.6.4, “Create a Java Keystore to Store Sensitive Strings”

Overview

The Password Vault can be initialized either interactively, where you are prompted for each parameter's
value, or non-interactively, where you provide all parameters' values on the commmand line. Each
method gives the same result, so choose whichever method you prefer.

Refer to the following list when using either method.

Development Guide

536

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5353-764601+%5BLatest%5D&comment=Title%3A+Create+a+Java+Keystore+to+Store+Sensitive+Strings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5353-764601+12+Jul+2015+20%3A32+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Parameter Values

Keystore URL (KEYSTORE_URL)

The file system path or URI of the keystore file. The examples use
EAP_HOME/vault/vault.keystore.

Keystore password (KEYSTORE_PASSWORD)

The password used to access the keystore.

Salt (SALT)

The salt value is a random string of eight characters used, together with the iteration count, to
encrypt the content of the keystore.

Keystore Alias (KEYSTORE_ALIAS)

The alias by which the keystore is known.

Iteration Count (ITERATION_COUNT)

The number of times the encryption algorithm is run.

Directory to store encrypted files (ENC_FILE_DIR)

The path in which the encrypted files are to be stored. This is typically the directory containing the
password vault.

It is convenient but not mandatory to store all of your encrypted information in the same place as the
key store. This directory should be only accessible to limited users. At a minimum the user account
under which JBoss EAP is running requires read-write access. If you followed Section 18.6.4, “Create
a Java Keystore to Store Sensitive Strings”, your keystore is in a directory called EAP_HOME/vault/.

NOTE

The trailing backslash or forward slash on the directory name is required. Ensure you
use the correct file path separator: / (forward slash) for Red Hat Enterprise Linux and
similar operating systems, \ (backslash) for Microsoft Windows Server.

Vault Block (VAULT_BLOCK)

The name to be given to this block in the password vault. Choose a value which is significant to you.

Attribute (ATTRIBUTE)

The name to be given to the attribute being stored. Choose a value which is significant to you. For
example, you could choose a name which you associate with a datasource.

Security Attribute (SEC-ATTR)

The password which is being stored in the password vault.

Procedure 18.9. Run the Password Vault Command Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Launch the Password Vault command interactively.

CHAPTER 18. APPLICATION SECURITY

537

Launch your operating system's command line interface and run EAP_HOME/bin/vault.sh (on
Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on
Microsoft Windows Server). Start a new interactive session by typing 0 (zero).

2. Complete the prompted parameters.
Follow the prompts to input the required parameters.

3. Make a note of the masked password information.
The masked password, salt, and iteration count are printed to standard output. Make a note of
them in a secure location. They are required to add entries to the Password Vault. Access to the
keystore file and these values could allow an attacker access to obtain access to sensitive
information in the Password Vault.

4. Exit the interactive console.
Type 3 (three) to exit the interactive console.

Example 18.41. Run the Password Vault command interactively

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password: vault22
Enter Keystore password again: vault22
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 17, 2014 12:58:11 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete

Procedure 18.10. Run the Password Vault Command Non-interactively

Use this method if you would prefer to provide all parameters' values at once.

Launch your operating system's command line interface and run the Password Vault command.

Development Guide

538

Launch your operating system's command line interface and run the Password Vault command.
Refer to the Parameter Values list, substituting the placeholder values with your preferred
values.

Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias
KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --sec-attr SEC-
ATTR --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

Example 18.42. Run the Password Vault command non-interactively

vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias
vault --vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir
EAP_HOME/vault/ --iteration 120 --salt 1234abcd

Command output

==
=

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

==
=

Oct 17, 2014 2:23:43 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**

CHAPTER 18. APPLICATION SECURITY

539

Result

Your keystore password has been masked for use in configuration files and deployments. In addition,
your vault is initialized and ready to use.

Report a bug

18.6.6. Configure JBoss EAP 6 to Use the Password Vault

Overview

Before you can mask passwords and other sensitive attributes in configuration files, you need to make
JBoss EAP 6 aware of the password vault which stores and decrypts them.

Prerequisites

Section 18.6.5, “Initialize the Password Vault”

Procedure 18.11. Enable the Password Vault

Run the following Management CLI command, substituting the placeholder values with those
from the output of the Password Vault command in Section 18.6.5, “Initialize the Password
Vault”.

NOTE

If you use Microsoft Windows Server, use two backslashes (\\) in the file path
where you would normally use one. For example, C:\\data\\vault\\vault.keystore.
This is because a single backslash character (\) is used for character escaping.

/core-service=vault:add(vault-options=[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"),
("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"), ("KEYSTORE_ALIAS" =>
"ALIAS"), ("SALT" => "SALT"),("ITERATION_COUNT" => "ITERATION_COUNT"),
("ENC_FILE_DIR" => "ENC_FILE_DIR")])

Example 18.43. Enable the Password Vault

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"EAP_HOME/vault/vault.keystore"), ("KEYSTORE_PASSWORD" => "MASK-5dOaAVafCSd"),
("KEYSTORE_ALIAS" => "vault"), ("SALT" => "1234abcd"),("ITERATION_COUNT" => "120"),
("ENC_FILE_DIR" => "EAP_HOME/vault/")])

Result

JBoss EAP 6 is configured to decrypt masked strings stored in the Password Vault. To add strings to the
Password Vault and use them in your configuration, see Section 18.6.8, “Store a Sensitive String in the
Password Vault”.

Report a bug

18.6.7. Configure JBoss EAP 6 to Use a Custom Implementation of the Password
Vault

Development Guide

540

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5357-763590+%5BLatest%5D&comment=Title%3A+Initialize+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5357-763590+02+Jul+2015+00%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5358-717634+%5BLatest%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5358-717634+20+Oct+2014+20%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Overview

You can use your own implementation of SecurityVault to mask passwords and other sensitive
attributes in configuration files.

Prerequisites

Section 18.6.5, “Initialize the Password Vault”

Procedure 18.12. Use a Custom Implementation of the Password Vault

1. Create a class that implements the interface SecurityVault.

2. Create a module containing the class from the previous step, and specify a dependency on
org.picketbox where the interface is SecurityVault.

3. Enable the custom Password Vault in the JBoss EAP server configuration by adding the vault
element with the following attributes:

code

The fully qualified name of class that implements SecurityVault.

module

The name of the module that contains the custom class.

Optionally, you can use vault-options parameters to initialize the custom class for a Password
Vault.

Example 18.44. Use vault-options Parameters to Initialize the Custom Class

/core-service=vault:add(code="custom.vault.implementation.CustomSecurityVault",
module="custom.vault.module", vault-options=[("KEYSTORE_URL" =>
"PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"),
("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),("ITERATION_COUNT" =>
"ITERATION_COUNT"), ("ENC_FILE_DIR" => "ENC_FILE_DIR")])

Result

JBoss EAP 6 is configured to decrypt masked strings using a custom implementation of the password
vault.

Report a bug

18.6.8. Store a Sensitive String in the Password Vault

Overview

Including passwords and other sensitive strings in plaintext configuration files is a security risk. Store
these strings instead in the Password Vault for improved security, where they can then be referenced in
configuration files, Management CLI commands and applications in their masked form.

Sensitive strings can be store in the Password Vault either interactively, where you are prompted for
each parameter's value, or non-interactively, where you provide all parameters' values on the

CHAPTER 18. APPLICATION SECURITY

541

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30621-716527+%5BLatest%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+a+Custom+Implementation+of+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30621-716527+14+Oct+2014+23%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

commmand line. Each method gives the same result, so choose whichever method you prefer. For a
description of all parameters, see Section 18.6.5, “Initialize the Password Vault” .

Prerequisites

Section 18.6.6, “Configure JBoss EAP 6 to Use the Password Vault”

Procedure 18.13. Store a Sensitive String Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Run the Password Vault command
Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by
typing 0 (zero).

2. Complete the prompted parameters about the Password Vault
Follow the prompts to input the required authentication parameters. These values must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Complete the prompted parameters about the sensitive string
Enter 0 (zero) to start storing the sensitive string. Follow the prompts to input the required
parameters.

4. Make note of the information about the masked string
A message prints to standard output, showing the vault block, attribute name, masked string,
and advice about using the string in your configuration. Make note of this information in a secure
location. An extract of sample output is as follows:

Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1

5. Exit the interactive console
Enter 3 (three) to exit the interactive console.

Example 18.45. Store a Sensitive String Interactively

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME/jboss-eap-6.4

 JAVA: java

===

Development Guide

542

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:11:18:46,086 INFO [org.jboss.security] (management-
handler-thread - 4) PBOX0
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 21, 2014 11:20:49 AM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
0
Task: Store a secured attribute
Please enter secured attribute value (such as password):
Please enter secured attribute value (such as password) again:
Values match
Enter Vault Block:ds_Example1
Enter Attribute Name:password
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1
**
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit

CHAPTER 18. APPLICATION SECURITY

543

Procedure 18.14. Store a Sensitive String Non-interactively

Use this method if you would prefer to provide all parameters' values at once.

1. Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

Substitute the placeholder values with your own values. The values for parameters
KEYSTORE_URL, KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those
provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password
KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --vault-block VAULT_BLOCK --
attribute ATTRIBUTE --sec-attr SEC-ATTR --enc-dir ENC_FILE_DIR --iteration
ITERATION_COUNT --salt SALT

2. Make note of the information about the masked string
A message prints to standard output, showing the vault block, attribute name, masked string,
and advice about using the string in your configuration. Make note of this information in a secure
location. An extract of sample output is as follows:

Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1

Example 18.46. Run the Password Vault command non-interactively

EAP_HOME/bin/vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22
--alias vault --vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir
EAP_HOME/vault/ --iteration 120 --salt 1234abcd

Command output

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Oct 22, 2014 9:24:43 AM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute value has been stored in vault.
Please make note of the following:

Development Guide

544

**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="vault22"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/vault/"/>
</vault><management> ...
**

Result

The sensitive string has now been stored in the Password Vault and can be used in configuration files,
Management CLI commands and applications in its masked form.

Report a bug

18.6.9. Use an Encrypted Sensitive String in Configuration

Prerequisites

Section 18.6.8, “Store a Sensitive String in the Password Vault”

Any sensitive string which has been encrypted can be used in a configuration file or Management CLI
command in its masked form, providing expressions are allowed.

To confirm if expressions are allowed within a particular subsystem, run the following Management CLI
command against that subsystem.

NOTE

Add the prefix /host=HOST_NAME to the command for a managed domain.

Example 18.47. List the Description of all Resources in the Management Subsystem

/core-service=management:read-resource-description(recursive=true)

From the output of running this command, look for the value of the expressions-allowed parameter. If
this is true, then you can use expressions within the configuration of this subsystem.

/core-service=SUBSYSTEM:read-resource-description(recursive=true)

CHAPTER 18. APPLICATION SECURITY

545

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5359-748093+%5BLatest%5D&comment=Title%3A+Store+a+Sensitive+String+in+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5359-748093+20+Mar+2015+12%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use the following syntax to replace any plaintext string with the masked form.

${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::MASKED_STRING}

Example 18.48. Datasource Definition Using a Password in Masked Form

In this example the vault block is ds_ExampleDS and the attribute is password.

...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS" enabled="true" use-java-
context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>
 <password>${VAULT::ds_ExampleDS::password::1}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

Report a bug

18.6.10. Use an Encrypted Sensitive String in an Application

Prerequisites

Section 18.6.8, “Store a Sensitive String in the Password Vault”

Encrypted strings stored in the Password Vault can be used in your application's source code.

Example 18.49. Servlet Using a Vaulted Password

This example is an extract of a servlet's source code, illustrating the use of a masked password in a
datasource definition, instead of the plaintext password. The plaintext version is commented out so
that you can see the difference.

/*@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "sa",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)*/

Development Guide

546

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+41946-718312+%5BLatest%5D&comment=Title%3A+Use+an+Encrypted+Sensitive+String+in+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41946-718312+22+Oct+2014+19%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

18.6.11. Check if a Sensitive String is in the Password Vault

Overview

Before attempting to store or use a sensitive string in the Password Vault it can be useful to first confirm
if it is already stored.

This check can be done either interactively, where you are prompted for each parameter's value, or non-
interactively, where you provide all parameters' values on the commmand line. Each method gives the
same result, so choose whichever method you prefer.

Procedure 18.15. Check For a Sensitive String Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Run the Password Vault command
Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by
typing 0 (zero).

2. Complete the prompted parameters about the Password Vault
Follow the prompts to input the required authentication parameters. These values must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Enter 1 (one) to select “Check whether a secured attribute exists”.

4. Enter the name of the vault block in which the sensitive string is stored.

5. Enter the name of the sensitive string to be checked.

Result

If the sensitive string is stored in the vault block specified, a confirmation message like the following will
be output.

A value exists for (VAULT_BLOCK, ATTRIBUTE)

If the sensitive string is not stored in the specified block, a message like the following will be output.

@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "VAULT::DS::thePass::1",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)

CHAPTER 18. APPLICATION SECURITY

547

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4930-716839+%5BLatest%5D&comment=Title%3A+Use+an+Encrypted+Sensitive+String+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4930-716839+15+Oct+2014+22%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

No value has been store for (VAULT_BLOCK, ATTRIBUTE)

Example 18.50. Check For a Sensitive String Interactively

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 22, 2014 12:53:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
1
Task: Verify whether a secured attribute exists
Enter Vault Block:vb
Enter Attribute Name:password
A value exists for (vb, password)
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit

Development Guide

548

Procedure 18.16. Check For a Sensitive String Non-Interactively

Use this method if you would prefer to provide all parameters' values at once. For a description of all
parameters, see Section 18.6.5, “Initialize the Password Vault” .

Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

Substitute the placeholder values with your own values. The values for parameters
KEYSTORE_URL, KEYSTORE_PASSWORD-password and KEYSTORE_ALIAS must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password
KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --check-sec-attr --vault-block
VAULT_BLOCK --attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration
ITERATION_COUNT --salt SALT

Result

If the sensitive string is stored in the vault block specified, the following message will be output.

Password already exists.

If the value is not stored in the specified block, the following message will be output.

Password doesn't exist.

Report a bug

18.6.12. Remove a Sensitive String from the Password Vault

Overview

For security reasons it is best to remove sensitive strings from the Password Vault when they are no
longer required. For example, if you are decommissioning an application, any sensitive strings used in
datasource definitions should be removed at the same time.

Prerequisite

Before removing a sensitive string from the Password Vault, confirm if it is used in the configuration of
JBoss EAP. One method of doing this is to use the ‘grep’ utility to search configuration files for
instances of the masked string. On Red Hat Enterprise Linux (and similar operating systems), grep is
installed by default but for Microsoft Windows Server it must be installed manually.

The Password Vault utility provides two modes: interactive and non-interactive. Interactive mode
prompts you for each parameter’s value, where non-interactive mode requires you to provide all
parameters’ values in a single command.

CHAPTER 18. APPLICATION SECURITY

549

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42030-748092+%5BLatest%5D&comment=Title%3A+Check+if+a+Sensitive+String+is+in+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42030-748092+20+Mar+2015+12%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 18.17. Remove a Sensitive String Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Run the Password Vault command
Launch your operating system's command line interface and run EAP_HOME/bin/vault.sh (on
Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on
Microsoft Windows Server). Start a new interactive session by typing 0 (zero).

2. Provide Authentication Details
Follow the prompts to input the required authentication parameters. These values must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Enter 2 (two) to choose option Remove secured attribute.

4. Enter the name of the vault block in which the sensitive string is stored.

5. Enter the name of the sensitive string to be removed.

Result

If the sensitive string is successfully removed, a confirmation message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

If the sensitive string is not removed, a message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

Example 18.51. Remove a Sensitive String Interactively

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Dec 23, 2014 1:40:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in configuration file:
**
...

Development Guide

550

</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
2
Task: Remove secured attribute
Enter Vault Block:craft
Enter Attribute Name:password
Secured attribute [craft::password] has been successfully removed from vault

Procedure 18.18. Remove a Sensitive String Non-interactively

Use this method if you would prefer to provide all parameters' values at once. For a description of all
parameters, see Section 18.6.5, “Initialize the Password Vault” .

Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

Substitute the placeholder values with your own values. The values for parameters
KEYSTORE_URL, KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those
provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password
KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --remove-sec-attr --vault-block
VAULT_BLOCK --attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration
ITERATION_COUNT --salt SALT

Result

If the sensitive string is successfully removed, a confirmation message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

If the sensitive string is not removed, a message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

CHAPTER 18. APPLICATION SECURITY

551

Example 18.52. Remove a Sensitive String Non-interactively

./vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --
remove-sec-attr --vault-block craft --attribute password --enc-dir ../vault/ --iteration 120 --salt
1234abcd
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Dec 23, 2014 1:54:24 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute [craft::password] has been successfully removed from vault

Report a bug

18.7. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

18.7.1. About Java Authorization Contract for Containers (JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It was defined in JSR-115, which can be found on the Java Community Process website at
http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE)
specification since Java EE version 1.3.

JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

Report a bug

18.7.2. Configure Java Authorization Contract for Containers (JACC) Security

To configure Java Authorization Contract for Containers (JACC), you need to configure your security
domain with the correct module, and then modify your jboss-web.xml to include the correct
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization
stack of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, the security domain is configured in the Management Console or
Management CLI, rather than directly in the XML.

<security-domain name="jacc" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 </login-module>
 </authentication>

Development Guide

552

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42029-734038+%5BLatest%5D&comment=Title%3A+Remove+a+Sensitive+String+from+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42029-734038+22+Dec+2014+23%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/en/jsr/detail?id=115
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7687-591801+%5BLatest%5D&comment=Title%3A+About+Java+Authorization+Contract+for+Containers+%28JACC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7687-591801+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Configure a Web Application to Use JACC

The jboss-web.xml is located in the WEB-INF/ directory of your deployment, and contains overrides
and additional JBoss-specific configuration for the web container. To use your JACC-enabled security
domain, you need to include the <security-domain> element, and also set the <use-jboss-
authorization> element to true. The following application is properly configured to use the JACC
security domain above.

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is
part of the Java Enterprise Edition 6 API, and is documented at
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.

Example 18.53. Example JACC Method Permissions in an EJB

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss-ejb3.xml
descriptor, in the <security> child element. In addition to the security domain, you can also specify the
<run-as-principal>, which changes the principal the EJB runs as.

Example 18.54. Example Security Domain Declaration in an EJB

 <authorization>
 <policy-module code="JACC" flag="required"/>
 </authorization>
</security-domain>

<jboss-web>
 <security-domain>jacc</security-domain>
 <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any method of the
EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 </assembly-descriptor>
</ejb-jar>

<ejb-jar>
 <assembly-descriptor>
 <security>

CHAPTER 18. APPLICATION SECURITY

553

http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html

Report a bug

18.8. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

18.8.1. About Java Authentication SPI for Containers (JASPI) Security

Java Authentication SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java
applications. It is defined in JSR-196 of the Java Community Process. Refer to
http://www.jcp.org/en/jsr/detail?id=196 for details about the specification.

Report a bug

18.8.2. Configure Java Authentication SPI for Containers (JASPI) Security

To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security
domain. The configuration is similar to a standard authentication module, but login module elements are
enclosed in a <login-module-stack> element. The structure of the configuration is:

Example 18.55. Structure of the authentication-jaspi element

The login module itself is configured in exactly the same way as a standard authentication module.

Because the web-based management console does not expose the configuration of JASPI
authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration
directly to EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml.

Report a bug

 <ejb-name>*</ejb-name>
 <security-domain>myDomain</security-domain>
 <run-as-principal>myPrincipal</run-as-principal>
 </security>
 </assembly-descriptor>
</ejb-jar>

<authentication-jaspi>
 <login-module-stack name="...">
 <login-module code="..." flag="...">
 <module-option name="..." value="..."/>
 </login-module>
 </login-module-stack>
 <auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
 </auth-module>
</authentication-jaspi>

Development Guide

554

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4933-744942+%5BLatest%5D&comment=Title%3A+Configure+Java+Authorization+Contract+for+Containers+%28JACC%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4933-744942+25+Feb+2015+14%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://www.jcp.org/en/jsr/detail?id=196
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7199-687581+%5BLatest%5D&comment=Title%3A+About+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7199-687581+23+Jul+2014+08%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4934-591678+%5BLatest%5D&comment=Title%3A+Configure+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4934-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 19. SINGLE SIGN ON (SSO)

19.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS

Overview

Single Sign On (SSO) allows authentication to one resource to implicitly allow access to other resources.

Clustered and Non-Clustered SSO

Non-clustered SSO limits the sharing of access information to applications on the same virtual host. In
addition, there is no resiliency in the event of a host failure. Clustered SSO data can be shared between
applications in multiple hosts, and is resilient to failover. In addition, clustered SSO is able to receive
requests from a load balancer.

How SSO Works

If a resource is unprotected, a user is not challenged to authenticate at all. If a user accesses a protected
resource, the user is required to authenticate.

Upon successful authentication, the roles associated with the user are stored and used for
authentication of all other associated resources.

If the user logs out of an application, or an application invalidates the session programmatically, all
persisted authentication data is removed, and the process starts over.

A session timeout does not invalidate the SSO session if other sessions are still valid.

Report a bug

19.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB
APPLICATIONS

Single Sign On (SSO) is the ability for users to authenticate to a single web application, and by means of
a successful authentication, will successfully authenticate to multiple other applications without needing
to be prompted at each one. Clustered SSO stores the authentication information in a clustered cache.
This allows for applications on multiple different servers to share the information, and also makes the
information resilient to a failure of one of the hosts.

Some of the supported SSO mechanisms (for example, Kerberos, PicketLink SAML) need valves to work
correctly. Valves have a similar function as the servlet filters, but they are processed before the
container managed authentication. Valves for web applications can be defined in the jboss-web.xml
deployment descriptor.

Report a bug

19.3. CHOOSE THE RIGHT SSO IMPLEMENTATION

JBoss EAP 6 runs Java Enterprise Edition (EE) applications, which may be web applications, EJB
applications, web services, or other types. Single Sign On (SSO) allows you to propagate security
context and identity information between these applications. Several SSO solutions are available but
choosing the right solution depends on your requirements.

Note that there is a distinct difference between a clustered web application and clustered SSO. A
clustered web application is one which is distributed across the nodes of a cluster to spread the load of
hosting that application. If marked as distributable, all new sessions, and changes to existing sessions are

CHAPTER 19. SINGLE SIGN ON (SSO)

555

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4694-741431+%5BLatest%5D&comment=Title%3A+About+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4694-741431+05+Feb+2015+01%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4696-741834+%5BLatest%5D&comment=Title%3A+About+Clustered+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4696-741834+06+Feb+2015+02%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

replicated to other members of the cluster. An application is marked as able to be distributed across
cluster nodes with the <distributable/> tag in the web.xml deployment descriptor. Clustered SSO allows
for replication of security context and identity information, regardless of whether or not the applications
are themselves clustered. Although these technologies may be used together they are separate
concepts.

Kerberos-Based Desktop SSO

If your organization already uses a Kerberos-based authentication and authorization system, such as
Microsoft Active Directory, you can use the same systems to transparently authenticate to your
enterprise applications running on JBoss EAP 6.

Non-Clustered Web Application SSO

If you are running multiple applications on a single instance and need to enable SSO session replication
for those applications, non-clustered SSO will meet your requirements.

Clustered Web Application SSO

If you are running either a single application, or multiple applications, across a cluster and need to enable
SSO session replication for those applications, clustered SSO will meet your requirements.

Report a bug

19.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION

Overview

Single Sign On (SSO) capabilities are provided by the web and Infinispan subsystems. Use this
procedure to configure SSO in web applications.

Prerequisites

A configured security domain which handles authentication and access.

The infinispan subsystem. By default, it is present in all the profiles for managed domain and
standalone server.

The web cache-container and SSO replicated-cache. The initial configuration files already
contain the web cache-container, and some of the configurations already contain the SSO
replicated-cache as well. Use the following commands to check for and enable the SSO
replicated-cache. Note that these commands modify the ha profile of a managed domain. You
can change the commands to use a different profile, or remove the /profile=ha portion of the
command, for a standalone server.

Example 19.1. Check for the web cache-container

The profiles and configurations mentioned above include the web cache-container by
default. Use the following command to verify its presence. If you use a different profile,
substitute its name instead of ha.

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=false,proxies=false,include-runtime=false,include-defaults=true)

If the result is success the subsystem is present. Otherwise, you need to add it.

Development Guide

556

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7502-679639+%5BLatest%5D&comment=Title%3A+Choose+the+Right+SSO+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7502-679639+26+Jun+2014+20%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 19.2. Add the web cache-container

Use the following three commands to enable the web cache-container to your configuration.
Modify the name of the profile as appropriate, as well as the other parameters. The
parameters here are the ones used in a default configuration.

/profile=ha/subsystem=infinispan/cache-container=web:add(aliases=["standard-session-
cache"],default-cache="repl",module="org.jboss.as.clustering.web.infinispan")

/profile=ha/subsystem=infinispan/cache-container=web/transport=TRANSPORT:add(lock-
timeout=60000)

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=repl:add(mode="ASYNC",batching=true)

Example 19.3. Check for the SSO replicated-cache

Run the following Management CLI command:

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)

Look for output like the following: "sso" => {

If you do not find it, the SSO replicated-cache is not present in your configuration.

Example 19.4. Add the SSO replicated-cache

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=sso:add(mode="SYNC", batching=true)

Configure Clustered SSO for a Managed Domain

The web subsystem needs to be configured to use SSO. The following command enables SSO on the
virtual server called default-host, and the cookie domain domain.com. The cache name is sso, and
reauthentication is disabled.

/profile=ha/subsystem=web/virtual-server=default-host/sso=configuration:add(cache-
container="web",cache-name="sso",reauthenticate="false",domain="domain.com")

Each application which will share the SSO information must be configured to use the same <security-
domain> in its jboss-web.xml deployment descriptor and the same Realm in its web.xml configuration
file.

Configure Clustered or Non-Clustered SSO for a Standalone Server

Configure sso under the web subsystem in the server profile. The ClusteredSingleSignOn version is
used when attribute cache-container is present, otherwise standard SingleSignOn class is used.

CHAPTER 19. SINGLE SIGN ON (SSO)

557

Example 19.5. Example Non-Clustered SSO Configuration

/subsystem=web/virtual-server=default-host/sso=configuration:add(reauthenticate="false")

Invalidate a Session

An application can programmatically invalidate a session by invoking method
javax.servlet.http.HttpSession.invalidate().

Report a bug

19.5. ABOUT KERBEROS

Kerberos is a network authentication protocol for client/server applications. It allows authentication
across a non-secure network in a secure way, using secret-key symmetric cryptography.

Kerberos uses security tokens called tickets. To use a secured service, you need to obtain a ticket from
the Ticket Granting Service (TGS), which is a service running on a server on the network. After obtaining
the ticket, you request a Service Ticket (ST) from an Authentication Service (AS), which is another
service running on the network. You then use the ST to authenticate to the service you want to use. The
TGS and the AS both run inside an enclosing service called the Key Distribution Center (KDC).

Kerberos is designed to be used in a client-server environment, and is rarely used in Web applications or
thin client environments. However, many organizations already use a Kerberos system for desktop
authentication, and prefer to reuse their existing system rather than create a second one for their Web
Applications. Kerberos is an integral part of Microsoft Active Directory, and is also used in many Red Hat
Enterprise Linux environments.

Report a bug

19.6. ABOUT SPNEGO

Simple and Protected GSS_API Negotiation Mechanism (SPNEGO) provides a mechanism for
extending a Kerberos-based Single Sign On (SSO) environment for use in Web applications.

When an application on a client computer, such as a web browser, attempts to access a protect page on
the web server, the server responds that authorization is required. The application then requests a
service ticket from the Kerberos Key Distribution Center (KDC). After the ticket is obtained, the
application wraps it in a request formatted for SPNEGO, and sends it back to the Web application, via
the browser. The web container running the deployed Web application unpacks the request and
authenticates the ticket. Upon successful authentication, access is granted.

SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat
Enterprise Linux and the Kerberos server which is an integral part of Microsoft Active Directory.

Report a bug

19.7. ABOUT MICROSOFT ACTIVE DIRECTORY

Microsoft Active Directory is a directory service developed by Microsoft to authenticate users and
computers in a Microsoft Windows domain. It is included as part of Microsoft Windows Server. The
computer in the Microsoft Windows Server is referred to as the domain controller. Red Hat Enterprise
Linux servers running the Samba service can also act as the domain controller in this type of network.

Development Guide

558

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4695-745001+%5BLatest%5D&comment=Title%3A+Use+Single+Sign+On+%28SSO%29+In+A+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4695-745001+26+Feb+2015+06%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7816-732409+%5BLatest%5D&comment=Title%3A+About+Kerberos%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7816-732409+11+Dec+2014+23%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7817-591807+%5BLatest%5D&comment=Title%3A+About+SPNEGO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7817-591807+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Active Directory relies on three core technologies which work together:

Lightweight Directory Access Protocol (LDAP), for storing information about users, computers,
passwords, and other resources.

Kerberos, for providing secure authentication over the network.

Domain Name Service (DNS) for providing mappings between IP addresses and host names of
computers and other devices on the network.

Report a bug

19.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY
DESKTOP SSO FOR WEB APPLICATIONS

Introduction

To authenticate your web or EJB applications using your organization's existing Kerberos-based
authentication and authorization infrastructure, such as Microsoft Active Directory, you can use the
JBoss Negotiation capabilities built into JBoss EAP 6. If you configure your web application properly, a
successful desktop or network login is sufficient to transparently authenticate against your web
application, so no additional login prompt is required.

Difference from Previous Versions of the Platform

There are a few noticeable differences between JBoss EAP 6 and earlier versions:

Security domains are configured for each profile of a managed domain, or for each standalone
server. They are not part of the deployment itself. The security domain a deployment should use
is named in the deployment's jboss-web.xml or jboss-ejb3.xml file.

Security properties are configured as part of a security domain. They are not part of the
deployment.

You can no longer override the authenticators as part of your deployment. However, you can
add a NegotiationAuthenticator valve to your jboss-web.xml descriptor to achieve the same
effect. The valve still requires the <security-constraint> and <login-config> elements to be
defined in the web.xml. These are used to decide which resources are secured. However, the
chosen auth-method will be overridden by the NegotiationAuthenticator valve in the jboss-
web.xml.

The CODE attributes in security domains now use a simple name instead of a fully-qualified
class name. The following table shows the mappings between the classes used for JBoss
Negotiation, and their classes.

Table 19.1. Login Module Codes and Class Names

Simple Name Class Name Purpose

Kerberos com.sun.security.auth.module.Krb5Login
Module

com.ibm.security.auth.module.Krb5Login
Module

Kerberos login module when using the
Oracle JDK

Kerberos login module when using the
IBM Java development kit

CHAPTER 19. SINGLE SIGN ON (SSO)

559

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7818-591807+%5BLatest%5D&comment=Title%3A+About+Microsoft+Active+Directory%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7818-591807+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

SPNEGO org.jboss.security.negotiation.spnego.SP
NEGOLoginModule

The mechanism which enables your Web
applications to authenticate to your
Kerberos authentication server.

AdvancedLdap org.jboss.security.negotiation.AdvancedL
dapLoginModule

Used with LDAP servers other than
Microsoft Active Directory.

AdvancedAdLdap org.jboss.security.negotiation.AdvancedA
DLoginModule

Used with Microsoft Active Directory
LDAP servers.

Simple Name Class Name Purpose

JBoss Negotiation Toolkit

The JBoss Negotiation Toolkit is a debugging tool which is available for download from
https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-
toolkit.war. It is provided as an extra tool to help you to debug and test the authentication mechanisms
before introducing your application into production. It is an unsupported tool, but is considered to be
very helpful, as SPNEGO can be difficult to configure for web applications.

Procedure 19.1. Setup SSO Authentication for your Web or EJB Applications

1. Configure one security domain to represent the identity of the server. Set system
properties if necessary.
The first security domain authenticates the container itself to the directory service. It needs to
use a login module which accepts some type of static login mechanism, because a real user is
not involved. This example uses a static principal and references a keytab file which contains the
credential.

The XML code is given here for clarity, but you should use the Management Console or
Management CLI to configure your security domains.

2. Configure a second security domain to secure the web application or applications. Set
system properties if necessary.
The second security domain is used to authenticate the individual user to the Kerberos or
SPNEGO authentication server. You need at least one login module to authenticate the user,
and another to search for the roles to apply to the user. The following XML code shows an
example SPNEGO security domain. It includes an authorization module to map roles to
individual users. You can also use a module which searches for the roles on the authentication
server itself.

<security-domain name="host" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal" value="host/testserver@MY_REALM"/>
 <module-option name="keyTab" value="/home/username/service.keytab"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="debug" value="false"/>
 </login-module>
 </authentication>
</security-domain>

Development Guide

560

https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war

3. Specify the security-constraint and login-config in the web.xml
The web.xml descriptor contain information about security constraints and login configuration.
The following are example values for each.

4. Specify the security domain and other settings in the jboss-web.xml descriptor.
Specify the name of the client-side security domain (the second one in this example) in the
jboss-web.xml descriptor of your deployment, to direct your application to use this security
domain.

You can no longer override authenticators directly. Instead, you can add the
NegotiationAuthenticator as a valve to your jboss-web.xml descriptor, if you need to. The
<jacc-star-role-allow> allows you to use the asterisk (*) character to match multiple role names,
and is optional.

<security-domain name="SPNEGO" cache-type="default">
 <authentication>
 <!-- Check the username and password -->
 <login-module code="SPNEGO" flag="requisite">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 <!-- Search for roles -->
 <login-module code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass" />
 <module-option name="usersProperties" value="spnego-users.properties" />
 <module-option name="rolesProperties" value="spnego-roles.properties" />
 </login-module>
 </authentication>
</security-domain>

<security-constraint>
 <display-name>Security Constraint on Conversation</display-name>
 <web-resource-collection>
 <web-resource-name>examplesWebApp</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>RequiredRole</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>SPNEGO</auth-method>
 <realm-name>SPNEGO</realm-name>
</login-config>

<security-role>
 <description> role required to log in to the Application</description>
 <role-name>RequiredRole</role-name>
</security-role>

<jboss-web>
 <security-domain>SPNEGO</security-domain>
 <valve>
 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>

CHAPTER 19. SINGLE SIGN ON (SSO)

561

5. Add a dependency to your application's MANIFEST.MF, to locate the Negotiation classes.
The web application needs a dependency on class org.jboss.security.negotiation to be added
to the deployment's META-INF/MANIFEST.MF manifest, in order to locate the JBoss
Negotiation classes. The following shows a properly-formatted entry.

As an alternative, add a dependency to your application by editing the META-INF/jboss-
deployment-structure.xml file:

NOTE

You can use only one Kerberos login module in a security domain.

Result

Your web application accepts and authenticates credentials against your Kerberos, Microsoft Active
Directory, or other SPNEGO-compatible directory service. If the user runs the application from a system
which is already logged into the directory service, and where the required roles are already applied to
the user, the web application does not prompt for authentication, and SSO capabilities are achieved.

Report a bug

19.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION

Follow the procedure below to setup a SPNEGO fall back to form authentication. ⁠

Procedure 19.2. SPNEGO security with fall back to form authentication

1. Set up SPNEGO
Refer the procedure described in Section 19.8, “Configure Kerberos or Microsoft Active
Directory Desktop SSO for Web Applications”

2. Modify web.xml
Add a login-config element to your application and setup the login and error pages in web.xml:

 </valve>
 <jacc-star-role-allow>true</jacc-star-role-allow>
</jboss-web>

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.jboss.security.negotiation

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name='org.jboss.security.negotiation'/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

<login-config>
 <auth-method>SPNEGO</auth-method>

Development Guide

562

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4937-767986+%5BLatest%5D&comment=Title%3A+Configure+Kerberos+or+Microsoft+Active+Directory+Desktop+SSO+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4937-767986+21+Aug+2015+03%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. Add web content
Add references of login.html and error.html to web.xml. These files are added to web
application archive to the place specified in form-login-config configuration. For more
information refer Enable Form-based Authentication section in the Security Guide for JBoss
EAP 6. A typical login.html looks like this:

NOTE

The fallback to FORM logic is only available in the case when no SPNEGO (or NTLM)
tokens are present. As a result, a login form is not presented to the browser if the browser
sends an NTLM token.

Report a bug

19.10. ABOUT SAML WEB BROWSER BASED SSO

PicketLink in JBoss EAP provides a platform to implement federated identity based services. This
includes centralized identity services and Single Sign-On (SSO) for applications.

The SAML profile has support for both the HTTP/POST and the HTTP/Redirect bindings with

 <realm-name>SPNEGO</realm-name>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>

<html>
 <head>
 <title>Vault Form Authentication</title>
 </head>
 <body>
 <h1>Vault Login Page</h1>
 <p>
 <form method="post" action="j_security_check">
 <table>
 <tr>
 <td>Username</td><td>-</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password</td><td>-</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"></td>
 </tr>
 </table>
 </form>
 </p>
 <hr>
 </body>
</html>

CHAPTER 19. SINGLE SIGN ON (SSO)

563

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+35796-681166+%5BLatest%5D&comment=Title%3A+Configure+SPNEGO+Fall+Back+to+Form+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=35796-681166+03+Jul+2014+05%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

centralized identity services to enable web SSO for your applications. The architecture for the SAML v2
based Web SSO follows the hub and spoke architecture of identity management. In this architecture an
identity provider (IDP) acts as the central source (hub) for identity and role information to all the
applications (Service Providers). The spokes are the service providers (SP).

IMPORTANT

If one HTTP client (web browser) connects to more SPs pointing to the same IDP, the
IDP does not distinguish between the different SPs. If more requests from one client
come simultaneously, the IDP handles the most recent request from an SP and sends
back SAML assertion about the authenticated user. It means the SAML response from
the IDP can be in such case forwarded to incorrect SP. To get back to the older SP, you
will need to reenter the SP URL in the browser.

NOTE

For more information, refer Red Hat JBoss Enterprise Application Platform 6.4 How to
Setup SSO with SAML V2 document and Browser-based SSO Using SAML section in the
Red Hat JBoss Enterprise Application Platform 6.4 Security Architecture document.

Report a bug

19.11. COOKIE DOMAIN

19.11.1. About the Cookie Domain

The cookie domain refers to the set of hosts able to read a cookie from the client browser which is
accessing your application. It is a configuration mechanism to minimize the risk of third parties accessing
information your application stores in browser cookies.

The default value for the cookie domain is /. This means that only the issuing host can read the contents
of a cookie. Setting a specific cookie domain makes the contents of the cookie available to a wider range
of hosts. To set the cookie domain, refer to Section 19.11.2, “Configure the Cookie Domain for Single
Sign On”.

Report a bug

19.11.2. Configure the Cookie Domain for Single Sign On

To enable your SSO valve to share a SSO context, configure the cookie domain in the valve
configuration. The following configuration would allow applications on http://app1.xyz.com and
http://app2.xyz.com to share an SSO context, even if these applications run on different servers in a
cluster or the virtual host with which they are associated has multiple aliases.

Clustered SSO (shared against clustered JBoss EAP instances)

Using the CLI (in Standalone mode):

Editing standlone.xml or domain.xml and append the below to the relevant web subsystem:

/subsystem=web/virtual-server=default-host/sso=configuration:add(cache-container="web",cache-
name="sso")

Development Guide

564

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44827-771085+%5BLatest%5D&comment=Title%3A+About+SAML+Web+Browser+Based+SSO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44827-771085+29+Sep+2015+07%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4697-591671+%5BLatest%5D&comment=Title%3A+About+the+Cookie+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4697-591671+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Non-Clustered SSO (SSO only shared against instances within the Jboss EAP instances)

Using the CLI (in Standalone mode):

Editing standlone.xml or domain.xml and append the below to the relevant web subsystem:

The Single Sign On (SSO) configuration in JBoss EAP 6 includes a domain attribute that can be
specified. For example:

Which adds the following SSO configuration:

Report a bug

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 <sso cache-container="web" cache-name="sso"/> <!--FIXME: ADD this Line-->
 </virtual-server>
</subsystem>

 /subsystem=web/virtual-server=default-host/sso=configuration:add()

<subsystem xmlns="urn:jboss:domain:web:1.1" default-virtual-server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 <sso/> <!--FIXME: ADD this Line-->
 </virtual-server>
</subsystem>

/subsystem=web/virtual-server=default-host/sso=configuration:add(domain="example.com",...)

<sso domain="example.com"/>

CHAPTER 19. SINGLE SIGN ON (SSO)

565

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4698-770218+%5BLatest%5D&comment=Title%3A+Configure+the+Cookie+Domain+for+Single+Sign+On%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4698-770218+14+Sep+2015+03%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 20. DEVELOPMENT SECURITY REFERENCES

20.1. EJB SECURITY PARAMETER REFERENCE

Table 20.1. EJB security parameter elements

Element Description

<security-identity> Contains child elements pertaining to the security
identity of an EJB.

<use-caller-identity /> Indicates that the EJB uses the same security identity
as the caller.

<run-as> Contains a <role-name> element.

<run-as-principal> If present, indicates the principal assigned to
outgoing calls. If not present, outgoing calls are
assigned to a principal named anonymous.

<role-name> Specifies the role the EJB should run as.

<description> Describes the role named in <role-name>
.

Example 20.1. Security identity examples

The example ejb-jar.xml file below shows each tag described in Table 20.1, “EJB security parameter
elements”. They can also be used inside a <session>.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>

Development Guide

566

The above parameters can also be included in the jboss-ejb3.xml file which is discussed in more detail in
Section 8.8.4, “jboss-ejb3.xml Deployment Descriptor Reference” .

Report a bug

 </session>
 </enterprise-beans>
</ejb-jar>

CHAPTER 20. DEVELOPMENT SECURITY REFERENCES

567

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5053-771121+%5BLatest%5D&comment=Title%3A+EJB+Security+Parameter+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5053-771121+29+Sep+2015+11%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 21. CONFIGURATION REFERENCES

21.1. JBOSS-WEB.XML CONFIGURATION REFERENCE

Introduction

The jboss-web.xml and web.xml deployment descriptors are both placed in the deployment's WEB-
INF directory. The jboss-web.xml is a web application deployment descriptor for JBoss EAP which
contains additional configuration options for additional features of JBoss Web. This descriptor can be
used to override the settings from web.xml descriptor and to set JBoss EAP specific settings.

Mapping Global Resources to WAR Requirements

Many of the available settings map requirements set in the application's web.xml to local resources. The
explanations of the web.xml settings can be found at
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html.

For instance, if the web.xml requires jdbc/MyDataSource, the jboss-web.xml may map the global
datasource java:/DefaultDS to fulfill this need. The WAR uses the global datasource to fill its need for
jdbc/MyDataSource.

Table 21.1. Common Top-Level Attributes of jboss-web.xml

Attribute Description

servlet The servlet element specifies servlet specific
bindings.

max-active-sessions Determines the max number of active sessions
allowed. If the number of sessions managed by the
session manager exceeds this value and
passivation is enabled, the excess will be
passivated based on the configured passivation-
min-idle-time

If set to -1, means no limit.

replication-config The replication-config element is used for
configuring session replication in the jboss-
web.xml file.

passivation-config The passivation-config element is used for
configuring session passivation in the jboss-
web.xml file.

distinct-name The distinct-name element specifies the EJB 3
distinct name for the web application.

data-source A mapping to a data-source required by the
web.xml.

context-root The root context of the application. The default value
is the name of the deployment without the .war
suffix.

Development Guide

568

http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html

virtual-host The name of the HTTP virtual-host the application
accepts requests from. It refers to the contents of
the HTTP Host header.

annotation Describes an annotation used by the application.
Refer to <annotation> for more information.

listener Describes a listener used by the application. Refer to
<listener> for more information.

session-config This element fills the same function as the
<session-config> element of the web.xml and is
included for compatibility only.

valve Describes a valve used by the application. Refer to
<valve> for more information.

overlay The name of an overlay to add to the application.

security-domain The name of the security domain used by the
application. The security domain itself is configured in
the web-based management console or the
management CLI.

security-role This element fills the same function as the
<security-role> element of the web.xml and is
included for compatibility only.

jacc-star-role-allow The jacc-star-role-allow element specifies
whether the jacc permission generating agent in the
web layer needs to generate a
WebResourcePermission permission such that
the jacc provider can make a decision as to bypass
authorization or not.

use-jboss-authorization If this element is present and contains the case
insensitive value "true", the JBoss web authorization
stack is used. If it is not present or contains any value
that is not "true", then only the authorization
mechanisms specified in the Java Enterprise Edition
specifications are used. This element is new to JBoss
EAP 6.

disable-audit Set this boolean element to false to enable and true
to disable web auditing. Web security auditing is not
part of the Java EE specification. This element is new
to JBoss EAP 6.

Attribute Description

CHAPTER 21. CONFIGURATION REFERENCES

569

disable-cross-context If false, the application is able to call another
application context. Defaults to true.

enable-websockets Set this element to true in jboss-web.xml to
specify if websockets access should be enabled for
the web application.

Attribute Description

The following elements each have child elements.

<annotation>

Describes an annotation used by the application. The following table lists the child elements of an
<annotation>.

Table 21.2. Annotation Configuration Elements

Attribute Description

class-name Name of the class of the annotation

servlet-security The element, such as @ServletSecurity, which
represents servlet security.

run-as The element, such as @RunAs, which represents
the run-as information.

multipart-config The element, such as @MultiPart, which represents
the multipart-config information.

<listener>

Describes a listener. The following table lists the child elements of a <listener>.

Table 21.3. Listener Configuration Elements

Attribute Description

class-name Name of the class of the listener

Development Guide

570

listener-type List of condition elements, which indicate what kind
of listener to add to the Context of the application.
Valid choices are:

CONTAINER
Adds a ContainerListener to the Context.

LIFECYCLE
Adds a LifecycleListener to the Context.

SERVLET_INSTANCE
Adds an InstanceListener to the Context.

SERVLET_CONTAINER
Adds a WrapperListener to the Context.

SERVLET_LIFECYCLE
Adds a WrapperLifecycle to the Context.

module The name of the module containing the listener class.

param A parameter. Contains two child elements, <param-
name> and <param-value>.

Attribute Description

<valve>

Describes a valve of the application. Similar to the <listener>, has class-name, module and param
elements.

Report a bug

CHAPTER 21. CONFIGURATION REFERENCES

571

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4928-747298+%5BLatest%5D&comment=Title%3A+jboss-web.xml+Configuration+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4928-747298+16+Mar+2015+07%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 22. SUPPLEMENTAL REFERENCES

22.1. TYPES OF JAVA ARCHIVES

JBoss EAP 6 recognizes several different types of archive files. Archive files are used to package
deployable services and applications.

In general, archive files are Zip archives, with specific file extensions and specific directory structures. If
the Zip archive is extracted before being deployed on the application server, it is referred to as an
exploded archive. In that case, the directory name still contains the file extension, and the directory
structure requirements still apply.

Table 22.1.

Archive Type Extension Purpose Directory structure
requirements

Java Archive .jar Contains Java class libraries. META-INF/MANIFEST.MF file
(optional), which specifies
information such as which class is
the main class.

Web Archive .war Contains Java Server Pages
(JSP) files, servlets, and XML
files, in addition to Java classes
and libraries. The Web Archive's
contents are also referred to as a
Web Application.

WEB-INF/web.xml file, which
contains information about the
structure of the web application.
Other files may also be present in
WEB-INF/.

Resource
Adapter
Archive

.rar The directory structure is
specified by the JCA
specification.

Contains a Java Connector
Architecture (JCA) resource
adapter. Also called a connector.

Enterprise
Archive

.ear Used by Java Enterprise Edition
(EE) to package one or more
modules into a single archive, so
that the modules can be
deployed onto the application
server simultaneously. Maven and
Ant are the most common tools
used to build EAR archives.

META-INF/ directory, which
contains one or more XML
deployment descriptor files.

Development Guide

572

Any of the following types of
modules.

A Web Archive (WAR).

One or more Java
Archives (JARs)
containing Plain Old
Java Objects (POJOs).

One or more Enterprise
JavaBean (EJB)
modules, containing its
own META-INF/
directory. This directory
includes descriptors for
the persistent classes
which are deployed.

One or more Resource
Archives (RARs).

Service Archive .sar Similar to an Enterprise Archive,
but specific to the JBoss EAP.

META-INF/ directory containing
jboss-service.xml or jboss-
beans.xml file.

Archive Type Extension Purpose Directory structure
requirements

Report a bug

CHAPTER 22. SUPPLEMENTAL REFERENCES

573

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4577-591669+%5BLatest%5D&comment=Title%3A+Types+of+Java+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4577-591669+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

APPENDIX A. REVISION HISTORY

Revision 6.4.0-48 Thursday November 16 2017 Red Hat Customer Content Services
Red Hat JBoss Enterprise Application Platform 6.4.0.GA Continuous Release

Development Guide

574

	Table of Contents
	CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
	1.1. INTRODUCTION
	1.1.1. About Red Hat JBoss Enterprise Application Platform 6

	1.2. PREREQUISITES
	1.2.1. Become Familiar with Java Enterprise Edition 6
	1.2.1.1. Overview of EE 6 Profiles
	1.2.1.2. Java Enterprise Edition 6 Web Profile
	1.2.1.3. Java Enterprise Edition 6 Full Profile

	1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6
	1.2.2.1. Modules

	1.3. SET UP THE DEVELOPMENT ENVIRONMENT
	1.3.1. Download and Install Red Hat JBoss Developer Studio
	1.3.1.1. Setup Red Hat JBoss Developer Studio
	1.3.1.2. Download Red Hat JBoss Developer Studio
	1.3.1.3. Install Red Hat JBoss Developer Studio
	1.3.1.4. Start Red Hat JBoss Developer Studio
	1.3.1.5. Add the JBoss EAP Server Using Define New Server

	1.4. RUN YOUR FIRST APPLICATION
	1.4.1. Download the Quickstart Code Examples
	1.4.1.1. Access the Quickstarts

	1.4.2. Run the Quickstarts
	1.4.2.1. Run the Quickstarts in Red Hat JBoss Developer Studio
	1.4.2.2. Run the Quickstarts Using a Command Line

	1.4.3. Review the Quickstart Tutorials
	1.4.3.1. Explore the helloworld Quickstart
	1.4.3.2. Explore the numberguess Quickstart

	1.4.4. Replace the Default Welcome Web Application
	1.4.5. Using WS-AtomicTransaction

	CHAPTER 2. MAVEN GUIDE
	2.1. LEARN ABOUT MAVEN
	2.1.1. About the Maven Repository
	2.1.2. About the Maven POM File
	2.1.3. Minimum Requirements of a Maven POM File
	2.1.4. About the Maven Settings File

	2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY
	2.2.1. Download and Install Maven
	2.2.2. Install the JBoss EAP 6 Maven Repository
	2.2.3. Install the JBoss EAP 6 Maven Repository Locally
	2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd
	2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager
	2.2.6. About Maven Repository Managers

	2.3. USE THE MAVEN REPOSITORY
	2.3.1. Configure the JBoss EAP Maven 6 Repository
	2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
	2.3.3. Configure Maven for Use with Red Hat JBoss Developer Studio
	2.3.4. Configure the JBoss EAP 6 Maven Repository Using the Project POM
	2.3.5. Manage Project Dependencies
	Supported Maven Artifacts
	Dependency Management
	JBoss JavaEE Specs Bom
	JBoss EAP BOMs and Quickstarts
	JBoss Client BOMs

	2.4. UPGRADE THE MAVEN REPOSITORY
	2.4.1. Apply a Patch to the Local Maven Repository

	CHAPTER 3. CLASS LOADING AND MODULES
	3.1. INTRODUCTION
	3.1.1. Overview of Class Loading and Modules
	3.1.2. Class Loading
	3.1.3. Modules
	3.1.4. Module Dependencies
	3.1.5. Class Loading in Deployments
	3.1.6. Class Loading Precedence
	3.1.7. Dynamic Module Naming
	3.1.8. jboss-deployment-structure.xml

	3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
	3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
	3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
	3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
	3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT
	3.6.1. Programmatically Load Classes and Resources in a Deployment
	3.6.2. Programmatically Iterate Resources in a Deployment

	3.7. CLASS LOADING AND SUBDEPLOYMENTS
	3.7.1. Modules and Class Loading in Enterprise Archives
	3.7.2. Subdeployment Class Loader Isolation
	3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR

	3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE
	3.9. REFERENCE
	3.9.1. Implicit Module Dependencies
	3.9.2. Included Modules
	3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

	CHAPTER 4. VALVES
	4.1. ABOUT VALVES
	4.2. ABOUT GLOBAL VALVES
	4.3. ABOUT AUTHENTICATOR VALVES
	4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE
	4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE
	4.6. CREATE A CUSTOM VALVE

	CHAPTER 5. LOGGING FOR DEVELOPERS
	5.1. INTRODUCTION
	5.1.1. About Logging
	5.1.2. Application Logging Frameworks Supported By JBoss LogManager
	5.1.3. About Log Levels
	5.1.4. Supported Log Levels
	5.1.5. Default Log File Locations

	5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
	5.2.1. About JBoss Logging
	5.2.2. Features of JBoss Logging
	5.2.3. Add Logging to an Application with JBoss Logging

	5.3. PER-DEPLOYMENT LOGGING
	5.3.1. About Per-deployment Logging
	5.3.2. Add Per-deployment Logging to an Application
	5.3.3. Example logging.properties File

	5.4. LOGGING PROFILES
	5.4.1. About Logging Profiles
	5.4.2. Specify a Logging Profile in an Application

	CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION
	6.1. INTRODUCTION
	6.1.1. About Internationalization
	6.1.2. About Localization

	6.2. JBOSS LOGGING TOOLS
	6.2.1. Overview
	6.2.1.1. JBoss Logging Tools Internationalization and Localization
	6.2.1.2. JBoss Logging Tools Quickstart
	6.2.1.3. Message Logger
	6.2.1.4. Message Bundle
	6.2.1.5. Internationalized Log Messages
	6.2.1.6. Internationalized Exceptions
	6.2.1.7. Internationalized Messages
	6.2.1.8. Translation Properties Files
	6.2.1.9. JBoss Logging Tools Project Codes
	6.2.1.10. JBoss Logging Tools Message IDs

	6.2.2. Creating Internationalized Loggers, Messages and Exceptions
	6.2.2.1. Create Internationalized Log Messages
	6.2.2.2. Create and Use Internationalized Messages
	6.2.2.3. Create Internationalized Exceptions

	6.2.3. Localizing Internationalized Loggers, Messages and Exceptions
	6.2.3.1. Generate New Translation Properties Files with Maven
	6.2.3.2. Translate an Internationalized Logger, Exception or Message

	6.2.4. Customizing Internationalized Log Messages
	6.2.4.1. Add Message IDs and Project Codes to Log Messages
	6.2.4.2. Specify the Log Level for a Message
	6.2.4.3. Customize Log Messages with Parameters
	6.2.4.4. Specify an Exception as the Cause of a Log Message

	6.2.5. Customizing Internationalized Exceptions
	6.2.5.1. Add Message IDs and Project Codes to Exception Messages
	6.2.5.2. Customize Exception Messages with Parameters
	6.2.5.3. Specify One Exception as the Cause of Another Exception

	6.2.6. Reference
	6.2.6.1. JBoss Logging Tools Maven Configuration
	6.2.6.2. Translation Property File Format
	6.2.6.3. JBoss Logging Tools Annotations Reference

	CHAPTER 7. REMOTE JNDI LOOKUP
	7.1. REGISTERING OBJECTS TO JNDI
	7.2. CONFIGURING A REMOTE JNDI CLIENT

	CHAPTER 8. ENTERPRISE JAVABEANS
	8.1. INTRODUCTION
	8.1.1. Overview of Enterprise JavaBeans
	8.1.2. EJB 3.1 Feature Set
	8.1.3. EJB 3.1 Lite
	8.1.4. EJB 3.1 Lite Features
	8.1.5. Enterprise Beans
	8.1.6. Overview of Writing Enterprise Beans
	8.1.7. Session Bean Business Interfaces
	8.1.7.1. Enterprise Bean Business Interfaces
	8.1.7.2. EJB Local Business Interfaces
	8.1.7.3. EJB Remote Business Interfaces
	8.1.7.4. EJB No-interface Beans

	8.2. CREATING ENTERPRISE BEAN PROJECTS
	8.2.1. Create an EJB Archive Project Using Red Hat JBoss Developer Studio
	8.2.2. Create an EJB Archive Project in Maven
	8.2.3. Create an EAR Project containing an EJB Project
	8.2.4. Add a Deployment Descriptor to an EJB Project

	8.3. SESSION BEANS
	8.3.1. Session Beans
	8.3.2. Stateless Session Beans
	8.3.3. Stateful Session Beans
	8.3.4. Singleton Session Beans
	8.3.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

	8.4. MESSAGE-DRIVEN BEANS
	8.4.1. Message-Driven Beans
	8.4.2. Resource Adapters
	8.4.3. Create a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio
	8.4.4. Specifying a Resource Adapter in jboss-ejb3.xml for an MDB
	8.4.5. Enable EJB and MDB Property Substitution in an Application

	8.5. INVOKING SESSION BEANS
	8.5.1. Invoke a Session Bean Remotely using JNDI
	8.5.2. About EJB Client Contexts
	8.5.3. Considerations When Using a Single EJB Context
	8.5.4. Using Scoped EJB Client Contexts
	8.5.5. Configure EJBs Using a Scoped EJB Client Context
	8.5.6. EJB Client Properties
	8.5.7. Remote EJB Data Compression

	8.6. CONTAINER INTERCEPTORS
	8.6.1. About Container Interceptors
	8.6.2. Create a Container Interceptor Class
	8.6.3. Configure a Container Interceptor
	8.6.4. Change the Security Context Identity
	8.6.5. Use a Client Side Interceptor in an Application

	8.7. CLUSTERED ENTERPRISE JAVABEANS
	8.7.1. About Clustered Enterprise JavaBeans (EJBs)
	8.7.2. Standalone and In-server Client Configuration
	8.7.3. Implementing a Custom Load Balancing Policy for EJB Calls
	8.7.4. Transaction Behavior of EJB Invocations

	8.8. REFERENCE
	8.8.1. EJB JNDI Naming Reference
	8.8.2. EJB Reference Resolution
	8.8.3. Project dependencies for Remote EJB Clients
	8.8.4. jboss-ejb3.xml Deployment Descriptor Reference

	CHAPTER 9. JBOSS MBEAN SERVICES
	9.1. WRITING JBOSS MBEAN SERVICES
	9.2. A STANDARD MBEAN EXAMPLE
	9.3. DEPLOYING JBOSS MBEAN SERVICES

	CHAPTER 10. CLUSTERING IN WEB APPLICATIONS
	10.1. SESSION REPLICATION
	10.1.1. About HTTP Session Replication
	10.1.2. About the Web Session Cache
	10.1.3. Configure the Web Session Cache
	10.1.4. Enable Session Replication in Your Application

	10.2. HTTPSESSION PASSIVATION AND ACTIVATION
	10.2.1. About HTTP Session Passivation and Activation
	10.2.2. Configure HttpSession Passivation in Your Application

	10.3. IMPLEMENT AN HA SINGLETON
	10.4. APACHE MOD_CLUSTER-MANAGER APPLICATION
	10.4.1. About mod_cluster-manager Application
	10.4.2. Exploring mod_cluster-manager Application

	CHAPTER 11. CDI
	11.1. OVERVIEW OF CDI
	11.1.1. Overview of CDI
	11.1.2. About Contexts and Dependency Injection (CDI)
	11.1.3. Benefits of CDI
	11.1.4. About Type-safe Dependency Injection
	11.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

	11.2. USE CDI
	11.2.1. First Steps
	11.2.1.1. Enable CDI

	11.2.2. Use CDI to Develop an Application
	11.2.2.1. Use CDI to Develop an Application
	11.2.2.2. Use CDI with Existing Code
	11.2.2.3. Exclude Beans From the Scanning Process
	11.2.2.4. Use an Injection to Extend an Implementation

	11.2.3. Ambiguous or Unsatisfied Dependencies
	11.2.3.1. About Ambiguous or Unsatisfied Dependencies
	11.2.3.2. About Qualifiers
	11.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

	11.2.4. Managed Beans
	11.2.4.1. About Managed Beans
	11.2.4.2. Types of Classes That are Beans
	11.2.4.3. Use CDI to Inject an Object Into a Bean

	11.2.5. Contexts, Scopes, and Dependencies
	11.2.5.1. Contexts and Scopes
	11.2.5.2. Available Contexts

	11.2.6. Bean Lifecycle
	11.2.6.1. Manage the Lifecycle of a Bean
	11.2.6.2. Use a Producer Method

	11.2.7. Named Beans and Alternative Beans
	11.2.7.1. About Named Beans
	11.2.7.2. Use Named Beans
	11.2.7.3. About Alternative Beans
	11.2.7.4. Override an Injection with an Alternative

	11.2.8. Stereotypes
	11.2.8.1. About Stereotypes
	11.2.8.2. Use Stereotypes

	11.2.9. Observer Methods
	11.2.9.1. About Observer Methods
	11.2.9.2. Transactional Observers
	11.2.9.3. Fire and Observe Events

	11.2.10. Interceptors
	11.2.10.1. About Interceptors
	11.2.10.2. Use Interceptors with CDI

	11.2.11. About Decorators
	11.2.12. About Portable Extensions
	11.2.13. Bean Proxies
	11.2.13.1. About Bean Proxies
	11.2.13.2. Use a Proxy in an Injection

	CHAPTER 12. JAVA TRANSACTION API (JTA)
	12.1. OVERVIEW
	12.1.1. Overview of Java Transactions API (JTA)

	12.2. TRANSACTION CONCEPTS
	12.2.1. About Transactions
	12.2.2. About ACID Properties for Transactions
	12.2.3. About the Transaction Coordinator or Transaction Manager
	12.2.4. About Transaction Participants
	12.2.5. About Java Transactions API (JTA)
	12.2.6. About Java Transaction Service (JTS)
	12.2.7. About XA Datasources and XA Transactions
	12.2.8. About XA Recovery
	12.2.9. About the 2-Phase Commit Protocol
	12.2.10. About Transaction Timeouts
	12.2.11. About Distributed Transactions
	12.2.12. About the ORB Portability API
	12.2.13. About Nested Transactions
	12.2.14. About XML Transaction Service
	12.2.14.1. Overview of Protocols Used by XTS
	12.2.14.2. Web Services-Atomic Transaction Process
	12.2.14.3. Web Services-Business Activity Process
	12.2.14.4. Transaction Bridging Overview

	12.3. TRANSACTION OPTIMIZATIONS
	12.3.1. Overview of Transaction Optimizations
	12.3.2. About the LRCO Optimization for Single-phase Commit (1PC)
	12.3.2.1. Commit Markable Resource

	12.3.3. About the Presumed-Abort Optimization
	12.3.4. About the Read-Only Optimization

	12.4. TRANSACTION OUTCOMES
	12.4.1. About Transaction Outcomes
	12.4.2. About Transaction Commit
	12.4.3. About Transaction Roll-Back
	12.4.4. About Heuristic Outcomes
	12.4.5. JBoss Transactions Errors and Exceptions

	12.5. OVERVIEW OF JTA TRANSACTIONS
	12.5.1. About Java Transactions API (JTA)
	12.5.2. Lifecycle of a JTA Transaction

	12.6. TRANSACTION SUBSYSTEM CONFIGURATION
	12.6.1. Transactions Configuration Overview
	12.6.2. Transactional Datasource Configuration
	12.6.2.1. Configure an XA Datasource
	12.6.2.2. Create a Non-XA Datasource with the Management Interfaces
	12.6.2.3. Configure Your Datasource to Use JTA Transaction API
	12.6.2.4. Configure Database Connection Validation Settings
	12.6.2.5. Datasource Parameters

	12.6.3. Transaction Logging
	12.6.3.1. About Transaction Log Messages
	12.6.3.2. Configure Logging for the Transaction Subsystem
	12.6.3.3. Browse and Manage Transactions

	12.7. USE JTA TRANSACTIONS
	12.7.1. Transactions JTA Task Overview
	12.7.2. Control Transactions
	12.7.3. Begin a Transaction
	12.7.4. Nested Transactions
	12.7.5. Commit a Transaction
	12.7.6. Roll Back a Transaction
	12.7.7. Handle a Heuristic Outcome in a Transaction
	12.7.8. Transaction Timeouts
	12.7.8.1. About Transaction Timeouts
	12.7.8.2. Configure the Transaction Manager

	12.7.9. JTA Transaction Error Handling
	12.7.9.1. Handle Transaction Errors

	12.8. ORB CONFIGURATION
	12.8.1. About Common Object Request Broker Architecture (CORBA)
	12.8.2. Configure the ORB for JTS Transactions

	12.9. TRANSACTION REFERENCES
	12.9.1. JBoss Transactions Errors and Exceptions
	12.9.2. JTA Transaction Example
	12.9.3. API Documentation for JBoss Transactions JTA
	12.9.4. Limitations of the XA Recovery Process

	CHAPTER 13. HIBERNATE
	13.1. ABOUT HIBERNATE CORE
	13.2. JAVA PERSISTENCE API (JPA)
	13.2.1. About JPA
	13.2.2. Hibernate EntityManager
	13.2.3. Getting Started
	13.2.3.1. Create a JPA project in Red Hat JBoss Developer Studio
	13.2.3.2. Create the Persistence Settings File in Red Hat JBoss Developer Studio
	13.2.3.3. Example Persistence Settings File
	13.2.3.4. Create the Hibernate Configuration File in Red Hat JBoss Developer Studio
	13.2.3.5. Example Hibernate Configuration File

	13.2.4. Configuration
	13.2.4.1. Hibernate Configuration Properties
	13.2.4.2. Hibernate JDBC and Connection Properties
	13.2.4.3. Hibernate Cache Properties
	13.2.4.4. Hibernate Transaction Properties
	13.2.4.5. Miscellaneous Hibernate Properties
	13.2.4.6. Hibernate SQL Dialects

	13.2.5. Second-Level Caches
	13.2.5.1. About Second-Level Caches
	13.2.5.2. Configure a Second Level Cache for Hibernate

	13.3. HIBERNATE ANNOTATIONS
	13.3.1. Hibernate Annotations

	13.4. HIBERNATE QUERY LANGUAGE
	13.4.1. About Hibernate Query Language
	13.4.2. HQL Statements
	13.4.3. About the INSERT Statement
	13.4.4. About the FROM Clause
	13.4.5. About the WITH Clause
	13.4.6. About Bulk Update, Insert and Delete
	13.4.7. About Collection Member References
	13.4.8. About Qualified Path Expressions
	13.4.9. About Scalar Functions
	13.4.10. HQL Standardized Functions
	13.4.11. About the Concatenation Operation
	13.4.12. About Dynamic Instantiation
	13.4.13. About HQL Predicates
	13.4.14. About Relational Comparisons
	13.4.15. About the IN Predicate
	13.4.16. About HQL Ordering

	13.5. HIBERNATE SERVICES
	13.5.1. About Hibernate Services
	13.5.2. About Service Contracts
	13.5.3. Types of Service Dependencies
	13.5.4. The ServiceRegistry
	13.5.4.1. About the ServiceRegistry

	13.5.5. Custom Services
	13.5.5.1. About Custom Services

	13.5.6. The Bootstrap Registry
	13.5.6.1. About the Boot-strap Registry
	13.5.6.2. Using BootstrapServiceRegistryBuilder
	13.5.6.3. BootstrapRegistry Services

	13.5.7. The SessionFactory Registry
	13.5.7.1. SessionFactory Registry
	13.5.7.2. SessionFactory Services

	13.5.8. Integrators
	13.5.8.1. Integrators
	13.5.8.2. Integrator use-cases

	13.6. BEAN VALIDATION
	13.6.1. About Bean Validation
	13.6.2. Hibernate Validator
	13.6.3. Validation Constraints
	13.6.3.1. About Validation Constraints
	13.6.3.2. Create a Constraint Annotation in Red Hat JBoss Developer Studio
	13.6.3.3. Hibernate Validator Constraints

	13.6.4. Configuration
	13.6.4.1. Example Validation Configuration File

	13.7. ENVERS
	13.7.1. About Hibernate Envers
	13.7.2. About Auditing Persistent Classes
	13.7.3. Auditing Strategies
	13.7.3.1. About Auditing Strategies
	13.7.3.2. Set the Auditing Strategy

	13.7.4. Getting Started with Entity Auditing
	13.7.4.1. Add Auditing Support to a JPA Entity

	13.7.5. Configuration
	13.7.5.1. Configure Envers Parameters
	13.7.5.2. Enable or Disable Auditing at Runtime
	13.7.5.3. Configure Conditional Auditing
	13.7.5.4. Envers Configuration Properties

	13.7.6. Queries
	13.7.6.1. Retrieve Auditing Information

	13.8. PERFORMANCE TUNING
	13.8.1. Alternative Batch Loading Algorithms
	13.8.2. Second Level Caching of Object References for Non-mutable Data

	CHAPTER 14. HIBERNATE SEARCH
	14.1. GETTING STARTED WITH HIBERNATE SEARCH
	14.1.1. About Hibernate Search
	14.1.2. First Steps with Hibernate Search
	14.1.3. Enable Hibernate Search using Maven
	14.1.4. Add Annotations
	14.1.5. Indexing
	14.1.6. Searching
	14.1.7. Analyzer

	14.2. MAPPING ENTITIES TO THE INDEX STRUCTURE
	14.2.1. Mapping an Entity
	14.2.1.1. Basic Mapping
	14.2.1.2. Mapping Properties Multiple Times
	14.2.1.3. Embedded and Associated Objects
	14.2.1.4. Limiting Object Embedding to Specific Paths

	14.2.2. Boosting
	14.2.2.1. Static Index Time Boosting
	14.2.2.2. Dynamic Index Time Boosting

	14.2.3. Analysis
	14.2.3.1. Default Analyzer and Analyzer by Class
	14.2.3.2. Named Analyzers
	14.2.3.3. Available Analyzers
	14.2.3.4. Dynamic Analyzer Selection
	14.2.3.5. Retrieving an Analyzer

	14.2.4. Bridges
	14.2.4.1. Built-in Bridges
	14.2.4.2. Custom Bridges

	14.3. QUERYING
	14.3.1. Building Queries
	14.3.1.1. Building a Lucene Query Using the Lucene API
	14.3.1.2. Building a Lucene Query
	14.3.1.3. Keyword Queries
	14.3.1.4. Fuzzy Queries
	14.3.1.5. Wildcard Queries
	14.3.1.6. Phrase Queries
	14.3.1.7. Range Queries
	14.3.1.8. Combining Queries
	14.3.1.9. Query Options
	14.3.1.10. Build a Hibernate Search Query

	14.3.2. Retrieving the Results
	14.3.2.1. Performance Considerations
	14.3.2.2. Result Size
	14.3.2.3. ResultTransformer
	14.3.2.4. Understanding Results

	14.3.3. Filters
	14.3.3.1. Using Filters in a Sharded Environment

	14.3.4. Faceting
	14.3.4.1. Creating a Faceting Request
	14.3.4.2. Applying a Faceting Request
	14.3.4.3. Restricting Query Results

	14.3.5. Optimizing the Query Process
	14.3.5.1. Caching Index Values: FieldCache

	14.4. MANUAL INDEX CHANGES
	14.4.1. Adding Instances to the Index
	14.4.2. Deleting Instances from the Index
	14.4.3. Rebuilding the Index
	14.4.3.1. Using flushToIndexes()
	14.4.3.2. Using a MassIndexer

	14.5. INDEX OPTIMIZATION
	14.5.1. Automatic Optimization
	14.5.2. Manual Optimization
	14.5.3. Adjusting Optimization

	14.6. ADVANCED FEATURES
	14.6.1. Accessing the SearchFactory
	14.6.2. Using an IndexReader
	14.6.3. Accessing a Lucene Directory
	14.6.4. Sharding Indexes
	14.6.5. Customizing Lucene's Scoring Formula
	14.6.6. Exception Handling Configuration
	14.6.7. Disable Hibernate Search

	CHAPTER 15. JAX-RS WEB SERVICES
	15.1. ABOUT JAX-RS
	15.2. ABOUT RESTEASY
	15.3. ABOUT RESTFUL WEB SERVICES
	15.4. RESTEASY DEFINED ANNOTATIONS
	15.5. RESTEASY CONFIGURATION
	15.5.1. RESTEasy Configuration Parameters

	15.6. JAX-RS WEB SERVICE SECURITY
	15.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	15.6.2. Secure a JAX-RS Web Service using Annotations

	15.7. EXCEPTION HANDLING
	15.7.1. Create an Exception Mapper
	15.7.2. RESTEasy Internally Thrown Exceptions

	15.8. RESTEASY INTERCEPTORS
	15.8.1. Intercept JAX-RS Invocations
	15.8.2. Bind an Interceptor to a JAX-RS Method
	15.8.3. Register an Interceptor
	15.8.4. Interceptor Precedence Families
	15.8.4.1. About Interceptor Precedence Families
	15.8.4.2. Define a Custom Interceptor Precedence Family

	15.9. STRING BASED ANNOTATIONS
	15.9.1. Convert String Based @*Param Annotations to Objects

	15.10. CONFIGURE FILE EXTENSIONS
	15.10.1. Map File Extensions to Media Types in the web.xml File
	15.10.2. Map File Extensions to Languages in the web.xml File
	15.10.3. RESTEasy Supported Media Types

	15.11. RESTEASY JAVASCRIPT API
	15.11.1. About the RESTEasy JavaScript API
	15.11.2. Enable the RESTEasy JavaScript API Servlet
	15.11.3. RESTEasy Javascript API Parameters
	15.11.4. Build AJAX Queries with the JavaScript API
	15.11.5. REST.Request Class Members

	15.12. RESTEASY ASYNCHRONOUS JOB SERVICE
	15.12.1. About the RESTEasy Asynchronous Job Service
	15.12.2. Enable the Asynchronous Job Service
	15.12.3. Configure Asynchronous Jobs for RESTEasy
	15.12.4. Asynchronous Job Service Configuration Parameters

	15.13. RESTEASY JAXB
	15.13.1. Create a JAXB Decorator
	15.13.2. JAXB and XML Provider
	15.13.3. JAXB and JSON Provider

	15.14. RESTEASY ATOM SUPPORT
	15.14.1. About the Atom API and Provider
	15.14.2. Using JAXB with Atom Provider

	15.15. YAML PROVIDER
	15.16. EJB INTEGRATION
	15.17. JSON SUPPORT VIA JACKSON
	15.18. RESTEASY/SPRING INTEGRATION
	15.18.1. RESTEasy/Spring integration

	CHAPTER 16. JAX-WS WEB SERVICES
	16.1. ABOUT JAX-WS WEB SERVICES
	16.2. CONFIGURE THE WEBSERVICES SUBSYSTEM
	16.3. CONFIGURE THE HTTP TIMEOUT PER APPLICATION
	16.4. JAX-WS WEB SERVICE ENDPOINTS
	16.4.1. About JAX-WS Web Service Endpoints
	16.4.2. Write and Deploy a JAX-WS Web Service Endpoint

	16.5. JAX-WS WEB SERVICE CLIENTS
	16.5.1. Consume and Access a JAX-WS Web Service
	16.5.2. Develop a JAX-WS Client Application

	16.6. JAX-WS DEVELOPMENT REFERENCE
	16.6.1. Enable Web Services Addressing (WS-Addressing)
	16.6.2. JAX-WS Common API Reference

	CHAPTER 17. WEBSOCKETS
	17.1. ABOUT WEBSOCKETS
	17.2. CREATE A WEBSOCKET APPLICATION

	CHAPTER 18. APPLICATION SECURITY
	18.1. FOUNDATIONAL CONCEPTS
	18.1.1. About Encryption
	18.1.2. About Security Domains
	18.1.3. About SSL Encryption
	18.1.4. About Declarative Security

	18.2. ROLE-BASED SECURITY IN APPLICATIONS
	18.2.1. About Application Security
	18.2.2. About Authentication
	18.2.3. About Authorization
	18.2.4. About Security Auditing
	18.2.5. About Security Mapping
	18.2.6. Java Authentication and Authorization Service (JAAS)
	18.2.7. About Java Authentication and Authorization Service (JAAS)
	18.2.8. Use a Security Domain in Your Application
	18.2.9. Use Role-Based Security In Servlets
	18.2.10. Use A Third-Party Authentication System In Your Application

	18.3. LOGIN MODULES
	18.3.1. Using Modules
	18.3.1.1. Password Stacking
	18.3.1.2. Password Hashing
	18.3.1.3. Unauthenticated Identity
	18.3.1.4. Ldap Login Module
	18.3.1.5. LdapExtended Login Module
	18.3.1.6. UsersRoles Login Module
	18.3.1.7. Database Login Module
	18.3.1.8. Certificate Login Module
	18.3.1.9. Identity Login Module
	18.3.1.10. RunAs Login Module
	18.3.1.11. Client Login Module
	18.3.1.12. SPNEGO Login Module
	18.3.1.13. RoleMapping Login Module
	18.3.1.14. bindCredential Module Option

	18.3.2. Custom Modules
	18.3.2.1. Subject Usage Pattern Support
	18.3.2.2. Custom LoginModule Example

	18.4. EJB APPLICATION SECURITY
	18.4.1. Security Identity
	18.4.1.1. About EJB Security Identity
	18.4.1.2. Set the Security Identity of an EJB

	18.4.2. EJB Method Permissions
	18.4.2.1. About EJB Method Permissions
	18.4.2.2. Use EJB Method Permissions

	18.4.3. EJB Security Annotations
	18.4.3.1. About EJB Security Annotations
	18.4.3.2. Use EJB Security Annotations

	18.4.4. Remote Access to EJBs
	18.4.4.1. About Remote Method Access
	18.4.4.2. About Remoting Callbacks
	18.4.4.3. About Remoting Server Detection
	18.4.4.4. Configure the Remoting Subsystem
	18.4.4.5. Use Security Realms with Remote EJB Clients
	18.4.4.6. Add a New Security Realm
	18.4.4.7. Add a User to a Security Realm
	18.4.4.8. About Remote EJB Access Using SSL Encryption

	18.5. JAX-RS APPLICATION SECURITY
	18.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	18.5.2. Secure a JAX-RS Web Service using Annotations

	18.6. PASSWORD VAULTS FOR SENSITIVE STRINGS
	18.6.1. Password Vault System
	18.6.2. Configure and Use Password Vault
	18.6.3. Obtain Keystore Password From External Source
	18.6.4. Create a Java Keystore to Store Sensitive Strings
	18.6.5. Initialize the Password Vault
	18.6.6. Configure JBoss EAP 6 to Use the Password Vault
	18.6.7. Configure JBoss EAP 6 to Use a Custom Implementation of the Password Vault
	18.6.8. Store a Sensitive String in the Password Vault
	18.6.9. Use an Encrypted Sensitive String in Configuration
	18.6.10. Use an Encrypted Sensitive String in an Application
	18.6.11. Check if a Sensitive String is in the Password Vault
	18.6.12. Remove a Sensitive String from the Password Vault

	18.7. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	18.7.1. About Java Authorization Contract for Containers (JACC)
	18.7.2. Configure Java Authorization Contract for Containers (JACC) Security

	18.8. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
	18.8.1. About Java Authentication SPI for Containers (JASPI) Security
	18.8.2. Configure Java Authentication SPI for Containers (JASPI) Security

	CHAPTER 19. SINGLE SIGN ON (SSO)
	19.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	19.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	19.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
	19.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
	19.5. ABOUT KERBEROS
	19.6. ABOUT SPNEGO
	19.7. ABOUT MICROSOFT ACTIVE DIRECTORY
	19.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS
	19.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION
	19.10. ABOUT SAML WEB BROWSER BASED SSO
	19.11. COOKIE DOMAIN
	19.11.1. About the Cookie Domain
	19.11.2. Configure the Cookie Domain for Single Sign On

	CHAPTER 20. DEVELOPMENT SECURITY REFERENCES
	20.1. EJB SECURITY PARAMETER REFERENCE

	CHAPTER 21. CONFIGURATION REFERENCES
	21.1. JBOSS-WEB.XML CONFIGURATION REFERENCE

	CHAPTER 22. SUPPLEMENTAL REFERENCES
	22.1. TYPES OF JAVA ARCHIVES

	APPENDIX A. REVISION HISTORY

