
Red Hat Enterprise Linux 6

Managing Confined Services

Guide to configuring services under control of SELinux

Last Updated: 2017-10-20

Red Hat Enterprise Linux 6 Managing Confined Services

Guide to configuring services under control of SELinux

Mirek Jahoda
Red Hat Customer Content Services
mjahoda@redhat.com

Robert Krátký
Red Hat Customer Content Services

Barbora Ančincová
Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides assistance to advanced users and administrators when using and configuring
Security-Enhanced Linux (SELinux). It focuses on Red Hat Enterprise Linux and describes the
components of SELinux as they pertain to services an advanced user or administrator might need
to configure. Also included are real-world examples of configuring those services and
demonstrations of how SELinux complements their operation.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
Targeted Policy

CHAPTER 2. THE APACHE HTTP SERVER
2.1. THE APACHE HTTP SERVER AND SELINUX
2.2. TYPES
2.3. BOOLEANS
2.4. CONFIGURATION EXAMPLES

2.4.1. Running a static site
2.4.2. Sharing NFS and CIFS volumes
2.4.3. Sharing files between services
2.4.4. Changing port numbers

CHAPTER 3. SAMBA
3.1. SAMBA AND SELINUX
3.2. TYPES
3.3. BOOLEANS
3.4. CONFIGURATION EXAMPLES

3.4.1. Sharing directories you create
3.4.2. Sharing a website

CHAPTER 4. FILE TRANSFER PROTOCOL
4.1. FTP AND SELINUX
4.2. TYPES
4.3. BOOLEANS
4.4. CONFIGURATION EXAMPLES

4.4.1. Uploading to an FTP site

CHAPTER 5. NETWORK FILE SYSTEM
5.1. NFS AND SELINUX
5.2. TYPES
5.3. BOOLEANS

CHAPTER 6. BERKELEY INTERNET NAME DOMAIN
6.1. BIND AND SELINUX
6.2. TYPES
6.3. BOOLEANS
6.4. CONFIGURATION EXAMPLES

6.4.1. Dynamic DNS

CHAPTER 7. CONCURRENT VERSIONING SYSTEM
7.1. CVS AND SELINUX
7.2. TYPES
7.3. BOOLEANS
7.4. CONFIGURATION EXAMPLES

7.4.1. Setting up CVS

CHAPTER 8. SQUID CACHING PROXY
8.1. SQUID CACHING PROXY AND SELINUX
8.2. TYPES
8.3. BOOLEANS
8.4. CONFIGURATION EXAMPLES

8.4.1. Squid Connecting to Non-Standard Ports

4
5

6
6
8
11
13
14
15
15
19

21
21
21
22
23
23
25

28
28
29
30
31
31

34
34
34
34

37
37
37
38
39
39

40
40
40
40
41
41

44
44
46
47
47
47

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 9. MYSQL
9.1. MYSQL AND SELINUX
9.2. TYPES
9.3. BOOLEANS
9.4. CONFIGURATION EXAMPLES

9.4.1. MySQL Changing Database Location

CHAPTER 10. POSTGRESQL
10.1. POSTGRESQL AND SELINUX
10.2. TYPES
10.3. BOOLEANS
10.4. CONFIGURATION EXAMPLES

10.4.1. PostgreSQL Changing Database Location

CHAPTER 11. RSYNC
11.1. RSYNC AND SELINUX
11.2. TYPES
11.3. BOOLEANS
11.4. CONFIGURATION EXAMPLES

11.4.1. Rsync as a daemon

CHAPTER 12. POSTFIX
12.1. POSTFIX AND SELINUX
12.2. TYPES
12.3. BOOLEANS
12.4. CONFIGURATION EXAMPLES

12.4.1. SpamAssassin and Postfix

CHAPTER 13. DHCP
13.1. DHCP AND SELINUX
13.2. TYPES

CHAPTER 14. OPENSHIFT BY RED HAT
14.1. OPENSHIFT AND SELINUX
14.2. TYPES
14.3. BOOLEANS
14.4. CONFIGURATION EXAMPLES

14.4.1. Changing the Default OpenShift Directory

CHAPTER 15. RED HAT GLUSTER STORAGE
15.1. RED HAT GLUSTER STORAGE AND SELINUX
15.2. TYPES
15.3. BOOLEANS
15.4. CONFIGURATION EXAMPLES

15.4.1. Labeling Gluster Bricks

CHAPTER 16. REFERENCES

APPENDIX A. REVISION HISTORY

50
50
50
51
52
52

55
55
55
57
57
57

60
60
60
61
61
61

66
66
66
67
67
67

70
70
70

72
72
72
73
73
73

75
75
75
76
77
77

79

81

Managing Confined Services

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
Security-Enhanced Linux (SELinux) is an implementation of a mandatory access control mechanism in
the Linux kernel, checking for allowed operations after standard discretionary access controls are
checked. It was created by the National Security Agency and can enforce rules on files and processes
in a Linux system, and on their actions, based on defined policy.

Security-Enhanced Linux (SELinux) refers to files, such as directories and devices, as objects.
Processes, such as a user running a command or the Mozilla Firefox application, are referred to as
subjects. Most operating systems use a Discretionary Access Control (DAC) system that controls how
subjects interact with objects, and how subjects interact with each other. On operating systems using
DAC, users control the permissions of files (objects) that they own. For example, on Linux operating
systems, users could make their home directories world-readable, inadvertently giving other users
and processes (subjects) access to potentially sensitive information.

DAC access decisions are only based on user identity and ownership, ignoring other security-relevant
information such as the role of the user, the function and trustworthiness of the program, and the
sensitivity and integrity of the data. Each user usually has complete discretion over their files, making
it difficult to enforce a system-wide security policy. Furthermore, every program run by a user inherits
all of the permissions granted to the user and is free to change access to the user's files, so minimal
protection is provided against malicious software. Many system services and privileged programs must
run with coarse-grained privileges that far exceed their requirements, so that a flaw in any one of these
programs might be exploited to obtain further system access. [1]

The following is an example of permissions used on Linux operating systems that do not run Security-
Enhanced Linux (SELinux). The permissions in these examples may differ from your system. Use the ls
-l command to view file permissions:

$ ls -l file1
-rwxrw-r-- 1 user1 group1 0 2010-01-29 09:17 file1

The first three permission bits, rwx, control the access rights that the Linux user1 user (in this case,
the owner) has to file1. The next three permission bits, rw-, control the access rights that the Linux
group1 group has to file1. The last three permission bits, r--, control the access rights that
everyone else has to file1, which includes all users and processes.

Security-Enhanced Linux (SELinux) adds Mandatory Access Control (MAC) to the Linux kernel, and is
enabled by default in Red Hat Enterprise Linux. A general purpose MAC architecture needs the ability
to enforce an administratively-set security policy over all processes and files in the system, basing
decisions on labels containing a variety of security-relevant information. When properly implemented,
it enables a system to adequately defend itself and offers critical support for application security by
protecting against the tampering with, and bypassing of, secured applications. MAC provides strong
separation of applications that permits the safe execution of untrustworthy applications. Its ability to
limit the privileges associated with executing processes limits the scope of potential damage that can
result from the exploitation of vulnerabilities in applications and system services. MAC enables
information to be protected from legitimate users with limited authorization as well as from authorized
users who have unwittingly executed malicious applications.[2]

The following is an example of the labels containing security-relevant information that are applied to
processes, Linux users, and files, on Linux operating systems that run SELinux. This information is
called the SELinux context, and is viewed using the ls -Z command:

$ ls -Z file1
-rwxrw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

Managing Confined Services

4

In this example, SELinux provides a user (unconfined_u), a role (object_r), a type (user_home_t),
and a level (s0) for the file1 file. This information is used to make access control decisions. This
example also displays the DAC rules, which are shown in the SELinux context via the ls -Z command.
SELinux policy rules are checked after DAC rules. SELinux policy rules are not applied if DAC rules
deny access first.

Targeted Policy
When SELinux is in enforcing mode, the default policy used in Red Hat Enterprise Linux, is the targeted
policy. Processes that are targeted run in a confined domain, and processes that are not targeted run
in an unconfined domain. Refer to the Targeted Policy chapter in the Security-Enhanced Linux guide
for more information about targeted policy and confined and unconfined processes.

[1] "Integrating Flexible Support for Security Policies into the Linux Operating System", by Peter Loscocco and
Stephen Smalley. This paper was originally prepared for the National Security Agency and is, consequently, in the
public domain. Refer to the original paper for details.

[2] "Meeting Critical Security Objectives with Security-Enhanced Linux", by Peter Loscocco and Stephen
Smalley. This paper was originally prepared for the National Security Agency and is in the public domain. Refer to
the original paper for details.

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/chap-Security-Enhanced_Linux-Targeted_Policy.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/index.html
http://www.nsa.gov/research/_files/selinux/papers/freenix01/index.shtml
http://www.nsa.gov/research/_files/selinux/papers/ottawa01/index.shtml

CHAPTER 2. THE APACHE HTTP SERVER

The Apache HTTP Server provides an open-source HTTP server with the current HTTP standards.[3]

In Red Hat Enterprise Linux, the httpd package provides the Apache HTTP Server. Run the rpm -q
httpd command to see if the httpd package is installed. If it is not installed and you want to use the
Apache HTTP Server, run the following command as the root user to install it:

~]# yum install httpd

2.1. THE APACHE HTTP SERVER AND SELINUX

When SELinux is enabled, the Apache HTTP Server (httpd) runs confined by default. Confined
processes run in their own domains, and are separated from other confined processes. If a confined
process is compromised by an attacker, depending on SELinux policy configuration, an attacker's
access to resources and the possible damage they can do is limited. The following example
demonstrates the httpd processes running in their own domain. This example assumes the httpd,
setroubleshoot, setroubleshoot-server and policycoreutils-python packages are installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service httpd start command as the root user to start httpd:

~]# service httpd start
Starting httpd: [OK
]

3. Run the ps -eZ | grep httpd command to view the httpd processes:

~]$ ps -eZ | grep httpd
unconfined_u:system_r:httpd_t:s0 2850 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2852 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2853 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2854 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2855 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2856 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2857 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2858 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 2859 ? 00:00:00 httpd

The SELinux context associated with the httpd processes is
unconfined_u:system_r:httpd_t:s0. The second last part of the context, httpd_t, is
the type. A type defines a domain for processes and a type for files. In this case, the httpd
processes are running in the httpd_t domain.

SELinux policy defines how processes running in confined domains (such as httpd_t) interact with
files, other processes, and the system in general. Files must be labeled correctly to allow httpd access

Managing Confined Services

6

to them. For example, httpd can read files labeled with the httpd_sys_content_t type, but cannot
write to them, even if Linux (DAC) permissions allow write access. Booleans must be enabled to allow
certain behavior, such as allowing scripts network access, allowing httpd access to NFS and CIFS
volumes, and httpd being allowed to execute Common Gateway Interface (CGI) scripts.

When /etc/httpd/conf/httpd.conf is configured so httpd listens on a port other than TCP ports
80, 443, 488, 8008, 8009, or 8443, the semanage port command must be used to add the new port
number to SELinux policy configuration. The following example demonstrates configuring httpd to
listen on a port that is not already defined in SELinux policy configuration for httpd, and, as a
consequence, httpd failing to start. This example also demonstrates how to then configure the
SELinux system to allow httpd to successfully listen on a non-standard port that is not already
defined in the policy. This example assumes the httpd package is installed. Run each command in the
example as the root user:

1. Run the service httpd status command to confirm httpd is not running:

~]# service httpd status
httpd is stopped

If the output differs, run the service httpd stop command to stop the process:

~]# service httpd stop
Stopping httpd: [OK
]

2. Run the semanage port -l | grep -w http_port_t command to view the ports
SELinux allows httpd to listen on:

~]# semanage port -l | grep -w http_port_t
http_port_t tcp 80, 443, 488, 8008, 8009,
8443

3. Edit /etc/httpd/conf/httpd.conf as the root user. Configure the Listen option so it
lists a port that is not configured in SELinux policy configuration for httpd. In this example,
httpd is configured to listen on port 12345:

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses (0.0.0.0)
#
#Listen 12.34.56.78:80
Listen 127.0.0.1:12345

4. Run the service httpd start command to start httpd:

~]# service httpd start
Starting httpd: (13)Permission denied: make_sock: could not bind to
address 127.0.0.1:12345
no listening sockets available, shutting down
Unable to open logs [FAILED]

An SELinux denial similar to the following is logged:

CHAPTER 2. THE APACHE HTTP SERVER

7

setroubleshoot: SELinux is preventing the httpd (httpd_t) from
binding to port 12345. For complete SELinux messages. run sealert -l
f18bca99-db64-4c16-9719-1db89f0d8c77

5. For SELinux to allow httpd to listen on port 12345, as used in this example, the following
command is required:

~]# semanage port -a -t http_port_t -p tcp 12345

6. Run service httpd start again to start httpd and have it listen on the new port:

~]# service httpd start
Starting httpd: [OK]

7. Now that SELinux has been configured to allow httpd to listen on a non-standard port (TCP
12345 in this example), httpd starts successfully on this port.

8. To prove that httpd is listening and communicating on TCP port 12345, open a telnet
connection to the specified port and issue a HTTP GET command, as follows:

~]# telnet localhost 12345
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 02 Dec 2009 14:36:34 GMT
Server: Apache/2.2.13 (Red Hat)
Accept-Ranges: bytes
Content-Length: 3985
Content-Type: text/html; charset=UTF-8
[...continues...]

2.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following example creates a new file in the /var/www/html/ directory, and shows the file
inheriting the httpd_sys_content_t type from its parent directory (/var/www/html/):

1. Run the ls -dZ /var/www/html command to view the SELinux context of
/var/www/html/:

~]$ ls -dZ /var/www/html
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0
/var/www/html

Managing Confined Services

8

This shows /var/www/html/ is labeled with the httpd_sys_content_t type.

2. Run the touch /var/www/html/file1 command as the root user to create a new file.

3. Run the ls -Z /var/www/html/file1 command to view the SELinux context:

~]$ ls -Z /var/www/html/file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/file1

The ls -Z command shows file1 labeled with the httpd_sys_content_t type. SELinux allows
httpd to read files labeled with this type, but not write to them, even if Linux permissions allow write
access. SELinux policy defines what types a process running in the httpd_t domain (where httpd
runs) can read and write to. This helps prevent processes from accessing files intended for use by
another process.

For example, httpd can access files labeled with the httpd_sys_content_t type (intended for the
Apache HTTP Server), but by default, cannot access files labeled with the samba_share_t type
(intended for Samba). Also, files in user home directories are labeled with the user_home_t type: by
default, this prevents httpd from reading or writing to files in user home directories.

The following lists some of the types used with httpd. Different types allow you to configure flexible
access:

httpd_sys_content_t

Use this type for static web content, such as .html files used by a static website. Files labeled with
this type are accessible (read only) to httpd and scripts executed by httpd. By default, files and
directories labeled with this type cannot be written to or modified by httpd or other processes.
Note that by default, files created in or copied into /var/www/html/ are labeled with the
httpd_sys_content_t type.

httpd_sys_script_exec_t

Use this type for scripts you want httpd to execute. This type is commonly used for Common
Gateway Interface (CGI) scripts in /var/www/cgi-bin/. By default, SELinux policy prevents
httpd from executing CGI scripts. To allow this, label the scripts with the
httpd_sys_script_exec_t type and enable the httpd_enable_cgi Boolean. Scripts labeled
with httpd_sys_script_exec_t run in the httpd_sys_script_t domain when executed by
httpd. The httpd_sys_script_t domain has access to other system domains, such as
postgresql_t and mysqld_t.

httpd_sys_rw_content_t

Files labeled with this type can be written to by scripts labeled with the
httpd_sys_script_exec_t type, but cannot be modified by scripts labeled with any other type.
You must use the httpd_sys_rw_content_t type to label files that will be read from and written
to by scripts labeled with the httpd_sys_script_exec_t type.

httpd_sys_ra_content_t

Files labeled with this type can be appended to by scripts labeled with the
httpd_sys_script_exec_t type, but cannot be modified by scripts labeled with any other type.
You must use the httpd_sys_ra_content_t type to label files that will be read from and
appended to by scripts labeled with the httpd_sys_script_exec_t type.

CHAPTER 2. THE APACHE HTTP SERVER

9

httpd_unconfined_script_exec_t

Scripts labeled with this type run without SELinux protection. Only use this type for complex
scripts, after exhausting all other options. It is better to use this type instead of disabling SELinux
protection for httpd, or for the entire system.

NOTE

To see more of the available types for httpd, run the following command:

~]$ grep httpd
/etc/selinux/targeted/contexts/files/file_contexts

Procedure 2.1. Changing the SELinux Context

The type for files and directories can be changed with the chcon command. Changes made with
chcon do not survive a file system relabel or the restorecon command. SELinux policy controls
whether users are able to modify the SELinux context for any given file. The following example
demonstrates creating a new directory and an index.html file for use by httpd, and labeling that file
and directory to allow httpd access to them:

1. Run the mkdir -p /my/website command as the root user to create a top-level directory
structure to store files to be used by httpd.

2. Files and directories that do not match a pattern in file-context configuration may be labeled
with the default_t type. This type is inaccessible to confined services:

~]$ ls -dZ /my
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /my

3. Run the chcon -R -t httpd_sys_content_t /my/ command as the root user to change
the type of the /my/ directory and subdirectories, to a type accessible to httpd. Now, files
created under /my/website/ inherit the httpd_sys_content_t type, rather than the
default_t type, and are therefore accessible to httpd:

~]# chcon -R -t httpd_sys_content_t /my/
~]# touch /my/website/index.html
~]# ls -Z /my/website/index.html
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0
/my/website/index.html

Refer to the Temporary Changes: chcon section of the Red Hat Enterprise Linux 6 SELinux User Guide
for further information about chcon.

Use the semanage fcontext command (semanage is provided by the policycoreutils-python
package) to make label changes that survive a relabel and the restorecon command. This command
adds changes to file-context configuration. Then, run restorecon, which reads file-context
configuration, to apply the label change. The following example demonstrates creating a new directory
and an index.html file for use by httpd, and persistently changing the label of that directory and file
to allow httpd access to them:

Managing Confined Services

10

1. Run the mkdir -p /my/website command as the root user to create a top-level directory
structure to store files to be used by httpd.

2. Run the following command as the root user to add the label change to file-context
configuration:

~]# semanage fcontext -a -t httpd_sys_content_t "/my(/.*)?"

The "/my(/.*)?" expression means the label change applies to the /my/ directory and all
files and directories under it.

3. Run the touch /my/website/index.html command as the root user to create a new file.

4. Run the restorecon -R -v /my/ command as the root user to apply the label changes
(restorecon reads file-context configuration, which was modified by the semanage
command in step 2):

~]# restorecon -R -v /my/
restorecon reset /my context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /my/website context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /my/website/index.html context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

Refer to the Persistent Changes: semanage fcontext section of the Red Hat Enterprise Linux SELinux
User Guide for further information on semanage.

2.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. This can be achieved via
Booleans that allow parts of SELinux policy to be changed at runtime, without any knowledge of
SELinux policy writing. This allows changes, such as allowing services access to NFS volumes, without
reloading or recompiling SELinux policy.

To modify the state of a Boolean, use the setsebool command. For example, to enable the
allow_httpd_anon_write Boolean, run the following command as the root user:

~]# setsebool -P allow_httpd_anon_write on

To disable a Boolean, using the same example, simply change on to off in the command, as shown
below:

~]# setsebool -P allow_httpd_anon_write off

NOTE

Do not use the -P option if you do not want setsebool changes to persist across
reboots.

CHAPTER 2. THE APACHE HTTP SERVER

11

Below is a description of common Booleans available that cater for the way httpd is running:

allow_httpd_anon_write

When disabled, this Boolean allows httpd to only have read access to files labeled with the
public_content_rw_t type. Enabling this Boolean will allow httpd to write to files labeled with
the public_content_rw_t type, such as a public directory containing files for a public file
transfer service.

allow_httpd_mod_auth_ntlm_winbind

Enabling this Boolean allows access to NTLM and Winbind authentication mechanisms via the
mod_auth_ntlm_winbind module in httpd.

allow_httpd_mod_auth_pam

Enabling this Boolean allows access to PAM authentication mechanisms via the mod_auth_pam
module in httpd.

allow_httpd_sys_script_anon_write

This Boolean defines whether or not HTTP scripts are allowed write access to files labeled with the
public_content_rw_t type, as used in a public file transfer service.

httpd_builtin_scripting

This Boolean defines access to httpd scripting. Having this Boolean enabled is often required for
PHP content.

httpd_can_network_connect

When disabled, this Boolean prevents HTTP scripts and modules from initiating a connection to a
network or remote port. Enable this Boolean to allow this access.

httpd_can_network_connect_db

When disabled, this Boolean prevents HTTP scripts and modules from initiating a connection to
database servers. Enable this Boolean to allow this access.

httpd_can_network_relay

Enable this Boolean when httpd is being used as a forward or reverse proxy.

httpd_can_sendmail

When disabled, this Boolean prevents HTTP modules from sending mail. This can prevent spam
attacks should a vulnerability be found in httpd. Enable this Boolean to allow HTTP modules to
send mail.

httpd_dbus_avahi

When off, this Boolean denies httpd access to the avahi service via D-Bus. Enable this Boolean to
allow this access.

httpd_enable_cgi

When disabled, this Boolean prevents httpd from executing CGI scripts. Enable this Boolean to
allow httpd to execute CGI scripts (CGI scripts must be labeled with the
httpd_sys_script_exec_t type).

Managing Confined Services

12

httpd_enable_ftp_server

Enabling this Boolean will allow httpd to listen on the FTP port and act as an FTP server.

httpd_enable_homedirs

When disabled, this Boolean prevents httpd from accessing user home directories. Enable this
Boolean to allow httpd access to user home directories; for example, content in /home/*/.

httpd_execmem

When enabled, this Boolean allows httpd to execute programs that require memory addresses that
are both executable and writable. Enabling this Boolean is not recommended from a security
standpoint as it reduces protection against buffer overflows, however certain modules and
applications (such as Java and Mono applications) require this privilege.

httpd_ssi_exec

This Boolean defines whether or not server side include (SSI) elements in a web page can be
executed.

httpd_tty_comm

This Boolean defines whether or not httpd is allowed access to the controlling terminal. Usually
this access is not required, however in cases such as configuring an SSL certificate file, terminal
access is required to display and process a password prompt.

httpd_unified

When enabled, this Boolean allows httpd_t complete access to all of the httpd types (that is to
execute, read, or write sys_content_t). When disabled, there is separation in place between web
content that is read-only, writable or executable. Disabling this Boolean ensures an extra level of
security but adds the administrative overhead of having to individually label scripts and other web
content based on the file access that each should have.

httpd_use_cifs

Enable this Boolean to allow httpd access to files on CIFS volumes that are labeled with the
cifs_t type, such as file systems mounted via Samba.

httpd_use_nfs

Enable this Boolean to allow httpd access to files on NFS volumes that are labeled with the nfs_t
type, such as file systems mounted via NFS.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

2.4. CONFIGURATION EXAMPLES

CHAPTER 2. THE APACHE HTTP SERVER

13

The following examples provide real-world demonstrations of how SELinux complements the Apache
HTTP Server and how full function of the Apache HTTP Server can be maintained.

2.4.1. Running a static site

To create a static website, label the .html files for that website with the httpd_sys_content_t
type. By default, the Apache HTTP Server cannot write to files that are labeled with the
httpd_sys_content_t type. The following example creates a new directory to store files for a read-
only website:

1. Run the mkdir /mywebsite command as the root user to create a top-level directory.

2. As the root user, create a /mywebsite/index.html file. Copy and paste the following
content into /mywebsite/index.html:

<html>
<h2>index.html from /mywebsite/</h2>
</html>

3. To allow the Apache HTTP Server read only access to /mywebsite/, as well as files and
subdirectories under it, label /mywebsite/ with the httpd_sys_content_t type. Run the
following command as the root user to add the label change to file-context configuration:

~]# semanage fcontext -a -t httpd_sys_content_t "/mywebsite(/.*)?"

4. Run the restorecon -R -v /mywebsite command as the root user to make the label
changes:

~]# restorecon -R -v /mywebsite
restorecon reset /mywebsite context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /mywebsite/index.html context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

5. For this example, edit /etc/httpd/conf/httpd.conf as the root user. Comment out the
existing DocumentRoot option. Add a DocumentRoot "/mywebsite" option. After editing,
these options should look as follows:

#DocumentRoot "/var/www/html"
DocumentRoot "/mywebsite"

6. Run the service httpd status command as the root user to see the status of the Apache
HTTP Server. If the server is stopped, run the service httpd start command as the root
user to start it. If the server is running, run the service httpd restart command as the
root user to restart the service (this also applies any changes made to httpd.conf).

7. Use a web browser to navigate to http://localhost/index.html. The following is
displayed:

index.html from /mywebsite/

Managing Confined Services

14

2.4.2. Sharing NFS and CIFS volumes

By default, NFS mounts on the client side are labeled with a default context defined by policy for NFS
volumes. In common policies, this default context uses the nfs_t type. Also, by default, Samba shares
mounted on the client side are labeled with a default context defined by policy. In common policies,
this default context uses the cifs_t type.

Depending on policy configuration, services may not be able to read files labeled with the nfs_t or
cifs_t types. This may prevent file systems labeled with these types from being mounted and then
read or exported by other services. Booleans can be enabled or disabled to control which services are
allowed to access the nfs_t and cifs_t types.

Enable the httpd_use_nfs Boolean to allow httpd to access and share NFS volumes (labeled with
the nfs_t type). Run the setsebool command as the root user to enable the Boolean:

~]# setsebool -P httpd_use_nfs on

Enable the httpd_use_cifs Boolean to allow httpd to access and share CIFS volumes (labeled with
the cifs_t type). Run the setsebool command as the root user to enable the Boolean:

~]# setsebool -P httpd_use_cifs on

NOTE

Do not use the -P option if you do not want setsebool changes to persist across
reboots.

2.4.3. Sharing files between services

Type Enforcement helps prevent processes from accessing files intended for use by another process.
For example, by default, Samba cannot read files labeled with the httpd_sys_content_t type, which
are intended for use by the Apache HTTP Server. Files can be shared between the Apache HTTP
Server, FTP, rsync, and Samba, if the desired files are labeled with the public_content_t or
public_content_rw_t type.

The following example creates a directory and files, and allows that directory and files to be shared
(read only) through the Apache HTTP Server, FTP, rsync, and Samba:

1. Run the mkdir /shares command as the root user to create a new top-level directory to
share files between multiple services.

2. Files and directories that do not match a pattern in file-context configuration may be labeled
with the default_t type. This type is inaccessible to confined services:

~]$ ls -dZ /shares
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /shares

3. As the root user, create a /shares/index.html file. Copy and paste the following content
into /shares/index.html:

<html>
<body>
<p>Hello</p>

CHAPTER 2. THE APACHE HTTP SERVER

15

</body>
</html>

4. Labeling /shares/ with the public_content_t type allows read-only access by the
Apache HTTP Server, FTP, rsync, and Samba. Run the following command as the root user to
add the label change to file-context configuration:

~]# semanage fcontext -a -t public_content_t "/shares(/.*)?"

5. Run the restorecon -R -v /shares/ command as the root user to apply the label
changes:

~]# restorecon -R -v /shares/
restorecon reset /shares context unconfined_u:object_r:default_t:s0-
>system_u:object_r:public_content_t:s0
restorecon reset /shares/index.html context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:public_content_t:s0

To share /shares/ through Samba:

1. Run the rpm -q samba samba-common samba-client command to confirm the samba,
samba-common, and samba-client packages are installed (version numbers may differ):

~]$ rpm -q samba samba-common samba-client
samba-3.4.0-0.41.el6.3.i686
samba-common-3.4.0-0.41.el6.3.i686
samba-client-3.4.0-0.41.el6.3.i686

If any of these packages are not installed, install them by running the yum install
package-name command as the root user.

2. Edit /etc/samba/smb.conf as the root user. Add the following entry to the bottom of this
file to share the /shares/ directory through Samba:

[shares]
comment = Documents for Apache HTTP Server, FTP, rsync, and Samba
path = /shares
public = yes
writable = no

3. A Samba account is required to mount a Samba file system. Run the smbpasswd -a
username command as the root user to create a Samba account, where username is an
existing Linux user. For example, smbpasswd -a testuser creates a Samba account for the
Linux testuser user:

~]# smbpasswd -a testuser
New SMB password: Enter a password
Retype new SMB password: Enter the same password again
Added user testuser.

Managing Confined Services

16

Running smbpasswd -a username, where username is the user name of a Linux account that
does not exist on the system, causes a Cannot locate Unix account for
'username'! error.

4. Run the service smb start command as the root user to start the Samba service:

~]# service smb start
Starting SMB services: [OK
]

5. Run the smbclient -U username -L localhost command to list the available shares,
where username is the Samba account added in step 3. When prompted for a password, enter
the password assigned to the Samba account in step 3 (version numbers may differ):

~]$ smbclient -U username -L localhost
Enter username's password:
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Sharename Type Comment
--------- ---- -------
shares Disk Documents for Apache HTTP Server, FTP,
rsync, and Samba
IPC$ IPC IPC Service (Samba Server Version 3.4.0-
0.41.el6)
username Disk Home Directories
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Server Comment
--------- -------

Workgroup Master
--------- -------

6. Run the mkdir /test/ command as the root user to create a new directory. This directory
will be used to mount the shares Samba share.

7. Run the following command as the root user to mount the shares Samba share to /test/,
replacing username with the user name from step 3:

~]# mount //localhost/shares /test/ -o user=username

Enter the password for username, which was configured in step 3.

8. Run the cat /test/index.html command to view the file, which is being shared through
Samba:

~]$ cat /test/index.html
<html>
<body>
<p>Hello</p>
</body>
</html>

To share /shares/ through the Apache HTTP Server:

CHAPTER 2. THE APACHE HTTP SERVER

17

1. Run the rpm -q httpd command to confirm the httpd package is installed (version number
may differ):

~]$ rpm -q httpd
httpd-2.2.11-6.i386

If this package is not installed, run the yum install httpd command as the root user to
install it.

2. Change into the /var/www/html/ directory. Run the following command as the root user to
create a link (named shares) to the /shares/ directory:

~]# ln -s /shares/ shares

3. Run the service httpd start command as the root user to start the Apache HTTP Server:

~]# service httpd start
Starting httpd: [OK
]

4. Use a web browser to navigate to http://localhost/shares. The /shares/index.html
file is displayed.

By default, the Apache HTTP Server reads an index.html file if it exists. If /shares/ did not have
index.html, and instead had file1, file2, and file3, a directory listing would occur when
accessing http://localhost/shares:

1. Run the rm -i /shares/index.html command as the root user to remove the
index.html file.

2. Run the touch /shares/file{1,2,3} command as the root user to create three files in
/shares/:

~]# touch /shares/file{1,2,3}
~]# ls -Z /shares/
-rw-r--r-- root root system_u:object_r:public_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:public_content_t:s0
file2
-rw-r--r-- root root unconfined_u:object_r:public_content_t:s0
file3

3. Run the service httpd status command as the root user to see the status of the Apache
HTTP Server. If the server is stopped, run service httpd start as the root user to start it.

4. Use a web browser to navigate to http://localhost/shares. A directory listing is
displayed:

Managing Confined Services

18

2.4.4. Changing port numbers

Depending on policy configuration, services may only be allowed to run on certain port numbers.
Attempting to change the port a service runs on without changing policy may result in the service
failing to start. Run the semanage port -l | grep -w "http_port_t" command as the root
user to list the ports SELinux allows httpd to listen on:

~]# semanage port -l | grep -w http_port_t
http_port_t tcp 80, 443, 488, 8008, 8009, 8443

By default, SELinux allows http to listen on TCP ports 80, 443, 488, 8008, 8009, or 8443. If
/etc/httpd/conf/httpd.conf is configured so that httpd listens on any port not listed for
http_port_t, httpd fails to start.

To configure httpd to run on a port other than TCP ports 80, 443, 488, 8008, 8009, or 8443:

1. Edit /etc/httpd/conf/httpd.conf as the root user so the Listen option lists a port that
is not configured in SELinux policy for httpd. The following example configures httpd to
listen on the 10.0.0.1 IP address, and on TCP port 12345:

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses (0.0.0.0)
#
#Listen 12.34.56.78:80
Listen 10.0.0.1:12345

2. Run the semanage port -a -t http_port_t -p tcp 12345 command as the root user
to add the port to SELinux policy configuration.

3. Run the semanage port -l | grep -w http_port_t command as the root user to
confirm the port is added:

~]# semanage port -l | grep -w http_port_t
http_port_t tcp 12345, 80, 443, 488, 8008,
8009, 8443

If you no longer run httpd on port 12345, run the semanage port -d -t http_port_t -p tcp
12345 command as the root user to remove the port from policy configuration.

CHAPTER 2. THE APACHE HTTP SERVER

19

[3] Refer to the Apache HTTP Server Project page for more information.

Managing Confined Services

20

http://httpd.apache.org/

CHAPTER 3. SAMBA
Samba is an open-source implementation of the Server Message Block (SMB) and Common Internet
File System (CIFS) protocols that provides file and print services between clients across various
operating systems.[4]

In Red Hat Enterprise Linux, the samba package provides the Samba server. Run the rpm -q samba
command to see if the samba package is installed. If it is not installed and you want to use Samba, run
the following command as the root user to install it:

~]# yum install samba

3.1. SAMBA AND SELINUX

When SELinux is enabled, the Samba server (smbd) runs confined by default. Confined services run in
their own domains, and are separated from other confined services. The following example
demonstrates the smbd process running in its own domain. This example assumes the samba package
is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service smbd start command as the root user to start smbd:

~]# service smb start
Starting SMB services: [OK
]

3. Run the ps -eZ | grep smb command to view the smbd processes:

~]$ ps -eZ | grep smb
unconfined_u:system_r:smbd_t:s0 16420 ? 00:00:00 smbd
unconfined_u:system_r:smbd_t:s0 16422 ? 00:00:00 smbd

The SELinux context associated with the smbd processes is
unconfined_u:system_r:smbd_t:s0. The second last part of the context, smbd_t, is the
type. A type defines a domain for processes and a type for files. In this case, the smbd
processes are running in the smbd_t domain.

Files must be labeled correctly to allow smbd to access and share them. For example, smbd can read
and write to files labeled with the samba_share_t type, but by default, cannot access files labeled
with the httpd_sys_content_t type, which is intended for use by the Apache HTTP Server.
Booleans must be enabled to allow certain behavior, such as allowing home directories and NFS
volumes to be exported through Samba, as well as to allow Samba to act as a domain controller.

3.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process

CHAPTER 3. SAMBA

21

isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

Label files with the samba_share_t type to allow Samba to share them. Only label files you have
created, and do not relabel system files with the samba_share_t type: Booleans can be enabled to
share such files and directories. SELinux allows Samba to write to files labeled with the
samba_share_t type, as long as /etc/samba/smb.conf and Linux permissions are set accordingly.

The samba_etc_t type is used on certain files in /etc/samba/, such as smb.conf. Do not manually
label files with the samba_etc_t type. If files in /etc/samba/ are not labeled correctly, run the
restorecon -R -v /etc/samba command as the root user to restore such files to their default
contexts. If /etc/samba/smb.conf is not labeled with the samba_etc_t type, the service smb
start command may fail and an SELinux denial may be logged. The following is an example denial
when /etc/samba/smb.conf was labeled with the httpd_sys_content_t type:

setroubleshoot: SELinux is preventing smbd (smbd_t) "read" to ./smb.conf
(httpd_sys_content_t). For complete SELinux messages. run sealert -l
deb33473-1069-482b-bb50-e4cd05ab18af

3.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_smbd_anon_write

Having this Boolean enabled allows smbd to write to a public directory, such as an area reserved for
common files that otherwise has no special access restrictions.

samba_create_home_dirs

Having this Boolean enabled allows Samba to create new home directories independently. This is
often done by mechanisms such as PAM.

samba_domain_controller

When enabled, this Boolean allows Samba to act as a domain controller, as well as giving it
permission to execute related commands such as useradd, groupadd and passwd.

samba_enable_home_dirs

Enabling this Boolean allows Samba to share users' home directories.

samba_export_all_ro

Export any file or directory, allowing read-only permissions. This allows files and directories that
are not labeled with the samba_share_t type to be shared through Samba. When the
samba_export_all_ro Boolean is on, but the samba_export_all_rw Boolean is off, write
access to Samba shares is denied, even if write access is configured in /etc/samba/smb.conf, as
well as Linux permissions allowing write access.

samba_export_all_rw

Managing Confined Services

22

Export any file or directory, allowing read and write permissions. This allows files and directories
that are not labeled with the samba_share_t type to be exported through Samba. Permissions in
/etc/samba/smb.conf and Linux permissions must be configured to allow write access.

samba_run_unconfined

Having this Boolean enabled allows Samba to run unconfined scripts in the
/var/lib/samba/scripts/ directory.

samba_share_fusefs

This Boolean must be enabled for Samba to share fusefs file systems.

samba_share_nfs

Disabling this Boolean prevents smbd from having full access to NFS shares via Samba. Enabling this
Boolean will allow Samba to share NFS volumes.

use_samba_home_dirs

Enable this Boolean to use a remote server for Samba home directories.

virt_use_samba

Allow virtual machine access to CIFS files.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

3.4. CONFIGURATION EXAMPLES

The following examples provide real-world demonstrations of how SELinux complements the Samba
server and how full function of the Samba server can be maintained.

3.4.1. Sharing directories you create

The following example creates a new directory, and shares that directory through Samba:

1. Run the rpm -q samba samba-common samba-client command to confirm the samba,
samba-common, and samba-client packages are installed. If any of these packages are not
installed, install them by running the yum install package-name command as the root
user.

2. Run the mkdir /myshare command as the root user to create a new top-level directory to
share files through Samba.

3. Run the touch /myshare/file1 command as the root user to create an empty file. This file
is used later to verify the Samba share mounted correctly.

CHAPTER 3. SAMBA

23

4. SELinux allows Samba to read and write to files labeled with the samba_share_t type, as
long as /etc/samba/smb.conf and Linux permissions are set accordingly. Run the following
command as the root user to add the label change to file-context configuration:

~]# semanage fcontext -a -t samba_share_t "/myshare(/.*)?"

5. Run the restorecon -R -v /myshare command as the root user to apply the label
changes:

~]# restorecon -R -v /myshare
restorecon reset /myshare context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:samba_share_t:s0
restorecon reset /myshare/file1 context
unconfined_u:object_r:default_t:s0-
>system_u:object_r:samba_share_t:s0

6. Edit /etc/samba/smb.conf as the root user. Add the following to the bottom of this file to
share the /myshare/ directory through Samba:

[myshare]
comment = My share
path = /myshare
public = yes
writable = no

7. A Samba account is required to mount a Samba file system. Run the smbpasswd -a
username command as the root user to create a Samba account, where username is an
existing Linux user. For example, smbpasswd -a testuser creates a Samba account for the
Linux testuser user:

~]# smbpasswd -a testuser
New SMB password: Enter a password
Retype new SMB password: Enter the same password again
Added user testuser.

Running smbpasswd -a username, where username is the user name of a Linux account that
does not exist on the system, causes a Cannot locate Unix account for
'username'! error.

8. Run the service smb start command as the root user to start the Samba service:

~]# service smb start
Starting SMB services: [OK
]

9. Run the smbclient -U username -L localhost command to list the available shares,
where username is the Samba account added in step 7. When prompted for a password, enter
the password assigned to the Samba account in step 7 (version numbers may differ):

~]$ smbclient -U username -L localhost
Enter username's password:

Managing Confined Services

24

Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Sharename Type Comment
--------- ---- -------
myshare Disk My share
IPC$ IPC IPC Service (Samba Server Version 3.4.0-
0.41.el6)
username Disk Home Directories
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Server Comment
--------- -------

Workgroup Master
--------- -------

10. Run the mkdir /test/ command as the root user to create a new directory. This directory
will be used to mount the myshare Samba share.

11. Run the following command as the root user to mount the myshare Samba share to /test/,
replacing username with the user name from step 7:

~]# mount //localhost/myshare /test/ -o user=username

Enter the password for username, which was configured in step 7.

12. Run the ls /test/ command to view the file1 file created in step 3:

~]$ ls /test/
file1

3.4.2. Sharing a website

It may not be possible to label files with the samba_share_t type, for example, when wanting to share
a website in /var/www/html/. For these cases, use the samba_export_all_ro Boolean to share
any file or directory (regardless of the current label), allowing read only permissions, or the
samba_export_all_rw Boolean to share any file or directory (regardless of the current label),
allowing read and write permissions.

The following example creates a file for a website in /var/www/html/, and then shares that file
through Samba, allowing read and write permissions. This example assumes the httpd, samba, samba-
common, samba-client, and wget packages are installed:

1. As the root user, create a /var/www/html/file1.html file. Copy and paste the following
content into /var/www/html/file1.html:

<html>
<h2>File being shared through the Apache HTTP Server and Samba.</h2>
</html>

2. Run the ls -Z /var/www/html/file1.html command to view the SELinux context of
file1.html:

CHAPTER 3. SAMBA

25

~]$ ls -Z /var/www/html/file1.html
-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/file1.html

file1.index.html is labeled with the httpd_sys_content_t. By default, the Apache
HTTP Server can access this type, but Samba cannot.

3. Run the service httpd start command as the root user to start the Apache HTTP Server:

~]# service httpd start
Starting httpd: [OK
]

4. Change into a directory your user has write access to, and run the wget
http://localhost/file1.html command. Unless there are changes to the default
configuration, this command succeeds:

~]$ wget http://localhost/file1.html
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 84 [text/html]
Saving to: `file1.html.1'

100%[=======================>] 84 --.-K/s in 0s

`file1.html.1' saved [84/84]

5. Edit /etc/samba/smb.conf as the root user. Add the following to the bottom of this file to
share the /var/www/html/ directory through Samba:

[website]
comment = Sharing a website
path = /var/www/html/
public = no
writable = no

6. The /var/www/html/ directory is labeled with the httpd_sys_content_t type. By default,
Samba cannot access files and directories labeled with the httpd_sys_content_t type,
even if Linux permissions allow it. To allow Samba access, run the following command as the
root user to enable the samba_export_all_ro Boolean:

~]# setsebool -P samba_export_all_ro on

Do not use the -P option if you do not want the change to persist across reboots. Note that
enabling the samba_export_all_ro Boolean allows Samba to access any type.

7. Run service smb start as the root user to start smbd:

~]# service smb start
Starting SMB services: [OK
]

Managing Confined Services

26

[4] Refer to the official Samba website for more information.

CHAPTER 3. SAMBA

27

http://samba.org

CHAPTER 4. FILE TRANSFER PROTOCOL
File Transfer Protocol (FTP) is one of the oldest and most commonly used protocols found on the
Internet today. Its purpose is to reliably transfer files between computer hosts on a network without
requiring the user to log directly into the remote host or have knowledge of how to use the remote
system. It allows users to access files on remote systems using a standard set of simple commands.

The Very Secure FTP Daemon (vsftpd) is designed from the ground up to be fast, stable, and, most
importantly, secure. Its ability to handle large numbers of connections efficiently and securely is why
vsftpd is the only stand-alone FTP distributed with Red Hat Enterprise Linux.

In Red Hat Enterprise Linux, the vsftpd package provides the Very Secure FTP daemon. Run the rpm -
q vsftpd command to see if vsftpd is installed:

~]$ rpm -q vsftpd

If you want an FTP server and the vsftpd package is not installed, run the following command as the
root user to install it:

~]# yum install vsftpd

4.1. FTP AND SELINUX

The vsftpd FTP daemon runs confined by default. SELinux policy defines how vsftpd interacts with
files, processes, and with the system in general. For example, when an authenticated user logs in via
FTP, they cannot read from or write to files in their home directories: SELinux prevents vsftpd from
accessing user home directories by default. Also, by default, vsftpd does not have access to NFS or
CIFS volumes, and anonymous users do not have write access, even if such write access is configured
in /etc/vsftpd/vsftpd.conf. Booleans can be enabled to allow the previously mentioned access.

The following example demonstrates an authenticated user logging in, and an SELinux denial when
trying to view files in their home directory:

1. Run the rpm -q ftp command to see if the ftp package is installed. If it is not, run the yum
install ftp command as the root user to install it.

2. Run the rpm -q vsftpd command to see if the vsftpd package is installed. If it is not, run the
yum install vsftpd command as the root user to install it.

3. In Red Hat Enterprise Linux, vsftpd only allows anonymous users to log in by default. To
allow authenticated users to log in, edit /etc/vsftpd/vsftpd.conf as the root user. Make
sure the local_enable=YES option is uncommented:

Uncomment this to allow local users to log in.
local_enable=YES

4. Run the service vsftpd start command as the root user to start vsftpd. If the service
was running before editing vsftpd.conf, run the service vsftpd restart command as
the root user to apply the configuration changes:

~]# service vsftpd start
Starting vsftpd for vsftpd: [OK
]

Managing Confined Services

28

5. Run the ftp localhost command as the user you are currently logged in with. When
prompted for your name, make sure your user name is displayed. If the correct user name is
displayed, press Enter, otherwise, enter the correct user name:

~] ftp localhost
Connected to localhost (127.0.0.1).
220 (vsFTPd 2.1.0)
Name (localhost:username):
331 Please specify the password.
Password: Enter your password
500 OOPS: cannot change directory:/home/username
Login failed.
ftp>

6. An SELinux denial similar to the following is logged:

setroubleshoot: SELinux is preventing the ftp daemon from reading
users home directories (username). For complete SELinux messages.
run sealert -l c366e889-2553-4c16-b73f-92f36a1730ce

7. Access to home directories has been denied by SELinux. This can be fixed by activating the
ftp_home_dir Boolean. Enable this ftp_home_dir Boolean by running the following
command as the root user:

~]# setsebool -P ftp_home_dir=1

NOTE

Do not use the -P option if you do not want changes to persist across reboots.

Try to log in again. Now that SELinux is allowing access to home directories via the
ftp_home_dir Boolean, logging in will succeed.

4.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

By default, anonymous users have read access to files in /var/ftp/ when they log in via FTP. This
directory is labeled with the public_content_t type, allowing only read access, even if write access
is configured in /etc/vsftpd/vsftpd.conf. The public_content_t type is accessible to other
services, such as Apache HTTP Server, Samba, and NFS.

Use one of the following types to share files through FTP:

public_content_t

Label files and directories you have created with the public_content_t type to share them read-
only through vsftpd. Other services, such as Apache HTTP Server, Samba, and NFS, also have

CHAPTER 4. FILE TRANSFER PROTOCOL

29

access to files labeled with this type. Files labeled with the public_content_t type cannot be
written to, even if Linux permissions allow write access. If you require write access, use the
public_content_rw_t type.

public_content_rw_t

Label files and directories you have created with the public_content_rw_t type to share them
with read and write permissions through vsftpd. Other services, such as Apache HTTP Server,
Samba, and NFS, also have access to files labeled with this type. Remember that Booleans for each
service must be enabled before they can write to files labeled with this type.

4.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_ftpd_anon_write

When disabled, this Boolean prevents vsftpd from writing to files and directories labeled with the
public_content_rw_t type. Enable this Boolean to allow users to upload files via FTP. The
directory where files are uploaded to must be labeled with the public_content_rw_t type and
Linux permissions set accordingly.

allow_ftpd_full_access

When this Boolean is on, only Linux (DAC) permissions are used to control access, and
authenticated users can read and write to files that are not labeled with the public_content_t
or public_content_rw_t types.

allow_ftpd_use_cifs

Having this Boolean enabled allows vsftpd to access files and directories labeled with the cifs_t
type; therefore, having this Boolean enabled allows you to share file systems mounted via Samba
through vsftpd.

allow_ftpd_use_nfs

Having this Boolean enabled allows vsftpd to access files and directories labeled with the nfs_t
type; therefore, having this Boolean enabled allows you to share file systems mounted via NFS
through vsftpd.

ftp_home_dir

Having this Boolean enabled allows authenticated users to read and write to files in their home
directories. When this Boolean is off, attempting to download a file from a home directory results in
an error such as 550 Failed to open file. An SELinux denial is logged.

ftpd_connect_db

Allow FTP daemons to initiate a connection to a database.

httpd_enable_ftp_server

Allow httpd to listen on the FTP port and act as a FTP server.

Managing Confined Services

30

tftp_anon_write

Having this Boolean enabled allows TFTP access to a public directory, such as an area reserved for
common files that otherwise has no special access restrictions.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

4.4. CONFIGURATION EXAMPLES

4.4.1. Uploading to an FTP site

The following example creates an FTP site that allows a dedicated user to upload files. It creates the
directory structure and the required SELinux configuration changes:

1. Run the setsebool ftp_home_dir=1 command as the root user to enable access to FTP
home directories.

2. Run the mkdir -p /myftp/pub command as the root user to create a new top-level
directory.

3. Set Linux permissions on the /myftp/pub/ directory to allow a Linux user write access. This
example changes the owner and group from root to owner user1 and group root. Replace
user1 with the user you want to give write access to:

~]# chown user1:root /myftp/pub
~]# chmod 775 /myftp/pub

The chown command changes the owner and group permissions. The chmod command
changes the mode, allowing the user1 user read, write, and execute permissions, and
members of the root group read, write, and execute permissions. Everyone else has read and
execute permissions, which allows the Apache HTTP Server to read files from this directory.

4. When running SELinux, files and directories must be labeled correctly to allow access. Setting
Linux permissions is not enough. Files labeled with the public_content_t type allow them
to be read by FTP, Apache HTTP Server, Samba, and rsync. Files labeled with the
public_content_rw_t type can be written to by FTP. Other services, such as Samba,
require Booleans to be set before they can write to files labeled with the
public_content_rw_t type. Label the top-level directory (/myftp/) with the
public_content_t type, to prevent copied or newly-created files under /myftp/ from
being written to or modified by services. Run the following command as the root user to add
the label change to file-context configuration:

~]# semanage fcontext -a -t public_content_t /myftp

5. Run the restorecon -R -v /myftp/ command to apply the label change:

CHAPTER 4. FILE TRANSFER PROTOCOL

31

~]# restorecon -R -v /myftp/
restorecon reset /myftp context unconfined_u:object_r:default_t:s0-
>system_u:object_r:public_content_t:s0

6. Confirm /myftp is labeled with the public_content_t type, and /myftp/pub/ is labeled
with the default_t type:

~]$ ls -dZ /myftp/
drwxr-xr-x. root root system_u:object_r:public_content_t:s0 /myftp/
~]$ ls -dZ /myftp/pub/
drwxrwxr-x. user1 root unconfined_u:object_r:default_t:s0
/myftp/pub/

7. FTP must be allowed to write to a directory before users can upload files via FTP. SELinux
allows FTP to write to directories labeled with the public_content_rw_t type. This example
uses /myftp/pub/ as the directory FTP can write to. Run the following command as the root
user to add the label change to file-context configuration:

~]# semanage fcontext -a -t public_content_rw_t "/myftp/pub(/.*)?"

8. Run the restorecon -R -v /myftp/pub command as the root user to apply the label
change:

~]# restorecon -R -v /myftp/pub
restorecon reset /myftp/pub context system_u:object_r:default_t:s0-
>system_u:object_r:public_content_rw_t:s0

9. The allow_ftpd_anon_write Boolean must be on to allow vsftpd to write to files that are
labeled with the public_content_rw_t type. Run the following command as the root user to
enable this Boolean:

~]# setsebool -P allow_ftpd_anon_write on

Do not use the -P option if you do not want changes to persist across reboots.

The following example demonstrates logging in via FTP and uploading a file. This example uses the
user1 user from the previous example, where user1 is the dedicated owner of the /myftp/pub/
directory:

1. Run the cd ~/ command to change into your home directory. Then, run the mkdir myftp
command to create a directory to store files to upload via FTP.

2. Run the cd ~/myftp command to change into the ~/myftp/ directory. In this directory,
create an ftpupload file. Copy the following contents into this file:

File upload via FTP from a home directory.

3. Run the getsebool allow_ftpd_anon_write command to confirm the
allow_ftpd_anon_write Boolean is on:

~]$ getsebool allow_ftpd_anon_write
allow_ftpd_anon_write --> on

Managing Confined Services

32

If this Boolean is off, run the setsebool -P allow_ftpd_anon_write on command as
the root user to enable it. Do not use the -P option if you do not want the change to persist
across reboots.

4. Run the service vsftpd start command as the root user to start vsftpd:

~]# service vsftpd start
Starting vsftpd for vsftpd: [OK
]

5. Run the ftp localhost command. When prompted for a user name, enter the user name of
the user who has write access, then, enter the correct password for that user:

~]$ ftp localhost
Connected to localhost (127.0.0.1).
220 (vsFTPd 2.1.0)
Name (localhost:username):
331 Please specify the password.
Password: Enter the correct password
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd myftp
250 Directory successfully changed.
ftp> put ftpupload
local: ftpupload remote: ftpupload
227 Entering Passive Mode (127,0,0,1,241,41).
150 Ok to send data.
226 File receive OK.
ftp> 221 Goodbye.

The upload succeeds as the allow_ftpd_anon_write Boolean is enabled.

CHAPTER 4. FILE TRANSFER PROTOCOL

33

CHAPTER 5. NETWORK FILE SYSTEM
A Network File System (NFS) allows remote hosts to mount file systems over a network and interact
with those file systems as though they are mounted locally. This enables system administrators to
consolidate resources onto centralized servers on the network.[5]

In Red Hat Enterprise Linux, the nfs-utils package is required for full NFS support. Run the rpm -q
nfs-utils command to see if the nfs-utils is installed. If it is not installed and you want to use NFS,
run the following command as the root user to install it:

~]# yum install nfs-utils

5.1. NFS AND SELINUX

When running SELinux, the NFS daemons are confined by default. SELinux policy allows NFS to share
files by default.

5.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

By default, mounted NFS volumes on the client side are labeled with a default context defined by policy
for NFS. In common policies, this default context uses the nfs_t type. The following types are used
with NFS. Different types allow you to configure flexible access:

var_lib_nfs_t

This type is used for existing and new files copied to or created in the /var/lib/nfs/ directory.
This type should not need to be changed in normal operation. To restore changes to the default
settings, run the restorecon -R -v /var/lib/nfs command as the root user.

nfsd_exec_t

The /usr/sbin/rpc.nfsd file is labeled with the nfsd_exec_t, as are other system
executables and libraries related to NFS. Users should not label any files with this type.
nfsd_exec_t will transition to nfsd_t.

5.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_ftpd_use_nfs

When enabled, this Boolean allows the ftpd daemon to access NFS volumes.

cobbler_use_nfs

When enabled, this Boolean allows the cobblerd daemon to access NFS volumes.

Managing Confined Services

34

git_system_use_nfs

When enabled, this Boolean allows the Git system daemon to read system shared repositories on
NFS volumes.

httpd_use_nfs

When enabled, this Boolean allows the httpd daemon to access files stored on NFS volumes.

qemu_use_nfs

When enabled, this Boolean allows Qemu to use NFS volumes.

rsync_use_nfs

When enabled, this Boolean allows rsync servers to share NFS volumes.

samba_share_nfs

When enabled, this Boolean allows the smbd daemon to share NFS volumes. When disabled, this
Boolean prevents smbd from having full access to NFS shares via Samba.

sanlock_use_nfs

When enabled, this Boolean allows the sanlock daemon to manage NFS volumes.

sge_use_nfs

When enabled, this Boolean allows the sge scheduler to access NFS volumes.

use_nfs_home_dirs

When enabled, this Boolean adds support for NFS home directories.

virt_use_nfs

When enabled, this Boolean allows confident virtual guests to manage files on NFS volumes.

xen_use_nfs

When enabled, this Boolean allows Xen to manage files on NFS volumes.

git_cgi_use_nfs

When enabled, this Boolean allows the Git Common Gateway Interface (CGI) to access NFS
volumes.

tftp_use_nfs

When enabled, this Boolean allows The Trivial File Transfer Protocol (TFTP) to read from NFS
volumes for public file transfer services.

CHAPTER 5. NETWORK FILE SYSTEM

35

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

[5] Refer to the Storage Administration Guide for more information.

Managing Confined Services

36

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-nfs.html#s1-nfs-how

CHAPTER 6. BERKELEY INTERNET NAME DOMAIN
BIND performs name resolution services via the named daemon. BIND lets users locate computer
resources and services by name instead of numerical addresses.

In Red Hat Enterprise Linux, the bind package provides a DNS server. Run the rpm -q bind command
to see if the bind package is installed. If it is not installed, run the following command as the root user
to install it:

~]# yum install bind

6.1. BIND AND SELINUX

The default permissions on the /var/named/slaves/, /var/named/dynamic/ and
/var/named/data/ directories allow zone files to be updated via zone transfers and dynamic DNS
updates. Files in /var/named/ are labeled with the named_zone_t type, which is used for master
zone files.

For a slave server, configure /etc/named.conf to place slave zones in /var/named/slaves/. The
following is an example of a domain entry in /etc/named.conf for a slave DNS server that stores the
zone file for testdomain.com in /var/named/slaves/:

zone "testdomain.com" {
 type slave;
 masters { IP-address; };
 file "/var/named/slaves/db.testdomain.com";
 };

If a zone file is labeled named_zone_t, the named_write_master_zones Boolean must be enabled
to allow zone transfers and dynamic DNS to update the zone file. Also, the mode of the parent directory
has to be changed to allow the named user or group read, write and execute access.

If zone files in /var/named/ are labeled with the named_cache_t type, a file system relabel or
running restorecon -R /var/ will change their type to named_zone_t.

6.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with BIND. Different types allow you to configure flexible access:

named_zone_t

Used for master zone files. Other services cannot modify files of this type. named can only modify
files of this type if the named_write_master_zones Boolean is enabled.

named_cache_t

CHAPTER 6. BERKELEY INTERNET NAME DOMAIN

37

By default, named can write to files labeled with this type, without additional Booleans being set.
Files copied or created in the /var/named/slaves/,/var/named/dynamic/ and
/var/named/data/ directories are automatically labeled with the named_cache_t type.

named_var_run_t

Files copied or created in the /var/run/bind/, /var/run/named/, and /var/run/unbound/
directories are automatically labeled with the named_var_run_t type.

named_conf_t

BIND-related configuration files, usually stored in the /etc/ directory, are automatically labeled
with the named_conf_t type.

named_exec_t

BIND-related executable files, usually stored in the /usr/sbin/ directory, are automatically
labeled with the named_exec_t type.

named_log_t

BIND-related log files, usually stored in the /var/log/ directory, are automatically labeled with
the named_log_t type.

named_initrc_exec_t

Executable BIND-related files in the /etc/rc.d/init.d/ directory are automatically labeled with
the named_initrc_exec_t type.

6.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

named_write_master_zones

When disabled, this Boolean prevents named from writing to zone files or directories labeled with
the named_zone_t type. named does not usually need to write to zone files; but in the case that it
needs to, or if a secondary server needs to write to zone files, enable this Boolean to allow this
action.

named_bind_http_port

When enabled, this Boolean allows BIND to bind an Apache port.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

Managing Confined Services

38

6.4. CONFIGURATION EXAMPLES

6.4.1. Dynamic DNS

BIND allows hosts to update their records in DNS and zone files dynamically. This is used when a host
computer's IP address changes frequently and the DNS record requires real-time modification.

Use the /var/named/dynamic/ directory for zone files you want updated via dynamic DNS. Files
created in or copied into /var/named/dynamic/ inherit Linux permissions that allow named to write
to them. As such files are labeled with the named_cache_t type, SELinux allows named to write to
them.

If a zone file in /var/named/dynamic/ is labeled with the named_zone_t type, dynamic DNS
updates may not be successful for a certain period of time as the update needs to be written to a
journal first before being merged. If the zone file is labeled with the named_zone_t type when the
journal attempts to be merged, an error such as the following is logged:

named[PID]: dumping master file: rename: /var/named/dynamic/zone-name:
permission denied

Also, the following SELinux denial is logged:

setroubleshoot: SELinux is preventing named (named_t) "unlink" to zone-
name (named_zone_t)

To resolve this labeling issue, run the restorecon -R -v /var/named/dynamic command as the
Linux root user.

CHAPTER 6. BERKELEY INTERNET NAME DOMAIN

39

CHAPTER 7. CONCURRENT VERSIONING SYSTEM
The Concurrent Versioning System (CVS) is a free revision-control system. It is used to monitor and
keep track of modifications to a central set of files which are usually accessed by several different
users. It is commonly used by programmers to manage a source code repository and is widely used by
open source programmers.

In Red Hat Enterprise Linux, the cvs package provides CVS. Run the rpm -q cvs command to see if
the cvs package is installed. If it is not installed and you want to use CVS, run the following command
as the root user to install it:

~]# yum install cvs

7.1. CVS AND SELINUX

The cvs daemon runs as cvs_t. By default in Red Hat Enterprise Linux, CVS is only allowed to read
and write certain directories. The label cvs_data_t defines which areas the cvs daemon has read and
write access to. When using CVS with SELinux, assigning the correct label is essential for clients to
have full access to the area reserved for CVS data.

7.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with CVS. Different types allow you to configure flexible access:

cvs_data_t

This type is used for data in a CVS repository. CVS can only gain full access to data if it has this
type.

cvs_exec_t

This type is used for the /usr/bin/cvs binary.

7.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_cvs_read_shadow

This Boolean allows the cvs daemon to access the /etc/shadow file for user authentication.

Managing Confined Services

40

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

7.4. CONFIGURATION EXAMPLES

7.4.1. Setting up CVS

This example describes a simple CVS setup and an SELinux configuration which allows remote access.
Two hosts are used in this example; a CVS server with a host name of cvs-srv with an IP address of
192.168.1.1 and a client with a host name of cvs-client and an IP address of 192.168.1.100.
Both hosts are on the same subnet (192.168.1.0/24). This is an example only and assumes that the cvs
and xinetd packages are installed, that the SELinux targeted policy is used, and that SELinux is running
in enforced mode.

This example will show that even with full DAC permissions, SELinux can still enforce policy rules based
on file labels and only allow access to certain areas that have been specifically labeled for access by
CVS.

NOTE

Steps 1-9 should be performed on the CVS server, cvs-srv.

1. This example requires the cvs and xinetd packages. Run the rpm -q cvs command to see if
the cvs package is installed. If it is not installed, run the following command as the root user to
install cvs:

~]# yum install cvs

Run the rpm -q xinetd command to see if the xinetd package is installed. If it is not
installed, run the following command as the root user to install xinetd:

~]# yum install xinetd

2. Create a group named CVS. This can be done via the groupadd CVS command as the root
user, or by using the system-config-users tool.

3. Create a user with a user name of cvsuser and make this user a member of the CVS group.
This can be done using the system-config-users tool.

4. Edit the /etc/services file and make sure that the CVS server has uncommented entries
looking similar to the following:

cvspserver 2401/tcp # CVS client/server operations
cvspserver 2401/udp # CVS client/server operations

5. Create the CVS repository in the root area of the file system. When using SELinux, it is best to

CHAPTER 7. CONCURRENT VERSIONING SYSTEM

41

have the repository in the root file system so that recursive labels can be given to it without
affecting any other subdirectories. For example, as the root user, create a /cvs/ directory to
house the repository:

[root@cvs-srv]# mkdir /cvs

6. Give full permissions to the /cvs/ directory to all users:

[root@cvs-srv]# chmod -R 777 /cvs

WARNING

This is an example only and these permissions should not be used in a
production system.

7. Edit the /etc/xinetd.d/cvs file and make sure that the CVS section is uncommented and
configured to use the /cvs/ directory. The file should look similar to:

service cvspserver
{
 disable = no
 port = 2401
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 passenv = PATH
 server = /usr/bin/cvs
 env = HOME=/cvs
 server_args = -f --allow-root=/cvs pserver
bind = 127.0.0.1

8. Start the xinetd daemon by running the service xinetd start command as the root
user.

9. Add a rule which allows inbound connections using TCP on port 2401 by using the system-
config-firewall tool.

10. As the cvsuser user, run the following command:

[cvsuser@cvs-client]$ cvs -d /cvs init

11. At this point, CVS has been configured but SELinux will still deny logins and file access. To
demonstrate this, set the $CVSROOT variable on cvs-client and try to log in remotely. The
following step should be performed on cvs-client:

[cvsuser@cvs-client]$ export
CVSROOT=:pserver:cvsuser@192.168.1.1:/cvs



Managing Confined Services

42

[cvsuser@cvs-client]$
[cvsuser@cvs-client]$ cvs login
Logging in to :pserver:cvsuser@192.168.1.1:2401/cvs
CVS password: ********
cvs [login aborted]: unrecognized auth response from 192.168.100.1:
cvs pserver: cannot open /cvs/CVSROOT/config: Permission denied

SELinux has blocked access. In order to get SELinux to allow this access, the following step
should be performed on cvs-srv:

12. Change the context of the /cvs/ directory as the root user in order to recursively label any
existing and new data in the /cvs/ directory, giving it the cvs_data_t type:

[root@cvs-srv]# semanage fcontext -a -t cvs_data_t '/cvs(/.*)?'
[root@cvs-srv]# restorecon -R -v /cvs

13. The client, cvs-client should now be able to log in and access all CVS resources in this
repository:

[cvsuser@cvs-client]$ export
CVSROOT=:pserver:cvsuser@192.168.1.1:/cvs
[cvsuser@cvs-client]$
[cvsuser@cvs-client]$ cvs login
Logging in to :pserver:cvsuser@192.168.1.1:2401/cvs
CVS password: ********
[cvsuser@cvs-client]$

CHAPTER 7. CONCURRENT VERSIONING SYSTEM

43

CHAPTER 8. SQUID CACHING PROXY
Squid is a high-performance proxy caching server for web clients, supporting FTP, Gopher, and HTTP
data objects. It reduces bandwidth and improves response times by caching and reusing frequently-
requested web pages.[6]

In Red Hat Enterprise Linux, the squid package provides the Squid Caching Proxy. Run the rpm -q
squid command to see if the squid package is installed. If it is not installed and you want to use squid,
run the following command as the root user to install it:

~]# yum install squid

8.1. SQUID CACHING PROXY AND SELINUX

When SELinux is enabled, squid runs confined by default. Confined processes run in their own domains,
and are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the squid processes running in their own
domain. This example assumes the squid package is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service squid start command as the root user to start squid:

~]# service squid start
Starting squid: [OK
]

3. Run the ps -eZ | grep squid command to view the squid processes:

~]$ ps -eZ | grep squid
unconfined_u:system_r:squid_t:s0 2522 ? 00:00:00 squid
unconfined_u:system_r:squid_t:s0 2524 ? 00:00:00 squid
unconfined_u:system_r:squid_t:s0 2526 ? 00:00:00 ncsa_auth
unconfined_u:system_r:squid_t:s0 2527 ? 00:00:00 ncsa_auth
unconfined_u:system_r:squid_t:s0 2528 ? 00:00:00 ncsa_auth
unconfined_u:system_r:squid_t:s0 2529 ? 00:00:00 ncsa_auth
unconfined_u:system_r:squid_t:s0 2530 ? 00:00:00 ncsa_auth
unconfined_u:system_r:squid_t:s0 2531 ? 00:00:00 unlinkd

The SELinux context associated with the squid processes is
unconfined_u:system_r:squid_t:s0. The second last part of the context, squid_t, is
the type. A type defines a domain for processes and a type for files. In this case, the squid
processes are running in the squid_t domain.

SELinux policy defines how processes running in confined domains, such as squid_t, interact with
files, other processes, and the system in general. Files must be labeled correctly to allow squid access
to them.

Managing Confined Services

44

When /etc/squid/squid.conf is configured so squid listens on a port other than the default TCP
ports 3128, 3401 or 4827, the semanage port command must be used to add the required port
number to the SELinux policy configuration. The following example demonstrates configuring squid
to listen on a port that is not initially defined in SELinux policy configuration for squid, and, as a
consequence, squid failing to start. This example also demonstrates how to then configure the
SELinux system to allow squid to successfully listen on a non-standard port that is not already
defined in the policy. This example assumes the squid package is installed. Run each command in the
example as the root user:

1. Run the service squid status command to confirm squid is not running:

~]# service squid status
squid is stopped

If the output differs, run the service squid stop command to stop the process:

~]# service squid stop
Stopping squid: [OK
]

2. Run the semanage port -l | grep -w squid_port_t command to view the ports
SELinux allows squid to listen on:

~]# semanage port -l | grep -w -i squid_port_t
squid_port_t tcp 3401, 4827
squid_port_t udp 3401, 4827

3. Edit /etc/squid/squid.conf as the root user. Configure the http_port option so it lists a
port that is not configured in SELinux policy configuration for squid. In this example, squid is
configured to listen on port 10000:

Squid normally listens to port 3128
http_port 10000

4. Run the setsebool command to make sure the squid_connect_any Boolean is set to off.
This ensures squid is only permitted to operate on specific ports:

~]# setsebool -P squid_connect_any 0

5. Run the service squid start command to start squid:

~]# service squid start
Starting squid: [FAILED]

An SELinux denial similar to the following is logged:

localhost setroubleshoot: SELinux is preventing the squid (squid_t)
from binding to port 10000. For complete SELinux messages. run
sealert -l 97136444-4497-4fff-a7a7-c4d8442db982

6. For SELinux to allow squid to listen on port 10000, as used in this example, the following

CHAPTER 8. SQUID CACHING PROXY

45

command is required:

~]# semanage port -a -t squid_port_t -p tcp 10000

7. Run service squid start again to start squid and have it listen on the new port:

~]# service squid start
Starting squid: [OK]

8. Now that SELinux has been configured to allow squid to listen on a non-standard port (TCP
10000 in this example), squid starts successfully on this port.

8.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with squid. Different types allow you to configure flexible access:

httpd_squid_script_exec_t

This type is used for utilities such as cachemgr.cgi, which provides a variety of statistics about
squid and its configuration.

squid_cache_t

Use this type for data that is cached by squid, as defined by the cache_dir directive in
/etc/squid/squid.conf. By default, files created in or copied into /var/cache/squid/ and
/var/spool/squid/ are labeled with the squid_cache_t type. Files for the squidGuard URL
redirector plugin for squid created in or copied to /var/squidGuard/ are also labeled with the
squid_cache_t type. Squid is only able to use files and directories that are labeled with this type
for its cached data.

squid_conf_t

This type is used for the directories and files that squid uses for its configuration. Existing files, or
those created in or copied to /etc/squid/ and /usr/share/squid/ are labeled with this type,
including error messages and icons.

squid_exec_t

This type is used for the squid binary, /usr/sbin/squid.

squid_log_t

This type is used for logs. Existing files, or those created in or copied to /var/log/squid/ or
/var/log/squidGuard/ must be labeled with this type.

squid_initrc_exec_t

This type is used for the initialization file required to start squid which is located at
/etc/rc.d/init.d/squid.

Managing Confined Services

46

http://www.squidguard.org/

squid_var_run_t

This type is used by files in /var/run/, especially the process id (PID) named
/var/run/squid.pid which is created by squid when it runs.

8.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

squid_connect_any

When enabled, this Boolean permits squid to initiate a connection to a remote host on any port.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

8.4. CONFIGURATION EXAMPLES

8.4.1. Squid Connecting to Non-Standard Ports

The following example provides a real-world demonstration of how SELinux complements Squid by
enforcing the above Boolean and by default only allowing access to certain ports. This example will
then demonstrate how to change the Boolean and show that access is then allowed.

Note that this is an example only and demonstrates how SELinux can affect a simple configuration of
Squid. Comprehensive documentation of Squid is beyond the scope of this document. Refer to the
official Squid documentation for further details. This example assumes that the Squid host has two
network interfaces, Internet access, and that any firewall has been configured to allow access on the
internal interface using the default TCP port on which Squid listens (TCP 3128).

1. As the root user, install the squid package. Run the rpm -q squid command to see if the
squid package is installed. If it is not installed, run the yum install squid command as the
root user to install it.

2. Edit the main configuration file, /etc/squid/squid.conf and confirm that the cache_dir
directive is uncommented and looks similar to the following:

cache_dir ufs /var/spool/squid 100 16 256

This line specifies the default settings for the cache_dir directive to be used in this example;
it consists of the Squid storage format (ufs), the directory on the system where the cache
resides (/var/spool/squid), the amount of disk space in megabytes to be used for the cache
(100), and finally the number of first-level and second-level cache directories to be created (16
and 256 respectively).

CHAPTER 8. SQUID CACHING PROXY

47

http://www.squid-cache.org/Doc/

3. In the same configuration file, make sure the http_access allow localnet directive is
uncommented. This allows traffic from the localnet ACL which is automatically configured in
a default installation of Squid on Red Hat Enterprise Linux. It will allow client machines on any
existing RFC1918 network to have access through the proxy, which is sufficient for this simple
example.

4. In the same configuration file, make sure the visible_hostname directive is uncommented
and is configured to the host name of the machine. The value should be the fully qualified
domain name (FQDN) of the host:

visible_hostname squid.example.com

5. As the root user, run the service squid start command to start squid. As this is the first
time squid has started, this command will initialise the cache directories as specified above in
the cache_dir directive and will then start the squid daemon. The output is as follows if
squid starts successfully:

~]# /sbin/service squid start
init_cache_dir /var/spool/squid... Starting squid: . [OK]

6. Confirm that the squid process ID (PID) has started as a confined service, as seen here by the
squid_var_run_t value:

~]# ls -lZ /var/run/squid.pid
-rw-r--r--. root squid unconfined_u:object_r:squid_var_run_t:s0
/var/run/squid.pid

7. At this point, a client machine connected to the localnet ACL configured earlier is
successfully able to use the internal interface of this host as its proxy. This can be configured
in the settings for all common web browsers, or system-wide. Squid is now listening on the
default port of the target machine (TCP 3128), but the target machine will only allow outgoing
connections to other services on the Internet via common ports. This is a policy defined by
SELinux itself. SELinux will deny access to non-standard ports, as shown in the next step:

8. When a client makes a request using a non-standard port through the Squid proxy such as a
website listening on TCP port 10000, a denial similar to the following is logged:

SELinux is preventing the squid daemon from connecting to network
port 10000

9. To allow this access, the squid_connect_any Boolean must be modified, as it is disabled by
default. To enable the squid_connect_any Boolean, run the following command as the root
user:

~]# setsebool -P squid_connect_any on

NOTE

Do not use the -P option if you do not want setsebool changes to persist
across reboots.

10. The client will now be able to access non-standard ports on the Internet as Squid is now

Managing Confined Services

48

permitted to initiate connections to any port, on behalf of its clients.

[6] Refer to the Squid Caching Proxy project page for more information.

CHAPTER 8. SQUID CACHING PROXY

49

http://www.squid-cache.org/

CHAPTER 9. MYSQL
The MySQL database is a multi-user, multi-threaded SQL database server that consists of the MySQL
server daemon (mysqld) and many client programs and libraries. [7]

In Red Hat Enterprise Linux, the mysql-server package provides MySQL. Run the rpm -q mysql-
server command to see if the mysql-server package is installed. If it is not installed, run the following
command as the root user to install it:

~]# yum install mysql-server

9.1. MYSQL AND SELINUX

When MySQL is enabled, it runs confined by default. Confined processes run in their own domains, and
are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the MySQL processes running in their own
domain. This example assumes the mysql package is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service mysqld start command as the root user to start mysqld:

~]# service mysqld start
Initializing MySQL database: Installing MySQL system tables... [
OK]
Starting MySQL: [OK
]

3. Run the ps -eZ | grep mysqld command to view the mysqld processes:

~]$ ps -eZ | grep mysqld
unconfined_u:system_r:mysqld_safe_t:s0 6035 pts/1 00:00:00
mysqld_safe
unconfined_u:system_r:mysqld_t:s0 6123 pts/1 00:00:00 mysqld

The SELinux context associated with the mysqld processes is
unconfined_u:system_r:mysqld_t:s0. The second last part of the context, mysqld_t, is
the type. A type defines a domain for processes and a type for files. In this case, the mysqld
processes are running in the mysqld_t domain.

9.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each

Managing Confined Services

50

other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with mysql. Different types allow you to configure flexible access:

mysqld_db_t

This type is used for the location of the MySQL database. In Red Hat Enterprise Linux, the default
location for the database is /var/lib/mysql/, however this can be changed. If the location for
the MySQL database is changed, the new location must be labeled with this type. Refer to the
following example for instructions on how to change the default database location and how to label
the new section appropriately.

mysqld_etc_t

This type is used for the MySQL main configuration file /etc/my.cnf and any other configuration
files in the /etc/mysql/ directory.

mysqld_exec_t

This type is used for the mysqld binary located at /usr/libexec/mysqld, which is the default
location for the MySQL binary on Red Hat Enterprise Linux. Other systems may locate this binary at
/usr/sbin/mysqld which should also be labeled with this type.

mysqld_initrc_exec_t

This type is used for the initialization file for MySQL, located at /etc/rc.d/init.d/mysqld by
default in Red Hat Enterprise Linux.

mysqld_log_t

Logs for MySQL need to be labeled with this type for proper operation. All log files in /var/log/
matching the mysql.* wildcard must be labeled with this type.

mysqld_var_run_t

This type is used by files in /var/run/mysqld/, specifically the process id (PID) named
/var/run/mysqld/mysqld.pid which is created by the mysqld daemon when it runs. This type
is also used for related socket files such as /var/lib/mysql/mysql.sock. Files such as these
must be labeled correctly for proper operation as a confined service.

9.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_user_mysql_connect

When enabled, this Boolean allows users to connect to MySQL.

exim_can_connect_db

When enabled, this Boolean allows the exim mailer to initiate connections to a database server.

ftpd_connect_db

CHAPTER 9. MYSQL

51

When enabled, this Boolean allows ftp daemons to initiate connections to a database server.

httpd_can_network_connect_db

Enabling this Boolean is required for a web server to communicate with a database server.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

9.4. CONFIGURATION EXAMPLES

9.4.1. MySQL Changing Database Location

When using Red Hat Enterprise Linux 6, the default location for MySQL to store its database is
/var/lib/mysql/. This is where SELinux expects it to be by default, and hence this area is already
labeled appropriately for you, using the mysqld_db_t type.

The location where the database is stored can be changed depending on individual environment
requirements or preferences, however it is important that SELinux is aware of this new location; that it
is labeled accordingly. This example explains how to change the location of a MySQL database and
then how to label the new location so that SELinux can still provide its protection mechanisms to the
new area based on its contents.

Note that this is an example only and demonstrates how SELinux can affect MySQL. Comprehensive
documentation of MySQL is beyond the scope of this document. Refer to the official MySQL
documentation for further details. This example assumes that the mysql-server and setroubleshoot-
server packages are installed, that the auditd service is running, and that there is a valid database in
the default location of /var/lib/mysql/.

1. Run the ls -lZ /var/lib/mysql command to view the SELinux context of the default
database location for mysql:

~]# ls -lZ /var/lib/mysql
drwx------. mysql mysql unconfined_u:object_r:mysqld_db_t:s0 mysql

This shows mysqld_db_t which is the default context element for the location of database
files. This context will have to be manually applied to the new database location that will be
used in this example in order for it to function properly.

2. Enter mysqlshow -u root -p and enter the mysqld root password to show the available
databases:

~]# mysqlshow -u root -p
Enter password: *******
+--------------------+
| Databases |
+--------------------+

Managing Confined Services

52

http://dev.mysql.com/doc/

| information_schema |
| mysql |
| test |
| wikidb |
+--------------------+

3. Shut down the mysqld daemon with the service mysqld stop command as the root user:

~]# service mysqld stop
Stopping MySQL: [OK
]

4. Create a new directory for the new location of the database(s). In this example, /mysql/ is
used:

~]# mkdir -p /mysql

5. Copy the database files from the old location to the new location:

~]# cp -R /var/lib/mysql/* /mysql/

6. Change the ownership of this location to allow access by the mysql user and group. This sets
the traditional Unix permissions which SELinux will still observe.

~]# chown -R mysql:mysql /mysql

7. Run the ls -lZ /opt command to see the initial context of the new directory:

~]# ls -lZ /opt
drwxr-xr-x. mysql mysql unconfined_u:object_r:usr_t:s0 mysql

The context usr_t of this newly created directory is not currently suitable to SELinux as a
location for MySQL database files. Once the context has been changed, MySQL will be able to
function properly in this area.

8. Open the main MySQL configuration file /etc/my.cnf with a text editor and modify the
datadir option so that it refers to the new location. In this example the value that should be
entered is /mysql.

[mysqld]
datadir=/mysql

Save this file and exit.

9. Run the service mysqld start command as the root user to start mysqld. The service
should fail to start, and a denial will be logged to the /var/log/messages file. However, if the
audit daemon is running alongside the setroubleshoot service, the denial will be logged to
the /var/log/audit/audit.log file instead:

SELinux is preventing /usr/libexec/mysqld "write" access on /mysql.
For complete SELinux messages. run sealert -l b3f01aff-7fa6-4ebe-
ad46-abaef6f8ad71

CHAPTER 9. MYSQL

53

The reason for this denial is that /mysql/ is not labeled correctly for MySQL data files.
SELinux is stopping MySQL from having access to the content labeled as usr_t. Perform the
following steps to resolve this problem:

10. Run the following semanage command to add a context mapping for /mysql. Note that
semanage is not installed by default. If it is missing on your system, install the policycoreutils-
python package.

~]# semanage fcontext -a -t mysqld_db_t "/mysql(/.*)?"

11. This mapping is written to the
/etc/selinux/targeted/contexts/files/file_contexts.local file:

~]# grep -i mysql
/etc/selinux/targeted/contexts/files/file_contexts.local

/mysql(/.*)? system_u:object_r:mysqld_db_t:s0

12. Now use the restorecon command to apply this context mapping to the running system:

~]# restorecon -R -v /mysql

13. Now that the /mysql/ location has been labeled with the correct context for MySQL, the
mysqld daemon starts:

~]# service mysqld start
Starting MySQL: [OK
]

14. Confirm the context has changed for /mysql/:

~]$ ls -lZ /opt
drwxr-xr-x. mysql mysql system_u:object_r:mysqld_db_t:s0 mysql

15. The location has been changed and labeled, and the mysqld daemon has started successfully.
At this point all running services should be tested to confirm normal operation.

[7] Refer to the MySQL project page for more information.

Managing Confined Services

54

http://www.mysql.com

CHAPTER 10. POSTGRESQL

PostgreSQL is an Object-Relational database management system (DBMS).[8]

In Red Hat Enterprise Linux 6, the postgresql-server package provides PostgreSQL. Run the rpm -q
postgresql-server command to see if the postgresql-server package is installed. If it is not
installed, run the following command as the root user to install it:

~]# yum install postgresql-server

10.1. POSTGRESQL AND SELINUX

When PostgreSQL is enabled, it runs confined by default. Confined processes run in their own domains,
and are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the PostgreSQL processes running in their
own domain. This example assumes the postgresql-server package is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service postgresql start command as the root user to start postgresql:

~]# service postgresql start
Starting postgresql service: [OK
]

3. Run the ps -eZ | grep postgres command to view the postgresql processes:

~]$ ps -eZ | grep postgres
unconfined_u:system_r:postgresql_t:s0 395 ? 00:00:00 postmaster
unconfined_u:system_r:postgresql_t:s0 397 ? 00:00:00 postmaster
unconfined_u:system_r:postgresql_t:s0 399 ? 00:00:00 postmaster
unconfined_u:system_r:postgresql_t:s0 400 ? 00:00:00 postmaster
unconfined_u:system_r:postgresql_t:s0 401 ? 00:00:00 postmaster
unconfined_u:system_r:postgresql_t:s0 402 ? 00:00:00 postmaster

The SELinux context associated with the postgresql processes is
unconfined_u:system_r:postgresql_t:s0. The second last part of the context,
postgresql_t, is the type. A type defines a domain for processes and a type for files. In this
case, the postgresql processes are running in the postgresql_t domain.

10.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each

CHAPTER 10. POSTGRESQL

55

other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with postgresql. Different types allow you to configure flexible access:

postgresql_db_t

This type is used for several locations. The locations labeled with this type are used for data files
for PostgreSQL:

/usr/lib/pgsql/test/regres

/usr/share/jonas/pgsql

/var/lib/pgsql/data

/var/lib/postgres(ql)?

postgresql_etc_t

This type is used for configuration files in /etc/postgresql/.

postgresql_exec_t

This type is used for several locations. The locations labeled with this type are used for binaries for
PostgreSQL:

/usr/bin/initdb(.sepgsql)?

/usr/bin/(se)?postgres

/usr/lib(64)?/postgresql/bin/.*

/usr/lib/phsql/test/regress/pg_regress

postgresql_initrc_exec_t

This type is used for the PostgreSQL initialization file located at
/etc/rc.d/init.d/postgresql.

postgresql_log_t

This type is used for several locations. The locations labeled with this type are used for log files:

/var/lib/pgsql/logfile

/var/lib/pgsql/pgstartup.log

/var/lib/sepgsql/pgstartup.log

/var/log/postgresql

/var/log/postgres.log.*

/var/log/rhdb/rhdb

/var/log/sepostgresql.log.*

Managing Confined Services

56

postgresql_var_run_t

This type is used for run-time files for PostgreSQL, such as the process id (PID) in
/var/run/postgresql/.

10.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_user_postgresql_connect

Having this Boolean enabled allows any user domain (as defined by PostgreSQL) to make
connections to the database server.

postgresql_can_rsync

When enabled, this Boolean allows PostgreSQL to use the SSH protocol and the rsync utility.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

10.4. CONFIGURATION EXAMPLES

10.4.1. PostgreSQL Changing Database Location

When using Red Hat Enterprise Linux 6, the default location for PostgreSQL to store its database is
/var/lib/pgsql/data. This is where SELinux expects it to be by default, and hence this area is
already labeled appropriately for you, using the postgresql_db_t type.

The area where the database is located can be changed depending on individual environment
requirements or preferences, however it is important that SELinux is aware of this new location; that it
is labeled accordingly. This example explains how to change the location of a PostgreSQL database
and then how to label the new location so that SELinux can still provide its protection mechanisms to
the new area based on its contents.

Note that this is an example only and demonstrates how SELinux can affect PostgreSQL.
Comprehensive documentation of PostgreSQL is beyond the scope of this document. Refer to the
official PostgreSQL documentation for further details. This example assumes that the postgresql-
server package is installed.

1. Run the ls -lZ /var/lib/pgsql command to view the SELinux context of the default
database location for postgresql:

~]# ls -lZ /var/lib/pgsql
drwx------. postgres postgres system_u:object_r:postgresql_db_t:s0
data

CHAPTER 10. POSTGRESQL

57

http://www.postgresql.org/docs/

This shows postgresql_db_t which is the default context element for the location of
database files. This context will have to be manually applied to the new database location that
will be used in this example in order for it to function properly.

2. Create a new directory for the new location of the database(s). In this example,
/opt/postgresql/data/ is used. If you use a different location, replace the text in the
following steps with your location:

~]# mkdir -p /opt/postgresql/data

3. Perform a directory listing of the new location. Note that the initial context of the new
directory is usr_t. This context is not sufficient for SELinux to offer its protection mechanisms
to PostgreSQL. Once the context has been changed, it will be able to function properly in the
new area.

~]# ls -lZ /opt/postgresql/
drwxr-xr-x. root root unconfined_u:object_r:usr_t:s0 data

4. Change the ownership of the new location to allow access by the postgres user and group. This
sets the traditional Unix permissions which SELinux will still observe.

~]# chown -R postgres:postgres /opt/postgresql

5. Open the PostgreSQL init file /etc/rc.d/init.d/postgresql with a text editor and
modify the PGDATA and PGLOG variables to point to the new location:

~]# vi /etc/rc.d/init.d/postgresql
PGDATA=/opt/postgresql/data
PGLOG=/opt/postgresql/data/pgstartup.log

Save this file and exit the text editor.

6. Initialize the database in the new location.

~]$ su - postgres -c "initdb -D /opt/postgresql/data"

7. Having changed the database location, starting the service will fail at this point:

~]# service postgresql start
Starting postgresql service: [FAILED]

SELinux has caused the service to not start. This is because the new location is not properly
labelled. The following steps explain how to label the new location (/opt/postgresql/) and
start the postgresql service properly:

8. Run the semanage command to add a context mapping for /opt/postgresql/ and any
other directories/files within it:

~]# semanage fcontext -a -t postgresql_db_t "/opt/postgresql(/.*)?"

Managing Confined Services

58

9. This mapping is written to the
/etc/selinux/targeted/contexts/files/file_contexts.local file:

~]# grep -i postgresql
/etc/selinux/targeted/contexts/files/file_contexts.local

/opt/postgresql(/.*)? system_u:object_r:postgresql_db_t:s0

10. Now use the restorecon command to apply this context mapping to the running system:

~]# restorecon -R -v /opt/postgresql

11. Now that the /opt/postgresql/ location has been labeled with the correct context for
PostgreSQL, the postgresql service will start successfully:

~]# service postgresql start
Starting postgreSQL service:
[OK]

12. Confirm the context is correct for /opt/postgresql/:

~]$ ls -lZ /opt
drwxr-xr-x. root root system_u:object_r:postgresql_db_t:s0
postgresql

13. Check with the ps command that the postgresql process displays the new location:

~]# ps aux | grep -i postmaster

postgres 21564 0.3 0.3 42308 4032 ? S 10:13 0:00
/usr/bin/postmaster -p 5432 -D /opt/postgresql/data/

14. The location has been changed and labeled, and the postgresql daemon has started
successfully. At this point all running services should be tested to confirm normal operation.

[8] Refer to the PostgreSQL project page for more information.

CHAPTER 10. POSTGRESQL

59

http://www.postgresql.org/about/

CHAPTER 11. RSYNC

The rsync utility performs fast file transfer and it is used for synchronizing data between systems. [9]

When using Red Hat Enterprise Linux, the rsync package provides rsync. Run the rpm -q rsync
command to see if the rsync package is installed. If it is not installed, run the following command as the
root user to install it:

~]# yum install rsync

11.1. RSYNC AND SELINUX

SELinux requires files to have an extended attribute to define the file type. Policy governs the access
daemons have to these files. If you want to share files using the rsync daemon, you must label the files
and directories with the public_content_t type. Like most services, correct labeling is required for

SELinux to perform its protection mechanisms over rsync.[10]

11.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with rsync. Different types all you to configure flexible access:

public_content_t

This is a generic type used for the location of files (and the actual files) to be shared via rsync. If a
special directory is created to house files to be shared with rsync, the directory and its contents
need to have this label applied to them.

rsync_exec_t

This type is used for the /usr/bin/rsync system binary.

rsync_log_t

This type is used for the rsync log file, located at /var/log/rsync.log by default. To change
the location of the file rsync logs to, use the --log-file=FILE option to the rsync command at
run-time.

rsync_var_run_t

This type is used for the rsyncd lock file, located at /var/run/rsyncd.lock. This lock file is
used by the rsync server to manage connection limits.

rsync_data_t

This type is used for files and directories which you want to use as rsync domains and isolate them
from the access scope of other services. Also, the public_content_t is a general SELinux
context type, which can be used when a file or a directory interacts with multiple services (for
example, FTP and NFS directory as an rsync domain).

Managing Confined Services

60

rsync_etc_t

This type is used for rsync-related files in the /etc/ directory.

11.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_rsync_anon_write

Having this Boolean enabled allows rsync in the rsync_t domain to manage files, links and
directories that have a type of public_content_rw_t. Often these are public files used for public file
transfer services. Files and directories must be labeled public_content_rw_t.

rsync_client

Having this Boolean enabled allows rsync to initiate connections to ports defined as rsync_port_t,
as well as allowing rsync to manage files, links and directories that have a type of rsync_data_t.
Note that the rsync daemon must be in the rsync_t domain in order for SELinux to enact its control
over rsync. The configuration example in this chapter demonstrates rsync running in the rsync_t
domain.

rsync_export_all_ro

Having this Boolean enabled allows rsync in the rsync_t domain to export NFS and CIFS volumes
with read-only access to clients.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

11.4. CONFIGURATION EXAMPLES

11.4.1. Rsync as a daemon

When using Red Hat Enterprise Linux, rsync can be used as a daemon, so that multiple clients can
directly communicate with it as a central server in order to house centralized files and keep them
synchronized. The following example demonstrates running rsync as a daemon over a network socket
in the correct domain, and how SELinux expects this daemon to be running on a pre-defined (in
SELinux policy) TCP port. This example then shows how to modify SELinux policy to allow the rsync
daemon to run normally on a non-standard port.

This example is performed on a single system to demonstrate SELinux policy and its control over local
daemons and processes. Note that this is an example only and demonstrates how SELinux can affect
rsync. Comprehensive documentation of rsync is beyond the scope of this document. See the official

CHAPTER 11. RSYNC

61

rsync documentation for further details. This example assumes that the rsync, setroubleshoot-server
and audit packages are installed, that the SELinux targeted policy is used, and that SELinux is running
in enforcing mode.

Procedure 11.1. Getting rsync to launch as rsync_t

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the which command to confirm that the rsync binary is in the system path:

~]$ which rsync
/usr/bin/rsync

3. When running rsync as a daemon, a configuration file should be used and saved as
/etc/rsyncd.conf. Note that the following configuration file used in this example is very
simple and is not indicative of all the possible options that are available, rather it is just enough
to demonstrate the rsync daemon:

log file = /var/log/rsync.log
pid file = /var/run/rsyncd.pid
lock file = /var/run/rsync.lock
[files]
 path = /srv/files
 comment = file area
 read only = false
 timeout = 300

4. Now that a simple configuration file exists for rsync to operate in daemon mode, this step
demonstrates that simply running the rsync --daemon command is not sufficient for
SELinux to offer its protection over rsync. See the following output:

~]# rsync --daemon

~]# ps x | grep rsync
 8231 ? Ss 0:00 rsync --daemon
 8233 pts/3 S+ 0:00 grep rsync

~]# ps -eZ | grep rsync
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 8231 ?
00:00:00 rsync

Note that in the output from the final ps command, the context shows the rsync daemon
running in the unconfined_t domain. This indicates that rsync has not transitioned to the
rsync_t domain as it was launched by the rsync --daemon command. At this point,
SELinux cannot enforce its rules and policy over this daemon. See the following steps to see
how to fix this problem.

Managing Confined Services

62

http://www.samba.org/rsync/documentation.html

In the following steps, rsync transitions to the rsync_t domain because it launched it from a
properly-labeled init script. Only then can SELinux and its protection mechanisms have an
effect over rsync. This rsync process should be killed before proceeding to the next step.

5. A custom init script for rsync is needed for this step. Save the following to
/etc/rc.d/init.d/rsyncd.

#!/bin/bash

Source function library.
. /etc/rc.d/init.d/functions

[-f /usr/bin/rsync] || exit 0

case "$1" in
start)
action "Starting rsyncd: " /usr/bin/rsync --daemon
;;
stop)
action "Stopping rsyncd: " killall rsync
;;
*)
echo "Usage: rsyncd {start|stop}"
exit 1
esac
exit 0

The following steps show how to label this script as initrc_exec_t:

6. Run the semanage command to add a context mapping for /etc/rc.d/init.d/rsyncd:

~]# semanage fcontext -a -t initrc_exec_t "/etc/rc.d/init.d/rsyncd"

7. This mapping is written to the
/etc/selinux/targeted/contexts/files/file_contexts.local file:

~]# grep rsync
/etc/selinux/targeted/contexts/files/file_contexts.local

/etc/rc.d/init.d/rsyncd system_u:object_r:initrc_exec_t:s0

8. Now use the restorecon command to apply this context mapping to the running system:

~]# restorecon -R -v /etc/rc.d/init.d/rsyncd

9. Run the ls -lZ command to confirm the script has been labeled appropriately. Note that in
the following output, the script has been labeled as initrc_exec_t:

~]$ ls -lZ /etc/rc.d/init.d/rsyncd
-rwxr-xr-x. root root system_u:object_r:initrc_exec_t:s0
/etc/rc.d/init.d/rsyncd

10. Turn on the rsync_server SELinux boolean:

CHAPTER 11. RSYNC

63

~]# setsebool rsync_server on

Note that this setting is not permanent and as such, it will revert to its original state after a
reboot. To make the setting permanent, use the -P option with the setsebool command.

11. Launch rsyncd via the new script. Now that rsync has started from an init script that had
been appropriately labeled, the process has started as rsync_t:

~]# service rsyncd start
Starting rsyncd: [OK
]

$ ps -eZ | grep rsync
unconfined_u:system_r:rsync_t:s0 9794 ? 00:00:00 rsync

SELinux can now enforce its protection mechanisms over the rsync daemon as it is now
runing in the rsync_t domain.

This example demonstrated how to get rsyncd running in the rsync_t domain. The next example
shows how to get this daemon successfully running on a non-default port. TCP port 10000 is used in
the next example.

Procedure 11.2. Running the rsync daemon on a non-default port

1. Modify the /etc/rsyncd.conf file and add the port = 10000 line at the top of the file in
the global configuration area (that is, before any file areas are defined). The new configuration
file will look like:

log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
lock file = /var/run/rsync.lock
port = 10000
[files]
 path = /srv/files
 comment = file area
 read only = false
 timeout = 300

2. After launching rsync from the init script with this new setting, a denial similar to the following
is logged by SELinux:

Jul 22 10:46:59 localhost setroubleshoot: SELinux is preventing the
rsync (rsync_t) from binding to port 10000. For complete SELinux
messages, run sealert -l c371ab34-639e-45ae-9e42-18855b5c2de8

3. Run semanage to add TCP port 10000 to SELinux policy in rsync_port_t:

~]# semanage port -a -t rsync_port_t -p tcp 10000

4. Now that TCP port 10000 has been added to SELinux policy for rsync_port_t, rsyncd will
start and operate normally on this port:

~]# service rsyncd start

Managing Confined Services

64

Starting rsyncd: [OK
]

~]# netstat -lnp | grep 10000
tcp 0 0 0.0.0.0:10000 0.0.0.0:* LISTEN
9910/rsync

SELinux has had its policy modified and is now permitting rsyncd to operate on TCP port 10000.

[9] Refer to the Rsync project page for more information.

[10] Refer to the rsync_selinux(8) manual page for more information about rsync and SELinux.

CHAPTER 11. RSYNC

65

http://www.samba.org/rsync/

CHAPTER 12. POSTFIX
Postfix is an open-source Mail Transport Agent (MTA), which supports protocols like LDAP, SMTP
AUTH (SASL), and TLS.[11]

In Red Hat Enterprise Linux, the postfix package provides postfix. Run the rpm -q postfix
command to see if the postfix package is installed. If it is not installed, run the following command as
the root user to install it:

~]# yum install postfix

12.1. POSTFIX AND SELINUX

When Postfix is enabled, it runs confined by default. Confined processes run in their own domains, and
are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the Postfix and related processes running
in their own domain. This example assumes the postfix package is installed and that the Postfix service
has been started:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service postfix start command as the root user to start postfix:

~]# service postfix start
Starting postfix: [OK]

3. Run the ps -eZ | grep postfix command to view the postfix processes:

~]$ ps -eZ | grep postfix
system_u:system_r:postfix_master_t:s0 1651 ? 00:00:00 master
system_u:system_r:postfix_pickup_t:s0 1662 ? 00:00:00 pickup
system_u:system_r:postfix_qmgr_t:s0 1663 ? 00:00:00 qmgr

In the output above, the SELinux context associated with the Postfix master process is
system_u:system_r:postfix_master_t:s0. The second last part of the context,
postfix_master_t, is the type for this process. A type defines a domain for processes and a
type for files. In this case, the master process is running in the postfix_master_t domain.

12.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

Managing Confined Services

66

The following types are used with Postfix. Different types all you to configure flexible access:

postfix_etc_t

This type is used for configuration files for Postfix in the /etc/postfix/ directory.

postfix_data_t

This type is used for Postfix data files in the /var/lib/postfix/ directory.

postfix_var_run_t

This type is used for Postfix files stored in the /run/ directory.

postfix_initrc_exec_t

This type is used for transition of Postfix executable files to the postfix_initrc_t domain.

postfix_spool_t

This type is used for Postfix files stored in the /var/spool/ directory.

NOTE

To see the full list of files and their types for Postfix, run the following command:

~]$ grep postfix
/etc/selinux/targeted/contexts/files/file_contexts

12.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

allow_postfix_local_write_mail_spool

Having this Boolean enables Postfix to write to the local mail spool on the system. Postfix requires
this Boolean to be enabled for normal operation when local spools are used.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

12.4. CONFIGURATION EXAMPLES

12.4.1. SpamAssassin and Postfix

CHAPTER 12. POSTFIX

67

SpamAssasin is an open-source mail filter that provides a way to filter unsolicited email (spam
messages) from incoming email.[12]

When using Red Hat Enterprise Linux, the spamassassin package provides SpamAssassin. Run the rpm
-q spamassassin command to see if the spamassassin package is installed. If it is not installed, run
the following command as the root user to install it:

~]# yum install spamassassin

SpamAssassin operates in tandom with a mailer such as Postfix to provide spam-filtering capabilities.
In order for SpamAssassin to effectively intercept, analyze and filter mail, it must listen on a network
interface. The default port for SpamAssassin is TCP/783, however this can be changed. The following
example provides a real-world demonstration of how SELinux complements SpamAssassin by only
allowing it access to a certain port by default. This example will then demonstrate how to change the
port and have SpamAssassin operate on a non-default port.

Note that this is an example only and demonstrates how SELinux can affect a simple configuration of
SpamAssassin. Comprehensive documentation of SpamAssassin is beyond the scope of this document.
Refer to the official SpamAssassin documentation for further details. This example assumes the
spamassassin is installed, that any firewall has been configured to allow access on the ports in use, that
the SELinux targeted policy is used, and that SELinux is running in enforcing mode:

Procedure 12.1. Running SpamAssassin on a non-default port

1. Run the semanage command to show the port that SELinux allows spamd to listen on by
default:

~]# semanage port -l | grep spamd
spamd_port_t tcp 783

This output shows that TCP/783 is defined in spamd_port_t as the port for SpamAssassin to
operate on.

2. Edit the /etc/sysconfig/spamassassin configuration file and modify it so that it will start
SpamAssassin on the example port TCP/10000:

Options to spamd
SPAMDOPTIONS="-d -p 10000 -c m5 -H"

This line now specifies that SpamAssassin will operate on port 10000. The rest of this example
will show how to modify SELinux policy to allow this socket to be opened.

3. Start SpamAssassin and an error message similar to the following will appear:

~]# service spamassassin start
Starting spamd: [2203] warn: server socket setup failed, retry 1:
spamd: could not create INET socket on 127.0.0.1:10000: Permission
denied
[2203] warn: server socket setup failed, retry 2: spamd: could not
create INET socket on 127.0.0.1:10000: Permission denied
[2203] error: spamd: could not create INET socket on
127.0.0.1:10000: Permission denied
spamd: could not create INET socket on 127.0.0.1:10000: Permission

Managing Confined Services

68

http://spamassassin.apache.org/doc.html

denied

[FAILED]

This output means that SELinux has blocked access to this port.

4. A denial similar to the following will be logged by SELinux:

SELinux is preventing the spamd (spamd_t) from binding to port
10000.

5. As the root user, run semanage to modify SELinux policy in order to allow SpamAssassin to
operate on the example port (TCP/10000):

~]# semanage port -a -t spamd_port_t -p tcp 10000

6. Confirm that SpamAssassin will now start and is operating on TCP port 10000:

~]# service spamassassin start
Starting spamd: [OK]

~]# netstat -lnp | grep 10000
tcp 0 0 127.0.0.1:10000 0.0.0.0:* LISTEN 2224/spamd.pid

7. At this point, spamd is properly operating on TCP port 10000 as it has been allowed access to
that port by SELinux policy.

[11] Refer to the Postfix project page for more information.

[12] Refer to the SpamAssassin project page for more information.

CHAPTER 12. POSTFIX

69

http://www.postfix.org/
http://spamassassin.apache.org/

CHAPTER 13. DHCP
DHCPD is the daemon used in Red Hat Enterprise Linux to dynamically deliver and configure Layer 3
TCP/IP details for clients.

The dhcp package provides the DHCP server, dhcpd. Run the rpm -q dhcp command to see if the
dhcp package is installed. If it is not installed, run the following command as the root user to install it:

~]# yum install dhcp

13.1. DHCP AND SELINUX

When DHCPD is enabled, it runs confined by default. Confined processes run in their own domains, and
are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the DHCPD and related processes running
in their own domain. This example assumes the dhcp package is installed and that the DHCPD service
has been started:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The getenforce command returns Enforcing when SELinux is running in enforcing mode.

2. Run the service dhcpd start command as the root user to start DHCPD:

~]# service dhcpd start
Starting dhcpd: [OK]

3. Run the ps -eZ | grep dhcpd command to view the dhcpd processes:

~]$ ps -eZ | grep dhcpd
unconfined_u:system_r:dhcpd_t:s0 5483 ? 00:00:00 dhcpd

The SELinux context associated with the dhcpd process is
unconfined_u:system_r:dhcpd_t:s0.

13.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with dhcpd:

dhcp_etc_t

This type is mainly used for files in /etc, including configuration files.

Managing Confined Services

70

dhcpd_var_run_t

This type is used for the PID file for dhcpd, in /var/run.

dhcpd_exec_t

This type is used for transition of DHCP executable files to the dhcpd_t domain.

dhcpd_initrc_exec_t

This type is used for transition of DHCP executable files to the dhcpd_initrc_t domain.

NOTE

To see the full list of files and their types for dhcp, run the following command:

~]$ grep dhcp
/etc/selinux/targeted/contexts/files/file_contexts

CHAPTER 13. DHCP

71

CHAPTER 14. OPENSHIFT BY RED HAT
OpenShift by Red Hat is a Platform as a Service (PaaS) that enables developers to build and deploy
web applications. OpenShift provides a wide selection of programming languages and frameworks
including Java, Ruby, and PHP. It also provides integrated developer tools to support the application
life cycle, including Eclipse integration, JBoss Developer Studio, and Jenkins. OpenShift uses an open
source ecosystem to provide a platform for mobile applications, database services, and more. [13]

14.1. OPENSHIFT AND SELINUX

SELinux provides better security control over applications that use OpenShift because all processes
are labeled according to the SELinux policy. Therefore, SELinux protects OpenShift from possible
malicious attacks within different gears running on the same node.

See the Dan Walsh's presentation for more information about SELinux and OpenShift.

14.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with OpenShift. Different types allow you to configure flexible access:

Process types

openshift_t

The OpenShift process is associated with the openshift_t SELinux type.

Types on executables

openshift_cgroup_read_exec_t

SELinux allows files with this type to transition an executable to the openshift_cgroup_read_t
domain.

openshift_cron_exec_t

SELinux allows files with this type to transition an executable to the openshift_cron_t domain.

openshift_initrc_exec_t

SELinux allows files with this type to transition an executable to the openshift_initrc_t
domain.

Writable types

openshift_cgroup_read_tmp_t

This type allows OpenShift control groups (cgroup) read and access temporary files in the /tmp/
directory.

Managing Confined Services

72

http://people.fedoraproject.org/~dwalsh/SELinux/Presentations/openshift_selinux.ogv

openshift_cron_tmp_t

This type allows storing temporary files of the OpenShift cron jobs in /tmp/.

openshift_initrc_tmp_t

This type allows storing the OpenShift initrc temporary files in /tmp/.

openshift_log_t

Files with this type are treated as OpenShift log data, usually stored under the /var/log/
directory.

openshift_rw_file_t

OpenShift have permission to read and to write to files labeled with this type.

openshift_tmp_t

This type is used for storing the OpenShift temporary files in /tmp/.

openshift_tmpfs_t

This type allows storing the OpenShift data on a tmpfs file system.

openshift_var_lib_t

This type allows storing the OpenShift files in the /var/lib/ directory.

openshift_var_run_t

This type allows storing the OpenShift files in the /run/ or /var/run/ directory.

14.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

openshift_use_nfs

Having this Boolean enabled allows installing OpenShift on an NFS share.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

14.4. CONFIGURATION EXAMPLES

14.4.1. Changing the Default OpenShift Directory

CHAPTER 14. OPENSHIFT BY RED HAT

73

By default, OpenShift stores its data in the /var/lib/openshift/ directory, which is labeled with
the openshift_var_lib_t SELinux type. To allow OpenShift to store data in a different directory,
label the new directory with the proper SELinux context.

The following procedure shows how to change the default OpenShift directory for storing data to
/srv/openshift/:

Procedure 14.1. Changing the Default OpenShift Directory for Storing Data

1. As root, create a new /openshift/ directory within the /srv/ directory. The new directory
is labeled with the var_t type:

~]# mkdir /srv/openshift

~]$ ls -Zd /srv/openshift
drwxr-xr-x. root root unconfined_u:object_r:var_t:s0 openshift/

2. As root, use the semanage utility to map /srv/openshift/ to the proper SELinux context:

~]# semanage fcontext -a -e /var/lib/openshift /srv/openshift

3. Then, use the restorecon utility as root to apply the changes:

~]# restorecon -R -v /srv/openshift

4. The /srv/openshift/ directory is now labeled with the correct openshift_var_lib_t
type:

~]$ls -Zd /srv/openshift
drwxr-xr-x. root root unconfined_u:object_r:openshift_var_lib_t:s0
openshift/

[13] To learn more about OpenShift, see OpenShift Enterprise documentation and OpenShift Online
documentation.

Managing Confined Services

74

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/
https://access.redhat.com/site/documentation/en-US/OpenShift_Online/

CHAPTER 15. RED HAT GLUSTER STORAGE
Red Hat Gluster Storage provides flexible and affordable unstructured data storage for the enterprise.
GlusterFS, a key building block of Gluster, is based on a stackable user-space design and aggregates
various storage servers over a network and interconnects them into one large parallel network file
system. The POSIX-compatible GlusterFS servers, which use the XFS file system format to store data
on disks, can be accessed using industry standard access protocols including NFS and CIFS.

See the Red Hat Gluster Storage collection of guides for more information.

The glusterfs package provides Red Hat Gluster Storage. For detailed information about its installation
process, see the Installation Guide for Red Hat Gluster Storage.

15.1. RED HAT GLUSTER STORAGE AND SELINUX

When enabled, SELinux serves as an additional security layer by providing flexible mandatory access
control for the glusterd (GlusterFS Management Service) and glusterfsd (NFS server) processes
as a part of Red Hat Gluster Storage. These processes have advanced process isolation unbounded with
the glusterd_t SELinux type.

15.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with Red Hat Gluster Storage. Different types allow you to configure
flexible access:

Process types

glusterd_t

The Gluster processes are associated with the glusterd_t SELinux type.

Types on executables

glusterd_initrc_exec_t

The SELinux-specific script type context for the Gluster init script files.

glusterd_exec_t

The SELinux-specific executable type context for the Gluster executable files.

Port Types

gluster_port_t

This type is defined for glusterd. By default, glusterd uses 204007-24027, and 38465-38469
TCP ports.

CHAPTER 15. RED HAT GLUSTER STORAGE

75

https://access.redhat.com/documentation/en/red-hat-storage/
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3/html/Installation_Guide/index.html

File Contexts

glusterd_brick_t

This type is used for files threated as glusterd brick data.

glusterd_conf_t

This type is associated with the glusterd configuration data, usually stored in the /etc/
directory.

glusterd_log_t

Files with this type are treated as glusterd log data, usually stored under the /var/log/
directory.

glusterd_tmp_t

This type is used for storing the glusterd temporary files in the /tmp/ directory.

glusterd_var_lib_t

This type allows storing the glusterd files in the /var/lib/ directory.

glusterd_var_run_t

This type allows storing the glusterd files in the /run/ or /var/run/ directory.

15.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a
variety of ways; therefore, you need to specify how you run your services. Use the following Booleans
to set up SELinux:

gluster_export_all_ro

Having this Boolean enabled allows glusterfsd to share files and directory as read-only. This
Boolean is disabled by default.

gluster_export_all_rw

Having this Boolean enabled allows glusterfsd to share files and directories with read and write
access. This Boolean is enabled by default.

gluster_anon_write

Having this Boolean enabled allows glusterfsd to modify public files labeled with the
public_content_rw_t SELinux type.

Managing Confined Services

76

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, run the following
command as root:

~]# semanage boolean -l | grep service_name

15.4. CONFIGURATION EXAMPLES

15.4.1. Labeling Gluster Bricks

A Gluster brick is an export directory on a server in the trusted storage pool. In case that the brick is
not labeled with the correct SELinux context, glusterd_brick_t, SELinux denies certain file access
operations and generates various AVC messages.

The following procedure shows how to label Gluster bricks with the correct SELinux context. The
procedure assumes that you previously created and formatted a logical volume, for example
/dev/rhgs/gluster, to be used as the Gluster brick.

For detailed information about Gluster bricks, see the Red Hat Gluster Storage Volumes chapter in the
Administration Guide for Red Hat Gluster Storage.

Procedure 15.1. How to Label a Gluster Brick

1. Create a directory to mount the previously formatted logical volume. For example:

~]# mkdir /mnt/brick1

2. Mount the logical volume, in this case /dev/vg-group/gluster, to the /mnt/brick1/
directory created in the previous step.

~]# mount /dev/vg-group/gluster /mnt/brick1/

Note that the mount command mounts devices only temporarily. To mount the device
permanently, add an entry similar as the following one to the /etc/fstab file:

/dev/vg-group/gluster /mnt/brick1 xfs rw,inode64,noatime,nouuid
1 2

For more information, see the fstab(5) manual page.

3. Check the SELinux context of /mnt/brick1/:

~]$ ls -lZd /mnt/brick1/
drwxr-xr-x. root root system_u:object_r:unlabeled_t:s0 /mnt/brick1/

The directory is labeled with the unlabeled_t SELinux type.

4. Change the SELinux type of /mnt/brick1/ to the glusterd_brick_t SELinux type:

~]# semanage fcontext -a -t glusterd_brick_t "/mnt/brick1(/.*)?"

CHAPTER 15. RED HAT GLUSTER STORAGE

77

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/chap-Red_Hat_Storage_Volumes.html
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html-single/Administration_Guide/index.html

5. Use the restorecon utility to apply the changes:

~]# restorecon -Rv /mnt/brick1

6. Finally, verify that the context has been successfully changed:

~]$ ls -lZd /mnt/brick1
drwxr-xr-x. root root system_u:object_r:glusterd_brick_t:s0
/mnt/brick1/

Managing Confined Services

78

CHAPTER 16. REFERENCES
The following references are pointers to additional information that is relevant to SELinux but beyond
the scope of this guide. Note that due to the rapid development of SELinux, some of this material may
only apply to specific releases of Red Hat Enterprise Linux.

Books

SELinux by Example

Mayer, MacMillan, and Caplan

Prentice Hall, 2007

SELinux: NSA's Open Source Security Enhanced Linux

Bill McCarty

O'Reilly Media Inc., 2004

Tutorials and Help

Tutorials and talks from Russell Coker

http://www.coker.com.au/selinux/talks/ibmtu-2004/

Dan Walsh's Journal

http://danwalsh.livejournal.com/

Red Hat Knowledgebase

https://access.redhat.com/site/

General Information

NSA SELinux main website

http://www.nsa.gov/research/selinux/index.shtml

NSA SELinux FAQ

http://www.nsa.gov/research/selinux/faqs.shtml

Mailing Lists

NSA SELinux mailing list

http://www.nsa.gov/research/selinux/list.shtml

Fedora SELinux mailing list

http://www.redhat.com/mailman/listinfo/fedora-selinux-list

Community

CHAPTER 16. REFERENCES

79

http://www.coker.com.au/selinux/talks/ibmtu-2004/
http://danwalsh.livejournal.com/
https://access.redhat.com/site/
http://www.nsa.gov/research/selinux/index.shtml
http://www.nsa.gov/research/selinux/faqs.shtml
http://www.nsa.gov/research/selinux/list.shtml
http://www.redhat.com/mailman/listinfo/fedora-selinux-list

SELinux Project Wiki

http://selinuxproject.org/page/Main_Page

SELinux community page

http://selinux.sourceforge.net/

IRC

irc.freenode.net, #selinux

Managing Confined Services

80

http://selinuxproject.org/page/Main_Page
http://selinux.sourceforge.net/

APPENDIX A. REVISION HISTORY

Revision 9-1 Wed Mar 15 2017 Mirek Jahoda
Version for 6.9 GA publication.

Revision 9-0 Wed Dec 21 2016 Mirek Jahoda
Version for 6.9 Beta publication.

Revision 8-0 Wed May 3 2016 Robert Krátký
Red Hat Enterprise Linux 6.8 GA release of the Managing Confined Services guide.

Revision 7-1 Thu Jul 9 2015 Barbora Ančincová
Red Hat Enterprise Linux 6.7 GA release of the Managing Confined Services guide.

Revision 6-0 Fri Oct 10 2014 Barbora Ančincová
Red Hat Enterprise Linux 6.4 GA release of the Managing Confined Services guide.

Revision 5-0 Tue Nov 19 2013 Tomáš Čapek
Red Hat Enterprise Linux 6.5 GA release of the Managing Confined Services guide.

Revision 4-0 Fri Feb 22 2013 Tomáš Čapek
Red Hat Enterprise Linux 6.4 GA release of the Managing Confined Services guide.

Revision 3-0 Wed Jun 20 2012 Martin Prpič
Red Hat Enterprise Linux 6.3 GA release of the Managing Confined Services guide.

Revision 2-0 Tue Dec 6 2011 Martin Prpič
Red Hat Enterprise Linux 6.2 GA release of the Managing Confined Services guide.

Revision 1-0 Thu May 19 2011 Martin Prpič
Red Hat Enterprise Linux 6.1 GA release of the Managing Confined Services guide.

Revision 0-0 Tue Nov 9 2010 Scott Radvan
6.0 GA release

APPENDIX A. REVISION HISTORY

81

	Table of Contents
	CHAPTER 1. INTRODUCTION
	Targeted Policy

	CHAPTER 2. THE APACHE HTTP SERVER
	2.1. THE APACHE HTTP SERVER AND SELINUX
	2.2. TYPES
	2.3. BOOLEANS
	2.4. CONFIGURATION EXAMPLES
	2.4.1. Running a static site
	2.4.2. Sharing NFS and CIFS volumes
	2.4.3. Sharing files between services
	2.4.4. Changing port numbers

	CHAPTER 3. SAMBA
	3.1. SAMBA AND SELINUX
	3.2. TYPES
	3.3. BOOLEANS
	3.4. CONFIGURATION EXAMPLES
	3.4.1. Sharing directories you create
	3.4.2. Sharing a website

	CHAPTER 4. FILE TRANSFER PROTOCOL
	4.1. FTP AND SELINUX
	4.2. TYPES
	4.3. BOOLEANS
	4.4. CONFIGURATION EXAMPLES
	4.4.1. Uploading to an FTP site

	CHAPTER 5. NETWORK FILE SYSTEM
	5.1. NFS AND SELINUX
	5.2. TYPES
	5.3. BOOLEANS

	CHAPTER 6. BERKELEY INTERNET NAME DOMAIN
	6.1. BIND AND SELINUX
	6.2. TYPES
	6.3. BOOLEANS
	6.4. CONFIGURATION EXAMPLES
	6.4.1. Dynamic DNS

	CHAPTER 7. CONCURRENT VERSIONING SYSTEM
	7.1. CVS AND SELINUX
	7.2. TYPES
	7.3. BOOLEANS
	7.4. CONFIGURATION EXAMPLES
	7.4.1. Setting up CVS

	CHAPTER 8. SQUID CACHING PROXY
	8.1. SQUID CACHING PROXY AND SELINUX
	8.2. TYPES
	8.3. BOOLEANS
	8.4. CONFIGURATION EXAMPLES
	8.4.1. Squid Connecting to Non-Standard Ports

	CHAPTER 9. MYSQL
	9.1. MYSQL AND SELINUX
	9.2. TYPES
	9.3. BOOLEANS
	9.4. CONFIGURATION EXAMPLES
	9.4.1. MySQL Changing Database Location

	CHAPTER 10. POSTGRESQL
	10.1. POSTGRESQL AND SELINUX
	10.2. TYPES
	10.3. BOOLEANS
	10.4. CONFIGURATION EXAMPLES
	10.4.1. PostgreSQL Changing Database Location

	CHAPTER 11. RSYNC
	11.1. RSYNC AND SELINUX
	11.2. TYPES
	11.3. BOOLEANS
	11.4. CONFIGURATION EXAMPLES
	11.4.1. Rsync as a daemon

	CHAPTER 12. POSTFIX
	12.1. POSTFIX AND SELINUX
	12.2. TYPES
	12.3. BOOLEANS
	12.4. CONFIGURATION EXAMPLES
	12.4.1. SpamAssassin and Postfix

	CHAPTER 13. DHCP
	13.1. DHCP AND SELINUX
	13.2. TYPES

	CHAPTER 14. OPENSHIFT BY RED HAT
	14.1. OPENSHIFT AND SELINUX
	14.2. TYPES
	14.3. BOOLEANS
	14.4. CONFIGURATION EXAMPLES
	14.4.1. Changing the Default OpenShift Directory

	CHAPTER 15. RED HAT GLUSTER STORAGE
	15.1. RED HAT GLUSTER STORAGE AND SELINUX
	15.2. TYPES
	15.3. BOOLEANS
	15.4. CONFIGURATION EXAMPLES
	15.4.1. Labeling Gluster Bricks

	CHAPTER 16. REFERENCES
	APPENDIX A. REVISION HISTORY

