& RedHat

Red Hat JBoss Enterprise Application
Platform 6.4

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Last Updated: 2022-05-02

Red Hat JBoss Enterprise Application Platform 6.4 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Legal Notice

Copyright © 2017 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides references and examples for Java EE 6 developers using Red Hat JBoss
Enterprise Application Platform 6 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS ... i 6
11. INTRODUCTION 6
1.2. PREREQUISITES 6
1.3. SET UP THE DEVELOPMENT ENVIRONMENT 9
1.4. RUN YOUR FIRST APPLICATION 16

CHAPTER 2. MAVEN GUIDE .. i i i i e et i ettt 35
2.1. LEARN ABOUT MAVEN 35
2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY 37
2.3.USE THE MAVEN REPOSITORY 41
2.4.UPGRADE THE MAVEN REPOSITORY 57

CHAPTER 3. CLASS LOADING AND MODULES i e 59
3.1.INTRODUCTION 59
3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT 63
3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN 66
3.4. PREVENT A MODULE BEING IMPLICITLY LOADED 68
3.5.EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT 69
3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN ADEPLOYMENT 70
3.7. CLASS LOADING AND SUBDEPLOYMENTS 74
3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE 76
3.9. REFERENCE 77

CHAPTER 4. VALVES . i i i e e e it ettt 82
4.1. ABOUT VALVES 82
4.2. ABOUT GLOBAL VALVES 82
4.3. ABOUT AUTHENTICATOR VALVES 82
4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE 82
4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE 84
4.6. CREATE A CUSTOM VALVE 85

CHAPTERS5.LOGGING FORDEVELOPERS ... e i 88
5.1. INTRODUCTION 88
5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK 90
5.3. PER-DEPLOYMENT LOGGING 93
5.4. LOGGING PROFILES 94

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION .. e 96
6.1. INTRODUCTION 96
6.2. JBOSS LOGGING TOOLS 96

CHAPTER 7. REMOTE UNDILOOKUP .. i i i ittt ns
7.1.REGISTERING OBJECTS TO JNDI 15
7.2. CONFIGURING A REMOTE JNDI CLIENT 15

CHAPTER 8. ENTERPRISE JAVABEANS ... i i n7z
8.1. INTRODUCTION n7
8.2. CREATING ENTERPRISE BEAN PROJECTS 120
8.3. SESSION BEANS 130
8.4. MESSAGE-DRIVEN BEANS 134
8.5. INVOKING SESSION BEANS 140
8.6. CONTAINER INTERCEPTORS 152
8.7. CLUSTERED ENTERPRISE JAVABEANS 159

Development Guide

8.8. REFERENCE 168
CHAPTER 9. JBOSS MBEAN SERVICES ... i i e i it 174
9.1. WRITING JBOSS MBEAN SERVICES 174
9.2. ASTANDARD MBEAN EXAMPLE 174
9.3. DEPLOYING JBOSS MBEAN SERVICES 176
CHAPTER10. CLUSTERING IN WEB APPLICATIONS i i 178
10.1. SESSION REPLICATION 178
10.2. HTTPSESSION PASSIVATION AND ACTIVATION 182
10.3. IMPLEMENT AN HA SINGLETON 184
10.4. APACHE MOD_CLUSTER-MANAGER APPLICATION 190
CHAPTER 11 Gl i i i i i i i i ittt ittt ca s 192
11.1. OVERVIEW OF CDI 192
1.2. USE CDI 193
CHAPTER12. JAVA TRANSACTION API (JTA) it e et 216
12.1. OVERVIEW 216
12.2. TRANSACTION CONCEPTS 216
12.3. TRANSACTION OPTIMIZATIONS 223
12.4. TRANSACTION OUTCOMES 227
12.5. OVERVIEW OF JTA TRANSACTIONS 228
12.6. TRANSACTION SUBSYSTEM CONFIGURATION 230
12.7. USE JTA TRANSACTIONS 249
12.8. ORB CONFIGURATION 260
12.9. TRANSACTION REFERENCES 261
CHAPTER 13. HIBERNATE .o i i i i et it ittt 266
13.1. ABOUT HIBERNATE CORE 266
13.2. JAVA PERSISTENCE API (JPA) 266
13.3. HIBERNATE ANNOTATIONS 281
13.4. HIBERNATE QUERY LANGUAGE 285
13.5. HIBERNATE SERVICES 298
13.6. BEAN VALIDATION 304
13.7. ENVERS 309
13.8. PERFORMANCE TUNING 320
CHAPTER 14. HIBERNATE SEARCH ... i i i e ettt 323
14.1. GETTING STARTED WITH HIBERNATE SEARCH 323
14.2. MAPPING ENTITIES TO THE INDEX STRUCTURE 329
14.3. QUERYING 357
14.4. MANUAL INDEX CHANGES 385
14.5. INDEX OPTIMIZATION 389
14.6. ADVANCED FEATURES 391
CHAPTER15. JAX-RSWEB SERVICES i i 397
15.1. ABOUT JAX-RS 397
15.2. ABOUT RESTEASY 397
15.3. ABOUT RESTFUL WEB SERVICES 397
15.4. RESTEASY DEFINED ANNOTATIONS 397
15.5. RESTEASY CONFIGURATION 400
15.6. JAX-RS WEB SERVICE SECURITY 402
15.7. EXCEPTION HANDLING 404
15.8. RESTEASY INTERCEPTORS 406

Table of Contents

15.9. STRING BASED ANNOTATIONS 412
15.10. CONFIGURE FILE EXTENSIONS 416
1511 RESTEASY JAVASCRIPT API 418
15.12. RESTEASY ASYNCHRONOUS JOB SERVICE 421
15.13. RESTEASY JAXB 425
15.14. RESTEASY ATOM SUPPORT 428
15.15. YAML PROVIDER 430
15.16. EJB INTEGRATION 431
15.17. JSON SUPPORT VIA JACKSON 432
15.18. RESTEASY/SPRING INTEGRATION 432
CHAPTER16. JAX-WS WEB SERVICES i e i 434
16.1. ABOUT JAX-WS WEB SERVICES 434
16.2. CONFIGURE THE WEBSERVICES SUBSYSTEM 435
16.3. CONFIGURE THE HTTP TIMEOUT PER APPLICATION 438
16.4. JAX-WS WEB SERVICE ENDPOINTS 438
16.5. JAX-WS WEB SERVICE CLIENTS 443
16.6. JAX-WS DEVELOPMENT REFERENCE 452
CHAPTER 17. WEBS O CKETS . i i i e et et ettt 457
17.1. ABOUT WEBSOCKETS 457
17.2. CREATE AWEBSOCKET APPLICATION 457
CHAPTER 18. APPLICATION SECURITY 1. i i i e e 463
18.1. FOUNDATIONAL CONCEPTS 463
18.2. ROLE-BASED SECURITY IN APPLICATIONS 464
18.3. LOGIN MODULES 479
18.4. EJB APPLICATION SECURITY 512
18.5. JAX-RS APPLICATION SECURITY 530
18.6. PASSWORD VAULTS FOR SENSITIVE STRINGS 533
18.7. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC) 552
18.8. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) 554
CHAPTER19.SINGLESIGN ON (SSO) ..ttt i i i e et 555
19.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS 555
19.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS 555
19.3. CHOOSE THE RIGHT SSO IMPLEMENTATION 555
19.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION 556
19.5. ABOUT KERBEROS 558
19.6. ABOUT SPNEGO 558
19.7. ABOUT MICROSOFT ACTIVE DIRECTORY 558
19.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB
APPLICATIONS 559
19.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION 562
19.10. ABOUT SAML WEB BROWSER BASED SSO 563
19.11. COOKIE DOMAIN 564
CHAPTER 20. DEVELOPMENT SECURITY REFERENCES ... e 566
20.1. EJB SECURITY PARAMETER REFERENCE 566
CHAPTER 21. CONFIGURATION REFERENCES e 568
21.1. JBOSS-WEB. XML CONFIGURATION REFERENCE 568
CHAPTER 22. SUPPLEMENTAL REFERENCES e 572
22.1. TYPES OF JAVA ARCHIVES 572

Development Guide

APPENDIX A. REVISION HISTORY

Table of Contents

Development Guide

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1. INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 6

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss Application
Server 7 with high-availability clustering, messaging, distributed caching, and other technologies.

JBoss EAP 6 includes a new, modular structure that allows service enabling only when required,
improving startup speed.

The Management Console and Management Command Line Interface make editing XML configuration
files unnecessary and add the ability to script and automate tasks.

In addition, JBoss EAP 6 includes APIs and development frameworks for quickly developing secure and
scalable Java EE applications.

Report a bug

1.2. PREREQUISITES

1.2.1. Become Familiar with Java Enterprise Edition 6

1.2.1.1. Overview of EE 6 Profiles

Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two
profiles that the EE 6 specification defines are the Full Profile and the Web Profile.

EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile
includes a subset of APIs which are useful to web developers.

JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile
specifications.

® Section 1.2.1.2, "Java Enterprise Edition 6 Web Profile”
® Section 1.2.1.3, “"Java Enterprise Edition 6 Full Profile”

Report a bug

1.2.1.2. Java Enterprise Edition 6 Web Profile

The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is
designed for web application development. The other profile defined by the Java Enterprise Edition 6
specification is the Full Profile. See Section 1.2.1.3, “"Java Enterprise Edition 6 Full Profile” for more
details.

Java EE 6 Web Profile Requirements

e Java Platform, Enterprise Edition 6

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+228-762700+%5BLatest%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-762700+23+Jun+2015+09%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4488-591661+%5BLatest%5D&comment=Title%3A+Overview+of+EE+6+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4488-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

® Java Web Technologies

o Servlet 3.0 (JSR 315)

o JSP 2.2 and Expression Language (EL) 1.2

o JavaServer Faces (JSF) 2.1 (JSR 314)

o Java Standard Tag Library (JSTL) for JSP 1.2

o Debugging Support for Other Languages 1.0 (JSR 45)

® Enterprise Application Technologies

o Contexts and Dependency Injection (CDI) (JSR 299)

o Dependency Injection for Java (JSR 330)

o Enterprise JavaBeans 3.1 Lite (JSR 318)

o Java Persistence API 2.0 (JSR 317)

o Common Annotations for the Java Platform 1.1 (JSR 250)
o Java Transaction API (JTA) 1.1 (JSR 907)

o Bean Validation (JSR 303)

Report a bug

1.2.1.3. Java Enterprise Edition 6 Full Profile

The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of
them as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web
Profile (Section 1.2.1.2, “"Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following
APls.

Items Included in the EE 6 Full Profile

e EJUB 3.1 (not Lite) (JSR 318)
® Java EE Connector Architecture 1.6 (JSR 322)
® Java Message Service (JMS) API 1.1 (JSR 914)

® JavaMail 1.4 (JSR 919)

® Web Service Technologies

o Jax-RS RESTful Web Services 1.1 (JSR 311)
o Implementing Enterprise Web Services 1.3 (JSR 109)
o JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)

o Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4489-591661+%5BLatest%5D&comment=Title%3A+Java+Enterprise+Edition+6+Web+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4489-591661+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

o Web Services Metadata for the Java Platform (JSR 181)
o Java APIs for XML-based RPC 1.1 (JSR 101)
o Java APIs for XML Messaging 1.3 (JSR 67)

o Java API for XML Registries (JAXR) 1.0 (JSR 93)

® Management and Security Technologies

o Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)
o Java Authentication Contract for Containers 1.3 (JSR 115)

o Java EE Application Deployment 1.2 (JSR 88)

o J2EE Management 1.1 (JSR 77)

Report a bug

1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP
6

1.2.2.1. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged.

Static Modules

Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each
sub-directory represents one module and defines a main/ subdirectory that contains a configuration
file (module.xml) and any required JAR files. The name of the module is defined in the module.xml
file. All the application server provided APIs are provided as static modules, including the Java EE
APIs as well as other APIs such as JBoss Logging.

Example 1.1. Example module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<module xmIns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysql-connector-java-5.1.15.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

The module name, com.mysq]l, should match the directory structure for the module, excluding
the main/ subdirectory name.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4490-706470+%5BLatest%5D&comment=Title%3A+Java+Enterprise+Edition+6+Full+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4490-706470+04+Sep+2014+00%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

The modules provided in JBoss EAP distributions are located in a system directory within the
EAP_HOME/modules directory. This keeps them separate from any modules provided by third
parties.

Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install
their modules within the system directory.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third-party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using
a one directory per module layout. This ensures that custom versions of modules that already exist in
the system directory are loaded instead of the shipped versions. In this way, user provided modules
will take precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss
EAP searches for modules, then the product will look for a system subdirectory structure within one

of the locations specified. A system structure must exist somewhere in the locations specified with
JBOSS MODULEPATH.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment
(or subdeployment in an EAR). The name of a dynamic module is derived from the name of the
deployed archive. Because deployments are loaded as modules, they can configure dependencies
and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that has
explicit or implicit dependencies.

Report a bug

1.3. SET UP THE DEVELOPMENT ENVIRONMENT

1.3.1. Download and Install Red Hat JBoss Developer Studio

1.3.1.1. Setup Red Hat JBoss Developer Studio

1. Section 1.3.1.2, “Download Red Hat JBoss Developer Studio”

2. Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”

3. Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”

4. Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”

Report a bug

1.3.1.2. Download Red Hat JBoss Developer Studio

1. Go to https://access.redhat.com/.

2. Select Downloads from the menu at the top of the page.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4360-766898+%5BLatest%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-766898+05+Aug+2015+14%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4583-721148+%5BLatest%5D&comment=Title%3A+Setup+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4583-721148+30+Oct+2014+15%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/

Development Guide

3. Find Red Hat JBoss Developer Studio in the list and click on it.
4. Select the appropriate version and click Download.

Report a bug

1.3.1.3. Install Red Hat JBoss Developer Studio

Prerequisites:
Section 1.3.1.2, “Download Red Hat JBoss Developer Studio”

Procedure 1.1. Install Red Hat JBoss Developer Studio

1. Open a terminal.
2. Move into the directory containing the downloaded .jar file.

3. Run the following command to launch the GUl installer:
I java -jar jodevstudio-build_version.jar
4. Click Next to start the installation process.

5. Select | accept the terms of this license agreement and click Next.

6. Adjust the installation path and click Next.

NOTE

If the installation path folder does not exist, a prompt will appear. Click Ok to
create the folder.

7. Choose a JVM, or leave the default JVM selected, and click Next.

8. Add any application platforms available, and click Next.

9. Review the installation details, and click Next.
10. Click Next when the installation process is complete.

11. Configure the desktop shortcuts for Red Hat JBoss Developer Studio, and click Next.
12. Click Done.

Report a bug

1.3.1.4. Start Red Hat JBoss Developer Studio

Prerequisites:
Section 1.3.1.3, “Install Red Hat JBoss Developer Studio”

Procedure 1.2. Command to start Red Hat JBoss Developer Studio

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4580-733629+%5BLatest%5D&comment=Title%3A+Download+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4580-733629+18+Dec+2014+15%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4581-733628+%5BLatest%5D&comment=Title%3A+Install+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4581-733628+18+Dec+2014+15%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1. Open a terminal.
2. Change into the installation directory.

3. Run the following command to start Red Hat JBoss Developer Studio:
I [localhost]$./jbdevstudio

Report a bug

1.3.1.5. Add the JBoss EAP Server Using Define New Server

These instructions assume this is your first introduction to Red Hat JBoss Developer Studio and you
have not yet added any Red Hat JBoss Enterprise Application Platform servers. The procedure below
adds the JBoss EAP server using the Define New Server wizard.

Procedure 1.3. Add the server
1. Open the Servers tab. If there is no Servers tab, add it to the panel as follows:
a. Click Window = Show View — Other....
b. Select Servers from the Server folder and click OK.
2. Click on No servers are available. Click this link to create a new server... or, if you prefer,

right-click within the blank Server panel and select New — Server.

4t Servers 22 B Console [2! Problems Il Properties < Search < OpenShift

Mo servers are available. Click this link to create a new server...

Figure 1.1. Add a new server - No servers available

3. Expand JBoss Enterprise Middleware and choose JBoss Enterprise Application Platform
6.1+. Enter a server name, for example, "JBoss Enterprise Application Platform 6.4", then click
Next to create the JBoss runtime and define the server. The next time you define a new server,
this dialog displays a Server runtime environment selection with the new runtime definition.

1

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4582-681218+%5BLatest%5D&comment=Title%3A+Start+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4582-681218+03+Jul+2014+10%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Mew Server

Define a New Server

Choose the type of server to create g

Download additional server adapters

Select the server type:

| |
type filter text "

-| = Red Hat JBoss Middleware

£l JBoss Enterprise Application Platform 4.3

£l JBoss Enterprise Application Platform 5.x

£l JBoss Enterprise Application Platform 6.0

§ JBoss Enterprise Application Platform 6.1+

JBoss Enterprise Application Platform (EAP) 6.1+

I;|I |
Server's host name: localhost
Server name: JBoss Enterprise Application Platform 6.44 | E
| I | | | | |
® < Back Mext > Cancel Finish

Figure 1.2. Define a New Server

4. Create a Server Adapter to manage starting and stopping the server. Keep the defaults and
click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Mew Server

. Boss“

]
@ . by Red Hat

Create a new Server Adapter

JBoss Enterprise Application Platform (EAP) 6.1+

A Server Adapter manages starting and stopping instances of your server. It manages
command line arguments and keeps track of which modules have been deployed.

The server is: ® Local

"' Remote

Controllad by: = g Filesystem and shell operations

" Management Operations

The selected profile requires a runtime.
M Assign a runtime to this server
Create new runtime (next page)

Runtime Details
JRE:

Home Directory:

Base Directory:

Configuration File:

® < Back | MNext> | Cancel Finish

Figure 1.3. Create a New Server Adapter

5. Enter a name, for example "JBoss EAP 6.4 Runtime". Under Home Directory, click Browse and
navigate to your JBoss EAP install location. Then click Next.

13

Development Guide

14

Mew Server

|Boss Runtime *® @
L

t s JBoss
JBoss Enterprise Application Platform (EAP) 6.1+ ® @ oy e Hat
A JBoss Server runtime references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as well as by a "server” which will be able to start and stop instances of JBoss.
MName

JBoss EAP 6.4 Runtime
Home Directory Download and install runtime...
J’homefusernameftool.sfjboss—eap—ﬁ.dl Browse...
Runtime JRE

© Execution Environment: JavaSE-1.6 ps Environments...

' Alternate JRE: Installed JREs...
Configuration base directory: | ctandalone Browse...
Configuration file: | standalone.xml Browse...

® < Back Mext > Cancel Finish

Figure 1.4. Add New Server Runtime Environment

NOTE

Some quickstarts require that you run the server with a different profile or
additional arguments. To deploy a quickstart that requires the full profile, you
must define a new server and add a Server Runtime Environment that specifies
standalone-full.xml for the Configuration file. Be sure to give the new server a
descriptive name.

6. Configure existing projects for the new server. Because you do not have any projects at this
point, click Finish.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Mew Server

Add and Remove @
Modify the resources that are configured on the server ‘:i

Move resources to the right to configure them on the server

Available: Configured:

| Add > |

| < Remove |

| Add ALl >> |

| << Remove All |

@ Emed vo) (i) (s

Figure 1.5. Modify resources for the new JBoss server

Result

The JBoss EAP Runtime Server is listed in the Servers tab.

15

Development Guide

o Servers 22 L) Console [Problems [Properties < Search $ OpenShift Explorer

S

+ {1, JBoss Enterprise Application Platform 6.4 [Stopped]

Figure 1.6. Server appears in the server list

Report a bug

1.4. RUN YOUR FIRST APPLICATION

1.4.1. Download the Quickstart Code Examples

1.4.1.1. Access the Quickstarts

Summary

JBoss EAP 6 comes with a series of quickstart examples designed to help users begin writing
applications using the Java EE 6 technologies.

Prerequisites

Maven 3.0.0 or higher. For more information on installing Maven, refer to
http://maven.apache.org/download.html.

Section 2.1.1, “About the Maven Repository”
The JBoss EAP 6 Maven repository is available online, so it is not necessary to download and
install it locally. If you plan to use the online repository, you can skip to the next step. If you

prefer to install a local repository, see: Section 2.2.3, “Install the JBoss EAP 6 Maven Repository
Locally”.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”

Procedure 1.4. Download the Quickstarts

1.

2.

3.

4.

Result

Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

Find "Quickstarts" in the list.
Click the Download button to download a Zip archive containing the examples.

Unzip the archive in a directory of your choosing.

The JBoss EAP Quickstarts have been downloaded and unzipped. Refer to the README.md file in the
top-level directory of the Quickstart archive for instructions about deploying each quickstart.

Report a bug

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+26921-769220+%5BLatest%5D&comment=Title%3A+Add+the+JBoss+EAP+Server+Using+Define+New+Server%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=26921-769220+28+Aug+2015+16%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/download.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5720-736846+%5BLatest%5D&comment=Title%3A+Access+the+Quickstarts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5720-736846+19+Jan+2015+04%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.4.2. Run the Quickstarts

1.4.2.1. Run the Quickstarts in Red Hat JBoss Developer Studio

This section describes how to use Red Hat JBoss Developer Studio to deploy the quickstarts and run
the Arquillian tests.

Procedure 1.5. Import the quickstarts into Red Hat JBoss Developer Studio

Each quickstart ships with a POM (Project Object Model) file that contains project and configuration
information for the quickstart. Using this POM file, you can easily import the quickstart into Red Hat
JBoss Developer Studio.

IMPORTANT

If your quickstart project folder is located within the IDE workspace when you import it
into Red Hat JBoss Developer Studio, the IDE generates an invalid project name and
WAR archive name. Be sure your quickstart project folder is located outside the IDE
workspace before you begin!

1. If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using
the Maven Settings”.

2. Start Red Hat JBoss Developer Studio.
3. From the menu, select File = Import.

4. In the selection list, choose Maven — Existing Maven Projects, then click Next.

17

Development Guide

Import

Select \“
Import Existing Maven Projects H

Select an import source:

type filter text

& .
Ely

+

+

+

+

+

+ = General
= CVS

= EJB

= Git

= Install
= Java EE

= Maven

% Check out Maven Projects from SCM

& Existing Maven Projects

(0, Install or deploy an artifact to a Maven repository

f—_L Materialize Maven Projects from SCM

@

Figure 1.7. Import Existing Maven Projects

5. Browse to the directory of the quickstart you plan to test, for example the helloworld
quickstart, and click OK. The Projects list box is populated with the pom.xml file of the
selected quickstart project.

18

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Import Maven Projects

Maven Projects

Select Maven projects

Root Directory: .fhome}usemamef’jboss—eap—quickstartsfhelmworld ¥l Browse |
Projects:
¥ /pom.xml org.jboss.quickstarts.eap:jboss-helloworld:6.4.0.GA:war | Select All
| Deselect All |
Select Tree
W =1N=] lree
Refresh

! Add project(s) to working set

Working set: | More

b Advanced

@ . < Back I Next > ' Cancel Finish

Figure 1.8. Select Maven Projects

6. Click Finish.

Procedure 1.6. Build and Deploy thehelloworld quickstart

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the JBoss
server is configured and running correctly.

1. If you do not see a Servers tab or have not yet defined a server, follow the instructions here:
Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”. If you plan to deploy a
quickstart that requires the full profile or additional startup arguments, be sure to create the
server runtime environment as noted in the quickstart instructions.

2. Right-click on the jboss-helloworld project in the Project Explorer tab and select Run As. You
are provided with a list of choices. Select Run on Server.

T jposs-hellow Q=T .Y 4

Debug As > Properties Search O Openshift Explorer

Run As > 1 Run on Server Shift+Alt+X R

Figure 1.9. Run As - Run on Server

3. Select JBoss EAP 6.1+ Runtime Server from the server list and click Next.

19

Development Guide

20

Run On Server
Run On Server
Select which server to use

How do you want to select the server?

@ |Choose an existing server

" Manually define a new server
Select the server that you want to use:

| ype filter text v.'fl

Server State

-| = localhost

% JBoss EAP 6.1+ Runtime Server

JBoss Enterprise Application Platform (EAP) 6.1+ | Columns... |

" Always use this server when running this project

® < Back I MNext > N Cancel N Finish

Figure 1.10. Run on Server

4. The next screen displays the resources that are configured on the server. The jboss-helloworld
quickstart is configured for you. Click Finish to deploy the quickstart.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Run On Server

Add and Remove \%
Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

(% jboss-helloworld

@ < Back Cancel Finish

Figure 1.11. Modify Resources Configured on the Server

5. Review the results.

o Inthe Server tab, the JBoss EAP 6.x Runtime Server status changes to [Started,
Republish] .

o The server Console tab shows messages detailing the JBoss EAP 6.x server start and the
helloworld quickstart deployment.

o A helloworld tab appears displaying the URL http://localhost:8080/jboss-
helloworld/HelloWorld and the text "Hello World!".

o The following messages in the Console confirm deployment of the jboss-helloworld.war
file:

JBAS018210: Register web context: /jboss-helloworld
JBAS018559: Deployed "jboss-helloworld.war" (runtime-name : "jboss-helloworld.war")

21

http://localhost:8080/jboss-helloworld/HelloWorld

Development Guide

The registered web context is appended to http://localhost:8080 to provide the URL used
to access the deployed application.

6. To verify the helloworld quickstart deployed successfully to the JBoss server, open a web
browser and access the application at this URL: http://localhost:8080/jboss-helloworld

Procedure 1.7. Run the bean-validation quickstart Arquillian tests

Some quickstarts do not provide a user interface layer and instead provide Arquillian tests to
demonstrate the code examples. The bean-validation quickstart is an example of a quickstart that
provides Arquillian tests.

1. Follow the procedure above to import the bean-validation quickstart into Red Hat JBoss
Developer Studio.

2. Inthe Servers tab, right-click on the server and choose Start to start the JBoss EAP server. If
you do not see a Servers tab or have not yet defined a server, follow the instructions here:
Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”.

3. Right-click on the jboss-bean-validation project in the Project Explorer tab and select Run As.
You are provided with a list of choices. Select Maven Build

4. In the Goals input field of the Edit Configuration dialog, type: clean test -Parq-jbossas-
remote

Then click Run.

22

http://localhost:8080/jboss-helloworld

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Edit configuration and launch.

Edit Configuration

>

|
Mame: bean-validation
w JRE} tr:ﬁh Refresh] 'Ev Sourcew % Environment} =] Qommon}
Base directory:
| |
/home/username/jboss-eap-quickstarts/bean-validation
| | | || |
Browse Workspace... | Browse File System... | Variables...
| |
Goals: |clean test —Parq—jbossas—remote| Select...
| |
Profiles:
" Offline " Update Snapshots
" Debug Qutput | Skip Tests ' Non-recursive
| Resolve Workspace artifacts
'1 v Threads
Parameter Nam« Value I Add... I
| |
Edit
|
Apply Revert
| | | |
@ Close Run

Figure 1.12. Edit Configuration

5. Review the results.

The server Console tab shows messages detailing the JBoss EAP server start and the output of
the bean-validation quickstart Arquillian tests.

TESTS

Running org.jboss.as.quickstarts.bean_validation.test. MemberValidationTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.189 sec

Results :

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] BUILD SUCCESS
[INFO]

23

Development Guide

Report a bug

1.4.2.2. Run the Quickstarts Using a Command Line

Procedure 1.8. Build and Deploy the Quickstarts Using a Command Line

You can easily build and deploy the quickstarts using a command line. Be aware that, when using a
command line, you are responsible for starting the JBoss server if it is required.

1. If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using
the Maven Settings”.

2. Review the README.html file in the root directory of the quickstarts.

This file contains general information about system requirements, how to configure Maven, how
to add users, and how to run the Quickstarts. Be sure to read through it before you get started.

It also contains a table listing the available quickstarts. The table lists each quickstart name and
the technologies it demonstrates. It gives a brief description of each quickstart and the level of
experience required to set it up. For more detailed information about a quickstart, click on the
quickstart name.

Some quickstarts are designed to enhance or extend other quickstarts. These are noted in the
Prerequisites column. If a quickstart lists prerequisites, you must install them first before
working with the quickstart.

Some quickstarts require the installation and configuration of optional components. Do not
install these components unless the quickstart requires them.

3. Run the helloworld quickstart.
The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the
JBoss server is configured and running correctly. Open the README.html file in the root of the
helloworld quickstart. It contains detailed instructions on how to build and deploy the quickstart
and access the running application

4. Run the other quickstarts.

Follow the instructions in the README.html file located in the root folder of each quickstart to
run the example.

Report a bug

1.4.3. Review the Quickstart Tutorials

1.4.3.1. Explore the helloworld Quickstart

Summary

The helloworld quickstart shows you how to deploy a simple Servlet to JBoss EAP 6. The business logic
is encapsulated in a service which is provided as a CDI (Contexts and Dependency Injection) bean and
injected into the Servlet. This quickstart is very simple. All it does is print "Hello World" onto a web page.
Itis a good starting point to be sure you have configured and started your server properly.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README.html file at the root of the helloworld quickstart directory. Here we show you how to use Red

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+27008-768101+%5BLatest%5D&comment=Title%3A+Run+the+Quickstarts+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=27008-768101+23+Aug+2015+20%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7307-768103+%5BLatest%5D&comment=Title%3A+Run+the+Quickstarts+Using+a+Command+Line%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7307-768103+23+Aug+2015+20%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat JBoss
Developer Studio, configured Maven, and imported and successfully run the helloworld quickstart.

Prerequisites

Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install Red
Hat JBoss Developer Studio”.

Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here:
Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio” .

Follow the procedures here to import, build, and deploy the helloworld quickstart in Red Hat
JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer
Studio”

Verify the helloworld quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-helloworld

Procedure 1.9. Examine the Directory Structure

The code for the helloworld quickstart can be found in the QUICKSTART_HOME/helloworld directory.
The helloworld quickstart is comprised of a Servlet and a CDI bean. It also includes an empty beans.xml
file which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.

1.

4.

The beans.xml file is located in the WEB-INF/ folder in the src/main/webapp/ directory of the
quickstart.

The src/main/webapp/ directory also includes an index.html file which uses a simple meta
refresh to redirect the user's browser to the Servlet, which is located at
http://localhost:8080/jboss-helloworld/HelloWorld.

All the configuration files for this example are located in WEB-INF/, which can be found in the
src/main/webapp/ directory of the example.

Notice that the quickstart doesn't even need a web.xml file!

Procedure 1.10. Examine the Code

The package declaration and imports have been excluded from these listings. The complete listing is
available in the quickstart source code.

1.

Review the HelloWorldServlet code

The HelloWorldServlet.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This Servlet sends the
information to the browser.

42. @SuppressWarnings("serial")
43. @WebServlet("/HelloWorld")
44. public class HelloWorldServlet extends HttpServlet {

45,

46. static String PAGE_HEADER = "<html><head><title>helloworld</title></head>
<body>";

47.

48. static String PAGE_FOOTER = "</body></htmlI>";

49.

50. @lInject

25

http://localhost:8080/jboss-helloworld
http://localhost:8080/jboss-helloworld/HelloWorld

Development Guide

51. HelloService helloService;

52.

53. @Override

54. protected void doGet(HttpServietRequest req, HitpServletResponse resp) throws
ServletException, IOException {

55. resp.setContentType("text/html");

56. PrintWriter writer = resp.getWriter();

57. writer.printin(PAGE_HEADER);

58. writer.println("<h1>" + helloService.createHelloMessage("World") + "</h1>");
59. writer.printin(PAGE_FOOTER);

60. writer.close();

61. }

62.

63. }

Table 1.1. HelloWorldServlet Details

43 Before Java EE 6, an XML file was used to register Servlets. It is now much cleaner. All you
need to do is add the @WebServlet annotation and provide a mapping to a URL used to
access the servlet.

46-48 Every web page needs correctly formed HTML. This quickstart uses static Strings to write
the minimum header and footer output.

50-51 These lines inject the HelloService CDI bean which generates the actual message. As long
as we don't alter the API of HelloService, this approach allows us to alter the
implementation of HelloService at a later date without changing the view layer.

58 This line calls into the service to generate the message "Hello World", and write it out to the
HTTP request.

2. Review the HelloService code
The HelloService.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service is very simple. It
returns a message. No XML or annotation registration is required.

public class HelloService {

String createHelloMessage(String name) {
return "Hello " + name + "I";

}
}

Report a bug

1.4.3.2. Explore the numberguess Quickstart

Summary

This quickstart shows you how to create and deploy a simple application to JBoss EAP 6. This
application does not persist any information. Information is displayed using a JSF view, and business

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7881-759156+%5BLatest%5D&comment=Title%3A+Explore+the+helloworld+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7881-759156+22+May+2015+05%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

logic is encapsulated in two CDI (Contexts and Dependency Injection) beans. In the humberguess
quickstart, you get 10 attempts to guess a number between Tand 100. After each attempt, you're told
whether your guess was too high or too low.

The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess
directory. The numberguess quickstart is comprised of a number of beans, configuration files and
Facelets (JSF) views, packaged as a WAR module.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README.html file at the root of the numberguess quickstart directory. Here we show you how to use
Red Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat
JBoss Developer Studio, configured Maven, and imported and successfully run the numberguess
quickstart.

Prerequisites

® |nstall Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install Red
Hat JBoss Developer Studio”.

e Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here:
Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio” .

® Follow the procedures here to import, build, and deploy the numberguess quickstart in Red
Hat JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer
Studio”

e Verify the numberguess quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-numberguess

Procedure 1.11. Examine the Configuration Files

All the configuration files for this example are located in WEB-INF/ directory which can be found in the
src/main/webapp/ directory of the quickstart.

1. Examine the faces-config.xml file.

This quickstart uses the JSF 2.0 version of faces-config.xml filename. A standardized version
of Facelets is the default view handler in JSF 2.0, so there's really nothing that you have to
configure. JBoss EAP 6 goes above and beyond Java EE here. It will automatically configure the
JSF for you if you include this configuration file. As a result, the configuration consists of only
the root element:

19. <faces-config version="2.0"

20. xmlns="http://java.sun.com/xml/ns/javaee"

21. xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
22. xsi:schemalocation="

23. http://java.sun.com/xml/ns/javaee>
24. http://java.sun.com/xml/ns/javaee/web-facesconfig_2 0.xsd">
25.

26. </faces-config>

2. Examine the beans.xml file.

There's also an empty beans.xml file, which tells JBoss EAP 6 to look for beans in this
application and to activate the CDI.

27

http://localhost:8080/jboss-numberguess

Development Guide

3. Thereis no web.xml file

Notice that the quickstart doesn't even need a web.xml file!

Procedure 1.12. Examine the JSF Code

JSF uses the .xhtml file extension for source files, but serves up the rendered views with the .jsf
extension.

® Examine the home.xhtml code.

The home.xhtml file is located in the src/main/webapp/ directory.

19. <html xmIns="http://www.w3.0rg/1999/xhtml|"
20. xmlns:ui="http://java.sun.com/jsf/facelets"
21. xmins:h="http://java.sun.com/jsf/html"

22. xmins:f="http://java.sun.com/jsf/core">

24. <head>
25. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
26. <title>sNumberguess<i/title>

27. </head>

28.

29. <body>

30. <divid="content">

31. <h1>Guess a number...</h1>

32. <h:form id="numberGuess">

33.

34. <!I-- Feedback for the user on their guess -->

35. <div style="color: red">

36. <h:messages id="messages" globalOnly="false" />

37. <h:outputText id="Higher" value="Higher!"

38. rendered="#{game.number gt game.guess and game.guess ne 0}" />
39. <h:outputText id="Lower" value="Lower!"

40. rendered="#{game.number It game.guess and game.guess ne 0}" />
41. </div>

42,

43. <!I-- Instructions for the user -->

44, <div>

45, I'm thinking of a number between <span

46. id="numberGuess:smallest">#{game.smallest} and #{game.biggest}. You have
48. #{game.remainingGuesses} guesses remaining.

49. </div>

50.

51. <!I-- Input box for the users guess, plus a button to submit, and reset -->
52. <I-- These are bound using EL to our CDI beans -->

53. <div>

54. Your guess:

55. <h:inputText id="inputGuess" value="#{game.guess}"

56. required="true" size="3"

57. disabled="#{game.number eq game.guess}"

58. validator="#{game.validateNumberRange}" />

59. <h:commandButton id="guessButton" value="Guess"

60. action="#{game.check}"

61. disabled="#{game.number eq game.guess}" />

28

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

62. </div>

63. <div>

64. <h:commandButton id="restartButton" value="Reset"
65. action="#{game.reset}" immediate="true" />
66. </div>

67. </h:form>

68.

69. </div>

70.

71. <br style="clear: both" />

72.

73. </body>

74. </html>

Table 1.2. JSF Details

|I!HH!IIIIHHH%III

36-40

45-48

55-58

58

59-61

These are the messages which can be sent to the user: "Higher!" and "Lower!"

As the user guesses, the range of numbers they can guess gets smaller. This sentence
changes to make sure they know the number range of a valid guess.

This input field is bound to a bean property using a value expression.

A validator binding is used to make sure the user does not accidentally input a number
outside of the range in which they can guess. If the validator was not here, the user might
use up a guess on an out of bounds number.

There must be a way for the user to send their guess to the server. Here we bind to an
action method on the bean.

Procedure 1.13. Examine the Class Files

All of the numberguess quickstart source files can be found in the
src/main/java/org/jboss/as/quickstarts/numberguess/ directory. The package declaration and
imports have been excluded from these listings. The complete listing is available in the quickstart source

code.

1. Review the Random.java qualifier code.

A qualifier is used to remove ambiguity between two beans, both of which are eligible for
injection based on their type. For more information on qualifiers, refer to Section 11.2.3.3, “Use a
Qualifier to Resolve an Ambiguous Injection”

The @Random qualifier is used for injecting a random number.

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)

@Documented

@~Qualifier

29

Development Guide

public @interface Random {
1

2. Review the MaxNumber.java qualifier code.

The @MaxNumberqualifier is used for injecting the maximum number allowed.

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)

@Documented

@~Qualifier

public @interface MaxNumber {

}

3. Review the Generator.java code.

The Generator class is responsible for creating the random number via a producer method. It
also exposes the maximum possible number via a producer method. This class is application
scoped so you don't get a different random each time.

@SuppressWarnings("serial")
@ApplicationScoped
public class Generator implements Serializable {

private java.uti.LRandom random = new java.util.Random(System.currentTimeMillis());
private int maxNumber = 100;

java.util.Random getRandom() {
return random;

}

@Produces
@Random
int next() {
// a number between 1 and 100
return getRandom().nextInt(maxNumber - 1) + 1;

}

@Produces

@MaxNumber

int getMaxNumber() {
return maxNumber;

}
}

4. Review the Game.java code.

The session scoped class Game is the primary entry point of the application. It is responsible for
setting up or resetting the game, capturing and validating the user's guess, and providing
feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to
initialize the game by retrieving a random number from the @Random Instance<Integer> bean.

30

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Notice the @Named annotation in the class. This annotation is only required when you want to
make the bean accessible to a JSF view via Expression Language (EL), in this case #{game}.

@SuppressWarnings("serial")

@Named

@SessionScoped

public class Game implements Serializable {

/**
* The number that the user needs to guess
Y/

private int number;

/**
* The users latest guess
Y/

private int guess;

/**
* The smallest number guessed so far (so we can track the valid guess range).
Y/

private int smallest;

/**
* The largest number guessed so far
7

private int biggest;

/**
* The number of guesses remaining
Y/

private int remainingGuesses;

/**
* The maximum number we should ask them to guess
Y/

@Inject

@MaxNumber

private int maxNumber;

/**
* The random number to guess
Y/
@Inject
@Random
Instance<Integer> randomNumber;

public Game() {
}

public int getNumber() {
return number;

}

public int getGuess() {
return guess;

31

Development Guide

}

public void setGuess(int guess) {
this.guess = guess;

}

public int getSmallest() {
return smallest;

}

public int getBiggest() {
return biggest;

}

public int getRemainingGuesses() {
return remainingGuesses;

}

Jxx
* Check whether the current guess is correct, and update the biggest/smallest guesses as
needed. Give feedback to the user
* if they are correct.
Y/
public void check() {
if (guess > number) {
biggest = guess - 1;
} else if (Quess < number) {
smallest = guess + 1;
} else if (Quess == number) {
FacesContext.getCurrentinstance().addMessage(null, new
FacesMessage("Correct!"));

}

remainingGuesses--;

}

/**
* Reset the game, by putting all values back to their defaults, and getting a new random
number. We also call this method
* when the user starts playing for the first time using {@linkplain PostConstruct
@PostConstruct} to set the initial
* values.
Y/
@PostConstruct
public void reset() {
this.smallest = 0;
this.guess = 0;
this.remainingGuesses = 10;
this.biggest = maxNumber;
this.number = randomNumber.get();

}

/**
* A JSF validation method which checks whether the guess is valid. It might not be valid
because there are no guesses left,
* or because the guess is not in range.

*

32

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Y/
public void validateNumberRange(FacesContext context, UIComponent toValidate, Object
value) {
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage(toValidate.getClientld(context), message);
((Ullnput) toValidate).setValid(false);
return;

}

int input = (Integer) value;

if (input < smallest || input > biggest) {
((Ullnput) toValidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage(toValidate.getClientld(context), message);
}
}
}

Report a bug

1.4.4. Replace the Default Welcome Web Application

JBoss EAP 6 includes a Welcome application, which displays when you open the URL of the server at
port 8080. You can replace this application with your own web application by following this procedure.

Procedure 1.14. Replace the Default Welcome Web Application With Your Own Web Application

1. Disable the Welcome application.
Use the Management CLI script EAP_HOME/bin/jboss-cli.sh to run the following command.
You may need to change the profile to modify a different managed domain profile, or remove
the /profile=default portion of the command for a standalone server.

/profile=default/subsystem=web/virtual-server=default-host:write-attribute(name=enable-
welcome-root,value=false)

2. Configure your Web application to use the root context.
To configure your web application to use the root context (/) as its URL address, modify its
jboss-web.xml, which is located in the META-INF/ or WEB-INF/ directory. Replace its <context-
root> directive with one that looks like the following.

<jboss-web>
<context-root>/</context-root>
</jboss-web>

3. Deploy your application.
Deploy your application to the server group or server you modified in the first step. The
application is now available on http://SERVER_URL:PORTI.

Report a bug

1.4.5. Using WS-AtomicTransaction

33

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8023-681225+%5BLatest%5D&comment=Title%3A+Explore+the+numberguess+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8023-681225+03+Jul+2014+10%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9017-591860+%5BLatest%5D&comment=Title%3A+Replace+the+Default+Welcome+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9017-591860+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

The wsat-simple quickstart demonstrates the deployment of a WS-AT (WS-AtomicTransaction)
enabled JAX-WS Web Service bundled in a WAR archive for deployment to Red Hat JBoss Enterprise
Application Platform.

The Web service is offered by a Restaurant for making bookings. The Service allows bookings to be
made within an Atomic Transaction. This example demonstrates the basics of implementing a WS-AT
enabled Web service. It is beyond the scope of this quick start to demonstrate more advanced features.
In particular:

® The Service does not implement the required hooks to support recovery in the presence of
failures.

® |t also does not utilize a transactional back end resource.

® Only one Web service participates in the protocol. As WS-AT is a 2PC coordination protocol, it
is best suited to multi-participant scenarios.

For a more complete example, refer the XTS demonstrator application that ships with the Narayana
project: http://www.jboss.org/narayana.

Itis also assumed that you have an understanding of WS-AtomicTransaction. For more details, read the
XTS documentation that ships with the Narayana project, which can be downloaded here:

http://www.jboss.org/narayana/documentation/4174_Final.

The application consists of a single JAX-WS web service that is deployed within a WAR archive. It is
tested with a JBoss Arquillian enabled JUnit test.

When running the org.jboss.as.quickstarts.wsat.simple.ClientTest#testCommit() method, the
following steps occur:

1. A new Atomic Transaction (AT) is created by the client.
2. An operation on a WS-AT enabled Web service is invoked by the client.

3. The JaxWSHeaderContextProcessor in the WS Client handler chain inserts the WS-AT context
into the outgoing SOAP message.

4. When the service receives the SOAP request, the Jax\WSHeaderContextProcessor in its handler
chain inspects the WS-AT context and associates the request with this AT.

5. The Web service operation is invoked.

6. A participant is enlisted in this AT. This allows the Web Service logic to respond to protocol
events, such as Commit and Rollback.

7. The service invokes the business logic. In this case, a booking is made with the restaurant.

8. The backend resource is prepared. This ensures that the Backend resource can undo or make
permanent the change when told to do so by the coordinator.

9. The client can then decide to commit or rollback the AT. If the client decides to commit, the
coordinator will begin the 2PC protocol. If the participant decides to rollback, all participants will
be told to rollback.

There is another test that shows what happens if the client decides to rollback the AT.

Report a bug

34

http://www.jboss.org/narayana
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44983-776714+%5BLatest%5D&comment=Title%3A+Using+WS-AtomicTransaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44983-776714+31+Mar+2016+06%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 2. MAVEN GUIDE

CHAPTER 2. MAVEN GUIDE

2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other
build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be
private and internal within a company with a goal to share common artifacts among development teams.
Repositories are also available from third-parties. JBoss EAP 6 includes a Maven repository that
contains many of the requirements that Java EE developers typically use to build applications on JBoss
EAP 6. To configure your project to use this repository, see Section 2.3.1, “Configure the JBoss EAP
Maven 6 Repository”.

Remote repositories are accessed using common protocols such as http:// for a repository on an HTTP
server or file:// for a repository on a file server.

For more information about Maven, see Welcome to Apache Maven.

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

For more information about Maven POM files, see the Apache Maven Project POM Reference and
Section 2.1.2, "About the Maven POM File”.

Report a bug

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom.xml file requires some configuration options and will
default all others. See Section 2.1.3, “Minimum Requirements of a Maven POM File” for details.

The schema for the pom.xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.

For more information about POM files, see the Apache Maven Project POM Reference.

Report a bug

2.1.3. Minimum Requirements of a Maven POM File

Minimum requirements

The minimum requirements of a pom.xml file are as follows:

® projectroot

35

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+1841-591649+%5BLatest%5D&comment=Title%3A+About+the+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1841-591649+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5721-591710+%5BLatest%5D&comment=Title%3A+About+the+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5721-591710+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

® modelVersion

® groupld - the id of the project's group

e artifactld - the id of the artifact (project)

® version - the version of the artifact under the specified group

Sample pom.xml file

A basic pom.xml file might look like this:

<project>
<modelVersion>4.0.0</modelVersion>
<groupld>com.jboss.app</groupld>
<artifactld>my-app</artifactid>
<version>1</version>

</project>

Report a bug

2.1.4. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that must not be distributed with the pom.xml file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found.

In the Maven installation

The settings file can be found in the M2_HOME/conf/ directory. These settings are referred to as
global settings. The default Maven settings file is a template that can be copied and used as a
starting point for the user settings file.

In the user's installation

The settings file can be found in the USER_HOME/.m2/ directory. If both the Maven and user
settings.xml files exist, the contents are merged. Where there are overlaps, the user's settings.xml
file takes precedence.

The following is an example of a Maven settings.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<profiles>
<!I-- Configure the JBoss EAP Maven repository -->
<profile>
<id>jboss-eap-maven-repository</id>
<repositories>
<repository>
<id>jboss-eap</id>
<url>file:///path/to/repo/jboss-eap-6.4-maven-repository</url>

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5723-591711+%5BLatest%5D&comment=Title%3A+Minimum+Requirements+of+a+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5723-591711+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 2. MAVEN GUIDE

<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-eap-maven-plugin-repository</id>
<url>file:///path/to/repo/jboss-eap-6.4-maven-repository</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!I-- Optionally, make the repository active by default -->
<activeProfile>jboss-eap-maven-repository</activeProfile>
</activeProfiles>
</settings>

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-1.0.0.xsd.

Report a bug

2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY

2.2.1. Download and Install Maven

If you plan to use Maven command line to build and deploy your applications to JBoss EAP, you must
download and install Maven. If you plan to use Red Hat JBoss Developer Studio to build and deploy your
applications, you can skip this procedure as Maven is distributed with Red Hat JBoss Developer Studio.

1. Go to Apache Maven Project - Download Maven and download the latest distribution for your
operating system.

2. See the Maven documentation for information on how to download and install Apache Maven
for your operating system.

Report a bug

2.2.2. Install the JBoss EAP 6 Maven Repository

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager.

® Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”

37

http://maven.apache.org/xsd/settings-1.0.0.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5756-759157+%5BLatest%5D&comment=Title%3A+About+the+Maven+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5756-759157+22+May+2015+05%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/download.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8896-681226+%5BLatest%5D&comment=Title%3A+Download+and+Install+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8896-681226+03+Jul+2014+10%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

® Section 2.2.4, “Install the JBoss EAP 6 Maven Repository for Use with Apache httpd”

® Section 2.2.5, “Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager”

Report a bug

2.2.3. Install the JBoss EAP 6 Maven Repository Locally

Summary

The JBoss EAP 6 Maven repository is available online, so it is not necessary to download and install it
locally. However, if you prefer to install the JBoss EAP Maven repository locally, there are three ways to
do it: on your local file system, on Apache Web Server, or with a Maven repository manager. This
example covers the steps to download the JBoss EAP 6 Maven Repository to the local file system. This
option is easy to configure and allows you to get up and running quickly on your local machine. It can
help you become familiar with using Maven for development but is not recommended for team
production environments.

Procedure 2.1. Download and Install the JBoss EAP 6 Maven Repository to the Local File System

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform VERSION Maven Repository” in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the file on the local file system into a directory of your choosing.

5. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .
Result

This creates a Maven repository directory called jboss-eap-version-maven-repository.

IMPORTANT

If you want to continue to use an older local repository, you must configure it separately in
the Maven settings.xml configuration file. Each local repository must be configured
within its own <repository> tag.

IMPORTANT

When downloading a new Maven repository, remove the cached repository/ subdirectory
located under the .m2/directory before attempting to use the new Maven repository.

Report a bug

2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This example will cover the steps to download the JBoss EAP 6 Maven
Repository for use with Apache httpd. This option is good for multi-user and cross-team development

38

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8321-591831+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8321-591831+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5707-736857+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Locally%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5707-736857+19+Jan+2015+04%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 2. MAVEN GUIDE

environments because any developer that can access the web server can also access the Maven
repository.

Prerequisites

You must configure Apache httpd. See Apache HTTP Server Project documentation for instructions.

Procedure 2.2. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository” in the list.
3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files in a directory that is web accessible on the Apache server.

5. Configure Apache to allow read access and directory browsing in the created directory.

6. Section 2.3.2, "Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

This allows a multi-user environment to access the Maven repository on Apache httpd.

NOTE

If you're upgrading from a previous version of the repository, note that JBoss EAP Maven
Repository artifacts can be extracted into an existing JBoss product Maven repository
(such as JBoss EAP 6.1.0) without any conflicts. After the repository archive has been
extracted, the artifacts can be used with the existing Maven settings for this repository.

Report a bug
2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This option is best if you have a license and already use a repository
manager because you can host the JBoss repository alongside your existing repositories. For more
information about Maven repository managers, see Section 2.2.6, “About Maven Repository Managers”.

This example will cover the steps to install the JBoss EAP 6 Maven Repository using Sonatype Nexus
Maven Repository Manager. For more complete instructions, see Sonatype Nexus: Manage Artifacts.

Procedure 2.3. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository” in the list.
3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files into a directory of your choosing on the server hosting Nexus.

39

http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5722-736861+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+for+Use+with+Apache+httpd%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5722-736861+19+Jan+2015+05%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://www.sonatype.org/nexus/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

Development Guide

Procedure 2.4. Add the JBoss EAP 6 Maven Repository using Nexus Maven Repository Manager

1. Loginto Nexus as an Administrator.

2. Select the Repositories section from the Views — Repositories menu to the left of your
repository manager.

3. Click the Add... dropdown, then select Hosted Repository.
4. Give the new repository a name and ID.
5. Enter the path on disk to the unzipped repository in the field Override Local Storage Location.

6. Continue if you want the artifact to be available in a repository group. Do not continue with this
procedure if this is not what you want.

7. Select the repository group.
8. Click on the Configure tab.

9. Drag the new JBoss Maven repository from the Available Repositories list to the Ordered
Group Repositories list on the left.

NOTE

Note that the order of this list determines the priority for searching Maven
artifacts.

10. Section 2.3.2, "Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

The repository is configured using Nexus Maven Repository Manager.

Report a bug

2.2.6. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

® They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient
deployments and a better level of control over what is downloaded by Maven.

® They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Apache Maven Project - The List of
Repository Managers.

Commonly used Maven repository managers

Sonatype Nexus

See Sonatype Nexus: Manage Artifacts for more information about Nexus.

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+7827-759235+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Using+Nexus+Maven+Repository+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7827-759235+25+May+2015+07%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/repository-management.html
http://www.sonatype.org/nexus/

CHAPTER 2. MAVEN GUIDE

Artifactory

See Artifactory Open Source for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

Report a bug

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven 6 Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
® You can configure the repositories in the Maven global or user settings.

® You can configure the repositories in the project's POM file.

Procedure 2.5. Configure Maven Settings to Use the JBoss EAP 6 Maven Repository

1. Configure the Maven repository using Maven settings
This is the recommended approach. Maven settings used with a repository manager or
repository on a shared server provide better control and manageability of projects. Settings also
provide the ability to use an alternative mirror to redirect all lookup requests for a specific
repository to your repository manager without changing the project files. For more information
about mirrors, see http://maven.apache.org/guides/mini/guide-mirror-settings.html.

This method of configuration applies across all Maven projects, as long as the project POM file
does not contain repository configuration.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

2. Configure the Maven repository using the project POM
This method of configuration is generally not recommended. If you decide to configure
repositories in your project POM file, plan carefully and be aware that it can slow down your build
and you may even end up with artifacts that are not from the expected repository.

41

http://www.jfrog.com/products.php
http://archiva.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8765-591847+%5BLatest%5D&comment=Title%3A+About+Maven+Repository+Managers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8765-591847+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://maven.apache.org/guides/mini/guide-mirror-settings.html

Development Guide

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven
should query all artifacts for all projects using this manager. Because Maven uses
all declared repositories to find missing artifacts, if it can't find what it's looking
for, it will try and look for it in the repository central (defined in the built-in
parent POM). To override this central location, you can add a definition with
central so that the default repository central is now your repository manager as
well. This works well for established projects, but for clean or 'new' projects it
causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration.
Maven has to query these external repositories for missing artifacts. This not only
slows down your build, it also causes you to lose control over where your artifacts
are coming from and likely to cause broken builds.

This method of configuration overrides the global and user Maven settings for the configured
project.

Section 2.3.4, "Configure the JBoss EAP 6 Maven Repository Using the Project POM" .

Report a bug

2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

® You can modify the Maven settings. This directs Maven to use the configuration across all
projects.

® You can configure the project's POM file. This limits the configuration to the specific project.

This topic shows you how to direct Maven to use the JBoss EAP 6 Maven Repository across all projects
using the Maven settings. This is the recommended approach.

You can configure Maven to use either the online or a locally installed JBoss EAP 6 repository. If you
choose to use the online repository, you can use a preconfigured settings file or add the JBoss EAP 6
Maven profiles to the existing settings file. To use a local repository, you must download the repository
and configure the settings to point to your locally installed repository. The following procedures describe
how to configure Maven for JBoss EAP 6.

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8418-591838+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+Maven+6+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8418-591838+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 2. MAVEN GUIDE

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see

Section 2.2.2, "Install the JBoss EAP 6 Maven Repository”. The following are examples for
each of the installation options:

File System
file:///path/to/repo/jboss-eap-6.x-maven-repository
Apache Web Server
http://intranet.acme.com/jboss-eap-6.x-maven-repository/
Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

You can configure Maven using either the Maven install global settings or the user install
settings. These instructions configure the user install settings as this is the most common
configuration.

Procedure 2.6. Configure Maven Using the Settings Shipped with the Quickstart Examples

The JBoss EAP 6 Quickstarts ship with a settings.xml file that is configured to use the online JBoss
EAP 6 Maven repository. This is the simplest approach.

1. This procedure overwrites the existing Maven settings file, so you must back up the existing
Maven settings.xml file.

a. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/.m2/ directory.

B For Linux or Mac, this is: ~/.m2/

B For Windows, this is: \Documents and Settings\USER_NAME\.m2\ or
\Users\USER_NAME\.m2\

b. If you have an existing USER_HOME/.m2/settings.xml file, rename it or make a backup
copy so you can restore it later.

2. Download and unzip the quickstart examples that ship with JBoss EAP 6. For more information,
see Section 1.4.1.1, “Access the Quickstarts”

3. Copy the QUICKSTART_HOME/settings.xml file to the USER_HOME/.m2/ directory.

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the
procedure below entitled Procedure 2.9, "Refresh the Red Hat JBoss Developer Studio User
Settings”.

Procedure 2.7. Manually Edit and Configure the Maven Settings To Use the Online JBoss EAP 6
Maven Repository

You can manually add the JBoss EAP 6 profiles to an existing Maven settings file.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/.m2/ directory.

~ Cavl fmiins av NMan~ +hlis ins I »man/

43

Development Guide

hd Ol LIUX O 1IvidC, LS 1S ~/.111&/

o For Windows, this is\Documents and Settings\USER_NAME\.m2\ or
\Users\USER_NAME\.m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/.m2/conf/ directory into the USER_HOME/.m2/ directory.

3. Copy the following XML into the <profiles> element of the file.

<!I-- Configure the JBoss GA Maven repository -->
<profile>
<id>jboss-ga-repository</id>
<repositories>
<repository>
<id>jboss-ga-repository</id>
<url>http://maven.repository.redhat.com/techpreview/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-ga-plugin-repository</id>
<url>http://maven.repository.redhat.com/techpreview/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<!I-- Configure the JBoss Early Access Maven repository -->
<profile>
<id>jboss-earlyaccess-repository</id>
<repositories>
<repository>
<id>jboss-earlyaccess-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-earlyaccess-plugin-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>

44

CHAPTER 2. MAVEN GUIDE

<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

Copy the following XML into the <activeProfiles> element of the settings.xml file.

<activeProfile>jboss-ga-repository</activeProfile>
<activeProfile>jboss-earlyaccess-repository</activeProfile>

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the
procedure below entitled Procedure 2.9, "Refresh the Red Hat JBoss Developer Studio User
Settings”.

Procedure 2.8. Configure the Settings to Use a Locally Installed JBoss EAP Repository

You can modify the settings to use the JBoss EAP 6 repository installed on the local file system.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/.m2/ directory.

o For Linux or Mac, this is ~/.m2/

o For Windows, this is\Documents and Settings\USER_NAME\.m2\ or
\Users\USER_NAME\.m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/.m2/conf/ directory into the USER_HOME/.m2/ directory.

3. Copy the following XML into the <profiles> element of the settings.xml file. Be sure to change
the <url> to the actual repository location.

<profile>
<id>jboss-eap-repository</id>
<repositories>
<repository>
<id>jboss-eap-repository</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.x-maven-repository</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<pluginRepositories>

45

Development Guide

Procedure 2.9. Refresh the Red Hat JBoss Developer Studio User Settings

If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, you must refresh

<pluginRepository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>
file:///path/to/repo/jboss-eap-6.x-maven-repository
</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>

</pluginRepositories>
</profile>

Copy the following XML into the <activeProfiles> element of the settings.xml file.
I <activeProfile>jboss-eap-repository</activeProfile>

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow the
procedure below entitled Procedure 2.9, "Refresh the Red Hat JBoss Developer Studio User
Settings”.

the user settings.

46

. From the menu, choose Window — Preferences.
2. In the Preferences Window, expand Maven and choose User Settings.

3. Click the Update Settings button to refresh the Maven user settings in Red Hat JBoss
Developer Studio.

CHAPTER 2. MAVEN GUIDE

General he |
Ant User Settings:

[»

[»

b Data Management [,I'hDme,l'usemame}.mzfsettings.xml] Bmwse...|
I* Forge

FreeMarker Editor | Update Settings ‘
> Help 9
HQL editor Local Repository (From merged user and global settings):
Install/Update =
Java
Java EE
Java Persistence

[,I'hnmefusemamef.mﬂrepnsitory] I Reindex |

A

Javascript
JBoss Tools

] - % v v v

Maven
Archetypes
Discovery

Installations
Templates
User Interface

WTP integration

P Plug-in Developme
(<] I N

@ [Cancel l [oK l

|. Restore Defaults‘ | Apply ‘

Figure 2.1. Update Maven User Settings

IMPORTANT

If your Maven repository contains outdated artifacts, you may encounter one of the
following Maven error messages when you build or deploy your project:

® Missing artifact ARTIFACT_NAME

® [ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located in your
~/.m2/repository/ subdirectory on Linux, or the
%SystemDrive%\Users\USERNAME\.m2\repository\ subdirectory on Windows.

Report a bug

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5709-770212+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Maven+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5709-770212+14+Sep+2015+01%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

2.3.3. Configure Maven for Use with Red Hat JBoss Developer Studio

The artifacts and dependencies needed to build and deploy applications to Red Hat JBoss Enterprise
Application Platform are hosted on a public repository. You must direct Maven to use this repository
when you build your applications. This topic covers the steps to configure Maven if you plan to build and
deploy applications using Red Hat JBoss Developer Studio.

Maven is distributed with Red Hat JBoss Developer Studio, so it is not necessary to install it separately.
However, you must configure Maven for use by the Java EE Web Project wizard for deployments to

JBoss EAP. The procedure below demonstrates how to configure Maven for use with JBoss EAP by
editing the Maven configuration file from within Red Hat JBoss Developer Studio.

Procedure 2.10. Configure Maven in Red Hat JBoss Developer Studio

1. Click Window—Preferences, expand JBoss Tools and select JBoss Maven Integration.

JBoss Mawven Integration &S ow

8
4

When importing Maven projects configure the following:

& Seam

¥ Seam Runtime

¥ Seam Artifacts (view folder, model source folder, package " |
w JBoss Portlet Core facet

¥ JBoss JSF Portlet facet

¥ JBoss Seam Portlet facet

& CDI facet

¥ Hibernate

‘. Configure Maven Repositories...

Figure 2.2. JBoss Maven Integration Pane in the Preferences Window
2. Click Configure Maven Repositories.

3. Click Add Repository to configure the JBoss GA Tech Preview Maven repository. Complete
the Add Maven Repository dialog as follows:

a. Set the Profile ID, Repository ID, and Repository Name values to jboss-ga-repository.

b. Set the Repository URL value to http:/maven.repository.redhat.com/techpreviewr/all.

(@]

. Click the Active by default checkbox to enable the Maven repository.

d. Click OK

48

CHAPTER 2. MAVEN GUIDE

Add Maven Repository

Add Maven Repository

™

Profile
Profile ID: |ip055-ga-repository v | ¥ Active by default
Repository
D ib —AT- i
jposs-ga-repository
Name: | oce_aa- i
jposs-ga-repository
URL:

http://maven.repository.redhat.com/techpreview/all

o Fecognize JBoss Maven Enterprise Repositories...

® Cancel Ok

Figure 2.3. Add Maven Repository - JBoss Tech Preview

4. Click Add Repository to configure the JBoss Early Access Maven repository. Complete the
Add Maven Repository dialog as follows:

a. Set the Profile ID, Repository ID, and Repository Name values to jboss-earlyaccess-
repository.

b. Set the Repository URL value to http:/maven.repository.redhat.com/earlyaccess/all/.
c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK

49

Development Guide

Add Maven Repository

Add Mawven Repository

™

v | r?ﬂ'|1ﬂ'u:‘ci1|.|n5: by defaul.t|

Profile

Profile 1D

jboss-earlyaccess-repository

‘Repository
1D

|boss-earlyaccess-repository

Name: |boss-earlyaccess-repository

URL:

http:/fmaven.repository.redhat.com/earlyaccess/all/

-':.. Recognize JBoss Maven Enterprise Repositories... |

@ |

Cancel | | Ok

Figure 2.4. Add Maven Repository - JBoss Early Access

5. Review the repositories and click Finish.

50

CHAPTER 2. MAVEN GUIDE

Maven Repositories

Configure Maven Repositories

™

User settings: /home/fusername/.m2/settings.xml

Repositories

jboss-earlyaccess-plugin-repository-http://maven.repository.redhat.com/earlyaccess/all/ Remove
jboss-ga-repository-http://maven.repository.redhat.com/techpreview/all Remove All
Add Repository...
Edit Repository...
Preview:

Old settings New settings

17 - -==settings xmlns="http://maven.apache.or <profile=
18 <id=jboss-ga-repository=</1d=
19 =profiles= sitories=
20 <=/profiles= <repository=
21 <1d=7bo -repository</id=
22 =activeProfiles= <=name=] :
23 =/activeProfiles= <url=http:
24 <layou
25 =/settings= <rele =
26 <enabl
oy
@ Cancel Finish

Figure 2.5. Review Maven Repositories

6. You are prompted with the message "Are you sure you want to update the file
'MAVEN_HOME/settings.xml'?". Click Yes to update the settings. Click OK to close the dialog.

The JBoss EAP Maven repository is now configured for use with Red Hat JBoss Developer
Studio.

Report a bug

2.3.4. Configure the JBoss EAP 6 Maven Repository Using the Project POM

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
® You can modify the Maven settings.
® You can configure the project's POM file.

This task shows you how to configure a specific project to use the JBoss EAP 6 Maven Repository by
adding repository information to the project pom.xml. This configuration method supercedes and
overrides the global and user settings configurations.

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+27042-768102+%5BLatest%5D&comment=Title%3A+Configure+Maven+for+Use+with+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=27042-768102+23+Aug+2015+20%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

This method of configuration is generally not recommended. If you decide to configure repositories in
your project POM file, plan carefully and be aware that it can slow down your build and you may even end
up with artifacts that are not from the expected repository.

52

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can't find what it's looking for, it will try and look
foritin the repository central (defined in the built-in parent POM). To override this
central location, you can add a definition with central so that the default repository
central is now your repository manager as well. This works well for established projects,
but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration. Maven has to
query these external repositories for missing artifacts. This not only slows down your
build, it also causes you to lose control over where your artifacts are coming from and
likely to cause broken builds.

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see:

Section 2.2.2, "Install the JBoss EAP 6 Maven Repository”. The following are examples for
each of the installation options:

File System
file:///path/to/repo/jboss-eap-6.x-maven-repository
Apache Web Server
http://intranet.acme.com/jboss-eap-6.x-maven-repository/
Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

. Open your project's pom.xml file in a text editor.

. Add the following repository configuration. If there is already a <repositories> configuration in
the file, then add the <repository> element to it. Be sure to change the <url> to the actual
repository location.

<repositories>
<repository>

<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.x.0-maven-repository/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>

CHAPTER 2. MAVEN GUIDE

</snapshots>
</repository>
</repositories>

3. Add the following plug-in repository configuration. If there is already a <pluginRepositories>
configuration in the file, then add the <pluginRepository> element to it.

<pluginRepositories>
<pluginRepository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.x.0-maven-repository/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

Report a bug

2.3.5. Manage Project Dependencies

This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise
Application Platform 6.

A BOM is a Maven pom.xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupld:artifactld:version (GAV) to the dependency management
section of the project pom.xml file and specifying the <scope>import</scope> and
<type>pom</types> element values.

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

Supported Maven Artifacts

As part of the product build process, all runtime components of JBoss EAP are built from source in a
controlled environment. This helps to ensure that the binary artifacts do not contain any malicious code,
and that they can be supported for the life of the product. These artifacts can be easily identified by the
-redhat version qualifier, for example 1.0.0-redhat-1.

Adding a supported artifact to the build configuration pom.xml file ensures that the build is using the
correct binary artifact for local building and testing. Note that an artifact with a -redhat version is not
necessarily part of the supported public API, and may change in future revisions. For information about
the public supported API, see the JavaDoc documentation included in the release.

For example, to use the supported version of hibernate, add something similar to the following to your
build configuration.

53

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4606-737541+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Project+POM%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4606-737541+21+Jan+2015+03%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-core</artifactld>
<version>4.2.16.Final-redhat-1</version>
<scope>provided</scope>
</dependency>

Notice that the above example includes a value for the <version/> field. However, it is recommended to
use Maven dependency management for configuring dependency versions.

Dependency Management

Maven includes a mechanism for managing the versions of direct and transitive dependencies
throughout the build. For general information about using dependency management, see the Apache
Maven Project Introduction to the Dependency Mechanism.

Using one or more supported JBoss dependencies directly in your build does not guarantee that all
transitive dependencies of the build will be fully supported JBoss artifacts. It is common for Maven
builds to use a mix of artifact sources from the Maven central repository, the JBoss.org Maven
repository, and other Maven repositories.

Included with the JBoss EAP Maven repository is a dependency management BOM, which specifies all
supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will
prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In
other words, transitive dependencies will be managed to the correct supported dependency version
where applicable. The version of this BOM matches the version of the JBoss EAP release.

<dependencyManagement>
<dependencies>

<dependency>
<groupld>org.jboss.bom</groupld>
<artifactld>eap6-supported-artifacts</artifactid>
<version>6.4.0.GA</version>
<type>pom</type>
<scope>import</scope>

</dependency>

</dependencies>
</dependencyManagement>

JBoss JavaEE Specs Bom
The jboss-javaee-6.0 BOM contains the Java EE Specification APl JARs used by JBoss EAP.

To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and
Servlet APl JARs needed to build and deploy the application.

The following example uses the 3.0.2.Final-redhat-x version of the jboss-javaee-6.0 BOM.

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.spec</groupld>
<artifactld>jboss-javaee-6.0</artifactld>
<version>3.0.2.Final-redhat-x</version>
<type>pom</type>

54

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

CHAPTER 2. MAVEN GUIDE

<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

<dependencies>

<dependency>
<groupld>org.jboss.spec.javax.servlet</groupld>
<artifactld>jboss-servlet-api_3.0_spec</artifactld>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jboss.spec.javax.servlet.jsp</groupld>
<artifactld>jboss-jsp-api_2.2_spec</artifactld>
<scope>provided</scope>

</dependency>

</dependencies>

JBoss EAP BOMs and Quickstarts
The JBoss BOMs are located in the jboss-bom project at https://github.com/jboss-developer/jboss-
eap-boms.

The quickstarts provide the primary use case examples for the Maven repository. The following table
lists the Maven BOMs used by the quickstarts.

Table 2.1. JBoss BOMs Used by the Quickstarts

Maven artifactld Description

jboss-javaee-6.0-with-hibernate This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate ORM, Hibernate Search and
Hibernate Validator. It also provides tool projects such as Hibernate JPA
Model Gen and Hibernate Validator Annotation Processor.

jboss-javaee-6.0-with- This BOM builds on the Java EE full profile BOM, adding Hibernate
hibernate3 Community projects including Hibernate 3 ORM, Hibernate Entity
Manager (JPA 1.0) and Hibernate Validator.

jboss-javaee-6.0-with-logging This BOM builds on the Java EE full profile BOM, adding the JBoss
Logging Tools and Log4j framework.

jboss-javaee-6.0-with-osgi This BOM builds on the Java EE full profile BOM, adding OSGI.
jboss-javaee-6.0-with-resteasy This BOM builds on the Java EE full profile BOM, adding RESTEasy
jboss-javaee-6.0-with-security This BOM builds on the Java EE full profile BOM, adding Picketlink.

jboss-javaee-6.0-with-tools This BOM builds on the Java EE full profile BOM, adding Arquillian to the
mix. It also provides a version of JUnit and TestNG recommended for
use with Arquillian.

55

https://github.com/jboss-developer/jboss-eap-boms

Development Guide

Maven artifactld Description

jboss-javaee-6.0-with- This BOM includes a world class transaction manager. Use the JBossTS
transactions APIs to access its full capabilities.

The following example uses the 6.4.0.GA version of the jboss-javaee-6.0-with-hibernate BOM.

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.jboss.bom.eap</groupld>
<artifactld>jboss-javaee-6.0-with-hibernate</artifactld>
<version>6.4.0.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-core</artifactld>
<scope>provided</scope>
</dependency>

</dependencies>

JBoss Client BOMs
The JBoss EAP server build includes two client BOMs: jboss-as-ejb-client-bom and jboss-as-jms-
client-bom.

The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The following example uses the 7.4.0.Final-redhat-x version of the jboss-as-ejb-client-bom client
BOM.

<dependencies>
<dependency>
<groupld>org.jboss.as</groupld>
<artifactld>jboss-as-ejb-client-bom</artifactid>
<version>7.5.0.Final-redhat-x</version>
<type>pom</type>
</dependency>
o
</dependencies>

This example uses the 7.4.0.Final-redhat-x version of the jboss-as-jms-client-bom client BOM.

I <dependencies>

56

CHAPTER 2. MAVEN GUIDE

<dependency>
<groupld>org.jboss.as</groupld>
<artifactld>jboss-as-jms-client-bom</artifactld>
<version>7.4.0.Final-redhat-x</version>
<type>pom</type>

</dependency>

</dependencies>

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

Report a bug

2.4. UPGRADE THE MAVEN REPOSITORY

2.4.1. Apply a Patch to the Local Maven Repository

Summary

A Maven repository stores Java libraries, plug-ins, and other artifacts required to build and deploy
applications to JBoss EAP. The JBoss EAP repository is available online or as a downloaded ZIP file. If
you use the publicly hosted repository, updates are applied automatically for you. However, if you
download and install the Maven repository locally, you are responsible for applying any updates.
Whenever a patch is available for JBoss EAP, a corresponding patch is provided for the JBoss EAP
Maven repository. This patch is available in the form of an incremental ZIP file that is unzipped into the
existing local repository. The ZIP file contains new JAR and POM files. It does not overwrite any existing
JARs nor does it remove JARs, so there is no rollback requirement.

For more information about the JBoss EAP patching process, see the chapter entitled Patching and
Upgrading JBoss EAP 6 in the Installation Guide for JBoss Enterprise Application Platform 6 located on
the Customer Portal at https://access.redhat.com/documentation/en-

us/red_hat_jboss_enterprise_application_platform/?version=6.4.

This task describes how to apply Maven updates to your locally installed Maven repository using the
unzip command.

Prerequisites

® Valid access and subscription to the Red Hat Customer Portal.

® The Red Hat JBoss Enterprise Application Platform <VERSION> Maven Repository ZIP file,
downloaded and installed locally.

Procedure 2.11. Update the Maven Repository

1. Open a browser and log into https://access.redhat.com.
2. Select Downloads from the menu at the top of the page.
3. Find Red Hat JBoss Enterprise Application Platform in the list and click on it.

4. Select the correct version of JBoss EAP from the Version drop-down menu that appears on
this screen, then click on Patches.

57

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+22363-773459+%5BLatest%5D&comment=Title%3A+Manage+Project+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22363-773459+14+Dec+2015+14%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/?version=6.4
https://access.redhat.com

Development Guide

5. Find Red Hat JBoss Enterprise Application Platform <VERSION> CPx Incremental Maven
Repository in the list and click Download.

6. You are prompted to save the ZIP file to a directory of your choice. Choose a directory and save
the file.

7. Locate the path to JBoss EAP Maven repository, referred to in the commands below as
EAP_MAVEN_REPOSITORY_PATH, for your operating system. For more information about how
to install the Maven repository on the local file system, see Section 2.2.3, “Install the JBoss EAP
6 Maven Repository Locally”.

8. Unzip the Maven patch file directly into the installation directory of the JBoss EAP
<VERSION>.x Maven repository.

o For Linux, open a terminal and type the following command:

[standalone@localhost:9999 /] unzip -0 jboss-eap-<VERSION>.x-incremental-maven-
repository.zip -d EAP_MAVEN_REPOSITORY _PATH

o For Windows, use the Windows extraction utility to extract the ZIP file into the root of the
EAP_MAVEN_REPOSITORY_PATH directory.

Result
The locally installed Maven repository is updated with the latest patch.

Report a bug

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+28282-781567+%5BLatest%5D&comment=Title%3A+Apply+a+Patch+to+the+Local+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28282-781567+13+Nov+2017+14%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

CHAPTER 3. CLASS LOADING AND MODULES

3.1.INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of hierarchical
class loaders. Developers have fine-grained control of the classes available to their applications, and can
configure a deployment to ignore classes provided by the application server in favor of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module can
define dependencies on other modules in order to have the classes from that module added to its own
class path. Because each deployed JAR and WAR file is treated as a module, developers can control the
contents of their application's class path by adding module configuration to their application.

Report a bug

3.1.2. Class Loading

Class Loading is the mechanism by which Java classes and resources are loaded into the Java Runtime
Environment.

Report a bug

3.1.3. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged.

Static Modules

Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each
sub-directory represents one module and defines a main/ subdirectory that contains a configuration
file (module.xml) and any required JAR files. The name of the module is defined in the module.xml
file. All the application server provided APIs are provided as static modules, including the Java EE
APIs as well as other APIs such as JBoss Logging.

Example 3.1. Example module.xml file

<?xml version="1.0" encoding="UTF-8"7>
<module xmIns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysql-connector-java-5.1.15.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

The module name, com.mysq]l, should match the directory structure for the module, excluding
the main/ subdirectory name.

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4352-593309+%5BLatest%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-593309+24+Feb+2014+07%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4549-591667+%5BLatest%5D&comment=Title%3A+Class+Loading%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4549-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

The modules provided in JBoss EAP distributions are located in a system directory within the
EAP_HOME/modules directory. This keeps them separate from any modules provided by third
parties.

Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install
their modules within the system directory.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third-party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using
a one directory per module layout. This ensures that custom versions of modules that already exist in
the system directory are loaded instead of the shipped versions. In this way, user provided modules
will take precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss
EAP searches for modules, then the product will look for a system subdirectory structure within one

of the locations specified. A system structure must exist somewhere in the locations specified with
JBOSS MODULEPATH.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment
(or subdeployment in an EAR). The name of a dynamic module is derived from the name of the
deployed archive. Because deployments are loaded as modules, they can configure dependencies
and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that has
explicit or implicit dependencies.

Report a bug

3.1.4. Module Dependencies

A module dependency is a declaration that one module requires the classes of another module in order
to function. Modules can declare dependencies on any number of other modules. When the application
server loads a module, the modular class loader parses the dependencies of that module and adds the
classes from each dependency to its class path. If a specified dependency cannot be found, the module
will fail to load.

Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies
to access the APIs provided by JBoss EAP 6.

There are two types of dependencies: explicit and implicit.

Explicit Dependencies

Explicit dependencies are declared by the developer in the configuration file. Static modules can declare
dependencies in the module.xml file. Dynamic modules can have dependencies declared in the
MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4360-766898+%5BLatest%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-766898+05+Aug+2015+14%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause
a module to fail to load. However if the dependency becomes available later it will NOT be added to the
module's class path. Dependencies must be available when the module is loaded.

Implicit Dependencies

Implicit dependencies are added automatically by the application server when certain conditions or
meta-data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of
modules that are added by detection of implicit dependencies in deployments.

Deployments can also be configured to exclude specific implicit dependencies. This is done with the
jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an
application bundles a specific version of a library that the application server will attempt to add as an
implicit dependency.

A module's class path contains only its own classes and that of its immediate dependencies. A module is
not able to access the classes of the dependencies of one of its dependencies. However a module can
specify that an explicit dependency is exported. An exported dependency is provided to any module
that depends on the module that exports it.

Example 3.2. Module dependencies

Module A depends on Module B and Module B depends on Module C. Module A can access the
classes of Module B, and Module B can access the classes of Module C. Module A cannot access the
classes of Module C unless:

® Module A declares an explicit dependency on Module C, or

® Module B exports its dependency on Module C.

Report a bug

3.1.5. Class Loading in Deployments

For the purposes of class loading, all deployments are treated as modules by JBoss EAP 6. These are
called dynamic modules. Class loading behavior varies according to the deployment type.

WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/lib directory are
treated the same as classes in WEB-INF/classes directory. All classes packaged in the WAR will be
loaded with the same class loader.

EAR Deployment

EAR deployments are made up of more than one module. The definition of these modules follows
these rules:

1. The lib/ directory of the EAR is a single module called the parent module.
2. Each WAR deployment within the EAR is a single module.
3. Each EJB JAR deployment within the EAR is a single module.
Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic

dependency on the parent module. However they do not have automatic dependencies on each
other. This is called subdeployment isolation and can be disabled on a per deployment basis or for

61

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5825-767307+%5BLatest%5D&comment=Title%3A+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5825-767307+12+Aug+2015+21%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

the entire application server.

Explicit dependencies between subdeployment modules can be added by the same means as any
other module.

Report a bug

3.1.6. Class Loading Precedence

The JBoss EAP 6 modular class loader uses a precedence system to prevent class loading conflicts.

During deployment a complete list of packages and classes is created for each deployment and each of
its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple
copies of the same classes and packages within the deployments class path from conflicting with each
other.

The class loader loads classes in the following order, from highest to lowest:
1. Implicit dependencies.

These are the dependencies that are added automatically by JBoss EAP 6, such as the JAVA EE
APIs. These dependencies have the highest class loader precedence because they contain
common functionality and APIs that are supplied by JBoss EAP 6.

Refer to Section 3.9.1, “Implicit Module Dependencies” for complete details about each implicit
dependency.

2. Explicit dependencies.

These are dependencies that are manually added in the application configuration. This can be
done using the application's MANIFEST.MF file or the new optional JBoss deployment
descriptor jboss-deployment-structure.xml file.

Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” to learn how to add
explicit dependencies.

3. Local resources.

Class files packaged up inside the deployment itself, e.g. from the WEB-INF/classes or WEB-
INF/lib directories of a WAR file.

4. Inter-deployment dependencies.

These are dependencies on other deployments in a EAR deployment. This can include classes in
the lib directory of the EAR or classes defined in other EJB jars.

Report a bug

3.1.7. Dynamic Module Naming

All deployments are loaded as modules by JBoss EAP 6 and named according to the following
conventions.

® Deployments of WAR and JAR files are named with the following format:

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4550-764998+%5BLatest%5D&comment=Title%3A+Class+Loading+in+Deployments%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4550-764998+14+Jul+2015+11%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4561-591666+%5BLatest%5D&comment=Title%3A+Class+Loading+Precedence%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4561-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

I deployment. DEPLOYMENT _NAME

For example, inventory.war and store.jar will have the module names of
deployment.inventory.war and deployment.store.jar respectively.

® Subdeployments within an Enterprise Archive are named with the following format:

I deployment. EAR_NAME.SUBDEPLOYMENT_NAME

For example, the subdeployment of reports.war within the enterprise archive accounts.ear will
have the module name of deployment.accounts.ear.reports.war.

Report a bug

3.1.8. jboss-deployment-structure.xml

jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-deployment-
structure-1_2.xsd

Report a bug

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO ADEPLOYMENT

This task shows how to add an explicit dependency to an application. Explicit module dependencies can
be added to applications to add the classes of those modules to the class path of the application at
deployment.

Some dependencies are automatically added to deployments by JBoss EAP 6. See Section 3.9.1,
“Implicit Module Dependencies” for details.

Prerequisites

1. You must already have a working software project that you want to add a module dependency
to.

2. You must know the name of the module being added as a dependency. See Section 3.9.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is

another deployment then see Section 3.1.7, “Dynamic Module Naming” to determine the module
name.

Dependencies can be configured using two different methods:
1. Adding entries to the MANIFEST.MF file of the deployment.

2. Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Procedure 3.1. Add dependency configuration to MANIFEST.MF

Maven projects can be configured to create the required dependency entries in the MANIFEST.MF file.
See Section 3.3, "Generate MANIFEST.MF entries using Maven”.

1. Add MANIFEST.MF file

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4562-759221+%5BLatest%5D&comment=Title%3A+Dynamic+Module+Naming%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4562-759221+25+May+2015+04%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4611-591668+%5BLatest%5D&comment=Title%3A+jboss-deployment-structure.xml%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4611-591668+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

If the project has no MANIFEST.MF file, create a file called MANIFEST.MF. For a web
application (WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to
the META-INF directory.

2. Add dependencies entry
Add a dependencies entry to the MANIFEST.MF file with a comma-separated list of
dependency module names.

I Dependencies: org.javassist, org.apache.velocity

3. Optional: Make a dependency optional
A dependency can be made optional by appending optional to the module name in the
dependency entry.

I Dependencies: org.javassist optional, org.apache.velocity

4. Optional: Export a dependency
A dependency can be exported by appending export to the module name in the dependency
entry.

I Dependencies: org.javassist, org.apache.velocity export

5. Optional: Dependencies using annotations
This flag is needed when the module dependency contains annotations which need to be
processed during annotation scanning, such as when declaring EJB Interceptors. If this is not
done, an EJB interceptor declared in a module cannot be used in a deployment. There are other
situations involving annotation scanning when this is needed too.

Using this flag requires that the module contain a Jandex index. Instructions for creating and
using a Jandex index are included at the end of this topic.

Procedure 3.2. Add dependency configuration to jposs-deployment-structure.xml

1. Add jboss-deployment-structure.xml
If the application has no jboss-deployment-structure.xml file then create a new file called
jboss-deployment-structure.xml and add it to the project. This file is an XML file with the root
element of <jboss-deployment-structures.

<jboss-deployment-structure>

</jboss-deployment-structure>

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Add dependencies section
Create a <deployment> element within the document root and a <dependencies> element
within that.

3. Add module elements

Within the dependencies node, add a module element for each module dependency. Set the
name attribute to the name of the module.

64

CHAPTER 3. CLASS LOADING AND MODULES

I <module name="org.javassist" />

4. Optional: Make a dependency optional

A dependency can be made optional by adding the optional attribute to the module entry with
the value of true. The default value for this attribute is false.

I <module name="org.javassist" optional="true" />

5. Optional: Export a dependency

A dependency can be exported by adding the export attribute to the module entry with the
value of true. The default value for this attribute is false.

I <module name="org.javassist" export="true" />

Example 3.3. jboss-deployment-structure.xml with two dependencies

<jboss-deployment-structure>
<deployment>
<dependencies>
<module name="org.javassist" />
<module name="org.apache.velocity" export="true" />
</dependencies>

</deployment>

</jboss-deployment-structure>

JBoss EAP 6 will add the classes from the specified modules to the class path of the application when it
is deployed.

Creating a Jandex index

The annotations flag requires that the module contain a Jandex index. You can create a new "index
JAR" to add to the module. Use the Jandex JAR to build the index, and then insert it into a new JAR file:

Procedure 3.3.

1. Create the index

java -jar EAP_HOME/modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar
$JAR_FILE

2. Create a temporary working space

I mkdir /tmp/META-INF

3. Move the index file to the working directory

I mv $JAR_FILE.ifx /tmp/META-INF/jandex.idx

65

Development Guide

4. o Option 1: Include the index in a new JAR file
I jar cf index.jar -C /tmp META-INF/jandex.idx

Then place the JAR in the module directory and edit module.xml to add it to the resource
roots.

o Option 2: Add the index to an existing JAR

java -jar EAP_HOME/modules/org/jboss/jandex/main/jandex-1.0.3.Final-redhat-1.jar -m
$JAR_FILE

5. Tell the module import to utilize the annotation index

Tell the module import to utilize the annotation index, so that annotation scanning can find the
annotations.

Choose one of the methods below based on your situation:

o If you are adding a module dependency using MANIFEST.MF, add annotations after the
module name.

For example change:

I Dependencies: test.module, other.module

to
I Dependencies: test.module annotations, other.module

o If you are adding a module dependency using jboss-deployment-structure.xml add
annotations="true" on the module dependency.

Report a bug

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects that use the Maven JAR, EJB or WAR packaging plug-ins can generate a
MANIFEST.MF file with a Dependencies entry. This does not automatically generate the list of
dependencies, this process only creates the MANIFEST.MF file with the details specified in the
pom.xml.

Prerequisites

1. You must already have a working Maven project.

2. The Maven project must be using one of the JAR, EJB, or WAR plug-ins (maven-jar-plugin,
maven-ejb-plugin, maven-war-plugin).

3. You must know the name of the project's module dependencies. Refer to Section 3.9.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment, then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4551-766904+%5BLatest%5D&comment=Title%3A+Add+an+Explicit+Module+Dependency+to+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4551-766904+05+Aug+2015+15%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

Procedure 3.4. Generate a MANIFEST.MF file containing module dependencies

1. Add Configuration

Add the following configuration to the packaging plug-in configuration in the project's pom.xml
file.

<configuration>
<archive>
<manifestEntries>
<Dependencies></Dependencies>
</manifestEntries>
</archive>
</configuration>

2. List Dependencies
Add the list of the module dependencies in the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST.MF. Refer to Section 3.2, “Add an
Explicit Module Dependency to a Deployment” for details about that format.

I <Dependencies>org.javassist, org.apache.velocity</Dependencies>
The optional and export attributes can also be used here.
I <Dependencies>org.javassist optional, org.apache.velocity export</Dependencies>

3. Build the Project
Build the project using the Maven assembly goal.

I [Localhost]1$ mvn assembly:assembly

When the project is built using the assembly goal, the final archive contains a MANIFEST.MF file with
the specified module dependencies.

Example 3.4. Configured Module Dependencies in pom.xml

The example here shows the WAR plug-in but it also works with the JAR and EJB plug-ins (maven-
jar-plugin and maven-ejb-plugin).

<artifactld>maven-war-plugin</artifactld>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.javassist, org.apache.velocity</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>

<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
</plugins>

67

Development Guide

Report a bug

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
This task describes how to configure your application to exclude a list of module dependencies.

You can configure a deployable application to prevent implicit dependencies from being loaded. This is
commonly done when the application includes a different version of a library or framework than the one
that will be provided by the application server as an implicit dependency.

Prerequisites

1. You must already have a working software project that you want to exclude an implicit
dependency from.

2. You must know the name of the module to exclude. Refer to Section 3.9.1, “Implicit Module
Dependencies” for a list of implicit dependencies and their conditions.

Procedure 3.5. Add dependency exclusion configuration to jposs-deployment-structure.xml

1. If the application has no jboss-deployment-structure.xml file, create a new file called jboss-
deployment-structure.xml and add it to the project. This file is an XML file with the root
element of <jboss-deployment-structures.

<jboss-deployment-structure>

</jboss-deployment-structure>

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a <deployment> element within the document root and an <exclusions> element
within that.

<deployment>
<exclusions>

</exclusions>
</deployment>

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

<module name="org.javassist" />

<deployment>
<exclusions>
<module name="org.javassist" />

Example 3.5. Excluding two modules
<module name="org.dom4j" />

‘ <jboss-deployment-structure>

68

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5828-766171+%5BLatest%5D&comment=Title%3A+Generate+MANIFEST.MF+entries+using+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5828-766171+28+Jul+2015+11%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

</exclusions>
</deployment>
</jboss-deployment-structure>

Report a bug

3.5.EXCLUDE ASUBSYSTEM FROM A DEPLOYMENT

Summary

This topic covers the steps required to exclude a subsystem from a deployment. This is done by editing
the jboss-deployment-structure.xml configuration file. Excluding a subsystem provides the same
effect as removing the subsystem, but it applies only to a single deployment.

Procedure 3.6. Exclude a Subsystem

1. Open the jboss-deployment-structure.xml file in a text editor.

2. Add the following XML inside the <deployment> tags:

<exclude-subsystems>
<subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

3. Save the jboss-deployment-structure.xml file.

Result

The subsystem has been successfully excluded. The subsystem's deployment unit processors will no
longer run on the deployment.

Example 3.6. Example jboss-deployment-structure.xml file.
<jboss-deployment-structure xmlns="urn:jooss:deployment-structure:1.2">
<ear-subdeployments-isolated>true</ear-subdeployments-isolated>
<deployment>
<exclude-subsystems>
<subsystem name="jaxrs" />
</exclude-subsystems>
<exclusions>
<module name="org.javassist" />
</exclusions>
<dependencies>
<module name="deployment.javassist.proxy" />
<module name="deployment.myjavassist" />
<module name="myservicemodule" services="import"/>
</dependencies>
<resources>
<resource-root path="my-library.jar" />
</resources>
</deployment>
<sub-deployment name="myapp.war">
<dependencies>
<module name="deployment.myear.ear.myejbjar.jar" />

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4552-591667+%5BLatest%5D&comment=Title%3A+Prevent+a+Module+Being+Implicitly+Loaded%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4552-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

<exclude path="javassist/util/proxy" />
<dependencies>

</filter>
</resource-root>

<module name="org.javassist" >
<imports>

Development Guide
</dependencies>
<local-last value="true" />
</sub-deployment>
<module name="deployment.myjavassist" >
<resources>
<resource-root path="javassist.jar" >
</resources>
</module>
<include path="javassist/util/proxy" />
<exclude path="/**" />

<filter>
<module name="deployment.javassist.proxy" >
</imports>

</module>
</dependencies>
</module>
</jboss-deployment-structure>

Report a bug

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A
DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment

You can programmatically find or load classes and resources in your application code. The method you
choose will depend on a number of factors. This topic describes the methods available and provides
guidelines for when to use them.

Load a Class Using the Class.forName() Method

You can use the Class.forName() method to programmatically load and initialize classes. This
method has two signatures.

Class.forName(String className)

This signature takes only one parameter, the name of the class you need to load. With this method

signature, the class is loaded by the class loader of the current class and initializes the newly
loaded class by default.

Class.forName(String className, boolean initialize, ClassLoader loader)

This signature expects three parameters: the class name, a boolean value that specifies whether
to initialize the class, and the ClassLoader that should load the class.

The three argument signature is the recommended way to programmatically load a class. This

signature allows you to control whether you want the target class to be initialized upon load. It is also

more efficient to obtain and provide the class loader because the JVM does not need to examine

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+11440-733509+%5BLatest%5D&comment=Title%3A+Exclude+a+Subsystem+from+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11440-733509+18+Dec+2014+05%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

the call stack to determine which class loader to use. Assuming the class containing the code is
named CurrentClass, you can obtain the class's class loader using
CurrentClass.class.getClassLoader() method.

The following example provides the class loader to load and initialize the TargetClass class:

Example 3.7. Provide a class loader to load and initialize the TargetClass.

Class<?> targetClass = Class.forName("com.myorg.util. TargetClass", true,
CurrentClass.class.getClassLoader());

Find All Resources with a Given Name

If you know the name and path of a resource, the best way to load it directly is to use the standard
Java development kit Class or ClassLoader API.

Load a Single Resource

To load a single resource located in the same directory as your class or another class in your
deployment, you can use the Class.getResourceAsStream() method.

Example 3.8. Load a single resource in your deployment.

InputStream inputStream =
CurrentClass.class.getResourceAsStream("targetResourceName");

Load All Instances of a Single Resource

To load all instances of a single resource that are visible to your deployment's class loader, use
the Class.getClassLoader().getResources(String resourceName) method, where
resourceName is the fully qualified path of the resource. This method returns an Enumeration of
all URL objects for resources accessible by the class loader with the given name. You can then
iterate through the array of URLs to open each stream using the openStream() method.

Example 3.9. Load all instances of a resource and iterate through the result.

Enumeration<URL> urls =
CurrentClass.class.getClassLoader().getResources("full/path/to/resource");

while (urls.hasMoreElements()) {
URL url = urls.nextElement();
InputStream inputStream = null;
try {
inputStream = url.openStream();
// Process the inputStream

} catch (IOException ioException) {
// Handle the error
} finally {
if (inputStream != null) {
try {
inputStream.close();
} catch (Exception e) {
// ignore

71

Development Guide

NOTE

Because the URL instances are loaded from local storage, it is not necessary to use
the openConnection() or other related methods. Streams are much simpler to use
and minimize the complexity of the code.

Load a Class File From the Class Loader

If a class has already been loaded, you can load the class file that corresponds to that class using the
following syntax:

Example 3.10. Load a class file for a class that has been loaded.

InputStream inputStream =
CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleName() + ".class");

If the class is not yet loaded, you must use the class loader and translate the path:
‘ Example 3.11. Load a class file for a class that has not been loaded.

InputStream inputStream =
CurrentCIass class.getClassLoader().getResourceAsStream(className.replace(".', /') +

String className = "com.myorg.util. TargetClass"
".class")

Report a bug

3.6.2. Programmatically Iterate Resources in a Deployment

The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc for
the JBoss Modules APl is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use
these APIs, you must add the following dependency to the MANIFEST.MF:

I Dependencies: org.jboss.modules

It is important to note that while these APIs provide increased flexibility, they will also run much more
slowly than a direct path lookup.

This topic describes some of the ways you can programmatically iterate through resources in your
application code.

List Resources Within a Deployment and Within All Imports

There are times when it is not possible to look up resources by the exact path. For example, the exact
path may not be known or you may need to examine more than one file in a given path. In this case,
the JBoss Modules library provides several APIs for iterating all deployment resources. You can

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+24376-764600+%5BLatest%5D&comment=Title%3A+Programmatically+Load+Classes+and+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24376-764600+12+Jul+2015+20%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.jboss.org/jbossmodules/1.3.0.Final/api/

CHAPTER 3. CLASS LOADING AND MODULES

iterate through resources in a deployment by utilizing one of two methods.
Iterate All Resources Found in a Single Module

The ModuleClassLoader.iterateResources() method iterates all the resources within this
module class loader. This method takes two arguments: the starting directory name to search and
a boolean that specifies whether it should recurse into subdirectories.

The following example demonstrates how to obtain the ModuleClassLoader and obtain the
iterator for resources in the bin/ directory, recursing into subdirectories.

Example 3.12. Find resources in the "bin" directory, recursing into subdirectories.

TargetClass.class.getClassLoader();

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
Iterator<Resource> mclResources = moduleClassLoader.iterateResources("bin",true);

The resultant iterator may be used to examine each matching resource and query its name and
size (if available), open a readable stream, or acquire a URL for the resource.

Iterate All Resources Found in a Single Module and Imported Resources

The Module.iterateResources() method iterates all the resources within this module class loader,
including the resources that are imported into the module. This method returns a much larger set
than the previous method. This method requires an argument, which is a filter that narrows the
result to a specific pattern. Alternatively, PathFilters.acceptAll() can be supplied to return the
entire set.

TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
lterator<Resource> moduleResources = module.iterateResources(PathFilters.acceptAll());

‘ Example 3.13. Find the entire set of resources in this module, including imports.

Find All Resources That Match a Pattern

If you need to find only specific resources within your deployment or within your deployment's full
import set, you need to filter the resource iteration. The JBoss Modules filtering APls give you
several tools to accomplish this.

Examine the Full Set of Dependencies

If you need to examine the full set of dependencies, you can use the Module.iterateResources()
method's PathFilter parameter to check the name of each resource for a match.

Examine Deployment Dependencies

If you need to look only within the deployment, use the ModuleClassLoader.iterateResources()
method. However, you must use additional methods to filter the resultant iterator. The
PathFilters.filtered() method can provide a filtered view of a resource iterator this case. The
PathFilters class includes many static methods to create and compose filters that perform
various functions, including finding child paths or exact matches, or matching an Ant-style "glob"
pattern.

73

Development Guide

Additional Code Examples For Filtering Resouces

The following examples demonstrate how to filter resources based on different criteria.

Example 3.14. Find all files named "messages.properties” in your deployment.

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();

Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/messages.properties"),
moduleClassLoader.iterateResources("", true));

Example 3.15. Find all files named "messages.properties" in your deployment and imports.

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();

Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.match("**/message.properties));

Example 3.16. Find all files inside any directory named "my-resources" in your deployment.

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();

lterator<Resource> mclResources = PathFilters.filtered(PathFilters.match("**/my-
resources/**"), moduleClassLoader.iterateResources("", true));

Example 3.17. Find all files named "messages" or "errors" in your deployment and imports.

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();

Module module = moduleClassLoader.getModule();

lterator<Resource> moduleResources =
module.iterateResources(PathFilters.any(PathFilters.match("**/messages”),
PathFilters.match("**/errors"));

Example 3.18. Find all files in a specific package in your deployment.

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();

Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("path/form/of/packagename”, false);

Report a bug

3.7. CLASS LOADING AND SUBDEPLOYMENTS

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+24377-592557+%5BLatest%5D&comment=Title%3A+Programmatically+Iterate+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24377-592557+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

3.7.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR.

® The contents of the lib/ directory in the root of the EAR archive is a module. This is called the
parent module.

® Fach WAR and EJB JAR subdeployment is a module. These modules have the same behavior as
any other module as well as implicit dependencies on the parent module.

® Subdeployments have implicit dependencies on the parent module and any other non-WAR
subdeployments.

The implicit dependencies on non-WAR subdeployments occur because JBoss EAP 6 has
subdeployment class loader isolation disabled by default. Dependencies on the parent module persist,
regardless of subdeployment class loader isolation.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another subdeployment
as would be done for any other module.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE 6 specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST.MF file of
each subdeployment.

Report a bug

3.7.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default a subdeployment can access the resources of other subdeployments.

If a subdeployment is not to be allowed to access the resources of other subdeployments, strict
subdeployment isolation can be enabled.

Report a bug

3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR

This task shows you how to enable subdeployment class loader isolation in an EAR deployment by using
a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled it is not possible to add a
WAR deployment as a dependency.

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4354-766002+%5BLatest%5D&comment=Title%3A+Modules+and+Class+Loading+in+Enterprise+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4354-766002+27+Jul+2015+00%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4565-765768+%5BLatest%5D&comment=Title%3A+Subdeployment+Class+Loader+Isolation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4565-765768+22+Jul+2015+22%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

1. Add the deployment descriptor file
Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF
directory of the EAR if it doesn't already exist and add the following content:

<jboss-deployment-structure>

</jboss-deployment-structure>

2. Add the <ear-subdeployments-isolated> element
Add the <ear-subdeployments-isolated> element to the jboss-deployment-structure.xml
file if it doesn't already exist with the content of true.

I <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

Result:

Subdeployment class loader isolation will now be enabled for this EAR deployment. This means that the
subdeployments of the EAR will not have automatic dependencies on each of the non-WAR
subdeployments.

Report a bug

3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM
MODULE

Summary

If you have multiple applications that use common Tag Library Descriptors (TLDs), it may be useful to
separate the TLDs from the applications so that they are located in one central and unique location. This
enables easier additions and updates to TLDs without necessarily having to update each individual
application that uses them.

This can be done by creating a custom JBoss EAP 6 module that contains the TLD JARs, and declaring
a dependency on that module in the applications.

Prerequisites

® Atleast one JAR containing TLDs. Ensure that the TLDs are packed in META-INF.

Procedure 3.7. Deploy TLDs in a Custom Module

1. Using the Management CLI, connect to your JBoss EAP 6 instance and execute the following
command to create the custom module containing the TLD JAR:

I module add --name=MyTagLibs --resources=/path/to/TLDarchive.jar

If the TLDs are packaged with classes that require dependencies, use the --
dependencies=DEPENDENCY option to ensure that you specify those dependencies when
creating the custom module.

When creating the module, you can specify multiple JAR resources by separating each one with
:. For example, --resources=/path/to/one.jar:/path/to/two.jar

2. Inyour applications, declare a dependency on the new MyTagLibs custom module using one of
the methods described in Section 3.2, “Add an Explicit Module Dependency to a Deployment” .

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4566-765773+%5BLatest%5D&comment=Title%3A+Enable+Subdeployment+Class+Loader+Isolation+Within+a+EAR%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4566-765773+22+Jul+2015+23%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. CLASS LOADING AND MODULES

IMPORTANT

Ensure that you also import META-INF when declaring the dependency. For
example, for MANIFEST.MF:

I Dependencies: com.MyTagLibs meta-inf

Or, for jboss-deployment-structure.xml, use the meta-inf attribute.
Result
In your applications you can use TLDs that are contained in the new custom module.

Report a bug

3.9. REFERENCE

3.9.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies and
the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsystem Dependencies That Are Dependencies That Are Conditions That Trigger
Responsibl Always Added Conditionally Added the Addition of the
e for Dependency

Adding the
Dependenc

y

Core Server .)
® javax.api

e ibm.jdk
e sun.jdk

® org.jboss.vfs

EE

o i o
subsystem javaee.api

® org.hibernate.valida
tor

® org.jboss.invocation

® org.jboss.as.ee

77

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+41813-724992+%5BLatest%5D&comment=Title%3A+Deploy+Tag+Library+Descriptors+%28TLDs%29+in+a+Custom+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41813-724992+10+Nov+2014+20%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Subsystem Dependencies That Are
Responsibl Always Added
e for
Adding the
Dependenc
y
EJB3 . b api
subsystem ® javax.ejb.api
® org.jboss.ejb-client
® org.jboss.iiop-client
® org.jboss.as.ejb3
JAX-RS) Lbind.an:
(RESTEasy) ® javax.xml.bind.api
subsystem

® javax.ws.rs.api

78

Dependencies That Are
Conditionally Added

® org.jboss.as.jacorb

® org.jboss.resteasy.r
esteasy-atom-
provider

® org.jboss.resteasy.r
esteasy-
hibernatevalidator-
provider

® org.jboss.resteasy.r
esteasy-jaxrs

® org.jboss.resteasy.r
esteasy-jaxb-
provider

® org.jboss.resteasy.r
esteasy-jackson-
provider

® org.jboss.resteasy.r
esteasy-jettison-
provider

® org.jboss.resteasy.r
esteasy-jsapi

® org.jboss.resteasy.r
esteasy-multipart-
provider

® org.jboss.resteasy.r
esteasy-yaml-
provider

® org.codehaus.jacks
on.jackson-core-asl

Conditions That Trigger
the Addition of the
Dependency

The presence of an ejb-
jar.xml file within a valid
location in the deployment,
as described in the Java EE
6 specification.

The presence of annotation-
based EJBs, for example:
@Stateless, @Stateful,
@MessageDriven

The presence of JAX-RS
annotations in the
deployment.

CHAPTER 3. CLASS LOADING AND MODULES

Subsystem
Responsibl

Dependencies That Are
Always Added

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the

e for Dependency

Adding the
Dependenc

y

JCA
subsystem

JPA

(Hibernate)

subsystem

Logging
subsystem

® javax.resource.api

® javax.persistence.a

pI

org.jboss.logging
org.apache.log4j

org.apache.commo
ns.logging

org.slf4j

org.jboss.logging.jul
-to-slf4j-stub

® javax.ms.api
® javax.validation.api

® org.jboss.ironjacam
ar.api

® org.jboss.ironjacam
ar.impl

® org.hibernate.valida
tor

® javaee.api

® org.jboss.as.jpa

® org.jboss.as.jpa.spi

® org.javassist

® org.jboss.as.jpa.hibe
rnate:3/
org.jboss.as.jpa.hibe
rnate3.HibernatePe
rsistenceProviderA

daptor

® org.hibernate.enver
s

® org.jboss.as.naming

® org.jboss.jandex

The deployment of a
resource adapter (RAR)
archive.

The presence of an
@PersistenceUnit or
@PersistenceContext
annotation, or a
<persistence-unit-ref> or
<persistence-context-
ref> elementin a
deployment descriptor.

JBoss EAP 6 maps
persistence provider names
to module names. If you
name a specific provider in
the persistence.xml file, a
dependency is added for the
appropriate module. If this
not the desired behavior,
you can exclude it using a
jboss-deployment-
structure.xml file.

These dependencies are
always added unless the
add-logging-api-
dependencies attribute is
set to false.

79

Development Guide

80

Subsystem Dependencies That Are
Responsibl Always Added

e for
Adding the
Dependenc
y
SAR
subsystem
Security icketb
subsystem ® org.picketbox
® org.jboss.as.security
® javax.security.jacc.a
pi
® javax.security.auth.
message.api
Web
subsystem
Web . . .
Services ® javax.jws.api
subsystem

® javax.xml.soap.api

® javaxxml.ws.api

Dependencies That Are Conditions That Trigger
Conditionally Added the Addition of the
Dependency

The deployment of a SAR

® org.jboss.modules .
archive.

® orgjboss.as.system
-jmx

® org.jboss.common-
beans

The deployment of a WAR
archive. JavaServer Faces
(JSF) is added only if itis
used.

® javaxservlet.api

® javax.servletjsp.api
® javax.websocket.api
® javax.servletjstl.api

® org.jboss.as.web

)) If it is not application client
® orgjboss.ws.api type, then it will add the

)) conditional dependencies
® org.jboss.ws.spi

Subsystem
Responsibl

Dependencies That Are
Always Added

CHAPTER 3. CLASS LOADING AND MODULES

Dependencies That Are
Conditionally Added

Conditions That Trigger
the Addition of the

e for
Adding the
Dependenc

y

Dependency

Weld (CDI) i i) i . The presence of a
Subsystem ® javax.enterprise.api (] Jlg‘:livax.persstence.a beans.xml file in the
e javax.inject.api deployment.
® javaee.api
® org.javassist
® org.jboss.as.weld
® org.jboss.weld.core
® org.jboss.weld.api
® org.jboss.weld.spi
Container "
Managed ® org.jboss.as.cmp
Persistence
(CMP)
Subsystem

Report a bug

3.9.2. Included Modules

A table listing the JBoss EAP 6 included modules and whether they are supported can be found on the
Customer Portal at https://access.redhat.com/articles/1122333.

Report a bug

3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

The key tasks that can be performed using this deployment descriptor are:
® Defining explicit module dependencies.
® Preventing specific implicit dependencies from loading.
® Defining additional modules from the resources of that deployment.
® Changing the subdeployment isolation behavior in that EAR deployment.
® Adding additional resource roots to a module in an EAR.

Report a bug

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4353-775643+%5BLatest%5D&comment=Title%3A+Implicit+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4353-775643+20+Jan+2016+02%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/articles/1122333
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+3891-682454+%5BLatest%5D&comment=Title%3A+Included+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3891-682454+08+Jul+2014+09%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4614-591668+%5BLatest%5D&comment=Title%3A+JBoss+Deployment+Structure+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4614-591668+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

CHAPTER 4. VALVES

4.1. ABOUT VALVES
A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is
inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it

on or perform other processing such as authentication or even canceling the request.

Valves can be configured at the server level or at the application level. The only difference is in how they
are configured and packaged.

® Global Valves are configured at the server level and apply to all applications deployed to the
server. Instructions to configure Global Valves are located in the Administration and
Configuration Guide for JBoss EAP.

® Valves configured at the application level are packaged with the application deployment and
only affect the specific application. Instructions to configure Valves at the application level are
located in the Development Guide for JBoss EAP.

Version 6.1.0 and later supports global valves.

Report a bug

4.2. ABOUT GLOBAL VALVES

A Global Valve is a valve that is inserted into the request processing pipeline of all deployed
applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6.
Global valves are configured in the web subsystem.

Only version 6.1.0 and later supports global valves.

For instructions on how to configure Global Valves, see the chapter entitled Global Valves in the
Administration and Configuration Guide for JBoss EAP .

Report a bug

4.3. ABOUT AUTHENTICATOR VALVES

An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-
class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the
authenticate(Request request, Response response, LoginConfig config) method.

This can be used to implement additional authentication schemes.

Report a bug

4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE

Valves that are not installed as global valves must be included with your application and configured in the
jboss-web.xml deployment descriptor.

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14168-672932+%5BLatest%5D&comment=Title%3A+About+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14168-672932+12+Jun+2014+12%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14169-717305+%5BLatest%5D&comment=Title%3A+About+Global+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14169-717305+17+Oct+2014+12%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14172-592104+%5BLatest%5D&comment=Title%3A+About+Authenticator+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14172-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 4. VALVES

IMPORTANT

Valves that are installed as global valves are automatically applied to all deployed
applications. For instructions on how to configure Global Valves, see Global Valves in the
JBoss EAP Administration and Configuration Guide.

Prerequisites

® The valve must be created and included in your application's classpath. This can be done by
either including it in the application's WAR file or any module that is added as a dependency.
Examples of such modules include a static module installed on the server or a JAR file in the lib/
directory of an EAR archive if the WAR is deployed in an EAR.

® The application must include a jboss-web.xml deployment descriptor.

Procedure 4.1. Configure an application for a local valve

1. Configure a Valve

Create a valve element containing the class-name child element in the application's jboss-
web.xml file. The class-name is the name of the valve class.

<valve>
<class-name>VALVE CLASS NAME</class-name>
</valve>

Example 4.1. Valve element configured in the jboss-web.xml file

<valve>
<class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
</valve>

2. Configure a Custom Valve

If the valve has configurable parameters, add a param child element to the valve element for
each parameter, specifying the param-name and param-value for each.

<param>
<param-name>httpHeaderForSSOAuth</param-name>
<param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
</param>
<param>
<param-name>sessionCookieForSSOAuth</param-name>
<param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
</param>

<valve>
<class-name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-name>
</valve>

| Example 4.2. Custom valve element configured in the jboss-web.xml file

When the application is deployed, the valve will be enabled for the application with the specified
configuration.

83

Development Guide

<param>
<param-name>restrictedUserAgents</param-name>
<param-value>"."MS Web Services Client Protocol.*$</param-value>
</param>

<valve>
<class-name>org.jboss.samplevalves.RestrictedUserAgentsValve</class-name>
</valve>

| Example 4.3. jboss-web.xml valve configuration

Report a bug

4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR
VALVE

Configuring an application to use an authenticator valve requires the valve to be installed and configured
(either local to the application or as a global valve) and the web.xml deployment descriptor of the
application to be configured. In the simplest case, the web.xml configuration is the same as using BASIC
authentication except the auth-method child element of login-config is set to the name of the valve
performing the configuration.

Prerequisites

® Authentication valve must already be created.

e |f the authentication valve is a global valve then it must already be installed and configured, and
you must know the name that it was configured as.

® You need to know the realm name of the security realm that the application will use.

If you do not know the valve or security realm name to use, ask your server administrator for this
information.

Procedure 4.2. Configure an Application to use an Authenticator Valve

1. Configure the valve

When using a local valve, it must be configured in the application's jboss-web.xml deployment
descriptor. See Section 4.4, “Configure a Web Application to use a Valve” .

When using a global valve, this is not necessary.

2. Add security configuration to web.xml
Add the security configuration to the web.xml file for your application, using the standard
elements such as security-constraint, login-config, and security-role. In the login-config
element, set the value of auth-method to the name of the authenticator valve. The realm-name
element must also be set to the name of the JBoss security realm being used by the application.

<login-config>
<auth-method>VALVE_ NAME</auth-method>
<realm-name>REALM_NAME</realm-name>
</login-config>

84

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14173-759135+%5BLatest%5D&comment=Title%3A+Configure+a+Web+Application+to+use+a+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14173-759135+22+May+2015+00%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 4. VALVES

When the application is deployed, the authentication of requests is handled by the configured
authentication valve.

Report a bug

4.6. CREATE A CUSTOM VALVE

A Valve is a Java class that gets inserted into the request processing pipeline for an application before
the application's servlet filters. This can be used to modify the request or perform any other behavior.
This task demonstrates the basic steps required for implementing a valve.

Procedure 4.3. Create a Custom Valve

1. Configure the Maven dependencies.
Add the following dependency configuration to the project pom.xml file.

<dependency>
<groupld>org.jboss.web</groupld>
<artifactld>jbossweb</artifactld>
<version>7.5.7.Final-redhat-1</version>
<scope>provided</scope>
</dependency>

NOTE

The jbossweb- VERSION.jar file should not be included in the application. It is
available to the JBoss EAP server runtime classpath as a JBoss module at this
location:
EAP_HOME/modules/system/layers/base/org/jboss/as/web/main/jbossweb-
7.5.7.Final-redhat-1.jar.

2. Create the Valve class
Create a subclass of org.apache.catalina.valves.ValveBase.

package org.jpboss.samplevalves;
import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;

import org.apache.catalina.connector.Response;

public class RestrictedUserAgentsValve extends ValveBase {
}

3. Implement the invoke method.
The invoke() method is called when this valve is executed in the pipeline. The request and
response objects are passed as parameters. Perform any processing and modification of the
request and response here.

public void invoke(Request request, Response response)

{
}

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14174-759154+%5BLatest%5D&comment=Title%3A+Configure+a+Web+Application+to+use+an+Authenticator+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14174-759154+22+May+2015+02%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

4. Invoke the next pipeline step.
The last thing the invoke method must do is invoke the next step of the pipeline and pass the
modified request and response objects along. This is done using the getNext().invoke() method

I getNext().invoke(request, response);

5. Optional: Specify parameters.
If the valve must be configurable, enable this by adding a parameter. Do this by adding an
instance variable and a setter method for each parameter.

private String restrictedUserAgents = null;

public void setRestricteduserAgents(String mystring)

{

this.restrictedUserAgents = mystring;

}

6. Review the completed code example.
The class should now look like the following example.

Example 4.4. Sample Custom Valve
package org.jpboss.samplevalves;
import java.io.lOException;
import java.util.regex.Pattern;
import javax.servlet.ServletException;
import org.apache.catalina.valves.ValveBase;
public void setRestrictedUserAgents(String mystring)

public class RestrictedUserAgentsValve extends ValveBase

{

import org.apache.catalina.connector.Request;
private String restrictedUserAgents = null;
{

import org.apache.catalina.connector.Response;
this.restrictedUserAgents = mystring;
}

public void invoke(Request request, Response response) throws IOException,
ServletException
{
String agent = request.getHeader("User-Agent");
System.out.printin("user-agent: " + agent + " : " + restrictedUserAgents);
if (Pattern.matches(restrictedUserAgents, agent))
{
System.out.printin("user-agent: " + agent + " matches: " + restrictedUserAgents);
response.addHeader("Connection”, "close");

}

getNext().invoke(request, response);

—

86

CHAPTER 4. VALVES

Report a bug

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14175-771123+%5BLatest%5D&comment=Title%3A+Create+a+Custom+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14175-771123+29+Sep+2015+13%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

CHAPTER 5. LOGGING FOR DEVELOPERS

S5.1. INTRODUCTION

5.1.1. About Logging

Logging is the practice of recording a series of messages from an application that provide a record (or
log) of the application's activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern logging frameworks in Java also include other details such as the exact time and the origin
of the message.

Report a bug

5.1.2. Application Logging Frameworks Supported By JBoss LogManager

JBoss LogManager supports the following logging frameworks:
® JBoss Logging - included with JBoss EAP 6
® Apache Commons Logging - http://commons.apache.org/logging/
® Simple Logging Facade for Java (SLF4J) - http:;//www.slf4j.org/
® Apache log4j - http://logging.apache.org/log4j/1.2/

® Java SE Logging (java.util.logging) -
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

JBoss LogManager supports the following APlIs:
® java.util.logging
® JBoss Logging
® |og4j
e SLF4J
® commons-logging
JBoss LogManager also supports the following SPIs:
® java.util.logging Handler

® | og4jAppender

NOTE

If you are using the Log4j APl and a Log4J Appender, then Objects will be converted to
string before being passed.

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4576-591666+%5BLatest%5D&comment=Title%3A+About+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4576-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

CHAPTER 5. LOGGING FOR DEVELOPERS

Report a bug

5.1.3. About Log Levels

Log levels are an ordered set of enumerated values that indicate the nature and severity of a log
message. The level of a given log message is specified by the developer using the appropriate methods
of their chosen logging framework to send the message.

JBoss EAP 6 supports all the log levels used by the supported application logging frameworks. The most
commonly used six log levels are (in order of lowest to highest): TRACE, DEBUG, INFO, WARN, ERROR
and FATAL.

Log levels are used by log categories and handlers to limit the messages they are responsible for. Each
log level has an assigned numeric value which indicates its order relative to other log levels. Log
categories and handlers are assigned a log level and they only process log messages of that level or

higher. For example a log handler with the level of WARN will only record messages of the levels WARN,
ERROR and FATAL.

Report a bug

5.1.4. Supported Log Levels

Table 5.1. Supported Log Levels

Log Level Value Description

FINEST 300 -

FINER 400 -

TRACE 400 Use for messages that provide detailed information about the running state of an
application. Log messages of TRACE are usually only captured when debugging
an application.

DEBUG 500 Use for messages that indicate the progress individual requests or activities of an
application. Log messages of DEBUG are usually only captured when debugging
an application.

FINE 500 -

CONFIG 700 -

INFO 800 Use for messages that indicate the overall progress of the application. Often used
for application startup, shutdown and other major lifecycle events.

WARN 900 Use to indicate a situation that is not in error but is not considered ideal. May

indicate circumstances that may lead to errors in the future.

WARNING 900 -

ERROR 1000 Use to indicate an error that has occurred that could prevent the current activity or
request from completing but will not prevent the application from running.

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4496-765884+%5BLatest%5D&comment=Title%3A+Application+Logging+Frameworks+Supported+By+JBoss+LogManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4496-765884+24+Jul+2015+06%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8869-591853+%5BLatest%5D&comment=Title%3A+About+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8869-591853+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Log Level Value Description
SEVERE 1000 -
FATAL 1100 Use to indicate events that could cause critical service failure and application

shutdown and possibly cause JBoss EAP 6 to shutdown.

Report a bug

5.1.5. Default Log File Locations

These are the log files that get created for the default logging configurations. The default configuration
writes the server log files using periodic log handlers

Table 5.2. Default Log File for a standalone server

LogFile Description

EAP_HOME/standalone/log/server.log Server Log. Contains all server log messages,
including server startup messages.

EAP_HOME/standalone/log/gc.log Garbage collection log. Contains details of all
garbage collection.

Table 5.3. Default Log Files for a managed domain

LogFile Description

EAP_HOME/domain/log/host-controller.log Host Controller boot log. Contains log messages
related to the startup of the host controller.

EAP_HOME/domain/log/process- Process controller boot log. Contains log messages
controller.log related to the startup of the process controller.

EAP_HOME/domain/servers/SERVERNAME/| The server log for the named server. Contains all log
og/server.log messages for that server, including server startup
messages.

Report a bug

5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

5.2.1. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss EAP 6.

JBoss Logging provide an easy way to add logging to an application. You add code to your application
that uses the framework to send log messages in a defined format. When the application is deployed to
an application server, these messages can be captured by the server and displayed and/or written to file
according to the server's configuration.

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+8872-591853+%5BLatest%5D&comment=Title%3A+Supported+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8872-591853+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4495-635317+%5BLatest%5D&comment=Title%3A+Default+Log+File+Locations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4495-635317+30+Apr+2014+09%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 5. LOGGING FOR DEVELOPERS

Report a bug

5.2.2. Features of JBoss Logging

® Provides an innovative, easy to use "typed" logger.

e Full support for internationalization and localization. Translators work with message bundles in
properties files while developers can work with interfaces and annotations.

e Build-time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development.

Report a bug

5.2.3. Add Logging to an Application with JBoss Logging

To log messages from your application you create a Logger object (org.jboss.logging.Logger) and call
the appropriate methods of that object. This task describes the steps required to add support for this to
your application.

Prerequisites

e |f you are using Maven as your build system, the project must be configured to include the
JBoss Maven Repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository
Using the Maven Settings”

® The JBoss Logging JAR files must be in the build path for your application. How you do this
depends on whether you build your application using Red Hat JBoss Developer Studio or with
Maven.

o When building using Red Hat JBoss Developer Studio select Properties from the Project
menu, then select Targeted Runtimes and ensure the runtime for JBoss EAP 6 is checked.

o When building using Maven add the following dependency configuration to your project's
pom.xml file.

<dependency>
<groupld>org.jboss.logging</groupld>
<artifactld>jboss-logging</artifactid>
<version>3.1.2.GA-redhat-1</version>
<scope>provided</scope>
</dependency>

You do not need to include the JARs in your built application because JBoss EAP 6 provides
them to deployed applications.

Procedure 5.1. Add Logging to an Application

Complete the following procedure for each class to which you want to add logging:

1. Add imports
Add the import statements for the JBoss Logging class namespaces that you will be using. At a
minimum you will need to import import org.jboss.logging.Logger.

I import org.jboss.logging.Logger;

o1

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4575-591666+%5BLatest%5D&comment=Title%3A+About+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4575-591666+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4578-591669+%5BLatest%5D&comment=Title%3A+Features+of+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4578-591669+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

92

2. Create a Logger object
Create an instance of org.jboss.logging.Logger and initialize it by calling the static method
Logger.getLogger(Class). Red Hat recommends creating this as a single instance variable for
each class.

I private static final Logger LOGGER = Logger.getLogger(HelloWorld.class);

3. Add logging messages
Add calls to the methods of the Logger object to your code where you want it to send log
messages. The Logger object has many different methods with different parameters for
different types of messages. The easiest to use are:

debug(Object message)
info(Object message)
error(Object message)
trace(Object message)

fatal(Object message)

These methods send a log message with the corresponding log level and the message
parameter as a string.

I LOGGER:.error("Configuration file not found.");

For the complete list of JBoss Logging methods refer to the org.jboss.logging package in the
JBoss EAP 6 APl Documentation.

Example 5.1. Using JBoss Logging when opening a properties file

This example shows an extract of code from a class that loads customized configuration for an
application from a properties file. If the specified file is not found, an ERROR level log message is
recorded.

import org.jboss.logging.Logger;
public class LocalSystemConfig

{
private static final Logger LOGGER = Logger.getLogger(LocalSystemConfig.class);

public Properties openCustomProperties(String configname) throws
CustomConfigFileNotFoundException
{
Properties props = new Properties();
try
{
LOGGER.info("Loading custom configuration from "+configname);
props.load(new FilelnputStream(configname));

}

catch(IOException e) //catch exception in case properties file does not exist

CHAPTER 5. LOGGING FOR DEVELOPERS

throw new CustomConfigFileNotFoundException(configname);

{
LOGGER:¢.error("Custom configuration file ("+configname+") not found. Using defaults.");
}
return props;

}

Report a bug

5.3. PER-DEPLOYMENT LOGGING

5.3.1. About Per-deployment Logging

Per-deployment logging allows a developer to configure in advance the logging configuration for their
application. When the application is deployed, logging begins according to the defined configuration.
The log files created through this configuration contain information only about the behavior of the
application.

This approach has advantages and disadvantages over using system-wide logging. An advantage is that
the administrator of the JBoss EAP instance does not need to configure logging. A disadvantage is that
the per-deployment logging configuration is read only on startup and so cannot be changed at runtime.

Report a bug

5.3.2. Add Per-deployment Logging to an Application

To configure per-deployment logging, add the logging configuration file logging.properties into the
deployment. This configuration file is recommended because it can be used with any logging facade as
the JBoss Log Manager is the underlying log manager used.

If you are using Simple Logging Facade for Java (SLF4J) or Apache log4j, the logging.properties
configuration file is suitable. If you are using Apache log4j appenders then the configuration file
log4j.properties is required. The configuration file jboss-logging.properties is supported only for
legacy deployments.

Procedure 5.2. Add Configuration File to the Application

® The directory into which the configuration file is added depends on the deployment
method: EAR, WAR or JAR.

o EARdeployment
Copy the logging configuration file to the META-INF directory.

o WAR orJAR deployment
Copy the logging configuration file to either the META-INF or WEB-INF/classes directory.

Report a bug

5.3.3. Example logging.properties File

I # Additional loggers to configure (the root logger is always configured)
loggers=

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4501-759166+%5BLatest%5D&comment=Title%3A+Add+Logging+to+an+Application+with+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4501-759166+22+May+2015+08%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+34418-707569+%5BLatest%5D&comment=Title%3A+About+Per-deployment+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34418-707569+09+Sep+2014+02%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+34424-665446+%5BLatest%5D&comment=Title%3A+Add+Per-deployment+Logging+to+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34424-665446+09+Jun+2014+13%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Root logger configuration
logger.level=INFO
logger.handlers=FILE

A handler configuration
handler.FILE=org.jboss.logmanager.handlers.FileHandler
handler.FILE.level=ALL

handler.FILE.formatter=PATTERN
handler.FILE.properties=append,autoFlush,enabled,suffix,fleName
handler.FILE.constructorProperties=fileName,append
handler.FILE.append=true

handler.FILE.autoFlush=true

handler.FILE.enabled=true
handler.FILE.fileName=${jboss.server.log.dir}/app.log

The formatter to use
formatter. PATTERN=o0rg.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern

formatter.PATTERN.constructorProperties=pattern
formatter.PATTERN.pattern=%d %-5p %cC: %m%n

Report a bug

5.4. LOGGING PROFILES

5.4.1. About Logging Profiles

IMPORTANT

Logging profiles are only available in version 6.1.0 and later. They cannot be configured
using the management console.

Logging profiles are independent sets of logging configuration that can be assigned to deployed
applications. As with the regular logging subsystem, a logging profile can define handlers, categories and
a root logger but cannot refer to configuration in other profiles or the main logging subsystem. The
design of logging profiles mimics the logging subsystem for ease of configuration.

The use of logging profiles allows administrators to create logging configuration that are specific to one
or more applications without affecting any other logging configuration. Because each profile is defined

in the server configuration, the logging configuration can be changed without requiring that the
affected applications be redeployed.

Each logging profile can have the following configuration:
® A unique name. This is required.
® Any number of log handlers.
® Any number of log categories.
® Up to oneroot logger.

An application can specify a logging profile to use in its MANIFEST.MF file, using the logging-profile
attribute.

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+34426-665446+%5BLatest%5D&comment=Title%3A+Example+logging.properties+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34426-665446+09+Jun+2014+13%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 5. LOGGING FOR DEVELOPERS

Report a bug

5.4.2. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST.MF file.

Prerequisites:

1. You must know the name of the logging profile that has been setup on the server for this
application to use. Ask your server administrator for the name of the profile to use.

Procedure 5.3. Add Logging Profile configuration to an Application

e Edit MANIFEST.MF
If your application does not have a MANIFEST.MF file: create one with the following content,
replacing NAME with the required profile name.

Manifest-Version: 1.0

Logging-Profile: NAME
If your application already has a MANIFEST.MF file: add the following line to it, replacing NAME
with the required profile name.

I Logging-Profile: NAME

NOTE

If you are using Maven and the maven-war-plugin, you can put your MANIFEST.MF file in
src/main/resources/META-INF/ and add the following configuration to your pom.xml
file.

<plugin>
<artifactld>maven-war-plugin</artifactld>
<configuration>
<archive>
<manifestFile>src/main/resources/META-INF/MANIFEST.MF</manifestFile>
</archive>
</configuration>
</plugin>

When the application is deployed it will use the configuration in the specified logging profile for its log
messages.

Report a bug

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14116-648922+%5BLatest%5D&comment=Title%3A+About+Logging+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14116-648922+01+Jun+2014+22%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14120-647035+%5BLatest%5D&comment=Title%3A+Specify+a+Logging+Profile+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14120-647035+30+May+2014+00%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.1. INTRODUCTION

6.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different
languages and regions without engineering changes.

Report a bug

6.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

Report a bug

6.2. JBOSS LOGGING TOOLS

6.2.1. Overview

6.2.1.1. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated using org.jboss.logging annotations. It is not necessary to implement the interfaces, JBoss
Logging Tools does this at compile time. Once defined you can use these methods to log messages or
obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized by
creating a properties file for each bundle containing the translations for a specific language and region.
JBoss Logging Tools can generate template property files for each bundle that can then be edited by a
translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.
Message ids and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log messages.
With adequate documentation, the meaning of a log message can be determined from the identifiers
regardless of the language that the message was written in.

Report a bug

6.2.1.2. JBoss Logging Tools Quickstart

96

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4891-591677+%5BLatest%5D&comment=Title%3A+About+Internationalization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4891-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4892-591677+%5BLatest%5D&comment=Title%3A+About+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4892-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4890-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Internationalization+and+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4890-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that demonstrates
the features of JBoss Logging Tools. It has been used extensively in this documentation for code
samples.

Refer to this quickstart for a complete working demonstration of all the features described in this
documentation.

Report a bug

6.2.1.3. Message Logger

A Message Logger is an interface that is used to define internationalized log messages. A Message
Logger interface is annotated with @org.jboss.logging.MessagelLogger.

Report a bug

6.2.1.4. Message Bundle

A message bundle is an interface that can be used to define generic translatable messages and
Exception objects with internationalized messages . A message bundle is not used for creating log
messages.

A message bundle interface is annotated with @org.jboss.logging.MessageBundle.

Report a bug

6.2.1.5. Internationalized Log Messages

Internationalized Log Messages are log messages created by defining a method in a Message Logger.
The method must be annotated with the @LogMessage and @Message annotations and specify the
log message using the value attribute of @Message. Internationalized log messages are localized by
providing translations in a properties file.

JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Report a bug

6.2.1.6. Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a message
bundle. Message bundle methods that return Java Exception objects can be annotated to define a
default exception message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale. Internationalized exceptions can also have project codes
and message ids assigned to them.

Report a bug

6.2.1.7. Internationalized Messages

An internationalized message is a string returned from a method defined in a message bundle. Message
bundle methods that return Java String objects can be annotated to define the default content of that
String, known as the message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale.

Report a bug

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6715-591753+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6715-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6716-591753+%5BLatest%5D&comment=Title%3A+Message+Logger%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6716-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6717-591753+%5BLatest%5D&comment=Title%3A+Message+Bundle%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6717-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6714-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6714-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6718-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6718-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6719-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6719-591753+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

6.2.1.8. Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from one
interface for one locale, country, and variant. Translation properties files are used by the JBoss Logging
Tools to generated the classes that return the messages.

Report a bug

6.2.1.9. JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message Id. Project codes are defined with the
projectCode attribute of the @MessageLogger annotation.

Report a bug

6.2.1.10. JBoss Logging Tools Message IDs

Message IDs are numbers, that when combined with a project code, uniquely identify a log message.
Message IDs are displayed at the beginning of each log message, appended to the project code for the
message. Message IDs are defined with the id attribute of the @Message annotation.

Report a bug

6.2.2. Creating Internationalized Loggers, Messages and Exceptions

6.2.2.1. Create Internationalized Log Messages

This task shows you how to use JBoss Logging Tools to create internationalized log messages by
creating Messagelogger interfaces. It does not cover all optional features or the localization of those
log messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project. Refer to Section 6.2.6.1, “JBoss Logging Tools
Maven Configuration”.

2. The project must have the required Maven configuration for JBoss Logging Tools.

Procedure 6.1. Create an Internationalized Log Message Bundle

1. Create an Message Logger interface
Add a Java interface to your project to contain the log message definitions. Name the interface
descriptively for the log messages that will be defined in it.

The log message interface has the following requirements:
o |t must be annotated with @org.jboss.logging.MessagelLogger.
o |t must extend org.jboss.logging.BasicLogger.

o The interface must define a field of that is a typed logger that implements this interface. Do
this with the getMessageLogger() method of org.jboss.logging.Logger.

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6720-591752+%5BLatest%5D&comment=Title%3A+Translation+Properties+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6720-591752+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5148-591684+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Project+Codes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5148-591684+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5149-759175+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Message+IDs%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5149-759175+22+May+2015+08%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

package com.company.accounts.loggers;

import org.jboss.logging.BasicLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.Messagelogger;

@MessagelLogger(projectCode="")
interface AccountsLogger extends BasicLogger

{
AccountsLogger LOGGER = Logger.getMessagelogger(

AccountsLogger.class,
AccountsLogger.class.getPackage().getName());

2. Add method definitions
Add a method definition to the interface for each log message. Name each method
descriptively for the log message that it represents.

Each method has the following requirements:

o The method must return void.

o |t must be annotated with the @org.jboss.logging.LogMessage annotation.
o |t must be annotated with the @org.jboss.logging.Message annotation.

o The value attribute of @org.jboss.logging.Message contains the default log message.
This is the message that is used if no translation is available.

@LogMessage
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

The default log level is INFO.

3. Invoke the methods
Add the calls to the interface methods in your code where the messages must be logged from. It
is not necessary to create implementations of the interfaces, the annotation processor does this
for you when the project is compiled.

I AccountsLogger.LOGGER.customerQueryFailDBClosed();

The custom loggers are sub-classed from BasicLogger so the logging methods of BasicLogger
(debug(), error() etc) can also be used. It is not necessary to create other loggers to log non-
internationalized messages.

I AccountsLogger.LOGGER.error("Invalid query syntax.");

Result

The project now supports one or more internationalized loggers that can be localized.

Report a bug

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4898-759189+%5BLatest%5D&comment=Title%3A+Create+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4898-759189+22+May+2015+09%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

6.2.2.2. Create and Use Internationalized Messages

This task shows you how to create internationalized messages and how to use them. This task does not
cover all optional features or the process of localizing those messages.

Refer to the logging-tools quickstart for a complete example.

Prerequisites

1. You have a working Maven project using the JBoss EAP 6 repository. Refer to Section 2.3.2,
“Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The required Maven configuration for JBoss Logging Tools has been added. Refer to
Section 6.2.6.1, "JBoss Logging Tools Maven Configuration”.

Procedure 6.2. Create and Use Internationalized Messages

1. Create an interface for the exceptions
JBoss Logging Tools defines internationalized messages in interfaces. Name each interface
descriptively for the messages that will be defined in it.

The interface has the following requirements:
o |t must be declared as public
o |t must be annotated with @org.jboss.logging.MessageBundle.

o The interface must define a field that is a message bundle of the same type as the interface.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle

{
GreetingMessageBundle MESSAGES =

Messages.getBundle(GreetingMessageBundle.class);

}

2. Add method definitions
Add a method definition to the interface for each message. Name each method descriptively for
the message that it represents.

Each method has the following requirements:
o [t must return an object of type String.
o |t must be annotated with the @org.jboss.logging.Message annotation.

o The value attribute of @org.jboss.logging.Message must be set to the default message.
This is the message that is used if no translation is available.

@Message(value = "Hello world.")
String helloworldString();

3. Invoke methods
Invoke the interface methods in your application where you need to obtain the message.

100

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

I System.console.out.printin(helloworldString());

RESULT: the project now supports internationalized message strings that can be localized.

Report a bug

6.2.2.3. Create Internationalized Exceptions

This task shows you how to create internationalized exceptions and how to use them. This task does not
cover all optional features or the process of localization of those exceptions.

Refer to the logging-tools quick start for a complete example.

For this task it is assumed that you already have a software project, that is being built in either Red Hat
JBoss Developer Studio or Maven, to which you want to add internationalized exceptions.

Procedure 6.3. Create and use Internationalized Exceptions

1. Add JBoss Logging Tools configuration
Add the required project configuration to support JBoss Logging Tools. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”

2. Create aninterface for the exceptions
JBoss Logging Tools defines internationalized exceptions in interfaces. Name each interface
descriptively for the exceptions that will be defined in it.

The interface has the following requirements:
o |t must be declared as public.
o |t must be annotated with @org.jboss.logging.MessageBundle.

o The interface must define a field that is a message bundle of the same type as the interface.

@MessageBundle(projectCode="")
public interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);

}

3. Add method definitions
Add a method definition to the interface for each exception. Name each method descriptively
for the exception that it represents.

Each method has the following requirements:
o It must return an object of type Exception or a sub-type of Exception.
o |t must be annotated with the @org.jboss.logging.Message annotation.

o The value attribute of @org.jboss.logging.Message must be set to the default exception
message. This is the message that is used if no translation is available.

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4900-591677+%5BLatest%5D&comment=Title%3A+Create+and+Use+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4900-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

o If the exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as the constructor.

@Message(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = "Date string '%s' was invalid.")
ParseException dateWaslnvalid(String dateString, @Param int errorOffset);

4. Invoke methods
Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object which you can then
throw.

try
{

propsinFile=new File(configname);
props.load(new FilelnputStream(propsInFile));

}

catch(IOException ioex) //in case props file does not exist

{
throw ExceptionBundle. EXCEPTIONS.configFileAccessError();

}

RESULT: the project now supports internationalized exceptions that can be localized.

Report a bug
6.2.3. Localizing Internationalized Loggers, Messages and Exceptions

6.2.3.1. Generate New Translation Properties Files with Maven

Projects that are being built with Maven can generate empty translation property files for each Message
Logger and Message Bundle it contains. These files can then be used as new translation property files.

The following procedure shows how to configure a Maven project to generate new translation property
files.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project.
2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Procedure 6.4. Generate New Translation Properties Files with Maven

1. Add Maven configuration

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4899-681267+%5BLatest%5D&comment=Title%3A+Create+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4899-681267+03+Jul+2014+12%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler plug-in
configuration and assign it the path where the new files will be created.

<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactid>
<version>2.3.2</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
<compilerArgument>
-AgeneratedTranslationFilesPath=${project.basedir}/target/generated-translation-files
</compilerArgument>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>

The above configuration will create the new files in the target/generated-translation-files
directory of your Maven project.

2. Build the project
Build the project using Maven.

I [Localhost]$ mvn compile

One properties files is created per interface annotated with @MessageBundle or @MessagelLogger.
The new files are created in a subdirectory corresponding to the Java package that each interface is
declared in.

Each new file is named using the following syntax where InterfaceName is the name of the interface
that this file was generated for: InterfaceName.i18n_locale_ COUNTRY_VARIANT.properties.

These files can now be copied into your project as the basis for new translations.

Report a bug

6.2.3.2. Translate an Internationalized Logger, Exception or Message

Logging and Exception messages defined in interfaces using JBoss Logging Tools can have translations
provided in properties files.

The following procedure shows how to create and use a translation properties file. It is assumed that you
already have a project with one or more interfaces defined for internationalized exceptions or log

messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites

1. You must already have a working Maven project.
2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or interfaces that define internationalized log messages or
exceptions.

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5127-591683+%5BLatest%5D&comment=Title%3A+Generate+New+Translation+Properties+Files+with+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5127-591683+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

4. The project must be configured to generate template translation property files.

Procedure 6.5. Translate an internationalized logger, exception or message

1. Generate the template properties files
Run the mvn compile command to create the template translation properties files.

2. Add the template file to your project
Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files must
be in the same package as the interfaces they are translating.

3. Rename the copied template file
Rename the copy of the template file according to the translation it will contain. E.g.
GreeterLogger.i18n_fr_FR.properties.

4. Translate the contents of the template.
Edit the new translation properties file to contain the appropriate translation.

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

Repeat steps two, three, and four for each translation of each bundle being performed.

RESULT: The project now contains translations for one or more message or logger bundles. Building the
project will generate the appropriate classes to log messages with the supplied translations. It is not
necessary to explicitly invoke methods or supply parameters for specific languages, JBoss Logging
Tools automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

Report a bug
6.2.4. Customizing Internationalized Log Messages

6.2.4.1. Add Message IDs and Project Codes to Log Messages

This task shows how to add message IDs and project codes to internationalized log messages created
using JBoss Logging Tools. A log message must have both a project code and message ID for them to
be displayed in the log. If a message does not have both a project code and a message ID, then neither is
displayed.

Refer to the logging-tools quick start for a complete example.

Prerequisites

1. You must already have a project with internationalized log messages. Refer to Section 6.2.2.1,
“Create Internationalized Log Messages”.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4901-591677+%5BLatest%5D&comment=Title%3A+Translate+an+Internationalized+Logger%2C+Exception+or+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4901-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

Procedure 6.6. Add message IDs and Project Codes to Log Messages

1. Specify the project code for the interface.
Specify the project code using the projectCode attribute of the @MessageLogger annotation
attached to a custom logger interface. All messages that are defined in the interface will use
that project code.

@MessageLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasicLogger

{
}

2. Specify Message IDs
Specify a message ID for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

@LogMessage
@Message(id=43, value = "Customer query failed, Database not available.") void
customerQueryFailDBClosed();

The log messages that have both a message ID and project code associated with them will prepend
these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4) ACCNTS000043:
Customer query failed, Database not available.

Report a bug

6.2.4.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the level attribute of the @LogMessage annotation attached to the
logging method.

Procedure 6.7. Specify the log level for a message

1. Specify level attribute
Add the level attribute to the @LogMessage annotation of the log message method definition.

2. Assign loglevel
Assign the level attribute the value of the log level for this message. The valid values for level
are the six enumerated constants defined in org.jboss.logging.Logger.Level: DEBUG,
ERROR, FATAL, INFO, TRACE, and WARN.

Import org.jboss.logging.Logger.Level;

@LogMessage(level=Level. ERROR)
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

Invoking the logging method in the above sample will produce a log message at the level of ERROR.

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5171-759169+%5BLatest%5D&comment=Title%3A+Add+Message+IDs+and+Project+Codes+to+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5171-759169+22+May+2015+08%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
Customer query failed, Database not available.

Report a bug

6.2.4.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Procedure 6.8. Customize log messages with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message
References can use explicit or ordinary indexes.

o To use ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

o To use explicit indexes, insert the characters %{#$}s in the message, where #indicates the
number of the parameter you wish to appear.

IMPORTANT

Using explicit indexes allows the parameter references in the message to be in a different
order than they are defined in the method. This is important for translated messages
which may require different ordering of parameters.

The number of parameters must match the number of references to the parameters in the specified
message or the code will not compile. A parameter marked with the @Cause annotation is not included
in the number of parameters.

Example 6.1. Message parameters using ordinary indexes

@Message(id=2, value="Customer query failed, customerid:%s, user:%s")

@LogMessage(level=Logger.Level. DEBUG)
void customerLookupFailed(Long customerid, String username);

Example 6.2. Message parameters using explicit indexes

@Message(id=2, value="Customer query failed, user:%2%$s, customerid:%1$s")

@LogMessage(level=Logger.Level. DEBUG)
void customerLookupFailed(Long customerid, String username);

Report a bug

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5174-591685+%5BLatest%5D&comment=Title%3A+Specify+the+Log+Level+for+a+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5174-591685+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5172-745775+%5BLatest%5D&comment=Title%3A+Customize+Log+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5172-745775+04+Mar+2015+01%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.2.4.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of
the message. This parameter must be of the type Throwable or any of its sub-classes and is marked
with the @Cause annotation. This parameter cannot be referenced in the log message like other
parameters and is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to
indicate the "causing” exception. It is assumed that you have already created internationalized logging
messages to which you want to add this functionality.

Procedure 6.9. Specify an exception as the cause of alog message

1. Add the parameter
Add a parameter of the type Throwable or a sub-class to the method.

@LogMessage
@Message(id=404, value="Loading configuration failed. Config file:%s")
void loadConfigFailed(Exception ex, File file);

2. Add the annotation
Add the @Cause annotation to the parameter.

import org.jboss.logging.Cause

@LogMessage
@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

3. Invoke the method
When the method is invoked in your code, an object of the correct type must be passed and will
be displayed after the log message.

try
{

confFile=new File(filename);
props.load(new FilelnputStream(confFile));

}

catch(Exception ex) /in case properties file cannot be read

{
ConfigLogger.LOGGER.loadConfigFailed(ex, filename);

}

Below is the output of the above code samples if the code threw an exception of type
FileNotFoundException.

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3) Loading configuration
failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file or directory)

at java.io.FilelnputStream.open(Native Method)

at java.io.FilelnputStream.<init>(FileInputStream.java:120)

at com.company.app.demo.Main.openCustomProperties(Main.java:70)

at com.company.app.Main.go(Main.java:53)

at com.company.app.Main.main(Main.java:43)

107

Development Guide
Report a bug

6.2.5. Customizing Internationalized Exceptions

6.2.5.1. Add Message IDs and Project Codes to Exception Messages

The following procedure shows the steps required to add message IDs and project codes to
internationalized Exception messages created using JBoss Logging Tools.

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference of all the
exception messages for an application so that someone can lookup the meaning of an exception
message written in language that they do not understand.

Prerequisites

1. You must already have a project with internationalized exceptions. Refer to Section 6.2.2.3,
“Create Internationalized Exceptions”.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Procedure 6.10. Add Message IDs and Project Codes to Exception Messages

1. Specify a project code
Specify the project code using the projectCode attribute of the @MessageBundle annotation
attached to a exception bundle interface. All messages that are defined in the interface will use
that project code.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);

}

2. Specify message IDs
Specify a message ID for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example 6.3. Creating internationalized exceptions

This exception bundle interface has the project code of ACCTS, with a single exception method with
the ID of 143.

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5175-675496+%5BLatest%5D&comment=Title%3A+Specify+an+Exception+as+the+Cause+of+a+Log+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5175-675496+23+Jun+2014+14%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS = Messages.getBundle(ExceptionBundle.class);

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

}

The exception object can be obtained and thrown using the following code.

I throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

This would display an exception message like the following:

Exception in thread "main" java.io.lOException: ACCTS000143: The config file could not be
opened.

at com.company.accounts.Main.openCustomProperties(Main.java:78)

at com.company.accounts.Main.go(Main.java:53)

at com.company.accounts.Main.main(Main.java:43)

Report a bug

6.2.5.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional information
to be displayed in the exception message. Where the parameters appear in the exception message is
specified in the message itself using either explicit or ordinary indexing.

The following procedure shows the steps required to use method parameters to customize method
exceptions.

Procedure 6.11. Customize an exception message with parameters

1. Add parameters to method definition

Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the exception message
References can use explicit or ordinary indexes.

o To use ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

o To use explicit indexes, insert the characters %{#$}s in the message where #ndicates the
number of the parameter which you wish to appear.

Using explicit indexes allows the parameter references in the message to be in a different order

than they are defined in the method. This is important for translated messages which may
require different ordering of parameters.

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5191-759421+%5BLatest%5D&comment=Title%3A+Add+Message+IDs+and+Project+Codes+to+Exception+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5191-759421+26+May+2015+13%3A09+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

IMPORTANT

The number of parameters must match the number of references to the parameters in
the specified message or the code will not compile. A parameter marked with the
@Cause annotation is not included in the number of parameters.

Example 6.4. Using ordinary indexes

@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

Example 6.5. Using explicit indexes

@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

Report a bug

6.2.5.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter with
@Cause. This parameter is used to pass the causing exception. This parameter cannot be referenced in
the exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause
parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

Procedure 6.12. Specify one exception as the cause of another exception

1. Add the parameter
Add the a parameter of the type Throwable or a sub-class to the method.

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(Throwable cause, String msg);

2. Add the annotation
Add the @Cause annotation to the parameter.

import org.jboss.logging.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(@Cause Throwable cause, String msg);

3. Invoke the method

Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block using the caught exception as the cause.

110

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5195-745772+%5BLatest%5D&comment=Title%3A+Customize+Exception+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5195-745772+04+Mar+2015+01%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

try
{

}

catch(Exception ex)

{
throw ExceptionBundle.EXCEPTIONS.calculationError(

ex, "calculating payment due per day");

Example 6.6. Specify one exception as the cause of another exception

This exception bundle defines a single method that returns an exception of type
ArithmeticException.

@MessageBundle(projectCode = "TPS")
interface CalcExceptionBundle

{
CalcExceptionBundle EXCEPTIONS = Messages.getBundle(CalcExceptionBundle.class);

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calcError(@Cause Throwable cause, String value);

}

This code snippet performs an operation that throws an exception because it attempts to divide an
integer by zero. The exception is caught and a new exception is created using the first one as the
cause.

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;

try
{

amountPerDay = totalDue/daysToPay;

}
catch (Exception ex)
{
throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per day");

}

This is what the exception message looks like:

Exception in thread "main" java.lang.ArithmeticException: TPS000328: Error calculating:
payments per day.

at com.company.accounts.Main.go(Main.java:58)

at com.company.accounts.Main.main(Main.java:43)

Caused by: java.lang.ArithmeticException: / by zero

at com.company.accounts.Main.go(Main.java:54)

... T more

Report a bug

m

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5206-591686+%5BLatest%5D&comment=Title%3A+Specify+One+Exception+as+the+Cause+of+Another+Exception%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5206-591686+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

6.2.6. Reference

6.2.6.1. JBoss Logging Tools Maven Configuration

To build a Maven project that uses JBoss Logging Tools for internationalization you must make the
following changes to the project's configuration in the pom.xml file.

Refer to the logging-tools quick start for an example of a complete working pom.xml file.

1. JBoss Maven Repository must be enabled for the project. Refer to Section 2.3.2, “Configure the
JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The Maven dependencies for jboss-logging and jboss-logging-processor must be added.
Both of dependencies are available in JBoss EAP 6 so the scope element of each can be set to
provided as shown.

<dependency>
<groupld>org.jboss.logging</groupld>
<artifactld>jboss-logging-processor</artifactid>
<version>1.0.0.Final</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jboss.logging</groupld>
<artifactld>jboss-logging</artifactid>
<version>3.1.0.GA</version>
<scope>provided</scope>
</dependency>

3. The maven-compiler-plugin must be at least version 2.2 and be configured for target and
generated sources of 1.6.

<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactid>
<version>2.3.2</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>

Report a bug

6.2.6.2. Translation Property File Format

The property files used for translations of messages in JBoss Logging Tools are standard Java property
files. The format of the file is the simple line-oriented, key=value pair format described in the
documentation for the java.util.Properties class,
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.

The file name format has the following format:

12

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4896-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Maven+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4896-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

I InterfaceName.i18n_locale_ COUNTRY_VARIANT .properties

e [InterfaceName is the name of the interface that the translations apply to.
e Jocale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

e Jocale and COUNTRY specify the language and country using the ISO-639 and ISO-3166
Language and Country codes respectively. COUNTRY is optional.

o VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Example 6.7. Sample Translation Properties File

File name: GreeterService.i18n_fr_FR_POSIX.properties.

Message: Hello message sent.

Level: Logger.Level.INFO
logHelloMessageSent=Bonjour message envoyé.

Report a bug

6.2.6.3. JBoss Logging Tools Annotations Reference

The following annotations are defined in JBoss Logging for use with internationalization and localization
of log messages, strings, and exceptions.

Table 6.1. JBoss Logging Tools Annotations

Annotation Target Description Attributes

@MessageBundle Interface Defines the interface as a projectCode
Message Bundle.

@MessagelLogger Interface Defines the interface as a projectCode
Message Logger.

@Message Method Can be used in Message Bundles value, id
and Message Loggers. In a
Message Logger it defines a
method as being a localized
logger. In a Message Bundle it
defines the method as being one
that returns a localized String or
Exception object.

@LogMessage Method Defines a method in a Message level (default
Logger as being a logging INFO)
method.

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+6723-591752+%5BLatest%5D&comment=Title%3A+Translation+Property+File+Format%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6723-591752+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Annotation Target Description Attributes

@Cause Parameter Defines a parameter as being one -
that passes an Exception as the

cause of either a Log message or
another Exception.

@Param Parameter Defines a parameter as being one -
that is passed to the constructor
of the Exception.

Report a bug

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4895-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Annotations+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4895-591677+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 7. REMOTE JNDI LOOKUP

CHAPTER 7. REMOTE JNDI LOOKUP

7.1. REGISTERING OBJECTS TO JNDI

The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows Java
software clients to discover and look up objects using a name. To look up an object, you must first
register that object to JNDI using the java:jboss/exported context.

The following is an example of how to register a JMS queue to JNDI in the messaging subsystem so
that it can be looked up by remote JNDI clients.

I java:jboss/exported/jms/queue/myTestQueue

Remote JUNDI clients can then look up the object using the above name; however, it is not necessary to
specify the java:jboss/exported/ prefix when looking up a remote client. The remote JNDI clients can
look up the remote object up using the following name.

jms/queue/myTestQueue

<hornetg-server>

<jms-destinations>
<jms-queue name="myTestQueue">
<entry name="java:jboss/exported/jms/queue/myTestQueue"/>
</jms-queue>
</jms-destinations>
</hornetg-server>

<subsystem xmlns="urn:jposs:domain:messaging:1.4">
</subsystem>

| Example 7.1. Example of Standalone Server JMS Queue Configuration

Report a bug

7.2. CONFIGURING A REMOTE JUNDI CLIENT

Remote JNDI clients can look up and connect to objects by name using JNDI. The client must have
jboss-client.jar on its class path.

The following example shows how to look up the myTestQueue JMS queue from a remote JNDI client:

properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
properties.put(Context. PROVIDER_URL, "remote://<hostname>:4447");
context = new InitialContext(properties);

Properties properties = new Properties();
Queue myTestQueue = (Queue) context.lookup("jms/queue/myTestQueue”);

| Example 7.2. Example Remote JNDI Lookup

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44408-778566+%5BLatest%5D&comment=Title%3A+Registering+Objects+to+JNDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44408-778566+11+Jul+2016+08%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Report a bug

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44409-778567+%5BLatest%5D&comment=Title%3A+Configuring+a+Remote+JNDI+Client%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44409-778567+11+Jul+2016+08%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

CHAPTER 8. ENTERPRISE JAVABEANS

8.1. INTRODUCTION

8.1.1. Overview of Enterprise JavaBeans

Enterprise JavaBeans (EJB) 3.1is an API for developing distributed, transactional, secure and portable
Java EE applications through the use of server-side components called Enterprise Beans. Enterprise
Beans implement the business logic of an application in a decoupled manner that encourages reuse.
Enterprise JavaBeans 3.1is documented as the Java EE specification JSR-318.

JBoss EAP 6 has full support for applications built using the Enterprise JavaBeans 3.1 specification.

Report a bug

8.1.2. EJB 3.1 Feature Set

The following features are supported in EJB 3.1
® Session Beans
® Message Driven Beans
® No-interface views
® |ocalinterfaces
® remote interfaces
o JAX-WS web services
® JAX-RS web services
® Timer Service
® Asynchronous Calls
® |nterceptors
® RMI/IIOP interoperability
® Transaction support
® Security
® Embeddable API

The following features are supported in EJB 3.1 but are proposed for "pruning”. This means that these
features may become optional in Java EE 7.

® Entity Beans (container and bean-managed persistence)
® EJUB 2.1Entity Bean client views

® [JB Query Language (EJB QL)

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4525-591667+%5BLatest%5D&comment=Title%3A+Overview+of+Enterprise+JavaBeans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4525-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

® JAX-RPC based Web Services (endpoints and client views)

Report a bug

8.1.3. EJB 3.1Lite

EJB Lite is a sub-set of the EJB 3.1 specification. It provides a simpler version of the full EJB 3.1
specification as part of the Java EE 6 web profile.

EJB Lite simplifies the implementation of business logic in web applications with enterprise beans by:
1. Only supporting the features that make sense for web-applications, and
2. allowing EJBs to be deployed in the same WAR file as a web-application.

Report a bug

8.1.4. EJB 3.1Lite Features

EJB Lite includes the following features:
® Stateless, stateful, and singleton session beans
® | ocal business interfaces and "no interface" beans
® |nterceptors
® Container-managed and bean-managed transactions
® Declarative and programmatic security
® Embeddable API
The following features of EJB 3.1 are specifically not included:
® Remote interfaces
® RMI-IIOP Interoperability
o JAX-WS Web Service Endpoints
® [JB Timer Service
® Asynchronous session bean invocations
® Message-driven beans

Report a bug

8.1.5. Enterprise Beans

Enterprise beans are server-side application components as defined in the Enterprise JavaBeans (EJB)
3.1specification, JSR-318. Enterprise beans are designed for the implementation of application business
logic in a decoupled manner to encourage reuse.

Enterprise beans are written as Java classes and annotated with the appropriate EJB annotations. They

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4533-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Feature+Set%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4533-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4529-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Lite%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4529-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4531-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Lite+Features%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4531-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

can be deployed to the application server in their own archive (a JAR file) or be deployed as part of a
Java EE application. The application server manages the lifecycle of each enterprise bean and provides
services to them such as security, transactions, and concurrency management.

An enterprise bean can also define any number of business interfaces. Business interfaces provide
greater control over which of the bean's methods are available to clients and can also allow access to

clients running in remote JVMs.

There are three types of Enterprise Bean: Session beans, Message-driven beans and Entity beans.

IMPORTANT

Entity beans are now deprecated in EJB 3.1 and Red Hat recommends the use of JPA
entities instead. Red Hat only recommends the use of Entity beans for backwards
compatibility with legacy systems.

Report a bug

8.1.6. Overview of Writing Enterprise Beans

Enterprise beans are server-side components designed to encapsulate business logic in a manner
decoupled from any one specific application client. By implementing your business logic within
enterprise beans you will be able to reuse those beans in multiple applications.

Enterprise beans are written as annotated Java classes and do not have to implement any specific EJB
interfaces or be sub-classed from any EJB super classes to be considered an enterprise bean.

EJB 3.1 enterprise beans are packaged and deployed in Java archive (JAR) files. An enterprise bean
JAR file can be deployed to your application server, or included in an enterprise archive (EAR) file and
deployed with that application. It is also possible to deploy enterprise beans in a WAR file along side a
web application.

Report a bug
8.1.7. Session Bean Business Interfaces

8.1.7.1. Enterprise Bean Business Interfaces

An EJB business interface is a Java interface written by the bean developer which provides declarations
of the public methods of a session bean that are available for clients. Session beans can implement any
number of interfaces including none (a "no-interface" bean).

Business interfaces can be declared as local or remote interfaces but not both.

Report a bug

8.1.7.2. EJB Local Business Interfaces

An EJB local business interface declares the methods which are available when the bean and the client
are in the same JVM. When a session bean implements a local business interface only the methods
declared in that interface will be available to clients.

Report a bug

19

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5089-591681+%5BLatest%5D&comment=Title%3A+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5089-591681+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5090-626311+%5BLatest%5D&comment=Title%3A+Overview+of+Writing+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5090-626311+31+Mar+2014+01%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5096-591681+%5BLatest%5D&comment=Title%3A+Enterprise+Bean+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5096-591681+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5354-591693+%5BLatest%5D&comment=Title%3A+EJB+Local+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5354-591693+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

8.1.7.3. EJB Remote Business Interfaces

An EJB remote business interface declares the methods which are available to remote clients. Remote
access to a session bean that implements a remote interface is automatically provided by the EJB
container.

A remote client is any client running in a different JVM and can include desktop applications as well as
web applications, services and enterprise beans deployed to a different application server.

Local clients can access the methods exposed by a remote business interface.

Report a bug

8.1.7.4. EJB No-interface Beans

A session bean that does not implement any business interfaces is called a no-interface bean. All of the
public methods of no-interface beans are accessible to local clients.

A session bean that implements a business interface can also be written to expose a "no-interface" view.

Report a bug

8.2. CREATING ENTERPRISE BEAN PROJECTS

8.2.1. Create an EJB Archive Project Using Red Hat JBoss Developer Studio

This task describes how to create an Enterprise JavaBeans (EJB) project in Red Hat JBoss Developer
Studio.

Prerequisites

® Aserver and server runtime for JBoss EAP 6 has been set up. See Section 1.3.1.5, “Add the
JBoss EAP Server Using Define New Server” .

Procedure 8.1. Create an EJB Project in Red Hat JBoss Developer Studio

1. Create new project
To open the New EJB Project wizard, navigate to the File menu, select New, and then EJB
Project.

120

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5355-741424+%5BLatest%5D&comment=Title%3A+EJB+Remote+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5355-741424+05+Feb+2015+01%3A01+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5356-591693+%5BLatest%5D&comment=Title%3A+EJB+No-interface+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5356-591693+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

EJB Project

New EJB Project

Create an EJB Project and add it to a new or existing Enterprise Application.

[~

Project name:

‘Project location
[+ Use default location

Location: |fhomefuaernamefworkspace

‘Target runtime

|JBoss EAP 6.1+ Runtime

-EJB module version

3.1

‘Configuration

| Default Configuration for JBoss EAP 6.1+ Runtime

A good starting point for working with JBoss EAP 6.1+ Runtime runtime. Additional
facets can later be installed to add new functionality to the project.

‘EAR membership
" Add project to an EAR

EAR project name: |EAR

" | | Mew Project...

“Working sets

" Add project to working sets

Woaorking sets:

i l | Select... |

k

@ < Back

MNext =

Figure 8.1. New EJB Project wizard

2. Specify Details
Supply the following details:

o Project name.

121

Development Guide

As well as the being the name of the project that appears in Red Hat JBoss Developer
Studio this is also the default filename for the deployed JAR file.

o Project location.

The directory where the project's files will be saved. The default is a directory in the current
workspace.

o Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

o EJB module version. This is the version of the EJB specification that your enterprise beans
will comply with. Red Hat recommends using 3.1.

o Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Java Build Configuration
This screen allows you to customize the directories will contain Java source files and the
directory where the built output is placed.

Leave this configuration unchanged and click Next.

4. EJB Module settings
Check the Generate ejb-jar.xml deployment descriptor checkbox if a deployment descriptor
is required. The deployment descriptor is optional in EJB 3.1 and can be added later if required.

Click Finish and the project is created and will be displayed in the Project Explorer.

122

CHAPTER 8. ENTERPRISE JAVABEANS

File Edit Navigate Search Project Run Window He

| rav s o | Brev | 0|
r% Project Explorer 32 - = Type Hieramhﬂ =g
= ~

- = payment-arrangments
< (a1 Deployment Descriptor: payment-arrangments
[Entity Beans (1.x-2.x)
[Message-Driven Beans

L@ Session Beans
= A JAX-WS Web Services
(4% Service Endpoint Interfaces
= Web Services
- & ejbModule
= = META-INF
¥ ejb-jar.xml
MANIFEST.MF
D =4 JRE System Library [java-1.6.0-openjdk-1.6.0.0.x 8¢
P =4 JBoss Enterprise Application Platform 6.x Runtime
=i EAR Libraries
P = build

Figure 8.2. Newly created EJB Project in the Project Explorer

. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking on the server you want to deploy the built
artifact to in the server tab, and select "Add and Remove".

Select the resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

123

Development Guide

Add and Remove

Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

—

Add All ==

If server is started, publish changes immediately

@ < Bac Next = Cancel

Finish

Figure 8.3. Add and Remove dialog

Result

You now have an EJB Project in Red Hat JBoss Developer Studio that can build and deploy to the

specified server.

If no enterprise beans are added to the project then Red Hat JBoss Developer Studio will display the
warning "An EJB module must contain one or more enterprise beans." This warning will disappear once

one or more enterprise beans have been added to the project.

Report a bug

8.2.2. Create an EJB Archive Project in Maven

This task demonstrates how to create a project using Maven that contains one or more enterprise beans

packaged in a JAR file.

Prerequisites:
® Maven is already installed.

® You understand the basic usage of Maven.

124

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5385-744622+%5BLatest%5D&comment=Title%3A+Create+an+EJB+Archive+Project+Using+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5385-744622+24+Feb+2015+14%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

Procedure 8.2. Create an EJB Archive project in Maven

1. Create the Maven project
An EJB project can be created using Maven's archetype system and the ejb-javaee6 archetype.
To do this run the mvn command with parameters as shown:

mvn archetype:generate -DarchetypeGroupld=org.codehaus.mojo.archetypes -
DarchetypeAtrtifactld=ejb-javaee6

Maven will prompt you for the groupld, artifactld, version and package for your project.

[localhost]$ mvn archetype:generate -DarchetypeGroupld=org.codehaus.mojo.archetypes -
DarchetypeAtrtifactld=ejb-javaee6

[INFQO] Scanning for projects...

[INFO]

[INFO] --

[INFQO] Building Maven Stub Project (No POM) 1

[INFO] --

[INFO]

[INFO] >>> maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom >>>
[INFO]

[INFO] <<< maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom <<<
[INFO]

[INFQ] --- maven-archetype-plugin:2.0:generate (default-cli) @ standalone-pom ---
[INFO] Generating project in Interactive mode

[INFO] Archetype [org.codehaus.mojo.archetypes:ejb-javaee6:1.5] found in catalog remote
Define value for property 'groupld’: : com.shinysparkly

Define value for property 'artifactld': : payment-arrangments

Define value for property 'version: 1.0-SNAPSHOT: :

Define value for property 'package’: com.shinysparkly: :

Confirm properties configuration:

groupld: com.company

artifactld: payment-arrangments

version: 1.0-SNAPSHOT

package: com.company.collections

Y::

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 32.440s

[INFO] Finished at: Mon Oct 31 10:11:12 EST 2011

[INFO] Final Memory: 7M/81M

[INFO] --

[localhost]$

2. Add your enterprise beans
Write your enterprise beans and add them to the project under the src/main/java directory in
the appropriate sub-directory for the bean's package.

3. Build the project
To build the project, run the mvn package command in the same directory as the pom.xml file.
This will compile the Java classes and package the JAR file. The built JAR file is named
artifactld-version.jar and is placed in the target/ directory.

125

Development Guide

RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain
enterprise beans and the JAR file can be deployed to an application server.

Report a bug

8.2.3. Create an EAR Project containing an EJB Project
This task describes how to create a new Enterprise Archive (EAR) project in Red Hat JBoss Developer
Studio that contains an EJB Project.
Prerequisites
® Aserver and server runtime for JBoss EAP 6 has been set up. See Section 1.3.1.5, “Add the
JBoss EAP Server Using Define New Server”.
Procedure 8.3. Create an EAR Project containing an EJB Project

1. Open the New EAR Application Project Wizard
Navigate to the File menu, select New, then Project and the New Project wizard appears.
Select Java EE/Enterprise Application Project and click Next.

126

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5099-591683+%5BLatest%5D&comment=Title%3A+Create+an+EJB+Archive+Project+in+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5099-591683+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

New EAR Application Project

EAR Application Project
Create a EAR application. C r

Drainct nammone “ |

/home/username/workspace
‘Project location

¥ Use default location

Lecation: |fh::nmefusernamea’workspace | [—rreeee. '

‘Target runtime

|JBoss EAP 6.1+ Runtime hod | | MNew Runtime... |
‘EAR wersion

|6.o v |
‘Configuration

| Default Configuration for JBoss EAP 6.1+ Runtime b | | Medify... |

A good starting point for working with JBoss EAP 6.1+ Runtime runtime. Additional
facets can later be installed to add new functionality to the project.

‘Working sets

| Add project to working sets

Woaorking sets: " | | Select...

@ < Back ” Mext = | | Cancel | | Finish

Figure 8.4. New EAR Application Project Wizard

2. Supply details
Supply the following details:

o Project name.

As well as the being the name of the project that appears in Red Hat JBoss Developer
Studio this is also the default filename for the deployed EAR file.

o Project location.

127

Development Guide

128

The directory where the project's files will be saved. The default is a directory in the current
workspace.

Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

EAR version.

This is the version of the Java Enterprise Edition specification that your project will comply
with. Red Hat recommends using 6.

Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Add a new EJB Module
New Modules can be added from the Enterprise Application page of the wizard. To add a new
EJB Project as a module follow the steps below:

a. Add new EJB Module

Click New Module, uncheck Create Default Modules checkbox, select the Enterprise Java
Bean and click Next. The New EJB Project wizard appears.

b. Create EJB Project

New EJB Project wizard is the same as the wizard used to create new standalone EJB
Projects and is described in Section 8.2.1, “Create an EJB Archive Project Using Red Hat
JBoss Developer Studio”.

The minimal details required to create the project are:

B Project name

B Target Runtime

® EJB Module version

m Configuration

All the other steps of the wizard are optional. Click Finish to complete creating the EJB
Project.

The newly created EJB project is listed in the Java EE module dependencies and the checkbox
is checked.

. Optional: add an application.xml deployment descriptor
Check the Generate application.xml deployment descriptor checkbox if one is required.

. Click Finish
Two new project will appear, the EJB project and the EAR project

. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking in the Servers tab on the server you want
to deploy the built artifact to in the server tab, and select Add and Remove.

CHAPTER 8. ENTERPRISE JAVABEANS

Select the EAR resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

Add and Remove
Modify the resources that are configured on the server =]

Move resources to the right to configure them on the server

Available: Configured:

=

X O Yo ila

(& CollectionsAppE|B

=< Remove l

<<= Remove All

If server is started, publish changes immediately

@ < Ba Next = Cancel l [Finish

Figure 8.5. Add and Remove dialog

Result

You now have an Enterprise Application Project with a member EJB Project. This will build and deploy to
the specified server as a single EAR deployment containing an EJB subdeployment.

Report a bug

8.2.4. Add a Deployment Descriptor to an EJB Project

An EJB deployment descriptor can be added to an EJB project that was created without one. To do
this, follow the procedure below.

Perquisites:

® You have a EJB Project in Red Hat JBoss Developer Studio to which you want to add an EJB
deployment descriptor.

Procedure 8.4. Add an Deployment Descriptor to an EJB Project

129

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5098-744621+%5BLatest%5D&comment=Title%3A+Create+an+EAR+Project+containing+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5098-744621+24+Feb+2015+14%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

1. Open the Project
Open the project in Red Hat JBoss Developer Studio.

2. Add Deployment Descriptor
Right-click on the Deployment Descriptor folder in the project view and select Generate
Deployment Descriptor Stub.

B
[+ Project Explorer £2 g % ¥ =0

v %4 payment-arrangement

b Deployment Descriptor: payment-arrangement

[A JAX-WS Web Services >
= [# ejbModule Import...
v (= META-INF Export >
MANIFEST.MF Reifresh F5
P =l JRE System Library [java-1.6.0-sun-1.6.0.29.x8 Close Project
I =i JBoss Enterprise Application Platform 6.x Runt Close Unrelated Projects
=, EAR Libraries
P = build
Debug As >
Profile As >

Figure 8.6. Adding a Deployment Descriptor

The new file, ejb-jar.xml, is created in ejbModule/META-INF/. Double-clicking on the Deployment
Descriptor folder in the project view will also open this file.

Report a bug

8.3. SESSION BEANS

8.3.1. Session Beans

Session Beans are Enterprise Beans that encapsulate a set of related business processes or tasks and
are injected into the classes that request them. There are three types of session bean: stateless,
stateful, and singleton.

Report a bug

8.3.2. Stateless Session Beans

Stateless session beans are the simplest yet most widely used type of session bean. They provide
business methods to client applications but do not maintain any state between method calls. Each
method is a complete task that does not rely on any shared state within that session bean. Because
there is no state, the application server is not required to ensure that each method call is performed on
the same instance. This makes stateless session beans very efficient and scalable.

Report a bug

8.3.3. Stateful Session Beans

130

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5386-681237+%5BLatest%5D&comment=Title%3A+Add+a+Deployment+Descriptor+to+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5386-681237+03+Jul+2014+10%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4527-591667+%5BLatest%5D&comment=Title%3A+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4527-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5236-591689+%5BLatest%5D&comment=Title%3A+Stateless+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5236-591689+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

Stateful session beans are Enterprise Beans that provide business methods to client applications and
maintain conversational state with the client. They should be used for tasks that must be done in several
steps (method calls), each of which relies on the state of the previous step being maintained. The
application server ensures that each client receives the same instance of a stateful session bean for
each method call.

Report a bug

8.3.4. Singleton Session Beans

Singleton session beans are session beans that are instantiated once per application and every client
request for a singleton bean goes to the same instance. Singleton beans are an implementation of the
Singleton Design Pattern as described in the book Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; published by
Addison-Wesley in 1994.

Singleton beans provide the smallest memory footprint of all the session bean types but must be
designed as thread-safe. EJB 3.1 provides container-managed concurrency (CMC) to allow developers
to implement thread safe singleton beans easily. However singleton beans can also be written using
traditional multi-threaded code (bean-managed concurrency or BMC) if CMC does not provide enough
flexibility.

Report a bug

8.3.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

Red Hat JBoss Developer Studio has several wizards that can be used to quickly create enterprise bean
classes. The following procedure shows how to use the Red Hat JBoss Developer Studio wizards to add
a session bean to a project.

Prerequisites:

® You have a EJB or Dynamic Web Project in Red Hat JBoss Developer Studio to which you want
to add one or more session beans.

Procedure 8.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

1. Open the Project
Open the project in Red Hat JBoss Developer Studio.

2. Open the "Create EJB 3.x Session Bean" wizard
To open the Create EJB 3.x Session Bean wizard, navigate to the File menu, select New, and
then Session Bean (EJB 3.x).

131

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5237-759201+%5BLatest%5D&comment=Title%3A+Stateful+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5237-759201+24+May+2015+19%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5238-591689+%5BLatest%5D&comment=Title%3A+Singleton+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5238-591689+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Create EJB 3.x Session Bean =
Specify class file destination. LQ
Project: payment-arrangement -

Source folder: |/payment-arrangement/e/bModule | Browse... |
Java package: | |Brﬂﬂ5€...|

Class name:

Superclass: | Browse... |

State type: Stateless

L]

Create business interface

] Remote | |

[] Local | |

| No-interface View

@ Back || Next> || Cancel || Einist

Figure 8.7. Create EJB 3.x Session Bean wizard

3. Specify class information
Supply the following details:

o Project
Verify the correct project is selected.
o Source folder

This is the folder that the Java source files will be created in. This should not usually need to
be changed.

o Package
Specify the package that the class belongs to.
o Class name

Specify the name of the class that will be the session bean.

132

CHAPTER 8. ENTERPRISE JAVABEANS

o Superclass

The session bean class can inherit from a super class. Specify that here if your session has a
super class.

o State type
Specify the state type of the session bean: stateless, stateful, or singleton.
o Business Interfaces

By default the No-interface box is checked so no interfaces will be created. Check the
boxes for the interfaces you wish to define and adjust the names if necessary.

Remember that enterprise beans in a web archive (WAR) only support EJB 3.1 Lite and this
does not include remote business interfaces.

Click Next.

4. Session Bean Specific Information
You can enter in additional information here to further customize the session bean. It is not
required to change any of the information here.

Items that you can change are:

o Beanname.

o Mapped name.

o Transaction type (Container managed or Bean managed).

o Additional interfaces can be supplied that the bean must implement.

© You can also specify EJB 2.x Home and Component interfaces if required.

5. Finish
Click Finish and the new session bean will be created and added to the project. The files for any
new business interfaces will also be created if they were specified.

133

Development Guide

File Edit Source Refactor

& | % Oy Qv |G e | P4

Navigate Search Project Run Window Help

=

[?5 Project Exp 22 . T2 Type Hiera] =0

B § i

o
= & payment-arrangement

b (@ Deployment Descriptor: payment-al
b A JAX-WS Web Services
~ @ejbModule

~ f com.company.collections

P [J] InterestCalculatorLocal.java

P = META-INF
P =i JRE System Library [java-1.6.0-open
P =i)Boss Enterprise Application Platforr

=i EAR Libraries
P = build

[1] InterestCalculator.java 3

package com.company.collections;

@ import javax.ejb.LocalBean;[]

=1 Jf't'"
* Session Bean implementation class InterestCalculator
*f
@Stateless
@LocalBean
public class InterestCalculator implements InterestCalculatorLocal {

= ‘i**
* Default constructor.
*
= public InterestCalculator() {
// TODD Auto-generated constructor stub
1

Figure 8.8. New Session Bean in Red Hat JBoss Developer Studio

Report a bug

8.4. MESSAGE-DRIVEN BEANS

8.4.1. Message-Driven Beans

Message-driven Beans (MDBs) provide an event driven model for application development. The
methods of MDBs are not injected into or invoked from client code but are triggered by the receipt of
messages from a messaging service such as a Java Messaging Service (JMS) server. The Java EE 6
specification requires that JMS is supported but other messaging systems can be supported as well.

Report a bug

8.4.2. Resource Adapters

A resource adapter is a deployable Java EE component that provides communication between a Java
EE application and an Enterprise Information System (EIS) using the Java Connector Architecture
(JCA) specification. A resource adapter is often provided by EIS vendors to allow easy integration of
their products with Java EE applications.

An Enterprise Information System can be any other software system within an organization. Examples
include Enterprise Resource Planning (ERP) systems, database systems, e-mail servers and proprietary

messaging systems.

A resource adapter is packaged in a Resource Adapter Archive (RAR) file which can be deployed to
JBoss EAP 6. A RAR file may also be included in an Enterprise Archive (EAR) deployment.

Report a bug

8.4.3. Create a JMS-based Message-Driven Bean in Red Hat JBoss Developer

Studio

134

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5440-759202+%5BLatest%5D&comment=Title%3A+Add+Session+Beans+to+a+Project+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5440-759202+24+May+2015+19%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4528-591667+%5BLatest%5D&comment=Title%3A+Message-Driven+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4528-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4516-591663+%5BLatest%5D&comment=Title%3A+Resource+Adapters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4516-591663+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

This procedure shows how to add a JMS-based Message-Driven Bean to a project in Red Hat JBoss
Developer Studio. This procedure creates an EJB 3.x Message-Driven Bean that uses annotations.

Prerequisites:
1. You must have an existing project open in Red Hat JBoss Developer Studio.
2. You must know the name and type of the JMS destination that the bean will be listening to.

3. Support for Java Messaging Service (JMS) must be enabled in the JBoss EAP 6 configuration
to which this bean will be deployed.

Procedure 8.6. Add a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio

1. Open theCreate EJB 3.x Message-Driven Bean Wizard
Go to File » New — Other. Select EJB/Message-Driven Bean (EJB 3.x) and click the Next

button.
Create EJB 3.x Message-Driven Bean 2
Specify class file destination. I'_(i
Project: payment-arrangement - l
Source folder: /pay ment-arrangement/ejbModule | Browse... |
Java package: | | Browse... |

Class name:

Superclass: | Browse... |

Destination name:

JMS
Destination type: | Queue ==
@ < Back Cancel

Figure 8.9. Create EJB 3.x Message-Driven Bean Wizard

2. Specify class file destination details
There are three sets of details to specify for the bean class here: Project, Java class, and
message destination.

135

Development Guide

Project

o If multiple projects exist in the Workspace, ensure that the correct one is selected in the
Project menu.

o The folder where the source file for the new bean will be created is ejbModule under the
selected project's directory. Only change this if you have a specific requirement.

Java class

o The required fields are: Java package and class hame.

o Itis not necessary to supply a Superclass unless the business logic of your application
requires it.

Message Destination

These are the details you must supply for a JMS-based Message-Driven Bean:

o Destination name. This is the queue or topic name that contains the messages that the
bean will respond to.

o By default the JMS checkbox is selected. Do not change this.

o Set Destination type to Queue or Topic as required.

Click the Next button.

3. Enter Message-Driven Bean specific information
The default values here are suitable for a JMS-based Message-Driven bean using Container-
managed transactions.

o Change the Transaction type to Bean if the Bean will use Bean-managed transactions.
o Change the Bean name if a different bean name than the class name is required.

o The JMS Message Listener interface will already be listed. You do not need to add or
remove any interfaces unless they are specific to your applications business logic.

o Leave the checkboxes for creating method stubs selected.
Click the Finish button.

Result: The Message-Driven Bean is created with stub methods for the default constructor and the
onMessage() method. A Red Hat JBoss Developer Studio editor window opened with the
corresponding file.

Report a bug

8.4.4. Specifying a Resource Adapter in jboss-ejb3.xml for an MDB
In the jboss-ejb3.xml deployment descriptor you can specify a resource adapter for an MDB to use.
Alternatively, to configure a JBoss EAP 6 server-wide default resource adapter for MDBs, see

Configuring Message-Driven Beans in the Administration and Configuration Guide.

To specify a resource adapter in jboss-ejb3.xml for an MDB, use the following example.

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5094-681244+%5BLatest%5D&comment=Title%3A+Create+a+JMS-based+Message-Driven+Bean+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5094-681244+03+Jul+2014+11%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

xmins:jee="http://java.sun.com/xml/ns/javaee"
xmlns:mdb="urn:resource-adapter-binding">
<jee:assembly-descriptor>
<mdb:resource-adapter-binding>
<jee:ejb-name>MyMDB</jee:ejb-name>
<mdb:resource-adapter-name>MyResourceAdapter.rar</mdb:resource-adapter-name>
</mdb:resource-adapter-binding>
</jee:assembly-descriptor>

<jboss xmins="http://www.jboss.com/xml/ns/javaee"
</jboss>

| Example 8.1. jpboss-ejb3.xml Configuration for an MDB Resource Adapter

For a resource adapter located in an EAR, you must use the following syntax for <mdb:resource-
adapter-name>:

® Foraresource adapter thatis in another EAR:

<mdb:resource-adapter-
name>OtherDeployment.ear#MyResourceAdapter.rar</mdb:resource-adapter-name>

® Foraresource adapter thatis in the same EAR as the MDB, you can omit the EAR name:
I <mdb:resource-adapter-name>#MyResourceAdapter.rar</mdb:resource-adapter-name>

Report a bug

8.4.5. Enable EJB and MDB Property Substitution in an Application

A new feature in Red Hat JBoss Enterprise Application Platform allows you to enable property
substitution in EJBs and MDBs using the @ActivationConfigProperty and @Resource annotations.
Property substitution requires the following configuration and code changes.

® You must enable property substitution in the JBoss EAP server configuration file.

® You must define the system properties in the server configuration file or pass them as
arguments when you start the JBoss EAP server.

® You must modify the code to use the substitution variables.

Procedure 8.7. Implement Property Substitution in an MDB Application

The following code examples are based on the helloworld-mdb quickstart that ships with JBoss EAP
6.3 or later. This topic shows you how to modify that quickstart to enable property substitution.

1. Configure the JBoss EAP server to enable property substitution.
The JBoss EAP server must be configured to enable property substitution. To do this, set the
<annotation-property-replacements attribute in the ee subsystem of the server configuration
file to true.

a. Back up the server configuration file. The helloworld-mdb quickstart example requires the

full profile for a standalone server, so this is the standalone/configuration/standalone-
full.xml file. If you are running your server in a managed domain, this is the

137

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+42008-759203+%5BLatest%5D&comment=Title%3A+Specifying+a+Resource+Adapter+in+%3Cfilename%3Ejboss-ejb3.xml%3C%2Ffilename%3E+for+an+MDB%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42008-759203+24+May+2015+19%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

domain/configuration/domain.xml file.
b. Start the JBoss EAP server with the full profile.
For Linux:
I EAP_HOME/bin/standalone.sh -¢ standalone-full.xml

For Windows:

I EAP_HOMEbin\standalone.bat -¢ standalone-full.xml

c. Launch the Management CLI using the command for your operating system.

For Linux:
I EAP_HOME/bin/jboss-cli.sh --connect
For Windows:

I EAP_HOME\bin\jboss-cli.bat --connect

d. Type the following command to enable annotation property substitution.

I /subsystem=ee:write-attribute(name=annotation-property-replacement,value=true)
e. You should see the following result:

I {"outcome" => "success"}

f. Review the changes to the JBoss EAP server configuration file. The ee subsystem should
now contain the following XML.

<subsystem xmlns="urn:jboss:domain:ee:1.2">
<spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>
<jboss-descriptor-property-replacement>true</jboss-descriptor-property-replacement>
<annotation-property-replacementstrue</annotation-property-replacement>
</subsystem>

2. Define the system properties.
You can specify the system properties in the server configuration file or you can pass them as
command line arguments when you start the JBoss EAP server. System properties defined in
the server configuration file take precedence over those passed on the command line when you
start the server.
o Define the system properties in the server configuration file.

a. Start the JBoss EAP server and Management API as described in the previous step.

b. Use the following command syntax to configure a system property in the JBoss EAP
server:

I /system-property=PROPERTY_NAME:add(value=PROPERTY _VALUE)

138

CHAPTER 8. ENTERPRISE JAVABEANS

For the helloworld-mdb quickstart, we configure the following system properties:

/system-
property=property.helloworldmdb.queue:add(value=java:/queue/HELLOWORLDMDBP
ropQueue)

/system-
property=property.helloworldmdb.topic:add(value=java:/topic/HELLOWORLDMDBProp
Topic)
/system-property=property.connection.factory:add(value=java:/ConnectionFactory)

c. Review the changes to the JBoss EAP server configuration file. The following system
properties should now appear in the after the <extensions>.

<system-properties>

<property name="property.helloworldmdb.queue"
value="java:/queue/HELLOWORLDMDBPropQueue"/>

<property name="property.helloworldmdb.topic"
value="java:/topic/HELLOWORLDMDBPropTopic"/>

<property name="property.connection.factory" value="java:/ConnectionFactory"/>
</system-properties>

o Pass the system properties as arguments on the command line when you start the JBoss
EAP server in the form of -DPROPERTY_NAME=PROPERTY_VALUE. The following is an
example of how to pass the arguments for the system properties defined in the previous
step.

EAP_HOME/bin/standalone.sh -¢ standalone-full.xml -
Dproperty.helloworldmdb.queue=java:/queue/HELLOWORLDMDBPropQueue -
Dproperty.helloworldmdb.topic=java:/topic’HELLOWORLDMDBPropTopic -
Dproperty.connection.factory=java:/ConnectionFactory

3. Modify the code to use the system property substitutions.
Replace hard-coded @ActivationConfigProperty and @Resource annotation values with
substitutions for the newly defined system properties. The following are examples of how to
change the helloworld-mdb quickstart to use the newly defined system property substitutions
within the annotations in the source code.

a. Change the @ActivationConfigProperty destination property value in the
HelloWorldQueueMDB class to use the substitution for the system property. The
@MessageDriven annotation should now look like this:

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {

@ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Queue"),

@ActivationConfigProperty(propertyName = "destination", propertyValue =
"${property.helloworldmdb.queue}"),

@ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =
"Auto-acknowledge") })

b. Change the @ActivationConfigProperty destination property value in the
HelloWorldTopicMDB class to use the substitution for the system property. The
@MessageDriven annotation should now look like this:

I @MessageDriven(name = "HelloWorldQTopicMDB", activationConfig = {

139

Development Guide

@ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Topic"),

@ActivationConfigProperty(propertyName = "destination", propertyValue =
"${property.helloworldmdb.topic}"),

@ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue =
"Auto-acknowledge") })

c. Change the @Resource annotations in the HelloWorldMDBServletClient class to use the
system property substitutions. The code should now look like this:

@Resource(mappedName = "${property.connection.factory}")
private ConnectionFactory connectionFactory;

@Resource(mappedName = "${property.helloworldmdb.queue}")
private Queue queue;

@Resource(mappedName = "${property.helloworldmdb.topic}")
private Topic topic;

d. Modify the hornetqg-jms.xml file to use the system property substitution values.

<?xml version="1.0" encoding="UTF-8"7>
<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
<hornetg-server>
<jms-destinations>
<jms-queue name="HELLOWORLDMDBQueue">
<entry name="${property.helloworldmdb.queue}"/>
</jms-queue>
<jms-topic name="HELLOWORLDMDBTopic">
<entry name="${property.helloworldmdb.topic}"/>
</jms-topic>
</jms-destinations>
</hornetg-server>
</messaging-deployment>

4. Deploy the application. The application will now use the values specified by the system
properties for the @Resource and @ActivationConfigProperty property values.

Report a bug

8.5. INVOKING SESSION BEANS

8.5.1. Invoke a Session Bean Remotely using JNDI

This task describes how to add support to a remote client for the invocation of session beans using JNDI.
The task assumes that the project is being built using Maven.

The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The
quickstart contains projects for both the session beans to deploy and the remote client. The code

samples below are taken from the remote client project.

This task assumes that the session beans do not require authentication.

140

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30840-744610+%5BLatest%5D&comment=Title%3A+Enable+EJB+and+MDB+Property+Substitution+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30840-744610+24+Feb+2015+11%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

'@ WARNING
Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSV1.2 in

all affected packages.

Prerequisites

The following prerequisites must be satisfied before beginning:
® You must already have a Maven project created ready to use.
e Configuration for the JBoss EAP 6 Maven repository has already been added.
® The session beans that you want to invoke are already deployed.
® The deployed session beans implement remote business interfaces.

® The remote business interfaces of the session beans are available as a Maven dependency. If
the remote business interfaces are only available as a JAR file then it is recommended to add
the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the
install:install-file goal for directions, http://maven.apache.org/plugins/maven-install-
plugin/usage.html

® You need to know the hostname and JNDI port of the server hosting the session beans.

To invoke a session bean from a remote client you must first configure the project correctly.

Procedure 8.8. Add Maven Project Configuration for Remote Invocation of Session Beans

1. Add the required project dependencies
The pom.xml for the project must be updated to include the necessary dependencies.
2. Add the jboss-ejb-client.properties file

The JBoss EJB client APl expects to find a file in the root of the project named jboss-ejb-
client.properties that contains the connection information for the JNDI service. Add this file to
the src/main/resources/ directory of your project with the following content.

In the following line, set SSL_ENABLED to true for SSL
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=default

Uncomment the following line to set SSL_STARTTLS to true for SSL

remote.connection.default.connect.options.org.xnio.Options.SSL_STARTTLS=true
remote.connection.default.host=localhost

remote.connection.default.port = 4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS
=false

Add any of the following SASL options if required

#
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS
=false

141

http://maven.apache.org/plugins/maven-install-plugin/usage.html

Development Guide

#
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOPLAINTEXT=f
alse

#
remote.connection.default.connect.options.org.xnio.Options.SASL_DISALLOWED_MECHANIS
MS=JBOSS-LOCAL-USER

Change the host name and port to match your server. 4447 is the default port number. For a
secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS
line. The Remoting interface in the container supports secured and unsecured connections
using the same port.

. Add dependencies for the remote business interfaces

Add the Maven dependencies to the pom.xml for the remote business interfaces of the session
beans.

<dependency>
<groupld>org.jboss.as.quickstarts</groupld>
<artifactld>jboss-ejb-remote-server-side</artifactld>
<type>ejb-client</type>
<version>${project.version}</version>
</dependency>

Now that the project has been configured correctly, you can add the code to access and invoke the
session beans.

Procedure 8.9. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean

142

1. Handle checked exceptions

Two of the methods used in the following code (InitialContext() and lookup()) have a checked
exception of type javax.naming.NamingException. These method calls must either be
enclosed in a try/catch block that catches NamingException or in a method that is declared to
throw NamingException. The ejb-remote quickstart uses the second technique.

. Create a JNDI Context

A UNDI Context object provides the mechanism for requesting resources from the server.
Create a JNDI context using the following code:

final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context. URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
final Context context = new InitialContext(jndiProperties);

The connection properties for the JNDI service are read from the jboss-ejb-client.properties
file.

. Use the JNDI Context's lookup() method to obtain a bean proxy

Invoke the lookup() method of the bean proxy and pass it the JNDI name of the session bean
you require. This will return an object that must be cast to the type of the remote business
interface that contains the methods you want to invoke.

CHAPTER 8. ENTERPRISE JAVABEANS

final RemoteCalculator statelessRemoteCalculator = (RemoteCalculator) context.lookup(
"ejb:/jboss-ejb-remote-server-side//CalculatorBean!" +
RemoteCalculator.class.getName());

Session bean JNDI names are defined using a special syntax. For more information, see
Section 8.8.1, "EJB JNDI Naming Reference” .

4. Invoke methods

Now that you have a proxy bean object you can invoke any of the methods contained in the
remote business interface.

int a = 204;

int b = 340;

System.out.printin("Adding " + a + "and " + b + " via the remote stateless calculator deployed
on the server");

int sum = statelessRemoteCalculator.add(a, b);

System.out.printin("Remote calculator returned sum =" + sum);

The proxy bean passes the method invocation request to the session bean on the server, where
it is executed. The result is returned to the proxy bean which then returns it to the caller. The
communication between the proxy bean and the remote session bean is transparent to the
caller.

You should now be able to configure a Maven project to support invoking session beans on a remote
server and write the code invoke the session beans methods using a proxy bean retrieved from the
server using JNDI.

Report a bug

8.5.2. About EJB Client Contexts

JBoss EAP 6 introduced the EJB client API for managing remote EJB invocations. The JBoss EJB client
APl uses the EJBClientContext, which may be associated with and be used by one or more threads
concurrently. The means an EJBClientContext can potentially contain any number of EJB receivers. An
EJB receiver is a component that knows how to communicate with a server that is capable of handling
the EJB invocation. Typically, EJB remote applications can be classified into the following:

® Aremote client, which runs as a standalone Java application.
® A remote client, which runs within another JBoss EAP 6 instance.

Depending on the type of remote client, from an EJB client API point of view, there can potentially be
more than one EJBClientContext within a JVM.

While standalone applications typically have a single EJBClientContext that may be backed by any
number of EJB receivers, this isn't mandatory. If a standalone application has more than one
EJBClientContext, an EJB client context selector is responsible for returning the appropriate context.

In case of remote clients that run within another JBoss EAP 6 instance, each deployed application will
have a corresponding EJB client context. Whenever that application invokes another EJB, the
corresponding EJB client context is used to find the correct EJB receiver, which then handles the

invocation.

Report a bug

143

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5719-766863+%5BLatest%5D&comment=Title%3A+Invoke+a+Session+Bean+Remotely+using+JNDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5719-766863+05+Aug+2015+11%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14184-592104+%5BLatest%5D&comment=Title%3A+About+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14184-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

8.5.3. Considerations When Using a Single EJB Context

Summary

You must consider your application requirements when using a single EJB client context with standalone
remote clients. For more information about the different types of remote clients, refer to: Section 8.5.2,
“About EJB Client Contexts”.

Typical Process for a Remote Standalone Client with a Single EJB Client Context

A remote standalone client typically has just one EJB client context backed by any number of EJB
receivers. The following is an example of a standalone remote client application:

public class MyApplication {
public static void main(String argsl]) {
final javax.naming.Context ctxOne = new javax.naming.InitialContext();
final MyBeanlInterface beanOne = ctxOne.lookup("ejb:app/module/distinct/beanlinterface");
beanOne.doSomething();

Remote client JNDI lookups are usually backed by a jboss-ejb-client.properties file, which is used to set
up the EJB client context and the EJB receivers. This configuration also includes the security
credentials, which are then used to create the EJB receiver that connects to the JBoss EAP 6 server.
When the above code is invoked, the EJB client API looks for the EJB client context, which is then used
to select the EJB receiver that will receive and process the EJB invocation request. In this case, there is
just the single EJB client context, so that context is used by the above code to invoke the bean. The
procedure to invoke a session bean remotely using JNDI is described in greater detail here: Section 8.5.1,
“Invoke a Session Bean Remotely using JNDI".

Remote Standalone Client Requiring Different Credentials

A user application may want to invoke a bean more than once, but connect to the JBoss EAP 6 server
using different security credentials. The following is an example of a standalone remote client
application that invokes the same bean twice:

public class MyApplication {
public static void main(String argsl]) {
// Use the "foo" security credential connect to the server and invoke this bean instance
final javax.naming.Context ctxOne = new javax.naming.InitialContext();
final MyBeanlnterface beanOne = ctxOne.lookup("ejb:app/module/distinct/beanlinterface");
beanOne.doSomething();

// Use the "bar" security credential to connect to the server and invoke this bean instance
final javax.naming.Context ctxTwo = new javax.naming.InitialContext();

final MyBeanlInterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/beanlinterface");
beanTwo.doSomething();

In this case, the application wants to connect to the same server instance to invoke the EJB hosted on
that server, but wants to use two different credentials while connecting to the server. Because the client
application has a single EJB client context, which can have only one EJB receiver for each server

144

CHAPTER 8. ENTERPRISE JAVABEANS

instance, this means the above code uses just one credential to connect to the server and the code
does not execute as the application expects it to.

Solution

Scoped EJB client contexts offer a solution to this issue. They provide a way to have more control over
the EJB client contexts and their associated JNDI contexts, which are typically used for EJB invocations.
For more information about scoped EJB client contexts, refer to Section 8.5.4, “"Using Scoped EJB
Client Contexts” and Section 8.5.5, “Configure EJBs Using a Scoped EJB Client Context” .

Report a bug

8.5.4. Using Scoped EJB Client Contexts

Summary

To invoke an EJB In earlier versions of JBoss EAP 6, you would typically create a JNDI context and pass
it the PROVIDER_URL, which would point to the target server. Any invocations done on EJB proxies that
were looked up using that JNDI context, would end up on that server. With scoped EJB client contexts,
user applications have control over which EJB receiver is used for a specific invocation.

Use Scoped EJB Client Context in a Remote Standalone Client

Prior to the introduction of scoped EJB client contexts, the context was typically scoped to the client
application. Scoped client contexts now allow the EJB client contexts to be scoped with the JNDI
contexts. The following is an example of a standalone remote client application that invokes the same
bean twice using a scoped EJB client context:

public class MyApplication {
public static void main(String argsl]) {

// Use the "foo" security credential connect to the server and invoke this bean instance

final Properties ejbClientContextPropsOne = getPropsForEJBClientContextOne():

final javax.naming.Context ctxOne = new
javax.naming.InitialContext(ejbClientContextPropsOne);

final MyBeanlnterface beanOne = ctxOne.lookup("ejb:app/module/distinct/beanlinterface");

beanOne.doSomething();

ctxOne.close();

// Use the "bar" security credential to connect to the server and invoke this bean instance

final Properties ejbClientContextPropsTwo = getPropsForEJBClientContextTwo():

final javax.naming.Context ctxTwo = new
javax.naming.InitialContext(ejbClientContextPropsTwo);

final MyBeanlnterface beanTwo = ctxTwo.lookup("ejb:app/module/distinct/beanlinterface");

beanTwo.doSomething();

ctxTwo.close();

}
}

To use the scoped EJB client context, you configure EJB client properties programmatically and pass
the properties on context creation. The properties are the same set of properties that are used in the
standard jboss-ejb-client.properties file. To scope the EJB client context to the JNDI context, you
must also specify the org.jboss.ejb.client.scoped.context property and set its value to true. This
property notifies the EJB client API that it must create an EJB client context, which is backed by EJB
receivers, and that the created context is then scoped or visible only to the JNDI context that created it.

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14185-592104+%5BLatest%5D&comment=Title%3A+Considerations+When+Using+a+Single+EJB+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14185-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Any EJB proxies looked up or invoked using this JNDI context will only know of the EJB client context
associated with this JNDI context. Other JNDI contexts used by the application to lookup and invoke
EJBs will not know about the other scoped EJB client contexts.

JNDI contexts that do not pass the org.jboss.ejb.client.scoped.context property and aren't scoped to
an EJB client context will use the default behavior, which is to use the existing EJB client context that is
typically tied to the entire application.

Scoped EJB client contexts provide user applications with the flexibility that was associated with the
JNP based JNDI invocations in previous versions of JBoss EAP. It provides user applications with more
control over which JNDI context communicates to which server and how it connects to that server.

NOTE

With the scoped context, the underlying resources are no longer handled by the
container or the API, so you must close the InitialContext when it is no longer needed.
When the InitialContext is closed, the resources are released immediately. The proxies
that are bound to it are no longer valid and any invocation will throw an Exception. Failure
to close the InitialContext may result in resource and performance issues.

Report a bug

8.5.5. Configure EJBs Using a Scoped EJB Client Context

Summary

EJBs can be configured using a map-based scoped context. This is achieved by programmatically
populating a Properties map using the standard properties found in the jboss-ejb-client.properties,
specifying true for the org.jboss.ejb.client.scoped.context property, and passing the properties on
the InitialContext creation.

The benefit of using a scoped context is that it allows you to configure access without directly
referencing the EJB or importing JBoss classes. It also provides a way to configure and load balance a
host at runtime in a multithreaded environment.

Procedure 8.10. Configure an EJB Using a Map-Based Scoped Context

1. Set the Properties
Configure the EJB client properties programmatically, specifying the same set of properties
that are used in the standard jboss-ejb-client.properties file. To enable the scoped context,
you must specify the org.jboss.ejb.client.scoped.context property and set its value to true.
The following is an example that configures the properties programmatically.

// Configure EJB Client properties for the InitialContext

Properties ejbClientContextProps = new Properties();
ejbClientContextProps.put(“remote.connections”,”"name1”);
ejbClientContextProps.put(“remote.connection.name1.host”,”localhost”);
ejbClientContextProps.put(“remote.connection.name.port”,"4447);

// Property to enable scoped EJB client context which will be tied to the JNDI context

ejbClientContextProps.put("org.jboss.ejb.client.scoped.context”, “true”);

2. Pass the Properties on the Context Creation

146

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14186-592104+%5BLatest%5D&comment=Title%3A+Using+Scoped+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14186-592104+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

// Create the context using the configured properties
InitialContext ic = new InitialContext(ejbClientContextProps);
MySLSB bean = ic.lookup("ejb:myapp/ejb//MySLSBBean!" + MySLSB.class.getName());

Additional Information

® Contexts generated by lookup EJB proxies are bound by this scoped context and use only the
relevant connection parameters. This makes it possible to create different contexts to access
data within a client application or to independently access servers using different logins.

® |nthe client, both the scoped InitialContext and the scoped proxy are passed to threads,
allowing each thread to work with the given context. It is also possible to pass the proxy to
multiple threads that can use it concurrently.

® The scoped context EJB proxy is serialized on the remote call and then deserialized on the
server. When it is deserialized, the scoped context information is removed and it returns to its
default state. If the deserialized proxy is used on the remote server, because it no longer has the
scoped context that was used when it was created, this can result in an EJBCLIENT000025
error or possibly call an unwanted target by using the EJB name.

Report a bug

8.5.6. EJB Client Properties

Summary

The following tables list properties that can be configured programmatically or in the jboss-ejb-
client.properties file.

EJB Client Global Properties

The following table lists properties that are valid for the whole library within the same scope.

Table 8.1. Global Properties

Property Name Description

endpoint.name Name of the client endpoint. If not set, the default
value is client-endpoint

This can be helpful to distinguish different endpoint
settings because the thread name contains this

property.

147

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14110-592100+%5BLatest%5D&comment=Title%3A+Configure+EJBs+Using+a+Scoped+EJB+Client+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14110-592100+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

Property Name Description

remote.connectionprovider.create.options.or Boolean value that specifies whether the SSL
g.xnio.Options.SSL_ENABLED protocol is enabled for all connections.

'@ WARNING
Red Hat recommends that you

explicitly disable SSL in favor
of TLSv1.1or TLSv1.2 in all
affected packages.

deployment.node.selector The fully qualified name of the implementation of
org.jboss.ejb.client.DeploymentNodeSelector

This is used to load balance the invocation for the
EJBs.

invocation.timeout The timeout for the EJB handshake or method
invocation request/response cycle. The value is in
milliseconds.

The invocation of any method throws a
java.util.concurrent.TimeoutException if the
execution takes longer than the timeout period. The
execution completes and the server is not
interrupted.

reconnect.tasks.timeout The timeout for the background reconnect tasks. The
value is in milliseconds.

If a number of connections are down, the next client
EJB invocation will use an algorithm to decide if a
reconnect is necessary to find the right node.

org.jboss.ejb.client.scoped.context Boolean value that specifies whether to enable the
scoped EJB client context. The default value is
false.

If set to true, the EJB Client will use the scoped
context that is tied to the JNDI context. Otherwise
the EJB client context will use the global selector in
the JVM to determine the properties used to call the
remote EJB and host.

EJB Client Connection Properties

The connection properties start with the prefix remote.connection. CONNECTION_NAME where the
CONNECTION_NAME is a local identifier only used to uniquely identify the connection.

Table 8.2. Connection Properties

148

CHAPTER 8. ENTERPRISE JAVABEANS

Property Name Description

remote.connections

remote.connection.CONNECTION_NAME.hos
t

remote.connection.CONNECTION_NAME.port

remote.connection.CONNECTION_NAME.use
rname

remote.connection.CONNECTION_NAME.pas
sword

remote.connection.CONNECTION_NAME.con
nect.timeout

remote.connection.CONNECTION_NAME.call
back.handler.class

remote.connection.CONNECTION_NAME.cha
nnel.options.org.jboss.remoting3.RemotingO
ptions.MAX_OUTBOUND_MESSAGES

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SASL_POLICY
_NOANONYMOUS

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SASL_DISALL
OWED_MECHANISMS

remote.connection.CONNECTION_NAME.con
nect.options.org.xnio.Options.SASL_POLICY
_NOPLAINTEXT

A comma-separated list of active connection-
names. Each connection is configured by using this
name.

The host name or IP for the connection.

The port for the connection. The default value is
4447.

The user name used to authenticate connection
security.

The password used to authenticate the user.

The timeout period for the initial connection. After
that, the reconnect task will periodically check
whether the connection can be established. The
value is in milliseconds.

Fully qualified name of the CallbackHandler class.
It will be used to establish the connection and can not
be changed as long as the connection is open.

Integer value specifying the maximum number of
outbound requests. The default is 80.

There is only one connection from the client (JVM)
to the server to handle all invocations.

Boolean value that determines whether credentials
must be provided by the client to connect
successfully. The default value is true.

If set to true, the client must provide credentials. If
set to false, invocation is allowed as long as the
remoting connector does not request a security
realm.

Disables certain SASL mechanisms used for
authenticating during connection creation.

JBOSS-LOCAL-USER means the silent
authentication mechanism, used when the client and
server are on the same machine, is disabled.

Boolean value that enables or disables the use of
plain text messages during the authentication. If
using JAAS, it must be set to false to allow a plain
text password.

149

Development Guide

Property Name Description

remote.connection.CONNECTION_NAME.con Boolean value that specifies whether the SSL
nect.options.org.xnio.Options.SSL_ENABLE Protocol is enabled for this connection.

D
'@ WARNING
Red Hat recommends that you

explicitly disable SSL in favor
of TLSv1.1or TLSv1.2 in all
affected packages.

remote.connection.CONNECTION_NAME.con Interval to send a heartbeat between client and
nect.options.org.jboss.remoting3.RemotingO server to prevent automatic close, for example, in the
ptions.HEARTBEAT INTERVAL case of a firewall. The value is in milliseconds.

EJB Client Cluster Properties

If the initial connection connects to a clustered environment, the topology of the cluster is received
automatically and asynchronously. These properties are used to connect to each received member.
Each property starts with the prefix remote.cluster. CLUSTER_NAME where the CLUSTER_NAME
refers to the related to the servers Infinispan subsystem configuration.

Table 8.3. Cluster Properties

Property Name Description

remote.cluster. CLUSTER_NAME.clusternode. The fully qualified name of the implementation of
selector org.jboss.ejb.client.ClusterNodeSelector.

This class, rather than
org.jboss.ejb.client.DeploymentNodeSelector
,is used to load balance EJB invocationsin a
clustered environment. If the cluster is completely
down, the invocation will fail with No ejb receiver
available.

remote.cluster. CLUSTER_NAME.channel.opti Integer value specifying the maximum number of
ons.org.jboss.remoting3.RemotingOptions.M outbound requests that can be made to the entire
AX_OUTBOUND_MESSAGES cluster.

remote.cluster. CLUSTER_NAME.node.NODE Integer value specifying the maximum number of
_NAME. outbound requests that can be made to this specific

channel.options.org.jboss.remoting3.Remoti cluster-node.
ngOptions.MAX_OUTBOUND_ MESSAGES

Report a bug

150

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14113-744801+%5BLatest%5D&comment=Title%3A+EJB+Client+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14113-744801+25+Feb+2015+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

8.5.7. Remote EJB Data Compression

Previous versions of JBoss EAP included a feature where the message stream that contained the EJB
protocol message could be compressed. This feature has been included in JBoss EAP 6.3 and later.

NOTE

Compression currently can only be specified by annotations on the EJB interface which
should be on the client and server side. There is not currently an XML equivalent to
specify compression hints.

-

Data compression hints can be specified via the JBoss annotation
org.jboss.ejb.client.annotation.CompressionHint. The hint values specify whether to compress the
request, response or request and response. Adding @CompressionHint defaults to
compressResponse=true and compressRequest=true.

The annotation can be specified at the interface level to apply to all methods in the EJB's interface such
as:

import org.jboss.ejb.client.annotation.CompressionHint;
@CompressionHint(compressResponse = false)
public interface ClassLevelRequestCompressionRemoteView {

String echo(String msg);
}

Or the annotation can be applied to specific methods in the EJB's interface such as:

import org.jboss.ejb.client.annotation.CompressionHint;
public interface CompressableDataRemoteView {
@CompressionHint(compressResponse = false, compressionLevel =
Deflater.BEST_COMPRESSION)
String echoWithRequestCompress(String msg);

@CompressionHint(compressRequest = false)
String echoWithResponseCompress(String msg);

@CompressionHint
String echoWithRequestAndResponseCompress(String msg);

String echoWithNoCompress(String msg);
}

The compressionLevel setting shown above can have the following values:
e BEST_COMPRESSION
e BEST_SPEED
e DEFAULT_COMPRESSION

o NO_COMPRESSION

151

Development Guide

The compressionLevel setting defaults to Deflater.DEFAULT_COMPRESSION.

Class level annotation with method level overrides:

@CompressionHint
public interface MethodOverrideDataCompressionRemoteView {

@CompressionHint(compressRequest = false)
String echoWithResponseCompress(final String msg);

@CompressionHint(compressResponse = false)
String echoWithRequestCompress(final String msg);

String echoWithNoExplicitDataCompressionHintOnMethod(String msg);

On the client side ensure the org.jboss.ejb.client.view.annotation.scan.enabled system property is
set to true. This property tells JBoss EJB Client to scan for annotations.

Report a bug

8.6. CONTAINER INTERCEPTORS

8.6.1. About Container Interceptors

Standard Java EE interceptors, as defined by the JSR 318, Enterprise JavaBeans 3.1 specification, are
expected to run after the container has completed security context propagation, transaction
management, and other container provided invocation processing. This is a problem if the application
must intercept a call before a specific container interceptor is run.

Releases prior to JBoss EAP 6.0 provided a way to plug server side interceptors into the invocation flow
so you could run specific application logic before the container completed the invocation processing.
This feature was implemented in JBoss EAP 6.1. This implementation allows standard Java EE
interceptors to be used as container interceptors, meaning they use the same XSD elements that are
allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.

Positioning of the Container Interceptor in the Interceptor Chain

The container interceptors configured for an EJB are guaranteed to be run before the JBoss EAP
provided security interceptors, transaction management interceptors, and other server provided
interceptors. This allows specific application container interceptors to process or configure relevant
context data before the invocation proceeds.

Differences Between the Container Interceptor and the Java EE Interceptor API

Although container interceptors are modeled to be similar to Java EE interceptors, there are some
differences in the semantics of the API. For example, it is illegal for container interceptors to invoke the
javax.interceptor.lnvocationContext.getTarget() method because these interceptors are invoked long
before the EJB components are setup or instantiated.

Report a bug

8.6.2. Create a Container Interceptor Class

Summary

152

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+44808-768517+%5BLatest%5D&comment=Title%3A+Remote+EJB+Data+Compression%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=44808-768517+25+Aug+2015+23%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://jcp.org/en/jsr/detail?id=318
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13885-676196+%5BLatest%5D&comment=Title%3A+About+Container+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13885-676196+24+Jun+2014+09%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.Aroundinvoke to mark the method that is invoked during the invocation on the
bean.

The following is an example of a container interceptor class that marks the iAmAround method for
invocation:

public class ClassLevelContainerinterceptor {
@Aroundinvoke
private Object iAmAround(final InvocationContext invocationContext) throws Exception {
return this.getClass().getName() + " " + invocationContext.proceed();

Example 8.2. Container Interceptor Class Example
}
}

For an example of a container interceptor descriptor file configured to use this class, see the jboss-
ejb3.xml file described here: Section 8.6.3, “Configure a Container Interceptor”.

Report a bug

8.6.3. Configure a Container Interceptor

Summary

Container interceptors use the standard Java EE interceptor libraries, meaning they use the same XSD
elements that are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.
Because they are based on the standard Jave EE interceptor libraries, container interceptors may only
be configured using deployment descriptors. This was done by design so applications would not require
any JBoss specific annotation or other library dependencies. For more information about container
interceptors, refer to: Section 8.6.1, “About Container Interceptors”.

Procedure 8.11. Create the Descriptor File to Configure the Container Interceptor

1. Create a jboss-ejb3.xml file in the META-INF directory of the EJB deployment.
2. Configure the container interceptor elements in the descriptor file.

a. Use the urn:container-interceptors:1.0 namespace to specify configuration of container
interceptor elements.

b. Use the <container-interceptors> element to specify the container interceptors.

c. Use the <interceptor-binding> elements to bind the container interceptor to the EJBs.
The interceptors can be bound in either of the following ways:

B Bind the interceptor to all the EJBs in the deployment using the * wildcard.
B Bind the interceptor at the individual bean level using the specific EJB name.

® Bind the interceptor at the specific method level for the EJBs.

153

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13887-621655+%5BLatest%5D&comment=Title%3A+Create+a+Container+Interceptor+Class%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13887-621655+14+Mar+2014+16%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

NOTE

These elements are configured using the EJB 3.1 XSD in the same way it is
done for Java EE interceptors.

class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerinterceptor

3. Review the following descriptor file for examples of the above elements.
</interceptor-class>
</jee:interceptor-binding>

Example 8.3. jboss-ejb3.xml
<jboss xmins="http://www.jboss.com/xml/ns/javaee"
xmins:jee="http://java.sun.com/xml/ns/javaee"
xmlns:ci ="urn:container-interceptors:1.0">
<jee:assembly-descriptor>
<ci:container-interceptors>
<!I-- Default interceptor -->
<jee:interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-
<I-- Method specific container-interceptor -->

class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerinterceptorOne</inte
<jee:interceptor-binding>

rceptor-class>
</jee:interceptor-binding>

<ejb-name>AnotherFlowTrackingBean</ejb-name>

<interceptor-

<!I-- Class level container-interceptor -->
<jee:interceptor-binding>
<ejb-name>AnotherFlowTrackingBean</ejb-name>
class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterce
ptor</interceptor-class>
<method>

<interceptor-
<method-name>echoWithMethodSpecificContainerlnterceptor</method-
name>
</method>
</jee:interceptor-binding>
<!I-- container interceptors in a specific order -->
<jee:interceptor-binding>
<ejb-name>AnotherFlowTrackingBean</ejb-name>
<interceptor-order>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.ClassLevelContainerinterceptor
</interceptor-class>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.MethodSpecificContainerInterce
ptor</interceptor-class>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.ContainerinterceptorOne</inte
rceptor-class>
</interceptor-order>
<method>

154

CHAPTER 8. ENTERPRISE JAVABEANS

name>
</method>
</jee:interceptor-binding>
</ci:container-interceptors>
</jee:assembly-descriptor>

<method-name>echolnSpecificOrderOfContainerinterceptors</method-
</jboss>

The XSD for the urn:container-interceptors:1.0 namespace is available at
EAP_HOME/docs/schemaljboss-ejb-container-interceptors_1_0.xsd.

Report a bug

8.6.4. Change the Security Context Identity

Summary

By default, when you make a remote call to an EJB deployed to the application server, the connection to
the server is authenticated and any request received over this connection is executed as the identity
that authenticated the connection. This is true for both client-to-server and server-to-server calls. If you
need to use different identities from the same client, you normally need to open multiple connections to
the server so that each one is authenticated as a different identity. Rather than open multiple client
connections, you can give permission to the authenticated user to execute a request as a different user.

This topic describes how to switch identities on the existing client connection. The code examples are
abridged versions of the code in the quickstart. Refer to the ejb-security-interceptors quickstart for a
complete working example.

Procedure 8.12. Change the Identity of the Security Context

To change the identity of a secured connection, you must create the following 3 components.

1. Create the client side interceptor
The client side interceptor must implement the org.jboss.ejb.client.EJBClientinterceptor
interface. The interceptor must pass the requested identity through the context data map,
which can be obtained via a call to EJBClientinvocationContext.getContextData(). The
following is an example of client side interceptor code:

public class ClientSecuritylnterceptor implements EJBClientInterceptor {

public void handlelnvocation(EJBClientinvocationContext context) throws Exception {
Principal currentPrincipal = SecurityActions.securityContextGetPrincipal();

if (currentPrincipal = null) {
Map<String, Object> contextData = context.getContextData();
contextData.put(ServerSecuritylnterceptor. DELEGATED_USER_KEY,
currentPrincipal.getName());

}

context.sendRequest();

}

public Object handlelnvocationResult(EJBClientinvocationContext context) throws
Exception {

155

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13886-606491+%5BLatest%5D&comment=Title%3A+Configure+a+Container+Interceptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13886-606491+26+Feb+2014+15%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

156

return context.getResult();

}
}

User applications can insert the interceptor into the interceptor chain in the EJBClientContext
in one of the following ways:

o Programmatically
With this approach, you call the
org.jboss.ejb.client.EJBClientContext.registerinterceptor(int order,
EJBClientInterceptor interceptor) method and pass the order and the interceptor
instance. The order determines where this client interceptor is placed in the interceptor
chain.

o ServiceLoader Mechanism
With this approach, you create a META-
INF/services/org.jboss.ejb.client.EJBClientinterceptor file and place or package it in the
classpath of the client application. The rules for the file are dictated by the Java
ServicelLoader Mechanism. This file is expected to contain a separate line for each fully
qualified class name of the EJB client interceptor implementation. The EJB client
interceptor classes must be available in the classpath. EJB client interceptors added using
the ServiceLoader mechanism are added to the end of the client interceptor chain, in the
order they are found in the classpath. The ejb-security-interceptors quickstart uses this
approach.

2. Create and configure the server side container interceptor
Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.Aroundlnvoke to mark the method that will be invoked during the
invocation on the bean. For more information about container interceptors, refer to:
Section 8.6.1, “About Container Interceptors”.

a. Create the container interceptor
This interceptor receives the InvocationContext with the identity and requests the switch
to that new identity. The following is an abridged version of the actual code example:

public class ServerSecuritylnterceptor {
private static final Logger logger = Logger.getLogger(ServerSecurityInterceptor.class);

static final String DELEGATED_USER_KEY =
ServerSecuritylnterceptor.class.getName() + ".DelegationUser";

@Aroundinvoke
public Object aroundlnvoke(final InvocationContext invocationContext) throws
Exception {
Principal desiredUser = null;
UserPrincipal connectionUser = null;

Map<String, Object> contextData = invocationContext.getContextData();
if (contextData.containsKey(DELEGATED_USER_KEY)) {
desiredUser = new SimplePrincipal((String)
contextData.get(DELEGATED_USER_KEY));

Collection<Principal> connectionPrincipals =
SecurityActions.getConnectionPrincipals();

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

CHAPTER 8. ENTERPRISE JAVABEANS

if (connectionPrincipals != null) {
for (Principal current : connectionPrincipals) {
if (current instanceof UserPrincipal) {
connectionUser = (UserPrincipal) current;
break;
}
}

} else {

throw new lllegalStateException("Delegation user requested but no user on
connection found.");

}
}

ContextStateCache stateCache = null;
try {
if (desiredUser != null && connectionUser != null
&& (desiredUser.getName().equals(connectionUser.getName()) == false)) {
// The final part of this check is to verify that the change does actually indicate a
change in user.
try {
// We have been requested to use an authentication token
// s0 now we attempt the switch.
stateCache = SecurityActions.pushldentity(desiredUser, new
OuterUserCredential(connectionUser));
} catch (Exception e) {
logger.error("Failed to switch security context for user”, e);
// Don't propagate the exception stacktrace back to the client for security
reasons
throw new EJBAccessException("Unable to attempt switching of user.");
}
}

return invocationContext.proceed();

} finally {
// switch back to original context
if (stateCache = null) {

SecurityActions.popldentity(stateCache);;

}

}

}

b. Configure the container interceptor

For information on how to configure server side container interceptors, refer to:
Section 8.6.3, “Configure a Container Interceptor”.

3. Create the JAAS LoginModule

This component is responsible for verifying that user is allowed to execute requests as the
requested identity. The following abridged code examples show the methods that peform the
login and validation:

@SuppressWarnings("unchecked")

@Override

public boolean login() throws LoginException {
if (super.login() == true) {

157

Development Guide

log.debug("super.login()==true");
return true;

}

// Time to see if this is a delegation request.
NameCallback ncb = new NameCallback("Username:");
ObjectCallback ocb = new ObjectCallback("Password:");

try {
callbackHandler.handle(new Callback[] { ncb, ocb });

} catch (Exception €) {
if (e instanceof RuntimeException) {
throw (RuntimeException) e;
}
return false; // If the CallbackHandler can not handle the required callbacks then no
chance.

}

String name = ncb.getName();
Object credential = ocb.getCredential();

if (credential instanceof OuterUserCredential) {
// This credential type will only be seen for a delegation request, if not seen then the
request is not for us.

if (delegationAcceptable(name, (OuterUserCredential) credential)) {

identity = new SimplePrincipal(name);

if (getUseFirstPass()) {
String userName = identity.getName();
if (log.isDebugEnabled())

log.debug("Storing username ™ + userName + " and empty password");

// Add the username and an empty password to the shared state map
sharedState.put("javax.security.auth.login.name", identity);
sharedState.put("javax.security.auth.login.password", "");

}

loginOk = true;

return true;

}
}

return false; // Attempted login but not successful.

}

protected boolean delegationAcceptable(String requestedUser, OuterUserCredential
connectionUser) {
if (delegationMappings == null) {
return false;

}

String[] allowedMappings = loadPropertyValue(connectionUser.getName(),
connectionUser.getRealm());
if (allowedMappings.length == 1 && "*".equals(allowedMappings[1])) {
// A wild card mapping was found.
return true;

}

158

CHAPTER 8. ENTERPRISE JAVABEANS

for (String current : allowedMappings) {
if (requestedUser.equals(current)) {
return true;

}
}

return false;

}

See the ejb-security-interceptors quickstart README.html file for complete instructions and more
detailed information about the code.

Report a bug

8.6.5. Use a Client Side Interceptor in an Application

You can plug a client-side interceptor into an application programmatically or using a Servicel_oader
mechanism. The following procedure describes the two methods.

Plug the Interceptor into an Application Programmatically

With this approach, you call the org.jboss.ejb.client.EJBClientContext.registerinterceptor(int order,
EJBClientInterceptor interceptor) APl and pass the order and the interceptor instance. The order is
used to determine where exactly in the client interceptor chain this interceptor is placed.

Plug the Interceptor into an Application via the ServiceLoader Mechanism

With this approach, you create a META-INF/services/org.jboss.ejb.client.EJBClientinterceptor file
and place or package it in the classpath of the client application. The rules for the file are dictated by the
Java ServicelLoader Mechanism . This file is expected to contain a separate line for each fully qualified
class name of the EJB client interceptor implementation. The EJB client interceptor classes must be
available in the classpath. EJB client interceptors added using the ServiceLoader mechanism are added
to the end of the client interceptor chain, in the order they are found in the classpath. The ejb-security-
interceptors quickstart uses this approach.

Report a bug

8.7. CLUSTERED ENTERPRISE JAVABEANS

8.7.1. About Clustered Enterprise JavaBeans (EJBs)

EJB components can be clustered for high-availability scenarios. They use different protocols than
HTTP components, so they are clustered in different ways. EJB 2 and 3 stateful and stateless beans can
be clustered.

For information on singletons, refer here: Section 10.3, “Implement an HA Singleton”.

NOTE

EJB 2 entity beans cannot be clustered in EAP 6 and henceforth. This is a migration issue.

Report a bug

8.7.2. Standalone and In-server Client Configuration

159

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+13166-665343+%5BLatest%5D&comment=Title%3A+Change+the+Security+Context+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13166-665343+06+Jun+2014+15%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+14138-759204+%5BLatest%5D&comment=Title%3A+Use+a+Client+Side+Interceptor+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14138-759204+24+May+2015+20%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4663-680486+%5BLatest%5D&comment=Title%3A+About+Clustered+Enterprise+JavaBeans+%28EJBs%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4663-680486+01+Jul+2014+01%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

To connect an EJB client to a clustered EJB application, you need to expand the existing configuration
in standalone EJB client or in-server EJB client to include cluster connection configuration. The jboss-
ejb-client.properties for standalone EJB client, or even jboss-ejb-client.xml file for a server-side
application must be expanded to include a cluster configuration.

NOTE

An EJB client is any program that uses an EJB on a remote server. A client is in-server
when the JVM doing the calling to the remote server is itself running inside of a server. In
other words, an EAP instance calling out to another EAP instance would be considered an
in-server client.

Example 8.4. Standalone client with jboss-ejb-client.properties configuration

This example shows the additional cluster configuration required for a standalone EJB client.

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
remote.cluster.ejb.username=test

remote.clusters=ejb
remote.cluster.ejb.password=password

If an application uses the remote-outbound-connection, you need to configure jboss-ejb-client.xml file
and add cluster configuration as shown in the following example:

Example 8.5. Client application which is deployed in another EAP 6 instance (Configuring jboss-
ejb-client.xml file)

ejb-client_1_2.xsd">
<client-context>
<ejb-receivers>
<!I-- this is the connection to access the app-one -->
<remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-1" />
<!I-- this is the connection to access the app-two -->
<remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-2" />
</ejb-receivers>

<!I-- if an outbound connection connects to a cluster; a list of members is provided after successful
connection.
To connect to this node this cluster element must be defined. -->

<clusters>
<!I-- cluster of remote-ejb-connection-1 -->
<cluster name="¢ejb" security-realm="ejb-security-realm-1" username="quickuseri">
<connection-creation-options>
<property name="org.xnio.Options.SSL_ENABLED" value="false" />
<property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS" value="false" />
</connection-creation-options>
</cluster>
</clusters>
</client-context>

<jboss-ejb-client xmlIns:xsi="urn:jboss:ejb-client:1.2" xsi:noNamespaceSchemalocation="jboss-
</jboss-ejb-client>

160

CHAPTER 8. ENTERPRISE JAVABEANS

NOTE

For a secure connection you need to add the credentials to cluster configuration in order
to avoid an authentication exception.

Report a bug

8.7.3. Implementing a Custom Load Balancing Policy for EJB Calls

It is possible to implement a custom/alternate load balancing policy so that servers for the application
do not handle the same amount of EJB calls in general or for a specific time period.

You can implement AllClusterNodeSelector for EJB calls. The node selection behavior of
AllClusterNodeSelector is similar to default selector except that AllClusterNodeSelector uses all
available cluster nodes even in case of a large cluster (number of nodes>20). If an unconnected cluster
node is returned it is opened automatically. The following example shows AllClusterNodeSelector
implementation:

package org.jboss.as.quickstarts.ejb.clients.selector;

import java.util.Arrays;

import java.util. Random;
import java.util.logging.Level,
import java.util.logging.Logger;

import org.jboss.ejb.client.ClusterNodeSelector;
public class AllClusterNodeSelector implements ClusterNodeSelector {
private static final Logger LOGGER = Logger.getLogger(AllClusterNodeSelector.class.getName());

@Override
public String selectNode(final String clusterName, final String[] connectedNodes, final String|[]
availableNodes) {
if(LOGGER.isLoggable(Level.FINER)) {
LOGGER: finer("INSTANCE "+this+ " : cluster:"+clusterName+"
connected:"+Arrays.deepToString(connectedNodes)+"
available:"+Arrays.deepToString(availableNodes));

}

if (availableNodes.length == 1) {
return availableNodes|0];
}
final Random random = new Random();
final int randomSelection = random.nextint(availableNodes.length);
return availableNodes[randomSelection];

}

You can also implement the SimpleLoadFactorNodeSelector for EJB calls. Load balancing in
SimpleLoadFactorNodeSelector happens based on a load factor. The load factor (2/3/4) is calculated
based on the names of nodes (A/B/C) irrespective of the load on each node. The following example
shows SimpleLoadFactorNodeSelector implementation:

161

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+40832-769949+%5BLatest%5D&comment=Title%3A+Standalone+and+In-server+Client+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40832-769949+07+Sep+2015+03%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

package org.jboss.as.quickstarts.ejb.clients.selector;

import java.util.ArrayList;
import java.util.Arrays;

import java.util.Collection;
import java.util.HashMap;
import java.util.List;

import java.util.Map;

import java.util.logging.Level,
import java.util.logging.Logger;

import org.jboss.ejb.client.DeploymentNodeSelector;

public class SimpleLoadFactorNodeSelector implements DeploymentNodeSelector {
private static final Logger LOGGER =

Logger.getLogger(SimpleLoadFactorNodeSelector.class.getName());
private final Map<String, List<String>[]> nodes = new HashMap<String, List<String>[]>();
private final Map<String, Integer> cursor = new HashMap<String, Integer>();

private ArrayList<String> calculateNodes(Collection<String> eligibleNodes) {
ArrayList<String> nodelList = new ArrayList<String>();

for (String string : eligibleNodes) {
if(string.contains("A") || string.contains("2")) {
nodeList.add(string);
nodeList.add(string);
} else if(string.contains("B") || string.contains("3")) {
nodeList.add(string);
nodeList.add(string);
nodeList.add(string);
} else if(string.contains("C") || string.contains("4")) {
nodeList.add(string);
nodeList.add(string);
nodeList.add(string);
nodeList.add(string)
}
}

return nodeList;

}

@SuppressWarnings("unchecked")
private void checkNodeNames(String[] eligibleNodes, String key) {

if('nodes.containsKey(key) || nodes.get(key)[0].size() != eligibleNodes.length || Inodes.get(key)

[0].containsAll(Arrays.asList(eligibleNodes))) {
// must be synchronized as the client might call it concurrent
synchronized (nodes) {

if('nodes.containsKey(key) || nodes.get(key)[0].size() != eligibleNodes.length || Inodes.get(key)

[0].containsAll(Arrays.asList(eligibleNodes))) {
ArrayList<String> nodelList = new ArrayList<String>();
nodeList.addAll(Arrays.asList(eligibleNodes));

nodes.put(key, new List[] { nodeList, calculateNodes(nodeList) });

}
}
}

}
private synchronized String nextNode(String key) {

162

CHAPTER 8. ENTERPRISE JAVABEANS

Integer ¢ = cursor.get(key);
List<String> nodeList = nodes.get(key)[1];

if(c == null || ¢ >= nodelList.size()) {
¢ = Integer.valueOf(0);

}

String node = nodelist.get(c);
cursor.put(key, Integer.valueOf(c + 1));

return node;

}

@Override
public String selectNode(String[] eligibleNodes, String appName, String moduleName, String
distinctName) {
if LOGGER.isLoggable(Level. FINER)) {
LOGGER:.finer("INSTANCE " + this + " : nodes:" + Arrays.deepToString(eligibleNodes) + "
appName:" + appName + " moduleName:" + moduleName
+ " distinctName:" + distinctName);

}

//'if there is only one there is no sense fo choice
if (eligibleNodes.length == 1) {

return eligibleNodes|[0];
}

final String key = appName + "|" + moduleName + "|" + distinctName;

checkNodeNames(eligibleNodes, key);
return nextNode(key);

}
}

Configuration with jboss-ejb-client.properties

You need to add the property remote.cluster.ejb.clusternode.selector with the name of your
implementation class (AllIClusterNodeSelector or SimpleLoadFactorNodeSelector). The selector will
see all configured servers which are available at the invocation time. The following example uses
AliClusterNodeSelector as the deployment node selector:

remote.clusters=ejb
remote.cluster.ejb.clusternode.selector=org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelec
or

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
remote.cluster.ejb.username=test

remote.cluster.ejb.password=password

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false
remote.connections=one,two

remote.connection.one.host=localhost

remote.connection.one.port = 4447
remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false
remote.connection.one.username=user

remote.connection.one.password=user123

163

Development Guide

remote.connection.two.host=localhost
remote.connection.two.port = 4547
remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=false

Using JBoss ejb-client API

You need to add the property remote.cluster.ejb.clusternode.selector to the list for the
PropertiesBasedEJBClientConfiguration constructor. The following example uses
AliClusterNodeSelector as the deployment node selector:

Properties p = new Properties();

p.put("remote.clusters”, "ejb");

p.put("remote.cluster.ejb.clusternode.selector”,
"org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector");
p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS",
"false");

p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED", "false");
p.put("remote.cluster.ejb.username”, "test");

p.put("remote.cluster.ejb.password", "password");

p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED", "false");
p.put("remote.connections”, "one,two");
p.put("remote.connection.one.port”, "4447");
p.put("remote.connection.one.host", "localhost");
p.put("remote.connection.two.port”, "4547");
("

p.put("remote.connection.two.host", "localhost");

EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);
ContextSelector<EJBClientContext> selector = new ConfigBasedEJBClientContextSelector(cc);
EJBClientContext.setSelector(selector);

p = new Properties();
p.put(Context. URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
InitialContext context = new InitialContext(p);

Server application side configuration withjboss-ejb-client.xml

To use the load balancing policy for server to server communication; package the class together with
the application and configure it within the jboss-ejb-client.xml settings (located in META-INF folder).
The following example uses AllClusterNodeSelector as the deployment node selector:

164

<jboss-ejb-client xmlIns:xsi="urn:jboss:ejb-client:1.2" xsi:noNamespaceSchemalocation="jboss-ejb-
client_1_2.xsd">
<client-context deployment-node-selector="org.jboss.ejb.client.DeploymentNodeSelector">
<ejb-receivers>
<!I-- this is the connection to access the app -->
<remoting-ejb-receiver outbound-connection-ref="remote-ejb-connection-1" />
</ejb-receivers>

<!I-- if an outbound connection connect to a cluster a list of members is provided after successful
connection.
To connect to this node this cluster element must be defined.
->
<clusters>
<!I-- cluster of remote-ejb-connection-1 -->
<cluster name="¢gjb" security-realm="egjb-security-realm-1" username="test" cluster-node-

CHAPTER 8. ENTERPRISE JAVABEANS

selector="org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector">
<connection-creation-options>
<property name="org.xnio.Options.SSL_ENABLED" value="false" />
<property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS" value="false" />
</connection-creation-options>
</cluster>
</clusters>
</client-context>
</jboss-ejb-client>

To use the above configuration with security, you will need to add ejb-security-realm-1 to client-server
configuration. The following example shows the CLI commands for adding security realm (ejb-security-
realm-1) the value is the base64 encoded password for the user "test":

core-service=management/security-realm=ejb-security-realm-1:add()
core-service=management/security-realm=ejb-security-realm-1/server-
identity=secret:add(value=cXVpY2sxMjMr)

NOTE

If you are using standalone mode use the start option -Djboss.node.name= or the
server configuration file standalone.xml to configure the server name (server name="").
Ensure that the server name is unique. In domain mode, the controller automatically
validates that the names are unique.

Report a bug

8.7.4. Transaction Behavior of EJB Invocations

Server to Server Invocations

Transaction attributes for distributed JBoss EAP applications need to be handled in a way as if the
application is called on the same server. To discontinue a transaction, the destination method must be
marked REQUIRES_NEW using different interfaces.

NOTE

JBoss EAP 6 does not require Java Transaction Services (JTS) for transaction
propagation on server-to-server EJB invocations if both servers are JBoss EAP 6. JBoss
EJB client APl library handles it itself.

Client Side Invocations

To invoke EJB session beans with a JBoss EAP 6 standalone client, the client must have a reference to
the InitialContext object while the EJB proxies or UserTransaction are used. It is also important to
keep the InitialContext object open while EJB proxies or UserTransaction are being used. Control of
the connections will be inside the classes created by the InitialContext with the properties.

The following example shows EJB client APl which holds a reference to the InitialContext object.
Example 8.6. EJB client APl referencinglnitialContext object

I package org.jboss.as.quickstarts.ejb.multi.server;

165

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+40838-781122+%5BLatest%5D&comment=Title%3A+Implementing+a+Custom+Load+Balancing+Policy+for+EJB+Calls%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40838-781122+27+Jan+2017+08%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

import java.util.Date;

import java.util.Properties;

import java.util.logging.Level,

import java.util.logging.Logger;

import javax.naming.Context;

import javax.naming.InitialContext;

import org.jboss.as.quickstarts.ejb.multi.server.app.MainApp;
import org.jboss.ejb.client.ContextSelector;

import org.jboss.ejb.client. EJBClientConfiguration;

import org.jboss.ejb.client. EJBClientContext;

import org.jboss.ejb.client.PropertiesBasedEJBClientConfiguration;
import org.jboss.ejb.client.remoting.ConfigBasedEJBClientContextSelector;

public class Client {

Jox

* @param args no args needed

* @throws Exception

Y/

public static void main(String[] args) throws Exception {

// suppress output of client messages
Logger.getLogger("org.jboss").setLevel(Level.OFF);
Logger.getLogger("org.xnio").setLevel(Level.OFF);

Properties p = new Properties();
p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED", "false");
p.put("remote.connections”, "one");

p.put("remote.connection.one.port”, "4447");

p.put("remote.connection.one.host", "localhost");

p.put("remote.connection.one.username”, "quickuser");
p.put("remote.connection.one.password", "quick-123");

EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);

ContextSelector<EJBClientContext> selector = new
ConfigBasedEJBClientContextSelector(cc);

EJBClientContext.setSelector(selector);

Properties props = new Properties();
props.put(Context. URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
InitialContext context = new InitialContext(props);

final String rcal = "ejb:jboss-ejb-multi-server-app-main/ejb//" + ("MainAppBean") + "I" +
MainApp.class.getName();

final MainApp remote = (MainApp) context.lookup(rcal);

final String result = remote.invokeAll("Client call at "+new Date());

System.out.printin("InvokeAll succeed: "+result);

}
}

166

CHAPTER 8. ENTERPRISE JAVABEANS

NOTE

Obtaining a UserTransaction reference on the client is unsupported for scenarios with a
scoped EJB client context and for invocations which use the remote-naming protocol.
This is because in these scenarios, InitialContext encapsulates its own EJB client context
instance; which cannot be accessed using the static methods of the EJBClient class.
When EJBClient.getUserTransaction() is called, it returns a transaction from default
(global) EJB client context (which might not be initialized) and not from the desired one.

UserTransaction reference on the Client Side

The following example shows how to get UserTransaction reference on a standalone client.

Example 8.7. Standalone client referencing UserTransaction object
import org.jboss.ejb.client.EJBClient;
import javax.transaction.UserTransaction;
Context context=null;
UserTransaction tx=null;
try {
Properties props = new Properties();
// REMEMBER: there must be a jboss-gjb-client.properties with the connection parameter
/ in the clients classpath
props.put(Context. URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
context = new InitialContext(props);
System.out.printin("\n\tGot initial Context: "+context);
tx=EJBClient.getUserTransaction("yourServerName");
System.out.printin("UserTransaction = "+tx.getStatus());
tx.begin();
// do some work

}catch (Exception e) {
e.printStackTrace();
tx.rollback();

Hinally{
if(context != null) {

context.close();
}
}

167

Development Guide

NOTE

To get UserTransaction reference on the client side; start your server with the following
system property -Djboss.node.name=yourServerName and then use it on client side as
following:

I tx=EJBClient.getUserTransaction("yourServerName");

Replace "yourServerName" with the name of your server. If a user transaction is started
on a node all invocations are sticky on the node and the node must have all the needed
EJBs. It is not possible to use UserTransaction with remote-naming protocol and
scoped-context.

Report a bug

8.8. REFERENCE

8.8.1. EJB JNDI Naming Reference

The JNDI lookup name for a session bean has the syntax of:
I ejb:<appName>/<moduleName>/<distinctName>/<beanName>\<viewClassName> ?stateful

<appName>

If the session bean's JAR file has been deployed within an enterprise archive (EAR) then this is the
name of that EAR. By default, the name of an EAR is its filename without the .ear suffix. The
application name can also be overridden in its application.xml file. If the session bean is not
deployed in an EAR then leave this blank.

<moduleName>

The module name is the name of the JAR file that the session bean is deployed in. By the default, the
name of the JAR file is its filename without the .jar suffix. The module name can also be overridden
in the JAR's ejb-jar.xml file.

<distinctName>

JBoss EAP 6 allows each deployment to specify an optional distinct name. If the deployment does
not have a distinct name then leave this blank.

<beanName>

The bean name is the classname of the session bean to be invoked.

<viewClassName>

The view class name is the fully qualified classname of the remote interface. This includes the
package name of the interface.

?stateful

The ?stateful suffix is required when the JNDI name refers to a stateful session bean. It is not
included for other bean types.

168

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+40839-759592+%5BLatest%5D&comment=Title%3A+Transaction+Behavior+of+EJB+Invocations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40839-759592+28+May+2015+02%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 8. ENTERPRISE JAVABEANS

Report a bug

8.8.2. EJB Reference Resolution

This section covers how JBoss implements @EJB and @Resource. Please note that XML always
overrides annotations but the same rules apply.

Rules for the @EJB annotation

® The @EJB annotation also has a mappedName() attribute. The specification leaves this as
vendor specific metadata, but JBoss recognizes mappedName() as the global JNDI name of
the EJB you are referencing. If you have specified a mappedName(), then all other attributes are
ignored and this global JNDI name is used for binding.

e |f you specify @EJB with no attributes defined:

I @EJB

ProcessPayment myEjbref;

Then the following rules apply:

o The EJB jar of the referencing bean is searched for an EJB with the interface used in the
@EJB injection. If there are more than one EJB that publishes same business interface,
then an exception is thrown. If there is only one bean with that interface then that one is
used.

o Search the EAR for EJBs that publish that interface. If there are duplicates, then an
exception is thrown. Otherwise the matching bean is returned.

o Search globally in JBoss runtime for an EJB of that interface. Again, if duplicates are found,
an exception is thrown.

e @EJB.beanName() corresponds to <ejb-link>. If the beanName() is defined, then use the
same algorithm as @EJB with no attributes defined except use the beanName() as a key in the
search. An exception to this rule is if you use the ejb-link '#' syntax. The '#' syntax allows you to
put a relative path to ajar in the EAR where the EJB you are referencing is located. Refer to the
EJB 3.1 specification for more details.

Report a bug

8.8.3. Project dependencies for Remote EJB Clients

Maven projects that include the invocation of session beans from remote clients require the following
dependencies from the JBoss EAP 6 Maven repository.

Table 8.4. Maven dependencies for Remote EJB Clients

GrouplD ArtifactID

org.jboss.spec jboss-javaee-6.0

org.jboss.as jpboss-as-ejb-client-bom

169

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5119-591683+%5BLatest%5D&comment=Title%3A+EJB+JNDI+Naming+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5119-591683+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4543-591667+%5BLatest%5D&comment=Title%3A+EJB+Reference+Resolution%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4543-591667+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

GrouplD ArtifactID

org.jboss.spec.javax.transaction jboss-transaction-api_l.1_spec
org.jboss.spec.javax.ejb jboss-ejb-api_3.1_spec
org.jboss jboss-ejb-client
org.jboss.xnio xnio-api

org.jboss.xnio xnio-nio

org.jboss.remoting3 jboss-remoting

org.jboss.sasl jboss-sasl
org.jboss.marshalling jboss-marshalling-river

With the exception of jboss-javaee-6.0 and jboss-as-ejb-client-bom, these dependencies must be
added to the <dependencies> section of the pom.xml file.

The jboss-javaee-6.0 and jboss-as-ejb-client-bom dependencies should be added to the
<dependencyManagement> section of your pom.xml with the scope of import.

NOTE

The artifactlD's versions are subject to change. Refer to the Maven repository for the
relevant version.

<dependencyManagement>
<dependencies>

<dependency>
<groupld>org.jboss.spec</groupld>
<artifactld>jboss-javaee-6.0</artifactld>
<version>3.0.0.Final-redhat-1</version>
<type>pom</type>
<scope>import</scope>

</dependency>

<dependency>
<groupld>org.jboss.as</groupld>
<artifactld>jboss-as-ejb-client-bom</artifactid>
<version>7.1.1.Final-redhat-1</version>
<type>pom</type>
<scope>import</scope>

</dependency>

</dependencies>
</dependencyManagement>

170

CHAPTER 8. ENTERPRISE JAVABEANS

Refer to ejb-remote/client/pom.xml in the quickstart files for a complete example of dependency
configuration for remote session bean invocation.

Report a bug

8.8.4. jboss-ejb3.xml Deployment Descriptor Reference

jboss-ejb3.xml is a custom deployment descriptor that can be used in either EJB JAR or WAR archives.
In an EJB JAR archive it must be located in the META-INF/ directory. In a WAR archive it must be
located in the WEB-INF/ directory.

The format is similar to ejb-jar.xml, using some of the same namespaces and providing some other
additional namespaces. The contents of jboss-ejb3.xml are merged with the contents of ejb-jar.xml,
with the jboss-ejb3.xml items taking precedence.

This document only covers the additional non-standard namespaces used by jboss-ejb3.xml. Refer to
http://java.sun.com/xml/ns/javaee/ for documentation on the standard namespaces.

The root namespace is http://www.jboss.com/xml/ns/javaee.

Assembly descriptor namespaces

The following namespaces can all be used in the <assembly-descriptor> element. They can be used to
apply their configuration to a single bean, or to all beans in the deployment by using * as the ejb-name.

The clustering namespace:urn:clustering:1.0
I xmlins:c="urn:clustering:1.0"

This allows you to mark EJB's as clustered. It is the deployment descriptor equivalent to
@org.jboss.ejb3.annotation.Clustered.

<c:clustering>
<ejb-name>DDBasedClusteredSFSB</ejb-name>
<c:clustered>true</c:clustered>

</c:clustering>

The security namespace (urn:security)
I xmlns:s="urn:security"

This allows you to set the security-domain and the run-as-principal for an EJB.

<s:security>
<ejb-name>*</ejb-name>
<s:security-domain>myDomain</s:security-domain>
<s:run-as-principal>myPrincipal</s:run-as-principal>
</s:security>

The resource adapter namespace:urn:resource-adapter-binding
I xmlins:r="urn:resource-adapter-binding"

This allows you to set the resource adapter for a Message-Driven Bean.

171

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+5726-606308+%5BLatest%5D&comment=Title%3A+Project+dependencies+for+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5726-606308+25+Feb+2014+22%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://java.sun.com/xml/ns/javaee/

Development Guide

<r:resource-adapter-binding>
<ejb-name>*</ejb-name>
<r:resource-adapter-name>myResourceAdapter</r:resource-adapter-name>
</r:resource-adapter-binding>

The IIOP namespace:urn:iiop
I xmlns:u="urn:iiop"
The IIOP namespace is where [IOP settings are configured.

The pool namespace: urn:ejb-pool:1.0
I xmlns:p="urn:ejb-pool:1.0"

This allows you to select the pool that is used by the included stateless session beans or Message-
Driven Beans. Pools are defined in the server configuration.

<p:pool>
<ejb-name>*</ejb-name>
<p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>
</p:pool>

The cache namespace:urn:ejb-cache:1.0
I xmlns:c="urn:ejb-cache:1.0"

This allows you to select the cache that is used by the included stateful session beans. Caches are
defined in the server configuration.

<c:cache>
<ejb-name>*</ejb-name>
<c:cache-ref>my-cache</c:cache-ref>
</c:cache>

Example 8.8. jboss-ejb3.xml file
<?xml version="1.1" encoding="UTF-8"?>
<jboss:ejb-jar xmins:jboss="http://www.jboss.com/xml/ns/javaee"
xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:c="urn:clustering:1.0"
xsi:schemalocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schemal/jboss-ejb3-2_0.xsd"
version="3.1" impl-version="2.0">
<enterprise-beans>
<message-driven>
<ejb-name>ReplyingMDB</ejb-name>
<ejb-class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingMDB</ejb-
class>
<activation-config>
<activation-config-property>

172

CHAPTER 8. ENTERPRISE JAVABEANS

<activation-config-property-name>destination</activation-config-property-name>
<activation-config-property-value>java:jboss/mdbtest/messageDestinationQueue
</activation-config-property-value>
</activation-config-property>
</activation-config>
</message-driven>
</enterprise-beans>
<assembly-descriptor>

<c:clustering>
<ejb-name>DDBasedClusteredSFSB</ejb-name>

<c:clustered>true</c:clustered>
</c:clustering>
</assembly-descriptor>
</jboss:ejb-jar>

NOTE

There are known issues with the jboss-ejb3-spec-2_0.xsd that may result in schema
validation errors. You can ignore these errors. For more information, see
https://bugzilla.redhat.com/show_bug.cgi?id=1192591.

Report a bug

173

https://bugzilla.redhat.com/show_bug.cgi?id=1192591
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+9019-781126+%5BLatest%5D&comment=Title%3A+jboss-ejb3.xml+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9019-781126+27+Jan+2017+11%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

CHAPTER 9. JBOSS MBEAN SERVICES

9.1. WRITING JBOSS MBEAN SERVICES

Writing a custom MBean service that relies on a JBoss service requires the service interface method
pattern. JBoss MBean service interface method pattern consists of a set of life cycle operations which
inform an MBean service when it can create, start, stop, and destroy itself.

You can manage the dependency state using any of the following approaches:

e |f you want specific methods to be called on your MBean, declare those methods in your MBean
interface. This approach allows your MBean implementation to avoid dependencies on JBoss
specific classes

e |f you are not bothered about dependencies on JBoss specific classes then you may have your
MBean interface extend the ServiceMBean interface and ServiceMBeanSupport class. The
ServiceMBeanSupport class provides implementations of the service lifecycle methods like
create, start and stop. To handle a specific event like the start()event, you need to override
startService() method provided by the ServiceMBeanSupport class.

Report a bug

9.2. ASTANDARD MBEAN EXAMPLE

This section develops two sample MBean services packaged together in a service archive (.sar).
ConfigServiceMBean interface declares specific methods like the start, getTimeout and stop methods
to start, hold and stop the MBean correctly without using any JBoss specific classes. ConfigService
class implements ConfigServiceMBean interface and consequently implements the methods used
within that interface.

PlainThread class extends ServiceMBeanSupport class and implements PlainThreadMBean interface.

PlainThread starts a thread and uses ConfigServiceMBean.getTimeout() to determine how long the
thread should sleep.

Example 9.1. Sample MBean services
package org.jpboss.example.mbean.support;
public interface ConfigServiceMBean {

int getTimeout();
void start();
void stop();
}
package org.jooss.example.mbean.support;

public class ConfigService implements ConfigServiceMBean {
int timeout;

174

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30497-633356+%5BLatest%5D&comment=Title%3A+Writing+JBoss+MBean+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30497-633356+23+Apr+2014+20%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 9. JBOSS MBEAN SERVICES

@Override
public int getTimeout() {
return timeout;

}

@Override

public void start() {
//Create a random number between 3000 and 6000 milliseconds
timeout = (int)Math.round(Math.random() * 3000) + 3000;
System.out.printin("Random timeout set to " + timeout + " seconds");

}

@OQOverride
public void stop() {
timeout = 0;

}
}

package org.jpboss.example.mbean.support;
import org.jboss.system.ServiceMBean;

public interface PlainThreadMBean extends ServiceMBean {
void setConfigService(ConfigServiceMBean configServiceMBean);

}

package org.jpboss.example.mbean.support;
import org.jboss.system.ServiceMBeanSupport;
public class PlainThread extends ServiceMBeanSupport implements PlainThreadMBean {

private ConfigServiceMBean configService;
private Thread thread;
private volatile boolean done;

@Override
public void setConfigService(ConfigServiceMBean configService) {
this.configService = configService;

}

@Override
protected void startService() throws Exception {
System.out.printin("Starting Plain Thread MBean");
done = false;
thread = new Thread(new Runnable() {
@Override
public void run() {
try {
while (!done) {
System.out.printin("Sleeping....");
Thread.sleep(configService.getTimeout());
System.out.printin("Slept!");

}

175

Development Guide

} catch (InterruptedException e) {
Thread.currentThread().mterrupt();
thread start();
@Override
protected void stopService() throws Exception {

System.out.printin("Stopping Plain Thread MBean");
done = true;

The jboss-service.xml descriptor shows how ConfigService class is injected into PlainThread class
using inject tag. The inject tag establishes a dependency between PlainThreadMBean and
ConfigServiceMBean and thus allows PlainThreadMBean use ConfigServiceMBean easily.

xsi:schemalocation="urn:jboss:service:7.0 jboss-service_7_0.xsd"
xmlns="urn:jboss:service:7.0">
<mbean code="org.jboss.example.mbean.support.ConfigService"
name="jboss.support:name=ConfigBean"/>
<mbean code="org.jboss.example.mbean.support.PlainThread"
name="jboss.support:name=ThreadBean">
<attribute name="configService">
<inject bean="jboss.support:name=ConfigBean"/>
</attribute>
</mbean>

<server xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
</server>

‘ Example 9.2. JBoss-service.xml Service Descriptor

After writing the sample MBeans you can package the classes and the jboss-service.xml descriptor in
the META-INF folder of a service archive (.sar).

Report a bug

9.3. DEPLOYING JBOSS MBEAN SERVICES

To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Domain mode use the following
commands:

I [domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar

I [domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar --all-server-groups

176

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30498-635265+%5BLatest%5D&comment=Title%3A+A+Standard+MBean+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30498-635265+30+Apr+2014+04%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 9. JBOSS MBEAN SERVICES

To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Standalone mode use the
following command:

I [standalone@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar
To undeploy the sample MBeans use the following command:

I [standalone@localhost:9999 /] undeploy ServiceMBeanTest.sar

Report a bug

177

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+30548-634331+%5BLatest%5D&comment=Title%3A+Deploying+JBoss+MBean+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30548-634331+29+Apr+2014+02%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

10.1. SESSION REPLICATION

10.1.1. About HTTP Session Replication

Session replication ensures that client sessions of distributable applications are not disrupted by
failovers of nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and
can take them over if the originally-involved node disappears.

Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI
clusters provide high availability.

Report a bug

10.1.2. About the Web Session Cache

The web session cache can be configured when you use any of the HA profiles, including the
standalone-ha.xml profile, or the managed domain profiles ha or full-ha. The most commonly
configured elements are the cache mode and the number of cache owners for a distributed cache. The
owners parameter works only in the DIST mode.

Cache Mode
The cache mode can either be REPL (the default) or DIST.

REPL

The REPL mode replicates the entire cache to every other node in the cluster. This is the safest
option, but introduces more overhead.

DIST

The DIST mode is similar to the buddy mode provided in previous implementations. It reduces
overhead by distributing the cache to the number of nodes specified in the owners parameter. This
number of owners defaults to 2.

Owners

The owners parameter controls how many cluster nodes hold replicated copies of the session. The
defaultis 2.

Report a bug

10.1.3. Configure the Web Session Cache

The web session cache defaults to REPL. If you wish to use DIST mode, run the following two
commands in the Management CLI. If you use a different profile, change the profile name in the
commands. If you use a standalone server, remove the /profile=ha portion of the commands.

Procedure 10.1. Configure the Web Session Cache

1. Change the default cache mode toDIST.

178

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4686-734586+%5BLatest%5D&comment=Title%3A+About+HTTP+Session+Replication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4686-734586+06+Jan+2015+06%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+12554-762956+%5BLatest%5D&comment=Title%3A+About+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12554-762956+25+Jun+2015+04%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Result

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

/profile=ha/subsystem=infinispan/cache-container=web/:write-attribute(name=default-
cache,value=dist)

Set the number of owners for a distributed cache.
The following command sets 5 owners. The defaultis 2.

/profile=ha/subsystem=infinispan/cache-container=web/distributed-cache=dist/:write-
attribute(name=owners,value=5)

Change the default cache mode back taREPL.

/profile=ha/subsystem=infinispan/cache-container=web/:write-attribute(name=default-
cache,value=repl)

Restart the Server
After changing the web cache mode, you must restart the server.

Your server is configured for session replication. To use session replication in your own applications,
refer to the following topic: Section 10.1.4, “Enable Session Replication in Your Application” .

Report a bug

10.1.4.

Enable Session Replication in Your Application

Summary

To take advantage of JBoss EAP 6 High Availability (HA) features, you must configure your application
to be distributable. This procedure shows how to do that, and then explains some of the advanced
configuration options you can use.

Procedure 10.2. Make your Application Distributable

1.

Required: Indicate that your application is distributable.

If your application is not marked as distributable, its sessions will never be distributed. Add the
<distributable/> element inside the <web-app> tag of your application's web.xml descriptor
file. Here is an example.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<distributable/>

<?xml version="1.0"?>
<web-app xmins="http://java.sun.com/xml/ns/j2ee"
</web-app>

| Example 10.1. Minimum Configuration for a Distributable Application

179

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+12555-592028+%5BLatest%5D&comment=Title%3A+Configure+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12555-592028+23+Feb+2014+16%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

2. Modify the default replication behavior if desired.
If you want to change any of the values affecting session replication, you can override them
inside a <replication-config> element which is a child element of the <jboss-web> element of
your application's jboss-web.xml file. For a given element, only include it if you want to override
the defaults. The following example lists all of the default settings, and is followed by a table
which explains the most commonly changed options.

"http://www.jboss.org/j2ee/dtd/jboss-web_5_ 0.dtd">
<jboss-web>

<replication-config>
<replication-trigger>SET_AND_NON_PRIMITIVE_GET</replication-trigger>
<replication-granularity>SESSION</replication-granularity>
<use-jk>false</use-jk>
<max-unreplicated-interval>30</max-unreplicated-interval>
<snapshot-mode>INSTANT</snapshot-mode>
<snapshot-interval>1000</snapshot-interval>
<session-notification-policy>com.example.CustomSessionNotificationPolicy</session-

notification-policy>
</replication-config>

<IDOCTYPE jboss-web PUBLIC
"-//[JBoss//DTD Web Application 5.0//EN"
</jboss-web>

| Example 10.2. Example <replication-config>Values

Table 10.1. Common Options for Session Replication

Description

180

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

Description

<replication-trigger> Controls which conditions should trigger session data replication across
the cluster. This option is necessary because after a mutable object
(stored as a session attribute) is accessed from the session, the
container has no clear way to know if the object has been modified and
needs to be replicated, unless method setAttribute() is called directly.

Valid Values for <replication-trigger>

SET_AND_GET

This is the safest but worst-performing option. Session data is always
replicated, even if its content has only been accessed, and not
modified. This setting is preserved for legacy purposes only. To get
the same behavior with better performance, you may, instead of
using this setting, set <max-unreplicated-interval> to O.

SET_AND_NON_PRIMITIVE_GET

The default value. Session data is only replicated if an object of a
non-primitive type is accessed. This means that the object is not of a
well-known Java type such as Integer, Long, or String.

SET

This option assumes that the application will explicitly call
setAttribute on the session when the data needs to be replicated. It
prevents unnecessary replication and can benefit overall
performance, but is inherently unsafe.

Regardless of the setting, you can always trigger session replication by
calling setAttribute().

<replication-granularity> Determines the granularity of data that is replicated. It defaults to
SESSION, but can be set toATTRIBUTE instead, to increase

performance on sessions where most attributes remain unchanged.

Valid values for <replication-granularity>

ATTRIBUTE

This is only for dirty attributes in the session and for some session
data like the last-accessed timestamp.

SESSION

The default value. The entire session object is replicated if any
attribute is dirty. The shared object references are maintained on
remote nodes since the entire session is serialized in one unit.

NOTE

e

al FIELD is not supported in JBoss EAP 6.

The following options rarely need to be changed.

Table 10.2. Less Commonly Changed Options for Session Replication

181

Development Guide

Description

<use-jk>

<max-unreplicated-interval>

<shapshot-mode>

<shapshot-interval>

<session-notification-
policy>

Report a bug

Whether to assume that a load balancer such as mod_cluster, mod_jk,
or mod_proxy is in use. The defaultisfalse. If set totrue, the
container examines the session ID associated with each request and
replaces the jymRoute portion of the session ID if there is a failover.

The maximum interval (in seconds) to wait after a session was accessed
before triggering a replication of a session's timestamp, even if it is
considered to be unchanged. This ensures that cluster nodes are aware
of each session's timestamp and that an unreplicated session will not
expire incorrectly during a failover. It also ensures that you can rely on a
correct value for calls to method
HttpSession.getLastAccessedTime()during a failover.

By default, no value is specified. A value of 0 causes the timestamp to be
replicated whenever the session is accessed. A value of -1 causes the
timestamp to be replicated only if other activity during the request
triggers a replication. A positive value greater than
HttpSession.getMaxInactivelnterval() is treated as a
misconfiguration and converted to 0.

Specifies when sessions are replicated to other nodes. The default is
INSTANT and the other possible value isINTERVAL.

InINSTANT mode, changes are replicated at the end of a request, by
means of the request processing thread. The <shapshot-interval>
option is ignored.

InINTERVAL mode, a background task runs at the interval specified by
<shapshot-intervals, and replicates modified sessions.

The interval, in milliseconds, at which modified sessions should be
replicated when using INTERVAL for the value of<shapshot-mode>.

The fully-qualified class name of the implementation of interface
ClusteredSessionNotificationPolicy which governs whether servlet
specification notifications are emitted to any registered
HttpSessionListener, HttpSessionAttributeListener, or
HttpSessionBindingListener.

10.2. HTTPSESSION PASSIVATION AND ACTIVATION

10.2.1. About HTTP Session Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage.

Activation is when passivated data is retrieved from persisted storage and put back into memory.

Passivation occurs at three different times in a HTTP session's lifetime:

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4687-765781+%5BLatest%5D&comment=Title%3A+Enable+Session+Replication+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4687-765781+23+Jul+2015+02%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

® When the container requests the creation of a new session, if the number of currently active
session exceeds a configurable limit, the server attempts to passivate some sessions to make
room for the new one.

® Periodically, at a configured interval, a background task checks to see if sessions should be
passivated.

o When a web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager, sessions may be passivated.

A session is passivated if it meets the following conditions:
® The session has not been in use for longer than a configurable maximum idle time.

® The number of active sessions exceeds a configurable maximum and the session has not been in
use for longer than a configurable minimum idle time.

Sessions are always passivated using a Least Recently Used (LRU) algorithm.

Report a bug

10.2.2. Configure HttpSession Passivation in Your Application

Overview

HttpSession passivation is configured in your application's WEB_INF/jboss-web.xml or
META_INF/jboss-web.xml file.

Example 10.3. jboss-web.xml File
<IDOCTYPE jboss-web PUBLIC
"-//[JBoss//DTD Web Application 5.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_5_ 0.dtd">

<jboss-web version="6.0"
xmlns="http://www.jooss.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-web_6_0.xsd">

<max-active-sessions>20</max-active-sessions>
<passivation-config>
<use-session-passivation>true</use-session-passivation>
<passivation-min-idle-time>60</passivation-min-idle-time>
<passivation-max-idle-time>600</passivation-max-idle-time>
</passivation-config>

</jboss-web>

Passivation Configuration Elements

<max-active-sessions>

The maximum number of active sessions allowed. If the number of sessions managed by the session

183

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4689-591671+%5BLatest%5D&comment=Title%3A+About+HTTP+Session+Passivation+and+Activation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4689-591671+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Development Guide

manager exceeds this value and passivation is enabled, the excess will be passivated based on the
configured <passivation-min-idle-times. Then, if the number of active sessions still exceeds this
limit, attempts to create new sessions will fail. The default value of -1 sets no limit on the maximum
number of active sessions.

<passivation-config>

This element holds the rest of the passivation configuration parameters, as child elements.

<passivation-config> Child Elements

<use-session-passivation>

Whether or not to use session passivation. The default value is false.

<passivation-min-idle-time>

The minimum time, in seconds, that a session must be inactive before the container will consider
passivating it in order to reduce the active session count to conform to value defined by max-active-
sessions. The default value of -1 disables passivating sessions before <passivation-max-idle-time>
has elapsed. Neither a value of -1 nor a high value are recommended if <max-active-sessionss is set.

<passivation-max-idle-time>

The maximum time, in seconds, that a session can be inactive before the container attempts to
passivate it to save memory. Passivation of such sessions takes place regardless of whether the
active session count exceeds <max-active-sessionss. This value should be less than the <session-
timeouts setting in the web.xml. The default value of -1 disables passivation based on maximum
inactivity.

NOTE

The total number of sessions in memory includes sessions replicated from other cluster
nodes that are not being accessed on this node. Take this into account when setting
<max-active-sessions>. The number of sessions replicated from other nodes also
depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each
session is replicated to each node. In DIST cache mode, each session is replicated only to
the number of nodes specified by the owners parameter. See Section 10.1.2, “About the
Web Session Cache” and Section 10.1.3, “Configure the Web Session Cache” for
information on configuring session cache modes.

For example, consider an eight node cluster, where each node handles requests from 100
users. With REPL cache mode, each node would store 800 sessions in memory. With
DIST cache mode enabled, and the default owners setting of 2, each node stores 200
sessions in memory.

Report a bug

10.3. IMPLEMENT AN HA SINGLETON

Summary

The following procedure demonstrates how to deploy a service that is wrapped with the
SingletonService decorator and used as a cluster-wide singleton service. The service activates a
scheduled timer, which is started only once in the cluster.

184

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+23088%2C+Red+Hat+Development+Guide-6.4%0ABuild+Date%3A+16-11-2017+09%3A13%3A01%0ATopic+ID%3A+4690-759594+%5BLatest%5D&comment=Title%3A+Configure+HttpSession+Passivation+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4690-759594+28+May+2015+02%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

Procedure 10.3. Implement an HA Singleton Service

1. Write the HA singleton service application.

The following is a simple example of a Service that is wrapped with the SingletonService
decorator to be deployed as a singleton service. A complete example can be found in the
cluster-ha-singleton quickstart that ships with Red Hat JBoss Enterprise Application Platform
6. This quickstart contains all the instructions to build and deploy the application.

a. Create a service.

The following listing is an example of a service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.gejb;

import java.util.Date;
import java.util.concurrent.atomic.AtomicBoolean;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.logging.Logger;

import org.jboss.msc.service.Service;

import org.jboss.msc.service.ServiceName;
import org.jboss.msc.service.StartContext;
import org.jboss.msc.service.StartException;
import org.jboss.msc.service.StopContext;

/**
* @author Wolf-Dieter Fink
Y/
public class HATimerService implements Service<String> {
private static final Logger LOGGER = Logger.getLogger(HATimerService.class);
public static final ServiceName SINGLETON_SERVICE_NAME =
ServiceName.JBOSS.append("quickstart", "ha", "singleton”, "timer");

/**
* A flag whether the service is started.
Y/
private final AtomicBoolean started = new AtomicBoolean(false);

/**
* @return the name of the server node
Y/
public String getValue() throws lllegalStateException, lllegalArgumentException {
LOGGER.infof("%s is %s at %s", HATimerService.class.getSimpleName(),
(started.get() ? "started" : "not started"), System.getProperty("jboss.node.name"));
return "";

}

public void start(StartContext arg0) throws StartException {
if (Istarted.compareAndSet(false, true)) {
throw new StartException("The service is still started!");

}
LOGGER.info("Start HASingleton timer service ™ + this.getClass().getName() + "");

185

Development Guide

final String node = System.getProperty("jboss.node.name");
try {

InitialContext ic = new InitialContext();

((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-
service/SchedulerBeanlorg.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler"
)).initialize("HASingleton timer @" + node + " " + new Date());

} catch (NamingException e) {
throw new StartException("Could not initialize timer", e);

}
}

public void stop(StopContext arg0) {
if (Istarted.compareAndSet(true, false)) {
LOGGER.warn("The service " + this.getClass().getName() + " is not active!");
} else {
LOGGER.info("Stop HASingleton timer service ™ + this.getClass().getName() +
lll");

try {
InitialContext ic = new InitialContext();

((Scheduler) ic.lookup("global/jboss-cluster-ha-singleton-
service/SchedulerBeanlorg.jboss.as.quickstarts.cluster.hasingleton.service.ejb.Scheduler"
))-stop();

} catch (NamingException e) {

LOGGER:.error("Could not stop timer", e);

}
}
}
}

b. Create an activator that installs the Service as a clustered singleton.

The following listing is an example of a Service activator that installs the HATimerService
as a clustered singleton service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import org.jboss.as.clustering.singleton.SingletonService;
import org.jboss.logging.Logger;

import org.jboss.msc.service.DelegatingServiceContainer;
import org.jboss.msc.service.ServiceActivator;

import org.jboss.msc.service.ServiceActivatorContext;
import org.jboss.msc.service.ServiceController;

/**
* Service activator that installs the HATimerService as a clustered singleton service
* during deployment.

* @author Paul Ferraro
Y/
public class HATimerServiceActivator implements ServiceActivator {
private final Logger log = Logger.getLogger(this.getClass());

@Override
public void activate(ServiceActivatorContext context) {

186

CHAPTER 10. CLUSTERING IN WEB APPLICATIONS

log.info("HATimerService will be installed!");

HATimerService service = new HATimerService();
SingletonService<String> singleton = new SingletonService<String>(service,
HATimerService.SINGLETON_SERVICE_NAME);
/*
* To pass a chain of election policies to the singleton, for example,
* to tell JGroups to prefer running the singleton on a node with a
* particular name, uncomment the following line:
Vi
// singleton.setElectionPolicy(new PreferredSingletonElectionPolicy(new
SimpleSingletonElectionPolicy(), new NamePreference("node1/singleton”)));

singleton.build(new DelegatingServiceContainer(context.getServiceTarget(),
context.getServiceRegistry()))
.setInitialMode(ServiceController.Mode.ACTIVE)
.install()

NOTE

The above code example uses a class,
org.jboss.as.clustering.singleton.SingletonService, that is part of the
JBoss EAP private API. A public APl will become available in the JBoss EAP 7
release and the private class will be deprecated, but these classes will be
maintained and available for the duration of the JBoss EAP 6.x release cycle.

c. Create a ServiceActivator File
Create a file named org.jboss.msc.service.ServiceActivator in the application's

resources/META-INF/services/ directory. Add a line containing the fully qualified name of
the ServiceActivator class created in the previous step.

I org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.HATimerServiceActivator

d. Create a Singleton bean that implements a timer to be used as a cluster-wide singleton
timer.

This Singleton bean must not have a remote interface and you must not reference its local
interface from another EJB in any application. This prevents a lookup by a client or other

component and ensures the SingletonService has total control of the Singleton.

i. Create the Schedulerinterface

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

/**
* @author Wolf-Dieter Fink
Y/

public interface Scheduler {

void initialize(String info);

187

Development Guide

188

void stop();

ii. Create the Singleton bean thatimplements the cluster-wide singleton timer.

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import javax.annotation.Resource;
import javax.ejb.ScheduleExpression;
import javax.ejb.Singleton;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerConfig;

import javax.ejb.TimerService;

import org.jboss.logging.Logger;

/**
* A si