
Red Hat JBoss A-MQ 6.3

Managing and Monitoring a Broker

Administrative tasks made simple

Last Updated: 2019-01-15

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

Administrative tasks made simple

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ provides many tools to ensure that it is running at peak performance.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
OVERVIEW
ROUTINE TASKS
TROUBLESHOOTING
TOOLS

CHAPTER 2. EDITING A BROKER'S CONFIGURATION
2.1. INTRODUCTION TO BROKER CONFIGURATION
2.2. UNDERSTANDING THE RED HAT JBOSS A-MQ CONFIGURATION MODEL
2.3. EDITING A STANDALONE BROKER'S CONFIGURATION
2.4. MODIFYING A RUNNING STANDALONE BROKER'S XML CONFIGURATION
2.5. JVM CONFIGURATION OPTIONS.

CHAPTER 3. SECURITY BASICS
3.1. SECURITY OVERVIEW
3.2. BASIC SECURITY CONFIGURATION
3.3. ENABLE PASSWORD ENCRYPTION FOR NON-FABRIC ENVIRONMENT IN A-MQ
3.4. SETTING UP SSL FOR A-MQ
3.5. ENABLE BROKER-TO-BROKER AUTHENTICATION IN A-MQ
3.6. DISABLING BROKER SECURITY

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER
4.1. DEFINING JAAS REALMS
4.2. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER
4.3. USING ENCRYPTED PROPERTY PLACEHOLDERS

CHAPTER 5. SECURING FABRIC CONTAINERS
DEFAULT AUTHENTICATION SYSTEM
MANAGING USERS
OBFUSCATING STORED PASSWORDS
ENABLING LDAP AUTHENTICATION

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE
6.1. OVERVIEW
6.2. RUNNING JBOSS A-MQ AS A SERVICE
6.3. CUSTOMIZING KARAF-SERVICE.SH UTILITY
6.4. SYSTEMD
6.5. SYSV
6.6. SOLARIS SMF
6.7. WINDOWS

CHAPTER 7. STARTING A BROKER
OVERVIEW
STARTING IN CONSOLE MODE
STARTING IN DAEMON MODE
STARTING A BROKER IN A FABRIC

CHAPTER 8. SENDING COMMANDS TO THE BROKER
OVERVIEW
RUNNING THE ADMINISTRATION CLIENT
USING THE BROKER CONSOLE
CONNECTING A CONSOLE TO A REMOTE BROKER
STARTING A BASIC CONSOLE

4
4
4
4
5

6
6
6
8

12
16

18
18
19
20
21
23
23

25
25
28
29

35
35
35
35
36

37
37
37
37
38
39
39
39

41
41
41
42
42

44
44
44
45
46
46

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

AVAILABLE COMMANDS

CHAPTER 9. DEPLOYING A NEW BROKER
9.1. TYPE OF DEPLOYMENT
9.2. DEPLOYING A STANDALONE BROKER

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS
10.1. CREATING A SINGLE BROKER INSTANCE
10.2. CONNECTING TO A BROKER
10.3. TOPOLOGIES
10.4. ALTERNATIVE MASTER-SLAVE CLUSTER
10.5. BROKER CONFIGURATION

CHAPTER 11. SHUTTING DOWN A BROKER
11.1. SHUTTING DOWN A LOCAL BROKER
11.2. SHUTTING DOWN A BROKER REMOTELY

CHAPTER 12. ADDING CLIENT CONNECTION POINTS
12.1. OVERVIEW OF TRANSPORT CONNECTORS
12.2. ADDING A TRANSPORT CONNECTOR TO A STANDALONE BROKER

CHAPTER 13. ADDING A QUEUE OR A TOPIC
AUTOMATIC DESTINATION CREATION
RESTRICTING DESTINATION CREATION

CHAPTER 14. USING LOGGING
14.1. OVERVIEW OF LOGGING
14.2. LOGGING CONFIGURATION
14.3. VIEWING THE LOG
14.4. CHANGE LOGGING LEVEL AT RUNTIME USING JCONSOLE

CHAPTER 15. USING JMX
15.1. INTRODUCTION TO JMX
15.2. CONFIGURING JMX
15.3. STATISTICS COLLECTED BY JMX
15.4. MANAGING THE BROKER WITH JMX

CHAPTER 16. APPLYING PATCHES
16.1. INTRODUCTION TO PATCHING
16.2. FINDING THE RIGHT PATCHES TO APPLY
16.3. INSTALLING A ROLLUP PATCH AS A NEW INSTALLATION
16.4. PATCHING A STANDALONE CONTAINER
16.5. PATCHING STANDALONE APACHE ACTIVEMQ
16.6. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH
16.7. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL PATCH

APPENDIX A. REQUIRED JARS
OVERVIEW
REQUIRED JARS
JEE JARS
PERSISTENT MESSAGING JARS

INDEX

46

47
47
47

49
49
51
51
57
60

70
70
70

74
74
74

76
76
76

77
77
77
79
80

81
81
81
83
86

93
93
93
95
95

100
102
108

112
112
112
112
112

113

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

2

Table of Contents

3

CHAPTER 1. INTRODUCTION

Abstract

Once a messaging solution is deployed it needs to be monitored to ensure it performs at peak
performance. When problems do arise, many of them can be solved using the broker's administrative
tools. The broker's administrative tools can also be used to provide important debugging information
when troubleshooting problems.

OVERVIEW

Message brokers are long lived and usually form the backbone of the applications of which they are a
part. Over the course of a broker's life span, there are a number of management tasks that you may
need to do to keep the broker running at peak performance. This includes monitoring the health of the
broker, adding destinations, and security certificates.

If applications run into trouble one of the first places to look for clues is the broker. The broker is unlikely
to be the root cause of the problem, but its logs and metrics will provide clues as to what is the root
cause. You may also be able to resolve the problem using the broker's administrative interface.

ROUTINE TASKS

While Red Hat JBoss A-MQ is designed to require a light touch for management, there are a few routine
management tasks that need to be performed:

installing SSL certificates

starting the broker

creating destinations

stopping the broker

maintaining the advisory topics

monitoring the health of the broker

monitoring the health of the destinations

TROUBLESHOOTING

If an application runs into issues the broker will usually be able to provide clues to what is going wrong.
Because the broker is central to the operation of any application that relies on messaging, it will be able
to provide clues even if the broker is functioning properly. You may also be able to solve the problem by
making adjustments to the broker's configuration.

Common things to check for clues as to the nature of a problem include:

the broker's log file

the advisory topics

the broker's overall memory footprint

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

4

the size of individual destination

the total number of messages in the broker

the size of the broker's persistent store

a thread dump of the broker

One or more of these items can provide information about the problem. For example, if a destination
grows to a very large size it could indicate that one of its consumers is having trouble keeping up with the
messages. If the broker's log also shows that the consumer is repeatedly connecting and disconnecting
from the destination, that could indicate a networking problem or a problem with the machine hosting the
consumer.

TOOLS

There are a number of tools that you can use to monitor and administer Red Hat JBoss A-MQ.

The following tools are included with JBoss A-MQ:

administration client—a command line tool that can be used to manage a broker and do
rudimentary metric reporting

console mode—a runtime mode that presents you with a custom console that provides a
number of administrative options

Red Hat also provides management tools that you can install as part of your subscription:

management console—a browser based console for viewing, monitoring, and deploying a group
of distributed brokers

JBoss Operations Network—an advanced monitoring and management tool that can provide
detailed metrics and alerting.

In addition to the Red Hat supplied tools there are a number of third party tools that can be used to
administer and monitor a broker including:

jconsole—a JMX tool that is shipped with the JDK

VisualVM—a visual tool integrating several command line JDK tools and lightweight profiling
capabilities

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/knowledge/docs/JBoss_Operations_Network/
http://visualvm.java.net/

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

Abstract

Red Hat JBoss A-MQ configuration uses a combination of an XML configuration template and OSGi PID
configuration. This combination makes it possible to change specified broker properties on the fly. How
you change the configuration depends on how the broker instance is deployed.

2.1. INTRODUCTION TO BROKER CONFIGURATION

Configuring a broker involves making changes to a number of properties that are stored in multiple
locations including:

an XML configuration file

OSGi persistent identifier properties

How you make the changes depends on how the broker is deployed:

standalone—if a broker is deployed as a standalone entity and not a part of a fabric, you change
the configuration using a combination of directly editing the broker's configuration template file
and the console's config shell.

in a fabric—if a broker is deployed into a fabric its configuration is managed by the Fabric Agent
which draws all of the configuration from the fabric's registry. To modify the container of a broker
running as part of a fabric, you need to modify the profile(s) deployed into it. You can do this by
using either the fabric:profile-edit console command or the management console.

NOTE

Many of the configuration properties are managed by the OSGi Admin Service and are
organized by persistent identifier or PID. The container services look in a specific PID for
particular properties, so it is important to set the properties in the correct PID.

2.2. UNDERSTANDING THE RED HAT JBOSS A-MQ CONFIGURATION
MODEL

Abstract

The broker configuration is comprised of an XML template file that provides the framework for how a
broker instance is configured, a default OSGi persistent identifier, and one or more OSGi persistent
identifiers created by the OSGi Admin service. The container uses the template file to seed the
configuration into the broker's runtime. The properties stored in the OSGi persistent identifiers replace
any property placeholders left in the template. This allows the OSGi Admin service to update the broker's
configuration on the fly.

Overview

One of the weaknesses of the Apache ActiveMQ configuration model is that any changes require a
broker restart. Red Hat JBoss A-MQ addresses this weakness by capitalizing on the OSGi Admin
service. The container combines both the Apache ActiveMQ XML configuration and OSGi persistent

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

6

identifier(PID) properties to manage a broker instances runtime configuration.

In JBoss A-MQ your Apache ActiveMQ XML configuration file becomes a configuration template. It can
contain property placeholders for any settings that may need to be set on the fly. It can also be used as a
baseline for configuring a group of brokers and the placeholders represent settings that need to be
modified for individual brokers.

As shown in Figure 2.1, “Red Hat JBoss A-MQ Configuration System”, the configuration template is
combined with the OSGi PID properties. While the broker is running the OSGi Admin service monitors
the appropriate PIDs for changes. When it detects a change, the admin service will automatically change
the broker's runtime configuration.

Figure 2.1. Red Hat JBoss A-MQ Configuration System

Container

broker

Configuration templates

The JBoss A-MQ configuration template is an XML file that is based on the Apache ActiveMQ
configuration file. The main differences between an Apache ActiveMQ and a JBoss A-MQ configuration
template are:

configuration templates use property placeholders for settings that will be controlled via the
OSGi Admin service

configuration templates do not configure the broker's name

configuration templates do not configure the location of the data directory

configuration templates do not configure transport connectors

configuration templates do not configure network connectors

configuration templates do not control if a broker is a master or a slave node

configuration templates can be used as a baseline for multiple brokers on the same machine

The networking properties and role in a master/slave group are specified by the broker's PID and do not
need to appear in the template. The broker's name and data directory are replaced in the template with
property placeholders. Property placeholders can also be substituted for any attribute value or element
value in the XML configuration. This allows the OSGi Admin system populate them from the broker's
PID.

Property placeholders are specified using the syntax ${propName} and are resolved by matching
properties in the broker's PID. In order to use property placeholder the configuration template must
include the bean definition shown in Example 2.1, “Adding Property Placeholder Support to Red Hat
JBoss A-MQ Configuration”.

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

7

http://fusesource.com/docs/mirrors/activemq/using-activemq-5/configure-version-5-brokers.html

Example 2.1. Adding Property Placeholder Support to Red Hat JBoss A-MQ Configuration

The configuration template shown in Example 2.2, “Configuration with Property Placeholders” uses three
property placeholders that allow you to modify the base configuration using fabric properties.

Example 2.2. Configuration with Property Placeholders

OSGi PIDs

Persistent identifiers are described in chapter 104, [Configuration Admin Service Specification], of the
[OSGi Compendium Services Specification]. It is a unique key used by the OSGi framework's admin
service to associate configuration properties with active services. The PIDs for a JBoss A-MQ instance
have the prefix io.fabric8.mq.fabric.server.

Every PID has a physical representation as a file of name value pairs. For standalone brokers the files
are located in the etc/ folder and use the .cfg extension and are updated using the config shell. For
broker's in a fabric the files are stored in the Fabric Ensemble and are edited using the fabric shell's
profile management commands.

2.3. EDITING A STANDALONE BROKER'S CONFIGURATION

Abstract

<!-- Allows us to use system properties and fabric as variables in this
configuration file -->
<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfi
gurer">
 <property name="properties">
 <bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
</bean>

<broker ... >
 ...
</broker>

<broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 persistent="${persists}"
 start="false">
 ...
 <persistenceAdapter>
 <jdbcPersistenceAdapter dataDirectory="${data}/derby"
 dataSource="#derby-ds" />
 </persistenceAdapter>

</broker>

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

8

A standalone Red Hat JBoss A-MQ message broker's configuration can be edited by directly modifying
the configuration template and using the command console commands.

Overview

A standalone broker is one that is not part of a fabric. A standalone broker can, however, be part of a
network of broker, a master/slave cluster, or a failover cluster. The distinction is that a standalone is
responsible for managing and storing its own configuration.

All of the configuration changes are made directly on the local instance. You make changes using a
combination of edits to local configuration template and commands from the console's config shell. The
configuration template must be edited using an external editor. The configuration the control's the
behavior of the broker's runtime container is changed using the console commands.

Editing the configuration template

The default broker configuration template is etc/activemq.xml. You can the location of the
configuration template by changing the config property in the broker's
etc/io.fabric8.mq.fabric.server-broker.cfg file.

The template can be edited using any text or XML editor.

The broker must be restarted for any changes in the template to take effect.

Splitting activemq.xml into multiple files

For complex broker configurations, you might prefer to split the etc/activemq.xml file into multiple
XML files. You can do this using standard XML entities, declared in a DTD internal subset. For example,
say you have an etc/activemq.xml file with the following outline:

<beans ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false" restartAllowed="false">

 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true">
 <pendingMessageLimitStrategy>
 <constantPendingMessageLimitStrategy limit="1000"/>
 </pendingMessageLimitStrategy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true"
memoryLimit="1mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
 </destinationPolicy>

 <!-- Rest of the broker configuration -->

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

9

In this example, we assume you want to store the destinationPolicy element in a separate file. First
of all, create a new file, etc/destination-policy.xml, to store the destinationPolicy element,
with the following content:

You can then reference and include the contents of the etc/destination-policy.xml file in your
etc/activemq.xml file by editing activemq.xml, as follows:

Where the destinationPolicy element has now been replaced by the &destinationpolicy; entity
reference.

If you need to specify the absolute location of the destination-policy.xml file, use the URL format,
file:///path/to/file. For example, to reference the absolute location, /var/destination-
policy.xml, you would use the following DOCTYPE declaration at the start of the file:

 ...
 </broker>
</beans>

<destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true">
 <pendingMessageLimitStrategy>
 <constantPendingMessageLimitStrategy limit="1000"/>
 </pendingMessageLimitStrategy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true" memoryLimit="1mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
</destinationPolicy>

<!DOCTYPE beans [
<!ENTITY destinationpolicy SYSTEM "file:etc/destination-policy.xml">
]>
<beans ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false" restartAllowed="false">

 &destinationpolicy;

 <!-- Rest of the broker configuration -->
 ...
 </broker>
</beans>

<!DOCTYPE beans [
<!ENTITY destinationpolicy SYSTEM "file:///var/destination-policy.xml">
]>
...

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

10

Format of the DOCTYPE declaration

The recommended format of the DOCTYPE declaration to use with the etc/activemq.xml file is as
follows:

Note the following points about this format:

RootElement

This must always match the name of the root element in the current file. In the case of
activemq.xml, the root element is beans.

EntityName

The name of the entity you are defining with this ENTITY declaration. In the main part of the current
XML file, you can insert the contents of this entity using the entity reference, &EntityName;.

URL

To store the contents of the entity in a file, you must reference the file using the file: scheme.
Because of the way that ActiveMQ processes the XML file, it is not guaranteed to work, if you leave
out the file: prefix. Relative paths have the format file:path/to/file and absolute paths have
the format file:///path/to/file.

Editing the OSGi properties

The initial values for all of the OSGi properties configuring the broker are specified in the
etc/io.fabric8.mq.fabric.server-broker.cfg file. You can edit these values using the
command console's config shell. The PID for these values are
io.fabric8.mq.fabric.server.id. The id is assigned by the container when the broker is started.

In addition to the broker's messaging behavior, a number of the broker's runtime behavior such as
logging levels, the Fuse Management Console behavior, and the JMX behavior are controlled by by
OSGi properties stored in different PIDs.

To find the value for a broker's id use and the PIDs for the other runtime configuration settings, use the
config:list command.

Config shell

The config shell has a series of commands for editing OSGi properties:

config:list—lists all of the runtime configuration files and the current values for their
properties

config:edit—opens an editing session for a configuration file

config:propset—changes the value of a configuration property

config:propdel—deletes a configuration property

<!DOCTYPE RootElement [
<!ENTITY EntityName SYSTEM "URL">
]>
...

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

11

config:update—saves the changes to the configuration file being edited

2.4. MODIFYING A RUNNING STANDALONE BROKER'S XML
CONFIGURATION

Abstract

A select set of properties in a standalone Red Hat JBoss A-MQ message broker's .xml configuration file
can be modified, saved, then applied while the broker is running. This dynamic runtime configuration
feature is useful when you cannot disrupt the operation of existing producers or consumers with a broker
restart.

IMPORTANT

Take care when using this dynamic runtime configuration feature in production
environments as only the xml is validated, and changes to the broker's configuration take
effect according to the specified time interval.

Overview

You can edit a running broker's .xml configuration file (default is etc/activemq.xml) directly using
an external text or xml editor. Once the edits are saved, the runtime configuration plugin, which monitors
the broker's .xml configuration file, applies any detected runtime-supported changes to the running
broker. These changes persist through broker restarts.

You can dynamically change only a select set of properties by editing the broker's .xml configuration
file:

network connectors—add a network connector to a broker or modify the attributes of an existing
one

virtual destinations—add a virtual destination to a broker or modify the attributes of an existing
one

destination policy—add a subset of <policyEntry> attributes

authorization roles—add or modify roles that define read/write/admin access to queues and
topics.

Prerequisites

Disable configuration monitoring by the OSGi service factory

You need to prevent the OSGi service factory from restarting the broker when it detects a
change in the broker's configuration. To do so, you edit the
installDir/etc/io.fabric8.mq.fabric.server-broker.cfg file to add the line
config.check=false.

IMPORTANT

If you fail to disable the OSGi service factory, it will override the
runtimeConfigurationPlugin and restart the broker when it detects a
change.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

12

If the broker is stopped, you can edit this file directly using an external text or xml editor. If the
broker is running, you must use the appropriate config: shell commands to edit this file.

Enable dynamic runtime configuration

To enable dynamic runtime configuration, you must set two values in the broker's .xml
configuration file:

In the <broker.../> element, add start="false"; for example:

This setting prevents Spring from starting the broker when the spring context is loaded. If
Spring starts the broker, the broker will not know the location of the resource that created it,
leaving the runtime configuration plugin with nothing to monitor.

In the <plugins> element, add <runtimeConfigurationPlugin
checkPeriod="1000"> to enable automated runtime configuration; for example:

The runtime configuration plugin monitors the broker's .xml configuration file at intervals of
checkPeriod and applies only the runtime-supported changes that it detects to the running
broker. Modifications made to the attributes of other properties in the broker's .xml
configuration file are ignored until the next broker restart.

NOTE

The unit of value for checkPeriod is milliseconds. The default is 0, which
disables checking for changes. Using the default, you must manually trigger
updates via JMX.

Dynamically updating network connectors

To dynamically update the broker's network connectors, you add a network connector or modify
attributes in an existing network connector in the <networkConnectors> section of the broker's .xml
configuration file.

For example:

Dynamically updating virtual destinations

To dynamically update the broker's virtual destinations, you add a virtual destination or modify attributes
in an existing virtual topic in the <destinationInterceptors> section of the broker's .xml configuration file.

For example:

<broker xmlns="http://activemq.apache.org//schema/core" ...
start="false".../>

<plugins>
 <runtimeConfigurationPlugin checkPeriod="1000" />
</plugins>

<networkConnectors>
 <networkConnector uri="static:(tcp://localhost:5555)" networkTTL="1"
name="one" ... />
</networkConnectors>

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

13

NOTE

Changes take effect the next time a new consumer destination is added, not at the
runtime configuration plugin's checkPeriod interval.

NOTE

Out-of-the-box, virtual topics are enabled by default in the broker, without explicit
configuration in its .xml configuration file. The first time you add a virtual destination, you
must add the entire <destinationInterceptors> section to the broker's .xml configuration
file. Doing so replaces the broker's default <destinationInterceptors> configuration.

Dynamically updating the destination policy

To dynamically update the broker's virtual destination policy, you edit the <destinationInterceptors>
section in the broker's .xml configuration file.

Table 2.1 lists the runtime-changeable attributes of the <policyEntry> element, which apply to queues
and topics.

Table 2.1. Dynamically changeable <policyEntry> attributes

Attribute Type Queue
s

Topics

allConsumersBeforeDispatchStarts boolean Y N

alwaysRetroactive boolean Y N

advisoryForConsumed boolean Y N

advisoryForDelivery boolean Y N

advisoryForDiscardingMessages boolean Y N

advisoryForFastProducers boolean Y N

advisoryForSlowConsumers boolean Y N

advisoryWhenFull boolean Y N

blockedProducerWarningInterval long Y N

<destinationInterceptors>
 <virtualDestinationInterceptor>
 <virtualDestinations>
 <virtualTopic name="B.>" selector="false" />
 </virtualDestinations>
 </virtualDestinationInterceptor>
</destinationInterceptors>

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

14

consumersBeforeDispatchStarts int Y N

cursorMemoryHighWaterMark int Y N

doOptimizeMessageStore boolean Y N

gcIsInactiveDestinations boolean Y N

gcWithNetworkConsumers boolean Y N

inactiveTimeoutBeforeGC long Y N

lazyDispatch boolean Y Y

maxBrowsePageSize int Y N

maxExpirePageSize int Y N

maxPageSize int Y N

memoryLimit string Y Y

minimumMessageSize long Y N

optimizedDispatch boolean Y N

optimizeMessageStoreInFlightLimit int Y N

producerFlowControl boolean Y N

reduceMemoryFootprint boolean Y N

sendAdvisoryIfNoConsumers boolean Y N

storeUsageHighWaterMark int Y N

strictOrderDispatch boolean Y N

timeBeforeDispatchStarts int Y N

useConsumerPriority boolean Y N

Attribute Type Queue
s

Topics

Destination policies to control paging

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

15

The following destination policies control message paging (the number of messages that are pulled into
memory from the message store, each time the memory is emptied):

maxPageSize

The maximum number of messages paged into memory for sending to a destination.

maxBrowsePageSize

The maximum number of messages paged into memory for browsing a queue.

NOTE

The number of messages paged in for browsing cannot exceed the destination's
memoryLimit setting.

maxExpirePageSize

The maximum number of messages paged into memory to check for expired messages.

Dynamically updating authorization roles

To dynamically add authorization roles for accessing the broker's queues and topics, you:

add the authorization plugin to the <plugins> section of the broker's .xml configuration file

configure the authorization plugin's <map> element

For example:

2.5. JVM CONFIGURATION OPTIONS.

Abstract

Various settings for the JVM can be configured prior to startup. To do this, edit the bin/setenv file. The
setenv file is used as part of the start-up routine, so for any changes to be picked up they have to be
made before JBoss A-MQ is started.

<plugins>
 <runtimeConfigurationPlugin checkPeriod="1000" />
 <authorizationPlugin>
 <map>
 <authorizationMap>
 <authorizationEntries>
 <authorizationEntry queue=">" read="admins" write="admins"
admin="admins" />
 <authorizationEntry queue="USERS.>" read="users" write="users"
admin="users" />

 <authorizationEntry topic=">" read="admins" write="admins"
admin="admins" />
 <authorizationEntry topic="USERS.>" read="users" write="users"
admin="users" />
 ...

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

16

Setting Java Options

Java Options can be set using the /bin/setenv file. Use this file to set a number of Java Options, such
as JAVA_MIN_MEM, JAVA_MAX_MEM, JAVA_PERM_MEM, JAVA_MAX_PERM_MEM. These are the
default options. Other Java Options can be set using the EXTRA_JAVA_OPTS variable.

For example, to allocate minimum memory for the JVM use

. To set a Java option other than the defaults, use

. For example,

.

JAVA_MIN_MEM=512M # Minimum memory for the JVM

EXTRA_JAVA_OPTS="Java option"

EXTRA_JAVA_OPTS="-XX:+UseG1GC"

CHAPTER 2. EDITING A BROKER'S CONFIGURATION

17

CHAPTER 3. SECURITY BASICS

Abstract

By default, Red Hat JBoss A-MQ is secure because none of its ports are remotely accessible. You want
to open a few basic ports for remote access for management purposes.

3.1. SECURITY OVERVIEW

Overview

The Red Hat JBoss A-MQ runtime exposes three ports for remote access. These ports, which are mostly
intended for managing the broker, are essentially disabled by default. They are configured to require
authentication, but have no defined users. This makes the broker immune to breaches, but is not ideal for
remote management.

Ports exposed by the container

Figure 3.1, “Ports Exposed by the Red Hat JBoss A-MQ Container” shows the ports exposed by the
JBoss A-MQ container by default.

Figure 3.1. Ports Exposed by the Red Hat JBoss A-MQ Container

Console port

JMX port

OSGi Container

The following ports are exposed by the container:

Console port—enables remote control of a container instance, through Apache Karaf shell
commands. This port is enabled by default and is secured both by JAAS authentication and by
SSL.

JMX port—enables management of the container through the JMX protocol. This port is enabled
by default and is secured by JAAS authentication.

Web console port—provides access to an embedded Jetty container that hosts the Fuse
Management Console.

Authentication and authorization system

Red Hat JBoss A-MQ uses Java Authentication and Authorization Service (JAAS) for ensuring the users
trying to access the broker have the proper credentials. The implementation is modular, with individual
JAAS modules providing the authentication implementations. JBoss A-MQ's command console provides
commands to configure the JAAS system.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

18

3.2. BASIC SECURITY CONFIGURATION

Overview

The default security settings block access to a broker's remote ports. If you want to access the Red Hat
JBoss A-MQ runtime remotely, you must first customize the security configuration. The first thing you will
want to do is create at least one JAAS user. This will enable remote access to the broker.

Other common configuration changes you may want to make are:

configure access to the Fuse Management Console

assign roles to each of the remote ports to limit access

strengthen the credentials needed to access the remote console

WARNING

If you are planning to enable SSL/TLS security, you must ensure that you explicitly
disable SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-
2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-
MQ 6.x.

Create a secure JAAS user

By default, no JAAS users are defined for the container, which effectively disables remote access (it is
impossible to log on).

To create a secure JAAS user, edit the InstallDir/etc/users.properties file and add a new
user field, as follows:

Where Username and Password are the new user credentials. The Administrator role gives this
user the privileges to access all administration and management functions of the container. For more
details about JAAS, see section "JAAS Authentication" in "Security Guide".

Do not define a numeric username with a leading zero. Such usernames will always cause a login
attempt to fail. This is because the Karaf shell, which the console uses, drops leading zeros when the
input appears to be a number. For example:



Username=Password,Administrator

JBossA-MQ:karaf@root> echo 0123
123
JBossA-MQ:karaf@root> echo 00.123
0.123
JBossA-MQ:karaf@root>

CHAPTER 3. SECURITY BASICS

19

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/ESBSecureContainer.html#ESBSecureJAASAuth

NOTE

You can also grant privileges to a user through user groups, instead of listing the roles
directly.

WARNING

It is strongly recommended that you define custom user credentials with a strong
password.

Role-based access control

The JBoss A-MQ container supports role-based access control, which regulates access through the JMX
protocol, the Karaf command console, and the Fuse Management console. When assigning roles to
users, you can choose from the set of standard roles, which provide the levels of access described in
Table 3.1, “Standard Roles for Access Control”.

Table 3.1. Standard Roles for Access Control

Roles Description

Monitor, Operator, Maintainer Grants read-only access to the container.

Deployer, Auditor Grants read-write access at the appropriate level for
ordinary users, who want to deploy and run
applications. But blocks access to sensitive container
configuration settings.

Administrator, SuperUser Grants unrestricted access to the container.

For more details about role-based access control, see section "Role-Based Access Control" in "Security
Guide".

Strengthening security on the remote console port

You can employ the following measures to strengthen security on the remote console port:

Make sure that the JAAS user credentials have strong passwords.

Customize the X.509 certificate (replace the Java keystore file, InstallDir/etc/host.key,
with a custom key pair).

For more details, see the Security Guide.

3.3. ENABLE PASSWORD ENCRYPTION FOR NON-FABRIC
ENVIRONMENT IN A-MQ



Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

20

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/RBAC.html

Red Hat JBoss A-MQ provides a set of options for enabling password encryption. To protect the
passwords, you must set the file permissions of the users.properties file so that it can be read only
by administrators. To provide additional protection, you can also encrypt the stored passwords using a
message digest algorithm.

To enable the password encryption feature using the MD algorithm, follow the below instructions:

Edit the InstallDir/etc/org.apache.karaf.jaas.cfg file.

For example, the following settings would enable basic encryption using the MD5 message
digest algorithm:

NOTE

The encryption settings in the org.apache.karaf.jaas.cfg file are applied only to
the default karaf realm in a standalone container.

See Also: section "Using Encrypted Property Placeholders" in "Security Guide"

3.4. SETTING UP SSL FOR A-MQ

ActiveMQ includes key and trust stores that reference a dummy self signed certificate.

To install and configure SSL support for A-MQ, you need to create a keystore file to store the server's
private key and self-signed certificate and uncomment the SSL HTTP/1.1 Connector entry in
conf/server.xml.

NOTE

When you create a broker certificate and trust stores for your installation, either overwrite
the values in the conf directory or delete the existing dummy key and trust stores so they
do not interfere.

Starting the Broker with SSL

To start the broker, use the >javax.net.ssl.keyStore and javax.net.ssl.keyStorePassword
system properties

1. Set the SSL_OPTS environment variable so that it knows to use the broker keystore. <export
SSL_OPTS = -Djavax.net.ssl.keyStore=/path/to/broker.ks -
Djavax.net.ssl.keyStorePassword=password

Alternately, you can set the system properties in the broker configuration file.

To configure the security context in the broker configuration file, follow the instructions below:

 encryption.enabled = true
 encryption.name = basic
 encryption.prefix = {CRYPT}
 encryption.suffix = {CRYPT}
 encryption.algorithm = MD5
 encryption.encoding = hexadecimal

CHAPTER 3. SECURITY BASICS

21

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/FMQSecurityEncryptProperties.html

In the conf/activemq.xml, edit the attributes in the sslContext element.

Set the values for KeyStore, Key StorePassword, truststore, trustStorePassword.

keyStore

equivalent to setting javax.net.ssl.keyStore

keyStorePassword

equivalent to setting javax.net.ssl.keyStorePassword

keyStoreType

equivalent to setting javax.net.ssl.keyStoreType

keyStoreAlgorithm

defaults to JKS

trustStore

equivalent to setting javax.net.ssl.trustStore

trustStorePassword

equivalent to setting javax.net.ssl.trustStorePassword

trustStoreType

equivalent to setting javax.net.ssl.trustStoreType

Verifying Client Certificates

To verify client certificates, follow the below instructions:

Export the client's certificate to share it with the broker. keytool -export -alias client
-keystore client.ks -file client_cert

Create a truststore for the broker and import the client's certificate. This ensures that the broker
trusts the client.

<beans>
 <broker>
 <sslContext>
 <sslContext keyStore="file:${activemq.base}/conf/broker.ks"
 keyStorePassword="password"
 trustStore="file:${activemq.base}/conf/broker.ts"
 trustStorePassword="password"/>
 </sslContext>
 </broker>
</beans>

keytool -import -alias client -keystore broker.ts -file client_cert

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

22

Add javax.net.ssl.trustStore system property to SSL_OPTS
Djavax.net.ssl.trustStore=/path/to/broker.ts

Instruct ActiveMQ to require client authentication by setting the following in activemq.xml.

3.5. ENABLE BROKER-TO-BROKER AUTHENTICATION IN A-MQ

To enable authentication between 2 brokers, for example Broker A and Broker B, where Broker A is
configured to perform authentication, you can configure Broker B to log on to Broker A by setting the
userName attribute and the password attribute in the networkConnector element.

To configure the network connector follow the below instructions:

Assuming that Broker A is configured to connect to Broker B. Configure the Broker A's
networkConnector element with username/password credentials as shown:

For example, the following settings would enable basic encryption using the MD5 message
digest algorithm:

Here Broker A's authentication plug-in checks for Broker A's username. For example, if Broker A
has its authentication configured by a simpleAuthenticationPlugin element, Broker A's username
must appears in this element.

The encryption settings in the org.apache.karaf.jaas.cfg file are applied only to the default karaf
realm in a standalone container.

3.6. DISABLING BROKER SECURITY

Overview

Prior to Fuse MQ Enterprise version 7.0.2, the Apache ActiveMQ broker was insecure (JAAS
authentication not enabled). This section explains how to revert the Apache ActiveMQ broker to an
insecure mode of operation, so that it is unnecessary to provide credentials when connecting to the
broker.

<transportConnectors>
 <transportConnector name="ssl" uri="ssl://localhost:61617?
needClientAuth=true"/>
</transportConnectors>

<beans>
 <broker>
 <networkConnectors>
 <networkConnector name="BrokerABridge" userName="user"
password="password" uri="static://(ssl://brokerA:61616)"/>
 </networkConnectors>
 </broker>
</beans>

CHAPTER 3. SECURITY BASICS

23

WARNING

After performing the steps outlined in this section, the broker has no protection
against hostile clients. This type of configuration is suitable only for use on internal,
trusted networks.

Standalone server

These instructions assume that you are running Red Hat JBoss A-MQ in standalone mode (that is,
running in an OSGi container, but not using Fuse Fabric). In your installation of Red Hat JBoss A-MQ,
open the InstallDir/etc/activemq.xml file using a text editor and look for the following lines:

To disable JAAS authentication, delete (or comment out) the jaasAuthenticationPlugin element.
The next time you start up the JBoss A-MQ container using the start script the broker will run with
unsecured ports.



...
<plugins>
 <jaasAuthenticationPlugin configuration="karaf" />
</plugins>
...

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

24

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-
MQ CONTAINER

Abstract

The Red Hat JBoss A-MQ container is secured using JAAS. By defining JAAS realms, you can configure
the mechanism used to retrieve user credentials. You can also refine access to the container's
administrative interfaces by changing the default roles. Red Hat JBoss A-MQ runs in an OSGi container
that uses the Java Authentication and Authorization Service(JAAS) to perform authorization. Changing
the authorization scheme for the container involves defining a new JAAS realm and deploying it into the
container.

4.1. DEFINING JAAS REALMS

Overview

When defining a JAAS realm in the OSGi container, you cannot put the definitions in a conventional
JAAS login configuration file. Instead, the OSGi container uses a special jaas:config element for
defining JAAS realms in a blueprint configuration file. The JAAS realms defined in this way are made
available to all of the application bundles deployed in the container, making it possible to share the JAAS
security infrastructure across the whole container.

Namespace

The jaas:config element is defined in the http://karaf.apache.org/xmlns/jaas/v1.0.0
namespace. When defining a JAAS realm you will need to include the line shown in Example 4.1, “JAAS
Blueprint Namespace”.

Example 4.1. JAAS Blueprint Namespace

Configuring a JAAS realm

The syntax for the jaas:config element is shown in Example 4.2, “Defining a JAAS Realm in
Blueprint XML”.

Example 4.2. Defining a JAAS Realm in Blueprint XML

xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0">

 <jaas:config name="JaasRealmName"
 [rank="IntegerRank"]>
 <jaas:module className="LoginModuleClassName"
 [flags="
[required|requisite|sufficient|optional]"]>
 Property=Value
 ...

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

25

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixB

The elements are used as follows:

jaas:config

Defines the JAAS realm. It has the following attributes:

name—specifies the name of the JAAS realm.

rank—specifies an optional rank for resolving naming conflicts between JAAS realms .
When two or more JAAS realms are registered under the same name, the OSGi container
always picks the realm instance with the highest rank. If you decide to override the default
realm, karaf, you should specify a rank of 100 or more, so that it overrides all of the
previously installed karaf realms (in the context of Fabric, you need to override the default
ZookeeperLoginModule, which has a rank of 99).

jaas:module

Defines a JAAS login module in the current realm. jaas:module has the following attributes:

className—the fully-qualified class name of a JAAS login module. The specified class
must be available from the bundle classloader.

flags—determines what happens upon success or failure of the login operation. Table 4.1,
“Flags for Defining a JAAS Module” describes the valid values.

Table 4.1. Flags for Defining a JAAS Module

Value Description

required Authentication of this login module must
succeed. Always proceed to the next login
module in this entry, irrespective of success or
failure.

requisite Authentication of this login module must
succeed. If success, proceed to the next login
module; if failure, return immediately without
processing the remaining login modules.

sufficient Authentication of this login module is not
required to succeed. If success, return
immediately without processing the remaining
login modules; if failure, proceed to the next
login module.

 </jaas:module>
 ...
 <!-- Can optionally define multiple modules -->
 ...
 </jaas:config>

</blueprint>

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

26

optional Authentication of this login module is not
required to succeed. Always proceed to the
next login module in this entry, irrespective of
success or failure.

Value Description

The contents of a jaas:module element is a space separated list of property settings, which are
used to initialize the JAAS login module instance. The specific properties are determined by the
JAAS login module and must be put into the proper format.

NOTE

You can define multiple login modules in a realm.

Converting standard JAAS login properties to XML

Red Hat JBoss A-MQ uses the same properties as a standard Java login configuration file, however Red
Hat JBoss A-MQ requires that they are specified slightly differently. To see how the Red Hat JBoss A-
MQ approach to defining JAAS realms compares with the standard Java login configuration file
approach, consider how to convert the login configuration shown in Example 4.3, “Standard JAAS
Properties”, which defines the PropertiesLogin realm using the Red Hat JBoss A-MQ properties
login module class, PropertiesLoginModule:

Example 4.3. Standard JAAS Properties

The equivalent JAAS realm definition, using the jaas:config element in a blueprint file, is shown in
Example 4.4, “Blueprint JAAS Properties”.

Example 4.4. Blueprint JAAS Properties

PropertiesLogin {
 org.apache.activemq.jaas.PropertiesLoginModule required
 org.apache.activemq.jaas.properties.user="users.properties"
 org.apache.activemq.jaas.properties.group="groups.properties";
};

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0">

 <jaas:config name="PropertiesLogin">
 <jaas:module flags="required"
 className="org.apache.activemq.jaas.PropertiesLoginModule">
 org.apache.activemq.jaas.properties.user=users.properties
 org.apache.activemq.jaas.properties.group=groups.properties
 </jaas:module>

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

27

IMPORTANT

You do not use double quotes for JAAS properties in the blueprint configuration.

Example

Red Hat JBoss A-MQ also provides an adapter that enables you to store JAAS authentication data in an
X.500 server. Example 4.5, “Configuring a JAAS Realm” defines the LDAPLogin realm to use Red Hat
JBoss A-MQ's LDAPLoginModule class, which connects to the LDAP server located at
ldap://localhost:10389.

Example 4.5. Configuring a JAAS Realm

For a detailed description and example of using the LDAP login module, see ???.

4.2. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER

Overview

 </jaas:config>

</blueprint>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0">

 <jaas:config name="LDAPLogin" rank="200">
 <jaas:module flags="required"
 className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.username=uid=admin,ou=system
 connection.password=secret
 connection.protocol=
 connection.url = ldap://localhost:10389
 user.base.dn = ou=users,ou=system
 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=users,ou=system
 role.filter = (uid=%u)
 role.name.attribute = ou
 role.search.subtree = true
 authentication = simple
 </jaas:module>
 </jaas:config>
</blueprint>

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

28

You can configure the OSGi container to retrieve authentication data from an LDAP directory server. The
exact configuration depends on the particular directory server implementation, and on the organization of
the directory information tree.

References

Detailed documentation on LDAP authentication is provided in the Security Guide, as follows:

LDAP Tutorial—is provided in chapter "LDAP Authentication Tutorial" in "Security Guide" .

LDAPLoginModule options—are described in detail in section "JAAS LDAP Login Module" in
"Security Guide".

cachedLDAPAuthorizationMap options—are described in detail in section "Cached LDAP
Authorization Plug-In" in "Security Guide".

4.3. USING ENCRYPTED PROPERTY PLACEHOLDERS

Overview

When securing a container it is undesirable to use plain text passwords in configuration files. They
create easy to target security holes. One way to avoid this problem is to use encrypted property
placeholders when ever possible. This feature is supported both in Blueprint XML files and in Spring
XML files.

How to use encrypted property placeholders

To use encrypted property placeholders in a Blueprint XML file or in a Spring XML file, perform the
following steps:

1. Download and install Jasypt, to gain access to the Jasypt listAlgorithms.sh, encrypt.sh
and decrypt.sh command-line tools.

NOTE

When installing the Jasypt command-line tools, don't forget to enable execute
permissions on the script files, by running chmod u+x ScriptName.sh.

2. Choose a master password and an encryption algorithm. To discover which algorithms are
supported in your current Java environment, run the listAlgorithms.sh Jasypt command-
line tool, as follows:

On Windows platforms, the script is listAlgorithms.bat. JBoss A-MQ uses
PBEWithMD5AndDES by default.

3. Use the Jasypt encrypt command-line tool to encrypt your sensitive configuration values (for
example, passwords for use in configuration files). For example, the following command

./listAlgorithms.sh
DIGEST ALGORITHMS: [MD2, MD5, SHA, SHA-256, SHA-384, SHA-512]

PBE ALGORITHMS: [PBEWITHMD5ANDDES, PBEWITHMD5ANDTRIPLEDES,
PBEWITHSHA1ANDDESEDE, PBEWITHSHA1ANDRC2_40]

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

29

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/FESBLDAPTutorial.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/ESBSecureContainer.html#JAASAuth-LDAPLoginModule
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/Auth-CachedLDAPAuthzPlugin.html
http://jasypt.org/download.html

encrypts the PlaintextVal value, using the specified algorithm and master password
MasterPass:

4. Create a properties file with encrypted values. For example, suppose you wanted to store some
LDAP credentials. You could create a file, etc/ldap.properties, with the following contents:

Example 4.6. Property File with an Encrypted Property

The encrypted property values (as generated in the previous step) are identified by wrapping in
the ENC() function.

5. (Blueprint XML only) Add the requisite namespaces to your Blueprint XML file:

Aries extensions—http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0

Apache Karaf Jasypt—http://karaf.apache.org/xmlns/jasypt/v1.0.0

Example 4.7, “Encrypted Property Namespaces” shows a Blueprint file with the requisite
namespaces.

Example 4.7. Encrypted Property Namespaces

6. Configure the location of the properties file for the property placeholder and configure the Jasypt
encryption algorithm .

Blueprint XML

Example 4.8, “Jasypt Blueprint Configuration” shows how to configure the ext:property-
placeholder element to read properties from the etc/ldap.properties file. The
enc:property-placeholder element configures Jasypt to use the
PBEWithMD5AndDES encryption algorithm and to read the master password from the
JASYPT_ENCRYPTION_PASSWORD environment variable.

Example 4.8. Jasypt Blueprint Configuration

./encrypt.sh input="PlaintextVal" algorithm=PBEWithMD5AndDES
password=MasterPass

#ldap.properties
ldap.password=ENC(amIsvdqno9iSwnd7kAlLYQ==)
ldap.url=ldap://192.168.1.74:10389

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">
...
</blueprint>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

30

Spring XML

Example 4.9, “Jasypt Spring Configuration” shows how to configure Jasypt to use the
PBEWithMD5AndDES encryption algorithm and to read the master password from the
JASYPT_ENCRYPTION_PASSWORD environment variable.

The EncryptablePropertyPlaceholderConfigurer bean is configured to read
properties from the etc/ldap.properties file and to read properties from the
io.fabric8.mq.fabric.ConfigurationProperties class (which defines the
karaf.base property, for example).

Example 4.9. Jasypt Spring Configuration

 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file:etc/ldap.properties</location>
 </ext:property-placeholder>

 <enc:property-placeholder>
 <enc:encryptor
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean
class="org.jasypt.encryption.pbe.config.EnvironmentStringPBECon
fig">
 <property name="algorithm" value="PBEWithMD5AndDES"
/>
 <property name="passwordEnvName"
value="JASYPT_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>
...
</blueprint>

<bean id="environmentVariablesConfiguration"
class="org.jasypt.encryption.pbe.config.EnvironmentStringPBECon
fig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="JASYPT_ENCRYPTION_PASSWORD" />
</bean>

<bean id="configurationEncryptor"
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config"
ref="environmentVariablesConfiguration" />
</bean>

<bean id="propertyConfigurer"

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

31

7. Use the placeholders in your configuration file. The placeholders you use for encrypted
properties are the same as you use for regular properties. Use the syntax ${prop.name}.

8. Make sure that the jasypt-encryption feature is installed in the container. If necessary,
install the jasypt-encryption feature with the following console command:

9. Shut down the container, by entering the following command:

10. Carefully restart the container and deploy your secure application, as follows:

1. Open a command window (first command window) and enter the following commands to
start the JBoss A-MQ container in the background:

2. Open a second command window and start the client utility, to connect to the container
running in the background:

Where Username and Password are valid JAAS user credentials for logging on to the
container console.

3. In the second command window, use the console to install your secure application that uses
encrypted property placeholders. Check that the application has launched successfully (for
example, using the osgi:list command to check its status).

4. After the secure application has started up, go back to the first command window and unset
the JASYPT_ENCRYPTION_PASSWORD environment variable.

IMPORTANT

Unsetting the JASYPT_ENCRYPTION_PASSWORD environment variable
ensures there will be minimum risk of exposing the master password. The
Jasypt library retains the master password in encrypted form in memory.

class="org.jasypt.spring31.properties.EncryptablePropertyPlaceh
olderConfigurer">
 <constructor-arg ref="configurationEncryptor" />
 <property name="location"
value="file:${karaf.base}/etc/ldap.properties"/>
 <property name="properties">
 <bean
class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
</bean>

JBossFuse:karaf@root> features:install jasypt-encryption

JBossFuse:karaf@root> shutdown

export JASYPT_ENCRYPTION_PASSWORD="your super secret master pass
phrase"
./bin/start

./bin/client -u Username -p Password

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

32

Blueprint XML example

Example 4.10, “Jasypt Example in Blueprint XML” shows an example of an LDAP JAAS realm
configured in Blueprint XML, using Jasypt encrypted property placeholders.

Example 4.10. Jasypt Example in Blueprint XML

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-
ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file:etc/ldap.properties</location>
 </ext:property-placeholder>

 <enc:property-placeholder>
 <enc:encryptor
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean
class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="JASYPT_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>

 <jaas:config name="karaf" rank="200">
 <jaas:module
className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 debug=true
 connectionURL=${ldap.url}

connectionUsername=cn=mqbroker,ou=Services,ou=system,dc=jbossfuse,dc=com
 connectionPassword=${ldap.password}
 connectionProtocol=
 authentication=simple
 userRoleName=cn
 userBase = ou=User,ou=ActiveMQ,ou=system,dc=jbossfuse,dc=com
 userSearchMatching=(uid={0})
 userSearchSubtree=true
 roleBase = ou=Group,ou=ActiveMQ,ou=system,dc=jbossfuse,dc=com
 roleName=cn
 roleSearchMatching= (member:=uid={1})
 roleSearchSubtree=true
 </jaas:module>
 </jaas:config>

</blueprint>

CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER

33

The ${ldap.password} placeholder is replaced with the decrypted value of the ldap.password
property from the etc/ldap.properties properties file.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

34

CHAPTER 5. SECURING FABRIC CONTAINERS

Abstract

By default, fabric containers uses text-based username/password authentication. Setting up a more
robust access control system involves creating and deploying a new JAAS realm to the containers in the
fabric.

DEFAULT AUTHENTICATION SYSTEM

By default, Fabric uses a simple text-based authentication system (implemented by the JAAS login
module, io.fabric8.jaas.ZookeeperLoginModule). This system allows you to define user
accounts and assign passwords and roles to the users. Out of the box, the user credentials are stored in
the Fabric registry, unencrypted.

MANAGING USERS

You can manage users in the default authentication system using the jaas:* family of console
commands. First of all you need to attach the jaas:* commands to the ZookeeperLoginModule login
module, as follows:

Which attaches the jaas:* commands to the ZookeeperLoginModule login module. You can then
add users and roles, using the jaas:useradd and jaas:roleadd commands. Finally, when you are
finished editing the user data, you must commit the changes by entering the jaas:update command,
as follows:

Alternatively, you can abort the pending changes by entering jaas:cancel.

OBFUSCATING STORED PASSWORDS

By default, the JAAS ZookeeperLoginModule stores passwords in plain text. You can provide
additional protection to passwords by storing them in an obfuscated format. This can be done by adding
the appropriate configuration properties to the io.fabric8.jaas PID and ensuring that they are
applied to all of the containers in the fabric.

For more details, see section "Encrypting Stored Passwords" in "Security Guide".

JBossFuse:karaf@root> jaas:realms
Index Realm Module Class
 1 karaf
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 2 karaf
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
 3 karaf io.fabric8.jaas.ZookeeperLoginModule
JBossFuse:karaf@root> jaas:manage --index 3

JBossFuse:karaf@root> jaas:update

CHAPTER 5. SECURING FABRIC CONTAINERS

35

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/ESBSecureContainer.html#JAASAuth-EncryptPassw

NOTE

Although message digest algorithms are not easy to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

ENABLING LDAP AUTHENTICATION

Fabric supports LDAP authentication (implemented by the Apache Karaf LDAPLoginModule), which
you can enable by adding the requisite configuration to the default profile.

For details of how to enable LDAP authentication in a fabric, see chapter "LDAP Authentication Tutorial"
in "Security Guide".

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

36

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Security_Guide/FESBLDAPTutorial.html

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A
SERVICE

Abstract

This chapter provides information on how you can start the Red Hat JBoss A-MQ instance as a system
service by using the templates.

NOTE

Before following these instructions, you must install Red Hat JBoss A-MQ 6.3.0 Roll Up 1.

6.1. OVERVIEW

By using the Service Script templates, you can run a JBoss A-MQ instance with the help of operating
system specific init scripts. You can find these templates under the bin/contrib directory.

6.2. RUNNING JBOSS A-MQ AS A SERVICE

The karaf-service.sh utility helps you to customize the templates. This utility will automatically
identify the operating system and the default init system and generates ready to use init scripts. You can
also customize the scripts to adapt them to its environment, by setting JAVA_HOME and few other
environment variables.

The generated scripts are composed of two files:

1. the init script

2. the init configuration file

6.3. CUSTOMIZING KARAF-SERVICE.SH UTILITY

You can customize the karaf-service.sh utility, by defining an environment variable or by passing
command line options:

Table 6.1.

Command Line Option Environment Variable Description

-k KARAF_SERVICE_PATH Karaf installation path

-d KARAF_SERVICE_DATA Karaf data path (default to
\${KARAF_SERVICE_PATH}/
data)

-c KARAF_SERVICE_CONF Karaf configuration file (default to
\${KARAF_SERVICE_PATH/e
tc/\${KARAF_SERVICE_NAM
E}.conf)

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE

37

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.amq&downloadType=securityPatches&version=6.3.0

-t KARAF_SERVICE_ETC Karaf etc path (default to
\${KARAF_SERVICE_PATH/e
tc})

-p KARAF_SERVICE_PIDFILE Karaf pid path (default to
\${KARAF_SERVICE_DATA}/
\${KARAF_SERVICE_NAME}.
pid))

-n KARAF_SERVICE_NAME Karaf service name (default karaf)

-e KARAF_ENV Karaf environment variable

-u KARAF_SERVICE_USER Karaf user

-g KARAF_SERVICE_GROUP Karaf group (default
\${KARAF_SERVICE_USER)

-l KARAF_SERVICE_LOG Karaf console log (default to
\${KARAF_SERVICE_DATA}/
log/\${KARAF_SERVICE_NA
ME}-console.log)

-f KARAF_SERVICE_TEMPLATE Template file to use

-x KARAF_SERVICE_EXECUTABL
E

Karaf executable name (defaul
karaf support daemon and stop
commands)

Command Line Option Environment Variable Description

6.4. SYSTEMD

When the karaf-service.sh utility identifies Systemd, it generates three files:

a systemd unit file to manage the root Apache Karaf container

a systemd environment file with variables used by the root Apache Karaf container

a systemd template unit file to manage Apache Karaf child containers

CONF_TEMPLATE="karaf-service-template.conf"
SYSTEMD_TEMPLATE="karaf-service-template.systemd"
SYSTEMD_TEMPLATE_INSTANCES="karaf-service-template.systemd-instances"
INIT_TEMPLATE="karaf-service-template.init"
INIT_REDHAT_TEMPLATE="karaf-service-template.init-redhat"
INIT_DEBIAN_TEMPLATE="karaf-service-template.init-debian"
SOLARIS_SMF_TEMPLATE="karaf-service-template.solaris-smf"

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

38

Here is an example:

6.5. SYSV

When the karaf-service.sh utility identifies a SysV system, it generates two files:

an init script to manage the root Apache Karaf container

an environment file with variables used by the root Apache Karaf container

Here is an example:

NOTE

To enable the service startup upon boot, Refer your operating system init guide.

6.6. SOLARIS SMF

When the karaf-service.sh utility identifies a Solaris operating system, it generates a single file.

Here is an example:

NOTE

The generated SMF descriptor is defined as transient, so that you can execute the start
method only once.

6.7. WINDOWS

Installation of Apache Karaf as windows service is supported through winsw.

To install Apache Karaf as windows service, perform the following:

Rename the karaf-service-win.exe file to karaf-4.exe file.

$./karaf-service.sh -k /opt/karaf-4 -n karaf-4
Writing service file "/opt/karaf-4/bin/contrib/karaf-4.service"
Writing service configuration file "/opt/karaf-4/etc/karaf-4.conf"
Writing service file "/opt/karaf-4/bin/contrib/karaf-4@.service"
$ cp /opt/karaf-4/bin/contrib/karaf-4.service /etc/systemd/system
$ cp /opt/karaf-4/bin/contrib/karaf-4@.service /etc/systemd/system
$ systemctl enable karaf-4.service

$./karaf-service.sh -k /opt/karaf-4 -n karaf-4
Writing service file "/opt/karaf-4/bin/contrib/karaf-4"
Writing service configuration file "/opt/karaf-4/etc/karaf-4.conf"
$ ln -s /opt/karaf-4/bin/contrib/karaf-4 /etc/init.d/
$ chkconfig karaf-4 on

$./karaf-service.sh -k /opt/karaf-4 -n karaf-4
Writing service file "/opt/karaf-4/bin/contrib/karaf-4.xml"
$ svccfg validate /opt/karaf-4/bin/contrib/karaf-4.xml
$ svccfg import /opt/karaf-4/bin/contrib/karaf-4.xml

CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE

39

Rename the karaf-service-win.exe file to karaf-4.exe file.

Rename the karaf-service-win.xml file to karaf-4.xml file.

Customize the service descriptor as per your requirements.

Use the service executable to install, start and stop the service.

Here is an example:

C:\opt\apache-karaf-4\bin\contrib> karaf-4.exe install
C:\opt\apache-karaf-4\bin\contrib> karaf-4.exe start

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

40

CHAPTER 7. STARTING A BROKER

Abstract

You start a broker using a simple command. The broker can either be started so that it launches a
command console or so that it runs as a daemon process. When a broker is part of a fabric, you can
remotely start the broker remotely.

OVERVIEW

A broker can be run in one of two modes:

console mode—the broker starts up as a foreground process and presents the user with a
command shell

daemon mode—the broker starts up as a background process that can be manged using a
remote console or the provided command line tools

The default location for the broker's configuration for the broker is the
InstallDir/etc/activemq.xml configuration file. The configuration uses values loaded from the
InstallDir/etc/system.properties file and the
InstallDir/etc/io.fabric8.mq.fabric.server-broker.cfg file.

STARTING IN CONSOLE MODE

When you start the broker in console mode you will be placed into a command shell that provides access
to a number of commands for managing the broker and its OSGi runtime.

IMPORTANT

When the broker is started in console mode, you cannot close the console without killing
the broker.

To launch a broker in console mode, change to InstallDir and run one of the commands in Table 7.1,
“Start up Commands for Console Mode”.

Table 7.1. Start up Commands for Console Mode

Windows bin\amq.bat

Linux/UNIX bin/amq

If the server starts up correctly you should see something similar to Example 7.1, “Broker Console” on
the console.

Example 7.1. Broker Console

 _ ____ __ __ ____
 | | _ \ /\ | \/ |/ __ \
 | | |_) | ___ ___ ___ / \ ______| \ / | | | |
 _ | | _ < / _ \/ __/ __| / /\ ______| |\/| | | | |

CHAPTER 7. STARTING A BROKER

41

| |__| | |_) | (_) __ __ \ / ____ \ | | | | |__| |
 ____/|____/ ___/|___/___/ /_/ _\ |_| |_|____\

 JBoss A-MQ (6.3.0.redhat-187)
 http://www.redhat.com/products/jbossenterprisemiddleware/amq/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

Open a browser to http://localhost:8181 to access the management console

Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss A-MQ.

JBossA-MQ:karaf@root>

NOTE

Since version JBoss A-MQ 6.2.1, launching in console mode creates two processes: the
parent process ./bin/karaf, which is executing the Karaf console; and the child
process, which is executing the Karaf server in a java JVM. The shutdown behaviour
remains the same as before, however. That is, you can shut down the server from the
console using either Ctrl-D or osgi:shutdown, which kills both processes.

STARTING IN DAEMON MODE

Launching a broker in daemon mode runs Red Hat JBoss A-MQ in the background without a console. To
launch a broker in daemon mode, change to InstallDir and run one of the commands in Table 7.2, “Start
up Commands for Daemon Mode”.

Table 7.2. Start up Commands for Daemon Mode

Windows bin\start.bat

Linux/UNIX bin/start

STARTING A BROKER IN A FABRIC

If a broker is deployed as part of a fabric you can start it remotely in one of three ways:

using the console of one of the other broker's in the fabric

If one of the brokers in the fabric is running in console mode you an use the
fabric:container-start command to start any of the other brokers in the fabric. The
command requires that you supply the container name used when creating the broker in the
fabric. For example to start a broker named fabric-broker3 you woul duse the command
shown in Example 7.2, “Starting a Broker in a Fabric”.

Example 7.2. Starting a Broker in a Fabric

JBossA-MQ:karaf@root> fabric:container-start fabric-broker3

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

42

using the administration client of one of the broker's in the fabric

If none of the brokers are running in console mode, you can use the administration client on one
of the brokers to execute the fabric:container-start command. The administration client
is run using the client command in Red Hat JBoss A-MQ's bin folder. Example 7.3, “Starting
a Broker in a Fabric with the Administration Client” shows how to use the remote client to start
remote broker in the fabric.

Example 7.3. Starting a Broker in a Fabric with the Administration Client

bin/client fabric:container-start fabric-broker3

using the management console

The management console can start and stop any of the brokers in the fabric it manages from a
Web based console.

For more information see Using the Management Console.

CHAPTER 7. STARTING A BROKER

43

CHAPTER 8. SENDING COMMANDS TO THE BROKER

Abstract

Red Hat JBoss A-MQ provides a number of commands that can be used to manage a broker, deploy
new brokers, and report administrative details. You can send these commands to a broker using either
the broker command console or the administration client.

OVERVIEW

The default mode for running a Red Hat JBoss A-MQ broker is to run in daemon mode. In this mode, the
broker runs as a background process and you have no direct means for managing it or requesting status
information. You can access a broker in daemon mode in the following ways:

the JBoss A-MQ administration client that can be used to send any of the console commands to
a broker running in daemon mode

a broker running in console mode can connect to a remote broker and be used to manage the
remote broker

Red Hat JBoss A-MQ includes a vanilla Apache Karaf shell that can connect to a remote broker
and be used to manage the remote broker

If a broker is started in console mode, you can simply enter commands directly in the command console.

RUNNING THE ADMINISTRATION CLIENT

The JBoss A-MQ administration client is run using the client in InstallDir/bin. Example 8.1,
“Client Command” shows the syntax for the command.

Example 8.1. Client Command

client [--help] [-a port] [-h host] [-u user] [-p password] [-v] [-r attempts] [-d delay] [
commands]

Table 8.1, “Administration Client Arguments” describes the command's arguments.

Table 8.1. Administration Client Arguments

Argument Description

--help Displays the help message.

-a Specifies the remote host's port.

-h Specify the remote host's name.

-u Specifies user name used to log into the broker.

-p Specifies the password used to log into the broker.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

44

-v Use verbose output.

-r Specifies the maximum number of attempts to
establish a connection.

-d Specifies, in seconds, the delay between retries. The
default is 2 seconds.

commands Specifies one or more commands to run. If no
commands are specified, the client enters an
interactive mode.

Argument Description

USING THE BROKER CONSOLE

The console provides commands that you can use to perform basic management of your JBoss A-MQ
environment, including managing destinations, connections and other administrative objects in the
broker.

The console uses prefixes to group commands relating to the same functionality. For example
commands related to configuration are prefixed config:, and logging-related commands are prefixed
log:.

The console provides two levels of help:

console help—list all of the commands along with a brief summary of the commands function

command help—a detailed description of a command and its arguments

To access the console help you use the help command from the console prompt. It will display a
grouped list of all the commands available in the console. Each command in the list will be followed by a
description of the command as shown in Example 8.2, “Console Help”.

Example 8.2. Console Help

JBossA-MQ:karaf@root> help
COMMANDS activemq:browse activemq:bstat activemq:list activemq:purge
activemq:query admin:change-opts Changes the Java options of an existing
container instance. admin:change-rmi-registry-port Changes the RMI
registry port (used by management layer) of an existing container
instance.
 ...
JBossA-MQ:karaf@root>

The help for each command includes the definition, the syntax, and the arguments and any options. To
display the help for a command, type the command with the --help option. As shown in Example 8.3,
“Help for a Command”, entering admin:start --help displays the help for that command.

Example 8.3. Help for a Command

CHAPTER 8. SENDING COMMANDS TO THE BROKER

45

JBossA-MQ:karaf@root> admin:start --help
DESCRIPTION admin:start Starts an existing container instance. SYNTAX
admin:start [options] name ARGUMENTS name The name of the container
instance OPTIONS --help Display this help message -o, --java-opts Java
options when launching the instance
JBossA-MQ:karaf@root>

CONNECTING A CONSOLE TO A REMOTE BROKER

How you connect a command console to a broker on a remote machine depends on if the brokers are
part of the same fabric. If the remote broker you want to command is a part of the same fabric as the
broker whose command console you are using, then you can use the fabric:container-connect
command to establish a connection to the remote broker.

The fabric:container-connect command has one required argument that specifies the name of
the container to which a connection will be opened. You can also specify a command to be executed by
the remote console connection. If you do not specify a command, you are presented with a prompt that
will pass commands to the remote broker's console..

If you are not using fabric, or the remote broker is not part of the same fabric as the broker whose
command console you are using, you create a remote connection using the ssh:ssh command. The
ssh:ssh command also only requires a single argument to establish the remote connection. In this case,
it is the hostname, or IP address, of the machine on which the broker is running. If the remote broker is
not using the default SSH port (8101), you will also need to specify the remote broker's SSH port using
the -p flag. You can also specify a command to be executed by the remote console connection. If you
do not specify a command, you are presented with a prompt that will pass commands to the remote
broker's console.

To disconnect from the remote console, you use the logout command or press Control+D.

STARTING A BASIC CONSOLE

Red Hat JBoss A-MQ includes a shell command that will open a vanilla command console without
starting a broker instance. You can use this command console to connect to remote brokers in the same
way as you would a broker's command console.

AVAILABLE COMMANDS

The remote client can execute any of the broker's console commands. For a complete list of commands
see the [Console Reference].

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

46

CHAPTER 9. DEPLOYING A NEW BROKER

Abstract

In most large messaging environments there will be multiple brokers deployed. This may be for load
management, high availability, or other business reasons. Using standalone brokers this requires
manually installing and configuring multiple instances of Red Hat JBoss A-MQ. Using a fabric, however,
you can deploy multiple brokers from a single location and easily reuse large portions of the
configuration.

9.1. TYPE OF DEPLOYMENT

When deploying multiple brokers, you need to decide how you want to manage the brokers:

as a collection of standalone brokers

a fabric of brokers

All of the advanced networking features such as fail over, network of brokers, load balancing, and
master/slave are available regardless of how you choose to manage your broker deployment. The
difference is in what is required to set up and maintain the deployment.

Using a collection of standalone brokers requires that you install, configure, and maintain each broker
separately. If you have three brokers, you will need to manually install Red Hat JBoss A-MQ on three
machines and configure each installation separately. This can be cumbersome and error prone
particularly when configuring a network of brokers. When issues arise or you need to update your
deployment, you will have to make the changes on each machine individually.

If you brokers are deployed into a fabric, you can perform the installation and configuration of all the
brokers in the deployment from a central location. In addition, using a fabric simplifies the configuration
process and makes it less error prone. Fabric provides tooling for auto-configuring failover clusters,
networks of brokers, and master/slave clusters. In addition, it also makes it possible to place all of the
common configuration into a single profile that all of the brokers share. When issues arise or you need to
update your deployment, having your brokers in a fabric allows you to do incremental roll outs and
provides a means for quickly rolling back any changes.

9.2. DEPLOYING A STANDALONE BROKER

Abstract

Deploying standalone brokers requires manually installing and configuring multiple instances of Red Hat
JBoss A-MQ.

Overview

Deploying a new standalone broker involves installing Red Hat JBoss A-MQ on a new machine and
modifying its configuration as needed. You will need to do this for all of the additional brokers in your
deployment.

Procedure

To deploy a new standalone broker:

CHAPTER 9. DEPLOYING A NEW BROKER

47

1. Install JBoss A-MQ onto the target system as described in the Installation Guide.

2. Modify the new installation's configuration for your environment as described in Chapter 2,
Editing a Broker's Configuration.

You will need to repeat this process for each standalone broker you want to deploy.

More information

For more information on configuring brokers to work together see:

Using Networks of Brokers

Fault Tolerant Messaging

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

48

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

Abstract

Fabric provides predefined profiles for deploying a single (unclustered) broker and, in addition, you can
use the powerful fabric:mq-create command to create and deploy clusters of brokers.

10.1. CREATING A SINGLE BROKER INSTANCE

MQ profiles

The following profiles are important for creating broker instances:

mq-base

An abstract profile, which defines some important properties and resources for the broker, but should
never be used directly to instantiate a broker.

mq-default

A basic single broker, which inherits most of its properties from the mq-base profile.

To examine the properties defined in these profiles, you can invoke the fabric:profile-display
command, as follows:

Creating a new broker instance

A Fuse MQ broker is a Karaf container instance running a message broker profile. The profile defines the
broker dependencies (through features) and the configuration for the broker. The simplest approach to
creating a new broker is to use the provided mq-default profile.

For example, to create a new mq-default broker instance called broker1, enter the following console
command:

This command creates a new container called broker1 with a broker of the same name running on it.

fabric:mq-create command

JBossFuse:karaf@root> fabric:profile-display mq-default
...
JBossFuse:karaf@root> fabric:profile-display mq-base
...

JBossFuse:karaf@root> fabric:container-create-child --profile mq-default
root broker1
Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
 /Users/jdoe/Downloads/jboss-fuse-6.3.0-254/instances/broker1
The following containers have been created successfully:
 Container: broker1.

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

49

The fabric:mq-create command provides a shortcut to creating a broker, but with more flexibility,
because it also creates a new profile. To create a new broker instance called brokerx using
fabric:mq-create, enter the following console command:

Just like the basic fabric:container-create-child command, fabric:mq-create creates a
container called broker1 and runs a broker instance on it. There are some differences, however:

The new broker1 container is implicitly created as a child of the current container,

The new broker has its own profile, mq-broker-default.brokerx, which is based on the
mq-base profile template,

It is possible to edit the mq-broker-default.brokerx profile, to customize the configuration
of this new broker.

The --replicas option lets you specify the number of master/slave broker replicas (for more
details, see Section 10.3.2, “Master-Slave Cluster”). In this example, we specify one replica (the
default is two).

NOTE

The new profile gets the name mq-broker-Group.BrokerName by default. If you want
the profile to have the same name as the broker (which was the default in JBoss A-MQ
version 6.0), you can specify the profile name explicitly using the --profile option.

IMPORTANT

The new broker is created with SSL enabled by default. The initial certificates and
passwords created by default are not secure, however, and must be replaced by custom
certificates and passwords. See the section called “Customizing the SSL keystore.jks and
truststore.jks file” for details of how to do this.

Starting a broker on an existing container

The fabric:mq-create command can be used to deploy brokers on existing containers. Consider the
following example, which creates a new Fuse MQ broker in two steps:

The preceding example firstly creates a default child container, and then creates and deploys the new
mq-broker-default.brokerx profile to the container, by invoking fabric:mq-create with the --
assign-container option. Of course, instead of deploying to a local child container (as in this

JBossFuse:karaf@root> fabric:mq-create --create-container broker --
replicas 1 brokerx
MQ profile mq-broker-default.brokerx ready

JBossFuse:karaf@root> fabric:container-create-child root broker1
Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
 /Users/jdoe/Downloads/jboss-fuse-6.3.0-254/instances/broker1
The following containers have been created successfully:
 broker1.

JBossFuse:karaf@root> fabric:mq-create --assign-container broker1 brokerx
MQ profile mq-broker-default.brokerx ready

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

50

example), we could assign the broker to an SSH container.

Broker groups

Brokers created using the fabric:mq-create command are always registered with a specific broker
group. If you do not specify the group name explicitly at the time you create the broker, the broker gets
registered with the default group by default.

If you like, you can specify the group name explicitly using the --group option of the fabric:mq-
create command. For example, to create a new broker that registers with the west-coast group,
enter the following console command:

If the west-coast group does not exist prior to running this command, it is automatically created by
Fabric. Broker groups are important for defining clusters of brokers, providing the underlying mechanism
for creating load-balancing clusters and master-slave clusters. For details, see Section 10.3,
“Topologies”.

10.2. CONNECTING TO A BROKER

Overview

This section describes how to connect a client to a broker. In order to connect to a JBoss MQ broker,
you need to know its group name. Every MQ broker is associated with a group when it is created: if none
is specified explicitly, it automatically gets associated with the default group.

Client URL

To connect to an MQ broker, the client must specify a discovery URL, in the following format:

For example, to connect to a broker associated with the default group, the client would use the
following URL:

The connection factory then looks for available brokers in the group and connects the client to one of
them.

10.3. TOPOLOGIES

10.3.1. Load-Balancing Cluster

Overview

JBossFuse:karaf@root> fabric:mq-create --create-container broker --
replicas 1 --group west-coast brokery
MQ profile mq-broker-west-coast.brokery ready

discovery:(fabric:GroupName)

discovery:(fabric:default)

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

51

Fabric exploits the concept of broker groups to implement cluster functionality. To set up a load-
balancing cluster, all of the brokers in the cluster should register with the same group name, but using
unique broker names.

For example, Figure 10.1, “Load-Balancing Cluster” shows a load-balancing cluster with the group name,
loadbal, and with three brokers registered in the group: brokerx, brokery, and brokerz. This
topology is most useful in a scenario where producer is generating a heavy load but does not care if all
the messages are delivered to the consumer. In this scenario non persistent messages are used. This
topology does not have shared storage. For scenarios where better guarantees regarding delivery of
messages is required it is best to combine networks and master slave as defined in subsequent
sections.

Figure 10.1. Load-Balancing Cluster

brokerx

Broker Name URL

.

brokery

brokerz

Group: l oadbal

Create brokers in a load-balancing cluster

The basic rules for creating a load-balancing cluster of brokers are as follows:

Choose a group name for the load-balancing cluster.

Each broker in the cluster registers with the chosen group.

Each broker must be identified by a unique broker name.

Normally, each broker is deployed in a separate container.

For example, consider the cluster shown in Figure 10.1, “Load-Balancing Cluster”. The group name is
loadbal and the cluster consists of three broker instances with broker names: brokerx, brokery, and
brokerz.

To create this cluster, perform the following steps:

1. First of all create some containers:

JBossFuse:karaf@root> container-create-child root broker 3
Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
 /Users/jdoe/Downloads/jboss-fuse-6.3.0.redhat-
254/instances/broker2
Creating new instance on SSH port 8104 and RMI ports 1102/44447 at:
 /Users/jdoe/Downloads/jboss-fuse-6.3.0.redhat-
254/instances/broker3
Creating new instance on SSH port 8103 and RMI ports 1101/44446 at:
 /Users/jdoe/Downloads/jboss-fuse-6.3.0.redhat-
254/instances/broker1
The following containers have been created successfully:

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

52

2. Wait until the containers are successfully provisioned. You can conveniently monitor them using
the watch command, as follows:

3. You can then assign broker profiles to each of the containers, using the fabric:mq-create
command, as follows:

4. You can use the fabric:profile-list command to see the new profiles created for these
brokers:

5. You can use the fabric:cluster-list command to view the cluster configuration for this
load balancing cluster:

 Container: broker2.
 Container: broker3.
 Container: broker1.

JBossFuse:karaf@root> watch container-list

JBossFuse:karaf@root> mq-create --group loadbal --assign-container
broker1 brokerx
MQ profile mq-broker-loadbal.brokerx ready

JBossFuse:karaf@root> mq-create --group loadbal --assign-container
broker2 brokery
MQ profile mq-broker-loadbal.brokery ready

JBossFuse:karaf@root> mq-create --group loadbal --assign-container
broker3 brokerz
MQ profile mq-broker-loadbal.brokerz ready

JBossFuse:karaf@root> profile-list --hidden
[id] [# containers] [parents]
...
mq-broker-loadbal.brokerx 1 mq-base
mq-broker-loadbal.brokery 1 mq-base
mq-broker-loadbal.brokerz 1 mq-base
mq-client-loadbal
...

JBossFuse:karaf@root> cluster-list
[cluster] [masters] [slaves] [services]
...
amq/loadbal
 brokerx broker1 - tcp://MyLocalHost.61616
mqtt://MyLocalHost.61424 amqp://MyLocalHost.61426
stomp://MyLocalHost.61428
 brokery broker2 - tcp://MyLocalHost.61437
mqtt://MyLocalHost.61439 amqp://MyLocalHost.61441
stomp://MyLocalHost.61443
 brokerz broker3 - tcp://MyLocalHost.61453
mqtt://MyLocalHost.61455 amqp://MyLocalHost.61457
stomp://MyLocalHost.61459

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

53

Configure clients of a load-balancing cluster

To connect a client to a load-balancing cluster, use a URL of the form, discovery:
(fabric:GroupName), which automatically load balances the client across the available brokers in the
cluster. For example, to connect a client to the loadbal cluster, you would use a URL like the following:

For convenience, the mq-create command automatically generates a profile named mq-
client-GroupName, which provides an ActiveMQConnectionFactory instance in the registry. If
you deploy this profile together with a Camel route that uses JMS endpoints, the Camel route will
automatically find and use the ActiveMQConnectionFactory instance to connect to the broker
cluster.

10.3.2. Master-Slave Cluster

Overview

In the master-slave pattern, multiple peer brokers provide the same service and all compete to be the
master. Only one master can exist at a given time, while the rest remain on standby as slaves. If the
master stops, the remaining brokers (slaves) compete to become the new master. If the broker
containers are deployed across different machines or data centres, the result is a highly available broker.

For example, Figure 10.2, “Master-Slave Cluster” shows a master-slave cluster with the group name,
masterslave, and three brokers that compete with each other to register as the broker, hq-broker. A
broker becomes the master by acquiring a lock (where the lock implementation is provided by the
underlying ZooKeeper registry). The other two brokers that fail to acquire the lock remain as slaves (but
they continue trying to acquire the lock, at regular time intervals).

Figure 10.2. Master-Slave Cluster

broker1

hq- br oker

Broker Name URL

.

Group: maste rsla ve

Create brokers in a master-slave cluster

The basic rules for creating a master-slave cluster of brokers are as follows:

Choose a group name for the master-slave cluster.

Each broker in the cluster registers with the chosen group.

Each broker must be identified by the same virtual broker name.

Normally, each broker is deployed in a separate container.

discovery:(fabric:loadbal)

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

54

For example, consider the cluster shown in Figure 10.2, “Master-Slave Cluster”. The group name is
masterslave and the cluster consists of three broker instances, each with the same broker name: hq-
broker. You can create this cluster by entering a single fabric:mq-create command, as follows:

Alternatively, if you have already created three containers, broker1, broker2 and broker3 (possibly
running on separate machines), you can deploy a cluster of three brokers to the containers by entering
the following command:

The first broker that starts becomes the master, while the others are slaves. When you stop the master,
one of the slaves will take over and clients will reconnect. If brokers are persistent, you need to ensure
that they all use the same store—for details of how to configure this, see the section called “Configuring
persistent data”.

Configure clients of a master-slave cluster

To connect a client to a master-slave cluster, use a URL of the form, discovery:
(fabric:GroupName), which automatically connects the client to the current master server. For
example, to connect a client to the masterslave cluster, you would use a URL like the following:

You can use the automatically generated client profile, mq-client-masterslave, to create sample
clients (by referencing the corresponding ActiveMQConnectionFactory instance in the registry).

Locking mechanism

One benefit of this kind of master-slave architecture is that it does not depend on shared storage for
locking, so it can be used even with non-persistent brokers. The broker group uses ZooKeeper to
manage a shared distributed lock that controls ownership of the master status.

Re-using containers for multiple clusters

Fabric supports re-using the same containers for multiple master-slave clusters, which is a convenient
way to economize on hardware resources. For example, given the three containers, broker1,
broker2, and broker3, already running the hq-broker cluster, it is possible to reuse the same
containers for another highly available broker cluster, web-broker. You can assign the web-broker
profile to the existing containers with the following command:

This command assigns the new web-broker profile to the same containers already running hq-
broker. Fabric automatically prevents two masters from running on the same container, so the master
for hq-broker will run on a different container from the master for web-broker. This arrangement
makes optimal use of the available resources.

Configuring persistent data

JBossFuse:karaf@root> mq-create --create-container broker --replicas 3 --
group masterslave hq-broker

JBossFuse:karaf@root> mq-create --assign-container broker1,broker2,broker3
--group masterslave hq-broker

discovery:(fabric:masterslave)

mq-create --assign-container broker1,broker2,broker3 web-broker

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

55

When you run a master-slave configuration with persistent brokers, it is important to specify where your
store is located, because you need to be able to access it from multiple hosts. To support this scenario,
the fabric:mq-create command enables you to specify the location of the data directory, as follows:

The preceding command creates the hq-broker virtual broker, which uses the /var/activemq/hq-
broker directory for the data (and store) location. You can then mount some shared storage to this path
and share the storage amongst the brokers in the master-slave cluster.

10.3.3. Broker Networks

Overview

It is possible to combine broker clusters with broker networks, giving you a hybrid broker network that
combines the benefits of broker clusters (for example, high availability) with the benefits of broker
networks (managing the flow of messages between different geographical sites).

Broker networks

A broker network in JBoss A-MQ is a form of federation where brokers are linked together using network
connectors. This can be used as a way of forwarding messages between different geographical
locations. Messages can be forwarded either statically (where specified categories of messages are
always forwarded to a specific broker), or dynamically (where messages are forwarded only in response
to a client that connects to a broker and subscribes to particular queues or topics).

For more details, see "Using Networks of Brokers" from the JBoss A-MQ library.

Creating network connectors

In the context of Fabric, network connectors can be created by passing the --network option to the
fabric:mq-create command.

Example broker network

Consider the scenario shown in Figure 10.3, “Broker Network with Master-Slave Clusters”.

Figure 10.3. Broker Network with Master-Slave Clusters

us-west2

us-west1

B

Master

us-w est network connectors

The figure shows two master-slave clusters:

The first cluster has the group name, us-west, and provides high-availability with a master-

mq-create --assign-container broker1 --data /var/activemq/hq-broker hq-
broker

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

56

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Using_Networks_of_Brokers/

slave cluster of two brokers, us-west1 and us-west2.

The second cluster has the group name, us-east, and provides high-availability with a master-
slave cluster of two brokers, us-east1 and us-east2.

Network connectors link the master brokers between each of the geographical locations (there are, in
fact, two network connectors in this topology: from west to east and from east to west).

To create the pair of master-slave brokers for the us-east group (consisting of the two containers us-
east1 and us-east2), you would log on to a root container running in the US East location and enter a
command like the following:

Where the --network option specifies the name of the broker group you want to connect to, and the
User and Pass are the credentials required to log on to the us-west broker cluster. By default, the
fabric:mq-create command creates a master/slave pair of brokers.

And to create the pair of master-slave brokers for the us-west group (consisting of the two containers
us-west1 and us-west2), you would log on to a root container running in the US West location and
enter a command like the following:

Where User and Pass are the credentials required to log on to the us-east broker cluster.

NOTE

In a real scenario, you would probably first create the containers on separate machines
and then assign brokers to the containers, using the --assign-container option in
place of --create-container.

Connecting to the example broker network

At the US East location, any clients that need to connect to the broker network should use the following
client URL:

And at the US West location, any clients that need to connect to the broker network should use the
following client URL:

Any messages that need to be propagated between locations, from US East to US West (or from US
West to US East), are transmitted over the broker network through one of the network connectors.

10.4. ALTERNATIVE MASTER-SLAVE CLUSTER

Why use an alternative master-slave cluster?

mq-create --group us-east --network us-west --networks-username User --
networks-password Pass --create-container us-east us-east

mq-create --group us-west --network us-east --networks-username User --
networks-password Pass --create-container us-west us-west

discovery:(fabric:us-east)

discovery:(fabric:us-west)

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

57

The standard master-slave cluster in Fabric uses Apache Zookeeper to manage the locking mechanism:
in order to be promoted to master, a broker connects to a Fabric server and attempts to acquire the lock
on a particular entry in the Zookeeper registry. If the master broker loses connectivity to the Fabric
ensemble, it automatically becomes dormant (and ceases to accept incoming messages). A potentially
undesirable side effect of this behaviour is that when you perform maintenance on the Fabric ensemble
(for example, by shutting down one of the Fabric servers), you will find that the broker cluster shuts down
as well.

In some deployment scenarios, therefore, you might get better up times and more reliable broker
performance by disabling the Zookeeper locking mechanism (which Fabric employs by default) and
using an alternative locking mechanism instead.

Alternative locking mechanism

The Apache ActiveMQ persistence layer supports alternative locking mechanisms which can be used to
enable a master-slave broker cluster. In order to use an alternative locking mechanism, you need to
make at least the following basic configuration changes:

1. Disable the default Zookeeper locking mechanism (which can be done by setting
standalone=true in the broker's io.fabric8.mq.fabric.server-BrokerName PID).

2. Enable the shared file system master/slave locking mechanism in the KahaDB persistence layer
(see section "Shared File System Master/Slave" in "Fault Tolerant Messaging").

NOTE

In fact, the KahaDB locking mechanism is usually enabled by default. This does not cause
any problems with Fabric, because it operates at a completely different level from the
Zookeeper locking mechanism. The Zookeeper coordination and locking works at the
broker level to coordinate the broker start. The KahaDB lock coordinates the persistence
adapter start.

standalone property

The standalone property belongs to the io.fabric8.mq.fabric.server-BrokerName PID and
is normally used for a non-Fabric broker deployment (for example, it is set to true in the
etc/io.fabric8.mq.fabric.server-broker.cfg file). By setting this property to true, you
instruct the broker to stop using the discovery and coordination services provided by Fabric (but it is still
possible to deploy the broker in a Fabric container). One consequence of this is that the broker stops
using the Zookeeper locking mechanism. But this setting has other side effects as well.

Side effects of setting standalone=true

Setting the property, standalone=true, on a broker deployed in Fabric has the following effects:

Fabric no longer coordinates the locks for the brokers (hence, the broker's persistence adapter
needs to be configured as shared file system master/slave instead).

The broker no longer uses the ZookeeperLoginModule for authentication and falls back to
using the PropertiesLoginModule instead. This requires users to be stored in the
etc/users.properties file or added to the PropertiesLoginModule JAAS Realm in the
container where the broker is running for the brokers to continue to accept connections

Fabric discovery of brokers no longer works (which affects client configuration).

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

58

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Fault_Tolerant_Messaging/FMQFaultTolMasterSlave.html#FMQMasterSlaveShared

Configuring brokers in the cluster

Brokers in the cluster must be configured as follows:

1. Set the property, standalone=true, in each broker's
io.fabric8.mq.fabric.server-BrokerName PID. For example, given a broker with the
broker name, brokerx, which is configured by the profile, mq-broker-default.brokerx,
you could set the standalone property to true using the following console command:

2. To customize the broker's configuration settings further, you need to create a unique copy of the
broker configuration file in the broker's own profile (instead of inheriting the broker configuration
file from the base profile, mq-base). If you have not already done so, follow the instructions in
the section called “Customizing the broker configuration file” to create a custom broker
configuration file for each of the broker's in the cluster.

3. Configure each broker's KahaDB persistence adapter to use the shared file system locking
mechanism. For this you must customize each broker configuration file, adding or modifying (as
appropriate) the following XML snippet:

You can edit this profile resource either though the Fuse Management Console, through the Git
configuration approach (see Section 10.5, “Broker Configuration”), or using the
fabric:profile-edit command.

NOTE

For more details about configuring brokers, see Section 10.5, “Broker Configuration”.

Configuring authentication data

When you set standalone=true on a broker, it can no longer use the default
ZookeeperLoginModule authentication mechanism and falls back on the PropertiesLoginModule.
This implies that you must populate authentication data in the etc/users.properties file on each of
the hosts where a broker is running. Each line of this file takes an entry in the following format:

profile-edit --pid io.fabric8.mq.fabric.server-
brokerx/standalone=true mq-broker-default.brokerx

<broker ... >
 ...
 <persistenceAdapter>
 <kahaDB directory="/sharedFileSystem/sharedBrokerData"
lockKeepAlivePeriod="2000">
 <locker>
 <shared-file-locker lockAcquireSleepInterval="10000" />
 </locker>
 </kahaDB>
 </persistenceAdapter>
 ...
</broker>

Username=Password,Role1,Role2,...

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

59

Where each entry consists of Username and Password credentials and a list of one or more roles,
Role1, Role2,....

IMPORTANT

Using such a decentralized approach to authentication in a distributed system such as
Fabric is potentially problematic. For example, if you move a broker from one host to
another, the authentication data would not automatically become available on the new
host. You should, therefore, carefully consider the impact this might have on your
administrative procedures.

Configuring a client

Clients of the alternative master-slave cluster cannot use Fabric discovery to connect to the cluster. This
makes the client configuration slightly less flexible, because you cannot abstract away the broker
locations. In this scenario, it is necessary to list the host locations explicitly in the client connection URL.

For example, to connect to a shared file system master-slave cluster that consists of three brokers, you
could use a connection URL like the following:

10.5. BROKER CONFIGURATION

Overview

The examples presented so far have demonstrated how to create brokers with default configuration
settings. In practice, you will usually need to customize the broker configurations and this can be done by
editing the properties of the corresponding Fabric profiles.

Setting OSGi Config Admin properties

Many of the broker configuration settings can be altered by editing OSGi Config Admin properties (which
are organized into collections identified by a persistent ID or PID). For example, consider the broker1
profile created by entering the following fabric:mq-create command:

The preceding command creates the new profile, mq-broker-default.brokerx, and assigns this
profile to the newly created broker1 container.

NOTE

The new profile gets the name mq-broker-Group.BrokerName by default. If you want
the profile to have the same name as the broker (which was the default in JBoss A-MQ
version 6.0), you can specify the profile name explicitly using the --profile option.

You can inspect the details of the mq-broker-default.brokerx profile using the
fabric:profile-display command, as follows:

failover:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

fabric:mq-create --create-container broker --replicas 1 --network us-west
brokerx

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

60

Associated with the io.fabric8.mq.fabric.server-brokerx PID are a variety of property
settings, such as network and group. You can now modify the existing properties or add more
properties to this PID to customize the broker configuration.

Modifying basic configuration properties

You can modify the basic configuration properties associated with the
io.fabric8.mq.fabric.server-brokerx PID by invoking the fabric:profile-edit
command, with the appropriate syntax for modifying PID properties.

For example, to change the value of the network property to us-east, enter the following console
command:

Customizing the SSL keystore.jks and truststore.jks file

JBossFuse:karaf@root> profile-display mq-broker-default.brokerx
Profile id: mq-broker-default.brokerx
Version : 1.0
Attributes:
 parents: mq-base
Containers:

Container settings

Configuration details

PID: io.fabric8.mq.fabric.server-brokerx
 connectors openwire mqtt amqp stomp
 data ${runtime.data}brokerx
 standby.pool default
 keystore.file profile:keystore.jks
 kind MasterSlave
 keystore.password mca^e.Xg
 broker-name brokerx
 ssl true
 truststore.password mca^e.Xg
 keystore.cn localhost
 keystore.url profile:keystore.jks
 truststore.file profile:truststore.jks
 config profile:ssl-broker.xml
 group default
 network us-west

Other resources

Resource: truststore.jks
Resource: keystore.jks

profile-edit --pid io.fabric8.mq.fabric.server-brokerx/network=us-east mq-
broker-default.brokerx

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

61

When using a broker with SSL security, it is necessary to replace the default keystore files with your own
custom versions. The following JKS resources are stored in the mq-broker-default.brokerx profile
when SSL is enabled (which is the default case):

keystore.jks

A Java keystore file containing this broker's own X.509 certificate. The broker uses this certificate to
identify itself to other brokers in the network. The password for this file is stored in the
io.fabric8.mq.fabric.server-brokerx/keystore.password property.

truststore.jks

A Java truststore file containing one or more Certificate Authority (CA) certificates or other
certificates, which are used to verify the certificates presented by other brokers during the SSL
handshake. The password for this file is stored in the io.fabric8.mq.fabric.server-
brokerx/truststore.password property.

For replacing entire resource files in a profile, the easiest approach to take is to make a git clone of the
profile data from the Fabric ensemble server (which also acts as a git server) and then use git to update
the profile data. For more details about how to use git in Fabric, see ???.

For example, to customize the SSL settings for the mq-broker-default.brokerx profile, perform the
following steps:

1. If you have not done so already, clone the git repository that stores all of the profile data in your
Fabric. Enter a command like the following:

Where Username and Password are the credentials of a Fabric user with Administrator
role and we assume that you are currently working with profiles in version 1.0 (which
corresponds to the git branch named 1.0).

NOTE

In this example, it is assumed that the fabric is set up to use the git cluster
architecture (which is the default) and also that the Fabric server running on
localhost is currently the master instance of the git cluster.

2. The keystore.jks file and the truststore.jks file can be found at the following locations
in the git repository:

Copy your custom versions of the keystore.jks file and truststore.jks file to these
locations, over-writing the default versions of these files.

3. You also need to modify the corresponding passwords for the keystore and truststore. To modify
the passwords, edit the following file in a text editor:

git clone -b 1.0 http://Username:Password@localhost:8181/git/fabric
cd fabric

fabric/profiles/mq/broker/default.brokerx.profile/keystore.jks
fabric/profiles/mq/broker/default.brokerx.profile/truststore.jks

fabric/profiles/mq/broker/default.brokerx.profile/io.fabric8.mq.fabr
ic.server-brokerx.properties

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

62

Modify the keystore.password and truststore.password settings in this file, to specify
the correct password values for your custom JKS files.

4. When you are finished modifying the profile configuration, commit and push the changes back to
the Fabric server using git, as follows:

5. For these SSL configuration changes to take effect, a restart of the affected broker (or brokers) is
required. For example, assuming that the modified profile is deployed on the broker container,
you would restart the broker container as follows:

Customizing the broker configuration file

Another important aspect of broker configuration is the ActiveMQ broker configuration file, which is
specified as a Spring XML file. There are two alternative versions of the broker configuration file: ssl-
broker.xml, for an SSL-enabled broker; and broker.xml, for a non-SSL-enabled broker.

If you want to customize the broker configuration, it is recommended that you create a copy of the broker
configuration file in your broker's own profile (instead of inheriting the broker configuration from the mq-
base parent profile). The easiest way to make this kind of change is to use a git repository of profile data
that has been cloned from a Fabric ensemble server.

For example, to customize the broker configuration for the mq-broker-default.brokerx profile,
perform the following steps:

1. It is assumed that you have already cloned the git repository of profile data from the Fabric
ensemble server (see the section called “Customizing the SSL keystore.jks and truststore.jks
file”). Make sure that you have checked out the branch corresponding to the profile version that
you want to edit (which is assumed to be 1.0 here). It is also a good idea to do a git pull to
ensure that your local git repository is up-to-date. In your git repository, enter the following git
commands:

2. The default broker configuration files are stored at the following location in the git repository:

Depending on whether your broker is configured with SSL or not, you should copy either the
ssl-broker.xml file or the broker.xml file into your broker's profile. For example, assuming
that your broker uses the mq-broker-default.brokerx profile and is configured to use SSL,
you would copy the broker configuration as follows:

git commit -a -m "Put a description of your changes here!"
git push

fabric:container-stop broker
fabric:container-start broker

git checkout 1.0
git pull

fabric/profiles/mq/base.profile/ssl-broker.xml
fabric/profiles/mq/base.profile/broker.xml

cp fabric/profiles/mq/base.profile/ssl-broker.xml
fabric/profiles/mq/broker/default.brokerx.profile/

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

63

3. You can now edit the copy of the broker configuration file, customizing the broker's Spring XML
configuration as required.

4. When you are finished modifying the broker configuration, commit and push the changes back to
the Fabric server using git, as follows:

5. For the configuration changes to take effect, a restart of the affected broker (or brokers) is
required. For example, assuming that the modified profile is deployed on the broker container,
you would restart the broker container as follows:

Additional broker configuration templates in mq-base

If you like, you can add extra broker configurations to the mq-base profile, which can then be used as
templates for creating new brokers with the fabric:mq-create command. Additional template
configurations must be added to the following location in the git repository:

You can then reference one of the templates by supplying the --config option to the fabric:mq-
create command.

For example, given that a new broker configuration, mybrokertemplate.xml, has just been installed:

You could use this custom mybrokertemplate.xml configuration template by invoking the
fabric:mq-create command with the --config option, as follows:

The --config option assumes that the configuration file is stored in the current version of the mq-base
profile, so you need to specify only the file name (that is, the full ZooKeeper path is not required).

Setting network connector properties

You can specify additional configuration for network connectors, where the property names have the
form network.NetworkPropName. For example, to add the setting,
network.bridgeTempDestinations=false, to the PID for brokerx (which has the profile name,
mq-broker-default.brokerx), enter the following console command:

The deployed broker dynamically detects the change to this property and updates the network connector
on the fly.

git commit -a -m "Put a description of your changes here!"
git push

fabric:container-stop broker
fabric:container-start broker

fabric/profiles/mq/base.profile/

fabric/profiles/mq/base.profile/mybrokertemplate.xml

fabric:mq-create --config mybrokertemplate.xml brokerx

profile-edit --pid io.fabric8.mq.fabric.server-
brokerx/network.bridgeTempDestinations=false mq-broker-default.brokerx

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

64

Network connector properties by reflection

Fabric uses reflection to set network connector properties. That is, any PID property of the form
network.OptionName can be used to set the corresponding OptionName property on the
org.apache.activemq.network.NetworkBridgeConfiguration class. In particular, this implies
you can set any of the following network.OptionName properties:

Property Default Description

name bridge Name of the network - for more
than one network connector
between the same two brokers,
use different names

userName None Username for logging on to the
remote broker port, if
authentication is enabled.

password None Password for logging on to the
remote broker port, if
authentication is enabled.

dynamicOnly false If true, only activate a
networked durable subscription
when a corresponding durable
subscription reactivates, by
default they are activated on start-
up.

dispatchAsync true Determines how the network
bridge sends messages to the
local broker. If true, the network
bridge sends messages
asynchronously.

decreaseNetworkConsumer
Priority

false If true, starting at priority -5,
decrease the priority for
dispatching to a network Queue
consumer the further away it is (in
network hops) from the producer.
If false, all network consumers
use same default priority (that is,
0) as local consumers.

consumerPriorityBase -5 Sets the starting priority for
consumers. This base value will
be decremented by the length of
the broker path when
decreaseNetworkConsumer
Priority is set.

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

65

networkTTL 1 The number of brokers in the
network that messages and
subscriptions can pass through
(sets both messageTTL and
consumerTTL)

messageTTL 1 The number of brokers in the
network that messages can pass
through.

consumerTTL 1 The number of brokers in the
network that subscriptions can
pass through (keep to 1 in a
mesh).

conduitSubscriptions true Multiple consumers subscribing to
the same destination are treated
as one consumer by the network.

duplex false If true, a network connection is
used both to produce and to
consume messages. This is
useful for hub and spoke
scenarios, when the hub is behind
a firewall, and so on.

prefetchSize 1000 Sets the prefetch size on the
network connector's consumer. It
must be greater than 0, because
network consumers do not poll for
messages

Property Default Description

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

66

suppressDuplicateQueueS
ubscriptions

false If true, duplicate subscriptions
in the network that arise from
network intermediaries are
suppressed. For example,
consider brokers A, B, and C,
networked using multicast
discovery. A consumer on A gives
rise to a networked consumer on
B and C. In addition, C networks
to B (based on the network
consumer from A) and B networks
to C. When true, the network
bridges between C and B (being
duplicates of their existing
network subscriptions to A) will be
suppressed. Reducing the routing
choices in this way provides
determinism when producers or
consumers migrate across the
network as the potential for dead
routes (stuck messages) are
eliminated. The networkTTL
value needs to match or exceed
the broker count to require this
intervention.

suppressDuplicateTopicS
ubscriptions

true If true, duplicate network topic
subscriptions (in a cyclic network)
are suppressed.

Property Default Description

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

67

bridgeTempDestinations true Whether to broadcast advisory
messages for temporary
destinations created in the
network of brokers. Temporary
destinations are typically created
for request-reply messages.
Broadcasting the information
about temp destinations is turned
on by default, so that consumers
of a request-reply message can
be connected to another broker in
the network and still send back
the reply on the temporary
destination specified in the
JMSReplyTo header. In an
application scenario where most
or all of the messages use the
request-reply pattern, this
generates additional traffic on the
broker network, because every
message typically sets a unique
JMSReplyTo address (which
causes a new temp destination to
be created and broadcasted with
an advisory message in the
network of brokers).

If you disable this feature, this
network traffic can be reduced,
but in this case the producers and
consumers of a request-reply
message need to be connected to
the same broker. Remote
consumers (that is, connected
through another broker in your
network) will not be able to send
the reply message, but instead
will raise a temp
destination does not
exist exception.

alwaysSyncSend false If true, non-persistent messages
are sent to the remote broker
using request/reply semantics
instead of oneway message
semantics. This setting affects
both persistent and non-persistent
messages the same way.

staticBridge false If true, the broker does not
respond dynamically to new
consumers. It uses only
staticallyIncludedDesti
nations to create demand
subscriptions.

Property Default Description

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

68

useCompression false Compresses the message body
when sending it over the network.

advisoryForFailedForwar
d

false If true, send an advisory
message when the broker fails to
forward the message to the
temporary destination across the
bridge.

useBrokerNamesAsIdSeed true Add the broker name as a prefix
to connections and consumers
created by the network bridge. It
helps with visibility.

gcDestinationViews true If true, remove any MBeans for
destinations that have not been
used for a while.

gcSweepTime 60000 The period of inactivity in
milliseconds, after which we
remove MBeans.

checkDuplicateMessagesO
nDuplex

false If true, check for duplicates on
the duplex connection.

Property Default Description

CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS

69

CHAPTER 11. SHUTTING DOWN A BROKER

Abstract

Brokers can be shutdown from either the machine on which they are running or remotely from a different
machine. If the broker is running in console mode it can only be shutdown locally.

11.1. SHUTTING DOWN A LOCAL BROKER

Abstract

Depending on how you started the local broker, you stop it using either a console command or command
line tool.

Overview

The method used to stop a broker running on the machine you logged into depends on the mode in
which the broker is running. If it is running in console mode, you use one of the console commands to
shut down the broker. If it is running in daemon mode, the broker doesn't have a command console. So,
you need to use one of the utility commands supplied with Red Hat JBoss A-MQ.

Stopping the broker from console mode

If you launched the broker by running amq, you shut it down using the shutdown -f command as
shown in Example 11.1, “Using the Console's Shutdown Command”.

Example 11.1. Using the Console's Shutdown Command

JBossA-MQ:karaf@root> shutdown -f
JBossA-MQ:karaf@root>
logout [Process completed]

NOTE

CTRL+D will also shutdown the broker.

Stopping a broker running in daemon mode

If you launched the broker by running the start command, log in to the machine where the broker is
running and run the stop command in the broker installation's bin folder.

NOTE

You can stop a broker running in daemon mode remotely. See Section 11.2, “Shutting
Down a Broker Remotely”.

11.2. SHUTTING DOWN A BROKER REMOTELY

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

70

Abstract

You have a number of options for stopping a broker running on a remote machine. You can stop the
broker using a console or without using a console. You can also step a broker remotely using the
management console.

Overview

For many use cases logging into the machine running a broker instance is impractical. In those cases,
you need a way to stop a broker from a remote machine. Red Hat JBoss A-MQ offers a number of ways
to accomplish this task:

using the stop command—the stop command does not require starting an instance of the broker

using a remote console connection—a broker's console can be used to remotely shutdown a
broker on another machine

using a fabric member's console—brokers that are part of a fabric can stop members of their
fabric

using the management console—brokers that are part of a fabric can be stopped using a
management console connected to their fabric

For more information see Using the Management Console.

Using the stop command

You can stop a remote instance without starting up Red Hat JBoss A-MQ on your local host by running
the stop command in the InstallDir/bin directory. The commands syntax is shown in
Example 11.2, “Stop Command Syntax”.

Example 11.2. Stop Command Syntax

stop [-a port] { -h hostname } { -u username } { -p password }

-a port

Specifies the SSH port of the remote instance. The default is 8101.

-h hostname

Specifies the hostname of the machine on which the remote instance is running.

-u username

Specifies the username used to connect to the remote broker.

NOTE

The default username for a broker is karaf.

-p password

Specifies the password used to connect to the remote broker.

CHAPTER 11. SHUTTING DOWN A BROKER

71

NOTE

The default password for a broker is karaf.

Example 11.3, “Stopping a Remote Broker” shows how to stop a remote broker on a machine named
NEBrokerHost2.

Example 11.3. Stopping a Remote Broker

bin/stop -u karaf -p karaf -h NEBrokerHost2

Using a remote console

Red Hat JBoss A-MQ's console can be connected to a remote broker using the ssh:ssh command. The
SSH port 8101 is used to access the desired remote console. Once the console is connected to the
remote broker, you can shut it down by running the osgi:shutdown command. Example 11.4,
“Shutting Down a Broker using a Remote Console Connection” shows the command sequence for using
a remote console connection to shutdown a broker running on a machine named NWBrokerHost.

Example 11.4. Shutting Down a Broker using a Remote Console Connection

JBossA-MQ:karaf@root> ssh -l username -P password 8101 HOSTNAME
 _ ____ __ __ ____ | | _ \ /\ | \/ |/ __ \ | | |_) | ___ ___ ___ /
\ ______| \ / | | | | _ | | _ < / _ \/ __/ __| / /\ ______| |\/| | | |
| | |__| | |_) | (_) __ __ \ / ____ \ | | | | |__| | ____/|____/
___/|___/___/ /_/ _\ |_| |_|____\ JBoss A-MQ (6.0.0.redhat-012)
http://www.redhat.com/products/jbossenterprisemiddleware/amq/ Hit
'<tab>' for a list of available commands and '[cmd] --help' for help on
a specific command. Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss
A-MQ.

JBossA-MQ:karaf@root> osgi:shutdown
Confirm: shutdown instance root (yes/no):
yes
JBossA-MQ:karaf@root> JBossA-MQ:karaf@root>

IMPORTANT

Pressing Control+D when connected to a remote broker closes the remote connection and
returns you to the local shell.

Shutting down remote brokers in a fabric

If the broker you want to shutdown is part of a fabric, you can shut it down from any of the brokers in the
fabric using the fabric:container-stop console command. fabric:container-stop takes the
name of the fabric container hosting the broker as an argument. The command can be run either from a
broker in console mode or using the broker's administration client.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

72

Example 11.5, “Shutting Down a Broker in a Fabric” shows how to use the administration client to
shutdown a broker running in a container named fabric-broker3.

Example 11.5. Shutting Down a Broker in a Fabric

./bin/client fabric-broker3 fabric:container-stop

CHAPTER 11. SHUTTING DOWN A BROKER

73

CHAPTER 12. ADDING CLIENT CONNECTION POINTS

Abstract

Message brokers must explicitly create connection points for clients. These connection points are called
transport connectors. Red Hat JBoss A-MQ supports a number of transport flavors to facilitate
interoperability with the widest possible array of clients.

12.1. OVERVIEW OF TRANSPORT CONNECTORS

A message broker communicates with its clients using one or more ports. These ports are managed by
the broker's configuration. There are two required components to add a client connection point to a
broker:

a transportConnector element in the XML configuration template that provides the details
for the connection point

an entry in the broker's io.fabric8.mq.fabric.server.id PID's connectors property to
activate the connection point

The transportConnector element provides all of the details needed to create the connection point.
This includes the type of transport being used, the host and port for the connection, and any transport
properties needed. The connectors property is a space delimited list that specifies which transport
connectors to activate.

Red Hat JBoss Fuse supports a number of different transport flavors. Each transport has its own set of
strengths. For more information on the different transports see the Client Connectivity Guide and the
Connection Reference.

12.2. ADDING A TRANSPORT CONNECTOR TO A STANDALONE
BROKER

Adding a transport connector definition

To add a transport connector definition:

1. Open the broker's configuration template for editing.

2. Locate the transportConnectors element.

3. Add a transportConnector element as a child of the transportConnectors element.

4. Add a name attribute to the new transportConnector element.

The name attribute specifies a unique identifier for the transport connector. It is used in the
connectors property to identify the transport to be activated.

5. Add a uri attribute to the new transportConnector element.

The uri attribute specifies the connection details used to instantiate the connector. Clients will
use a similar URI to access the broker using this connector. For a complete list of the URIs see
the Connection Reference.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

74

6. Save the changes to the configuration template.

NOTE

The newly added transport connector is not available until it has been activated using the
connectors property.

Activating a connector

To activate a transport connector in a standalone broker:

1. Connect to the broker using a command console.

2. Open the broker's io.fabric8.mq.fabric.server.id PID for editing using the
config:editcommand.

JBossAMQ:karaf> config:edit io.fabric8.mq.fabric.server.098765

NOTE

You can use the config:list command to find the id for the broker.

3. Verify the value of the connectors property using the config:proplist command.

JBossAMQ:karaf> config:proplist connector

4. Change the value of the connectors property using the config:propset command.

JBossAMQ:karaf> config:propset connector "connector1 connector2..."

connector1 specifies the name of a transport to activate. The value corresponds the value of the
transportConnector element's name attribute.

5. Save the changes using the config:update command.

JBossAMQ:karaf> config:update

CHAPTER 12. ADDING CLIENT CONNECTION POINTS

75

CHAPTER 13. ADDING A QUEUE OR A TOPIC

Abstract

Normally, you do not need to add any queues or topics explicitly, because the broker automatically
creates destinations on the fly.

AUTOMATIC DESTINATION CREATION

By default, the broker automatically creates destinations on the fly. For example, when a JMS producer
client tries to write a message to a non-existent queue, the broker automatically (and transparently)
creates the requisite queue and puts the message on the queue. Consequently, administrators do not
need to execute a command to create a new queue or a new topic on a broker.

RESTRICTING DESTINATION CREATION

In some applications, however, you might not want the broker to create destinations dynamically. In other
words, you might want to restrict destination creation, so that only certain (privileged) users are allowed
to create a new destination. If you need to, you can restrict destination creation by configuration of the
broker's authorization plug-in. By restricting the admin role and not granting it to certain user groups,
you can ensure that those user groups are unable to create new destinations on the fly.

The details of how to apply the admin role vary, depending on which authorization plug-in the broker
uses. For full details about how to configure broker authorization, please consult the Authorization
chapter of the JBoss A-MQ Security Guide.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

76

CHAPTER 14. USING LOGGING

Abstract

The broker's log contains information about all of the critical events that occur in the broker. You can
configure the granularity of the logged messages to provide the required amount of detail.

14.1. OVERVIEW OF LOGGING

Red Hat JBoss A-MQ uses the OPS4j Pax Logging system. Pax Logging is an open source OSGi
logging service that extends the standard OSGi logging service to make it more appropriate for use in
enterprise applications. It uses Apache Log4j as the back-end logging service. Pax Logging has its own
API, but it also supports the following APIs:

Apache Log4j

Apache Commons Logging

SLF4J

Java Util Logging

14.2. LOGGING CONFIGURATION

Abstract

To configure the logging of a broker, you need to edit the ops4j configuration and the broker's runtime
configuration.

Overview

The logging system is configured by a combination of two OSGi Admin PIDs and one configuration file:

etc/system.properties—the configuration file that sets the logging level during the broker’s
boot process. The file contains a single property, org.ops4j.pax.logging.DefaultServiceLog.level,
that is set to ERROR by default.

org.ops4j.pax.logging—the PID used to configure the logging back end service. It sets the
logging levels for all of the defined loggers and defines the appenders used to generate log
output. It uses standard Log4j configuration. By default, it sets the root logger's level to INFO
and defines two appenders: one for the console and one for the log file.

CHAPTER 14. USING LOGGING

77

NOTE

The console's appender is disabled by default. To enable it, add
log4j.appender.stdout.append=true to the configuration For example, to
enable the console appender in a broker, you would use the following commands:

JBossA-MQ:karaf@root> config:edit org.ops4j.pax.logging
JBossA-MQ:karaf@root> config:propappend
log4j.appender.stdout.append true
JBossA-MQ:karaf@root> config:update

org.apache.karaf.log.cfg—configures the output of the log console commands.

The most common configuration changes you will make are changing the logging levels, changing the
threshold for which an appender writes out log messages, and activating per bundle logging.

Changing the log levels

The default logging configuration sets the logging levels so that the log file will provide enough
information to monitor the behavior of the runtime and provide clues about what caused a problem.
However, the default configuration will not provide enough information to debug most problems.

The most useful logger to change when trying to debug an issue with Red Hat JBoss A-MQ is the root
logger. You will want to set its logging level to generate more fine grained messages. To do so you
change the value of the org.ops4j.pax.logging PID's log4j.rootLogger property so that the
logging level is one of the following:

TRACE

DEBUG

INFO

WARN

ERROR

FATAL

NONE

Example 14.1, “Changing Logging Levels” shows the commands for setting the root loggers log level in a
standalone broker.

Example 14.1. Changing Logging Levels

JBossA-MQ:karaf@root> config:edit org.ops4j.pax.logging
JBossA-MQ:karaf@root> config:propset log4j.rootLogger "DEBUG, out,
osgi:VmLogAppender"
JBossA-MQ:karaf@root> config:update

Changing the appenders' thresholds

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

78

When debugging a problem in JBoss A-MQ you may want to limit the amount of logging information that
is displayed on the console, but not the amount written to the log file. This is controlled by setting the
thresholds for each of the appenders to a different level. Each appender can have a
log4j.appender.appenderName.threshold property that controls what level of messages are
written to the appender. The appender threshold values are the same as the log level values.

Example 14.2, “Changing the Log Information Displayed on the Console” shows an example of setting
the root logger to DEBUG but limiting the information displayed on the console to WARN.

Example 14.2. Changing the Log Information Displayed on the Console

JBossA-MQ:karaf@root> config:edit org.ops4j.pax.logging
JBossA-MQ:karaf@root> config:propset log4j.rootLogger "DEBUG, out,
osgi:VmLogAppender"
JBossA-MQ:karaf@root> config:propappend log4j.appender.stdout.threshold
WARN
JBossA-MQ:karaf@root> config:update

14.3. VIEWING THE LOG

Abstract

You can view the log using your systems text display mechanisms, the Red Hat JBoss A-MQ console, or
the administration client.

Overview

There are three ways you can view the log:

using a text editor

using the broker's, or a remote broker's, console

using the administration client

Viewing the log in a text editor

The log files are stored as simple text files in InstallDir/data/log. The main log file is
karaf.log. If archiving is turned on, there may be archived log files also stored in the logging directory.

Log entries are listed in chronological order with the oldest entries first. The default output displays the
following information:

the time of the entry

the log level of the entry

the thread that generated the entry

the bundle that generated the entry

an informational message about the cause of the entry

CHAPTER 14. USING LOGGING

79

Viewing the log with the console

The JBoss A-MQ console provides the following commands for viewing the log:

log:display—displays the most recent log entries

By default, the number of entries returned and the pattern of the output depends on the size and
pattern properties in the org.apache.karaf.log.cfg file. You can override these using the
-p and -d arguments.

log:display-exception—displays the most recently logged exception

log:tail—continuously display log entries

Viewing the log with the administration client

If you do not have a broker running in console mode, you can also use the administration client to invoke
the broker's log displaying commands. For example, entering client log:display into a system
terminal will display the most recent log entries for the local broker.

14.4. CHANGE LOGGING LEVEL AT RUNTIME USING JCONSOLE

In standalone activemq you can change logging level through JMX at runtime. The logging level can be
changed using the Log4JConfiguarion MBean which is accessible through JMX. JConsole, a part of JDK
allows you the change MBean at runtime.

To change root logging level to DEBUG, follow these steps:

Start activemq using ./bin/activemq start.

Open JConsole and connect to activemq. To connect to activemq use the activemq.jar
start listed in local processes if you have launched JConsole on same machine as activemq.
For connecting remotely you need to configure activemq. Refer to
http://activemq.apache.org/jmx.html.

In JConsole, click the MBeanstab.

Navigate to org.apache.activemq -> Broker -> localhost -> Log4JConfiguarion ->
RootLogLevel and set attribute value to DEBUG.

To change a particular logger use the setLogLevel on Log4JConfiguration MBean.

NOTE

Activemq allows accessing the attributes and operation of Log4jConfiguartion MBean
through the client application, See
http://docs.oracle.com/javase/tutorial/jmx/remote/custom.html.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

80

http://activemq.apache.org/jmx.html
http://docs.oracle.com/javase/tutorial/jmx/remote/custom.html

CHAPTER 15. USING JMX

Abstract

Red Hat JBoss A-MQ is fully instrumented to provide statistics about its performance using JMX. You
can monitor a broker using any JMX aware monitoring tool.

15.1. INTRODUCTION TO JMX

By default Red Hat JBoss A-MQ creates MBeans, loads them into the MBean server created by the
JVM, and creates a dedicated JMX connector that provides a JBoss A-MQ-specific view of the MBean
server. The default settings are sufficient for simple deployments and make it easy to access the
statistics and management operations provided by a broker. For more complex deployments you easily
configure many aspects of how a broker configures itself for access through JMX. For example, you can
change the JMX URI of the JMX connector created by the broker or force the broker to use the generic
JMX connector created by the JVM.

By connecting a JMX aware management and monitoring tool to a broker's JMX connector, you can view
detailed information about the broker. This information provides a good indication of broker health and
potential problem areas. In addition to the collected statistics, JBoss A-MQ's JMX interface provides a
number of operations that make it easy to manage a broker instance. These include stopping a broker,
starting and stopping network connectors, and managing destinations.

15.2. CONFIGURING JMX

Abstract

By default, brokers have JMX activated. However, a broker's JMX behavior is highly configurable. You
can specify if JMX is used, if the broker uses a dedicated JMX connector, if the broker creates its own
MBean server, and the JMX URL it uses.

Overview

By default a broker is set up to allow for JMX management. It uses the JVM's MBean server and creates
its own JMX connector at service:jmx:rmi:///jndi/rmi://hostname:1099/karaf-containerName. If the default
configuration does not meet the needs of the deployment environment, the broker provides configuration
properties for customizing most aspects of its JMX behavior. For instance, you can completely disable
JMX for a broker. You can also force the broker to create its own MBean server.

Enabling and disabling

By default JMX is enabled for a Red Hat JBoss A-MQ broker. To disable JMX entirely you simply set the
broker element's useJmx attribute to false. This will stop the broker from exposing itself via JMX.

IMPORTANT

Disabling JMX will also disable the commands in the activemq shell.

Securing access to JMX

CHAPTER 15. USING JMX

81

In a production environment it is advisable to secure the access to your brokers' management interfaces.
To set up authentication To override the default role for JMX access add a jmxRole property to the
etc/org.apache.karaf.management.cfg file.

Advanced configuration

If the default JMX behavior is not appropriate for your deployment environment, you can customize how
the broker exposes its MBeans. To customize a broker's JMX configuration, you add a
managementContext child element to the broker's broker element. The managementContext
element uses a managementContext child to configure the broker. The attributes of the inner
managementContext element specify the broker's JMX configuration.

Table 15.1, “Broker JMX Configuration Properties” describes the configuration properties for controlling a
broker's JMX behavior.

Table 15.1. Broker JMX Configuration Properties

Property Default Value Description

useMBeanServer true Specifies whether the broker will
use the MBean server created by
the JVM. When set to false, the
broker will create an MBean
server.

jmxDomainName org.apache.activemq Specifies the JMX domain used
by the broker's MBeans.

createMBeanServer true Specifies whether the broker
creates an MBean server if none
is found.

createConnector true[a] Specifies whether the broker
creates a JMX connector for the
MBean server. If this is set to
false the broker will only be
accessible using the JMX
connector created by the JVM.

connectorPort 1099 Specifies the port number used by
the JMX connector created by the
broker.

connectorHost localhost Specifies the host used by the
JMX connector and the RMI
server.

rmiServerPort 0 Specifies the RMI server port.
This setting is useful if port usage
needs to be restricted behind a
firewall.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

82

connectorPath /jmxrmi Specifies the path under which the
JMX connector will be registered.

suppressMBean empty Specifies a comma-separated list
of MBean name patterns to ignore.
For example:
endpoint=dynamicProduce
r,endpoint=Consumer,con
nectionName=*,destinati
onName=ActiveMQ.Advisor
y.*

[a] The default configuration template for the broker sets this property to false so that the broker uses the container's
JMX connection.

Property Default Value Description

Example 15.1, “Configuring a Broker's JMX Connection” shows configuration for a broker that will only
use the JVM's MBean server and will not create its own JMX connector.

Example 15.1. Configuring a Broker's JMX Connection

15.3. STATISTICS COLLECTED BY JMX

Broker statistics

Table 15.2, “Broker JMX Statistics” describes the statistics collected for a broker.

Table 15.2. Broker JMX Statistics

Name Description

BrokerId Specifies the broker's unique ID.

BrokerName Specifies the broker's name.

BrokerVersion Specifies the version of the broker.

DataDirectory Specifies the pathname of the broker's data directory.

<broker ... >
 ...
 <managementContext>
 <managementContext createMBeanServer="false"
 createConnector="false" />
 </managementContext>
 ...
</broker>

CHAPTER 15. USING JMX

83

TotalEnqueueCount Specifies the total number of messages that have
been sent to the broker.

TotalDequeueCount Specifies the number of messages that have been
acknowledged on the broker.

TotalConsumerCount Specifies the number of message consumers
subscribed to destinations on the broker.

TotalProducerCount Specifies the number of message producers active
on destinations on the broker.

TotalMessageCount Specifies the number of unacknowledged messages
on the broker.

MemoryLimit Specifies the memory limit, in bytes, used for holding
undelivered messages before paging to temporary
storage.

MemoryPercentageUsed Specifies the percentage of available memory in use.

StoreLimit Specifies the disk space limit, in bytes, used for
persistent messages before producers are blocked.

StorePercentageUsed Specifies the percentage of the store space in use.

TempLimit Specifies the disk space limit, in bytes, used for non-
persistent messages and temporary data before
producers are blocked.

TempPercentageUsed Specifies the percentage of available temp space in
use.

Name Description

Destination statistics

Table 15.3, “Destination JMX Statistics” describes the statistics collected for a destination.

Table 15.3. Destination JMX Statistics

Name Description

BlockedProducerWarningInterval Specifies, in milliseconds, the interval between
warnings issued when a producer is blocked from
adding messages to the destination.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

84

MemoryLimit Specifies the memory limit, in bytes, used for holding
undelivered messages before paging to temporary
storage.

MemoryPercentageUsed Specifies the percentage of available memory in use.

MaxPageSize Specifies the maximum number of messages that
can be paged into the destination.

CursorFull Specifies if the cursor has reached its memory limit
for paged messages.

CursorMemoryUsage Specifies, in bytes, the amount of memory the cursor
is using.

CursorPercentUsage Specifies the percentage of the cursor's available
memory is in use.

EnqueueCount Specifies the number of messages that have been
sent to the destination.

DequeueCount Specifies the number of messages that have been
acknowledged and removed from the destination.

DispatchCount Specifies the number of messages that have been
delivered to consumers, but not necessarily
acknowledged by the consumer.

InFlightCount Specifies the number of dispatched to, but not
acknowledged by, consumers.

ExpiredCount Specifies the number of messages that have expired
in the destination.

ConsumerCount Specifies the number of consumers that are
subscribed to the destination.

QueueSize Specifies the number of messages in the destination
that are waiting to be consumed.

AverageEnqueueTime Specifies the average amount of time, in
milliseconds, that messages sat in the destination
before being consumed.

MaxEnqueueTime Specifies the longest amount of time, in milliseconds,
that a message sat in the destination before being
consumed.

Name Description

CHAPTER 15. USING JMX

85

MinEnqueueTime Specifies the shortest amount of time, in
milliseconds, that a message sat in the destination
before being consumed.

MemoryUsagePortion Specifies the portion of the broker's memory limit
used by the destination.

ProducerCount Specifies the number of producers connected to the
destination.

Name Description

Subscription statistics

Table 15.4, “Connection JMX Statistics” describes the statistics collected for a subscription.

Table 15.4. Connection JMX Statistics

Name Description

EnqueueCounter Counts the number of messages that matched the
subscription.

DequeueCounter Counts the number of messages were sent to and
acknowledge by the client.

DispatchedQueueSize Specifies the number of messages dispatched to the
client and are awaiting acknowledgement.

DispatchedCounter Counts the number of messages that have been sent
to the client.

MessageCountAwaitingAcknowledge Specifies the number of messages dispatched to the
client and are awaiting acknowledgement.

Active Specifies if the subscription is active.

PendingQueueSize Specifies the number of messages pending delivery.

PrefetchSize Specifies the number of messages to pre-fetch and
dispatch to the client.

MaximumPendingMessageLimit Specifies the maximum number of pending
messages allowed.

15.4. MANAGING THE BROKER WITH JMX

Abstract

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

86

All of the exposed MBeans have operations that allow you to perform management tasks on the broker.
These operations allow you to stop a broker, start and stop network connectors, create and destroy
destinations, and create and destroy subscriptions. The MBeans also provide operations for browsing
destinations and passing test messages to destinations.

Overview

The MBeans exposed by Red Hat JBoss A-MQ provide a number of operations for monitoring and
managing a broker instance. You can access these operations through any tool that supports JMX.

Broker actions

Table 15.5, “Broker MBean Operations” describes the operations exposed by the MBean for a broker.

Table 15.5. Broker MBean Operations

Operation Description

void start(); Starts the broker. In reality this operation is not useful
because you cannot access the MBeans if the broker
is stopped.

void stop(); Forces a broker to shut down. There is no guarantee
that all messages will be properly recorded in the
persistent store.

void stopGracefully(String queueName
);

Checks that all listed queues are empty before
shutting down the broker.

void enableStatistics(); Activates the broker's statistics plug-in.

void resetStatistics(); Resets the data collected by the statistics plug-in.

void disableStatistics(); Deactivates the broker's statistics plug-in.

String addConnector(String URI); Adds a transport connector to the broker and starts it
listening for incoming client connections and returns
the name of the connector.

boolean removeConnector(String conn
ectorName);

Deactivates the specified transport connector and
removes it from the broker.

String addNetworkConnector(String UR
I);

Adds a network connector to the specified broker and
returns the name of the connector.

boolean removeNetworkConnector(Stri
ng connectorName);

Deactivates the specified connector and removes it
from the broker.

void addTopic(String name); Adds a topic destination to the broker.

CHAPTER 15. USING JMX

87

void addQueue(String name); Adds a queue destination to the broker.

void removeTopic(String name); Removes the specified topic destination from the
broker.

void removeQueue(String name); Removes the specified queue destination from the
broker.

ObjectName createDurableSubscriber(
String clientId,

String subscriberId,

String topicName,

String selector);

Creates a new durable subscriber.

void destroyDurableSubscriber(Strin
g clientId,
 Strin
g subscriberId);

Destroys a durable subscriber.

void gc(); Runs the JVM garbage cleaner.

void terminateJVM(int exitCode); Shuts down the JVM.

void reloadLog4jProperties(); Reloads the logging configuration from
log4j.properties.

Operation Description

Connector actions

Table 15.6, “Connector MBean Operations” describes the operations exposed by the MBean for a
transport connector.

Table 15.6. Connector MBean Operations

Operation Description

void start(); Starts the transport connector so that it is ready to
receive connections from clients.

void stop(); Closes the transport connection and disconnects all
connected clients.

int connectionCount(); Returns the number of open connections using the
connector.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

88

void enableStatistics(); Enables statistics collection for the connector.

void resetStatistics(); Resets the statistics collected for the connector.

void disableStatistics(); Deactivates the collection of statistics for the
connector.

Operation Description

Network connector actions

Table 15.7, “Network Connector MBean Operations” describes the operations exposed by the MBean for
a network connector.

Table 15.7. Network Connector MBean Operations

Operation Description

void start(); Starts the network connector so that it is ready to
communicate with other brokers in a network of
brokers.

void stop(); Closes the network connection and disconnects the
broker from any brokers that used the network
connector to form a network of brokers.

Queue actions

Table 15.8, “Queue MBean Operations” describes the operations exposed by the MBean for a queue
destination.

Table 15.8. Queue MBean Operations

Operation Description

CompositeData getMessage(String mess
ageId);

Returns the specified message from the queue
without moving the message cursor.

void purge(); Deletes all of the messages from the queue.

boolean removeMessage(String messag
eId);

Deletes the specified message from the queue.

int removeMatchingMessages(String se
lector);

Deletes the messages matching the selector from the
queue and returns the number of messages deleted.

CHAPTER 15. USING JMX

89

int removeMatchingMessages(String se
lector,
 int maxMe
ssages);

Deletes up to the maximum number of messages that
match the selector and returns the number of
messages deleted.

boolean copyMessageTo(String messag
eId,
 String destina
tion);

Copies the specified message to a new destination.

int copyMatchingMessagesTo(String se
lector,
 String de
stination);

Copies the messages matching the selector and
returns the number of messages copied.

int copyMatchingMessagesTo(String se
lector,
 String de
stination,
 int maxMe
ssages);

Copies up to the maximum number of messages that
match the selector and returns the number of
messages copied.

boolean moveMessageTo(String messag
eId,
 String destina
tion);

Moves the specified message to a new destination.

int moveMatchingMessagesTo(String se
lector,
 String de
stination);

Moves the messages matching the selector and
returns the number of messages moved.

int moveMatchingMessagesTo(String se
lector,
 String de
stination,
 int maxMe
ssages);

Moves up to the maximum number of messages that
match the selector and returns the number of
messages moved.

boolean retryMessage(String message
Id);

Moves the specified message back to its original
destination.

int cursorSize(); Returns the number of messages available to be
paged in by the cursor.

boolean doesCursorHaveMessagesBuffe
red();

Returns true if the cursor has buffered messages to
be delivered.

Operation Description

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

90

boolean doesCursorHaveSpace(); Returns true if the cursor has memory space
available.

CompositeData[] browse(); Returns all messages in the queue, without changing
the cursor, as an array.

CompositeData[] browse(String selec
tor);

Returns all messages in the queue that match the
selector, without changing the cursor, as an array.

TabularData browseAsTable(String se
lector);

Returns all messages in the queue that match the
selector, without changing the cursor, as a table.

TabularData browseAsTable(); Returns all messages in the queue, without changing
the cursor, as a table.

void resetStatistics(); Resets the statistics collected for the queue.

java.util.List browseMessages(Strin
g selector);

Returns all messages in the queue that match the
selector, without changing the cursor, as a list.

java.util.List browseMessages(); Returns all messages in the queue, without changing
the cursor, as a list.

String sendTextMessage(String body,
 String usern
ame,
 String passw
ord);

Send a text message to a secure queue.

String sendTextMessage(String body); Send a text message to a queue.

Operation Description

Topic actions

Table 15.9, “Topic MBean Operations” describes the operations exposed by the MBean for a topic
destination.

Table 15.9. Topic MBean Operations

Operation Description

CompositeData[] browse(); Returns all messages in the topic as an array.

CompositeData[] browse(String selec
tor);

Returns all messages in the topic that match the
selector as an array.

TabularData browseAsTable(String se
lector);

Returns all messages in the topic that match the
selector as a table.

CHAPTER 15. USING JMX

91

TabularData browseAsTable(); Returns all messages in the topic as a table.

void resetStatistics(); Resets the statistics collected for the queue.

java.util.List browseMessages(Strin
g selector);

Returns all messages in the topic that match the
selector as a list.

java.util.List browseMessages(); Returns all messages in the topic as a list.

String sendTextMessage(String body,
 String usern
ame,
 String passw
ord);

Send a text message to a secure topic.

String sendTextMessage(String body); Send a text message to a topic.

Operation Description

Subscription actions

Table 15.10, “Subscription MBean Operations” describes the operations exposed by the MBean for a
durable subscription.

Table 15.10. Subscription MBean Operations

Operation Description

void destroy(); Destroys the subscription.

CompositeData[] browse(); Returns all messages waiting for the subscriber.

TabularData browseAsTable(); Returns all messages waiting for the subscriber.

int cursorSize(); Returns the number of messages available to be
paged in by the cursor.

boolean doesCursorHaveMessagesBuffe
red();

Returns true if the cursor has buffered messages to
be delivered.

boolean doesCursorHaveSpace(); Returns true if the cursor has memory space
available.

boolean isMatchingQueue(String queu
eName);

Returns true if this subscription matches the given
queue name.

boolean isMatchingTopic(String topi
cName);

Returns true if this subscription matches the given
topic name.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

92

CHAPTER 16. APPLYING PATCHES

Abstract

Red Hat JBoss A-MQ supports incremental patching. Red Hat will supply you with easy to install patches
that only make targeted changes to a deployed broker.

16.1. INTRODUCTION TO PATCHING

Patching enables you apply fixes to a broker without needing to reinstall an updated version of Red Hat
JBoss A-MQ. It also allows you to back out the patch, if it causes problems with your deployed
applications. Patches are ZIP files that contain the artifacts needed to update a targeted set of bundles in
a container. The artifacts are typically one or more bundles. They can, however, include configuration
files and feature descriptors.

In addition, since JBoss A-MQ 6.2.1, a full distribution can be used as a rollup patch. This enables you
to upgrade all aspects of an existing JBoss A-MQ distribution—including installed features, bundles and
configurations—while preserving custom configuration changes.

You get a patch file in one of the following ways:

Customer Support sends you a patch.

Customer Support sends you a link to download a patch.

Download a patch directly from the Red Hat customer portal.

The process of applying a patch to a broker depends on how the broker is deployed:

Standalone—the broker's command console's patch shell has commands for managing the
patching process

Fabric—patching a fabric requires applying the patch to a profile and then applying the profile to
a broker.

16.2. FINDING THE RIGHT PATCHES TO APPLY

Abstract

This section explains how to find the patches for a specific version of JBoss A-MQ on the Red Hat
Customer Portal and how to figure out which patches to apply, and in what order.

Locate the patches on the customer portal

If you have a subscription for JBoss A-MQ, you can download the latest patches directly from the Red
Hat Customer Portal. Locate the patches as follows:

1. Login to the Red Hat Customer Portal using your customer account. This account must be
associated with an appropriate Red Hat software subscription, otherwise you will not be able to
see the patch downloads for JBoss A-MQ.

2. Navigate to the customer portal Software Downloads page.

CHAPTER 16. APPLYING PATCHES

93

https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

3. In the Product dropdown menu, select the appropriate product (for example, A-MQ or Fuse),
and then select the version, 6.3, from the Version dropdown menu. A table of downloads now
appears, which has three tabs: Releases, Patches, and Security Advisories.

4. Click the Releases tab to view the GA product releases.

5. Click the Patches tab the rollup patches, and the regular incremental patches (with no security-
related fixes).

6. Click the Security Advisories tab to view the incremental patches with security-related
fixes.

NOTE

To see the complete set of patches, you must look under the Releases tab, the
Patches tab and the Security Advisories tab.

Types of patch

The following types of patch can be made available for download:

Rollup patches

Incremental patches

Rollup patches

A rollup patch is a cumulative patch that incorporates all of the fixes from the preceding patches.
Moreover, each rollup patch is regression tested and establishes a new baseline for the application of
future patches.

Since JBoss A-MQ 6.2.1, a rollup patch file is dual-purpose, as follows:

Each rollup patch file is a complete new build of the official target distribution. This means you
can unzip the rollup patch file to obtain a completely new installation of JBoss A-MQ, just as if it
was a fresh download of the product (which, in fact, it is). See Section 16.3, “Installing a Rollup
Patch as a New Installation”.

You can also treat the rollup patch as a regular patch, using it to upgrade an existing installation.
That is, you can provide the rollup patch file as an argument to the standalone patch console
commands (for example, patch:add and patch:install) or the Fabric patch console
command, patch:fabric-install.

Incremental patches

Incremental patches are patches released either directly after GA or after a rollup patch, and they are
intended to be applied on top of the corresponding build of JBoss A-MQ. The main purpose of an
incremental patch is to update some of the bundles in an existing distribution.

Which patches are needed to update the GA product to the latest patch level?

To figure out which patches are needed to update the GA product to the latest patch level, you need to
pay attention to the type of patches that have been released so far:

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

94

1. If the only patches released so far are patches with GA baseline (Patch 1, Patch 2, and so on),
apply the latest of these patches directly to the GA product.

2. If a rollup patch has been released and no patches have been released after the latest rollup
patch, simply apply the latest rollup patch to the GA product.

3. If the latest patch is a patch with a rollup baseline, you must apply two patches to the GA
product, as follows:

a. Apply the latest rollup patch, and then

b. Apply the latest patch with a rollup baseline.

Which patches to apply, if you only want to install regression-tested patches?

If you prefer to install only patches that have been regression tested, install the latest rollup patch.

16.3. INSTALLING A ROLLUP PATCH AS A NEW INSTALLATION

A rollup patch is a new build

Since JBoss A-MQ 6.2.1, a rollup patch file is a complete new build of the official target distribution. In
other words, it is just like the original GA distribution, except that it includes later build artifacts.

Installing the new build

To install a new build, corresponding to a rollup patch level, perform the following steps:

1. Identify which rollup patch you need to install and download it from the Customer Portal. For
more details, see Section 16.2, “Finding the Right Patches to Apply”.

2. Unzip the rollup patch file to a convenient location, just as you would with a regular GA
distribution. This is your new installation of JBoss A-MQ.

Comparison with patch process

Compared with the conventional patch process, installing a new build has the following advantages and
limitations:

This approach is only for creating a completely new installation of JBoss A-MQ. If your existing
installation already has a lot of custom configuration, this might not be the most convenient
approach to use.

The new build includes only the artifacts and configuration for the new patch level. There is thus
no concept of rolling back to the GA version.

If you create a new fabric (using fabric:create), the default fabric profiles are already at the
new patch level (same as the standalone container). It is therefore not necessary to patch the
fabric.

16.4. PATCHING A STANDALONE CONTAINER

Abstract

CHAPTER 16. APPLYING PATCHES

95

You apply patches to a standalone container using the command console's patch shell. You can apply
and roll back patches as needed.

Overview

When patching a standalone container, you can apply either an incremental patch or a rollup patch.
There are very significant differences between the two kinds of patch and the way they are applied.
Although the same commands are used in both cases, the internal processes are different (the patch
commands auto-detect the patch type).

IMPORTANT

The instructions in this section apply only to JBoss A-MQ versions 6.2.1 and later, which
support the new patching mechanism.

Incremental patch

An incremental patch is used mainly to update the bundle JARs in the container. This type of patch is
suitable for delivering hot fixes to the JBoss A-MQ installation, but it has its limitations. An incremental
patch:

Updates bundle JARs.

Patches only the current container instance (under the data/ directory). Hence, patches are not
preserved after deleting a container instance.

Updates any feature dependencies installed in the current container instance, but does not
update the feature files themselves.

Might update some configuration files, but is not suitable for updating most configuration files.

Supports patch rollback.

After applying the patch, and creating a new fabric using fabric:create, the new Fabric
reverts to the unpatched configuration.

After applying an incremental patch to a standalone container, meta-data about the patch is written to the
etc/startup.properties and etc/overrides.properties files. With these files, the Karaf
installation is able to persist the patch even after deleting the root container instance (that is, after
removing the root container's data/ directory).

NOTE

Removing the data/cache directory uninstalls any bundles, features, or feature
repositories that were installed into the container using Karaf console commands.
However, any patches that have been applied will remain installed, as long as the
etc/startup.properties and etc/overrides.properties files are preserved.

Rollup patch

A rollup patch can make updates to any installation files including bundle JARs and static files (including,
for example, configuration files under the etc/ directory). A rollup patch:

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

96

Updates any files, including bundle JARs, configuration files, and any static files.

Patches both the current container instance (under the data/ directory) and the underlying
installation. Hence, patches are preserved after deleting a container instance.

Updates all of the files related to Karaf features, including the features repository files and the
features themselves. Hence, any features installed after the rollup patch will reference the
correct patched dependencies.

If necessary, updates configuration files (for example, files under etc/), automatically merging
any configuration changes you have made with the configuration changes made by the patch. If
merge conflicts occur, see the patch log for details of how they are handled.

Tracks all of the changes made to the installation (including to static files), so that it is possible to
roll back the patch.

NOTE

The rollup patching mechanism uses an internal git repository (located under
patches/.management/history) to track the changes made.

After applying the patch, and creating a new fabric using fabric:create, the new Fabric is
created with the patched configuration.

Patching the patch mechanism

(Recommended, if applicable) If there is no patch management package corresponding to the rollup
patch you are about to install, then you can skip this procedure and install the rollup patch directly.

From time to time, important changes and improvements are made to the patch mechanism. In order to
pick up these improvements, we recommend that you patch the patch mechanism to a higher level
before upgrading JBoss A-MQ with a rollup patch. If you were to upgrade straight to the latest rollup
patch version of JBoss A-MQ, the improved patch mechanism would become available after you
completed the upgrade. But at that stage, it would be too late to benefit from the improvements in the
patch mechanism.

To circumvent this bootstrap problem, the improved patch mechanism is made available as a separate
download, so that you can patch the patch mechanism itself, before you upgrade to the new patch level.
To patch the patch mechanism, proceed as follows:

1. Download the appropriate patch management package. From the JBoss A-MQ 6.3.0 Software
Downloads page, select a package named Red Hat JBoss A-MQ 6.3.0 Rollup N on
Karaf Update Installer, where N is the number of the particular rollup patch you are
about to install.

IMPORTANT

The rollup number, N, of the downloaded patch management package must
match the rollup number of the rollup patch you are about to install. For some
rollup patches, there is no corresponding patch management package, in which
case you can skip directly to the instructions for installing the rollup patch.

2. Install the patch management package, patch-management-for-amq-
630-TargetVersion.zip, on top of your 6.3.0 installation. Use an archive utility to extract the

CHAPTER 16. APPLYING PATCHES

97

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=patches&product=jboss.amq&version=6.3.0

contents on top of the existing Karaf container installation (installing files under the system/ and
patches/ subdirectories).

NOTE

It does not matter whether the container is running or not when you extract these
files.

3. Start the container, if it is not already running.

4. Uninstall the existing patch commands from the container as follows. Remove the patch features
as follows:

But this is not sufficient to remove all of the patch bundles. Check for any remaining patch
bundles as follows:

You can remove this system bundle, as follows:

Finally, you should remove the features URL for the old patch mechanism version, as follows:

Check the version of patch-features that you have, because it might be different from
1.2.0.redhat-630187.

5. Install the new patch commands as follows. Add the features URL for the new patch commands,
as follows:

Where you must replace 1.2.0.redhat-630xxx with the actual build version of the patch
commands you are installing (for example, the build version xxx can be taken from the last
three digits of the TargetVersion in the downloaded patch management package file name).

Install the new patch features, as follows:

JBossFuse:karaf@root> features:uninstall patch patch-core

JBossFuse:karaf@root> list -t 0 -l | grep patch

[1] [Active] [] [] [2]
mvn:io.fabric8.patch/patch-management/1.2.0.redhat-630187

JBossFuse:karaf@root> uninstall 1
You are about to access system bundle 1. Do you wish to continue
(yes/no): yes
JBossFuse:karaf@root> list -t 0 -l | grep patch

JBossFuse:karaf@root> features:listurl | grep patch
 true mvn:io.fabric8.patch/patch-features/1.2.0.redhat-
630187/xml/features
JBossFuse:karaf@root> features:removeurl mvn:io.fabric8.patch/patch-
features/1.2.0.redhat-630187/xml/features

JBossFuse:karaf@root> features:addurl mvn:io.fabric8.patch/patch-
features/1.2.0.redhat-630xxx/xml/features

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

98

Check that the requisite patch bundles are now installed:

6. Restart the container (the patch:add command and the other patch commands will not be
available in the console shell until you perform a restart).

Applying a patch

To apply a patch to a standalone container:

1. Make a full backup of your JBoss A-MQ installation before attempting to apply the patch.

2. (Rollup patch only) Before applying the rollup patch to your container, you must patch the patch
mechanism, as described in the section called “Patching the patch mechanism”.

3. (Rollup patch only) Remove the lib/endorsed/org.apache.karaf.exception-
2.4.0.redhat-630xxx.jar file (where the build number, xxx, depends on the build being
patched).

4. (Incremental patch only) Before you proceed to install the patch, make sure to read the text of
the README file that comes with the patch, as there might be additional manual steps required to
install a particular patch.

5. Start the container, if it is not already running. If the container is running in the background (or
remotely), connect to the container using the SSH console client, /bin/client.

6. Add the patch to the container's environment by invoking the patch:add command. For
example, to add the patch.zip patch file:

7. Simulate installing the patch by invoking the patch:simulate command.

This generates a log of the changes that will be made to the container when the patch is
installed, but will not make any actual changes to the container. Review the simulation log to
understand the changes that will be made to the container.

8. Invoke the patch:list command to display a list of added patches. In this list, the entries
under the [name] heading are patch IDs. For example:

JBossFuse:karaf@root> features:install patch-core patch

JBossFuse:karaf@root> list -t 0 -l | grep patch
[265] [Active] [] [] [80]
mvn:io.fabric8.patch/patch-core/1.2.0.redhat-630xxx
[266] [Active] [] [] [2]
mvn:io.fabric8.patch/patch-management/1.2.0.redhat-630xxx
[267] [Active] [] [] [80]
mvn:io.fabric8.patch/patch-commands/1.2.0.redhat-630xxx

patch:add file://patch.zip

 patch:list
[name] [installed] [description]
jboss-a-mq-6.3.0.redhat-329 false

CHAPTER 16. APPLYING PATCHES

99

Ensure that the container has fully started before you try to perform the next step. In some
cases, the container must restart before you can apply a patch, for example, if static files are
patched. In these cases, the container restarts automatically.

9. Apply a patch to the container by invoking the patch:install command and specifying the
patch ID for the patch that you want to apply. For example:

10. Validate the patch, by searching for one of the patched artifacts. For example, if you had just
upgraded JBoss A-MQ 6.2.1 to the patch with build number 621423, you could search for
bundles with this build number, as follows:

After applying a rollup patch, you also see the new version and build number in the Welcome
banner when you restart the container.

Rolling back a patch

Occasionally a patch will not work or will introduce new issues to a container. In these cases, you can
easily back the patch out of the system and restore it to pre-patch behaviour using the
patch:rollback command, as follows:

1. Invoke the patch:list command to obtain the patch ID, PatchID, of the most recently
installed patch.

2. Invoke the patch:rollback command, as follows:

In some cases the container will need to restart to roll back the patch. In these cases, the
container restarts automatically. Due to the highly dynamic nature of the OSGi runtime, during
the restart you might see some occasional errors related to incompatible classes. These are
related to OSGi services that have just started or stopped. These errors can be safely ignored.

Adding features to an incrementally patched container

Since JBoss A-MQ 6.1, it is possible to add Karaf features to an already patched standalone container
without performing any special steps.

16.5. PATCHING STANDALONE APACHE ACTIVEMQ

Abstract

JBoss A-MQ provides a standalone distribution of Apache ActiveMQ (that is, Apache ActiveMQ without
the Apache Karaf container) under the InstallDir/extras directory. Patching the standalone Apache
ActiveMQ is a manual process, requiring you to copy some library files.

patch:install jboss-a-mq-6.3.0.redhat-329

JBoss A-MQ:karaf@root> osgi:list -s -t 0 | grep -i 630187
[6] [Active] [] [] [10]
org.apache.felix.configadmin (1.2.0.redhat-630187)

patch:rollback PatchID

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

100

Patch files

The first step in patching a standalone Apache ActiveMQ instance is to figure out what patches need to
be applied. When it comes to determining which patches to apply, the same principles apply as for
patching the container.

See Section 16.2, “Finding the Right Patches to Apply” for details of how to work out which patches to
apply and download the relevant patches.

Apache ActiveMQ install directory

For the following patching instructions, it is assumed that you have already extracted the standalone
Apache ActiveMQ distribution from the extras/apache-activemq-5.11.0.redhat-630187.zip
file and installed standalone Apache ActiveMQ into the ApacheActiveMQInstall directory.

How to apply a patch to standalone Apache ActiveMQ

To apply a patch (or patches) to a standalone Apache ActiveMQ instance, perform the following steps:

1. After determining which patches to apply, download the relevant patches from the Customer
Portal, as described in Section 16.2, “Finding the Right Patches to Apply”.

2. Stop the ActiveMQ broker, if it is running.

3. Make a backup copy of the original standalone Apache ActiveMQ lib directory,
ApacheActiveMQInstall/lib

4. Starting with the first patch file, use an archive utility to open the downloaded patch (.zip) file,
and extract the patch to a convenient temporary location, ExtractedPatch.

5. The patched library files for the standalone Apache ActiveMQ instance are located in the
following subdirectory of the patch:

Copy the complete contents of this directory to the standalone Apache ActiveMQ lib directory,
ApacheActiveMQInstall/lib.

6. Delete the older versions of the patched library files in ApacheActiveMQInstall/lib. Only
one version of each library should be present in the lib directory, and it should be the patched
version.

For example, if you found two versions of the activemq-broker JAR file present in the lib
directory after copying the patch libraries:

You would delete the older version, activemq-broker-5.9.0.redhat-610379.jar.

7. If you need to install a second patch on top of the first, repeat steps 4, 5, and 6, for the second
patch.

8. Restart the ActiveMQ broker.

ExtractedPatch/apache-activemq-5.11.0.redhat-630187/lib

activemq-broker-5.9.0.redhat-610379.jar
activemq-broker-5.9.0.redhat-611423.jar

CHAPTER 16. APPLYING PATCHES

101

16.6. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH

Abstract

Follow the procedures described in this section to patch a Fabric container with a rollup patch.

Overview

A rollup patch updates bundle JARs, other Maven artifacts, libraries, and static files in a Fabric. The
following aspects of the fabric are affected:

Distribution of patched artifacts

Profiles

Configuration of the underlying container

Root container

Throughout this section, we refer to a root container, which is just a container chosen from the Fabric
ensemble. Throughout the patching procedure, you invoke the patch:* commands from the console of
the root container. If you are planning to distribute patch artifacts through the Maven proxy, it is
convenient to choose the root container to be the ensemble container that is currently the master of the
Maven proxy cluster (see ???). This would ensure that patch artifacts can immediately be downloaded
by other containers in the cluster.

Distribution of patch artifacts

When patching an entire fabric of containers, you need to consider how the patch artifacts are distributed
to the containers in the fabric. You can adopt one of the following approaches:

Through the Maven proxy (default approach)—when you add a rollup patch to your root
container (using the patch:add command), the patch artifacts are installed into the root
container's system/ directory, whose directory structure is laid out like a Maven repository. The
root container can then serve up these patch artifacts to remote containers by behaving as a
Maven proxy, enabling remote containers to download the required Maven artifacts (this process
is managed by the Fabric agent running on each Fabric container). Alternatively, if you have
installed the rollup patch to a container that is not hosting the Maven proxy, you can ensure that
the patch artifacts are uploaded to the Maven proxy by invoking the patch:fabric-install
command with the --upload option.

There is a limitation to the Maven proxy approach, however, if the Fabric ensemble consists of
multiple containers. In this case, it can happen that the Maven proxy fails over to a different
ensemble container (not the original root container). This can result in the patch artifacts
suddenly becoming unavailable to other containers in the fabric. If this occurs during the
patching procedure, it will cause problems.

NOTE

Containers that are added to an ensemble do not automatically deploy the Maven
proxy. To enable the Maven proxy, make sure that the fabric profile is deployed
in the container.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

102

For more details, see chapter "Fabric Maven Proxies" in "Fabric Guide".

Through a local repository (recommended approach)—to overcome the limitations of the Maven
proxy approach, we recommend that you make the patch artifacts available directly to all of the
containers in the Fabric by setting up a local repository on the file system. Assuming that you
have a networked file system, all containers will be able to access the patch artifacts directly.

For example, you might set up a local repository of patch artifacts, as follows:

1. Given a rollup patch file, extract the contents of the system/ directory from the rollup patch
file into the repositories/ subdirectory of a local Maven repository (which could be
~/.m2/repositories or any other location).

2. Configure the Fabric agent and the Maven proxy to pick up artifacts from the local repository
by editing the current version of the default profile, as follows:

Replace PathToRepository by the actual location of the local repository on your file
system.

NOTE

Make sure that you make the edits to the default profile for all relevant
profile versions. If some of your containers are using a non-default profile
version, repeat the profile-edit commands while specifying the profile
version explicitly as the last parameter.

Profiles

The rollup patching process updates all of the standard profiles, so that they reference the patched
dependencies. Any custom profiles that you created yourself remain unaffected by these updates.
However, in cases where you have already made some changes directly to the standard profiles (such
as default, fabric, karaf, and so on), the patching mechanism attempts to merge your changes
with the changes introduced by the patch.

IMPORTANT

In the case where you have modified standard profiles, it is recommended that you verify
your custom changes are preserved after patching. This is particularly important with
respect to any changes made to the location of Maven repositories (which are usually
configured in the default profile).

Configuration of the underlying container

If required, the rollup patching mechanism is capable of patching the underlying container (that is, files
located under etc/, lib/, and so on). When a Fabric container is upgraded to a patched version (for
example, using the fabric:container-upgrade command), the container's Fabric agent checks
whether the underlying container must be patched. If yes, the Fabric agent triggers the patching
mechanism to update the underlying container. Moreover, if certain critical files are updated (for

profile-edit --append --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.defaultRepositories="file:
///PathToRepository" default

CHAPTER 16. APPLYING PATCHES

103

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Fabric_Guide/FabricMavenProxy.html

example, lib/karaf.jar), the container status changes to requires full restart after the
container is upgraded. This status indicates that a full manual restart is required (an automatic restart is
not possible in this case).

io.fabric.version in the default profile

The io.fabric.version resource in the default profile plays a key role in the patching mechanism.
This resource defines the version and build of JBoss A-MQ and of all of its main components. When
upgrading (or rolling back) a Fabric container to a new version, the Fabric agent checks the version and
build of JBoss A-MQ as defined in the io.fabric.version resource. If the JBoss A-MQ version
changes between the original profile version and the upgraded profile version, the Fabric agent knows
that an upgrade of the underlying container is required when upgrading to this profile version.

Patching the patch mechanism

(Recommended, if applicable) If there is no patch management package corresponding to the rollup
patch you are about to install, then you can skip this procedure and install the rollup patch directly.

From time to time, important changes and improvements are made to the patch mechanism. In order to
pick up these improvements, we recommend that you patch the patch mechanism to a higher level
before upgrading JBoss A-MQ with a rollup patch. If you were to upgrade straight to the latest rollup
patch version of JBoss A-MQ, the improved patch mechanism would become available after you
completed the upgrade. But at that stage, it would be too late to benefit from the improvements in the
patch mechanism.

To circumvent this bootstrap problem, the improved patch mechanism is made available as a separate
download, so that you can patch the patch mechanism itself, before you upgrade to the new patch level.
To patch the patch mechanism, proceed as follows:

1. Download the appropriate patch management package. From the JBoss A-MQ 6.3.0 Software
Downloads page, select a package named Red Hat JBoss A-MQ 6.3.0 Rollup N on
Karaf Update Installer, where N is the number of the particular rollup patch you are
about to install.

IMPORTANT

The rollup number, N, of the downloaded patch management package must
match the rollup number of the rollup patch you are about to install. For some
rollup patches, there is no corresponding patch management package, in which
case you can skip directly to the instructions for installing the rollup patch.

2. Extract the contents of the patch management package, patch-management-for-amq-
630-TargetVersion.zip, on top of the root container (that is, on top of the Fabric container
that will be used to perform the remainder of the patching tasks). Use an archive utility to extract
the contents on top of the root container installation, merging the contents of the archive
system/ and patches/ directories with the container system/ and patches/ subdirectories.

NOTE

It does not matter whether the root container is running when you extract these
files.

3. Start the root container, if it is not already running.

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

104

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=patches&product=jboss.amq&version=6.3.0

4. Create a new version, using the fabric:version-create command (where we assume that
the current profile version is 1.0):

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 [.description]. If you abandon the default naming convention
and use a textual name instead (for example, Patch051312), the next version you
create will be based, not on the last version (Patch051312), but on the highest-
numbered version determined by dot syntax.

5. Update the patch property in the io.fabric8.version PID in the version 1.0.1 of the
default profile, by entering the following Karaf console command:

Where you must replace 1.2.0.redhat-630xxx with the actual build version of the patch
commands you are installing (for example, the build version xxx can be taken from the last
three digits of the TargetVersion in the downloaded patch management package file name).

6. Upgrade the root container to use the new patching mechanism, as follows:

7. Likewise, for all other containers in your fabric that need to be patched (SSH, child, and so on),
provision them with the new patching mechanism by upgrading them to profile version 1.0.1.
For example:

8. After completing the container-upgrade, if patch commands are unavailable or if the console
issues a prompt that a container restart is necessary, then restart the upgraded containers to
complete the upgrade process.

Applying a rollup patch

To apply a rollup patch to a Fabric container:

1. Before applying the rollup patch to your fabric, you must patch the patch mechanism, as
described in the section called “Patching the patch mechanism”.

2. For every top-level container (that is, any container that is not a child container), perform these
steps, one container at a time:

JBossFuse:karaf@root> fabric:version-create --parent 1.0 1.0.1
Created version: 1.0.1 as copy of: 1.0

profile-edit --pid io.fabric8.version/patch=1.2.0.redhat-630xxx
default 1.0.1

container-upgrade 1.0.1 root

container-upgrade 1.0.1 container1 container2 container3

CHAPTER 16. APPLYING PATCHES

105

1. In the corresponding Karaf installation, remove the
lib/endorsed/org.apache.karaf.exception-2.4.0.redhat-630xxx.jar file
(where the build number, xxx, depends on the build being patched).

2. Restart the container.

3. Add the patch to the root container's environment using the patch:add command. For
example, to add the patch.zip patch file:

IMPORTANT

If you have decided to use a local repository to distribute the patch artifacts
(recommended), set up the local repository now—see the section called
“Distribution of patch artifacts”.

4. Create a new version, using the fabric:version-create command:

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3[.description]. If you abandon the default naming convention
and use a textual name instead (for example, Patch051312), the next version you
create will be based, not on the last version (Patch051312), but on the highest-
numbered version determined by dot syntax.

5. Apply the patch to the new version, using the patch:fabric-install command. Note that in
order to run this command you must provide the credentials, Username and Password, of a
user with Administrator privileges. For example, to apply the PatchID patch to version 1.1:

NOTE

When you invoke the patch:fabric-install command with the --upload
option, Fabric looks up the ZooKeeper registry to discover the URL of the
currently active Maven proxy, and uploads all of the patch artifacts to this URL.
Using this approach it is possible to make the patch artifacts available through the
Maven proxy, even if the container you are currently logged into is not hosting the
Maven proxy.

JBossFuse:karaf@root> patch:add file://patch.zip
[name] [installed] [description]
PatchID false Description

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0.1

patch:fabric-install --username Username --password Password --
upload --version 1.1 PatchID

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

106

6. Delete the old bundle overrides created by the old hot fix patch by modifying the parent profiles
of the profile default and removing the old hot fix patch profile as being a parent of the default
profile. For example,

NOTE

The parent patch-jboss-fuse-6.2.1.redhat-186-12-r7hf10 is only
visible if a hot fix patch was installed previously. The name of the parent patch is
different based on the hot fix patch.

The above commands shows that default profile has two parents:

acls - standard and must be present.

patch-jboss-fuse-6.2.1.redhat-186-12-r7hf10 - a profile that represents hotfix patch.

7. Synchronize the patch information across the fabric, to ensure that the profile changes in version
1.1 are propagated to all containers in the fabric (particularly remote SSH containers). Enter the
following console command:

8. Upgrade each existing container in the fabric using the fabric:container-upgrade
command (but leaving the root container, where you installed the patch, until last). For example,
to upgrade a container named remote, enter the following command:

At this point, not only does the Fabric agent download and install the patched bundles into the
specified container, but the agent also applies the patch to the underlying container (updating
any static files in the container, if necessary). If necessary, the agent will then restart the target
container automatically or set the container status to requires full restart (if an
automatic restart is not possible), so that any changes made to the static files are applied to the
running container.

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues.

9. If the current status of the upgraded container is requires full restart, you must now use
one of the standard mechanisms to stop and restart the container manually. In some cases, it
will be possible to do this using Fabric commands from the console of the root container.

For example, you could stop the remote container as follows:

JBossFuse:karaf@root> fabric:profile-display --version 1.X default
Attributes:
parents: acls patch-jboss-fuse-6.2.1.redhat-186-12-r7hf10
JBossFuse:karaf@root> fabric:profile-change-parents --version 1.X
default acls

patch:fabric-synchronize

JBossFuse:karaf@root> fabric:container-upgrade 1.1 remote
Upgraded container remote from version 1.0.1 to 1.1

CHAPTER 16. APPLYING PATCHES

107

And restart the remote container as follows:

10. Upgrade the root container last (that is, the container that you originally installed the patch on):

11. (Windows only) If the root container status has changed to requires full restart and it is
running on a Windows operating system, you must first shut down all of the root container's child
containers (if any) before manually restarting the root container.

For example, if the root container has three child containers, child1, child2, and child3,
you would first shut them down, as follows:

You can then shut down the root container with the shutdown command:

Rolling back a rollup patch

To roll back a rollup patch on a Fabric container, use the fabric:container-rollback command.
For example, assuming that 1.0 is an unpatched profile version, you can roll the remote container back
to the unpatched version 1.0 as follows:

At this point, not only does the Fabric agent roll back the installed profiles to an earlier version, but the
agent also rolls back the patch on the underlying container (restoring any static files to the state they
were in before the patch was applied, if necessary). If necessary, the agent will then restart the target
container automatically or set the container status to requires full restart (if an automatic restart
is not possible), so that any changes made to the static files are applied to the running container.

16.7. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL
PATCH

Abstract

Follow the procedures described in this section to patch a Fabric container with an incremental patch.

Overview

An incremental patch makes updates only to the bundle JARs in a Fabric. The following aspects of the
fabric are affected:

Distribution of patched artifacts through Maven proxy

fabric:container-stop remote

fabric:container-start remote

fabric:container-upgrade 1.1 root

fabric:container-stop child1 child2 child3

shutdown

fabric:container-rollback 1.0 remote

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

108

Profiles

Distribution of patched artifacts through Maven proxy

When you install the incremental patch on your local container, the patch artifacts are installed into the
local system/ directory, whose directory structure is laid out like a Maven repository. The local
container distributes these patch artifacts to remote containers by behaving as a Maven proxy, enabling
remote containers to upload bundle JARs as needed (this process is managed by the Fabric agent
running on each Fabric container). For more details, see chapter "Fabric Maven Proxies" in "Fabric
Guide".

Profiles

The incremental patching process defines bundle overrides, so that profiles switch to use the patched
dependencies (bundle JARs). This mechanism works as follows:

1. The patch mechanism creates a new profile, patch-PatchProfileID, which defines bundle
overrides for all of the patched bundles.

2. The new patch profile, patch-PatchProfileID, is inserted as the parent of the default
profile (at the base of the entire profile tree).

3. All of the profiles that inherit from default now use the bundle versions defined by the overrides in
patch-PatchProfileID. The contents of the existing profiles themselves are not modified in
any way.

Is it necessary to patch the underlying container?

Usually, when patching a fabric with an incremental patch, it is not necessary to patch the underlying
container as well. Fabric has its own mechanisms for distributing patch artifacts (for example, using a git
repository for the profile data, and Apache Maven for the OSGi bundles), which are independent of the
underlying container installation.

In exceptional cases, however, it might be necessary to patch the underlying container (for example, if
there was an issue with the fabric:create command). Always read the patch README file to find out
whether there are any special steps required to install a particular patch. In these cases, however, it is
more likely that the patch would be distributed in the form of a rollup patch, which has the capability to
patch the underlying container automatically—see Section 16.6, “Patching a Fabric Container with a
Rollup Patch”.

Applying an incremental patch

To apply an incremental patch to a Fabric container:

1. Before you proceed to install the incremental patch, make sure to read the text of the README
file that comes with the patch, as there might be additional manual steps required to install a
particular incremental patch.

2. Create a new version, using the fabric:version-create command:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0

CHAPTER 16. APPLYING PATCHES

109

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Fabric_Guide/FabricMavenProxy.html

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 <.description > .If you abandon the default naming
convention and use a textual name instead (for example, Patch051312), the next
version you create will be based, not on the last version (Patch051312), but on the
highest-numbered version determined by dot syntax.

3. Apply the patch to the new version, using the fabric:patch-apply command. For example,
to apply the activemq.zip patch file to version 1.1:

4. Upgrade a container using the fabric:container-upgrade command, specifying which
container you want to upgrade. For example, to upgrade the child1 container, enter the
following command:

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues.
Upgrade the root container (the one that you applied the patch to, using the
fabric:patch-apply command) last.

5. You can check that the new patch profile has been created using the fabric:profile-list
command, as follows:

Where we presume that the patch was applied to profile version 1.1.

NOTE

If you want to avoid specifying the profile version (with --version) every time
you invoke a profile command, you can change the default profile version using
the fabric:version-set-default Version command.

You can also check whether specific JARs are included in the patch, for example:

JBossFuse:karaf@root> fabric:patch-apply --version 1.1
file:///patches/activemq.zip

JBossFuse:karaf@root> fabric:container-upgrade 1.1 child1
Upgraded container child1 from version 1.0 to 1.1

BossFuse:karaf@root> fabric:profile-list --version 1.1 | grep patch
default 0 patch-
activemq-patch
patch-activemq-patch

JBossFuse:karaf@root> list | grep -i activemq
[131] [Active] [Created] [] [50] activemq-osgi
(5.9.0.redhat-61037X)

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

110

Rolling back an incremental patch

To roll back an incremental patch on a Fabric container, use the fabric:container-rollback
command. For example, assuming that 1.0 is an unpatched profile version, you can roll the child1
container back to the unpatched version 1.0 as follows:

[139] [Active] [Created] [] [50] activemq-
karaf (5.9.0.redhat-61037X)
[207] [Active] [] [] [60] activemq-
camel (5.9.0.redhat-61037X)

fabric:container-rollback 1.0 child1

CHAPTER 16. APPLYING PATCHES

111

APPENDIX A. REQUIRED JARS

OVERVIEW

To simplify deploying Red Hat JBoss A-MQ it is recommended that you place the activemq-all.jar
file on the broker's CLASSPATH. It contains all of the classes needed by a message broker. This is the
default set up for a Red Hat JBoss A-MQ installation.

However, if you want more control over the JARs in the broker's CLASSPATH you can add the individual
JARs. There are several JARs that are required. In addition, there are a few that are only needed when
certain features are used.

REQUIRED JARS

The following JARs are installed with JBoss A-MQ and must be placed on the broker's CLASSPATH:

activemq-broker.jar

activemq-client.jar

activeio-core.jar

slf4j-api.jar

JEE JARS

The JARs containing the JEE APIs are also required by the broker. These could be located in one of the
following locations:

the jee.jar from Oracle

your JEE container's installation

the Geronimo specs JARs:

geronimo-spec-jms.jar

geronimo-spec-jta.jar

geronimo-spec-j2ee-management.jar

PERSISTENT MESSAGING JARS

If you want to use persistent messaging you will need to add JARs to the broker's CLASSPATH for the
desired persistence store. The JAR names follow the pattern activemq-store-store. The following
message stores are included:

activemq-amq-store.jar

activemq-jdbc-store.jar

activemq-kahadb-store.jar

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

112

activemq-leveldb-store.jar

Additionally, you will need to include any other JARs required by the persistence manager used by the
store:

For KahaDB you will need kahadb.jar.

For JDBC you will need the JARs for your database's JDBC driver.

INDEX
A

Active, Subscription statistics

activemq.xml, Editing the configuration template

administration client

running, Running the administration client

amq, Starting in console mode

AverageEnqueueTime, Destination statistics

B

BlockedProducerWarningInterval, Destination statistics

broker

addConnector, Broker actions

addNetworkConnector, Broker actions

addQueue, Broker actions

addTopic, Broker actions

createDurableSubscriber, Broker actions

destroyDurableSubscriber, Broker actions

disableStatistics, Broker actions

enableStatistics, Broker actions

gc, Broker actions

reloadLog4jProperties, Broker actions

removeConnector, Broker actions

removeNetworkConnector, Broker actions

removeQueue, Broker actions

removeTopic, Broker actions

resetStatistics, Broker actions

start, Broker actions

INDEX

113

stop, Broker actions

stopGracefully, Broker actions

terminateJVM, Broker actions

useJmx, Enabling and disabling

BrokerId, Broker statistics

BrokerName, Broker statistics

BrokerVersion, Broker statistics

C

client, Running the administration client

command console

getting help, Using the broker console

remote access, Connecting a console to a remote broker

config shell, Editing the OSGi properties

config.properties, Overview

configuration

persistent identifier, OSGi PIDs

PID, OSGi PIDs

template, Configuration templates

connector

connectionCount, Connector actions

disableStatistics, Connector actions

enableStatistics, Connector actions

resetStatistics, Connector actions

start, Connector actions

stop, Connector actions

connectorHost, Advanced configuration

connectorPath, Advanced configuration

connectorPort, Advanced configuration

connectors, Activating a connector

console

config shell, Editing the OSGi properties

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

114

console mode

starting, Starting in console mode

stopping, Stopping the broker from console mode

ConsumerCount, Destination statistics

createConnector, Advanced configuration

createMBeanServer, Advanced configuration

CursorFull, Destination statistics

CursorMemoryUsage, Destination statistics

CursorPercentUsage, Destination statistics

D

daemon mode

starting, Starting in daemon mode

stopping, Stopping a broker running in daemon mode

DataDirectory, Broker statistics

deploying

standalone broker, Deploying a Standalone Broker

DequeueCount, Destination statistics

DequeueCounter, Subscription statistics

DispatchCount, Destination statistics

DispatchedCounter, Subscription statistics

DispatchedQueueSize, Subscription statistics

E

EnqueueCount, Destination statistics

EnqueueCounter, Subscription statistics

ExpiredCount, Destination statistics

F

fabric

starting a broker, Starting a broker in a fabric

stopping a broker, Shutting down remote brokers in a fabric

fabric:container-connect, Connecting a console to a remote broker

fabric:container-start, Starting a broker in a fabric

INDEX

115

fabric:container-stop, Shutting down remote brokers in a fabric

fabric:container-upgrade, Applying a rollup patch, Applying an incremental patch

I

InFlightCount, Destination statistics

io.fabric8.mq.fabric.server.*, Activating a connector

J

JAAS

configuration syntax, Configuring a JAAS realm

converting to blueprint, Converting standard JAAS login properties to XML

namespace, Namespace

jaas:config, Configuring a JAAS realm

jaas:module, Configuring a JAAS realm

JBoss Operations Network, Tools

jconsole, Tools

JMX

disabling, Enabling and disabling

roles, Securing access to JMX

jmxDomainName, Advanced configuration

L

logging

console commands, Viewing the log with the console, Viewing the log with the administration
client

viewing as text, Viewing the log in a text editor

viewing in an editor, Viewing the log in a text editor

viewing in the console, Viewing the log with the console

viewing with the admin client, Viewing the log with the administration client

M

management console, Tools

managementContext, Advanced configuration

connectorHost, Advanced configuration

connectorPath, Advanced configuration

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

116

connectorPort, Advanced configuration

createConnector, Advanced configuration

createMBeanServer, Advanced configuration

jmxDomainName, Advanced configuration

rmiServerPort, Advanced configuration

useMBeanServer, Advanced configuration

MaxEnqueueTime, Destination statistics

MaximumPendingMessageLimit, Subscription statistics

MaxPageSize, Destination statistics

MemoryLimit, Broker statistics, Destination statistics

MemoryPercentageUsed, Broker statistics, Destination statistics

MemoryUsagePortion, Destination statistics

MessageCountAwaitingAcknowledge, Subscription statistics

MinEnqueueTime, Destination statistics

N

network connector

start, Network connector actions

stop, Network connector actions

O

org.apache.karaf.log, Overview

org.ops4j.pax.logging, Overview

org.ops4j.pax.logging.DefaultServiceLog.level, Overview

osgi:shutdown, Using a remote console

P

patch:add, Applying a patch

patch:install, Applying a patch

patch:list, Applying a patch, Rolling back a patch

patch:rollback, Rolling back a patch

patch:simulate, Applying a patch

patching

fabric

INDEX

117

command console, Applying a rollup patch, Applying an incremental patch

standalone, Applying a patch

rollback, Rolling back a patch

PendingQueueSize, Subscription statistics

persistent identifier, OSGi PIDs

PID, OSGi PIDs

PrefetchSize, Subscription statistics

ProducerCount, Destination statistics

Q

queue

browse, Queue actions

browseAsTable, Queue actions

browseMessages, Queue actions

copyMatchingMessagesTo, Queue actions

copyMessageTo, Queue actions

cursorSize, Queue actions

doesCursorHaveMessagesBuffered, Queue actions

doesCursorHaveSpace, Queue actions

getMessage, Queue actions

moveMatchingMessagesTo, Queue actions

moveMessageTo, Queue actions

purge, Queue actions

removeMatchingMessages, Queue actions

removeMessage, Queue actions

resetStatistics, Queue actions

retryMessage, Queue actions

sendTextMessage, Queue actions

QueueSize, Destination statistics

R

rmiServerPort, Advanced configuration

roles

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

118

JMX, Securing access to JMX

routine tasks, Routine tasks

S

shell, Starting a basic console

shutdown, Stopping the broker from console mode

ssh:ssh, Connecting a console to a remote broker, Using a remote console

standalone broker

configuration template, Editing the configuration template

deploying, Deploying a Standalone Broker

runtime configuration, Editing the OSGi properties

start, Starting in daemon mode

stop, Stopping a broker running in daemon mode

StoreLimit, Broker statistics

StorePercentageUsed, Broker statistics

subscription

browse, Subscription actions

browseAsTable, Subscription actions

cursorSize, Subscription actions

destory, Subscription actions

doesCursorHaveMessagesBuffered, Subscription actions

doesCursorHaveSpace, Subscription actions

isMatchingQueue, Subscription actions

isMatchingTopic, Subscription actions

T

TempLimit, Broker statistics

TempPercentageUsed, Broker statistics

tooling, Tools

topic

browse, Topic actions

browseAsTable, Topic actions

browseMessages, Topic actions

INDEX

119

resetStatistics, Topic actions

sendTextMessage, Topic actions

TotalConsumerCount, Broker statistics

TotalDequeueCount, Broker statistics

TotalEnqueueCount, Broker statistics

TotalMessageCount, Broker statistics

TotalProducerCount, Broker statistics

transportConnector, Adding a transport connector definition

transportConnectors, Adding a transport connector definition

U

useJmx, Enabling and disabling

useMBeanServer, Advanced configuration

V

VisualVM, Tools

Red Hat JBoss A-MQ 6.3 Managing and Monitoring a Broker

120

	Table of Contents
	CHAPTER 1. INTRODUCTION
	OVERVIEW
	ROUTINE TASKS
	TROUBLESHOOTING
	TOOLS

	CHAPTER 2. EDITING A BROKER'S CONFIGURATION
	2.1. INTRODUCTION TO BROKER CONFIGURATION
	2.2. UNDERSTANDING THE RED HAT JBOSS A-MQ CONFIGURATION MODEL
	Overview
	Configuration templates
	OSGi PIDs

	2.3. EDITING A STANDALONE BROKER'S CONFIGURATION
	Overview
	Editing the configuration template
	Splitting activemq.xml into multiple files
	Format of the DOCTYPE declaration
	Editing the OSGi properties
	Config shell

	2.4. MODIFYING A RUNNING STANDALONE BROKER'S XML CONFIGURATION
	Overview
	Prerequisites
	Dynamically updating network connectors
	Dynamically updating virtual destinations
	Dynamically updating the destination policy
	Destination policies to control paging
	Dynamically updating authorization roles

	2.5. JVM CONFIGURATION OPTIONS.
	Setting Java Options

	CHAPTER 3. SECURITY BASICS
	3.1. SECURITY OVERVIEW
	Overview
	Ports exposed by the container
	Authentication and authorization system

	3.2. BASIC SECURITY CONFIGURATION
	Overview
	Create a secure JAAS user
	Role-based access control
	Strengthening security on the remote console port

	3.3. ENABLE PASSWORD ENCRYPTION FOR NON-FABRIC ENVIRONMENT IN A-MQ
	3.4. SETTING UP SSL FOR A-MQ
	Starting the Broker with SSL
	Verifying Client Certificates

	3.5. ENABLE BROKER-TO-BROKER AUTHENTICATION IN A-MQ
	3.6. DISABLING BROKER SECURITY
	Overview
	Standalone server

	CHAPTER 4. SECURING A STANDALONE RED HAT JBOSS A-MQ CONTAINER
	4.1. DEFINING JAAS REALMS
	Overview
	Namespace
	Configuring a JAAS realm
	Converting standard JAAS login properties to XML
	Example

	4.2. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER
	Overview
	References

	4.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
	Overview
	How to use encrypted property placeholders
	Blueprint XML example

	CHAPTER 5. SECURING FABRIC CONTAINERS
	DEFAULT AUTHENTICATION SYSTEM
	MANAGING USERS
	OBFUSCATING STORED PASSWORDS
	ENABLING LDAP AUTHENTICATION

	CHAPTER 6. INSTALLING RED HAT JBOSS A-MQ AS A SERVICE
	6.1. OVERVIEW
	6.2. RUNNING JBOSS A-MQ AS A SERVICE
	6.3. CUSTOMIZING KARAF-SERVICE.SH UTILITY
	6.4. SYSTEMD
	6.5. SYSV
	6.6. SOLARIS SMF
	6.7. WINDOWS

	CHAPTER 7. STARTING A BROKER
	OVERVIEW
	STARTING IN CONSOLE MODE
	STARTING IN DAEMON MODE
	STARTING A BROKER IN A FABRIC

	CHAPTER 8. SENDING COMMANDS TO THE BROKER
	OVERVIEW
	RUNNING THE ADMINISTRATION CLIENT
	USING THE BROKER CONSOLE
	CONNECTING A CONSOLE TO A REMOTE BROKER
	STARTING A BASIC CONSOLE
	AVAILABLE COMMANDS

	CHAPTER 9. DEPLOYING A NEW BROKER
	9.1. TYPE OF DEPLOYMENT
	9.2. DEPLOYING A STANDALONE BROKER
	Overview
	Procedure
	More information

	CHAPTER 10. ACTIVEMQ BROKERS AND CLUSTERS
	10.1. CREATING A SINGLE BROKER INSTANCE
	MQ profiles
	Creating a new broker instance
	fabric:mq-create command
	Starting a broker on an existing container
	Broker groups

	10.2. CONNECTING TO A BROKER
	Overview
	Client URL

	10.3. TOPOLOGIES
	10.3.1. Load-Balancing Cluster
	Overview
	Create brokers in a load-balancing cluster
	Configure clients of a load-balancing cluster

	10.3.2. Master-Slave Cluster
	Overview
	Create brokers in a master-slave cluster
	Configure clients of a master-slave cluster
	Locking mechanism
	Re-using containers for multiple clusters
	Configuring persistent data

	10.3.3. Broker Networks
	Overview
	Broker networks
	Creating network connectors
	Example broker network
	Connecting to the example broker network

	10.4. ALTERNATIVE MASTER-SLAVE CLUSTER
	Why use an alternative master-slave cluster?
	Alternative locking mechanism
	standalone property
	Side effects of setting standalone=true
	Configuring brokers in the cluster
	Configuring authentication data
	Configuring a client

	10.5. BROKER CONFIGURATION
	Overview
	Setting OSGi Config Admin properties
	Modifying basic configuration properties
	Customizing the SSL keystore.jks and truststore.jks file
	Customizing the broker configuration file
	Additional broker configuration templates in mq-base
	Setting network connector properties
	Network connector properties by reflection

	CHAPTER 11. SHUTTING DOWN A BROKER
	11.1. SHUTTING DOWN A LOCAL BROKER
	Overview
	Stopping the broker from console mode
	Stopping a broker running in daemon mode

	11.2. SHUTTING DOWN A BROKER REMOTELY
	Overview
	Using the stop command
	Using a remote console
	Shutting down remote brokers in a fabric

	CHAPTER 12. ADDING CLIENT CONNECTION POINTS
	12.1. OVERVIEW OF TRANSPORT CONNECTORS
	12.2. ADDING A TRANSPORT CONNECTOR TO A STANDALONE BROKER
	Adding a transport connector definition
	Activating a connector

	CHAPTER 13. ADDING A QUEUE OR A TOPIC
	AUTOMATIC DESTINATION CREATION
	RESTRICTING DESTINATION CREATION

	CHAPTER 14. USING LOGGING
	14.1. OVERVIEW OF LOGGING
	14.2. LOGGING CONFIGURATION
	Overview
	Changing the log levels
	Changing the appenders' thresholds

	14.3. VIEWING THE LOG
	Overview
	Viewing the log in a text editor
	Viewing the log with the console
	Viewing the log with the administration client

	14.4. CHANGE LOGGING LEVEL AT RUNTIME USING JCONSOLE

	CHAPTER 15. USING JMX
	15.1. INTRODUCTION TO JMX
	15.2. CONFIGURING JMX
	Overview
	Enabling and disabling
	Securing access to JMX
	Advanced configuration

	15.3. STATISTICS COLLECTED BY JMX
	Broker statistics
	Destination statistics
	Subscription statistics

	15.4. MANAGING THE BROKER WITH JMX
	Overview
	Broker actions
	Connector actions
	Network connector actions
	Queue actions
	Topic actions
	Subscription actions

	CHAPTER 16. APPLYING PATCHES
	16.1. INTRODUCTION TO PATCHING
	16.2. FINDING THE RIGHT PATCHES TO APPLY
	Locate the patches on the customer portal
	Types of patch
	Rollup patches
	Incremental patches
	Which patches are needed to update the GA product to the latest patch level?
	Which patches to apply, if you only want to install regression-tested patches?

	16.3. INSTALLING A ROLLUP PATCH AS A NEW INSTALLATION
	A rollup patch is a new build
	Installing the new build
	Comparison with patch process

	16.4. PATCHING A STANDALONE CONTAINER
	Overview
	Incremental patch
	Rollup patch
	Patching the patch mechanism
	Applying a patch
	Rolling back a patch
	Adding features to an incrementally patched container

	16.5. PATCHING STANDALONE APACHE ACTIVEMQ
	Patch files
	Apache ActiveMQ install directory
	How to apply a patch to standalone Apache ActiveMQ

	16.6. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH
	Overview
	Root container
	Distribution of patch artifacts
	Profiles
	Configuration of the underlying container
	io.fabric.version in the default profile
	Patching the patch mechanism
	Applying a rollup patch
	Rolling back a rollup patch

	16.7. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL PATCH
	Overview
	Distribution of patched artifacts through Maven proxy
	Profiles
	Is it necessary to patch the underlying container?
	Applying an incremental patch
	Rolling back an incremental patch

	APPENDIX A. REQUIRED JARS
	OVERVIEW
	REQUIRED JARS
	JEE JARS
	PERSISTENT MESSAGING JARS

	INDEX

