
Red Hat Enterprise Linux OpenStack
Platform 7

Director Installation and Usage

An end-to-end scenario on using Red Hat Enterprise Linux OpenStack Platform
director to create an OpenStack cloud

Last Updated: 2018-05-21

Red Hat Enterprise Linux OpenStack Platform 7 Director Installation and
Usage

An end-to-end scenario on using Red Hat Enterprise Linux OpenStack Platform director to create
an OpenStack cloud

OpenStack Documentation Team
Red Hat Customer Content Services
rhos-docs@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to install Red Hat Enterprise Linux OpenStack Platform 7 in an enterprise
environment using the Red Hat Enterprise Linux OpenStack Platform Director. This includes
installing the director, planning your environment, and creating an OpenStack environment with the
director.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. UNDERCLOUD
1.2. OVERCLOUD
1.3. HIGH AVAILABILITY
1.4. CEPH STORAGE

CHAPTER 2. REQUIREMENTS
2.1. ENVIRONMENT REQUIREMENTS
2.2. UNDERCLOUD REQUIREMENTS
2.3. NETWORKING REQUIREMENTS
2.4. OVERCLOUD REQUIREMENTS
2.5. REPOSITORY REQUIREMENTS

CHAPTER 3. INSTALLING THE UNDERCLOUD
3.1. CREATING A DIRECTOR INSTALLATION USER
3.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
3.3. SETTING THE HOSTNAME FOR THE SYSTEM
3.4. REGISTERING YOUR SYSTEM
3.5. INSTALLING THE DIRECTOR PACKAGES
3.6. CONFIGURING THE DIRECTOR
3.7. OBTAINING IMAGES FOR OVERCLOUD NODES
3.8. SETTING A NAMESERVER ON THE UNDERCLOUD'S NEUTRON SUBNET
3.9. COMPLETING THE UNDERCLOUD CONFIGURATION

CHAPTER 4. PLANNING YOUR OVERCLOUD
4.1. PLANNING NODE DEPLOYMENT ROLES
4.2. PLANNING NETWORKS
4.3. PLANNING STORAGE

CHAPTER 5. UNDERSTANDING HEAT TEMPLATES
5.1. HEAT TEMPLATES
5.2. ENVIRONMENT FILES
5.3. DEFAULT DIRECTOR PLANS
5.4. DEFAULT DIRECTOR TEMPLATES

CHAPTER 6. INSTALLING THE OVERCLOUD
6.1. BASIC SCENARIO: CREATING A SMALL OVERCLOUD WITH NFS STORAGE
6.2. ADVANCED SCENARIO: CREATING A LARGE OVERCLOUD WITH CEPH STORAGE NODES

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION
7.1. CREATING THE OVERCLOUD TENANT NETWORK
7.2. CREATING THE OVERCLOUD EXTERNAL NETWORK
7.3. CREATING ADDITIONAL FLOATING IP NETWORKS
7.4. CREATING THE OVERCLOUD PROVIDER NETWORK
7.5. VALIDATING THE OVERCLOUD
7.6. MODIFYING THE OVERCLOUD ENVIRONMENT
7.7. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
7.8. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE
7.9. PROTECTING THE OVERCLOUD FROM REMOVAL
7.10. REMOVING THE OVERCLOUD

CHAPTER 8. SCALING THE OVERCLOUD
8.1. ADDING COMPUTE OR CEPH STORAGE NODES

5
5
6
6
7

8
8
8
9

10
13

15
15
15
15
16
16
17
19
20
21

22
22
23
27

29
29
30
30
31

32
32
44

76
76
76
77
77
78
80
81
81
82
83

84
84

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

8.2. REMOVING COMPUTE NODES
8.3. REPLACING COMPUTE NODES
8.4. REPLACING CONTROLLER NODES
8.5. REPLACING CEPH STORAGE NODES

CHAPTER 9. REBOOTING THE OVERCLOUD
9.1. REBOOTING THE DIRECTOR
9.2. REBOOTING CONTROLLER NODES
9.3. REBOOTING CEPH STORAGE NODES
9.4. REBOOTING COMPUTE NODES
9.5. REBOOTING OBJECT STORAGE NODES

CHAPTER 10. CREATING CUSTOM CONFIGURATION
10.1. CUSTOMIZING CONFIGURATION ON FIRST BOOT
10.2. CUSTOMIZING OVERCLOUD PRE-CONFIGURATION
10.3. CUSTOMIZING OVERCLOUD POST-CONFIGURATION
10.4. CUSTOMIZING PUPPET CONFIGURATION DATA
10.5. APPLYING CUSTOM PUPPET CONFIGURATION
10.6. USING CUSTOMIZED OVERCLOUD HEAT TEMPLATES

CHAPTER 11. UPDATING THE ENVIRONMENT
11.1. UPDATING DIRECTOR PACKAGES
11.2. UPDATING OVERCLOUD AND DISCOVERY IMAGES
11.3. UPDATING THE OVERCLOUD

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES
12.1. TROUBLESHOOTING NODE REGISTRATION
12.2. TROUBLESHOOTING HARDWARE INTROSPECTION
12.3. TROUBLESHOOTING OVERCLOUD CREATION
12.4. AVOID IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
12.5. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
12.6. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
12.7. TUNING THE UNDERCLOUD
12.8. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

APPENDIX A. COMPONENTS

APPENDIX B. SSL/TLS CERTIFICATE CONFIGURATION
CREATING A CERTIFICATE AUTHORITY
CREATING AN SSL/TLS CERTIFICATE
USING THE CERTIFICATE WITH THE UNDERCLOUD
USING THE CERTIFICATE WITH THE OVERCLOUD

APPENDIX C. POWER MANAGEMENT DRIVERS
C.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
C.2. INTEGRATED LIGHTS-OUT (ILO)
C.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
C.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
C.5. SSH AND VIRSH
C.6. FAKE PXE DRIVER

APPENDIX D. AUTOMATED HEALTH CHECK (AHC) TOOLS PARAMETERS
D.1. HARD DRIVE
D.2. SYSTEM
D.3. FIRMWARE

86
87
87

100

103
103
103
104
105
106

107
107
108
110
111
112
113

115
115
115
116

122
122
122
123
126
127
128
130
131

134

136
136
136
137
138

139
139
139
140
140
141
142

143
143
143
144

Director Installation and Usage

2

. .

. .

. .

. .

. .

. .

D.4. NETWORK
D.5. CPU
D.6. MEMORY
D.7. INFINIBAND

APPENDIX E. NETWORK INTERFACE PARAMETERS

APPENDIX F. NETWORK INTERFACE TEMPLATE EXAMPLES
F.1. CONFIGURING INTERFACES
F.2. CONFIGURING ROUTES AND DEFAULT ROUTES
F.3. USING THE NATIVE VLAN FOR FLOATING IPS
F.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
F.5. CONFIGURING JUMBO FRAMES

APPENDIX G. NETWORK ENVIRONMENT OPTIONS

APPENDIX H. BONDING OPTIONS

APPENDIX I. DEPLOYMENT PARAMETERS

APPENDIX J. REVISION HISTORY

144
145
146
147

149

152
152
152
153
154
154

156

158

160

164

Table of Contents

3

Director Installation and Usage

4

CHAPTER 1. INTRODUCTION
The Red Hat Enterprise Linux OpenStack Platform director is a toolset for installing and managing a
complete OpenStack environment. It is based primarily on the OpenStack project TripleO, which is an
abbreviation for "OpenStack-On-OpenStack". This project takes advantage of OpenStack components to
install a fully operational OpenStack environment. This includes new OpenStack components that
provision and control bare metal systems to use as OpenStack nodes. This provides a simple method for
installing a complete Red Hat Enterprise Linux OpenStack Platform environment that is both lean and
robust.

The Red Hat Enterprise Linux OpenStack Platform director uses two main concepts: an Undercloud and
an Overcloud. The Undercloud installs and configures the Overcloud. The next few sections outline the
concept of each.

Figure 1.1. Basic Layout of Undercloud and Overcloud

1.1. UNDERCLOUD

The Undercloud is the main director node. It is a single-system OpenStack installation that includes
components for provisioning and managing the OpenStack nodes that form your OpenStack environment
(the Overcloud). The components that form the Undercloud provide the following functions:

Environment planning - The Undercloud provides planning functions for users to assign Red Hat
Enterprise Linux OpenStack Platform roles, including Compute, Controller, and various storage
roles.

Bare metal system control - The Undercloud uses the Intelligent Platform Management Interface
(IPMI) of each node for power management control and a PXE-based service to discover
hardware attributes and install OpenStack to each node. This provides a method to provision
bare metal systems as OpenStack nodes.

Orchestration - The Undercloud provides and reads a set of YAML templates to create an
OpenStack environment.

The Red Hat Enterprise Linux OpenStack Platform director utilizes these Undercloud functions through
both a web-based graphical user interface and a terminal-based command line interface.

CHAPTER 1. INTRODUCTION

5

The Undercloud uses the following components:

OpenStack Dashboard (Horizon) - The web-based dashboard for the director.

OpenStack Bare Metal (Ironic) and OpenStack Compute (Nova) - Manages bare metal nodes.

OpenStack Networking (Neutron) and Open vSwitch- Controls networking for bare metal nodes.

OpenStack Image Server (Glance) - Stores images that are written to bare metal machines.

OpenStack Orchestration (Heat) and Puppet - Provides orchestration of nodes and configuration
of nodes after the director writes the Overcloud image to disk.

OpenStack Telemetry (Ceilometer) - For monitoring and data collection.

OpenStack Identity (Keystone) - Authentication for the director's components.

MariaDB - Database for the director.

RabbitMQ - Messaging queue for the director's components.

1.2. OVERCLOUD

The Overcloud is the resulting Red Hat Enterprise Linux OpenStack Platform environment created using
the Undercloud. This includes one or more of the following node types:

Controller - Nodes that provide administration, networking, and high availability for the
OpenStack environment. An ideal OpenStack environment recommends three of these nodes
together in a high availability cluster.

A default Controller node contains the following components: Horizon, Keystone, Nova API,
Neutron Server, Open vSwitch, Glance, Cinder Volume, Cinder API, Swift Storage, Swift Proxy,
Heat Engine, Heat API, Ceilometer, MariaDB, RabbitMQ. The Controller also uses Pacemaker
and Galera for high availability functions.

Compute - Nodes used to provide computing resources for the OpenStack environment. Add
more Compute nodes to scale your environment over time.

A default Compute node contains the following components: Nova Compute, Nova KVM,
Ceilometer Agent, Open vSwitch

Storage - Nodes that provide storage for the OpenStack environment. This includes nodes for:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). In addition, the director installs Ceph Monitor on to Controller
nodes in situations where it deploys Ceph Storage nodes.

Block storage (Cinder) - Used as external block storage for HA Controller nodes. This node
contains the following components: Cinder Volume, Ceilometer Agent, Open vSwitch.

Object storage (swift) - These nodes provide a external storage layer for Openstack Swift.
The Controller nodes access these nodes through the Swift proxy. This node contains the
following components: swift storage, ceilometer agent, Open vSwitch.

1.3. HIGH AVAILABILITY

Director Installation and Usage

6

High availability provides continuous operation to a system or components set through an extended
length of time. The Red Hat Enterprise Linux OpenStack Platform director provides high availability to an
OpenStack Platform environment through the use of a Controller node cluster. The director installs a set
of the same components on each Controller node and manages them as one whole service. Having a
cluster provides a fallback in case of operational failures on a single Controller node. This provides
OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all machines in a cluster.

HA Proxy - Provides load balancing and proxy services to the cluster.

Galera - Provides replication of the OpenStack Platform database across the cluster.

Memcached - Provides database caching.

NOTE

OpenStack Platform director automatically configures the bulk of high availability on
Controller nodes. However, the nodes require some manual configuration to enable
fencing and power management controls. This guide includes these instructions.

1.4. CEPH STORAGE

It is common for large organizations using OpenStack to serve thousands of clients or more. Each
OpenStack client with its own peculiar needs consumes block storage resources. Deploying Glance
(images), Cinder (volumes) and/or Nova (compute) on a single node becomes impossible to manage in
large deployments with thousands of clients or more. Scaling OpenStack externally resolves this
challenge.

However, it also makes it a practical requirement to virtualize the storage layer with a solution like Red
Hat Ceph Storage so you can scale the Red Hat Enterprise Linux OpenStack Platform storage layer
from tens of terabytes to petabytes, or even exabytes, of storage. Red Hat Ceph Storage provides this
storage virtualization layer with high availability and high performance while running on commodity
hardware. While virtualization might seem like it comes with a performance penalty, Ceph stripes block
device images as objects across the cluster. This means large Ceph Block Device images have better
performance than a standalone disk. Ceph Block devices also support caching, copy-on-write cloning,
and copy-on-read cloning for enhanced performance.

See Red Hat Ceph Storage for additional information about Red Hat Ceph Storage.

CHAPTER 1. INTRODUCTION

7

https://access.redhat.com/products/red-hat-ceph-storage

CHAPTER 2. REQUIREMENTS
This chapter outlines the main requirements for setting up an environment to provision Red Hat
Enterprise Linux OpenStack Platform using the director. This includes the requirements for setting up the
director, accessing it, and the hardware requirements for hosts that the director provisions for OpenStack
services.

2.1. ENVIRONMENT REQUIREMENTS

Minimum Requirements

1 host machine for the Red Hat Enterprise Linux OpenStack Platform director

1 host machine for a Red Hat Enterprise Linux OpenStack Platform Compute node

1 host machine for a Red Hat Enterprise Linux OpenStack Platform Controller node

Recommended Requirements

1 host machine for the Red Hat Enterprise Linux OpenStack Platform director

3 host machines for Red Hat Enterprise Linux OpenStack Platform Compute nodes

3 host machines for Red Hat Enterprise Linux OpenStack Platform Controller nodes in a cluster

3 host machines for Red Hat Ceph Storage nodes in a cluster

Note the following:

It is recommended to use bare metal systems for all nodes. At minimum, the Compute nodes
require bare metal systems.

All Overcloud bare metal systems require an Intelligent Platform Management Interface (IPMI).
This is because the director controls the power management.

2.2. UNDERCLOUD REQUIREMENTS

The Undercloud system hosting the director provides provisioning and management for all nodes in the
Overcloud.

An 8-core 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

A minimum of 16 GB of RAM.

A minimum of 40 GB of available disk space. Make sure to leave at least 10 GB free space
before attempting an Overcloud deployment or update. This free space accommodates image
conversion and caching during the node provisioning process.

A minimum of 2 x 1 Gbps Network Interface Cards. However, it is recommended to use a 10
Gbps interface for Provisioning network traffic, especially if provisioning a large number of nodes
in your Overcloud environment.

Red Hat Enterprise Linux 7.2 installed as the host operating system.

Director Installation and Usage

8

2.3. NETWORKING REQUIREMENTS

The Undercloud host requires at least two networks:

Provisioning Network - This is a private network the director uses to provision and manage the
Overcloud nodes. The Provisioning network provides DHCP and PXE boot functions to help
discover bare metal systems for use in the Overcloud. This network must use a native VLAN on
a trunked interface so that the director serves PXE boot and DHCP requests. This is also the
network you use to control power management through Intelligent Platform Management
Interface (IPMI) on all Overcloud nodes.

External Network - A separate network for remote connectivity to all nodes. This interface
connecting to this network requires a routable IP address, either defined statically or dynamically
through an external DHCP service.

This represents the minimum number of networks required. However, the director can isolate other Red
Hat Enterprise Linux OpenStack Platform network traffic into other networks. Red Hat Enterprise Linux
OpenStack Platform supports both physical interfaces and tagged VLANs for network isolation. For more
information on network isolation, see Section 4.2, “Planning Networks”.

Note the following:

All machines require at least two NICs. In a typical minimal configuration, use either:

One NIC for the Provisioning network and the other NIC for the External network.

One NIC for the Provisioning network on the native VLAN and the other NIC for tagged
VLANs that use subnets for the different Overcloud network types.

Additional physical NICs can be used for isolating individual networks, creating bonded
interfaces, or for delegating tagged VLAN traffic.

If using VLANs to isolate your network traffic types, use a switch that supports 802.1Q standards
to provide tagged VLANs.

During the Overcloud creation, we refer to NICs using a single name across all Overcloud
machines. Ideally, you should use the same NIC on each system for each respective network to
avoid confusion. For example, use the primary NIC for the Provisioning network and the
secondary NIC for the OpenStack services.

Make sure the Provisioning network NIC is not the same NIC used for remote connectivity on the
director machine. The director installation creates a bridge using the Provisioning NIC, which
drops any remote connections. Use the External NIC for remote connections to the director
system.

The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

Include at least one IP address per node connected to the Provisioning network.

If planning a high availability configuration, include an extra IP address for the virtual IP of
the cluster.

Include additional IP addresses in the range for scaling the environment.

CHAPTER 2. REQUIREMENTS

9

NOTE

Duplicate IP addresses should be avoided on the Provisioning network. For more
information, see Section 12.4, “Avoid IP address conflicts on the Provisioning
network”.

NOTE

For more information on planning your IP address usage, for example, for
storage, provider, and tenant networks, see the Networking Guide.

Set all Overcloud systems to PXE boot off the Provisioning NIC and disable PXE boot on the
External NIC and any other NICs on the system. Also ensure PXE boot for Provisioning NIC is at
the top of the boot order, ahead of hard disks and CD/DVD drives.

All Overcloud bare metal systems require an Intelligent Platform Management Interface (IPMI)
connected to the Provisioning network. The director controls the power management of each
node.

Make a note of the following details for each Overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information is useful to have when setting up the Overcloud nodes.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
may be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

IMPORTANT

Your OpenStack Platform implementation is only as secure as its environment. Follow
good security principles in your networking environment to ensure that network access is
properly minimized. For example:

Use network segmentation to mitigate network movement and isolate sensitive
data; a flat network is much less secure.

Restrict services access and ports to a minimum.

Ensure proper firewall rules and password usage.

Ensure that SELinux is enabled.

For details on securing your system, see:

Red Hat Enterprise Linux 7 Security Guide

Red Hat Enterprise Linux 7 SELinux User's and Administrator's Guide

2.4. OVERCLOUD REQUIREMENTS

The following sections detail the requirements for individual systems and nodes in the Overcloud
installation.

Director Installation and Usage

10

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/networking-guide/#sec-planning-ip
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

NOTE

Booting an overcloud node from the SAN (FC-AL, FCoE, iSCSI) is not yet supported.

2.4.1. Compute Node Requirements

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes must support hardware virtualization. Compute nodes must also have enough memory and disk
space to support the requirements of the virtual machine instances they host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the AMD-V or Intel
VT hardware virtualization extensions enabled. It is recommended this processor has a minimum of 4
cores.

Memory

A minimum of 6 GB of RAM.

Add additional RAM to this requirement based on the amount of memory that you intend to make
available to virtual machine instances.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Intelligent Platform Management Interface (IPMI)

Each Compute node requires IPMI functionality on the server's motherboard.

2.4.2. Controller Node Requirements

Controller nodes are responsible for hosting the core services in a RHEL OpenStack Platform
environment, such as the Horizon dashboard, the back-end database server, Keystone authentication,
and High Availability services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

A minimum of 6 GB of RAM.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

CHAPTER 2. REQUIREMENTS

11

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Intelligent Platform Management Interface (IPMI)

Each Controller node requires IPMI functionality on the server's motherboard.

2.4.3. Ceph Storage Node Requirements

Ceph Storage nodes are responsible for providing object storage in a RHEL OpenStack Platform
environment.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space.

Disk Space

Storage requirements depends on the amount of memory. Ideally, use at minimum 1 GB of memory
per 1 TB of hard disk space.

Disk Layout

The recommended Red Hat Ceph Storage node configuration requires a disk layout similar to the
following:

/dev/sda - The root disk. The director copies the main Overcloud image to the disk.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a
solid state drive (SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

This guide contains the necessary instructions to map your Ceph Storage disks into the director.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Intelligent Platform Management Interface (IPMI)

Each Ceph node requires IPMI functionality on the server's motherboard.

Director Installation and Usage

12

IMPORTANT

The director does not create partitions on the journal disk. You must manually create
these journal partitions before the Director can deploy the Ceph Storage nodes.

The Ceph Storage OSDs and journals partitions require GPT disk labels, which you also
configure prior to customization. For example, use the following command on the potential
Ceph Storage host to create a GPT disk label for a disk or partition:

parted [device] mklabel gpt

2.5. REPOSITORY REQUIREMENTS

Both the Undercloud and Overcloud require access to Red Hat repositories either through the Red Hat
Content Delivery Network or through Red Hat Satellite 5 or 6. If using a Red Hat Satellite Server,
synchronize the repositories necessary to your OpenStack Platform environment. Use the following list of
CDN channel names as a guide:

Table 2.1. OpenStack Platform Repositories

Name Repository Description of Requirement

Red Hat Enterprise Linux 7 Server
(RPMs)

rhel-7-server-rpms Base operating system repository.

Red Hat Enterprise Linux 7 Server
- Extras (RPMs)

rhel-7-server-extras-
rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 7 Server
- RH Common (RPMs)

rhel-7-server-rh-
common-rpms

Contains tools for deploying and
configuring Red Hat OpenStack
Platform.

Red Hat Satellite Tools for RHEL 7
Server RPMs x86_64

rhel-7-server-
satellite-tools-6.1-
rpms

Tools for managing hosts with
Red Hat Satellite 6.

Red Hat Enterprise Linux High
Availability (for RHEL 7 Server)
(RPMs)

rhel-ha-for-rhel-7-
server-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Enterprise Linux
OpenStack Platform 7.0 director
for RHEL 7 (RPMs)

rhel-7-server-
openstack-7.0-director-
rpms

Red Hat OpenStack Platform
director repository.

Red Hat Enterprise Linux
OpenStack Platform 7.0 for RHEL
7 (RPMs)

rhel-7-server-
openstack-7.0-rpms

Core Red Hat OpenStack Platform
repository.

Red Hat Ceph Storage OSD 1.3
for Red Hat Enterprise Linux 7
Server (RPMs)

rhel-7-server-rhceph-
1.3-osd-rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Object Storage daemon. Installed
on Ceph Storage nodes.

CHAPTER 2. REQUIREMENTS

13

Red Hat Ceph Storage MON 1.3
for Red Hat Enterprise Linux 7
Server (RPMs)

rhel-7-server-rhceph-
1.3-mon-rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Monitor daemon. Installed on
Controller nodes in OpenStack
environments using Ceph Storage
nodes.

Name Repository Description of Requirement

Director Installation and Usage

14

CHAPTER 3. INSTALLING THE UNDERCLOUD
The first step to creating your Red Hat Enterprise Linux OpenStack Platform environment is to install the
director on the Undercloud system. This involves a few prerequisite steps to enable the necessary
subscriptions and repositories.

3.1. CREATING A DIRECTOR INSTALLATION USER

The director installation process requires a non-root user to execute commands. Use the following
commands to create the user named stack and set a password:

[root@director ~]# useradd stack
[root@director ~]# passwd stack # specify a password

Disable password requirements for this user when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

Continue the director installation as the stack user.

3.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES

The director uses system images and Heat templates to create the Overcloud environment. To keep
these files organized, we recommend creating directories for images and templates:

$ mkdir ~/images
$ mkdir ~/templates

Other sections in this guide use these two directories to store certain files.

3.3. SETTING THE HOSTNAME FOR THE SYSTEM

The director requires a fully qualified domain name for its installation and configuration process. This
means you must set for the hostname for your director's host. Check the hostname of your host:

$ hostname # Checks the base hostname
$ hostname -f # Checks the long hostname (FQDN)

If either commands do not report the correct hostname or report an error, use hostnamectl to set a
hostname:

$ sudo hostnamectl set-hostname manager.example.com
$ sudo hostnamectl set-hostname --transient manager.example.com

CHAPTER 3. INSTALLING THE UNDERCLOUD

15

The director also requires an entry for the system's hostname and base name in /etc/hosts. For
example, if the system is named manager.example.com, /etc/hosts requires an entry like:

127.0.0.1 manager.example.com manager localhost localhost.localdomain
localhost4 localhost4.localdomain4

3.4. REGISTERING YOUR SYSTEM

To install the Red Hat OpenStack Platform director, first register the host system using Red Hat
Subscription Manager, and subscribe to the required channels.

Procedure 3.1. Subscribing to the Required Channels Using Subscription Manager

1. Register your system with the Content Delivery Network, entering your Customer Portal user
name and password when prompted:

$ sudo subscription-manager register

2. Find the entitlement pool for the Red Hat Enterprise Linux OpenStack Platform director.

$ sudo subscription-manager list --available --all

3. Use the pool ID located in the previous step to attach the Red Hat Enterprise Linux OpenStack
Platform 7 entitlements:

$ sudo subscription-manager attach --pool=pool_id

4. Disable all default repositories then enable the required Red Hat Enterprise Linux repositories:

$ sudo subscription-manager repos --disable=*
$ sudo subscription-manager repos --enable=rhel-7-server-rpms --
enable=rhel-7-server-extras-rpms --enable=rhel-7-server-openstack-
7.0-rpms --enable=rhel-7-server-openstack-7.0-director-rpms --enable
rhel-7-server-rh-common-rpms

These repositories contain packages the director installation requires.

IMPORTANT

Only enable the repositories listed above. Additional repositories can cause
package and software conflicts. Do not enable any additional repositories.

5. Perform an update on your system to make sure you have the latest base system packages:

$ sudo yum update -y
$ sudo reboot

The system is now ready for the director installation.

3.5. INSTALLING THE DIRECTOR PACKAGES

Director Installation and Usage

16

Use the following command to install the required command line tools for director installation and
configuration:

[stack@director ~]$ sudo yum install -y python-rdomanager-oscplugin

This installs all packages required for the director installation.

3.6. CONFIGURING THE DIRECTOR

The director installation process requires certain settings to determine your network configurations. The
settings are stored in a template located in the stack user's home directory as undercloud.conf.

Red Hat provides a basic template to help determine the required settings for your installation. Copy this
template to the stack user's home directory:

$ cp /usr/share/instack-undercloud/undercloud.conf.sample
~/undercloud.conf

The basic template contains the following parameters:

local_ip

The IP address defined for the director's Provisioning NIC. This is also the IP address the director
uses for its DHCP and PXE boot services. Leave this value as the default 192.0.2.1/24 unless
your are using a different subnet for the Provisioning network i.e. it conflicts with an existing IP
address or subnet in your environment.

undercloud_public_vip

The IP address defined for the director's Public API. Use an IP address on the Provisioning network
that does not conflict with any other IP addresses or address ranges. For example, 192.0.2.2. The
director configuration attaches this IP address to its software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_admin_vip

The IP address defined for the director's Admin API. Use an IP address on the Provisioning network
that does not conflict with any other IP addresses or address ranges. For example, 192.0.2.3. The
director configuration attaches this IP address to its software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL communication. Ideally, you obtain
this certificate from a trusted certificate authority. Otherwise generate your own self-signed certificate
using the guidelines in Appendix B, SSL/TLS Certificate Configuration. These guidelines also contain
instructions on setting the SELinux context for your certificate, whether self-signed or from an
authority.

local_interface

The chosen interface for the director's Provisioning NIC. This is also the device the director uses for
its DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

CHAPTER 3. INSTALLING THE UNDERCLOUD

17

state UP qlen 1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic
eth0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state
DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently
not configured. In this case, set the local_interface to eth1. The configuration script attaches
this interface to a custom bridge defined with the discovery_interface parameter.

masquerade_network

Defines the network to masquerade for external access. This provides the Provisioning network with
a degree of network address translation (NAT) so that it has external access through the director.
Leave this as the default (192.0.2.0/24) unless you are using a different subnet for the
Provisioning network.

dhcp_start, dhcp_end

The start and end of the DHCP allocation range for Overcloud nodes. Ensure this range contains
enough IP addresses to allocate to your nodes.

network_cidr

The network that the director uses to manage Overcloud instances. This is the Provisioning network.
Leave this as the default 192.0.2.0/24 unless you are using a different subnet for the Provisioning
network.

network_gateway

The gateway for the Overcloud instances. This is the discovery host, which forwards traffic to the
External network. Leave this as the default 192.0.2.1 unless you are either using a different IP
address for the director or want to directly use an external gateway.

NOTE

The director's configuration script also automatically enables IP forwarding using the
relevant sysctl kernel parameter.

discovery_interface

The bridge the director uses for node discovery. This is custom bridge that the director configuration
creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default br-ctlplane.

discovery_iprange

A range of IP address that the director's discovery service uses during the PXE boot and provisioning
process. Use comma-separated values to define the start and end of this range. For example,
192.0.2.100,192.0.2.120. Make sure this range contains enough IP addresses for your nodes
and does not conflict with the range for dhcp_start and dhcp_end.

Director Installation and Usage

18

discovery_runbench

Runs a set of benchmarks during node discovery. Set to 1 to enable. This option is necessary if you
aim to perform benchmark analysis when inspecting the hardware of registered nodes in the
Advanced Scenario. See Section 6.2.3, “Automatically Tagging Nodes with Automated Health Check
(AHC) Tools” for more details.

undercloud_debug

Sets the log level of Undercloud services to DEBUG. Set this value to true to enable.

undercloud_db_password, undercloud_admin_token, undercloud_admin_password,
undercloud_glance_password, etc

The remaining parameters are the access details for all of the director's services. No change is
required for the values. The director's configuration script automatically generates these values if
blank in undercloud.conf. You can retrieve all values after the configuration script completes.

IMPORTANT

The configuration file examples for these parameters use <None> as a placeholder
value. Setting these values to <None> leads to a deployment error.

Modify the values for these parameters to suit your network. When complete, save the file and run the
following command:

$ openstack undercloud install

This launches the director's configuration script. The director installs additional packages and configures
its services to suit the settings in the undercloud.conf. This script takes several minutes to complete.

The configuration script generates two files when complete:

undercloud-passwords.conf - A list of all passwords for the director's services.

stackrc - A set of initialization variables to help you access the director's command line tools.

To initialize the stack user to use the command line tools, run the following command:

$ source ~/stackrc

You can now use the director's command line tools.

3.7. OBTAINING IMAGES FOR OVERCLOUD NODES

The director requires several disk images for provisioning Overcloud nodes. This includes:

A discovery kernel and ramdisk - Used for bare metal system discovery over PXE boot.

A deployment kernel and ramdisk - Used for system provisioning and deployment.

An Overcloud kernel, ramdisk, and full image - A base Overcloud system that is written to the
node's hard disk.

CHAPTER 3. INSTALLING THE UNDERCLOUD

19

Obtain these images from the Red Hat Enterprise Linux OpenStack Platform downloads page on the Red
Hat Customer Portal at https://access.redhat.com/downloads/content/191/ver=7/rhel---
7/7/x86_64/product-downloads. This location on the Customer Portal contains the images in TAR
archives.

Download these image archives to the images directory on the stack user's home on the directory host
(/home/stack/images/) and extract the images from the archives:

$ cd ~/images
$ for tarfile in *.tar; do tar -xf $tarfile; done

Run the following command to import these images into the director:

$ openstack overcloud image upload --image-path /home/stack/images/

This uploads the following images into the director: bm-deploy-kernel, bm-deploy-ramdisk,
overcloud-full, overcloud-full-initrd, overcloud-full-vmlinuz. These are the images
for deployment and the Overcloud. The script also installs the discovery images on the director's PXE
server.

View a list of the images in the CLI using the following command:

$ openstack image list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
765a46af-4417-4592-91e5-a300ead3faf6	bm-deploy-ramdisk
09b40e3d-0382-4925-a356-3a4b4f36b514	bm-deploy-kernel
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

This list will not show the discovery PXE images (discovery-ramdisk.*). The director copies these
files to /httpboot.

[stack@host1 ~]$ ls -l /httpboot
total 151636
-rw-r--r--. 1 ironic ironic 269 Sep 19 02:43 boot.ipxe
-rw-r--r--. 1 root root 252 Sep 10 15:35 discoverd.ipxe
-rwxr-xr-x. 1 root root 5027584 Sep 10 16:32 discovery.kernel
-rw-r--r--. 1 root root 150230861 Sep 10 16:32 discovery.ramdisk
drwxr-xr-x. 2 ironic ironic 4096 Sep 19 02:45 pxelinux.cfg

NOTE

Ironic manages the boot.ipxe file and the pxelinux.cfg directory in /httpboot
during introspection and provisioning. These files might not appear when you view this
directory.

3.8. SETTING A NAMESERVER ON THE UNDERCLOUD'S NEUTRON
SUBNET

Director Installation and Usage

20

https://access.redhat.com/downloads/content/191/ver=7/rhel---7/7/x86_64/product-downloads

Overcloud nodes require a nameserver so that they can resolve hostnames through DNS. For a
standard Overcloud without network isolation, the nameserver is defined using the Undercloud's
neutron subnet. Use the following commands to define the nameserver for the environment:

$ neutron subnet-list
$ neutron subnet-update [subnet-uuid] --dns-nameserver [nameserver-ip]

View the subnet to verify the nameserver:

$ neutron subnet-show [subnet-uuid]
+-------------------+---+
| Field | Value |
+-------------------+---+
...	
dns_nameservers	8.8.8.8
...	
+-------------------+---+

IMPORTANT

If you aim to isolate service traffic on to separate networks, the Overcloud nodes use the
DnsServer parameter in your network environment templates. This is covered in the
Advanced Overcloud scenario in Section 6.2.6.2, “Creating an Advanced Overcloud
Network Environment File”.

3.9. COMPLETING THE UNDERCLOUD CONFIGURATION

This completes the Undercloud configuration. The next few chapter discuss planning and creating your
Overcloud.

CHAPTER 3. INSTALLING THE UNDERCLOUD

21

CHAPTER 4. PLANNING YOUR OVERCLOUD
The following section provides some guidelines on planning various aspects of your Overcloud
environment. This includes defining node roles, planning your network topology, and storage.

4.1. PLANNING NODE DEPLOYMENT ROLES

The director provides multiple default node types for building your Overcloud. These node types are:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services.

NOTE

Environments with one node can be used for testing purposes. Environments with two
nodes or more than three nodes are not supported.

Compute

A host that acts as a hypervisor and provides the processing capabilities required for running virtual
machines in the environment. A basic Red Hat Enterprise Linux OpenStack Platform environment
requires at least one Compute node.

Ceph-Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Cinder-Storage

A host that provides external block storage for OpenStack's Cinder service. This deployment role is
optional.

Swift-Storage

A host that provides external object storage for OpenStack's Swift service. This deployment role is
optional.

This guide provides multiple scenarios based on the desired environment you want. The following table
defines the node types for each scenario.

Table 4.1. Node Deployment Roles for Scenarios

Controll
er

Comput
e

Ceph-
Storage

Swift-
Storage

Cinder-
Storage

Total

Basic Environment 1 1 - - - 2

Advanced Environment with Ceph
Storage

3 3 3 - - 9

Director Installation and Usage

22

4.2. PLANNING NETWORKS

It is important to plan your environment's networking topology and subnets so that you can properly map
roles and services to correctly communicate with each other. Red Hat Enterprise Linux OpenStack
Platform 7 uses the Neutron networking service, which operates autonomously and manages software-
based networks, static and floating IP addresses, and DHCP. The director deploys this service on each
Controller node in an Overcloud environment.

Red Hat Enterprise Linux OpenStack Platform maps different services to separate network traffic types
assigned to the various subnets in your environments. These network traffic types include:

Table 4.2. Network Type Assignments

Network Type Description Used By

IPMI Network used for power
management of nodes. This
network is predefined before the
installation of the Undercloud.

All nodes

Provisioning The director uses this network
traffic type to deploy new nodes
over PXE boot and orchestrate
the installation of OpenStack
Platform on the Overcloud bare
metal servers. This network is
predefined before the installation
of the Undercloud.

All nodes

Internal API The Internal API network is used
for communication between the
OpenStack services via API
communication, RPC messages,
and database communication.

Controller, Compute, Cinder
Storage, Swift Storage

Tenant Neutron provides each tenant with
their own networks using either
VLAN segregation, where each
tenant network is a network
VLAN, or tunneling through
VXLAN or GRE. Network traffic is
isolated within each tenant
network. Each tenant network has
an IP subnet associated with it,
and multiple tenant networks may
use the same addresses.

Controller, Compute

Storage Block Storage, NFS, iSCSI, and
others. Ideally, this would be
isolated to an entirely separate
switch fabric for performance
reasons.

All nodes

CHAPTER 4. PLANNING YOUR OVERCLOUD

23

Storage Management OpenStack Object Storage (swift)
uses this network to synchronize
data objects between participating
replica nodes. The proxy service
acts as the intermediary interface
between user requests and the
underlying storage layer. The
proxy receives incoming requests
and locates the necessary replica
to retrieve the requested data.
Services that use a Ceph backend
connect over the Storage
Management network, since they
do not interact with Ceph directly
but rather use the frontend
service. Note that the RBD driver
is an exception; this traffic
connects directly to Ceph.

Controller, Ceph Storage, Cinder
Storage, Swift Storage

External Hosts the OpenStack Dashboard
(horizon) for graphical system
management, Public APIs for
OpenStack services, and performs
SNAT for incoming traffic destined
for instances. If the external
network uses private IP
addresses (as per RFC-1918),
then further NAT must be
performed for traffic originating
from the internet.

Controller

Floating IP Allows incoming traffic to reach
instances using 1-to-1 IP address
mapping between the floating IP
address, and the IP address
actually assigned to the instance
in the tenant network. If hosting
the Floating IPs on a VLAN
separate from External, trunk the
Floating IP VLAN to the Controller
nodes and add the VLAN through
Neutron after Overcloud creation.
This provides a means to create
multiple Floating IP networks
attached to multiple bridges. The
VLANs are trunked but not
configured as interfaces. Instead,
Neutron creates an OVS port with
the VLAN segmentation ID on the
chosen bridge for each Floating IP
network.

Controller

Network Type Description Used By

In a typical Red Hat Enterprise Linux OpenStack Platform installation, the number of network types often
exceeds the number of physical network links. In order to connect all the networks to the proper hosts,
the Overcloud uses VLAN tagging to deliver more than one network per interface. Most of the networks
are isolated subnets but some require a Layer 3 gateway to provide routing for Internet or infrastructure
network connectivity.

Director Installation and Usage

24

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN) even
if you intend to use a neutron VLAN mode (with tunneling disabled) at deployment time.
This requires minor customization at deployment time and leaves the option available to
use tunnel networks as utility networks or virtualization networks in the future. You still
create Tenant networks using VLANs, but you can also create VXLAN tunnels for special-
use networks without consuming tenant VLANs. It is possible to add VXLAN capability to
a deployment with a Tenant VLAN, but it is not possible to add a Tenant VLAN to an
existing Overcloud without disruption.

The director provides a method for mapping five of these traffic types to certain subnets or VLANs.
These traffic types include:

Internal API

Storage

Storage Management

Tenant Networks

External

Any unassigned networks are automatically assigned to the same subnet as the Provisioning network.

The diagram below provides an example of a network topology where the networks are isolated on
separate VLANs. Each Overcloud node uses two interfaces (nic2 and nic3) in a bond to deliver these
networks over their respective VLANs. Meanwhile, each Overcloud node communicates with the
Undercloud over the Provisioning network through a native VLAN using nic1.

CHAPTER 4. PLANNING YOUR OVERCLOUD

25

Figure 4.1. Example VLAN Topology using Bonded Interfaces

This guide provides multiple scenarios based on the desired environment you want. The following table
defines the network traffic mappings for each scenario:

Table 4.3. Network Mappings

Mappings Total
Interfaces

Total VLANs

Basic
Environment

Network 1 - Provisioning, Internal API, Storage,
Storage Management, Tenant Networks

Network 2 - External, Floating IP (mapped after
Overcloud creation)

2 2

Director Installation and Usage

26

Advanced
Environment
with Ceph
Storage

Network 1 - Provisioning

Network 2 - Internal API

Network 3 - Tenant Networks

Network 4 - Storage

Network 5 - Storage Management

Network 6 - External, Floating IP (mapped after
Overcloud creation)

3 (includes 2
bonded
interfaces)

6

Mappings Total
Interfaces

Total VLANs

4.3. PLANNING STORAGE

The director provides different storage options for the Overcloud environment. This includes:

Ceph Storage Nodes

The director creates a set of scalable storage nodes using Red Hat Ceph Storage. The Overcloud
uses these nodes for:

Images - OpenStack Glance manages images for VMs. Images are immutable. OpenStack
treats images as binary blobs and downloads them accordingly. You can use OpenStack
Glance to store images in a Ceph Block Device.

Volumes - OpenStack Cinder volumes are block devices. OpenStack uses volumes to boot
VMs, or to attach volumes to running VMs. OpenStack manages volumes using Cinder
services. You can use Cinder to boot a VM using a copy-on-write clone of an image.

Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with Nova, its disk appears as a file on the filesystem of the hypervisor
(usually under /var/lib/nova/instances/<uuid>/). It is possible to boot every virtual
machine inside Ceph directly without using Cinder, which is advantageous because it allows
you to perform maintenance operations easily with the live-migration process. Additionally, if
your hypervisor dies it is also convenient to trigger nova evacuate and run the virtual
machine elsewhere almost seamlessly.

IMPORTANT

If you want to boot virtual machines in Ceph (ephemeral backend or boot from
volume), the glance image format must be RAW format. Ceph does not support other
image formats such as QCOW2 or VMDK for hosting a virtual machine disk.

See Red Hat Ceph Storage Architecture Guide for additional information.

Cinder Storage Nodes

The director creates an external block storage node. This is useful in situations where you need to
scale or replace controller nodes in your Overcloud environment but need to retain block storage
outside of a high availability cluster.

CHAPTER 4. PLANNING YOUR OVERCLOUD

27

https://access.redhat.com/beta/documentation/en/red-hat-ceph-storage-13-red-hat-ceph-architecture/red-hat-ceph-architecture

Swift Storage Nodes

The director creates an external object storage node. This is useful in situations where you need to
scale or replace controller nodes in your Overcloud environment but need to retain object storage
outside of a high availability cluster.

Director Installation and Usage

28

CHAPTER 5. UNDERSTANDING HEAT TEMPLATES
Some of the scenarios in this guide use custom Heat templates to define certain aspects of the
Overcloud, such as network isolation and network interface configuration. This section provides a basic
introduction on Heat templates so that you can understand the structure and format of these templates in
the context of the Red Hat Enterprise Linux OpenStack Platform director.

5.1. HEAT TEMPLATES

The director uses Heat Orchestration Templates (HOT) as a template format for its Overcloud
deployment plan. Templates in HOT format are mostly expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that Heat creates and the
configuration per resources. Resources are objects in OpenStack and can include compute resources,
network configuration, security groups, scaling rules, and custom resources.

The structure of a Heat template has three main sections:

Parameters - These are settings passed to Heat, which provides a way to customize a stack,
and any default values for parameters without passed values. These are defined in the
parameters section of a template.

Resources - These are the specific objects to create and configure as part of a stack.
OpenStack contains a set of core resources that span across all components. These are defined
in the resources section of a template.

Output - These are values passed from Heat after the stack's creation. You can access these
values either through the Heat API or client tools. These are defined in the output section of a
template.

Here is an example of a basic Heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
 key_name:
 type: string
 default: lars
 description: Name of an existing key pair to use for the instance
 flavor:
 type: string
 description: Instance type for the instance to be created
 default: m1.small
 image:
 type: string
 default: cirros
 description: ID or name of the image to use for the instance

resources:
 my_instance:
 type: OS::Nova::Server
 properties:
 name: My Cirros Instance
 image: { get_param: image }

CHAPTER 5. UNDERSTANDING HEAT TEMPLATES

29

 flavor: { get_param: flavor }
 key_name: { get_param: key_name }

output:
 instance_name:
 description: Get the instance's name
 value: { get_attr: [my_instance, name] }

This template uses the resource type type: OS::Nova::Server to create an instance called
my_instance with a particular flavor, image, and key. The stack can return the value of
instance_name, which is My Cirros Instance.

5.2. ENVIRONMENT FILES

An environment file is a special type of template that provides customization for your Heat templates.
This includes three key parts:

Parameters - These are common settings you apply to a template's parameters. These are
defined in the parameters section of an environment file.

Parameter Defaults - These parameters modify the default values for parameters in your
templates. These are defined in the parameter_defaults section of an environment file.

Resource Registry - This section defines custom resource names, link to other Heat templates.
This essentially provides a method to create custom resources that do not exist within the core
resource collection. These are defined in the resource_registry section of an environment
file.

Here is an example of a basic environment file:

resource_registry:
 OS::Nova::Server::MyServer: myserver.yaml

parameter_defaults:
 NetworkName: my_network

parameters:
 MyIP: 192.168.0.1

This creates a new resource type called OS::Nova::Server::MyServer. The myserver.yaml file
is a Heat template file that provides an implementation for this resource type that overrides any built-in
ones.

5.3. DEFAULT DIRECTOR PLANS

The director contains a Heat template collection within its database. This is stored as a plan. To view a
list of plans in the director:

$ openstack management plan list

This shows one plan: overcloud, which is our Overcloud configuration. To view more details in the
Overcloud plan:

$ openstack management plan show [UUID]

Director Installation and Usage

30

You can also download and view the Heat template files for the Overcloud plan. Use the following
commands to download the Heat templates from the plan into a directory in the stack users
templates directory.

$ mkdir ~/templates/overcloud-plan
$ openstack management plan download [UUID] -O ~/templates/overcloud-plan/

This collection contains the main Heat template (plan.yaml) and an environment file
(environment.yaml). The template collection also contains various directories and template files
registered as resources in the environment file.

This plan-based template is used to create the Overcloud in the Test Overcloud Scenario.

5.4. DEFAULT DIRECTOR TEMPLATES

The director also contains an advanced Heat template collection for the Overcloud. This collection is
stored in /usr/share/openstack-tripleo-heat-templates.

There are many Heat templates and environment files in this collection. However, the three main files to
note in this template collection:

overcloud-without-mergepy.yaml - This is the main template file used to create the
Overcloud environment.

overcloud-resource-registry-puppet.yaml - This is the main environment file used to
create the Overcloud environment. It provides a set of configurations for Puppet modules stored
on the Overcloud image. After the director writes the Overcloud image to each node, Heat starts
the Puppet configuration for each node using the resources registered in this environment file.

overcloud-resource-registry.yaml - This is a standard environment file used to create
the Overcloud environment. The overcloud-resource-registry-puppet.yaml is based
on this file. This file is used for a customized configuration of your environment.

The Basic and Advanced Overcloud scenarios use this template collection. Both use the overcloud-
without-mergepy.yaml template and the overcloud-resource-registry-puppet.yaml
environment file to configure the Overcloud image for each node. We will also create an environment file
to configure network isolation for both the Basic and Advanced Scenarios.

CHAPTER 5. UNDERSTANDING HEAT TEMPLATES

31

CHAPTER 6. INSTALLING THE OVERCLOUD
Our Undercloud is now installed with the Red Hat Enterprise Linux OpenStack Platform director
configured. In this chapter, we use the director to create our Overcloud environment. To help users at
various levels, we provide two different installation scenarios to create an Overcloud. Each scenario
varies in complexity and topics.

Table 6.1. Scenario Overview

Scenario Level Topics

Basic Overcloud Medium CLI tool usage, node registration,
manual node tagging, basic
network isolation, plan-based
Overcloud creation

Advanced Overcloud High CLI tool usage, node registration,
automatic node tagging based on
hardware, Ceph Storage setup,
advanced network isolation,
Overcloud creation, high
availability fencing configuration

6.1. BASIC SCENARIO: CREATING A SMALL OVERCLOUD WITH NFS
STORAGE

This scenario creates a small enterprise-level OpenStack Platform environment. This scenario consists
of two nodes in the Overcloud: one Controller node and one Compute node. Both machines are bare
metal systems using IPMI for power management. This scenario focuses on the command line tools to
demonstrate the director's ability to create a small production-level Red Hat Enterprise Linux OpenStack
Platform environment that can scale Compute nodes in the future.

Workflow

1. Create a node definition template and register blank nodes in the director.

2. Inspect hardware of all nodes.

3. Manually tag nodes into roles.

4. Create flavors and tag them into roles.

5. Create Heat templates to isolate the External network.

6. Create the Overcloud environment using the default Heat template collection and the additional
network isolation templates.

Requirements

The director node created in Chapter 3, Installing the Undercloud

Two bare metal machines. These machines must comply with the requirements set for the
Controller and Compute nodes. For these requirements, see:

Director Installation and Usage

32

Section 2.4.2, “Controller Node Requirements”

Section 2.4.1, “Compute Node Requirements”

These nodes do not require an operating system because the director copies a Red Hat
Enterprise Linux 7 image to each node.

One network connection for our Provisioning network, which is configured as a native VLAN. All
nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”. For this example, we use 192.0.2.0/24 as the Provisioning subnet
with the following IP address assignments:

Table 6.2. Provisioning Network IP Assignments

Node Name IP Address MAC Address IPMI IP Address

Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller DHCP defined bb:bb:bb:bb:bb:bb 192.0.2.205

Compute DHCP defined cc:cc:cc:cc:cc:cc 192.0.2.206

One network connection for our External network. All Controller nodes must connect to this
network. For this example, we use 10.1.1.0/24 for the External network.

All other network types use the Provisioning network for OpenStack services

This scenario also uses an NFS share on a separate server on the Provisioning network. The IP
Address for this server is 192.0.2.230.

6.1.1. Registering Nodes for the Basic Overcloud

In this section, we create a node definition template. This file (instackenv.json) is a JSON format file
and contains the hardware and power management details for our two nodes.

This template uses the following attributes:

mac

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

pm_type

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool).

pm_user, pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

cpu

CHAPTER 6. INSTALLING THE OVERCLOUD

33

The number of CPUs on the node.

memory

The amount of memory in MB.

disk

The size of the hard disk in GB.

arch

The system architecture.

For example:

{
 "nodes":[
 {
 "mac":[
 "bb:bb:bb:bb:bb:bb"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.205"
 },
 {
 "mac":[
 "cc:cc:cc:cc:cc:cc"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.206"
 }
]
}

NOTE

For more supported power management types and their options, see Appendix C, Power
Management Drivers.

After creating the template, save the file to the stack user's home directory
(/home/stack/instackenv.json), then import it into the director. Use the following command to
accomplish this:

Director Installation and Usage

34

$ openstack baremetal import --json ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:

$ openstack baremetal configure boot

The nodes are now registered and configured in the director. View a list of these nodes in the CLI using
the following command:

$ openstack baremetal list

6.1.2. Inspecting the Hardware of Nodes

After registering the nodes, we inspect the hardware attribute of each node. Run the following command
to inspect the hardware attributes of each node:

$ openstack baremetal introspection bulk start

Monitor the progress of the introspection using the following command in a separate terminal window:

$ sudo journalctl -l -u openstack-ironic-discoverd -u openstack-ironic-
discoverd-dnsmasq -u openstack-ironic-conductor -f

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

Alternatively, perform a single introspection on each node individually. Set the node to maintenance
mode, perform the introspection, then revert the node out of maintenance mode:

$ ironic node-set-maintenance [NODE UUID] true
$ openstack baremetal introspection start [NODE UUID]
$ ironic node-set-maintenance [NODE UUID] false

6.1.3. Manually Tagging the Nodes

After registering and inspecting the hardware of each node, we tag them into specific profiles. These
profile tags match our nodes to flavors, and in turn the flavors are assigned to a deployment role. For the
Basic Deployment scenario, we tag them manually since there are only two nodes. For a larger number
of nodes, use the Automated Health Check (AHC) Tools in the Advanced Deployment Scenario. See
Section 6.2.3, “Automatically Tagging Nodes with Automated Health Check (AHC) Tools” for more
details about the Automated Health Check (AHC) Tools.

To manually tag a node to a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag our two nodes to use a controller profile and a compute
profile respectively, use the following commands:

$ ironic node-update 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13 add

CHAPTER 6. INSTALLING THE OVERCLOUD

35

properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 add
properties/capabilities='profile:control,boot_option:local'

The addition of the profile:compute and profile:control options tag the two nodes into each
respective profiles.

These commands also set the boot_option:local parameter, which defines the boot mode for each
node.

IMPORTANT

The director currently does not support UEFI boot mode.

6.1.4. Creating Flavors for the Basic Scenario

The director also needs a set of hardware profiles, or flavors, for the registered nodes. In this scenario,
we'll create a profile each for the Compute and Controller nodes.

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 control
$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 compute

This creates two flavors for your nodes: control and compute. We also set the additional properties
for each flavor.

$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="compute" compute
$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="control" control

The capabilities:boot_option sets the boot mode for the flavor and the
capabilities:profile defines the profile to use. This links to the same tag on each respective node
tagged in Section 6.1.3, “Manually Tagging the Nodes”.

IMPORTANT

Unused roles also require a default flavor named baremetal. Create this flavor if it does
not exist:

$ openstack flavor create --id auto --ram 4096 --disk 40 --
vcpus 1 baremetal

6.1.5. Configuring NFS Storage

This section describes configuring the Overcloud to use an NFS share. The installation and configuration
process is based on the modification of an existing environment file in the Heat template collection.

The Heat template collection contains a set of environment files in /usr/share/openstack-
tripleo-heat-templates/environments/. These are environment templates to help with custom
configuration of some of the supported features in a director-created Overcloud. This includes an

Director Installation and Usage

36

environment file to help configure storage. This file is located at /usr/share/openstack-tripleo-
heat-templates/environments/storage-environment.yaml. Copy this file to the stack
user's template directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-
environment.yaml ~/templates/.

The environment file contains some parameters to help configure different storage options for
Openstack's block and image storage components, Cinder and Glance. In this example, we will configure
the Overcloud to use an NFS share. Modify the following parameters:

CinderEnableIscsiBackend

Enables the iSCSI backend. Set to false.

CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to false.

CinderEnableNfsBackend

Enables the NFS backend. Set to true.

NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to false.

GlanceBackend

Define the backend to use for Glance. Set to file to use file-based storage for images. The
Overcloud will save these files in a mounted NFS share for Glance.

CinderNfsMountOptions

The NFS mount options for the volume storage.

CinderNfsServers

The NFS share to mount for volume storage. For example, 192.168.122.1:/export/cinder.

GlanceFilePcmkManage

Enables Pacemaker to manage the share for image storage. If disabled, the Overcloud stores images
in the Controller node's file system. Set to true.

GlanceFilePcmkFstype

Defines the file system type that Pacemaker uses for image storage. Set to nfs.

GlanceFilePcmkDevice

The NFS share to mount for image storage. For example, 192.168.122.1:/export/glance.

GlanceFilePcmkOptions

The NFS mount options for the image storage.

The environment file's options should look similar to the following:

CHAPTER 6. INSTALLING THE OVERCLOUD

37

parameters:
 CinderEnableIscsiBackend: false
 CinderEnableRbdBackend: false
 CinderEnableNfsBackend: true
 NovaEnableRbdBackend: false
 GlanceBackend: 'file'

 CinderNfsMountOptions: 'rw,sync'
 CinderNfsServers: '192.0.2.230:/cinder'

 GlanceFilePcmkManage: true
 GlanceFilePcmkFstype: 'nfs'
 GlanceFilePcmkDevice: '192.0.2.230:/glance'
 GlanceFilePcmkOptions:
'rw,sync,context=system_u:object_r:glance_var_lib_t:s0'

IMPORTANT

Include the context=system_u:object_r:glance_var_lib_t:s0 in the
GlanceFilePcmkOptions parameter to allow Glance access to the /var/lib
directory. Without this SELinux content, Glance will fail to write to the mount point.

These parameters are integrated as part of the Heat template collection. Setting them as such creates
two NFS mount points for Cinder and Glance to use.

Save this file for inclusion in the Overcloud creation.

6.1.6. Isolating the External Network

The director provides methods to configure isolated overcloud networks. This means the Overcloud
environment separates network traffic types into different networks, which in turn assigns network traffic
to specific network interfaces or bonds. After configuring isolated networks, the director configures the
OpenStack services to use the isolated networks. If no isolated networks are configured, all services run
on the Provisioning network.

This scenario uses two separate networks:

Network 1 - Provisioning network. The Internal API, Storage, Storage Management, and Tenant
networks use this network too.

Network 2 - External network. This network will use a dedicated interface for connecting outside
of the Overcloud.

The following sections show how to create Heat templates to isolate the External network from the rest of
the services. For more examples of network configuration, see Appendix F, Network Interface Template
Examples.

6.1.6.1. Creating Custom Interface Templates

The Overcloud network configuration requires a set of the network interface templates. You customize
these templates to configure the node interfaces on a per role basis. These templates are standard Heat
templates in YAML format (see Chapter 5, Understanding Heat Templates). The director contains a set
of example templates to get you started:

Director Installation and Usage

38

/usr/share/openstack-tripleo-heat-templates/network/config/single-nic-
vlans - Directory containing templates for single NIC with VLANs configuration on a per role
basis.

/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans - Directory containing templates for bonded NIC configuration on a per role basis.

For the Basic Overcloud scenario, we use the default single NIC example configuration. Copy the default
configuration directory into the stack user's home directory as nic-configs.

$ cp -r /usr/share/openstack-tripleo-heat-templates/network/config/single-
nic-vlans ~/templates/nic-configs

This creates a local set of Heat templates that define a single network interface configuration the
External network uses. Each template contains the standard parameters, resources, and output
sections. For our purposes, we only edit the resources section. Each resources section begins with
the following:

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:

This creates a request for the os-apply-config command and os-net-config subcommand to
configure the network properties for a node. The network_config section contains our custom
interface configuration arranged in a sequence based on type, which includes the following:

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3").

 - type: interface
 name: nic2

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

 - type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}

ovs_bond

Defines a bond in Open vSwitch. A bond joins two or more interfaces together to help with
redundancy and increase bandwidth.

 - type: ovs_bond
 name: bond1

CHAPTER 6. INSTALLING THE OVERCLOUD

39

 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3

ovs_bridge

Defines a bridge in Open vSwitch. A bridge connects multiple interface, bond and vlan objects
together.

 - type: ovs_bridge
 name: {get_input: bridge_name}
 members:
 - type: ovs_bond
 name: bond1
 members:
 - type: interface
 name: nic2
 primary: true
 - type: interface
 name: nic3
 - type: vlan
 device: bond1
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}

See Appendix E, Network Interface Parameters for a full list of parameters for each of these items.

For the Basic Scenario, modify each interface template to move the External network to nic2. This
ensures we use the second network interface on each node for the External network. For example, for
the templates/nic-configs/controller.yaml template:

 network_config:
 - type: ovs_bridge
 name: {get_input: bridge_name}
 use_dhcp: true
 members:
 - type: interface
 name: nic1
 # force the MAC address of the bridge to this interface
 primary: true
 - type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: InternalApiIpSubnet}
 - type: vlan
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: StorageIpSubnet}
 - type: vlan
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: StorageMgmtIpSubnet}

Director Installation and Usage

40

 - type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: TenantIpSubnet}
 - type: interface
 name: nic2
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 - ip_netmask: 0.0.0.0/0
 next_hop: {get_param: ExternalInterfaceDefaultRoute}

The above example creates a new interface (nic2) and reassigns the External network addresses and
routes to the new interface.

For more examples of network interface templates, see Appendix F, Network Interface Template
Examples.

Note that a lot of these parameters use the get_param function. We define these in an environment file
we create specifically for our networks.

IMPORTANT

Unused interfaces can cause unwanted default routes and network loops. For example,
your template might contain a network interface (nic4) that does not use any IP
assignments for OpenStack services but still uses DHCP and/or a default route. To avoid
network conflicts, remove any used interfaces from ovs_bridge devices and disable the
DHCP and default route settings:

- type: interface
 name: nic4
 use_dhcp: false
 defroute: false

6.1.6.2. Creating a Basic Overcloud Network Environment Template

The network environment file describes the Overcloud's network environment and points to the network
interface configuration files from the previous section. We define the subnets for our network along with
IP address ranges. We customize these values for the local environment.

This scenario uses the following network environment file saved as
/home/stack/templates/network-environment.yaml:

resource_registry:
 OS::TripleO::BlockStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/cinder-storage.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml
 OS::TripleO::ObjectStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/swift-storage.yaml
 OS::TripleO::CephStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/ceph-storage.yaml

CHAPTER 6. INSTALLING THE OVERCLOUD

41

parameter_defaults:
 ExternalNetCidr: 10.1.1.0/24
 ExternalAllocationPools: [{'start': '10.1.1.2', 'end': '10.1.1.50'}]
 ExternalNetworkVlanID: 100
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 10.1.1.1
 # Gateway router for the provisioning network (or Undercloud IP)
 ControlPlaneDefaultRoute: 192.0.2.254
 # The IP address of the EC2 metadata server. Generally the IP of the
Undercloud
 EC2MetadataIp: 192.0.2.1
 # Define the DNS servers (maximum 2) for the overcloud nodes
 DnsServers: ["8.8.8.8","8.8.4.4"]
 # Set to "br-ex" if using floating IPs on native VLAN on bridge br-ex
 NeutronExternalNetworkBridge: "''"

The resource_registry section contains links to the network interface templates for each node role.
Note that the ExternalAllocationPools parameter only defines a small range of IP addresses. This
is so we can later define a separate range of floating IP addresses.

The parameter_defaults section contains a list of parameters that define the network options for
each network type. For a full reference of these options, see Appendix G, Network Environment Options.

The External network hosts the Horizon dashboard and Public API. If using the External network for both
cloud administration and floating IPs, make sure there is room for a pool of IPs to use as floating IPs for
VM instances. In our example, we only have IPs from 10.1.1.10 to 10.1.1.50 assign to the External
network, which leaves IP addresses from 10.1.1.51 and above free to use for Floating IP addresses.
Alternately, place the Floating IP network on a separate VLAN and configure the Overcloud after creation
to use it.

This scenario only defines the options for the External network. All other traffic types are automatically
assigned to the Provisioning network.

IMPORTANT

Changing the network configuration after creating the Overcloud can cause configuration
problems due to the availability of resources. For example, if a user changes a subnet
range for a network in the network isolation templates, the reconfiguration might fail due
to the subnet already being used.

6.1.7. Creating the Basic Overcloud

The final stage in creating your OpenStack environment is to run the necessary commands that create it.
The default plan installs one Controller node and one Compute node.

NOTE

The Red Hat Customer Portal contains a lab to help validate your configuration before
creating the Overcloud. This lab is available at https://access.redhat.com/labs/ospec/ and
instructions for this lab are available at https://access.redhat.com/labsinfo/ospec.

Run the following command to start the Basic Overcloud creation:

Director Installation and Usage

42

https://access.redhat.com/labs/ospec/
https://access.redhat.com/labsinfo/ospec

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e
/home/stack/templates/network-environment.yaml -e
/home/stack/templates/storage-environment.yaml --control-flavor control --
compute-flavor compute --ntp-server pool.ntp.org --neutron-network-type
vxlan --neutron-tunnel-types vxlan

This command contains the following additional options:

--templates - Creates the Overcloud using the Heat template collection located in
/usr/share/openstack-tripleo-heat-templates.

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml - The -e option adds an additional environment file to the Overcloud plan. In
this case, it is an environment file that initializes network isolation configuration.

-e /home/stack/templates/network-environment.yaml - The -e option adds an
additional environment file to the Overcloud plan. In this case, it is the network environment file
we created from Section 6.1.6.2, “Creating a Basic Overcloud Network Environment Template”.

-e /home/stack/templates/storage-environment.yaml - The -e option adds an
additional environment file to the Overcloud plan. In this case, it is the storage environment file
we created from Section 6.1.5, “Configuring NFS Storage”.

--control-flavor control - Use a specific flavor for the Controller nodes.

--compute-flavor compute - Use a specific flavor for the Compute nodes.

--ntp-server pool.ntp.org - Use an NTP server for time synchronization. This is useful
for keeping the Controller node cluster in synchronization.

--neutron-network-type vxlan - Use Virtual Extensible LAN (VXLAN) for the Neutron
networking in the Overcloud.

--neutron-tunnel-types vxlan - Use Virtual Extensible LAN (VXLAN) for Neutron
tunneling in the Overcloud.

NOTE

For a full list of options, run:

$ openstack help overcloud deploy

See also Appendix I, Deployment Parameters for parameter examples.

The Overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack
user and run:

$ source ~/stackrc # Initializes the stack user to use the
CLI commands
$ heat stack-list --show-nested

CHAPTER 6. INSTALLING THE OVERCLOUD

43

The heat stack-list --show-nested command shows the current stage of the Overcloud
creation.

WARNING

Any environment files added to the Overcloud using the -e option become part of
your Overcloud's stack definition. The director requires these environment files for
re-deployment and post-deployment functions in Chapter 7, Performing Tasks after
Overcloud Creation. Failure to include these files can result in damage to your
Overcloud.

If you aim to later modify the Overcloud configuration, modify parameters in the
custom environment files and Heat templates, then run the openstack
overcloud deploy command again. Do not edit the Overcloud configuration
directly as such manual configuration gets overridden by the director's configuration
when updating the Overcloud stack with the director.

WARNING

Do not run openstack overcloud deploy as a background process. The
Overcloud creation might hang in mid-deployment if started as a background
process.

6.1.8. Accessing the Basic Overcloud

The director generates a file to configure and authenticate interactions with your Overcloud from the
Undercloud. The director saves this file, overcloudrc, in your stack user's home directory. Run the
following command to use this file:

$ source ~/overcloudrc

This loads the necessary environment variables to interact with your Overcloud from the director host's
CLI. To return to interacting with the director's host, run the following command:

$ source ~/stackrc

6.1.9. Completing the Basic Overcloud

This concludes the creation of the Basic Overcloud. For post-creation functions, see Chapter 7,
Performing Tasks after Overcloud Creation.

6.2. ADVANCED SCENARIO: CREATING A LARGE OVERCLOUD WITH
CEPH STORAGE NODES





Director Installation and Usage

44

This scenario creates a large enterprise-level OpenStack Platform environment with Red Hat Ceph
Storage nodes. This scenario consists of nine nodes in the Overcloud:

Three Controller nodes with high availability

Three Compute nodes

Three Red Hat Ceph Storage nodes in a cluster

All machines are bare metal systems using IPMI for power management. This scenario aims to
demonstrate the director's ability to create an production-level Red Hat Enterprise Linux OpenStack
Platform environment that can scale Compute nodes in the future. This scenario uses the command line
tools to demonstrate some of the advanced features of the director, including using the Automated
Health Check Tools for role matching, and advanced network isolation.

Workflow

1. Create a node definition template and register blank nodes in the director.

2. Inspect hardware and benchmark all nodes.

3. Use the Automated Health Check (AHC) Tools to define policies that automatically tag nodes
into roles.

4. Create flavors and tag them into roles.

5. Use an environment file to configure Ceph Storage.

6. Create Heat templates to isolate all networks.

7. Create the Overcloud environment using the default Heat template collection and the additional
network isolation templates.

8. Add fencing information for each Controller node in the high-availability cluster.

Requirements

The director node created in Chapter 3, Installing the Undercloud

Nine bare metal machines. These machines must comply with the requirements set for the
Controller, Compute, and Ceph Storage nodes. For these requirements, see:

Section 2.4.2, “Controller Node Requirements”

Section 2.4.1, “Compute Node Requirements”

Section 2.4.3, “Ceph Storage Node Requirements”

These nodes do not require an operating system because the director copies a Red Hat
Enterprise Linux 7 image to each node.

One network connection for our Provisioning network, which is configured as a native VLAN. All
nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”. For this example, we use 192.0.2.0/24 as the Provisioning subnet
with the following IP address assignments:

Table 6.3. Provisioning Network IP Assignments

CHAPTER 6. INSTALLING THE OVERCLOUD

45

Node Name IP Address MAC Address IPMI IP Address

Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller 1 DHCP defined b1:b1:b1:b1:b1:b1 192.0.2.205

Controller 2 DHCP defined b2:b2:b2:b2:b2:b2 192.0.2.206

Controller 3 DHCP defined b3:b3:b3:b3:b3:b3 192.0.2.207

Compute 1 DHCP defined c1:c1:c1:c1:c1:c1 192.0.2.208

Compute 2 DHCP defined c2:c2:c2:c2:c2:c2 192.0.2.209

Compute 3 DHCP defined c3:c3:c3:c3:c3:c3 192.0.2.210

Ceph 1 DHCP defined d1:d1:d1:d1:d1:d1 192.0.2.211

Ceph 2 DHCP defined d2:d2:d2:d2:d2:d2 192.0.2.212

Ceph 3 DHCP defined d3:d3:d3:d3:d3:d3 192.0.2.213

Each Overcloud node uses the remaining two network interfaces in a bond to serve networks in
tagged VLANs. The following network assignments apply to this bond:

Table 6.4. Network Subnet and VLAN Assignments

Network Type Subnet VLAN

Internal API 172.16.0.0/24 201

Tenant 172.17.0.0/24 202

Storage 172.18.0.0/24 203

Storage Management 172.19.0.0/24 204

External / Floating IP 10.1.1.0/24 100

6.2.1. Registering Nodes for the Advanced Overcloud

In this section, we create a node definition template. This file (instackenv.json) is a JSON format file
and contains the hardware and power management details for our nine nodes.

This template uses the following attributes:

mac

Director Installation and Usage

46

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

pm_type

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool).

pm_user, pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

cpu

The number of CPUs on the node.

memory

The amount of memory in MB.

disk

The size of the hard disk in GB.

arch

The system architecture.

For example:

{
 "nodes":[
 {
 "mac":[
 "b1:b1:b1:b1:b1:b1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.205"
 },
 {
 "mac":[
 "b2:b2:b2:b2:b2:b2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",

CHAPTER 6. INSTALLING THE OVERCLOUD

47

 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.206"
 },
 {
 "mac":[
 "b3:b3:b3:b3:b3:b3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.207"
 },
 {
 "mac":[
 "c1:c1:c1:c1:c1:c1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.208"
 },
 {
 "mac":[
 "c2:c2:c2:c2:c2:c2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.209"
 },
 {
 "mac":[
 "c3:c3:c3:c3:c3:c3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.210"
 },
 {

Director Installation and Usage

48

 "mac":[
 "d1:d1:d1:d1:d1:d1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.211"
 },
 {
 "mac":[
 "d2:d2:d2:d2:d2:d2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.212"
 },
 {
 "mac":[
 "d3:d3:d3:d3:d3:d3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.213"
 }
]
}

NOTE

For more supported power management types and their options, see Appendix C, Power
Management Drivers.

After creating the template, save the file to the stack user's home directory as instackenv.json,
then import it into the director. Use the following command to accomplish this:

$ openstack baremetal import --json ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:

CHAPTER 6. INSTALLING THE OVERCLOUD

49

$ openstack baremetal configure boot

The nodes are now registered and configured in the director. View a list of these nodes in the CLI using
the following command:

$ openstack baremetal list

6.2.2. Inspecting the Hardware of Nodes

After registering the nodes, we inspect the hardware attribute of each node. This scenario also
benchmarks the node for use with the Automated Health Check (AHC) Tools, which we use to
automatically tag nodes into deployment profiles. These profile tags match our nodes to flavors, and in
turn the flavors are assigned to a deployment role.

IMPORTANT

The benchmarking feature requires the discovery_runbench option set to true when
initially configuring the director (see Section 3.6, “Configuring the Director”).

If you need to enable benchmarking after installing the director, edit the
/httpboot/discoverd.ipxe and set the RUNBENCH kernel parameter to 1.

Run the following command to inspect the hardware attributes of each node:

$ openstack baremetal introspection bulk start

Monitor the progress of the introspection using the following command in a separate terminal window:

$ sudo journalctl -l -u openstack-ironic-discoverd -u openstack-ironic-
discoverd-dnsmasq -u openstack-ironic-conductor -f

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

Alternatively, perform a single introspection on each node individually. Set the node to maintenance
mode, perform the introspection, then revert the node out of maintenance mode:

$ ironic node-set-maintenance [NODE UUID] true
$ openstack baremetal introspection start [NODE UUID]
$ ironic node-set-maintenance [NODE UUID] false

6.2.3. Automatically Tagging Nodes with Automated Health Check (AHC) Tools

Once the discovery process completes its benchmark tests, you can generate a set of reports to identify
and isolate underperforming or unstable nodes from use in the Overcloud. This section examines how to
generate these reports and create policies to automatically tag nodes into certain roles.

Install the following Automated Health Check (AHC) tools using the following command:

Director Installation and Usage

50

$ sudo yum install -y ahc-tools

The package contains two tools:

ahc-report, which provides reports from the benchmark tests.

ahc-match, which tags nodes into specific roles based on policies.

IMPORTANT

These tools require credentials for Ironic and Swift set in the /etc/ahc-tools/ahc-
tools.conf file. These are the same credentials in /etc/ironic-
discoverd/discoverd.conf. Use the following commands to copy and tailor the
configuration file for /etc/ahc-tools/ahc-tools.conf:

$ sudo -i
mkdir /etc/ahc-tools
sed 's/\[discoverd/\[ironic/' /etc/ironic-
discoverd/discoverd.conf > /etc/ahc-tools/ahc-tools.conf
chmod 0600 /etc/ahc-tools/ahc-tools.conf
exit

6.2.3.1. ahc-report

The ahc-report script produces various reports about your nodes. To view a full report, use the --
full option.

$ sudo ahc-report --full

The ahc-report command can also focus on specific parts of a report. For example, use the --
categories to categorize nodes based on their hardware (processors, network interfaces, firmware,
memory, and various hardware controllers). This also groups these nodes together with similar hardware
profiles. For example, the Processors section for our two example nodes might list the following:

######################
Processors
2 identical systems :
[u'7F8831F1-0D81-464E-A767-7577DF49AAA5', u'7884BC95-6EF8-4447-BDE5-
D19561718B29']
[(u'cpu', u'logical', u'number', u'4'),
 (u'cpu', u'physical', u'number', u'4'),
 (u'cpu',
 u'physical_0',
 u'flags',
 u'fpu fpu_exception wp de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pse36 clflush mmx fxsr sse sse2 syscall nx x86-64 rep_good nopl pni
cx16 hypervisor lahf_lm'),
 (u'cpu', u'physical_0', u'frequency', u'2000000000'),
 (u'cpu', u'physical_0', u'physid', u'0'),
 (u'cpu', u'physical_0', u'product', u'Intel(R) Xeon(TM) CPU E3-
1271v3 @ 3.6GHz'),
 (u'cpu', u'physical_0', u'vendor', u'GenuineIntel'),
 (u'cpu',

CHAPTER 6. INSTALLING THE OVERCLOUD

51

 u'physical_1',
 u'flags',
 u'fpu fpu_exception wp de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pse36 clflush mmx fxsr sse sse2 syscall nx x86-64 rep_good nopl pni
cx16 hypervisor lahf_lm'),
 (u'cpu', u'physical_0', u'frequency', u'2000000000'),
 (u'cpu', u'physical_0', u'physid', u'0'),
 (u'cpu', u'physical_0', u'product', u'Intel(R) Xeon(TM) CPU E3-
1271v3 @ 3.6GHz'),
 (u'cpu', u'physical_0', u'vendor', u'GenuineIntel')
 ...
]

The ahc-report tool also identifies the outliers in your node collection. Use the --outliers switch to
enable this:

$ sudo ahc-report --outliers

Group 0 : Checking logical disks perf
standalone_randread_4k_KBps : INFO : sda : Group performance :
min=45296.00, mean=53604.67, max=67923.00, stddev=12453.21
standalone_randread_4k_KBps : ERROR : sda : Group's variance is too
important : 23.23% of 53604.67 whereas limit is set to 15.00%
standalone_randread_4k_KBps : ERROR : sda : Group performance :
UNSTABLE
standalone_read_1M_IOps : INFO : sda : Group performance : min=
1199.00, mean= 1259.00, max= 1357.00, stddev= 85.58
standalone_read_1M_IOps : INFO : sda : Group performance =
1259.00 : CONSISTENT
standalone_randread_4k_IOps : INFO : sda : Group performance :
min=11320.00, mean=13397.33, max=16977.00, stddev= 3113.39
standalone_randread_4k_IOps : ERROR : sda : Group's variance is too
important : 23.24% of 13397.33 whereas limit is set to 15.00%
standalone_randread_4k_IOps : ERROR : sda : Group performance :
UNSTABLE
standalone_read_1M_KBps : INFO : sda : Group performance :
min=1231155.00, mean=1292799.67, max=1393152.00, stddev=87661.11
standalone_read_1M_KBps : INFO : sda : Group performance =
1292799.67 : CONSISTENT

...

In the example above, ahc-report marked the standalone_randread_4k_KBps and
standalone_randread_4k_IOps disk metrics as unstable due to the standard deviation of all nodes
being higher than the allowable threshold. In our example, this could happen if our two nodes have a
significant difference in disk transfer rates.

It is useful to determine outliers in your node collection because you can assign high performance nodes
for more suitable tasks. For example, nodes with better disk transfer rates make better storage nodes,
while nodes with better memory performance might make better Compute nodes. Once you have
identified hardware performance of each node, create a set of policies and use the ahc-match
command to assign nodes to specific roles.

6.2.3.2. ahc-match

Director Installation and Usage

52

The ahc-match command applies a set of policies to your Overcloud plan to help assign nodes to
certain roles. Prior to using this command, create a set of policies to match suitable nodes to roles.

The ahc-tools package installs a set of policy files under /etc/ahc-tools/edeploy. This includes:

state - The state file, which outlines the number of nodes for each role.

compute.specs, control.specs - Policy files for matching Compute and Controller nodes.

compute.cmdb.sample, control.cmdb.sample - Sample Configuration Management
Database (CMDB) files, which contain key/value settings for RAID and BIOS ready-state
configuration (Dell DRAC only).

State File
The state file indicates the number of nodes for each role. The default configuration file shows:

[('control', '1'), ('compute', '*')]

This means the ahc-match assigns one control node and any number of compute nodes. For this
scenario, edit this file:

[('control', '3'), ('ceph-storage', '3'), ('compute', '*')]

This matches three Controller nodes, three Red Hat Ceph Storage nodes, and an unlimited number of
Compute nodes.

Policy Files
The compute.specs and control.specs files list the assignment rules for each respective role. The
file contents is a tuple format, such as:

[
 ('cpu', 'logical', 'number', 'ge(2)'),
 ('disk', '$disk', 'size', 'gt(4)'),
 ('network', '$eth', 'ipv4', 'network(192.0.2.0/24)'),
 ('memory', 'total', 'size', 'ge(4294967296)'),
]

This provides a way to define assignments rules based on hardware parameters. For a full reference of
all parameters available, see Appendix D, Automated Health Check (AHC) Tools Parameters.

The policy files also use a set of helper functions to match value ranges. These functions are

network() - The network interface is in the specified network.

gt(), ge() - Greater than (or equal).

lt(), le() - Lower than (or equal).

in() - The item to match shall be in a specified set.

regexp() - Match a regular expression.

or(), and(), not() - Boolean functions. or() and and() take two parameters and not()
one parameter.

CHAPTER 6. INSTALLING THE OVERCLOUD

53

For example, this scenario uses the standalone_randread_4k_KBps and
standalone_randread_4k_IOps values from Section 6.2.3.1, “ahc-report” to limit the Controller role
to node with disk access rates higher than the average rate. The rules for each would be:

[
 ('disk', '$disk', 'standalone_randread_4k_KBps', 'gt(53604)'),
 ('disk', '$disk', 'standalone_randread_4k_IOps', 'gt(13397)')
]

You can also create additional policy profiles for other roles. For example, create a ceph-
storage.spec for a profile specifically for Red Hat Ceph Storage. Ensure these new filenames (without
extension) are included in the state file.

Ready-State Files (Dell DRAC only)
The ready-state configuration prepares bare metal resources for deployment. This includes BIOS and
RAID configuration for predefined profiles.

To define a BIOS setting, define a JSON tuple that define each setting and target value for the
bios_settings key. For example:

[
 {
 'bios_settings': {'ProcVirtualization': 'Enabled', 'ProcCores': 4}
 }
]

You configure the RAID configuration in two ways:

List the IDs of the physical disks - Provide a list of physical disk IDs using the following
attributes: controller, size_gb, raid_level and the list of physical_disks.
controller should be the FQDD of the RAID controller that the DRAC assigns. Similarly, the
list of physical_disks should be the FQDDs of physical disks the DRAC card assigns.

[
 {
 'logical_disks': [
 {'controller': 'RAID.Integrated.1-1',
 'size_gb': 100,
 'physical_disks': [
 'Disk.Bay.0:Enclosure.Internal.0-1:RAID.Integrated.1-1',
 'Disk.Bay.1:Enclosure.Internal.0-1:RAID.Integrated.1-1',
 'Disk.Bay.2:Enclosure.Internal.0-1:RAID.Integrated.1-1'],
 'raid_level': '5'},
]
 }
]

Let Ironic assign physical disks to the RAID volume - The following attributes are required:
controller, size_gb, raid_level and the number_of_physical_disks. controller
should be the FQDD of the RAID controller the DRAC card assigns.

[
 {
 'logical_disks': [

Director Installation and Usage

54

 {'controller': 'RAID.Integrated.1-1',
 'size_gb': 50,
 'raid_level': '1',
 'number_of_physical_disks': 2},
]
 }
]

Running the Matching Tool
After defining your rules, run the ahc-match tool to assign your nodes.

$ sudo ahc-match

This matches all nodes to the roles defined in /etc/ahc-tools/edeploy/state. When a node
matches a role, ahc-match adds the role to the node in Ironic as a capability.

$ ironic node-show b73fb5fa-1a2c-49c6-b38e-8de41e3c0532 | grep properties
-A2
| properties | {u'memory_mb': u'6144', u'cpu_arch': u'x86_64',
u'local_gb': u'40', |
| | u'cpus': u'4', u'capabilities':
u'profile:control,boot_option:local'} |
| instance_uuid | None
|

The director uses this profile tag from each node to match to roles and flavors with the same tag.

If you also configured RAID and BIOS ready-state settings, run the following command to configure these
on each node:

$ instack-ironic-deployment --configure-nodes

6.2.4. Creating Hardware Profiles

The director also needs a set of hardware profiles, or flavors, for the registered nodes. In this scenario,
we'll create a profile each for the Compute, Controller, and Ceph Storage nodes:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 control
$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 compute
$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 ceph-
storage

IMPORTANT

The values for the three flavors in this scenario are for example purposes only. Use the
specifications for your hardware identified with the AHC Tools.

This creates three flavors for your nodes. We also set the additional properties for each flavor.

$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="compute" compute

CHAPTER 6. INSTALLING THE OVERCLOUD

55

$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="control" control
$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="ceph-storage" ceph-storage

The capabilities:boot_option sets the boot mode for the flavor and the
capabilities:profile defines the profile to use.

IMPORTANT

Unused roles also require a default flavor named baremetal. Create this flavor if it does
not exist:

$ openstack flavor create --id auto --ram 4096 --disk 40 --
vcpus 1 baremetal

6.2.5. Configuring Ceph Storage

This section describes installing and configuring Red Hat Ceph Storage using Director for use with
OpenStack. The installation and configuration process is based on a combination of Heat Templates and
Puppet configuration.

The Overcloud image already contains the Ceph Storage software and the necessary Puppet modules to
automatically configure both the Ceph OSD nodes and the Ceph Monitor on Controller clusters. The
Overcloud's Heat template collection also contains the necessary configuration to enable your Ceph
Storage configuration.

The Ceph Storage cluster might require some minor configuration, specifically the disk layout on the
Ceph Storage nodes. To pass this information, copy the storage-environment.yaml environment
file to your stack user's templates directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-
environment.yaml ~/templates/.

Modify the following options in the copy of storage-environment.yaml:

CinderEnableIscsiBackend

Enables the iSCSI backend. Set to false.

CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to true.

CinderEnableNfsBackend

Enables the NFS backend. Set to false.

NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to true.

GlanceBackend

Director Installation and Usage

56

Define the backend to use for Glance. Set to rbd to use Ceph Storage for images.

NOTE

The storage-environment.yaml also contains some options to configure Ceph
Storage directly through Heat. However, these options are not necessary in this scenario
since the director creates these nodes and automatically defines the configuration values.

Add an additional section to this environment file that contains the following:

parameter_defaults:
 ExtraConfig:
 ceph::profile::params::osds:

This adds extra Hiera data to the Overcloud, which is used in the Puppet configuration. For more
information, see Section 10.4, “Customizing Puppet Configuration Data”.

Use ceph::profile::params::osds parameter to map the relevant journal partitions and disks. For
example, a Ceph node with four disks might have the following assignments:

/dev/sda - The root disk containing the Overcloud image

/dev/sdb - The disk containing the journal partitions. This is usually a solid state disk (SSD) to
aid with system performance.

/dev/sdc and /dev/sdd - The OSD disks

For this example, the mapping might contain the following:

 ceph::profile::params::osds:
 '/dev/sdc':
 journal: '/dev/sdb'
 '/dev/sdd':
 journal: '/dev/sdb'

If you do not want a separate disk for journals, use co-located journals on the OSD disks. Pass a blank
value to the journal parameters:

 ceph::profile::params::osds:
 '/dev/sdb': {}
 '/dev/sdc': {}
 '/dev/sdd': {}

The storage-environment.yaml file's options should look similar to the following:

parameters:
 CinderEnableIscsiBackend: false
 CinderEnableRbdBackend: true
 CinderEnableNfsBackend: false
 NovaEnableRbdBackend: true

parameter_defaults:
 ExtraConfig:

CHAPTER 6. INSTALLING THE OVERCLOUD

57

 ceph::profile::params::osds:
 '/dev/sdc':
 journal: '/dev/sdb'
 '/dev/sdd':
 journal: '/dev/sdb'

After completing these modifications, save the storage-environment.yaml so that when we deploy
the Overcloud, the Ceph Storage nodes will use our disk mapping and custom settings. We include this
file in our deployment to initiate our storage requirements.

IMPORTANT

The Ceph Storage OSDs should be unpartitioned disks with GPT disk labels, which you
also configure prior to customization. For example, use the following command on the
potential Ceph Storage host to create a GPT disk label for a disk or partition:

parted [device] mklabel gpt

6.2.6. Isolating all Networks into VLANs

The director provides methods to configure isolated overcloud networks. This means the Overcloud
environment separates network traffic types into different networks, which in turn assigns network traffic
to specific network interfaces or bonds. After configuring isolated networks, the director configures the
OpenStack services to use the isolated networks. If no isolated networks are configured, all services run
on the Provisioning network.

This scenario uses separate networks for all services:

Network 1 - Provisioning

Network 2 - Internal API

Network 3 - Tenant Networks

Network 4 - Storage

Network 5 - Storage Management

Network 6 - External and Floating IP (mapped after Overcloud creation)

The following sections show how to create Heat templates to isolate all network types. For more
examples of network configuration, see Appendix F, Network Interface Template Examples.

6.2.6.1. Creating Custom Interface Templates

The Overcloud network configuration requires a set of the network interface templates. You customize
these templates to configure the node interfaces on a per role basis. These templates are standard Heat
templates in YAML format (see Chapter 5, Understanding Heat Templates). The director contains a set
of example templates to get you started:

/usr/share/openstack-tripleo-heat-templates/network/config/single-nic-
vlans - Directory containing templates for single NIC with VLANs configuration on a per role
basis.

Director Installation and Usage

58

/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans - Directory containing templates for bonded NIC configuration on a per role basis.

For the Advanced Overcloud scenario, we use the default bonded NIC example configuration as a basis.
Copy the version located at /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans.

$ cp -r /usr/share/openstack-tripleo-heat-templates/network/config/bond-
with-vlans ~/templates/nic-configs

This creates a local set of Heat templates that define a bonded network interface configuration for each
role. Each template contains the standard parameters, resources, and output sections. For our
purposes, we only edit the resources section. Each resources section begins with the following:

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:

This creates a request for the os-apply-config command and os-net-config subcommand to
configure the network properties for a node. The network_config section contains our custom
interface configuration arranged in a sequence based on type, which includes the following:

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3").

 - type: interface
 name: nic2

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

 - type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}

ovs_bond

Defines a bond in Open vSwitch. A bond joins two or more interfaces together to help with
redundancy and increase bandwidth.

 - type: ovs_bond
 name: bond1
 members:
 - type: interface

CHAPTER 6. INSTALLING THE OVERCLOUD

59

 name: nic2
 - type: interface
 name: nic3

ovs_bridge

Defines a bridge in Open vSwitch. A bridge connects multiple interface, bond and vlan objects
together.

 - type: ovs_bridge
 name: {get_input: bridge_name}
 members:
 - type: ovs_bond
 name: bond1
 members:
 - type: interface
 name: nic2
 primary: true
 - type: interface
 name: nic3
 - type: vlan
 device: bond1
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}

linux_bridge

Defines a Linux bridge. Similar to an Open vSwitch bridge, it connects multiple interface, bond
and vlan objects together.

 - type: linux_bridge
 name: bridge1
 members:
 - type: interface
 name: nic1
 primary: true
 - type: vlan
 device: bridge1
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}

See Appendix E, Network Interface Parameters for a full list of parameters for each of these items.

For the Advanced Scenario, we use the default bonded interface configuration. For example, the
/home/stack/templates/nic-configs/controller.yaml template uses the following
network_config:

 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 addresses:

Director Installation and Usage

60

 - ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 - ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}

 - type: ovs_bridge
 name: {get_input: bridge_name}
 dns_servers: {get_param: DnsServers}
 members:
 - type: ovs_bond
 name: bond1
 ovs_options: {get_param: BondInterfaceOvsOptions}
 members:
 - type: interface
 name: nic2
 primary: true
 - type: interface
 name: nic3
 - type: vlan
 device: bond1
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 - ip_netmask: 0.0.0.0/0
 next_hop: {get_param:
ExternalInterfaceDefaultRoute}
 - type: vlan
 device: bond1
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: InternalApiIpSubnet}
 - type: vlan
 device: bond1
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: StorageIpSubnet}
 - type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: StorageMgmtIpSubnet}
 - type: vlan
 device: bond1
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: TenantIpSubnet}

This template defines a bridge (usually the external bridge named br-ex) and creates a bonded
interface called bond1 from two numbered interfaces: nic2 and nic3. The bridge also contains a
number of tagged VLAN devices, which use bond1 as a parent device.

CHAPTER 6. INSTALLING THE OVERCLOUD

61

For more examples of network interface templates, see Appendix F, Network Interface Template
Examples.

Note that a lot of these parameters use the get_param function. We define these in an environment file
we create specifically for our networks.

IMPORTANT

Unused interfaces can cause unwanted default routes and network loops. For example,
your template might contain a network interface (nic4) that does not use any IP
assignments for OpenStack services but still uses DHCP and/or a default route. To avoid
network conflicts, remove any unused interfaces from ovs_bridge devices and disable
the DHCP and default route settings:

- type: interface
 name: nic4
 use_dhcp: false
 defroute: false

6.2.6.2. Creating an Advanced Overcloud Network Environment File

The network environment file is a Heat environment file that describes the Overcloud's network
environment and points to the network interface configuration templates from the previous section. We
define the subnets and VLANs for our network along with IP address ranges. We customize these
values for the local environment.

This scenario uses the following network environment file saved as
/home/stack/templates/network-environment.yaml:

resource_registry:
 OS::TripleO::BlockStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/cinder-storage.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml
 OS::TripleO::ObjectStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/swift-storage.yaml
 OS::TripleO::CephStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/ceph-storage.yaml

parameter_defaults:
 InternalApiNetCidr: 172.16.0.0/24
 TenantNetCidr: 172.17.0.0/24
 StorageNetCidr: 172.18.0.0/24
 StorageMgmtNetCidr: 172.19.0.0/24
 ExternalNetCidr: 10.1.1.0/24
 InternalApiAllocationPools: [{'start': '172.16.0.10', 'end':
'172.16.0.200'}]
 TenantAllocationPools: [{'start': '172.17.0.10', 'end': '172.17.0.200'}]
 StorageAllocationPools: [{'start': '172.18.0.10', 'end':
'172.18.0.200'}]
 StorageMgmtAllocationPools: [{'start': '172.19.0.10', 'end':
'172.19.0.200'}]

Director Installation and Usage

62

 # Leave room for floating IPs in the External allocation pool
 ExternalAllocationPools: [{'start': '10.1.1.10', 'end': '10.1.1.50'}]
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 10.1.1.1
 # Gateway router for the provisioning network (or Undercloud IP)
 ControlPlaneDefaultRoute: 192.0.2.254
 # The IP address of the EC2 metadata server. Generally the IP of the
Undercloud
 EC2MetadataIp: 192.0.2.1
 # Define the DNS servers (maximum 2) for the overcloud nodes
 DnsServers: ["8.8.8.8","8.8.4.4"]
 InternalApiNetworkVlanID: 201
 StorageNetworkVlanID: 202
 StorageMgmtNetworkVlanID: 203
 TenantNetworkVlanID: 204
 ExternalNetworkVlanID: 100
 # Set to "br-ex" if using floating IPs on native VLAN on bridge br-ex
 NeutronExternalNetworkBridge: "''"
 # Customize bonding options if required
 BondInterfaceOvsOptions:
 "bond_mode=balance-slb"

The resource_registry section contains links to the network interface templates for each node role.

The parameter_defaults section contains a list of parameters that define the network options for
each network type. For a full reference of these options, see Appendix G, Network Environment Options.

This scenario defines options for each network. All network types use an individual VLAN and subnet
used for assigning IP addresses to hosts and virtual IPs. In the example above, the allocation pool for the
Internal API network starts at 172.16.0.10 and continues to 172.16.0.200 using VLAN 201. This results in
static and virtual IPs assigned starting at 172.16.0.10 and upwards to 172.16.0.200 while using VLAN
201 in our environment.

The External network hosts the Horizon dashboard and Public API. If using the External network for both
cloud administration and floating IPs, make sure there is room for a pool of IPs to use as floating IPs for
VM instances. In our example, we only have IPs from 10.1.1.10 to 10.1.1.50 assign to the External
network, which leaves IP addresses from 10.1.1.51 and above free to use for Floating IP addresses.
Alternately, place the Floating IP network on a separate VLAN and configure the Overcloud after creation
to use it.

The BondInterfaceOvsOptions option provides options for our bonded interface using nic2 and
nic3. For more information on bonding options, see Appendix H, Bonding Options.

IMPORTANT

Changing the network configuration after creating the Overcloud can cause configuration
problems due to the availability of resources. For example, if a user changes a subnet
range for a network in the network isolation templates, the reconfiguration might fail due
to the subnet already being used.

6.2.6.3. Assigning OpenStack Services to Isolated Networks

Each OpenStack service is assigned to a default network type in the resource registry. These services
are then bound to IP addresses within the network type's assigned network. Although the OpenStack
services are divided among these networks, the number of actual physical networks might differ as

CHAPTER 6. INSTALLING THE OVERCLOUD

63

defined in the network environment file. You can reassign OpenStack services to different network types
by defining a new network map in your network environment file
(/home/stack/templates/network-environment.yaml). The ServiceNetMap parameter
determines the network types used for each service.

For example, we can reassign the Storage Management network services to the Storage Network by
modifying the highlighted sections:

...

parameter_defaults:

 ServiceNetMap:
 NeutronTenantNetwork: tenant
 CeilometerApiNetwork: internal_api
 MongoDbNetwork: internal_api
 CinderApiNetwork: internal_api
 CinderIscsiNetwork: storage
 GlanceApiNetwork: storage
 GlanceRegistryNetwork: internal_api
 KeystoneAdminApiNetwork: internal_api
 KeystonePublicApiNetwork: internal_api
 NeutronApiNetwork: internal_api
 HeatApiNetwork: internal_api
 NovaApiNetwork: internal_api
 NovaMetadataNetwork: internal_api
 NovaVncProxyNetwork: internal_api
 SwiftMgmtNetwork: storage_mgmt
 SwiftProxyNetwork: storage
 HorizonNetwork: internal_api
 MemcachedNetwork: internal_api
 RabbitMqNetwork: internal_api
 RedisNetwork: internal_api
 MysqlNetwork: internal_api
 CephClusterNetwork: storage_mgmt
 CephPublicNetwork: storage
 # Define which network will be used for hostname resolution
 ControllerHostnameResolveNetwork: internal_api
 ComputeHostnameResolveNetwork: internal_api
 BlockStorageHostnameResolveNetwork: internal_api
 ObjectStorageHostnameResolveNetwork: internal_api
 CephStorageHostnameResolveNetwork: storage

Changing these parameters to storage places these services on the Storage network instead of the
Storage Management network. This means you only need to define a set of parameter_defaults for
the Storage network and not the Storage Management network.

6.2.7. Enabling SSL/TLS on the Overcloud

The Overcloud uses unencrypted endpoints for its services by default. This means the Overcloud
configuration requires an additional environment file to enable SSL/TLS for its endpoints.

This process requires network isolation to define the endpoints for the Public API. See Section 6.2.6,
“Isolating all Networks into VLANs” for instruction on network isolation.

Director Installation and Usage

64

Ensure you have a private key and certificate authority created. See Appendix B, SSL/TLS Certificate
Configuration for more information on creating a valid SSL/TLS key and certificate authority file.

Enabling SSL/TLS
Copy the enable-tls.yaml environment file from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/enable-
tls.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

parameter_defaults:

SSLCertificate:

Copy the contents of the certificate file into the SSLCertificate parameter. For example:

parameter_defaults:
 SSLCertificate: |
 -----BEGIN CERTIFICATE-----
 MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGSIb3DQEBCwUAMFgxCzAJBgNV
 ...
 sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQbIxEpIzrgvp
 -----END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

SSLKey:

Copy the contents of the private key into the SSLKey parameter. For example>

parameter_defaults:
 ...
 SSLKey: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEAqVw8lnQ9RbeI1EdLN5PJP0lVO9hkJZnGP6qb6wtYUoy1bVP7
 ...
 ctlKn3rAAdyumi4JDjESAXHIKFjJNOLrBmpQyES4XpZUC7yhqPaU
 -----END RSA PRIVATE KEY-----

IMPORTANT

The private key contents require the same indentation level for all new lines.

EndpointMap:

The EndpointMap contains a mapping of the services using HTTPS and HTTP communication. If
using DNS for SSL communication, leave this section with the defaults. However, if using an IP
address for the SSL certificate's common name (see Appendix B, SSL/TLS Certificate Configuration),
replace all instances of CLOUDNAME with IP_ADDRESS. Use the following command to accomplish
this:

CHAPTER 6. INSTALLING THE OVERCLOUD

65

 $ sed -i 's/CLOUDNAME/IP_ADDRESS/' ~/templates/enable-tls.yaml

IMPORTANT

Do not substitute IP_ADDRESS or CLOUDNAME for actual values. Heat replaces these
variables with the appropriate value during the Overcloud creation.

resource_registry:

OS::TripleO::NodeTLSData:

Change the resource URL for OS::TripleO::NodeTLSData: to an absolute URL:

resource_registry:
 OS::TripleO::NodeTLSData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/tls-cert-inject.yaml

Injecting a Root Certificate
If using a self-signed certificate or the certificate signer is not in the default trust store on the Overcloud
image, inject the certificate into the Overcloud image. Copy the inject-trust-anchor.yaml
environment file from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/inject-
trust-anchor.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

parameter_defaults:

SSLRootCertificate:

Copy the contents of the root certificate authority file into the SSLRootCertificate parameter. For
example:

parameter_defaults:
 SSLRootCertificate: |
 -----BEGIN CERTIFICATE-----
 MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGSIb3DQEBCwUAMFgxCzAJBgNV
 ...
 sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQbIxEpIzrgvp
 -----END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

resource_registry:

OS::TripleO::NodeTLSCAData:

Director Installation and Usage

66

Change the resource URL for OS::TripleO::NodeTLSCAData: to an absolute URL:

 resource_registry:
 OS::TripleO::NodeTLSCAData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/ca-inject.yaml

Configuring DNS Endpoints
If using a DNS hostname to access the Overcloud through SSL/TLS, create a new environment file
(~/templates/cloudname.yaml) to define the hostname of the Overcloud's endpoints. Use the
following parameters:

parameter_defaults:

CloudName:

The DNS hostname for the Overcloud endpoints.

DnsServers:

A list of DNS server to use. The configured DNS servers must contain an entry for the configured
CloudName that matches the IP for the Public API.

The following is an example of the contents for this file:

parameter_defaults:
 CloudName: overcloud.example.com
 DnsServers: ["10.0.0.1"]

Adding Environment Files During Overcloud Creation
The deployment command (openstack overcloud deploy) in Section 6.2.9, “Creating the
Advanced Overcloud” uses the -e option to add environment files. Add the environment files from this
section in the following order:

The environment file to enable SSL/TLS (enable-tls.yaml)

The environment file to set the DNS hostname (cloudname.yaml)

The environment file to inject the root certificate authority (inject-trust-anchor.yaml)

For example:

$ openstack overcloud deploy --templates [...] -e
/home/stack/templates/enable-tls.yaml -e ~/templates/cloudname.yaml -e
~/templates/inject-trust-anchor.yaml

6.2.8. Registering the Overcloud

The Overcloud provides a method to register nodes to either the Red Hat Content Delivery Network, a
Red Hat Satellite 5 server, or a Red Hat Satellite 6 server. You can either achieve this through
environment files or the command line.

Method 1 - Command Line
The deployment command (openstack overcloud deploy) uses a set of options to define your

CHAPTER 6. INSTALLING THE OVERCLOUD

67

registration details. The table in Appendix I, Deployment Parameters contains these options and their
descriptions. Include these options when running the deployment command in Section 6.2.9, “Creating
the Advanced Overcloud”. For example:

openstack overcloud deploy --templates --rhel-reg --reg-method satellite
--reg-sat-url http://example.satellite.com --reg-org MyOrg --reg-
activation-key MyKey --reg-force [...]

Method 2 - Environment File
Copy the registration files from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-
templates/extraconfig/pre_deploy/rhel-registration ~/templates/.

Edit the ~/templates/rhel-registration/environment-rhel-registration.yaml and
modify the following values to suit your registration method and details.

rhel_reg_method

Choose the registration method. Either portal, satellite, or disable.

rhel_reg_type

The type of unit to register. Leave blank to register as a system

rhel_reg_auto_attach

Automatically attach compatible subscriptions to this system. Set to either true to enable.

rhel_reg_service_level

The service level to use for auto attachment.

rhel_reg_release

Use this parameter to set a release version for auto attachment. Leave blank to use the default from
Red Hat Subscription Manager.

rhel_reg_pool_id

The subscription pool ID to use. Use this if not auto-attaching subscriptions.

rhel_reg_sat_url

The base URL of the Satellite server to register Overcloud nodes. Use the Satellite's HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and
not https://satellite.example.com. The Overcloud creation process uses this URL to
determine whether the server is a Red Hat Satellite 5 or Red Hat Satellite 6 server. If a Red Hat
Satellite 6 server, the Overcloud obtains the katello-ca-consumer-latest.noarch.rpm file,
registers with subscription-manager, and installs katello-agent. If a Red Hat Satellite 6
server, the Overcloud obtains the RHN-ORG-TRUSTED-SSL-CERT file and registers with rhnreg_ks.

rhel_reg_server_url

The hostname of the subscription service to use. The default is for Customer Portal Subscription
Management, subscription.rhn.redhat.com. If this option is not used, the system is registered
with Customer Portal Subscription Management. The subscription server URL uses the form of
https://hostname:port/prefix.

Director Installation and Usage

68

rhel_reg_base_url

Gives the hostname of the content delivery server to use to receive updates. The default is
https://cdn.redhat.com. Since Satellite 6 hosts its own content, the URL must be used for
systems registered with Satellite 6. The base URL for content uses the form of
https://hostname:port/prefix.

rhel_reg_org

The organization to use for registration.

rhel_reg_environment

The environment to use within the chosen organization.

rhel_reg_repos

A comma-separated list of repositories to enable.

rhel_reg_activation_key

The activation key to use for registration.

rhel_reg_user, rhel_reg_password

The username and password for registration. If possible, use activation keys for registration.

rhel_reg_machine_name

The machine name. Leave this as blank to use the hostname of the node.

rhel_reg_force

Set to true to force your registration options. For example, when re-registering nodes.

The deployment command (openstack overcloud deploy) in Section 6.2.9, “Creating the
Advanced Overcloud” uses the -e option to add environment files. Add both ~/templates/rhel-
registration/environment-rhel-registration.yaml and ~/templates/rhel-
registration/rhel-registration-resource-registry.yaml. For example:

$ openstack overcloud deploy --templates [...] -e
/home/stack/templates/rhel-registration/environment-rhel-registration.yaml
-e /home/stack/templates/rhel-registration/rhel-registration-resource-
registry.yaml

IMPORTANT

Registration is set as the OS::TripleO::NodeExtraConfig Heat resource. This
means you can only use this resource for registration. See Section 10.2, “Customizing
Overcloud Pre-Configuration” for more information.

6.2.9. Creating the Advanced Overcloud

The final stage in creating your OpenStack environment is to run the necessary commands to create it.
The command options we use install three Controller nodes, three Compute nodes, and three Ceph
Storage nodes.

CHAPTER 6. INSTALLING THE OVERCLOUD

69

NOTE

The Red Hat Customer Portal contains a lab to help validate your configuration before
creating the Overcloud. This lab is available at https://access.redhat.com/labs/ospec/ and
instructions for this lab are available at https://access.redhat.com/labsinfo/ospec.

Run the following command to start the Advanced Overcloud creation:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e ~/templates/network-
environment.yaml -e ~/templates/storage-environment.yaml --control-scale 3
--compute-scale 3 --ceph-storage-scale 3 --control-flavor control --
compute-flavor compute --ceph-storage-flavor ceph-storage --ntp-server
pool.ntp.org --neutron-network-type vxlan --neutron-tunnel-types vxlan

This command contains the following additional options:

--templates - Creates the Overcloud using the Heat template collection in
/usr/share/openstack-tripleo-heat-templates.

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml - The -e option adds an additional environment file to the Overcloud
deployment. In this case, it is an environment file that initializes network isolation configuration.

-e ~/templates/network-environment.yaml - The -e option adds an additional
environment file to the Overcloud deployment. In this case, it is the network environment file from
Section 6.2.6.2, “Creating an Advanced Overcloud Network Environment File”.

-e ~/templates/storage-environment.yaml - The -e option adds an additional
environment file to the Overcloud deployment. In this case, it is a custom environment file that
initializes our storage configuration.

--control-scale 3 - Scale the Controller nodes to three.

--compute-scale 3 - Scale the Compute nodes to three.

--ceph-storage-scale 3 - Scale the Ceph Storage nodes to three.

--control-flavor control - Use the a specific flavor for the Controller nodes.

--compute-flavor compute - Use the a specific flavor for the Compute nodes.

--ceph-storage-flavor ceph-storage - Use the a specific flavor for the Ceph Storage
nodes.

--ntp-server pool.ntp.org - Use an NTP server for time synchronization. This is useful
for keeping the Controller node cluster in synchronization.

--neutron-network-type vxlan - Use Virtual Extensible LAN (VXLAN) for the Neutron
networking in the Overcloud.

--neutron-tunnel-types vxlan - Use Virtual Extensible LAN (VXLAN) for Neutron
tunneling in the Overcloud.

Director Installation and Usage

70

https://access.redhat.com/labs/ospec/
https://access.redhat.com/labsinfo/ospec

NOTE

For a full list of options, run:

$ openstack help overcloud deploy

See also Appendix I, Deployment Parameters for parameter examples and Section 6.2.8,
“Registering the Overcloud” for registration details.

The Overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack
user and run:

$ source ~/stackrc # Initializes the stack user to use the
CLI commands
$ heat stack-list --show-nested

The heat stack-list --show-nested command shows the current stage of the Overcloud
creation.

CHAPTER 6. INSTALLING THE OVERCLOUD

71

WARNING

Any environment files added to the Overcloud using the -e option become part of
your Overcloud's stack definition. The director requires these environment files for
re-deployment and post-deployment functions in Chapter 7, Performing Tasks after
Overcloud Creation. Failure to include these files can result in damage to your
Overcloud.

If you aim to later modify the Overcloud configuration, modify parameters in the
custom environment files and Heat templates, then run the openstack
overcloud deploy command again. Do not edit the Overcloud configuration
directly as such manual configuration gets overridden by the director's configuration
when updating the Overcloud stack with the director.

Save the original deployment command for later use and modification. For example,
save your deployment command in a script file called deploy-overcloud.sh:

#!/bin/bash
openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 -t 150 \
 --control-scale 3 \
 --compute-scale 3 \
 --ceph-storage-scale 3 \
 --swift-storage-scale 0 \
 --block-storage-scale 0 \
 --compute-flavor compute \
 --control-flavor control \
 --ceph-storage-flavor ceph-storage \
 --swift-storage-flavor swift-storage \
 --block-storage-flavor block-storage \
 --ntp-server pool.ntp.org \
 --neutron-network-type vxlan \
 --neutron-tunnel-types vxlan \
 --libvirt-type qemu

This retains the Overcloud deployment command's parameters and environment
files for future use, such as Overcloud modifications and scaling. You can then edit
and rerun this script to suit future customizations to the Overcloud.



Director Installation and Usage

72

WARNING

Do not run openstack overcloud deploy as a background process. The
Overcloud creation might hang in mid-deployment if started as a background
process.

6.2.10. Accessing the Advanced Overcloud

The director generates a script to configure and help authenticate interactions with your Overcloud from
the director host. The director saves this file, overcloudrc, in your stack user's home director. Run
the following command to use this file:

$ source ~/overcloudrc

This loads the necessary environment variables to interact with your Overcloud from the director host's
CLI. To return to interacting with the director's host, run the following command:

$ source ~/stackrc

6.2.11. Fencing the Controller Nodes

Fencing is the process of isolating a node to protect a cluster and its resources. Without fencing, a faulty
node can cause data corruption in a cluster.

The director uses a tool called Pacemaker to provide a highly available cluster of Controller nodes.
Pacemaker uses a process called STONITH (Shoot-The-Other-Node-In-The-Head) to help fence faulty
nodes. By default, STONITH is disabled on your cluster and requires manual configuration so that
Pacemaker can control the power management of each node in the cluster.

NOTE

Login to each node as the heat-admin user from the stack user on the director. The
Overcloud creation automatically copies the stack user's SSH key to each node's heat-
admin.

Verify you have a running cluster with pcs status:

$ sudo pcs status
Cluster name: openstackHA
Last updated: Wed Jun 24 12:40:27 2015
Last change: Wed Jun 24 11:36:18 2015
Stack: corosync
Current DC: lb-c1a2 (2) - partition with quorum
Version: 1.1.12-a14efad
3 Nodes configured
141 Resources configured

Verify that stonith is disabled with pcs property show:



CHAPTER 6. INSTALLING THE OVERCLOUD

73

$ sudo pcs property show
Cluster Properties:
 cluster-infrastructure: corosync
 cluster-name: openstackHA
 dc-version: 1.1.12-a14efad
 have-watchdog: false
 stonith-enabled: false

The Controller nodes contain a set of fencing agents for various power management devices the director
supports. This includes:

Table 6.5. Fence Agents

Device Type

fence_ipmilan The Intelligent Platform Management Interface (IPMI)

fence_idrac, fence_drac5 Dell Remote Access Controller (DRAC)

fence_ilo Integrated Lights-Out (iLO)

fence_ucs Cisco UCS - For more information, see Configuring
Cisco Unified Computing System (UCS) Fencing on
an OpenStack High Availability Environment

fence_xvm, fence_virt Libvirt and SSH

The rest of this section uses the IPMI agent (fence_ipmilan) as an example.

View a full list of IPMI options that Pacemaker supports:

$ sudo pcs stonith describe fence_ipmilan

Each node requires configuration of IPMI devices to control the power management. This involves
adding a stonith device in pacemaker for each node. Use the following commands for the cluster:

NOTE

The second command in each example is to prevent the node from asking to fence itself.

For Controller node 1:

$ sudo pcs stonith create my-ipmilan-for-controller01 fence_ipmilan
pcmk_host_list=overcloud-controller-0 ipaddr=192.0.2.205 login=admin
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller01 avoids
overcloud-controller-0

For Controller node 2:

$ sudo pcs stonith create my-ipmilan-for-controller02 fence_ipmilan

Director Installation and Usage

74

https://access.redhat.com/articles/1981813

pcmk_host_list=overcloud-controller-1 ipaddr=192.0.2.206 login=admin
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller02 avoids
overcloud-controller-1

For Controller node 3:

$ sudo pcs stonith create my-ipmilan-for-controller03 fence_ipmilan
pcmk_host_list=overcloud-controller-2 ipaddr=192.0.2.207 login=admin
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller03 avoids
overcloud-controller-2

Run the following command to see all stonith resources:

$ sudo pcs stonith show

Run the following command to see a specific stonith resource:

$ sudo pcs stonith show [stonith-name]

Finally, enable fencing by setting the stonith property to true:

$ sudo pcs property set stonith-enabled=true

Verify the property:

$ sudo pcs property show

6.2.12. Completing the Advanced Overcloud

This concludes the creation of the Advanced Overcloud. For post-creation functions, see Chapter 7,
Performing Tasks after Overcloud Creation.

CHAPTER 6. INSTALLING THE OVERCLOUD

75

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD
CREATION
This chapter explores some of the functions you perform after creating your Overcloud of choice.

7.1. CREATING THE OVERCLOUD TENANT NETWORK

The Overcloud requires a Tenant network for instances. Source the overcloud and create an initial
Tenant network in Neutron. For example:

$ source ~/overcloudrc
$ neutron net-create default
$ neutron subnet-create --name default --gateway 172.20.1.1 default
172.20.0.0/16

This creates a basic Neutron network called default. The Overcloud automatically assigns IP
addresses from this network using an internal DHCP mechanism.

Confirm the created network with neutron net-list:

$ neutron net-list
+-----------------------+-------------+-------------------------------
---------------------+
| id | name | subnets
|
+-----------------------+-------------+-------------------------------
---------------------+
| 95fadaa1-5dda-4777... | default | 7e060813-35c5-462c-a56a-
1c6f8f4f332f 172.20.0.0/16 |
+-----------------------+-------------+-------------------------------
---------------------+

7.2. CREATING THE OVERCLOUD EXTERNAL NETWORK

In the Basic and Advanced Overcloud scenarios, we configured the node interfaces to use the External
network. However, we still need to create this network on the Overcloud so that we can assign floating IP
addresses to instances.

Using a Native VLAN
This procedure assumes a dedicated interface or native VLAN for the External network.

Source the overcloud and create an External network in Neutron. For example:

$ source ~/overcloudrc
$ neutron net-create nova --router:external --provider:network_type flat -
-provider:physical_network datacentre
$ neutron subnet-create --name nova --enable_dhcp=False --allocation-
pool=start=10.1.1.51,end=10.1.1.250 --gateway=10.1.1.1 nova 10.1.1.0/24

In this example, we create a network with the name nova. The Overcloud requires this specific name for
the default floating IP pool. This is also important for the validation tests in Section 7.5, “Validating the
Overcloud”.

Director Installation and Usage

76

This command also maps the network to the datacenter physical network. As a default, datacenter
maps to the br-ex bridge. Leave this option as the default unless you have used custom Neutron
settings during the Overcloud creation.

Using a Non-Native VLAN
If not using the native VLAN, assign the network to a VLAN using the following commands:

$ source ~/overcloudrc
$ neutron net-create nova --router:external --provider:network_type vlan -
-provider:physical_network datacentre --provider:segmentation_id 104
$ neutron subnet-create --name nova --enable_dhcp=False --allocation-
pool=start=10.1.1.51,end=10.1.1.250 --gateway=10.1.1.1 nova 10.1.1.0/24

The provider:segmentation_id value defines the VLAN to use. In this case, we use 104.

Confirm the created network with neutron net-list:

$ neutron net-list
+-----------------------+-------------+-------------------------------
--------------------+
| id | name | subnets
|
+-----------------------+-------------+-------------------------------
--------------------+
| d474fe1f-222d-4e32... | nova | 01c5f621-1e0f-4b9d-9c30-
7dc59592a52f 10.1.1.0/24 |
+-----------------------+-------------+-------------------------------
--------------------+

7.3. CREATING ADDITIONAL FLOATING IP NETWORKS

Floating IP networks can use any bridge, not just br-ex, as long as you meet the following conditions:

NeutronExternalNetworkBridge is set to "''" in your network environment file.

You have mapped the additional bridge during deployment. For example, to map a new bridge
called br-floating to the floating physical network:

$ openstack overcloud deploy --templates -e /usr/share/openstack-
tripleo-heat-templates/environments/network-isolation.yaml -e
~/templates/network-environment.yaml --neutron-bridge-mappings
datacenter:br-ex,floating:br-floating

Create the Floating IP network after creating the Overcloud using the following commands:

$ neutron net-create ext-net --router:external --provider:physical_network
floating --provider:network_type vlan --provider:segmentation_id 105
$ neutron subnet-create --name ext-subnet --enable_dhcp=False --
allocation-pool start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 ext-net
10.1.2.0/24

7.4. CREATING THE OVERCLOUD PROVIDER NETWORK

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

77

A provider network is a network attached physically to a datacenter network existing outside of the
deployed Overcloud. This can be an existing infrastructure network or a network that provides external
access directly to VMs through routing instead of floating IPs.

When creating a provider network, you associate it with a physical network, which uses a bridge
mapping. This is similar to floating IP network creation. You add the provider network to both the
Controller and the Compute nodes because the Compute nodes attach VM virtual network interfaces
directly to the attached network interface.

For example, if the desired provider network is a VLAN on the br-ex bridge, use the following command
to add a provider network on VLAN 201:

$ neutron net-create --provider:physical_network datacentre --
provider:network_type vlan --provider:segmentation_id 201 --shared
provider_network

This command creates a shared network. It is also possible to specify a tenant instead of specifying --
shared. That network will only be available to the specified tenant. If you mark a provider network as
external, only the operator may create ports on that network.

Add a subnet to a provider network if you want Neutron tp provide DHCP services to the tenant VMs:

$ neutron subnet-create --name provider-subnet --enable_dhcp=True --
allocation-pool start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254
provider_network 10.9.101.0/24

7.5. VALIDATING THE OVERCLOUD

The Overcloud uses Tempest to conduct a series of integration tests. This procedure shows how to
validate your Overcloud using Tempest. If running this test from the Undercloud, ensure the Undercloud
host has access to the Overcloud's Internal API network. For example, add a temporary VLAN on the
Undercloud host to access the Internal API network (ID: 201) using the 172.16.0.201/24 address:

$ source ~/stackrc
$ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set interface
vlan201 type=internal
$ sudo ip l set dev vlan201 up; sudo ip addr add 172.16.0.201/24 dev
vlan201

Before running Tempest, check that the heat_stack_owner role exists in your Overcloud:

$ source ~/overcloudrc
$ openstack role list
+----------------------------------+------------------+
| ID | Name |
+----------------------------------+------------------+
| 6226a517204846d1a26d15aae1af208f | swiftoperator |
| 7c7eb03955e545dd86bbfeb73692738b | heat_stack_owner |
+----------------------------------+------------------+

If the role does not exist, create it:

$ keystone role-create --name heat_stack_owner

Director Installation and Usage

78

Set up a tempest directory in your stack user's home directory and install a local version of the
Tempest suite:

$ mkdir ~/tempest
$ cd ~/tempest
$ /usr/share/openstack-tempest-kilo/tools/configure-tempest-directory

This creates a local version of the Tempest tool set.

After the Overcloud creation process completed, the director created a file named ~/tempest-
deployer-input.conf. This file provides a set of Tempest configuration options relevant to your
Overcloud. Run the following command to use this file to configure Tempest:

$ tools/config_tempest.py --deployer-input ~/tempest-deployer-input.conf -
-debug --create identity.uri $OS_AUTH_URL identity.admin_password
$OS_PASSWORD --network-id d474fe1f-222d-4e32-9242-cd1fefe9c14b

The $OS_AUTH_URL and $OS_PASSWORD environment variables use values set from the overcloudrc
file sourced previously. The --network-id is the UUID of the external network created in Section 7.2,
“Creating the Overcloud External Network”.

IMPORTANT

The configuration script downloads the Cirros image for the Tempest tests. Make sure the
director has access to the Internet or uses a proxy with access to the Internet. Set the
http_proxy environment variable to use a proxy for command line operations.

Run the full suite of Tempest tests with the following command:

$ tools/run-tests.sh

NOTE

The full Tempest test suite might take hours. Alternatively, run part of the tests using the
'.*smoke' option.

$ tools/run-tests.sh '.*smoke'

Each test runs against the Overcloud and output displays each test and the result. You can see more
information about each test in the tempest.log file generated in the same directory. For example, the
output might show the following failed test:

 {2}
tempest.api.compute.servers.test_servers.ServersTestJSON.test_create_speci
fy_keypair [18.305114s] ... FAILED

This corresponds to a log entry that contains more information. Search the log for the last two parts of the
test namespace separated with a colon. In this example, search for
ServersTestJSON:test_create_specify_keypair in the log:

$ grep "ServersTestJSON:test_create_specify_keypair" tempest.log -A 4

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

79

2016-03-17 14:49:31.123 10999 INFO tempest_lib.common.rest_client [req-
a7a29a52-0a52-4232-9b57-c4f953280e2c] Request
(ServersTestJSON:test_create_specify_keypair): 500 POST
http://192.168.201.69:8774/v2/2f8bef15b284456ba58d7b149935cbc8/os-keypairs
4.331s
2016-03-17 14:49:31.123 10999 DEBUG tempest_lib.common.rest_client [req-
a7a29a52-0a52-4232-9b57-c4f953280e2c] Request - Headers: {'Content-Type':
'application/json', 'Accept': 'application/json', 'X-Auth-Token':
'<omitted>'}
 Body: {"keypair": {"name": "tempest-key-722237471"}}
 Response - Headers: {'status': '500', 'content-length': '128', 'x-
compute-request-id': 'req-a7a29a52-0a52-4232-9b57-c4f953280e2c',
'connection': 'close', 'date': 'Thu, 17 Mar 2016 04:49:31 GMT', 'content-
type': 'application/json; charset=UTF-8'}
 Body: {"computeFault": {"message": "The server has either erred or
is incapable of performing the requested operation.", "code": 500}}
_log_request_full /usr/lib/python2.7/site-
packages/tempest_lib/common/rest_client.py:414

NOTE

The -A 4 option shows the next four lines, which are usually the request header and
body and response header and body.

After completing the validation, remove any temporary connections to the Overcloud's Internal API. In
this example, use the following commands to remove the previously created VLAN on the Undercloud:

$ source ~/stackrc
$ sudo ovs-vsctl del-port vlan201

7.6. MODIFYING THE OVERCLOUD ENVIRONMENT

Sometimes you might aim to modify the Overcloud to add additional features or change the way it
operates. To modify the Overcloud, make modifications to your custom environment files and Heat
templates, then rerun the openstack overcloud deploy command from your initial Overcloud
creation. For example, if you created an Overcloud using Section 6.2.9, “Creating the Advanced
Overcloud”, you would rerun the following command:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e ~/templates/network-
environment.yaml -e ~/templates/storage-environment.yaml --control-scale 3
--compute-scale 3 --ceph-storage-scale 3 --control-flavor control --
compute-flavor compute --ceph-storage-flavor ceph-storage --ntp-server
pool.ntp.org --neutron-network-type vxlan --neutron-tunnel-types vxlan

The director checks the overcloud stack in Heat and updates each item in the stack with the
environtment files and Heat templates. It does not recreate the Overcloud, but rather changes the
existing Overcloud.

If you aim to include a new environment file, add it to the openstack overcloud deploy command
with a -e option. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-

Director Installation and Usage

80

heat-templates/environments/network-isolation.yaml -e ~/templates/network-
environment.yaml -e ~/templates/storage-environment.yaml -e
~/templates/new-environment.yaml --control-scale 3 --compute-scale 3 --
ceph-storage-scale 3 --control-flavor control --compute-flavor compute --
ceph-storage-flavor ceph-storage --ntp-server pool.ntp.org --neutron-
network-type vxlan --neutron-tunnel-types vxlan

This includes the new parameters and resources from the environment file into the stack.

IMPORTANT

It is advisable not to make manual modifications to the Overcloud's configuration as the
director might overwrite these modifications later.

7.7. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

Use the following procedure if you have an existing OpenStack environment and aim to migrate its virtual
machines to your Red Hat OpenStack Platform environment.

Create a new image by taking a snapshot of a running server and download the image.

$ nova image-create instance_name image_name
$ glance image-download image_name --file exported_vm.qcow2

Upload the exported image into the Overcloud and launch a new instance.

$ glance image-create --name imported_image --file exported_vm.qcow2 --
disk-format qcow2 --container-format bare
$ nova boot --poll --key-name default --flavor m1.demo --image
imported_image --nic net-id=net_id imported

IMPORTANT

Each VM disk has to be copied from the existing OpenStack environment and into the new
Red Hat OpenStack Platform. Snapshots using QCOW will lose their original layering
system.

7.8. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE

In some situations, you might perform maintenance on an Overcloud Compute node. To prevent
downtime, migrate the VMs on the Compute node to another Compute node in the Overcloud using the
following procedures.

The director configures all Compute nodes to provide secure migration. All Compute nodes also require
a shared SSH key to provide each host's nova user with access to other Compute nodes during the
migration process. The director creates this key automatically.

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

81

IMPORTANT

The latest update of Red Hat OpenStack Platform 7 includes patches required for live
migration capabilities. The director's core template collection did not include this
functionality in the initial release but is now included in the openstack-tripleo-heat-
templates-0.8.6-135.el7ost package and later versions.

Update your environment to use the Heat templates from the openstack-tripleo-
heat-templates-0.8.6-135.el7ost package or later versions.

For more information, see "Red Hat OpenStack Platform director (TripleO) CVE-2017-
2637 bug and Red Hat OpenStack Platform".

Procedure 7.1. Migrating Virtual Machines from the Compute Node

1. From the director, source the overcloudrc and obtain a list of the current Nova services:

$ source ~/stack/overcloudrc
$ nova service-list

2. Disable the nova-compute service on the node to migrate.

$ nova service-disable [hostname] nova-compute

This prevents new VMs from being scheduled on it.

3. Begin the process of migrating VMs off the node:

$ nova host-servers-migrate [hostname]

4. The current status of the migration process can be retrieved with the command:

$ nova migration-list

5. When migration of each VM completes, its state in Nova will change to VERIFY_RESIZE. This
gives you an opportunity to confirm that the migration completed successfully, or to roll it back.
To confirm the migration, use the command:

$ nova resize-confirm [server-name]

This migrates all VMs from a host. You can now perform maintenance on the host without any instance
downtime. To return the host to an enabled state, run the following command:

$ nova service-enable [hostname] nova-compute

7.9. PROTECTING THE OVERCLOUD FROM REMOVAL

To avoid accidental removal of the Overcloud with the heat stack-delete overcloud command,
Heat contains a set of policies to restrict certain actions. Edit the /etc/heat/policy.json and find
the following parameter:

Director Installation and Usage

82

https://access.redhat.com/node/3022771/

"stacks:delete": "rule:deny_stack_user"

Change it to:

"stacks:delete": "rule:deny_everybody"

Save the file.

This prevents removal of the Overcloud with the heat client. The allow removal of the Overcloud, revert
the policy to the original value.

7.10. REMOVING THE OVERCLOUD

The whole Overcloud can be removed when desired.

Procedure 7.2. Removing the Overcloud

1. Delete any existing Overcloud:

$ heat stack-delete overcloud

2. Confirm the deletion of the Overcloud:

$ heat stack-list

Deletion takes a few minutes.

Once the removal completes, follow the standard steps in the deployment scenarios to recreate your
Overcloud.

CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION

83

CHAPTER 8. SCALING THE OVERCLOUD
There might be situations where you need to add or remove nodes after the creation of the Overcloud.
For example, you might need to add more Compute nodes to the Overcloud. This situation requires
updating the Overcloud.

Use the following table to determine support for scaling each node type:

Table 8.1. Scale Support for Each Node Type

Node Type Scale Up? Scale Down? Notes

Controller N N

Compute Y Y

Ceph Storage Nodes Y N You must have at least 1 Ceph
Storage node from the initial
Overcloud creation.

Cinder Storage
Nodes

N N

Swift Storage Nodes N N

IMPORTANT

Make sure to leave at least 10 GB free space before scaling the Overcloud. This free
space accommodates image conversion and caching during the node provisioning
process.

8.1. ADDING COMPUTE OR CEPH STORAGE NODES

To add more nodes to the director's node pool, create a new JSON file (for example, newnodes.json)
containing the new node details to register:

{
 "nodes":[
 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.207"
 },
 {

Director Installation and Usage

84

 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.208"
 }
]
}

See Section 6.2.1, “Registering Nodes for the Advanced Overcloud” for an explanation of these
parameters.

Run the following command to register these nodes:

$ openstack baremetal import --json newnodes.json

After registering the new nodes, launch the introspection process for them. Use the following commands
for each new node:

$ ironic node-list
$ ironic node-set-maintenance [NODE UUID] true
$ openstack baremetal introspection start [NODE UUID]
$ ironic node-set-maintenance [NODE UUID] false

This detects and benchmarks the hardware properties of the nodes.

After the introspection process completes, tag each new node for its desired role. For example, for a
Compute node, use the following command:

$ ironic node-update [NODE UUID] add
properties/capabilities='profile:compute,boot_option:local'

Alternatively, you can automatically tag new nodes into desired roles using the Automated Health Check
(AHC) Tools. See Section 6.2.3, “Automatically Tagging Nodes with Automated Health Check (AHC)
Tools” for more information.

Set the boot images to use during the deployment. Find the UUIDs for the bm-deploy-kernel and bm-
deploy-ramdisk images:

$ glance image-list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
09b40e3d-0382-4925-a356-3a4b4f36b514	bm-deploy-kernel
765a46af-4417-4592-91e5-a300ead3faf6	bm-deploy-ramdisk
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

CHAPTER 8. SCALING THE OVERCLOUD

85

Set these UUIDs for the new node's deploy_kernel and deploy_ramdisk settings:

$ ironic node-update [NODE UUID] add driver_info/deploy_kernel='09b40e3d-
0382-4925-a356-3a4b4f36b514'
$ ironic node-update [NODE UUID] add driver_info/deploy_ramdisk='765a46af-
4417-4592-91e5-a300ead3faf6'

Scaling the Overcloud requires running the openstack overcloud deploy again with the desired
number of nodes for a role. For example, to scale to 5 Compute nodes:

$ openstack overcloud deploy --templates --compute-scale 5 [OTHER_OPTIONS]

This updates the entire Overcloud stack. Note that this only updates the stack. It does not delete the
Overcloud and replace the stack.

IMPORTANT

Make sure to include all environment files and options from your initial Overcloud creation.
This includes the same scale parameters for non-Compute nodes.

8.2. REMOVING COMPUTE NODES

There might be situations where you need to remove Compute nodes from the Overcloud. For example,
you might need to replace a problematic Compute node.

IMPORTANT

Before removing a Compute node from the Overcloud, migrate the workload from the
node to other Compute nodes. See Section 7.8, “Migrating VMs from an Overcloud
Compute Node” for more details.

Next, disable the node's Compute service on the Overcloud. This stops the node from scheduling new
instances.

$ source ~/stack/overcloudrc
$ nova service-list
$ nova service-disable [hostname] nova-compute
$ source ~/stack/stackrc

Removing Overcloud nodes requires an update to the overcloud stack in the director using the local
template files. First identify the UUID of the Overcloud stack:

$ heat stack-list

Identify the UUIDs of the nodes to delete:

$ nova list

Run the following command to delete the nodes from the stack and update the plan accordingly:

$ openstack overcloud node delete --stack [STACK_UUID] --templates -e

Director Installation and Usage

86

[ENVIRONMENT_FILE] [NODE1_UUID] [NODE2_UUID] [NODE3_UUID]

IMPORTANT

If you passed any extra environment files when you created the Overcloud, pass them
here again using the -e or --environment-file option to avoid making undesired
manual changes to the Overcloud.

IMPORTANT

Make sure the openstack overcloud node delete command runs to completion
before you continue. Use the openstack stack list command and check the
overcloud stack has reached an UPDATE_COMPLETE status.

Finally, remove the node's Compute service:

$ source ~/stack/overcloudrc
$ nova service-list
$ nova service-delete [service-id]
$ source ~/stack/stackrc

And remove the node's Open vSwitch agent:

$ source ~/stack/overcloudrc
$ neutron service-list
$ neutron service-delete [openvswitch-service-id]
$ source ~/stack/stackrc

You are now free to remove the node from the Overcloud and re-provision it for other purposes.

8.3. REPLACING COMPUTE NODES

If a Compute node fails, you can replace the node with a working one. Replacing a Compute node uses
the following process:

1. Migrate workload off the existing Compute node and shutdown the node. See Section 7.8,
“Migrating VMs from an Overcloud Compute Node” for this process.

2. Remove the Compute node from the Overcloud. See Section 8.2, “Removing Compute Nodes”
for this process.

3. Scale out the Overcloud with a new Compute node. See Chapter 8, Scaling the Overcloud for
this process.

This process ensures that a node can be replaced without affecting the availability of any instances.

8.4. REPLACING CONTROLLER NODES

In certain circumstances a Controller node in a high availability cluster might fail. In these situations, you
must remove the node from the cluster and replace it with a new Controller node. This also includes
ensuring the node connects to the other nodes in the cluster.

CHAPTER 8. SCALING THE OVERCLOUD

87

This section provides instructions on how to replace a Controller node. The process involves running the
openstack overcloud deploy command to update the Overcloud with a request to replace a
controller node. Note that this process is not completely automatic; during the Overcloud stack update
process, the openstack overcloud deploy command will at some point report a failure and halt the
Overcloud stack update. At this point, the process requires some manual intervention. Then the
openstack overcloud deploy process can continue.

IMPORTANT

The following procedure only applies to high availability environments. Do not use this
procedure if only using one Controller node.

8.4.1. Preliminary Checks

Before attempting to replace an Overcloud Controller node, it is important to check the current state of
your Red Hat OpenStack Platform environment. Checking the current state can help avoid complications
during the Controller replacement process. Use the following list of preliminary checks to determine if it
is safe to perform a Controller node replacement. Run all commands for these checks on the
Undercloud.

1. Check the current status of the overcloud stack on the Undercloud:

$ source stackrc
$ heat stack-list --show-nested

The overcloud stack and its subsequent child stacks should have either a CREATE_COMPLETE
or UPDATE_COMPLETE.

2. Perform a backup of the Undercloud databases:

$ mkdir /home/stack/backup
$ sudo mysqldump --all-databases --quick --single-transaction | gzip
> /home/stack/backup/dump_db_undercloud.sql.gz
$ sudo systemctl stop openstack-ironic-api.service openstack-ironic-
conductor.service openstack-ironic-discoverd.service openstack-
ironic-discoverd-dnsmasq.service
$ sudo cp /var/lib/ironic-discoverd/inspector.sqlite
/home/stack/backup
$ sudo systemctl start openstack-ironic-api.service openstack-
ironic-conductor.service openstack-ironic-discoverd.service
openstack-ironic-discoverd-dnsmasq.service

3. Check your Undercloud contains 10 GB free storage to accomodate for image caching and
conversion when provisioning the new node.

4. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to get the Pacemaker
status:

$ ssh heat-admin@192.168.0.47 'sudo pcs status'

The output should show all services running on the existing nodes and stopped on the failed
node.

Director Installation and Usage

88

5. Check the following parameters on each node of the Overcloud's MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2

Use the following command to check these parameters on each running Controller node
(respectively using 192.168.0.47 and 192.168.0.46 for IP addresses):

$ for i in 192.168.0.47 192.168.0.46 ; do echo "*** $i ***" ; ssh
heat-admin@$i "sudo mysql --exec=\"SHOW STATUS LIKE
'wsrep_local_state_comment'\" ; sudo mysql --exec=\"SHOW STATUS LIKE
'wsrep_cluster_size'\""; done

6. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to get the status

$ ssh heat-admin@192.168.0.47 "sudo rabbitmqctl cluster_status"

The running_nodes key should only show the two available nodes and not the failed node.

7. Disable fencing, if enabled. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to disable fencing:

$ ssh heat-admin@192.168.0.47 "sudo pcs property set stonith-
enabled=false"

Check the fencing status with the following command:

$ ssh heat-admin@192.168.0.47 "sudo pcs property show stonith-
enabled"

8. Check the nova-compute service on the director node:

$ sudo systemctl status openstack-nova-compute
$ nova hypervisor-list

The output should show all non-maintenance mode nodes as up.

9. Make sure all Undercloud services are running:

$ sudo systemctl -t service

8.4.2. Node Replacement

Identify the index of the node to remove. The node index is the suffix on the instance name from nova
list output.

[stack@director ~]$ nova list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+

CHAPTER 8. SCALING THE OVERCLOUD

89

861408be-4027-4f53-87a6-cd3cf206ba7a	overcloud-compute-0
0966e9ae-f553-447a-9929-c4232432f718	overcloud-compute-1
9c08fa65-b38c-4b2e-bd47-33870bff06c7	overcloud-compute-2
a7f0f5e1-e7ce-4513-ad2b-81146bc8c5af	overcloud-controller-0
cfefaf60-8311-4bc3-9416-6a824a40a9ae	overcloud-controller-1
97a055d4-aefd-481c-82b7-4a5f384036d2	overcloud-controller-2
+--------------------------------------+------------------------+

In this example, the aim is to remove the overcloud-controller-1 node and replace it with
overcloud-controller-3. First, set the node into maintenance mode so the director does not
reprovision the failed node. Correlate the instance ID from nova list with the node ID from ironic
node-list

[stack@director ~]$ ironic node-list
+--------------------------------------+------+-----------------------
---------------+
| UUID | Name | Instance UUID
|
+--------------------------------------+------+-----------------------
---------------+
| 36404147-7c8a-41e6-8c72-a6e90afc7584 | None | 7bee57cf-4a58-4eaf-b851-
2a8bf6620e48 |
| 91eb9ac5-7d52-453c-a017-c0e3d823efd0 | None | None
|
| 75b25e9a-948d-424a-9b3b-f0ef70a6eacf | None | None
|
| 038727da-6a5c-425f-bd45-fda2f4bd145b | None | 763bfec2-9354-466a-ae65-
2401c13e07e5 |
| dc2292e6-4056-46e0-8848-d6e96df1f55d | None | 2017b481-706f-44e1-852a-
2ee857c303c4 |
| c7eadcea-e377-4392-9fc3-cf2b02b7ec29 | None | 5f73c7d7-4826-49a5-b6be-
8bfd558f3b41 |
| da3a8d19-8a59-4e9d-923a-6a336fe10284 | None | cfefaf60-8311-4bc3-9416-
6a824a40a9ae |
| 807cb6ce-6b94-4cd1-9969-5c47560c2eee | None | c07c13e6-a845-4791-9628-
260110829c3a |
+--------------------------------------+------+-----------------------
---------------+

Set the node into maintenance mode:

[stack@director ~]$ ironic node-set-maintenance da3a8d19-8a59-4e9d-923a-
6a336fe10284 true

Tag the new node as with the control profile.

[stack@director ~]$ ironic node-update 75b25e9a-948d-424a-9b3b-
f0ef70a6eacf add
properties/capabilities='profile:control,boot_option:local'

Create a YAML file (~/templates/remove-controller.yaml) that defines the node index to
remove:

Director Installation and Usage

90

parameters:
 ControllerRemovalPolicies:
 [{'resource_list': ['1']}]

IMPORTANT

If replacing the node with index 0, edit the heat templates and change the bootstrap node
index and node validation index before starting replacement. Create a copy of the
director's Heat template collection (see Chapter 10, Creating Custom Configuration and
run the following command on the overcloud-without-mergepy.yaml file:

$ sudo sed -i "s/resource\.0/resource.1/g" ~/templates/my-
overcloud/overcloud-without-mergepy.yaml

This changes the node index for the following resources:

ControllerBootstrapNodeConfig:
 type: OS::TripleO::BootstrapNode::SoftwareConfig
 properties:
 bootstrap_nodeid: {get_attr: [Controller,
resource.0.hostname]}
 bootstrap_nodeid_ip: {get_attr: [Controller,
resource.0.ip_address]}

And:

AllNodesValidationConfig:
 type: OS::TripleO::AllNodes::Validation
 properties:
 PingTestIps:
 list_join:
 - ' '
 - - {get_attr: [Controller,
resource.0.external_ip_address]}
 - {get_attr: [Controller,
resource.0.internal_api_ip_address]}
 - {get_attr: [Controller,
resource.0.storage_ip_address]}
 - {get_attr: [Controller,
resource.0.storage_mgmt_ip_address]}
 - {get_attr: [Controller,
resource.0.tenant_ip_address]}

After identifying the node index, redeploy the Overcloud and include the remove-controller.yaml
environment file:

[stack@director ~]$ openstack overcloud deploy --templates --control-scale
3 -e ~/templates/remove-controller.yaml [OTHER OPTIONS]

CHAPTER 8. SCALING THE OVERCLOUD

91

IMPORTANT

If you passed any extra environment files or options when you created the Overcloud,
pass them again here to avoid making undesired changes to the Overcloud.

However, note that the -e ~/templates/remove-controller.yaml is only required
once in this instance.

The director removes the old node, creates a new one, and updates the Overcloud stack. You can check
the status of the Overcloud stack with the following command:

[stack@director ~]$ heat stack-list --show-nested

8.4.3. Manual Intervention

During the ControllerNodesPostDeployment stage, the Overcloud stack update halts with an
UPDATE_FAILED error at ControllerLoadBalancerDeployment_Step1. This is because some
Puppet modules do not support nodes replacement. This point in the process requires some manual
intervention. Follow these configuration steps:

1. Get a list of IP addresses for the Controller nodes. For example:

[stack@director ~]$ nova list
... +------------------------+ ... +-------------------------+
... | Name | ... | Networks |
... +------------------------+ ... +-------------------------+
... | overcloud-compute-0 | ... | ctlplane=192.168.0.44 |
... | overcloud-controller-0 | ... | ctlplane=192.168.0.47 |
... | overcloud-controller-2 | ... | ctlplane=192.168.0.46 |
... | overcloud-controller-3 | ... | ctlplane=192.168.0.48 |
... +------------------------+ ... +-------------------------+

2. Check the nodeid value of the removed node in the /etc/corosync/corosync.conf file on
an existing node. For example, the existing node is overcloud-controller-0 at
192.168.0.47:

[stack@director ~]$ ssh heat-admin@192.168.0.47 "sudo cat
/etc/corosync/corosync.conf"

This displays a nodelist that contains the ID for the removed node (overcloud-
controller-1):

nodelist {
 node {
 ring0_addr: overcloud-controller-0
 nodeid: 1
 }
 node {
 ring0_addr: overcloud-controller-1
 nodeid: 2
 }
 node {
 ring0_addr: overcloud-controller-2

Director Installation and Usage

92

 nodeid: 3
 }
}

Note the nodeid value of the removed node for later. In this example, it is 2.

3. Delete the failed node from the Corosync configuration on each node and restart Corosync. For
this example, log into overcloud-controller-0 and overcloud-controller-2 and run
the following commands:

[stack@director] ssh heat-admin@192.168.201.47 "sudo pcs cluster
localnode remove overcloud-controller-1"
[stack@director] ssh heat-admin@192.168.201.47 "sudo pcs cluster
reload corosync"
[stack@director] ssh heat-admin@192.168.201.46 "sudo pcs cluster
localnode remove overcloud-controller-1"
[stack@director] ssh heat-admin@192.168.201.46 "sudo pcs cluster
reload corosync"

4. Log into one of the remaining nodes and delete the node from the cluster with the crm_node
command:

[stack@director] ssh heat-admin@192.168.201.47
[heat-admin@overcloud-controller-0 ~]$ sudo crm_node -R overcloud-
controller-1 --force

Stay logged into this node.

5. Delete the failed node from the RabbitMQ cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo rabbitmqctl
forget_cluster_node rabbit@overcloud-controller-1

6. Delete the failed node from MongoDB. First, find the IP address for the node's Interal API
connection.

[heat-admin@overcloud-controller-0 ~]$ sudo netstat -tulnp | grep
27017
tcp 0 0 192.168.0.47:27017 0.0.0.0:*
LISTEN 13415/mongod

Check that the node is the primary replica set:

[root@overcloud-controller-0 ~]# echo "db.isMaster()" | mongo --host
192.168.0.47:27017
MongoDB shell version: 2.6.11
connecting to: 192.168.0.47:27017/echo
{
 "setName" : "tripleo",
 "setVersion" : 1,
 "ismaster" : true,
 "secondary" : false,
 "hosts" : [
 "192.168.0.47:27017",

CHAPTER 8. SCALING THE OVERCLOUD

93

 "192.168.0.46:27017",
 "192.168.0.45:27017"
],
 "primary" : "192.168.0.47:27017",
 "me" : "192.168.0.47:27017",
 "electionId" : ObjectId("575919933ea8637676159d28"),
 "maxBsonObjectSize" : 16777216,
 "maxMessageSizeBytes" : 48000000,
 "maxWriteBatchSize" : 1000,
 "localTime" : ISODate("2016-06-09T09:02:43.340Z"),
 "maxWireVersion" : 2,
 "minWireVersion" : 0,
 "ok" : 1
}
bye

This should indicate if the current node is the primary. If not, use the IP address of the node
indicated in the primary key.

Connect to MongoDB on the primary node:

[heat-admin@overcloud-controller-0 ~]$ mongo --host 192.168.0.47
MongoDB shell version: 2.6.9
connecting to: 192.168.0.47:27017/test
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
http://docs.mongodb.org/
Questions? Try the support group
http://groups.google.com/group/mongodb-user
tripleo:PRIMARY>

Check the status of the MongoDB cluster:

tripleo:PRIMARY> rs.status()

Identify the node using the _id key and remove the failed node using the name key. In this case,
we remove Node 1, which has 192.168.0.45:27017 for name:

tripleo:PRIMARY> rs.remove('192.168.0.45:27017')

IMPORTANT

You must run the command against the PRIMARY replica set. If you see the
following message:

"replSetReconfig command must be sent to the current
replica set primary."

Relog into MongoDB on the node designated as PRIMARY.

Director Installation and Usage

94

NOTE

The following output is normal when removing the failed node's replica set:

2016-05-07T03:57:19.541+0000 DBClientCursor::init call()
failed
2016-05-07T03:57:19.543+0000 Error: error doing query:
failed at src/mongo/shell/query.js:81
2016-05-07T03:57:19.545+0000 trying reconnect to
192.168.0.47:27017 (192.168.0.47) failed
2016-05-07T03:57:19.547+0000 reconnect 192.168.0.47:27017
(192.168.0.47) ok

Exit MongoDB:

tripleo:PRIMARY> exit

7. Update list of nodes in the Galera cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource update
galera wsrep_cluster_address=gcomm://overcloud-controller-
0,overcloud-controller-3,overcloud-controller-2

8. Add the new node to the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster node add
overcloud-controller-3

9. Check the /etc/corosync/corosync.conf file on each node. If the nodeid of the new
node is the same as the removed node, update the value to a new nodeid value. For example,
the /etc/corosync/corosync.conf file contains an entry for the new node (overcloud-
controller-3):

nodelist {
 node {
 ring0_addr: overcloud-controller-0
 nodeid: 1
 }
 node {
 ring0_addr: overcloud-controller-2
 nodeid: 3
 }
 node {
 ring0_addr: overcloud-controller-3
 nodeid: 2
 }
}

Note that in this example, the new node uses the same nodeid of the removed node. Update
this value to a unused node ID value. For example:

node {

CHAPTER 8. SCALING THE OVERCLOUD

95

 ring0_addr: overcloud-controller-3
 nodeid: 4
}

Update this nodeid value on each Controller node's /etc/corosync/corosync.conf file,
including the new node.

10. Restart the Corosync service on the existing nodes only. For example, on overcloud-
controller-0:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster reload
corosync

And on overcloud-controller-2:

[heat-admin@overcloud-controller-2 ~]$ sudo pcs cluster reload
corosync

Do not run this command on the new node.

11. Start the new Controller node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster start
overcloud-controller-3

12. Enable the keystone service on the new node. Copy the /etc/keystone directory from a
remaining node to the director host:

[heat-admin@overcloud-controller-0 ~]$ sudo -i
[root@overcloud-controller-0 ~]$ scp -r /etc/keystone
stack@192.168.0.1:~/.

Log in to the new Controller node. Remove the /etc/keystone directory from the new
Controller node and copy the keystone files from the director host:

[heat-admin@overcloud-controller-3 ~]$ sudo -i
[root@overcloud-controller-3 ~]$ rm -rf /etc/keystone
[root@overcloud-controller-3 ~]$ scp -r stack@192.168.0.1:~/keystone
/etc/.
[root@overcloud-controller-3 ~]$ chown -R keystone: /etc/keystone
[root@overcloud-controller-3 ~]$ chown root
/etc/keystone/logging.conf /etc/keystone/default_catalog.templates

Edit /etc/keystone/keystone.conf and set the admin_bind_host and
public_bind_host parameters to new Controller node's IP address. To find these IP
addresses, use the ip addr command and look for the IP address within the following
networks:

admin_bind_host - Provisioning network

public_bind_host - Internal API network

Director Installation and Usage

96

NOTE

These networks might differ if you deployed the Overcloud using a custom
ServiceNetMap parameter.

For example, if the Provisioning network uses the 192.168.0.0/24 subnet and the Internal API
uses the 172.17.0.0/24 subnet, use the following commands to find the node’s IP addresses on
those networks:

[root@overcloud-controller-3 ~]$ ip addr | grep "192\.168\.0\..*/24"
[root@overcloud-controller-3 ~]$ ip addr | grep "172\.17\.0\..*/24"

13. Enable and restart some services through Pacemaker. The cluster is currently in maintenance
mode and you will need to temporarily disable it to enable the service. For example:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs property set
maintenance-mode=false --wait

14. Wait until the Galera service starts on all nodes.

[heat-admin@overcloud-controller-3 ~]$ sudo pcs status | grep galera
-A1
Master/Slave Set: galera-master [galera]
Masters: [overcloud-controller-0 overcloud-controller-2 overcloud-
controller-3]

If need be, perform a `cleanup` on the new node:

 [heat-admin@overcloud-controller-3 ~]$ sudo pcs resource
cleanup galera overcloud-controller-3

15. Wait until the Keystone service starts on all nodes.

[heat-admin@overcloud-controller-3 ~]$ sudo pcs status | grep
keystone -A1
Clone Set: openstack-keystone-clone [openstack-keystone]
Started: [overcloud-controller-0 overcloud-controller-2 overcloud-
controller-3]

If need be, perform a `cleanup` on the new node:

 [heat-admin@overcloud-controller-3 ~]$ sudo pcs resource
cleanup openstack-keystone-clone overcloud-controller-3

16. Switch the cluster back into maintenance mode:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs property set
maintenance-mode=true --wait

The manual configuration is complete. Re-run the Overcloud deployment command to continue the stack
update:

CHAPTER 8. SCALING THE OVERCLOUD

97

[stack@director ~]$ openstack overcloud deploy --templates --control-scale
3 [OTHER OPTIONS]

IMPORTANT

If you passed any extra environment files or options when you created the Overcloud,
pass them again here to avoid making undesired changes to the Overcloud.

However, note that the remove-controller.yaml file is no longer needed.

8.4.4. Finalizing Overcloud Services

After the Overcloud stack update completes, some final configuration is required. Log in to one of the
Controller nodes and refresh any stopped services in Pacemaker:

[heat-admin@overcloud-controller-0 ~]$ for i in `sudo pcs status|grep -B2
Stop |grep -v "Stop\|Start"|awk -F"[" '/\[/ {print
substr($NF,0,length($NF)-1)}'`; do echo $i; sudo pcs resource cleanup $i;
done

Perform a final status check to make sure services are running correctly:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource cleanup command to restart them
after resolving them.

Enable fencing if you disabled it during the node replacement. For example, if 192.168.0.47 is the IP
address of a running Controller node, use the following command to enable fencing:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs property set stonith-
enabled=true

Exit to the director

[heat-admin@overcloud-controller-0 ~]$ exit

8.4.5. Finalizing Overcloud Network Agents

Source the overcloudrc file so that you can interact with the Overcloud. Check your routers to make
sure the L3 agents are properly hosting the routers in your Overcloud environment. In this example, we
use a router with the name r1:

[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ neutron l3-agent-list-hosting-router r1

This list might still show the old node instead of the new node. To replace it, list the L3 network agents in
your environment:

Director Installation and Usage

98

[stack@director ~]$ neutron agent-list | grep "neutron-l3-agent"

Identify the UUID for the agents on the new node and the old node. Add the router to the agent on the
new node and remove the router from old node. For example:

[stack@director ~]$ neutron l3-agent-router-add fd6b3d6e-7d8c-4e1a-831a-
4ec1c9ebb965 r1
[stack@director ~]$ neutron l3-agent-router-remove b40020af-c6dd-4f7a-
b426-eba7bac9dbc2 r1

Perform a final check on the router and make all are active:

[stack@director ~]$ neutron l3-agent-list-hosting-router r1

Delete the existing Neutron agents that point to old Controller node. For example:

[stack@director ~]$ neutron agent-list -F id -F host | grep overcloud-
controller-1
| ddae8e46-3e8e-4a1b-a8b3-c87f13c294eb | overcloud-controller-
1.localdomain |
[stack@director ~]$ neutron agent-delete ddae8e46-3e8e-4a1b-a8b3-
c87f13c294eb

8.4.6. Finalizing Compute Services

Compute services for the removed node still exist in the Overcloud and require removal. Source the
overcloudrc file so that you can interact with the Overcloud. Check the compute services for the
removed node:

[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ nova service-list | grep "overcloud-controller-
1.localdomain"

Remove the compute services for the node. For example, if the nova-scheduler service for
overcloud-controller-1.localdomain has an ID of 5, run the following command:

[stack@director ~]$ nova service-delete 5

Perform this task for each service of the removed node.

Check the openstack-nova-consoleauth service on the new node.

[stack@director ~]$ nova service-list | grep consoleauth

If the service is not running, log into a Controller node and restart the service:

[stack@director] ssh heat-admin@192.168.201.47
[heat-admin@overcloud-controller-0 ~]$ pcs resource restart openstack-
nova-consoleauth

8.4.7. Conclusion

CHAPTER 8. SCALING THE OVERCLOUD

99

The failed Controller node and its related services are now replaced with a new node.

8.5. REPLACING CEPH STORAGE NODES

A situation might occur when a Ceph Storage node fails. In this situation, you must ensure to disable and
rebalance the faulty node before removing it from the Overcloud to ensure no data loss. This procedure
explains the process for replacing a Ceph Storage node.

NOTE

This procedure uses steps from the Red Hat Ceph Storage Administration Guide to
manually remove Ceph Storage nodes. For more in-depth information about manual
removal of Ceph Storage nodes, see Chapter 15. Removing OSDs (Manual) from the Red
Hat Ceph Storage Administration Guide.

1. Log into either a Controller node or a Ceph Storage node as the heat-admin user. The
director's stack user has an SSH key to access the heat-admin user.

2. List the OSD tree and find the OSDs for your node. For example, your node to remove might
contain the following OSDs:

-2 0.09998 host overcloud-cephstorage-0
0 0.04999 osd.0 up 1.00000
1.00000
1 0.04999 osd.1 up 1.00000
1.00000

3. Disable the OSDs on the Ceph Storage node. In this case, the OSD IDs are 0 and 1.

[heat-admin@overcloud-controller-0 ~]$ sudo ceph osd out 0
[heat-admin@overcloud-controller-0 ~]$ sudo ceph osd out 1

The Ceph Storage cluster begins rebalancing. Wait for this process to complete. You can follow
the status using the following command:

[heat-admin@overcloud-controller-0 ~]$ sudo ceph -w

4. Once the Ceph cluster completes rebalancing, log into the faulty Ceph Storage node as the
heat-admin user and stop the node.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo /etc/init.d/ceph stop
osd.0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo /etc/init.d/ceph stop
osd.1

5. Remove the Ceph Storage node from the CRUSH map so that it no longer receives data.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd crush remove
osd.0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd crush remove
osd.1

Director Installation and Usage

100

https://access.redhat.com/documentation/en/red-hat-ceph-storage/version-1.3/red-hat-ceph-storage-13-red-hat-ceph-administration-guide/#removing-osds-manual

6. Remove the OSD authentication key.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph auth del osd.0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph auth del osd.1

7. Remove the OSD from the cluster.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd rm 0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd rm 1

8. Leave the node and return to the director host as the stack user.

[heat-admin@overcloud-cephstorage-0 ~]$ exit
[stack@director ~]$

9. Disable the Ceph Storage node so the director does not reprovision it.

[stack@director ~]$ ironic node-list
[stack@director ~]$ ironic node-set-maintenance [UUID] true

10. Removing a Ceph Storage node requires an update to the overcloud stack in the director
using the local template files. First identify the UUID of the Overcloud stack:

$ heat stack-list

Identify the UUIDs of the Ceph Storage node to delete:

$ nova list

Run the following command to delete the nodes from the stack and update the plan accordingly:

$ openstack overcloud node delete --stack [STACK_UUID] --templates -
e [ENVIRONMENT_FILE] [NODE1_UUID] [NODE2_UUID] [NODE3_UUID]

IMPORTANT

If you passed any extra environment files when you created the Overcloud, pass
them again here using the -e or --environment-file option to avoid making
undesired changes to the Overcloud.

Wait until the stack completes its update. Monitor the stack update using the heat stack-
list --show-nested.

11. Follow the procedure in Section 8.1, “Adding Compute or Ceph Storage Nodes” to add new
nodes to the director's node pool and deploy them as Ceph Storage nodes. Use the --ceph-
storage-scale to define the total number of Ceph Storage nodes in the Overcloud. For
example, if you removed a faulty node from a three node cluster and you want to replace it, use
--ceph-storage-scale 3 to return the number of Ceph Storage nodes to its original value:

$ openstack overcloud deploy --templates --ceph-storage-scale 3 -e
[ENVIRONMENT_FILES]

CHAPTER 8. SCALING THE OVERCLOUD

101

IMPORTANT

If you passed any extra environment files when you created the Overcloud, pass
them again here using the -e or --environment-file option to avoid making
undesired changes to the Overcloud.

The director provisions the new node and updates the entire stack with the new node's details

12. Log into a Controller node as the heat-admin user and check the status of the Ceph Storage
node. For example:

[heat-admin@overcloud-controller-0 ~]$ sudo ceph status

Confirm that the value in the osdmap section matches the number of desired nodes in your
cluster.

The failed Ceph Storage node has now been replaced with a new node.

Director Installation and Usage

102

CHAPTER 9. REBOOTING THE OVERCLOUD

Some situations require a reboot of nodes in the undercloud and overcloud. The following procedures
show how to reboot different node types. Be aware of the following notes:

If rebooting all nodes in one role, it is advisable to reboot each node individually. This helps
retain services for that role during the reboot.

If rebooting all nodes in your OpenStack Platform environment, use the following list to guide the
reboot order:

Recommended Node Reboot Order

1. Reboot the director

2. Reboot Controller nodes

3. Reboot Ceph Storage nodes

4. Reboot Compute nodes

5. Reboot object Storage nodes

9.1. REBOOTING THE DIRECTOR

To reboot the director node, follow this process:

1. Reboot the node:

$ sudo reboot

2. Wait until the node boots.

When the node boots, check the status of all services:

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

Verify the existence of your Overcloud and its nodes:

$ source ~/stackrc
$ nova list
$ ironic node-list
$ heat stack-list

9.2. REBOOTING CONTROLLER NODES

To reboot the Controller nodes, follow this process:

1. Select a node to reboot. Log into it and reboot it:

$ sudo reboot

CHAPTER 9. REBOOTING THE OVERCLOUD

103

The remaining Controller Nodes in the cluster retain the high availability services during the
reboot.

2. Wait until the node boots.

3. Log into the node and check the cluster status:

$ sudo pcs status

The node rejoins the cluster.

NOTE

If any services fail after the reboot, run sudo pcs resource cleanup, which
cleans the errors and sets the state of each resource to Started. If any errors
persist, contact Red Hat and request guidance and assistance.

4. Log out of the node, select the next Controller Node to reboot, and repeat this procedure until
you have rebooted all Controller Nodes.

9.3. REBOOTING CEPH STORAGE NODES

To reboot the Ceph Storage nodes, follow this process:

1. Select the first Ceph Storage node to reboot and log into it.

2. Disable Ceph Storage cluster rebalancing temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo ceph -s

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to make sure the cluster reports HEALTH_OK:

Director Installation and Usage

104

$ sudo ceph status

9.4. REBOOTING COMPUTE NODES

Reboot each Compute node individually and ensure zero downtime of instances in your OpenStack
Platform environment. This involves the following workflow:

1. Select a Compute node to reboot

2. Migrate its instances to another Compute node

3. Reboot the empty Compute node

From the undercloud, list all Compute nodes and their UUIDs:

$ source ~/stackrc
$ nova list | grep "compute"

Select a Compute node to reboot and first migrate its instances using the following process:

1. From the undercloud, select a Compute Node to reboot and disable it:

$ source ~/overcloudrc
$ nova service-list
$ nova service-disable [hostname] nova-compute

2. List all instances on the Compute node:

$ nova list --host [hostname]

3. Select a second Compute Node to act as the target host for migrating instances. This host
needs enough resources to host the migrated instances. From the undercloud, migrate each
instance from the disabled host to the target host.

$ nova live-migration [instance-name] [target-hostname]
$ nova migration-list
$ nova resize-confirm [instance-name]

4. Repeat this step until you have migrated all instances from the Compute Node.

IMPORTANT

For full instructions on configuring and migrating instances, see Section 7.8, “Migrating
VMs from an Overcloud Compute Node”.

Reboot the Compute node using the following process

1. Log into the Compute Node and reboot it:

$ sudo reboot

CHAPTER 9. REBOOTING THE OVERCLOUD

105

2. Wait until the node boots.

3. Enable the Compute Node again:

$ source ~/overcloudrc
$ nova service-enable [hostname] nova-compute

4. Select the next node to reboot.

9.5. REBOOTING OBJECT STORAGE NODES

To reboot the Object Storage nodes, follow this process:

1. Select a Object Storage node to reboot. Log into it and reboot it:

$ sudo reboot

2. Wait until the node boots.

3. Log into the node and check the status:

$ sudo systemctl list-units "openstack-swift*"

4. Log out of the node and repeat this process on the next Object Storage node.

Director Installation and Usage

106

CHAPTER 10. CREATING CUSTOM CONFIGURATION
In some cases, you might want to provide configuration for additional applications that integrate with your
Red Hat Enterprise Linux OpenStack Platform environment. This custom configuration requires
additional Heat templates included with your Overcloud stack. This section examines some of the
custom configuration operations available to you.

10.1. CUSTOMIZING CONFIGURATION ON FIRST BOOT

The director provides a mechanism to perform configuration on all nodes upon the initial creation of the
Overcloud. The director achieves this through cloud-init, which you can call using the
OS::TripleO::NodeUserData resource type.

In this example, In this example, we aim to update the nameserver with a custom IP address on all
nodes. We first create a basic Heat template (/home/stack/templates/nameserver.yaml) that
runs a script to append each node's resolv.conf with a specific nameserver. We use the
OS::TripleO::MultipartMime resource type to send the configuration script.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

resources:
 userdata:
 type: OS::Heat::MultipartMime
 properties:
 parts:
 - config: {get_resource: nameserver_config}

 nameserver_config:
 type: OS::Heat::SoftwareConfig
 properties:
 config: |
 #!/bin/bash
 echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:
 OS::stack_id:
 value: {get_resource: userdata}

Next, create an environment file (/home/stack/templates/firstboot.yaml) that registers our
Heat template as the OS::TripleO::NodeUserData resource type.

resource_registry:
 OS::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

To add the first boot configuration, add the environment file to the stack when first creating the
Overcloud. For example:

$ openstack overcloud deploy --templates -e
/home/stack/templates/firstboot.yaml

The -e applies the environment file to the Overcloud stack.

CHAPTER 10. CREATING CUSTOM CONFIGURATION

107

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusions of these templates, such as updating the Overcloud stack, does not run these
scripts.

IMPORTANT

You can only register the OS::TripleO::NodeUserData to only one Heat template.
Subsequent usage overrides the Heat template to use.

10.2. CUSTOMIZING OVERCLOUD PRE-CONFIGURATION

The Overcloud uses Puppet for core configuration of OpenStack components. The director provides a
set of resources to provide custom configuration after the first boot completes and before the core
configuration begins. These resources include:

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to CephStorage nodes before the core Puppet configuration.

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, we first create a basic Heat template
(/home/stack/templates/nameserver.yaml) that runs a script to append each node's
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 ExtraPreConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |

Director Installation and Usage

108

 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 ExtraPreDeployment:
 type: OS::Heat::SoftwareDeployment
 properties:
 config: {get_resource: ExtraPreConfig}
 server: {get_param: server}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on
changes
 value: {get_attr: [ExtraPreDeployment, deploy_stdout]}

In this example, the `resources` section contains the following:

ExtraPreConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

ExtraPreDeployments

This executes a software configuration, which is the software configuration from the
ExtraPreConfig resource. Note the following:

The server parameter is provided by the parent template and is mandatory in templates for
this hook.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers our
Heat template as the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
 OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

To add the configuration, add the environment file to the stack when creating or updating the Overcloud.
For example:

$ openstack overcloud deploy --templates -e
/home/stack/templates/pre_config.yaml

CHAPTER 10. CREATING CUSTOM CONFIGURATION

109

This adds the configuration to all nodes before the core configuration begins on either the initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register these resources to only one Heat template each. Subsequent usage
overrides the Heat template to use per resource.

10.3. CUSTOMIZING OVERCLOUD POST-CONFIGURATION

A situation might occur where you have completed the creation of your Overcloud but want to add
additional configuration, either on initial creation or on a subsequent update of the Overcloud. In this
case, you use the OS::TripleO::NodeExtraConfigPost resource to apply configuration using the
standard OS::Heat::SoftwareConfig types. This applies additional configuration after the main
Overcloud configuration completes.

In this example, we first create a basic Heat template
(/home/stack/templates/nameserver.yaml) that runs a script to append each node's
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 servers:
 type: json
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 ExtraConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 ExtraDeployments:
 type: OS::Heat::SoftwareDeployments
 properties:
 config: {get_resource: ExtraConfig}
 servers: {get_param: servers}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

Director Installation and Usage

110

In this example, the `resources` section contains the following:

ExtraConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

ExtraDeployments

This executes a software configuration, which is the software configuration from the ExtraConfig
resource. Note the following:

The servers parameter is provided by the parent template and is mandatory in templates
for this hook.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Next, create an environment file (/home/stack/templates/post_config.yaml) that registers our
Heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

To add the configuration, add the environment file to the stack when creating or updating the Overcloud.
For example:

$ openstack overcloud deploy --templates -e
/home/stack/templates/post_config.yaml

This adds the configuration to all nodes after the core configuration completes on either initial Overcloud
creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfigPost to only one Heat
template. Subsequent usage overrides the Heat template to use.

10.4. CUSTOMIZING PUPPET CONFIGURATION DATA

There are two methods of passing Puppet configuration data to customize aspects of the Overcloud.

The Heat template collection contains a set of parameters to pass extra configuration to certain node
types. These parameters save the configuration as hieradata for the node's Puppet configuration. These
parameters are:

ExtraConfig

Configuration to add to all nodes.

CHAPTER 10. CREATING CUSTOM CONFIGURATION

111

controllerExtraConfig

Configuration to add to all Controller nodes.

NovaComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes

CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes

To add extra configuration to the post-deployment configuration process, create an environment file that
contains these parameters in the parameter_defaults section. For example, to increase the
reserved memory for Compute hosts to 1024 MB and set the VNC keymap to Japanese:

parameter_defaults:
 NovaComputeExtraConfig:
 nova::compute::reserved_host_memory: 1024
 nova::compute::vnc_keymap: ja

Include this environment file when running openstack overcloud deploy.

IMPORTANT

You can only define each parameter once. Subsequent usage overrides previous values.

10.5. APPLYING CUSTOM PUPPET CONFIGURATION

In certain circumstances, you might need to install and configure some additional components to your
Overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes on after the
main configuration completes. As a basic example, you might aim to install motd to each node. The
process for accomplishing is to first create a Heat template
(/home/stack/templates/custom_puppet_config.yaml) that launches Puppet configuration.

heat_template_version: 2014-10-16

description: >
 Run Puppet extra configuration to set new MOTD

parameters:
 servers:
 type: json

resources:
 ExtraPuppetConfig:
 type: OS::Heat::SoftwareConfig

Director Installation and Usage

112

 properties:
 config: {get_file: motd.pp}
 group: puppet
 options:
 enable_hiera: True
 enable_facter: False

 ExtraPuppetDeployments:
 type: OS::Heat::SoftwareDeployments
 properties:
 config: {get_resource: ExtraPuppetConfig}
 servers: {get_param: servers}

This includes the /home/stack/templates/motd.pp within the template and passes it to nodes for
configuration. The motd.pp file itself contains our Puppet classes to install and configure motd.

Next, create an environment file (/home/stack/templates/puppet_post_config.yaml) that
registers our Heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost:
/home/stack/templates/custom_puppet_config.yaml

And finally include this environment file when creating or updating the Overcloud stack:

$ openstack overcloud deploy --templates -e
/home/stack/templates/puppet_post_config.yaml

This applies the configuration from motd.pp to all nodes in the Overcloud.

10.6. USING CUSTOMIZED OVERCLOUD HEAT TEMPLATES

When creating the Overcloud, the director uses a default set of Heat templates. However, it is possible to
copy the standard Heat templates into a local directory and use these templates for creating your
Overcloud. This is useful for customizing specific parts of your Overcloud.

Copy the Heat template collection in /usr/share/openstack-tripleo-heat-templates to the
stack user's templates directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates ~/templates/my-
overcloud

This creates a clone of the Overcloud Heat templates. When running openstack overcloud
deploy, we use the --templates option to specify our local template directory. This occurs later in
this scenario (see Section 6.2.9, “Creating the Advanced Overcloud”).

NOTE

The director uses the default template directory (/usr/share/openstack-tripleo-
heat-templates) if you specify the --templates option without a directory.

CHAPTER 10. CREATING CUSTOM CONFIGURATION

113

IMPORTANT

Red Hat provides updates to the Heat template collection over subsequent releases.
Using a modified template collection can lead to a divergence between your custom copy
and the original copy in /usr/share/openstack-tripleo-heat-templates. Red
Hat recommends using the methods from the following section instead of modifying the
Heat template collection:

Section 10.1, “Customizing Configuration on First Boot”

Section 10.2, “Customizing Overcloud Pre-Configuration”

Section 10.3, “Customizing Overcloud Post-Configuration”

Section 10.4, “Customizing Puppet Configuration Data”

If creating a copy of the Heat template collection, you should track changes to the
templates using a version control system such as git.

Director Installation and Usage

114

CHAPTER 11. UPDATING THE ENVIRONMENT
This chapter explores how to update your environment after creating your Overcloud of choice. This
includes updating aspects of both the Undercloud and Overcloud.

11.1. UPDATING DIRECTOR PACKAGES

The director relies on standard RPM methods to update your environment. This involves ensuring your
director's host uses the latest packages through yum:

$ sudo yum update

IMPORTANT

After the package update, make sure all OpenStack services are running properly on the
director. Check the ironic-api and ironic-discoverd services are running. If not,
please start them:

$ sudo systemctl restart openstack-ironic-api openstack-ironic-
discoverd

Likewise, heat-engine on the Undercloud can fail to start if its database is unavailable.
If this occurs, restart heat-engine manually after the update:

$ sudo systemctl start openstack-heat-engine.service

11.2. UPDATING OVERCLOUD AND DISCOVERY IMAGES

This procedure ensures you have the latest images for node discovery and Overcloud deployment.
Obtain these new images from the Red Hat Enterprise Linux OpenStack Platform downloads page on the
Red Hat Customer Portal at https://access.redhat.com/downloads/content/191/ver=7.0/rhel---
7/7.0/x86_64/product-downloads. See Section 3.7, “Obtaining Images for Overcloud Nodes” for more
information on obtaining and extracting the image archives.

Download these images to the images directory on the stack user's home (/home/stack/images).
After obtaining these images, follow this procedure to replace the images:

Procedure 11.1. Updating Images

1. Remove the existing images from the director.

$ openstack image list
$ openstack image delete [IMAGE-UUID] [IMAGE-UUID] [IMAGE-UUID]
[IMAGE-UUID] [IMAGE-UUID]

2. Import the latest images into the director.

$ cd ~/images
$ openstack overcloud image upload --update-existing
$ openstack baremetal configure boot

CHAPTER 11. UPDATING THE ENVIRONMENT

115

https://access.redhat.com/downloads/content/191/ver=7/rhel---7/7/x86_64/product-downloads

The director is now updated and using the latest packages and images. You do not need to restart any
services after the update.

11.3. UPDATING THE OVERCLOUD

This section details the steps requires to update the Overcloud. Make sure to follow each section in
order and only apply the sections relevant to your environment.

11.3.1. Configuration Agent

IMPORTANT

This section is only required if updating from Red Hat Enterprise Linux OpenStack
Platform 7.0 or 7.1 to Red Hat Enterprise Linux OpenStack Platform 7.2 and later.

Due to a known issue (see BZ#1278181), the Overcloud requires some manual configuration of its
configuration agent. This involves copying a new version of the configuration agent script from the
director to each node in the Overcloud.

Log in as the stack user on the director host and source the Undercloud configuration:

$ source ~/stackrc

Copy the configuration agent (55-heat-config) to each Overcloud node. Use the following command
to do this for all hosts:

$ for i in `nova list|awk '/Running/ {print $(NF-1)}'|awk -F"=" '{print
$NF}'`; do echo $i; scp -o StrictHostKeyChecking=no /usr/share/openstack-
heat-templates/software-config/elements/heat-config/os-refresh-
config/configure.d/55-heat-config heat-admin@${i}: ; ssh -o
StrictHostKeyChecking=no heat-admin@${i} 'sudo /bin/bash -c "cp
/home/heat-admin/55-heat-config /usr/libexec/os-refresh-
config/configure.d/55-heat-config"'; done

This ensures the configuration agent is up-to-date.

This Overcloud also needs to recreate some post-deployment files. The director includes a script to
achieve this. Copy and execute the heat-config-rebuild-deployed script on each node. Use the
following command to do this for all nodes:

$ for i in `nova list|awk '/Running/ {print $(NF-1)}'|awk -F"=" '{print
$NF}'`; do echo $i; scp -o StrictHostKeyChecking=no /usr/share/openstack-
heat-templates/software-config/elements/heat-config/bin/heat-config-
rebuild-deployed heat-admin@${i}: ; ssh -o StrictHostKeyChecking=no heat-
admin@${i} 'sudo /bin/bash -c "mkdir -p /usr/share/openstack-heat-
templates/software-config/elements/heat-config/bin ; cp heat-config-
rebuild-deployed /usr/share/openstack-heat-templates/software-
config/elements/heat-config/bin/heat-config-rebuild-deployed ; chmod +x
/usr/share/openstack-heat-templates/software-config/elements/heat-
config/bin/heat-config-rebuild-deployed ; /usr/share/openstack-heat-
templates/software-config/elements/heat-config/bin/heat-config-rebuild-
deployed"' ; done

Director Installation and Usage

116

https://bugzilla.redhat.com/show_bug.cgi?id=1278181

11.3.2. Modified Overcloud Templates

IMPORTANT

This section is only required if using a modified template collection from Section 10.6,
“Using Customized Overcloud Heat Templates”. This is because the copy is a static
snapshot of the original Heat template collection from /usr/share/openstack-
tripleo-heat-templates/.

To update your modified template collection, you need to:

1. Backup your existing custom template collection:

$ mv ~/templates/my-overcloud/ ~/templates/my-overcloud.bak

2. Replace the new version of the template collection from /usr/share/openstack-tripleo-
heat-templates:

sudo cp -rv /usr/share/openstack-tripleo-heat-templates
~/templates/my-overcloud/

3. Check for differences between the old and new custom template collection. To see changes
between the two, use the following diff command:

diff -Nary ~/templates/my-overcloud.bak/ ~/templates/my-overcloud/

This helps identify customizations from the old template collection that you can incorporate into
the new template collection.

4. Incorporate customization into the new custom template collection.

IMPORTANT

Red Hat provides updates to the Heat template collection over subsequent releases.
Using a modified template collection can lead to a divergence between your custom copy
and the original copy in /usr/share/openstack-tripleo-heat-templates. Red
Hat recommends using the methods from the following section instead of modifying the
Heat template collection:

Section 10.1, “Customizing Configuration on First Boot”

Section 10.2, “Customizing Overcloud Pre-Configuration”

Section 10.3, “Customizing Overcloud Post-Configuration”

Section 10.4, “Customizing Puppet Configuration Data”

If creating a copy of the Heat template collection, you should track changes to the
templates using a version control system such as git.

11.3.3. New Environment Parameters

CHAPTER 11. UPDATING THE ENVIRONMENT

117

The updated Heat template collection requires some new parameters not included in the original Red
Hat Enterprise Linux OpenStack Platform 7.0 release. It is recommended to include these parameters in
future updates.

Include the following additional parameters in a custom environment file (~/templates/param-
updates.yaml):

Table 11.1. Additional Parameters to Include

New Parameter Description

ControlPlaneDefaultRoute The default route of the control plane network.

EC2MetadataIp The IP address of the EC2 metadata server.

For example:

parameter_defaults:
 ControlPlaneDefaultRoute: 192.168.1.1
 EC2MetadataIp: 169.254.169.254

Make sure to include this file on any subsequent updates of the Overcloud.

11.3.4. Version Specific Notes

This section contains some notes specific to your initial version of the director and the Overcloud. Use
this section as a reference for any inclusions to the Overcloud stack in subsequent updates.

If you started with OpenStack Platform director 7.0 and are upgrading to OpenStack Platform
director 7.2 or later:

Be sure to provide the same value for the ServiceNetMap parameter that was used on the
initial cloud deployment (see Section 6.2.6.3, “Assigning OpenStack Services to Isolated
Networks”. If a custom value was used on the initial deployment, provide the same custom value.
If you are updating from 7.0 and used no custom ServiceNetMap value on the initial
deployment, include the following environment file in the update command to preserve the 7.0
value:

/usr/share/openstack-tripleo-heat-
templates/environments/updates/update-from-keystone-admin-internal-
api.yaml

Make sure to include this file on any subsequent updates of the Overcloud.

Changing the value of ServiceNetMap after Overcloud creation is not currently supported.

If using a single network for the Overcloud (for example, the original deployment did not include
network-isolation.yaml) then include the following environment file in the update
command:

/usr/share/openstack-tripleo-heat-
templates/environments/updates/update-from-publicvip-on-ctlplane.yaml

Director Installation and Usage

118

Make sure to include this file on any subsequent updates of the Overcloud. Note that you do not
need this file if using an external load balancer.

If you started with OpenStack Platform director 7.1 and are upgrading to OpenStack Platform
director 7.2 or later:

Be sure to provide the same value for the ServiceNetMap parameter that was used on the
initial cloud deployment (see Section 6.2.6.3, “Assigning OpenStack Services to Isolated
Networks”. If a custom value was used on the initial deployment, provide the same custom value.
If you are updating from 7.1 and used no custom value for ServiceNetMap on the initial
deployment, then no additional environment file or value needs to be provided for
ServiceNetMap. Changing the value of ServiceNetMap after Overcloud creation is not
currently supported.

Include the following environment file in the update command to make sure the VIP resources
remain mapped to vip.yaml:

/usr/share/openstack-tripleo-heat-
templates/environments/updates/update-from-vip.yaml

Make sure to include this file on any subsequent updates of the Overcloud. Note that you do not
need this file if using an external load balancer.

If updating from 7.1 and not using external load balancer, provide the control VIP for the
control_virtual_ip input parameter. This is because the resource is replaced during the
upgrade. To do so, find the current control_virtual_ip address with:

$ neutron port-show control_virtual_ip | grep ip_address
{"subnet_id": "3d7c11e0-53d9-4a54-a9d7-55865fcc1e47", "ip_address":
"192.0.2.21"} |

Add it into a custom environment file, such as ~/templates/param-updates.yaml from
Section 11.3.3, “New Environment Parameters”, as follows:

parameters:
 ControlFixedIPs: [{'ip_address':'192.0.2.21'}]

Make sure to include this file on any subsequent updates of the Overcloud. Note that you do not
need this file if using an external load balancer.

Delete the existing Neutron port:

$ neutron port-delete control_virtual_ip

The update process replaces this VIP with a new port using the original IP address.

If upgrading from OpenStack Platform director 7.2 to OpenStack Platform director 7.3 or later:

Heat on the Undercloud requires an increase in the RPC response timeout to accomodate a
known issue (see BZ#1305947). Edit the /etc/heat/heat.conf and set the following
parameter:

rpc_response_timeout=600

CHAPTER 11. UPDATING THE ENVIRONMENT

119

https://bugzilla.redhat.com/show_bug.cgi?id=1305947

Then restart all Heat services:

$ systemctl restart openstack-heat-api.service
$ systemctl restart openstack-heat-api-cfn.service
$ systemctl restart openstack-heat-engine.service

11.3.5. Updating the Overcloud Packages

The Overcloud relies on standard RPM methods to update the environment. This involves performing an
update on all nodes using the openstack overcloud update from the director.

Use the -e to include environment files relevant to your Overcloud and its upgrade path. The order of the
environment files is important as the parameters and resources defined in subsequent environment files
take precedence. Use the following list as an example of the environment file order:

The overcloud-resource-registry-puppet.yaml file from the Heat template collection.
Although this file is included automatically when you run the openstack overcloud deploy
command, you must include this file when you run the openstack overcloud update
command.

Any network isolation files, including the initialization file (environments/network-
isolation.yaml) from the Heat template collection and then your custom NIC configuration
file. See Section 6.2.6, “Isolating all Networks into VLANs” for more information on network
islocation.

Any external load balancing environment files.

Any storage environment files.

Any environment files for Red Hat CDN or Satellite registration.

Any version-specific environment files from Section 11.3.4, “Version Specific Notes”.

Any other custom environment files.

Running an update on all nodes in parallel might cause problems. For example, an update of a package
might involve restarting a service, which can disrupt other nodes. This is why the update process
updates each node using a set of breakpoints. This means nodes are updated one by one. When one
node completes the package update, the update process moves on to the next node. The update
process also requires the -i option, which puts the command in an interactive mode that requires
confirmation at each breakpoint. Without the -i option, the update remains paused at the first
breakpoint.

The following is an example update command for updating from director 7.1 to 7.2:

$ openstack overcloud update stack overcloud -i \
 --templates \
 -e /usr/share/openstack-tripleo-heat-templates/overcloud-resource-
registry-puppet.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/storage-environment.yaml \
 -e /home/stack/templates/rhel-registration/environment-rhel-
registration.yaml \

Director Installation and Usage

120

 -e /usr/share/openstack-tripleo-heat-
templates/environments/updates/update-from-vip.yaml \
 -e /home/stack/templates/param-updates.yaml

Running this command starts the update process. During this process, the director will periodically
prompt you to clear breakpoints. For example:

not_started: [u'overcloud-controller-0', u'overcloud-controller-1',
u'overcloud-controller-2']
on_breakpoint: [u'overcloud-compute-0']
Breakpoint reached, continue?

Press Enter to clear the breakpoint from last node on the on_breakpoint list. This begins the update
for that node. You can also type a node name to clear a breakpoint on a specific node, or a regular
expression to clear breakpoints on mulitple nodes at once. However, it is not recommended to clear
breakpoints on multiple controller nodes at once. Continue this process until all nodes have complete
their update.

IMPORTANT

The update process does not reboot any nodes in the Overcloud automatically. See
Chapter 9, Rebooting the Overcloud for steps on how to reboot your environment without
instance downtime.

IMPORTANT

If you configured fencing for your Controller nodes, the update process might disable it.
When the update process completes, reenable fencing with the following command on
one of the Controller nodes:

$ sudo pcs property set stonith-enabled=true

CHAPTER 11. UPDATING THE ENVIRONMENT

121

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES
An error can occur at certain stages of the director's processes. This section provides some information
for diagnosing common problems.

Note the common logs for the director's components:

The /var/log directory contains logs for many common OpenStack Platform components as
well as logs for standard Red Hat Enterprise Linux applications.

The journald service provides logs for various components. Note that Ironic uses two units:
openstack-ironic-api and openstack-ironic-conductor. Likewise, ironic-
discoverd uses two units as well: openstack-ironic-discoverd and openstack-
ironic-discoverd-dnsmasq. Use both units for each respective component. For example:

$ sudo journalctl -u openstack-ironic-discoverd -u openstack-ironic-
discoverd-dnsmasq

ironic-discoverd also stores the ramdisk logs in /var/log/ironic-
discoverd/ramdisk/ as gz-compressed tar files. Filenames contain date, time, and IPMI
address of the node. Use these logs for diagnosing introspection issues.

12.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually arise from issues with incorrect node details. In this case, use
ironic to fix problems with node data registered. Here are a few examples:

Procedure 12.1. Fixing an Incorrect MAC Address

1. Find out the assigned port UUID:

$ ironic node-port-list [NODE UUID]

2. Update the MAC address:

$ ironic port-update [PORT UUID] replace address=[NEW MAC]

Procedure 12.2. Fix an Incorrect IPMI Address

Run the following command:

$ ironic node-update [NODE UUID] replace driver_info/ipmi_address=
[NEW IPMI ADDRESS]

12.2. TROUBLESHOOTING HARDWARE INTROSPECTION

The discovery and introspection process must run to completion. However, Ironic's Discovery Daemon
(ironic-discoverd) times out after a default 1 hour period if the discovery ramdisk provides no
response. Sometimes this might indicate a bug in the discovery ramdisk but usually it happens due to
environment misconfiguration, particularly BIOS boot settings.

Director Installation and Usage

122

Here are some common scenarios where environment misconfiguration occurs and advice on how to
diagnose and resolve them.

Errors with Starting Node Introspection
Normally the introspection process uses the baremetal introspection, which acts an an umbrella
command for Ironic's services. However, if running the introspection directly with ironic-discoverd, it
might fail to discover nodes in the AVAILABLE state, which is meant for deployment and not for
discovery. Change the node status to the MANAGEABLE state before discovery:

$ ironic node-set-provision-state [NODE UUID] manage

Then when discovery completes, change back to AVAILABLE before provisioning:

$ ironic node-set-provision-state [NODE UUID] provide

Stopping the Discovery Process
Currently ironic-discoverd does not provide a direct means for stopping discovery. The
recommended path is to wait until the process times out. If necessary, change the timeout setting in
/etc/ironic-discoverd/discoverd.conf to change the timeout period to another period in
minutes.

In worst case scenarios, you can stop discovery for all nodes using the following process:

Procedure 12.3. Stopping the Discovery Process

1. Change the power state of each node to off:

$ ironic node-set-power-state [NODE UUID] off

2. Remove ironic-discoverd cache and restart it:

$ rm /var/lib/ironic-discoverd/discoverd.sqlite
$ sudo systemctl restart openstack-ironic-discoverd

12.3. TROUBLESHOOTING OVERCLOUD CREATION

There are three layers where the deployment can fail:

Orchestration (Heat and Nova services)

Bare Metal Provisioning (Ironic service)

Post-Deployment Configuration (Puppet)

If an Overcloud deployment has failed at any of these levels, use the OpenStack clients and service log
files to diagnose the failed deployment.

12.3.1. Orchestration

In most cases, Heat shows the failed overcloud stack after Overcloud creation fails:

$ heat stack-list

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

123

+-----------------------+------------+--------------------+------------
----------+
| id | stack_name | stack_status | creation_time
|
+-----------------------+------------+--------------------+------------
----------+
| 7e88af95-535c-4a55... | overcloud | CREATE_FAILED | 2015-04-
06T17:57:16Z |
+-----------------------+------------+--------------------+------------
----------+

If the stack list is empty, this indicate an issue with the initial orchestration setup. Check your Heat
templates and configuration options, and check for any error messages after running openstack
overcloud deploy.

12.3.2. Bare Metal Provisioning

Check ironic to see all registered nodes and their current status:

$ ironic node-list

+----------+------+---------------+-------------+-----------------+----
---------+
| UUID | Name | Instance UUID | Power State | Provision State |
Maintenance |
+----------+------+---------------+-------------+-----------------+----
---------+
| f1e261...| None | None | power off | available | False
|
| f0b8c1...| None | None | power off | available | False
|
+----------+------+---------------+-------------+-----------------+----
---------+

Here are some common issues that arise from the provisioning process.

Check the Provision State and Maintenance columns in the resulting table. Check for the
following:

An empty table or less nodes that you expect

Maintenance is set to True

Provision State is set to manageable

This usually indicates an issue from the registration or discovery processes. For example, if
Maintenance sets to True automatically, the nodes are usually using the wrong power
management credentials.

If Provision State is available then the problem occurred before bare metal deployment
has even started.

Director Installation and Usage

124

If Provision State is active and Power State is power on, the bare metal deployment
has finished successfully. This means the the problem occurred during the post-deployment
configuration step.

If Provision State is wait call-back for a node, the bare metal provisioning process has
not finished for this node yet. Wait until this status changes. Otherwise, connect to the virtual
console of the failed node and check the output.

If Provision State is error or deploy failed, then bare metal provisioning has failed for
this node. Check the bare metal node's details:

$ ironic node-show [NODE UUID]

Look for last_error field, which contains error description. If the error message is vague, you
can use logs to clarify it:

$ sudo journalctl -u openstack-ironic-conductor -u openstack-ironic-
api

If you see wait timeout error and the node Power State is power on, connect to the
virtual console of the failed node and check the output.

12.3.3. Post-Deployment Configuration

Many things can occur during the configuration stage. For example, a particular Puppet module could fail
to complete due to an issue with the setup. This section provides a process to diagnose such issues.

Procedure 12.4. Diagnosing Post-Deployment Configuration Issues

1. List all the resources from the Overcloud stack to see which one failed:

$ heat resource-list overcloud

This shows a table of all resources and their states. Look for any resources with a
CREATE_FAILED.

2. Show the failed resource:

$ heat resource-show overcloud [FAILED RESOURCE]

Check for any information in the resource_status_reason field that can help your diagnosis.

3. Use the nova command to see the IP addresses of the Overcloud nodes.

$ nova list

Login as the heat-admin user to one of the deployed nodes. For example, if the stack's
resource list shows the error occurred on a Controller node, login to a Controller node. The
heat-admin user has sudo access.

$ ssh heat-admin@192.0.2.14

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

125

4. Check the os-collect-config log for a possible reason for the failure.

$ sudo journalctl -u os-collect-config

5. In some cases, Nova fails deploying the node in entirety. This situation would be indicated by a
failed OS::Heat::ResourceGroup for one of the Overcloud role types. Use nova to see the
failure in this case.

$ nova list
$ nova show [SERVER ID]

The most common error shown will reference the error message No valid host was found.
See Section 12.5, “Troubleshooting "No Valid Host Found" Errors” for details on troubleshooting
this error. In other cases, look at the following log files for further troubleshooting:

/var/log/nova/*

/var/log/heat/*

/var/log/ironic/*

6. Use the SOS toolset, which gathers information about system hardware and configuration. Use
this information for diagnostic purposes and debugging. SOS is commonly used to help support
technicians and developers. SOS is useful on both the Undercloud and Overcloud. Install the
sos package:

$ sudo yum install sos

Generate a report:

$ sudo sosreport --all-logs

12.4. AVOID IP ADDRESS CONFLICTS ON THE PROVISIONING
NETWORK

Discovery and deployment tasks will fail if the destination hosts are allocated an IP address which is
already in use. To avoid this issue, you can perform a port scan of the Provisioning network to determine
whether the discovery IP range and host IP range are free.

Perform the following steps from the Undercloud host:

Procedure 12.5. Identify active IP addresses

1. Install nmap:

yum install nmap

2. Use nmap to scan the IP address range for active addresses. This example scans the
192.0.2.0/24 range, replace this with the IP subnet of the Provisioning network (using CIDR
bitmask notation):

nmap -sn 192.0.2.0/24

Director Installation and Usage

126

3. Review the output of the nmap scan:

For example, you should see the IP address(es) of the Undercloud, and any other hosts that are
present on the subnet. If any of the active IP addresses conflict with the IP ranges in
undercloud.conf, you will need to either change the IP ranges or free up the IP addresses
before introspecting or deploying the Overcloud nodes.

nmap -sn 192.0.2.0/24

Starting Nmap 6.40 (http://nmap.org) at 2015-10-02 15:14 EDT
Nmap scan report for 192.0.2.1
Host is up (0.00057s latency).
Nmap scan report for 192.0.2.2
Host is up (0.00048s latency).
Nmap scan report for 192.0.2.3
Host is up (0.00045s latency).
Nmap scan report for 192.0.2.5
Host is up (0.00040s latency).
Nmap scan report for 192.0.2.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

12.5. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

NoValidHost: No valid host was found. There are not enough hosts
available.

This means the Nova Scheduler could not find a bare metal node suitable for booting the new instance.
This in turn usually means a mismatch between resources that Nova expects to find and resources that
Ironic advertised to Nova. Check the following in this case:

1. Make sure introspection succeeds for you. Otherwise check that each node contains the required
Ironic node properties. For each node:

$ ironic node-show [NODE UUID]

Check the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb
and local_gb.

2. Check that the Nova flavor used does not exceed the Ironic node properties above for a required
number of nodes:

$ nova flavor-show [FLAVOR NAME]

3. Check that enough nodes are in available state according to ironic node-list. Nodes in
manageable state usually mean a failed introspection.

4. Check the nodes are not in maintenance mode. Use ironic node-list to check. A node
automatically changing to maintenance mode usually means incorrect power credentials. Check
them and then remove maintenance mode:

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

127

$ ironic node-set-maintenance [NODE UUID] off

5. If you're using the Automated Health Check (AHC) tools to perform automatic node tagging,
check that you have enough nodes corresponding to each flavor/profile. Check the
capabilities key in properties field for ironic node-show. For example, a node
tagged for the Compute role should contain profile:compute.

6. It takes some time for node information to propagate from Ironic to Nova after introspection. The
director's tool usually accounts for it. However, if you performed some steps manually, there
might be a short period of time when nodes are not available to Nova. Use the following
command to check the total resources in your system.:

$ nova hypervisor-stats

12.6. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

After creating your Overcloud, you might aim to perform certain Overcloud operations in the future. For
example, you might aim to scale your available nodes, or replace faulty nodes. Certain issues might
arise when performing these operations. This section provides some advice to diagnose and
troubleshoot failed post-creation operations.

12.6.1. Overcloud Stack Modifications

Problems can occur when modifying the overcloud stack through the director. Example of stack
modifications include:

Scaling Nodes

Removing Nodes

Replacing Nodes

Modifying the stack is similar to the process of creating the stack in that the director checks the
availability of the requested number of nodes, provisions additional or removes existing nodes, then
applies Puppet configuration. Here are some guidelines to follow in situations when modifying the
overcloud stack.

As an initial step, follow the advice set in Section 12.3, “Troubleshooting Overcloud Creation”. These
same steps can help diagnose problems with updating the overcloud Heat stack. In particular, use the
following command to help identify problematic resources:

heat stack-list --show-nested

List all stacks. The --show-nested displays all child stacks and their respective parent stacks. This
command helps identify the point where a stack failed.

heat resource-list overcloud

List all resources in the overcloud stack and their current states. This helps identify which resource
is causing failures in the stack. You can trace this resource failure to its respective parameters and
configuration in the Heat template collection and the Puppet modules.

heat event-list overcloud

Director Installation and Usage

128

List all events related to the overcloud stack in chronological order. This includes the initiation,
completion, and failure of all resources in the stack. This helps identify points of resource failure.

The next few sections provide advice to diagnose issues on specific node types.

12.6.2. Controller Service Failures

The Overcloud Controller nodes contain the bulk of Red Hat Enterprise Linux OpenStack Platform
services. Likewise, you might use multiple Controller nodes in a high availability cluster. If a certain
service on a node is faulty, the high availability cluster provides a certain level of failover. However, it
then becomes necessary to diagnose the faulty service to ensure your Overcloud operates at full
capacity.

The Controller nodes use Pacemaker to manage the resources and services in the high availability
cluster. The Pacemaker Configuration System (pcs) command is a tool that manages a Pacemaker
cluster. Run this command on a Controller node in the cluster to perform configuration and monitoring
functions. Here are few commands to help troubleshoot Overcloud services on a high availability cluster:

pcs status

Provides a status overview of the entire cluster including enabled resources, failed resources, and
online nodes.

pcs resource show

Shows a list of resources on their respective nodes.

pcs resource disable [resource]

Stop a particular resource.

pcs resource enable [resource]

Start a particular resource.

pcs cluster standby [node]

Place a node in standby mode. The node is no longer available in the cluster. This is useful for
performing maintenance on a specific node without affecting the cluster.

pcs cluster unstandby [node]

Remove a node from standby mode. The node becomes available in the cluster again.

Use these Pacemaker commands to identify the faulty component and/or node. After identifying the
component, view the respective component log in /var/log/.

12.6.3. Compute Service Failures

Compute nodes use the OpenStack Nova Compute service to perform hypervisor-based operations.
This means the main diagnosis for Compute nodes revolves around this service. For example:

View the status of the service using the following systemd function:

$ sudo systemctl status openstack-nova-compute.service

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

129

Likewise, view the systemd journal for the service using the following command:

$ sudo journalctl -u openstack-nova-compute.service

The primary log file for Compute nodes is /var/log/nova/nova-compute.log. If issues
occur with Compute node communication, this log file is usually a good place to start a
diagnosis.

If performing maintenance on the Compute node, migrate the existing virtual machines from the
host to an operational Compute node, then disable the node. See Section 7.8, “Migrating VMs
from an Overcloud Compute Node” for more information on node migrations.

12.6.4. Ceph Storage Service Failures

For any issues that occur with Red Hat Ceph Storage clusters, see Part X. Logging and Debugging in the
Red Hat Ceph Storage Configuration Guide. This section provides information on diagnosing logs for all
Ceph storage services.

12.7. TUNING THE UNDERCLOUD

The advice in this section aims to help increase the performance of your Undercloud. Implement the
recommendations as necessary.

The OpenStack Authentication service (keystone) uses a token-based system for access to
other OpenStack services. After a certain period, the database accumulates many unused
tokens. It is recommended to create a cronjob to flush the token table in the database. For
example, to flush the token table at 4 a.m. each day:

0 04 * * * /bin/keystone-manage token_flush

Heat stores a copy of all template files in its database's raw_template table each time you run
openstack overcloud deploy. The raw_template table retains all past templates and
grows in size. To remove unused templates in the raw_templates table, create a daily
cronjob that clears unused templates that exist in the database for longer than a day:

0 04 * * * /bin/heat-manage purge_deleted -g days 1

The openstack-heat-engine and openstack-heat-api services might consume too
many resources at times. If so, set max_resources_per_stack=-1 in
/etc/heat/heat.conf and restart the Heat services:

$ sudo systemctl restart openstack-heat-engine openstack-heat-api

Sometimes the director might not have enough resources to perform concurrent node
provisioning. The default is 10 nodes at the same time. To reduce the number of concurrent
nodes, set the max_concurrent_builds parameter in /etc/nova/nova.conf to a value
less than 10 and restart the Nova services:

$ sudo systemctl restart openstack-nova-api openstack-nova-scheduler

Edit the /etc/my.cnf.d/server.cnf file. Some recommended values to tune include:

Director Installation and Usage

130

https://access.redhat.com/documentation/en/red-hat-ceph-storage/version-/red-hat-ceph-storage-13-ceph-configuration-guide/part-x-logging-and-debugging

max_connections

Number of simultaneous connections to the database. The recommended value is 4096.

innodb_additional_mem_pool_size

The size in bytes of a memory pool the database uses to store data dictionary information
and other internal data structures. The default is usually 8M and an ideal value is 20M for the
Undercloud.

innodb_buffer_pool_size

The size in bytes of the buffer pool, the memory area where the database caches table and
index data. The default is usually 128M and an ideal value is 1000M for the Undercloud.

innodb_flush_log_at_trx_commit

Controls the balance between strict ACID compliance for commit operations, and higher
performance that is possible when commit-related I/O operations are rearranged and done in
batches. Set to 1.

innodb_lock_wait_timeout

The length of time in seconds a database transaction waits for a row lock before giving up.
Set to 50.

innodb_max_purge_lag

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge
operations are lagging. Set to 10000.

innodb_thread_concurrency

The limit of concurrent operating system threads. Ideally, provide at least two threads for
each CPU and disk resource. For example, if using a quad-core CPU and a single disk, use
10 threads.

Ensure that Heat has enough workers to perform an Overcloud creation. Usually, this depends
on how many CPUs the Undercloud has. To manually set the number of workers, edit the
/etc/heat/heat.conf file, set the num_engine_workers parameter to the number of
workers you need (ideally 4), and restart the Heat engine:

$ sudo systemctl restart openstack-heat-engine

12.8. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

Use the following logs to find out information about the Undercloud and Overcloud when troubleshooting.

Table 12.1. Important Logs for Undercloud and Overcloud

Information Underclou
d or
Overcloud

Log Location

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

131

General director
services

Underclou
d

/var/log/nova/*

/var/log/heat/*

/var/log/ironic/*

Introspection Underclou
d

/var/log/ironic/*

/var/log/ironic-discoverd/*

Provisioning Underclou
d

/var/log/ironic/*

Cloud-Init Log Overcloud /var/log/cloud-init.log

Overcloud Configuration
(Summary of Last
Puppet Run)

Overcloud /var/lib/puppet/state/last_run_summary.yaml

Overcloud Configuration
(Report from Last
Puppet Run)

Overcloud /var/lib/puppet/state/last_run_report.yaml

Overcloud Configuration
(All Puppet Reports)

Overcloud /var/lib/puppet/reports/overcloud-*/*

Information Underclou
d or
Overcloud

Log Location

Director Installation and Usage

132

General Overcloud
services

Overcloud /var/log/ceilometer/*

/var/log/ceph/*

/var/log/cinder/*

/var/log/glance/*

/var/log/heat/*

/var/log/horizon/*

/var/log/httpd/*

/var/log/keystone/*

/var/log/libvirt/*

/var/log/neutron/*

/var/log/nova/*

/var/log/openvswitch/*

/var/log/rabbitmq/*

/var/log/redis/*

/var/log/swift/*

High availability log Overcloud /var/log/pacemaker.log

Information Underclou
d or
Overcloud

Log Location

CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES

133

APPENDIX A. COMPONENTS
This section contains a list of components that the director uses.

Shared Libraries

diskimage-builder

diskimage-builder is an image building tool.

dib-utils

dib-utils contains tools that diskimage-builder uses.

os-collect-config, os-refresh-config, os-apply-config, os-net-config

A suite of tools used to configure instances.

tripleo-image-elements

tripleo-image-elements is a repository of diskimage-builder style elements for installing
various software components.

Installer

instack

instack executes diskimage-builder style elements on the current system. This enables a
current running system to have an element applied in the same way that diskimage-builder
applies the element to an image build.

instack-undercloud

instack-undercloud is the Undercloud installer based around instack.

Node Management

ironic

The OpenStack Ironic project is responsible for provisioning and managing bare metal instances.

ironic-discoverd

ironic-discoverd discovers hardware properties for newly enrolled nodes.

Deployment Planning

tuskar

The OpenStack Tuskar project is responsible for planning of deployments

Deployment and Orchestration

heat

Director Installation and Usage

134

The OpenStack Heat project is an orchestration tool. It reads YAML files describing the OpenStack
environment’s resources and sets those resources into a desired state.

heat-templates

The openstack-heat-templates repository contains additional image elements for producing
disk images for Puppet configuration using Heat.

tripleo-heat-templates

The openstack-tripleo-heat-templates repository describe the OpenStack environment in
Heat Orchestration Template YAML files and Puppet manifests. Tuskar processes these templates,
which develop into an actual environment through Heat.

puppet-modules

OpenStack Puppet modules are used to configure the OpenStack environment through tripleo-
heat-templates.

tripleo-puppet-elements

The tripleo-puppet-elements describe the contents of disk images which the director uses to
install Red Hat Enterprise Linux OpenStack Platform.

User Interfaces

tuskar-ui

Provides a GUI to install and manage OpenStack. It is implemented as a plugin to the Horizon
dashboard.

tuskar-ui-extras

Provides GUI enhancements for tuskar-ui. It is implemented as a plugin to the Horizon dashboard.

python-openstackclient

The python-openstackclient is a CLI tool that manages multiple openstack services and clients.

python-rdomanager-oscplugin

The python-rdomanager-oscplugin is a CLI tool embedded into python-openstackclient.
It provides functions related to instack installation and initial configuration.

APPENDIX A. COMPONENTS

135

APPENDIX B. SSL/TLS CERTIFICATE CONFIGURATION
As an optional part of the processes outlined in Section 3.6, “Configuring the Director” or Section 6.2.7,
“Enabling SSL/TLS on the Overcloud”, you can set the use SSL/TLS for communication on either the
Undercloud or Overcloud. However, if using an SSL/TLS certificate with your own certificate authority,
the certificate requires a certain configuration for use.

CREATING A CERTIFICATE AUTHORITY
Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might aim to use your own certificate authority. For example, you might aim to have an internal-only
certificate authority.

For example, generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -
out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details.

This creates the a certificate file called ca.crt.pem. Copy this file to each client that aims to access
your Red Hat Openstack Platform environment and run the following command to add it to the certificate
authority trust bundle:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

CREATING AN SSL/TLS CERTIFICATE
This next procedure creates a signed certificate for either the Undercloud and Overcloud.

Copy the default OpenSSL configuration file for customization.

$ cp /etc/pki/tls/openssl.cnf .

Edit the custom openssl.cnf file and set SSL parameters to use for the director. An example of the
types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

Director Installation and Usage

136

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = 192.168.0.1
DNS.2 = instack.localdomain
DNS.3 = vip.localdomain

IMPORTANT

Set the commonName_default to the IP address of the Public API:

For the Undercloud, use the undercloud_public_vip parameter in
undercloud.conf.

For the Overcloud, use the IP address for the Public API, which is the first
address for the ExternalAllocationPools parameter in your network
isolation environment file.

Include the same Public API IP address as an IP entry and a DNS entry in the alt_names
section. If also using DNS, include the hostname for the server as DNS entries in the
same section. For more information about openssl.cnf, run man openssl.cnf.

Run the following commands to generate the key (server.key.pem), the certificate signing request
(server.csr.pem), and the signed certificate (server.crt.pem):

$ openssl genrsa -out server.key.pem 2048
$ openssl req -config openssl.cnf -key server.key.pem -new -out
server.csr.pem
$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in
server.csr.pem -out server.crt.pem -cert ca.cert.pem

IMPORTANT

The openssl req command asks for several details for the certificate, including the
Common Name. Make sure the Common Name is set to the IP address of the Public API
for the Undercloud or Overcloud (depending on which certificate set you are creating).
The openssl.cnf file should use this IP address as a default value.

Use this key pair a SSL/TLS certificate for either the Undercloud or Overcloud.

USING THE CERTIFICATE WITH THE UNDERCLOUD
Run the following command to create the certificate:

$ cat server.crt.pem server.key.pem > undercloud.pem

APPENDIX B. SSL/TLS CERTIFICATE CONFIGURATION

137

This creates a undercloud.pem for use with the undercloud_service_certificate option. This
file also requires a special SELinux context so that the HAProxy tool can read it. Use the following
example as a guide:

$ sudo mkdir /etc/pki/instack-certs
$ sudo cp ~/undercloud.pem /etc/pki/instack-certs/.
$ sudo semanage fcontext -a -t etc_t "/etc/pki/instack-certs(/.*)?"
$ sudo restorecon -R /etc/pki/instack-certs

Add the certificate authority to the Undercloud's list of trusted Certificate Authorities:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Add the undercloud.pem file location to the undercloud_service_certificate option in the
undercloud.conf file. For example:

undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem

Continue installing the Undercloud as per the instructions in Section 3.6, “Configuring the Director”.

USING THE CERTIFICATE WITH THE OVERCLOUD
Use the certificate with the enable-tls.yaml file from Section 6.2.7, “Enabling SSL/TLS on the
Overcloud”.

Director Installation and Usage

138

APPENDIX C. POWER MANAGEMENT DRIVERS
Although IPMI is the main method the director uses for power management control, the director also
supports other power management types. This appendix provides a list of the supported power
management features. Use these power management settings for either Section 6.1.1, “Registering
Nodes for the Basic Overcloud” or Section 6.2.1, “Registering Nodes for the Advanced Overcloud”.

C.1. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to pxe_drac.

pm_user, pm_password

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

C.2. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to pxe_ilo.

pm_user, pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

Additional Notes

Edit the /etc/ironic/ironic.conf file and add pxe_ilo to the enabled_drivers option
to enable this driver.

The director also requires an additional set of utilities for iLo. Install the python-
proliantutils package and restart the openstack-ironic-conductor service:

$ sudo yum install python-proliantutils
$ sudo systemctl restart openstack-ironic-conductor.service

HP nodes must a 2015 firmware version for successful introspection. The director has been
successfully tested with nodes using firmware version 1.85 (May 13 2015).

APPENDIX C. POWER MANAGEMENT DRIVERS

139

C.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)

UCS from Cisco is a data center platform that unites compute, network, storage access, and
virtualization resources. This driver focuses on the power management for bare metal systems
connected to the UCS.

pm_type

Set this option to pxe_ucs.

pm_user, pm_password

The UCS username and password.

pm_addr

The IP address of the UCS interface.

pm_service_profile

The UCS service profile to use. Usually takes the format of org-root/ls-
[service_profile_name]. For example:

"pm_service_profile": "org-root/ls-Nova-1"

Additional Notes

Edit the /etc/ironic/ironic.conf file and add pxe_ucs to the enabled_drivers option
to enable this driver.

The director also requires an additional set of utilities for UCS. Install the python-UcsSdk
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-UcsSdk
$ sudo systemctl restart openstack-ironic-conductor.service

C.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu's iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems connected
to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to pxe_irmc.

pm_user, pm_password

The username and password for the iRMC interface.

Director Installation and Usage

140

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

The authentication method for iRMC operations. Use either basic or digest. The default is basic

pm_client_timeout (Optional)

Timeout (in seconds) for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

Additional Notes

Edit the /etc/ironic/ironic.conf file and add pxe_irmc to the enabled_drivers
option to enable this driver.

The director also requires an additional set of utilities if you enabled SCCI as the sensor
method. Install the python-scciclient package and restart the openstack-ironic-
conductor service:

$ yum install python-scciclient
$ sudo systemctl restart openstack-ironic-conductor.service

C.5. SSH AND VIRSH

The director can access a host running libvirt through SSH and use virtual machines as nodes. The
director uses virsh to control the power management of these nodes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended for
Red Hat Enterprise Linux OpenStack Platform enterprise environments.

pm_type

Set this option to pxe_ssh.

pm_user, pm_password

The SSH username and contents of the SSH private key. The private key must be on one line with
new lines replaced with escape characters (\n). For example:

-----BEGIN RSA PRIVATE KEY-----\nMIIEogIBAAKCAQEA kk+WXt9Y=\n-----
END RSA PRIVATE KEY-----

Add the SSH public key to the libvirt server's authorized_keys collection.

APPENDIX C. POWER MANAGEMENT DRIVERS

141

pm_addr

The IP address of the virsh host.

Additional Notes

The server hosting libvirt requires an SSH key pair with the public key set as the pm_password
attribute.

Ensure the chosen pm_user has full access to the libvirt environment.

C.6. FAKE PXE DRIVER

This driver provides a method to use bare metal devices without power management. This means the
director does not control the registered bare metal devices and as such require manual control of power
at certain points in the introspect and deployment processes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended for
Red Hat Enterprise Linux OpenStack Platform enterprise environments.

pm_type

Set this option to fake_pxe.

Additional Notes

This driver does not use any authentication details because it does not control power
management.

Edit the /etc/ironic/ironic.conf file and add fake_pxe to the enabled_drivers
option to enable this driver.

When performing introspection on nodes, manually power the nodes after running the
openstack baremetal introspection bulk start command.

When performing Overcloud deployment, check the node status with the ironic node-list
command. Wait until the node status changes from deploying to deploy wait-callback
and then manually power the nodes.

After the Overcloud provisioning process completes, reboot the nodes. To check the completion
of provisioning, check the node status with the ironic node-list command, wait until the
node status changes to active, then manually reboot all Overcloud nodes.

Director Installation and Usage

142

APPENDIX D. AUTOMATED HEALTH CHECK (AHC) TOOLS
PARAMETERS
The following tables present a reference for the different parameters you can use for AHC Tools policies.

D.1. HARD DRIVE

AHC Tools report disks's properties from:

1. Regular SATA controllers or logical drives from RAID controllers

2. Disks attached to a Hewlett Packard RAID Controller

Table D.1. Regular SATA Controller Parameters

Value Description Sample Configuration Discrimination Level

size Size of the disk ('disk', 'sda', 'size', '899') Medium

vendor Vendor of the disk ('disk', 'sda', 'vendor',
'HP')

Medium

model Model of the disk ('disk', 'sda', 'model',
'LOGICAL VOLUME')

High

rev Firmware revision of the
disk

('disk', 'sda', 'rev', '3.42') Medium

WCE Write Cache Enabled ('disk', 'sda', 'WCE', '1') Low

RCD Read Cache Disabled ('disk', 'sda', 'RCD, '1') Low

Table D.2. Hewlett Packard Raid Controller Parameters

Value Description Sample Configuration Discrimination Level

size Size of the raw disk ('disk', '1I:1:1', 'size',
'300')

Medium

type Type of the raw disk ('disk', '1I:1:1', 'type',
'SAS')

Low

slot Raw disk slot's id ('disk', '1I:1:1', 'slot', '0') Medium

D.2. SYSTEM

Product information is provided by the DMI structures of the host. This information is not always provided
by the hardware manufacturer.

Table D.3. System Product Parameters

APPENDIX D. AUTOMATED HEALTH CHECK (AHC) TOOLS PARAMETERS

143

Value Description Sample Configuration Discrimination Level

serial Serial number of the
hardware

('system', 'product',
'serial', 'XXXXXX'')

Unique*

name Product name ('system', 'product',
'name', 'ProLiant
DL360p Gen8 (654081-
B21)')

High

vendor Vendor name ('system', 'product',
'vendor', 'HP')

Medium

Table D.4. System IPMI Parameters

Value Description Sample Configuration Discrimination Level

ipmi The IPMI channel
number

('system', 'ipmi',
'channel', 2)

Low

ipmi-fake Fake IPMI interface for
testing

('system', 'ipmi-fake',
'channel', '0')

Low

D.3. FIRMWARE

Firmware information is provided by the DMI structures of the host. This information is not
always provided by the hardware manufacturer.

Table D.5. Firmware Parameters

Value Description Sample Configuration Discrimination Level

version Version of the BIOS ('firmware', 'bios',
'version', 'G1ET73WW
(2.09)')

Medium

date Date of the BIOS
release

('firmware', 'bios', 'date',
'10/19/2012')

Medium

vendor Vendor ('firmware', 'bios',
'vendor', 'LENOVO')

Low

D.4. NETWORK

Table D.6. Network Parameters

Director Installation and Usage

144

Value Description Sample Configuration Discrimination Level

serial MAC address ('network', 'eth0', 'serial',
'd8:9d:67:1b:07:e4')

Unique

vendor NIC's vendor ('network', 'eth0',
'vendor', 'Broadcom
Corporation')

Low

product NIC's description ('network', 'eth0',
'product', 'NetXtreme
BCM5719 Gigabit
Ethernet PCIe')

Medium

size Link capability in bits/sec ('network', 'eth0', 'size',
'1000000000')

Low

ipv4 IPv4 address ('network', 'eth0', 'ipv4',
'10.66.6.136')

High

ipv4-netmask IPv4 netmask ('network', 'eth0', 'ipv4-
netmask',
'255.255.255.0')

Low

ipv4-cidr IPv4 cidr ('network', 'eth0', 'ipv4-
cidr', '24')

Low

ipv4-network IPv4 network address ('network', 'eth0', 'ipv4-
network', '10.66.6.0')

Medium

link Physical Link Status ('network', 'eth0', 'link',
'yes')

Medium

driver NIC's driver name ('network', 'eth0', 'driver',
'tg3')

Low

duplex NIC's duplex type ('network', 'eth0',
'duplex', 'full')

Low

speed NIC's current link speed ('network', 'eth0',
'speed', '10Mbit/s')

Medium

latency PCI latency of the
network device

('network', 'eth0',
'latency', '0')

Low

autonegotiation NIC's auto-negotiation ('network', 'eth0',
'autonegotiation', 'on')

Low

D.5. CPU

Table D.7. Per CPU Parameters

APPENDIX D. AUTOMATED HEALTH CHECK (AHC) TOOLS PARAMETERS

145

Value Description Sample Configuration Discrimination Level

physid CPU's physical ID ('cpu', 'physical_0',
'physid', '1')

Low

cores CPU's number of cores ('cpu', 'physical_0',
'cores', '2')

Medium

enabled_cores CPU's number of
enabled cores

('cpu', 'physical_0','
enabled_cores', '2')

Medium

threads CPU's number of
threads

('cpu', 'physical_0',
'threads', '4')

Medium

product CPU's identification
string

('cpu', 'physical_0',
'product', 'Intel(R)
Core(TM) i5-3320M
CPU @ 2.60GHz')

High

vendor CPU's vendor ('cpu', 'physical_0',
'vendor', 'Intel Corp.')

Low

frequency CPU's internal frequency
in Hz

('cpu', 'physical_0',
'frequency',
'1200000000')

Low

clock CPU's clock in Hz ('cpu', 'physical_0',
'clock', '100000000')

Low

Table D.8. CPU Aggregate Parameters

Value Description Sample Configuration Discrimination Level

number (physical) Number of physical
CPUs

('cpu', 'physical',
'number', 2)

Medium

number (logical) Number of logical CPUs ('cpu', 'logical', 'number',
'8')

Medium

D.6. MEMORY

Memory information is provided by the DMI structures of the host. This information is not always provided
by the hardware manufacturer.

Table D.9. Memory Parameters

Value Description Sample Configuration Discrimination Level

Director Installation and Usage

146

total Amount of memory on
the host in bytes

('memory', 'total', 'size',
'17179869184')

High

size Bank size in bytes ('memory', 'bank:0',
'size', '4294967296')

Medium

clock Memory clock speed in
Hz

('memory', 'bank:0',
'clock', '667000000')

Low

description Memory description ('memory', 'bank:0',
'description', 'FB-DIMM
DDR2 FB-DIMM
Synchronous 667 MHz
(1.5 ns)')

Medium

vendor Memory vendor ('memory', 'bank:0',
'vendor', 'Nanya
Technology')

Medium

serial Memory serial number ('memory', 'bank:0',
'serial', 'C7590943')

Unique*

slot Physical slot of this Bank ('memory', 'bank:0', 'slot',
'DIMM1')

High

banks Number of memory
banks

('memory', 'banks',
'count', 8)

Medium

Value Description Sample Configuration Discrimination Level

D.7. INFINIBAND

Table D.10. Infiniband Per Card Parameters

Value Description Sample Configuration Discrimination Level

card_type Card's type ('infiniband', 'card0',
'card_type', 'mlx4_0')

Medium

device_type Card's device type ('infiniband', 'card0',
'device_type', 'MT4099')

Medium

fw_version Card firmware version ('infiniband', 'card0',
'fw_version', '2.11.500')

High

hw_version Card's hardware version ('infiniband', 'card0',
'hw_version', '0')

Low

nb_ports Number of ports ('infiniband', 'card0',
'nb_ports', '2')

Low

APPENDIX D. AUTOMATED HEALTH CHECK (AHC) TOOLS PARAMETERS

147

sys_guid Global unique ID of the
card

('infiniband', 'card0',
'sys_guid',
'0x0002c90300ea7183')

Unique

node_guid Global unique ID of the
node

('infiniband', 'card0',
'node_guid',
'0x0002c90300ea7180')

Unique

Value Description Sample Configuration Discrimination Level

Table D.11. Infiniband Per Port Parameters

Value Description Sample Configuration Discrimination Level

state Interface state ('infiniband',
'card0_port1', 'state',
'Down')

High

physical_state Physical state of the link ('infiniband',
'card0_port1',
'physical_state', 'Down')

High

rate Speed in Gbit/sec ('infiniband',
'card0_port1', 'rate', '40')

High

base_lid Base local ID of the port ('infiniband',
'card0_port1', 'base_lid',
'0'

Low

lmc Local ID mask count ('infiniband',
'card0_port1', 'lmc', '0')

Low

sm_lid Subnet manager local ID ('infiniband',
'card0_port1', 'sm_lid',
'0')

Low

port_guid Global unique ID of the
port

('infiniband',
'card0_port1',
'port_guid',
'0x0002c90300ea7181')

Unique

Director Installation and Usage

148

APPENDIX E. NETWORK INTERFACE PARAMETERS
The following table defines the Heat template parameters for network interface types.

Table E.1. Interface options

Option Default Description

name Name of the Interface

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the interface

routes A sequence of routes assigned to the interface

mtu 1500 The maximum transmission unit (MTU) of the connection

primary False Defines the interface as the primary interface

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

Table E.2. VLAN options

Option Default Description

vlan_id The VLAN ID

device The VLAN's parent device to attach the VLAN. For example, use this
parameter to attach the VLAN to a bonded interface device.

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the VLAN

routes A sequence of routes assigned to the VLAN

mtu 1500 The maximum transmission unit (MTU) of the connection

primary False Defines the VLAN as the primary interface

defroute True Use this interface as the default route

APPENDIX E. NETWORK INTERFACE PARAMETERS

149

persist_mappin
g

False Write the device alias configuration instead of the system names

Option Default Description

Table E.3. OVS Bond options

Option Default Description

name Name of the bond

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the bond

routes A sequence of routes assigned to the bond

mtu 1500 The maximum transmission unit (MTU) of the connection

primary False Defines the interface as the primary interface

members A sequence of interface objects to use in the bond

ovs_options A set of options to pass to OVS when creating the bond

ovs_extra A set of options to to set as the OVS_EXTRA parameter in the bond's
network configuration file

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

Table E.4. OVS Bridge options

Option Default Description

name Name of the bridge

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the bridge

Director Installation and Usage

150

routes A sequence of routes assigned to the bridge

mtu 1500 The maximum transmission unit (MTU) of the connection

members A sequence of interface, VLAN, and bond objects to use in the bridge

ovs_options A set of options to pass to OVS when creating the bridge

ovs_extra A set of options to to set as the OVS_EXTRA parameter in the bridge's
 network configuration file

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

Option Default Description

APPENDIX E. NETWORK INTERFACE PARAMETERS

151

APPENDIX F. NETWORK INTERFACE TEMPLATE EXAMPLES
This appendix provides a few example Heat templates to demonstrate network interface configuration.

F.1. CONFIGURING INTERFACES

Individual interfaces might require modification. The example below shows modifications required to use
the second NIC to connect to an infrastructure network with DHCP addresses, and to use the third and
fourth NICs for the bond:

network_config:
 # Add a DHCP infrastructure network to nic2
 -
 type: interface
 name: nic2
 use_dhcp: true
 -
 type: ovs_bridge
 name: br-bond
 members:
 -
 type: ovs_bond
 name: bond1
 ovs_options: {get_param: BondInterfaceOvsOptions}
 members:
 # Modify bond NICs to use nic3 and nic4
 -
 type: interface
 name: nic3
 primary: true
 -
 type: interface
 name: nic4

The network interface template uses either the actual interface name ("eth0", "eth1", "enp0s25") or a set
of numbered interfaces ("nic1", "nic2", "nic3"). The network interfaces of hosts within a role do not have
to be exactly the same when using numbered interfaces (nic1, nic2, etc.) instead of named interfaces
(eth0, eno2, etc.). For example, one host might have interfaces em1 and em2, while another has eno1
and eno2, but you can refer to both hosts' NICs as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

enoX interfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are
usually add-on interfaces.

The numbered NIC scheme only takes into account the interfaces that are live i.e. have a cable attached
to the switch. If you have some hosts with four interfaces and some with six interfaces, you should use
nic1 to nic4 and only plug four cables on each host.

F.2. CONFIGURING ROUTES AND DEFAULT ROUTES

Director Installation and Usage

152

There are two ways a host has default routes set. If the interface is using DHCP and the DHCP server
offers a gateway address, the system uses a default route for that gateway. Otherwise, you can set a
default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it only uses the one with the lowest metric.
If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this case, it
is recommended to set defroute=no for interfaces other than the one using the default route.

For example, we want a DHCP interface (nic3) to be the default route. Use the following YAML to
disable the default route on another DHCP interface (nic2):

No default route on this DHCP interface
- type: interface
 name: nic2
 use_dhcp: true
 defroute: false
Instead use this DHCP interface as the default route
- type: interface
 name: nic3
 use_dhcp: true

NOTE

The defroute parameter only applies to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, we set a
route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

 - type: vlan
 device: bond1
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: InternalApiIpSubnet}
 routes:
 - ip_netmask: 10.1.2.0/24
 next_hop: 172.17.0.1

F.3. USING THE NATIVE VLAN FOR FLOATING IPS

Neutron uses a default empty string for Neutron's external bridge mapping. This maps the physical
interface to the br-int instead of the using br-ex directly. This model allows multiple floating IP
networks using either VLANs or multiple physical connections

Use the NeutronExternalNetworkBridge parameter in the parameter_defaults section of your
network isolation environment file:

 parameter_defaults:
 # Set to "br-ex" when using floating IPs on the native VLAN
 NeutronExternalNetworkBridge: "''"

Using only one Floating IP network on the native VLAN of a bridge means you can optionally set the
Neutron external bridge. This results in the packets only having to traverse one bridge instead of two,
which might result in slightly lower CPU usage when passing traffic over the Floating IP network.

APPENDIX F. NETWORK INTERFACE TEMPLATE EXAMPLES

153

The next section contains changes to the NIC config to put the External network on the native VLAN. If
the External network is mapped to br-ex, you can use the External network for Floating IPs in addition
to the Horizon dashboard and Public APIs.

F.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there will be no VLAN interface.

For example, if the External network is on the native VLAN, a bonded configuration looks like this:

network_config:
 - type: ovs_bridge
 name: {get_input: bridge_name}
 dns_servers: {get_param: DnsServers}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 - ip_netmask: 0.0.0.0/0
 next_hop: {get_param: ExternalInterfaceDefaultRoute}
 members:
 - type: ovs_bond
 name: bond1
 ovs_options: {get_param: BondInterfaceOvsOptions}
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

NOTE

When moving the address (and possibly route) statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network on the other hand is attached to all roles, so if the Storage
network is on the default VLAN, all roles require modifications.

F.5. CONFIGURING JUMBO FRAMES

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead since each frame adds data in
the form of a header. The default value is 1500 and using a higher value requires the configuration of the
switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Make sure to include the MTU
value on the bond and/or interface.

The Storage, Storage Management, Internal API, and Tenant networking all benefit from jumbo frames.
In testing, Tenant networking throughput was over 300% greater when using jumbo frames in
conjunction with VXLAN tunnels.

Director Installation and Usage

154

NOTE

It is recommended that the Provisioning interface, External interface, and any floating IP
interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3
boundaries.

- type: ovs_bond
 name: bond1
 mtu: 9000
 ovs_options: {get_param: BondInterfaceOvsOptions}
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

The external interface should stay at default
- type: vlan
 device: bond1
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 - ip_netmask: 0.0.0.0/0
 next_hop: {get_param: ExternalInterfaceDefaultRoute}

MTU 9000 for Internal API, Storage, and Storage Management
- type: vlan
 device: bond1
 mtu: 9000
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: InternalApiIpSubnet}

APPENDIX F. NETWORK INTERFACE TEMPLATE EXAMPLES

155

APPENDIX G. NETWORK ENVIRONMENT OPTIONS

Table G.1. Network Environment Options

Parameter Description Example

InternalApiNetCidr The network and subnet for the
Internal API network

172.17.0.0/24

StorageNetCidr The network and subnet for the
Storage network

StorageMgmtNetCidr The network and subnet for the
Storage Management network

TenantNetCidr The network and subnet for the
Tenant network

ExternalNetCidr The network and subnet for the
External network

InternalApiAllocationPools The allocation pool for the Internal
API network in a tuple format

[{'start': '172.17.0.10', 'end':
'172.17.0.200'}]

StorageAllocationPools The allocation pool for the
Storage network in a tuple format

StorageMgmtAllocationPools The allocation pool for the
Storage Management network in
a tuple format

TenantAllocationPools The allocation pool for the Tenant
network in a tuple format

ExternalAllocationPools The allocation pool for the
External network in a tuple format

InternalApiNetworkVlanID The VLAN ID for the Internal API
network

200

StorageNetworkVlanID The VLAN ID for the Storage
network

StorageMgmtNetworkVlanID The VLAN ID for the Storage
Management network

TenantNetworkVlanID The VLAN ID for the Tenant
network

ExternalNetworkVlanID The VLAN ID for the External
network

Director Installation and Usage

156

ExternalInterfaceDefaultRoute The gateway IP address for the
External network

10.1.2.1

ControlPlaneDefaultRoute Gateway router for the
Provisioning network (or
Undercloud IP)

ControlPlaneDefaultRoute:
192.0.2.254

ControlPlaneSubnetCidr The network and subnet for the
Provisioning network

ControlPlaneSubnetCidr:
192.0.2.0/24

EC2MetadataIp The IP address of the EC2
metadata server. Generally the IP
of the Undercloud.

EC2MetadataIp: 192.0.2.1

DnsServers Define the DNS servers for the
Overcloud nodes. Include a
maximum of two.

DnsServers: ["8.8.8.8","8.8.4.4"]

NeutronExternalNetworkBridge Defines the bridge to use for the
External network. Set to "br-
ex" if using floating IPs on native
VLAN on bridge br-ex.

NeutronExternalNetworkBridge:
"br-ex"

BondInterfaceOvsOptions The options for bonding interfaces bond_mode=balance-tcp
lacp=active other-config:lacp-
fallback-ab=true"

Parameter Description Example

APPENDIX G. NETWORK ENVIRONMENT OPTIONS

157

APPENDIX H. BONDING OPTIONS
The Overcloud provides networking through Open vSwtich, which provides several options for bonded
interfaces. In Section 6.2.6.2, “Creating an Advanced Overcloud Network Environment File”, we
configure a bonded interface in the network environment file using the following option:

 BondInterfaceOvsOptions:
 "bond_mode=balance-slb"

IMPORTANT

Do not use LACP with OVS-based bonds, as this configuration is problematic and
unsupported. Instead, consider using bond_mode=balance-slb as a replacement for this
functionality.

The following table provides some explanation of these options and some alternatives depending on your
hardware. In addition, you can still use LACP with Linux bonding.

Table H.1. Bonding Options

bond_mode=balance-tcp This mode will perform load balancing by taking layer
2 to layer 4 data into consideration. For example,
destination MAC address, IP address, and TCP port.
In addition, balance-tcp requires that LACP be
configured on the switch. This mode is similar to
mode 4 bonds used by the Linux bonding driver.
balance-tcp is recommended when possible, as
LACP provides the highest resiliency for link failure
detection, and supplies additional diagnostic
information about the bond.

The recommended option is to configure balance-
tcp with LACP. This setting attempts to configure
LACP, but will fallback to active-backup if LACP
cannot be negotiated with the physical switch.

bond_mode=balance-slb Balances flows based on source MAC address and
output VLAN, with periodic rebalancing as traffic
patterns change. Bonding with balance-slb
allows a limited form of load balancing without the
remote switch's knowledge or cooperation. SLB
assigns each source MAC and VLAN pair to a link
and transmits all packets from that MAC and VLAN
through that link. This mode uses a simple hashing
algorithm based on source MAC address and VLAN
number, with periodic rebalancing as traffic patterns
change. This mode is similar to mode 2 bonds used
by the Linux bonding driver. This mode is used when
the switch is configured with bonding but is not
configured to use LACP (static instead of dynamic
bonds).

Director Installation and Usage

158

bond_mode=active-backup This mode offers active/standby failover where the
standby NIC resumes network operations when the
active connection fails. Only one MAC address is
presented to the physical switch. This mode does not
require any special switch support or configuration,
and works when the links are connected to separate
switches. This mode does not provide load
balancing.

lacp=[active|passive|off] Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use
bond_mode=balance-slb or
bond_mode=active-backup.

other-config:lacp-fallback-ab=true Sets the LACP behavior to switch to
bond_mode=active-backup as a fallback.

other_config:lacp-time=[fast|slow] Set the LACP heartbeat to 1 second (fast) or 30
seconds (slow). The default is slow.

other_config:bond-detect-mode=
[miimon|carrier]

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier

other_config:bond-miimon-
interval=100

If using miimon, set the heartbeat interval in
milliseconds

other_config:bond_updelay=1000 Number of milliseconds a link must be up to be
activated to prevent flapping

other_config:bond-rebalance-
interval=10000

Milliseconds between rebalancing flows between
bond members. Set to zero to disable.

IMPORTANT

If you experience packet drops or performance issues using Linux bonds with Provider
networks, consider disabling Large Receive Offload (LRO) on the slave/standby
interfaces.

Avoid adding a Linux bond to an OVS bond, as port-flapping and loss of connectivity can
occur. This is a result of packet-loop via the standby interface.

APPENDIX H. BONDING OPTIONS

159

APPENDIX I. DEPLOYMENT PARAMETERS
The following table lists the additional parameters when using the openstack overcloud deploy
command.

Table I.1. Deployment Parameters

Parameter Description Example

--templates [TEMPLATES] The directory containing the Heat
templates to deploy. If blank, the
command uses the default
template location at
/usr/share/openstack-
tripleo-heat-templates/

~/templates/my-overcloud

-t [TIMEOUT], --timeout
[TIMEOUT]

Deployment timeout in minutes 240

--control-scale
[CONTROL_SCALE]

The number of Controller nodes to
scale out

3

--compute-scale
[COMPUTE_SCALE]

The number of Compute nodes to
scale out

3

--ceph-storage-scale
[CEPH_STORAGE_SCALE]

The number of Ceph Storage
nodes to scale out

3

--block-storage-scale
[BLOCK_STORAGE_SCALE]

The number of Cinder nodes to
scale out

3

--swift-storage-scale
[SWIFT_STORAGE_SCALE]

The number of Swift nodes to
scale out

3

--control-flavor
[CONTROL_FLAVOR]

The flavor to use for Controller
nodes

control

--compute-flavor
[COMPUTE_FLAVOR]

The flavor to use for Compute
nodes

compute

--ceph-storage-flavor
[CEPH_STORAGE_FLAVOR]

The flavor to use for Ceph
Storage nodes

ceph-storage

--block-storage-flavor
[BLOCK_STORAGE_FLAVOR]

The flavor to use for Cinder nodes cinder-storage

--swift-storage-flavor
[SWIFT_STORAGE_FLAVOR]

The flavor to use for Swift storage
nodes

swift-storage

--neutron-flat-networks
[NEUTRON_FLAT_NETWORKS]

Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to permit
external network creation

datacentre

Director Installation and Usage

160

--neutron-physical-bridge
[NEUTRON_PHYSICAL_BRIDGE
]

An Open vSwitch bridge to create
on each hypervisor. This defaults
to "br-ex". Typically, this should
not need to be changed

br-ex

--neutron-bridge-mappings
[NEUTRON_BRIDGE_MAPPING
S]

The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). We use this for the
default floating network

datacentre:br-ex

--neutron-public-interface
[NEUTRON_PUBLIC_INTERFAC
E]

Defines the interface to bridge
onto br-ex for network nodes

nic1, eth0

--hypervisor-neutron-public-
interface
[HYPERVISOR_NEUTRON_PUB
LIC_INTERFACE]

What interface to add to the
bridge on each hypervisor

nic1, eth0

--neutron-network-type
[NEUTRON_NETWORK_TYPE]

The tenant network type for
Neutron

gre or vxlan

--neutron-tunnel-types
[NEUTRON_TUNNEL_TYPES]

The tunnel types for the Neutron
tenant network. To specify
multiple values, use a comma
separated string

'vxlan' 'gre,vxlan'

--neutron-tunnel-id-ranges
[NEUTRON_TUNNEL_ID_RANG
ES]

Ranges of GRE tunnel IDs to
make available for tenant network
allocation

1:1000

--neutron-vni-ranges
[NEUTRON_VNI_RANGES]

Ranges of VXLAN VNI IDs to
make available for tenant network
allocation

1:1000

--neutron-disable-tunneling Disables tunneling in case you
aim to use a VLAN segmented
network or flat network with
Neutron

--neutron-network-vlan-ranges
[NEUTRON_NETWORK_VLAN_
RANGES]

The Neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting any
VLAN on the 'datacentre' physical
network

datacentre:1:1000

--neutron-mechanism-drivers
[NEUTRON_MECHANISM_DRIV
ERS]

The mechanism drivers for the
Neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma
separated string

'openvswitch,l2population'

Parameter Description Example

APPENDIX I. DEPLOYMENT PARAMETERS

161

--libvirt-type [LIBVIRT_TYPE] Virtualization type to use for
hypervisors

kvm,qemu

--ntp-server [NTP_SERVER] Network Time Protocol (NTP)
server to use to synchronize time.
You can also specify multiple NTP
servers in a comma-separated
list, for example: --ntp-
server
0.centos.pool.org,1.cen
tos.pool.org. For a high
availability cluster deployment, it
is essential that your controllers
are consistently referring to the
same time source. Note that a
typical environment might already
have a designated NTP time
source with established practices.

pool.ntp.org

--cinder-lvm Use the LVM iSCSI driver for
Cinder storage

--tripleo-root [TRIPLEO_ROOT] The directory for the director's
configuration files. Leave this as
the default

--nodes-json [NODES_JSON] The original JSON file used for
node registration. The director
provides some modifications to
this file after creating your
Overcloud. Defaults to
instackenv.json

--no-proxy [NO_PROXY] Defines custom values for the
environment variable no_proxy,
which excludes certain domain
extensions from proxy
communication

-O [OUTPUT DIR], --output-dir
[OUTPUT DIR]

Directory to write Tuskar template
files into. It will be created if it
does not exist. If not provided a
temporary directory will be used

~/templates/plan-templates

-e [EXTRA HEAT TEMPLATE], --
extra-template [EXTRA HEAT
TEMPLATE]

Extra environment files to pass to
the Overcloud deployment. Can
be specified more than once. Note
that the order of environment files
passed to the openstack
overcloud deploy command
is important. For example,
parameters from each sequential
environment file override the
same parameters from earlier
environment files.

-e ~/templates/my-config.yaml

Parameter Description Example

Director Installation and Usage

162

--validation-errors-fatal The Overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
errors occur from the pre-
deployment checks. It is advisable
to use this option as any errors
can cause your deployment to fail.

--validation-warnings-fatal The Overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
non-critical warnings occur from
the pre-deployment checks.

--rhel-reg Register Overcloud nodes to the
Customer Portal or Satellite 6

--reg-method Registration method to use for the
overcloud nodes

satellite for Red Hat Satellite
6 or Red Hat Satellite 5, portal
for Customer Portal

--reg-org [REG_ORG] Organization to use for
registration

--reg-force Register the system even if it is
already registered

--reg-sat-url [REG_SAT_URL] The base URL of the Satellite
server to register Overcloud
nodes. Use the Satellite's HTTP
URL and not the HTTPS URL for
this parameter. For example, use
http://satellite.exampl
e.com and not
https://satellite.examp
le.com. The Overcloud creation
process uses this URL to
determine whether the server is a
Red Hat Satellite 5 or Red Hat
Satellite 6 server. If a Red Hat
Satellite 6 server, the Overcloud
obtains the katello-ca-
consumer-
latest.noarch.rpm file,
registers with subscription-
manager, and installs
katello-agent. If a Red Hat
Satellite 6 server, the Overcloud
obtains the RHN-ORG-
TRUSTED-SSL-CERT file and
registers with rhnreg_ks.

--reg-activation-key
[REG_ACTIVATION_KEY]

Activation key to use for
registration

Parameter Description Example

APPENDIX I. DEPLOYMENT PARAMETERS

163

APPENDIX J. REVISION HISTORY

Revision 7.3-18 Thu Jun 15 2017 Dan Macpherson
Adding note regarding multiple bonds on a bridge

Revision 7.3-17 Thu Mar 30 2017 Dan Macpherson
Emphasis added to stack update command

Revision 7.3-16 Wed Sep 21 2016 Dan Macpherson
Fixing another OSD mapping

Revision 7.3-15 Wed Sep 21 2016 Dan Macpherson
Correction to OSD layout

Revision 7.3-14 Mon Aug 22 2016 Dan Macpherson
Adding note about disk space for Undercloud

Revision 7.3-13 Tue Aug 16 2016 Dan Macpherson
Revising fencing section for clarity

Revision 7.3-12 Thu Aug 4 2016 Dan Macpherson
Backporting Scaling Chapter from OSP 8 Director Installation and Usage Guide

Revision 7.3-11 Thu Jun 16 2016 Dan Macpherson
Adding note for SAN support

Revision 7.3-10 Fri May 27 2016 Dan Macpherson
Adding note about UEFI boot mode support for nodes

Revision 7.3-9 Tue Apr 26 2016 Dan Macpherson
Minor updates

Revision 7.3-8 Fri Apr 8 2016 Dan Macpherson
Adding Removal Protection

Revision 7.3-7 Fri Apr 8 2016 Dan Macpherson
Missing sudo access for some Ceph commands

Revision 7.3-6 Tue Apr 5 2016 Dan Macpherson
Test build

Revision 7.3-5 Tue Apr 5 2016 Dan Macpherson
Added Ceph Storage replacement instructions

Revision 7.3-4 Thu Mar 3 2016 Dan Macpherson
Adding Repository Requirements for Satellite

Revision 7.3-3 Wed Mar 2 2016 Dan Macpherson
Minor change to DNS listing for SSL

Revision 7.3-2 Tue Mar 1 2016 Dan Macpherson
Restructuring node scaling content

Revision 7.3-1 Thu Feb 18 2016 Dan Macpherson

Director Installation and Usage

164

Adding new content for OpenStack Platform director 7.2

Added SSL/TLS for Overcloud instructions

Added Satellite 5 registration for Overcloud information

Added log list

Various minor fixes

Revision 7.2-1 Sun Dec 20 2015 Dan Macpherson
Adding new content for OpenStack Platform director 7.2, including new update procedure, registration information, and various

minor additions.

Revision 7.1-14 Wed Dec 16 2015 Dan Macpherson
Adding NFS option for SELinux context

Revision 7.1-13 Tue Dec 15 2015 Dan Macpherson
Minor changes to custom Puppet config section

Revision 7.1-12 Fri Dec 11 2015 Dan Macpherson
Correction to nova migration commands

Revision 7.1-11 Fri Dec 11 2015 Dan Macpherson
Adding admonition for LACP issue

Revision 7.1-10 Tue Dec 8 2015 Dan Macpherson
Adding information about deprecation of LACP on OVS

Revision 7.1-9 Wed Dec 2 2015 Dan Macpherson
Corrections to custom preconfiguration content

Revision 7.1-7 Tue Dec 1 2015 Dan Macpherson
Adding ExtraConfig resources and hiera data params

Revision 7.1-6 Mon Nov 30 2015 Dan Macpherson
Adding fixes for replacing HA Controller node routine

Revision 7.1-5 Thu Nov 19 2015 Dan Macpherson
Updating documentation for OSPd 7y2

Revision 7.1-4 Wed Oct 14 2015 Dan Macpherson
Adding stack update instructions

Adding UCS Fencing link

Revision 7.1-2 Fri Oct 9 2015 Martin Lopes
Added note about entitlement consumption during deployments

Revision 7.1-1 Fri Oct 9 2015 Dan Macpherson
Adding stack update instructions

Revision 7.1-2 Fri Oct 9 2015 Dan Macpherson
Changes to the upgrade process

Revision 7.1-1 Fri Oct 9 2015 Dan Macpherson
Fixing download link

Revision 7.1-0 Thu Oct 8 2015 Dan Macpherson
Static IP for Provisioning network

New validation methods

APPENDIX J. REVISION HISTORY

165

Revision 7.0-18 Wed Oct 7 2015 Dan Macpherson
Adding clarification for --reg-sat-url parameter

Revision 7.0-17 Tue Oct 6 2015 Dan Macpherson
Adding clarifications for networking and image uploading

Revision 7.0-16 Tues Oct 6 2015 Martin Lopes
Added troubleshooting advice for duplicate IP addresses in the Provisioning network.

Revision 7.0-15 Fri Oct 2 2015 Dan Macpherson
Minor corrections

Revision 7.0-14 Thu Oct 1 2015 Dan Macpherson
Added sudo access for AHC Tools

Revision 7.0-13 Mon Sep 28 2015 Dan Macpherson
Adding extra fencing devices

Revision 7.0-12 Fri Sep 25 2015 Dan Macpherson
Corrected Admin and Public IP settings

Added yum-plugin-priorities documentation to avoid repository and package conflicts

Various minor fixes and revisions

Revision 7.0-11 Thu Sep 24 2015 Dan Macpherson
Added new instructions for registering and configuring new nodes for scaling

Revised External network creation in post-deployment section

Minor corrections

Revision 7.0-10 Fri Sep 18 2015 Dan Macpherson
Adding commands for single node introspection and registering additional nodes

Revision 7.0-9 Fri Sep 11 2015 Dan Macpherson
Adding troubleshooting advice for Overcloud post-creation

Revision 7.0-8 Tue Sep 8 2015 Dan Macpherson
Fixing pxe_ssh instructions

Correcting NeutronExternalNetworkBridge syntax for Basic and Advanced scenarios

Adding missing baremetal flavor creation

Providing correct SELinux context for SSL certificate

Adding introspection progress command

Adding Ceph customization requirements

Revision 7.0-7 Mon Aug 24 2015 Dan Macpherson
Adding fixes to GUI Test Scenario

Removing Tuskar-based content (except for Test Scenario)

Revision 7.0-6 Mon Aug 17 2015 Dan Macpherson
Added instructions on unpacking image archive

Minor corrections

Revision 7.0-5 Mon Aug 10 2015 Dan Macpherson
Adding additional storage environment fix

Minor corrections

Revision 7.0-4 Thu Aug 6 2015 Dan Macpherson
Modifying text for -i option when updating Overcloud packages

Director Installation and Usage

166

Revision 7.0-3 Thu Aug 6 2015 Dan Macpherson
Updating warning about environment files

Correcting SELinux rule for SSL

Updating Overcloud image links

Revision 7.0-2 Wed Aug 5 2015 Dan Macpherson
Building with new sort order

Revision 7.0-1 Wed May 20 2015 Dan Macpherson
Initial draft of documentation

APPENDIX J. REVISION HISTORY

167

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. UNDERCLOUD
	1.2. OVERCLOUD
	1.3. HIGH AVAILABILITY
	1.4. CEPH STORAGE

	CHAPTER 2. REQUIREMENTS
	2.1. ENVIRONMENT REQUIREMENTS
	2.2. UNDERCLOUD REQUIREMENTS
	2.3. NETWORKING REQUIREMENTS
	2.4. OVERCLOUD REQUIREMENTS
	2.4.1. Compute Node Requirements
	2.4.2. Controller Node Requirements
	2.4.3. Ceph Storage Node Requirements

	2.5. REPOSITORY REQUIREMENTS

	CHAPTER 3. INSTALLING THE UNDERCLOUD
	3.1. CREATING A DIRECTOR INSTALLATION USER
	3.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
	3.3. SETTING THE HOSTNAME FOR THE SYSTEM
	3.4. REGISTERING YOUR SYSTEM
	3.5. INSTALLING THE DIRECTOR PACKAGES
	3.6. CONFIGURING THE DIRECTOR
	3.7. OBTAINING IMAGES FOR OVERCLOUD NODES
	3.8. SETTING A NAMESERVER ON THE UNDERCLOUD'S NEUTRON SUBNET
	3.9. COMPLETING THE UNDERCLOUD CONFIGURATION

	CHAPTER 4. PLANNING YOUR OVERCLOUD
	4.1. PLANNING NODE DEPLOYMENT ROLES
	4.2. PLANNING NETWORKS
	4.3. PLANNING STORAGE

	CHAPTER 5. UNDERSTANDING HEAT TEMPLATES
	5.1. HEAT TEMPLATES
	5.2. ENVIRONMENT FILES
	5.3. DEFAULT DIRECTOR PLANS
	5.4. DEFAULT DIRECTOR TEMPLATES

	CHAPTER 6. INSTALLING THE OVERCLOUD
	6.1. BASIC SCENARIO: CREATING A SMALL OVERCLOUD WITH NFS STORAGE
	6.1.1. Registering Nodes for the Basic Overcloud
	6.1.2. Inspecting the Hardware of Nodes
	6.1.3. Manually Tagging the Nodes
	6.1.4. Creating Flavors for the Basic Scenario
	6.1.5. Configuring NFS Storage
	6.1.6. Isolating the External Network
	6.1.6.1. Creating Custom Interface Templates
	6.1.6.2. Creating a Basic Overcloud Network Environment Template

	6.1.7. Creating the Basic Overcloud
	6.1.8. Accessing the Basic Overcloud
	6.1.9. Completing the Basic Overcloud

	6.2. ADVANCED SCENARIO: CREATING A LARGE OVERCLOUD WITH CEPH STORAGE NODES
	6.2.1. Registering Nodes for the Advanced Overcloud
	6.2.2. Inspecting the Hardware of Nodes
	6.2.3. Automatically Tagging Nodes with Automated Health Check (AHC) Tools
	6.2.3.1. ahc-report
	6.2.3.2. ahc-match

	6.2.4. Creating Hardware Profiles
	6.2.5. Configuring Ceph Storage
	6.2.6. Isolating all Networks into VLANs
	6.2.6.1. Creating Custom Interface Templates
	6.2.6.2. Creating an Advanced Overcloud Network Environment File
	6.2.6.3. Assigning OpenStack Services to Isolated Networks

	6.2.7. Enabling SSL/TLS on the Overcloud
	Enabling SSL/TLS
	Injecting a Root Certificate
	Configuring DNS Endpoints
	Adding Environment Files During Overcloud Creation

	6.2.8. Registering the Overcloud
	Method 1 - Command Line
	Method 2 - Environment File

	6.2.9. Creating the Advanced Overcloud
	6.2.10. Accessing the Advanced Overcloud
	6.2.11. Fencing the Controller Nodes
	6.2.12. Completing the Advanced Overcloud

	CHAPTER 7. PERFORMING TASKS AFTER OVERCLOUD CREATION
	7.1. CREATING THE OVERCLOUD TENANT NETWORK
	7.2. CREATING THE OVERCLOUD EXTERNAL NETWORK
	Using a Native VLAN
	Using a Non-Native VLAN

	7.3. CREATING ADDITIONAL FLOATING IP NETWORKS
	7.4. CREATING THE OVERCLOUD PROVIDER NETWORK
	7.5. VALIDATING THE OVERCLOUD
	7.6. MODIFYING THE OVERCLOUD ENVIRONMENT
	7.7. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	7.8. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE
	7.9. PROTECTING THE OVERCLOUD FROM REMOVAL
	7.10. REMOVING THE OVERCLOUD

	CHAPTER 8. SCALING THE OVERCLOUD
	8.1. ADDING COMPUTE OR CEPH STORAGE NODES
	8.2. REMOVING COMPUTE NODES
	8.3. REPLACING COMPUTE NODES
	8.4. REPLACING CONTROLLER NODES
	8.4.1. Preliminary Checks
	8.4.2. Node Replacement
	8.4.3. Manual Intervention
	8.4.4. Finalizing Overcloud Services
	8.4.5. Finalizing Overcloud Network Agents
	8.4.6. Finalizing Compute Services
	8.4.7. Conclusion

	8.5. REPLACING CEPH STORAGE NODES

	CHAPTER 9. REBOOTING THE OVERCLOUD
	9.1. REBOOTING THE DIRECTOR
	9.2. REBOOTING CONTROLLER NODES
	9.3. REBOOTING CEPH STORAGE NODES
	9.4. REBOOTING COMPUTE NODES
	9.5. REBOOTING OBJECT STORAGE NODES

	CHAPTER 10. CREATING CUSTOM CONFIGURATION
	10.1. CUSTOMIZING CONFIGURATION ON FIRST BOOT
	10.2. CUSTOMIZING OVERCLOUD PRE-CONFIGURATION
	10.3. CUSTOMIZING OVERCLOUD POST-CONFIGURATION
	10.4. CUSTOMIZING PUPPET CONFIGURATION DATA
	10.5. APPLYING CUSTOM PUPPET CONFIGURATION
	10.6. USING CUSTOMIZED OVERCLOUD HEAT TEMPLATES

	CHAPTER 11. UPDATING THE ENVIRONMENT
	11.1. UPDATING DIRECTOR PACKAGES
	11.2. UPDATING OVERCLOUD AND DISCOVERY IMAGES
	11.3. UPDATING THE OVERCLOUD
	11.3.1. Configuration Agent
	11.3.2. Modified Overcloud Templates
	11.3.3. New Environment Parameters
	11.3.4. Version Specific Notes
	11.3.5. Updating the Overcloud Packages

	CHAPTER 12. TROUBLESHOOTING DIRECTOR ISSUES
	12.1. TROUBLESHOOTING NODE REGISTRATION
	12.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	Errors with Starting Node Introspection
	Stopping the Discovery Process

	12.3. TROUBLESHOOTING OVERCLOUD CREATION
	12.3.1. Orchestration
	12.3.2. Bare Metal Provisioning
	12.3.3. Post-Deployment Configuration

	12.4. AVOID IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
	12.5. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	12.6. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
	12.6.1. Overcloud Stack Modifications
	12.6.2. Controller Service Failures
	12.6.3. Compute Service Failures
	12.6.4. Ceph Storage Service Failures

	12.7. TUNING THE UNDERCLOUD
	12.8. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

	APPENDIX A. COMPONENTS
	APPENDIX B. SSL/TLS CERTIFICATE CONFIGURATION
	CREATING A CERTIFICATE AUTHORITY
	CREATING AN SSL/TLS CERTIFICATE
	USING THE CERTIFICATE WITH THE UNDERCLOUD
	USING THE CERTIFICATE WITH THE OVERCLOUD

	APPENDIX C. POWER MANAGEMENT DRIVERS
	C.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
	C.2. INTEGRATED LIGHTS-OUT (ILO)
	C.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
	C.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	C.5. SSH AND VIRSH
	C.6. FAKE PXE DRIVER

	APPENDIX D. AUTOMATED HEALTH CHECK (AHC) TOOLS PARAMETERS
	D.1. HARD DRIVE
	D.2. SYSTEM
	D.3. FIRMWARE
	D.4. NETWORK
	D.5. CPU
	D.6. MEMORY
	D.7. INFINIBAND

	APPENDIX E. NETWORK INTERFACE PARAMETERS
	APPENDIX F. NETWORK INTERFACE TEMPLATE EXAMPLES
	F.1. CONFIGURING INTERFACES
	F.2. CONFIGURING ROUTES AND DEFAULT ROUTES
	F.3. USING THE NATIVE VLAN FOR FLOATING IPS
	F.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
	F.5. CONFIGURING JUMBO FRAMES

	APPENDIX G. NETWORK ENVIRONMENT OPTIONS
	APPENDIX H. BONDING OPTIONS
	APPENDIX I. DEPLOYMENT PARAMETERS
	APPENDIX J. REVISION HISTORY

