
Red Hat Developer Toolset 7

User Guide

Installing and Using Red Hat Developer Toolset

Last Updated: 2018-11-27

Red Hat Developer Toolset 7 User Guide

Installing and Using Red Hat Developer Toolset

Jaromír Hradílek
Red Hat Customer Content Services

Matt Newsome
Red Hat Software Engineering

Robert Krátký
Red Hat Customer Content Services

Vladimír Slávik
Red Hat Customer Content Services
vslavik@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. The Red Hat Developer Toolset User Guide provides an overview of this product, explains
how to invoke and use the Red Hat Developer Toolset versions of the tools, and links to resources
with more in-depth information.

. .

. .

. .

. .

. .

Table of Contents

PART I. INTRODUCTION

CHAPTER 1. RED HAT DEVELOPER TOOLSET
1.1. ABOUT RED HAT DEVELOPER TOOLSET

What Is New in Red Hat Developer Toolset 7.1
1.2. MAIN FEATURES
1.3. COMPATIBILITY

Architecture support
1.4. GETTING ACCESS TO RED HAT DEVELOPER TOOLSET

1.4.1. Using Red Hat Software Collections
1.4.2. Using Red Hat Developer Tools

1.5. INSTALLING RED HAT DEVELOPER TOOLSET
1.5.1. Installing All Available Components
1.5.2. Installing Individual Package Groups
1.5.3. Installing Optional Packages
1.5.4. Installing Debugging Information

1.6. UPDATING RED HAT DEVELOPER TOOLSET
1.6.1. Updating to a Minor Version
1.6.2. Updating to a Major Version

1.7. UNINSTALLING RED HAT DEVELOPER TOOLSET
1.8. USING RED HAT DEVELOPER TOOLSET CONTAINER IMAGES
1.9. ADDITIONAL RESOURCES

Online Documentation
See Also

PART II. DEVELOPMENT TOOLS

CHAPTER 2. GNU COMPILER COLLECTION (GCC)
2.1. GNU C COMPILER

2.1.1. Installing the C Compiler
2.1.2. Using the C Compiler
2.1.3. Running a C Program

2.2. GNU C++ COMPILER
2.2.1. Installing the C++ Compiler
2.2.2. Using the C++ Compiler
2.2.3. Running a C++ Program
2.2.4. C++ Compatibility

2.2.4.1. C++ ABI
2.3. GNU FORTRAN COMPILER

2.3.1. Installing the Fortran Compiler
2.3.2. Using the Fortran Compiler
2.3.3. Running a Fortran Program

2.4. SPECIFICS OF GCC IN RED HAT DEVELOPER TOOLSET
2.5. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 3. GNU MAKE
3.1. INSTALLING MAKE
3.2. USING MAKE
3.3. USING MAKEFILES

7

8
8
8
9

10
10
10
11
12
12
13
13
14
14
14
14
15
15
15
16
16
16

17

18
18
18
18
19
19
20
20
21
21
21
22
22
22
23
24
24
25
25
25

27
27
27
28

Table of Contents

1

. .

. .

. .

. .

. .

. .

3.4. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation
See Also

CHAPTER 4. BINUTILS
4.1. INSTALLING BINUTILS
4.2. USING THE GNU ASSEMBLER
4.3. USING THE GNU LINKER
4.4. USING OTHER BINARY TOOLS
4.5. SPECIFICS OF BINUTILS IN RED HAT DEVELOPER TOOLSET
4.6. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 5. ELFUTILS
5.1. INSTALLING ELFUTILS
5.2. USING ELFUTILS
5.3. ADDITIONAL RESOURCES

See Also

CHAPTER 6. DWZ
6.1. INSTALLING DWZ
6.2. USING DWZ
6.3. ADDITIONAL RESOURCES

Installed Documentation
See Also

PART III. DEBUGGING TOOLS

CHAPTER 7. GNU DEBUGGER (GDB)
7.1. INSTALLING THE GNU DEBUGGER
7.2. PREPARING A PROGRAM FOR DEBUGGING

Compiling Programs with Debugging Information
Installing Debugging Information for Existing Packages

7.3. RUNNING THE GNU DEBUGGER
7.4. LISTING SOURCE CODE
7.5. SETTING BREAKPOINTS

Setting a New Breakpoint
Listing Breakpoints
Deleting Existing Breakpoints

7.6. STARTING EXECUTION
7.7. DISPLAYING CURRENT VALUES
7.8. CONTINUING EXECUTION
7.9. ADDITIONAL RESOURCES

Online Documentation
See Also

CHAPTER 8. STRACE
8.1. INSTALLING STRACE
8.2. USING STRACE

8.2.1. Redirecting Output to a File
8.2.2. Tracing Selected System Calls
8.2.3. Displaying Time Stamps

29
29
29
29

31
32
32
32
33
34
34
34
34
35

36
37
37
37
37

39
39
39
39
39
40

41

42
42
42
42
43
43
44
45
45
46
46
47
47
48
49
49
49

50
50
50
50
51
52

Red Hat Developer Toolset 7 User Guide

2

. .

. .

. .

. .

. .

. .

. .

8.2.4. Displaying a Summary
8.2.5. Tampering with System Call Results

8.3. ADDITIONAL RESOURCES
Installed Documentation
See Also

CHAPTER 9. LTRACE
9.1. INSTALLING LTRACE
9.2. USING LTRACE

9.2.1. Redirecting Output to a File
9.2.2. Tracing Selected Library Calls
9.2.3. Displaying Time Stamps
9.2.4. Displaying a Summary

9.3. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation
See Also

CHAPTER 10. MEMSTOMP
10.1. INSTALLING MEMSTOMP
10.2. USING MEMSTOMP
10.3. ADDITIONAL RESOURCES

Installed Documentation
See Also

PART IV. PERFORMANCE MONITORING TOOLS

CHAPTER 11. SYSTEMTAP
11.1. INSTALLING SYSTEMTAP
11.2. USING SYSTEMTAP
11.3. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 12. VALGRIND
12.1. INSTALLING VALGRIND
12.2. USING VALGRIND
12.3. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 13. OPROFILE
13.1. INSTALLING OPROFILE
13.2. USING OPROFILE
13.3. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 14. DYNINST
14.1. INSTALLING DYNINST
14.2. USING DYNINST

14.2.1. Using Dyninst with SystemTap

53
53
54
54
54

55
55
55
55
56
57
57
58
58
58
58

59
60
60
62
62
62

63

64
64
65
65
66
66
66

67
67
68
68
68
68
69

70
70
70
71
71
71
72

73
73
73
73

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

14.2.2. Using Dyninst as a Stand-alone Library
14.3. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

PART V. COMPILER TOOLSETS

CHAPTER 15. LLVM TOOLSET

CHAPTER 16. RUST TOOLSET

CHAPTER 17. GO TOOLSET

PART VI. GETTING HELP

CHAPTER 18. ACCESSING RED HAT PRODUCT DOCUMENTATION
Red Hat Developer Toolset
Red Hat Enterprise Linux

CHAPTER 19. CONTACTING GLOBAL SUPPORT SERVICES
19.1. GATHERING REQUIRED INFORMATION

Background Information
Diagnostics
Account and Contact Information
Issue Severity

19.2. ESCALATING AN ISSUE
19.3. RE-OPENING A SERVICE REQUEST
19.4. ADDITIONAL RESOURCES

Online Documentation

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET
A.1. CHANGES IN VERSION 7.1

A.1.1. Changes in GCC
A.1.1.1. Changes Since Red Hat Developer Toolset 7.0

A.1.2. Changes in GDB
A.1.2.1. Changes Since Red Hat Developer Toolset 7.0

A.1.3. Changes in elfutils
A.1.3.1. Changes Since Red Hat Developer Toolset 7.0
A.1.3.2. Changes Since Red Hat Enterprise Linux 7.5

A.1.4. Changes in Valgrind
A.1.4.1. Changes Since Red Hat Developer Toolset 7.0
A.1.4.2. Changes Since Red Hat Enterprise Linux 7.5

A.2. CHANGES IN VERSION 7.0
A.2.1. Changes in binutils

A.2.1.1. Changes Since Red Hat Developer Toolset 6.1
GNU Build Notes
Architecture and processor support

A.2.1.2. Changes Since Red Hat Enterprise Linux 7.4
A.2.2. Changes in dyninst

A.2.2.1. Changes Since Red Hat Developer Toolset 6.1
A.2.3. Changes in elfutils

A.2.3.1. Changes Since Red Hat Developer Toolset 6.1
A.2.3.2. Changes Since Red Hat Enterprise Linux 7.4

A.2.4. Changes in GCC

74
78
78
78
79

80

81

82

83

84

85
85
85

86
86
86
86
86
87
87
87
88
88

89
89
89
89
89
89
90
90
90
90
90
91
91
91
91
91
92
92
92
92
92
92
93
93

Red Hat Developer Toolset 7 User Guide

4

. .

A.2.4.1. Changes Since Red Hat Developer Toolset 6.1
Optimization Improvements
Architecture support
Deprecated Features

A.2.5. Changes in GDB
A.2.5.1. Changes Since Red Hat Developer Toolset 6.1

A.2.6. Changes in make
A.2.6.1. Changes Since Red Hat Developer Toolset 6.1
A.2.6.2. Changes Since Red Hat Enterprise Linux 7.4

A.2.7. Changes in OProfile
A.2.7.1. Changes Since Red Hat Developer Toolset 6.1
A.2.7.2. Changes Since Red Hat Enterprise Linux 7.4

A.2.8. Changes in strace
A.2.8.1. Changes Since Red Hat Developer Toolset 6.1

System Call Specification Changes
Decoding Improvements

A.2.8.2. Changes Since Red Hat Enterprise Linux 7.4
A.2.9. Changes in SystemTap

A.2.9.1. Changes Since Red Hat Developer Toolset 6.1
A.2.9.2. Changes Since Red Hat Enterprise Linux 7.4

A.2.10. Changes in Valgrind
A.2.10.1. Changes Since Red Hat Developer Toolset 6.1

Architecture updates
A.2.10.2. Changes Since Red Hat Enterprise Linux 7.4

A.2.11. Changes in devtoolset-7-perftools-rhel7
A.2.11.1. Changes Since Red Hat Developer Toolset 6.1

A.2.12. Changes in devtoolset-7-toolchain-rhel7
A.2.12.1. Changes Since Red Hat Developer Toolset 6.1

APPENDIX B. REVISION HISTORY

93
94
94
94
95
95
95
95
96
96
96
96
97
97
97
97
98
98
98
99
99
99
99

100
100
100
100
101

102

Table of Contents

5

Red Hat Developer Toolset 7 User Guide

6

PART I. INTRODUCTION

PART I. INTRODUCTION

7

CHAPTER 1. RED HAT DEVELOPER TOOLSET

1.1. ABOUT RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. It provides a complete set of development and performance analysis tools that can be installed
and used on multiple versions of Red Hat Enterprise Linux. Executables built with the Red Hat Developer
Toolset toolchain can then also be deployed and run on multiple versions of Red Hat Enterprise Linux.
For detailed compatibility information, see Section 1.3, “Compatibility”.

Red Hat Developer Toolset does not replace the default system tools provided with Red Hat Enterprise
Linux 6 or 7 when installed on those platforms. Instead, a parallel set of developer tools provides an
alternative, newer version of those tools for optional use by developers. The default compiler and
debugger, for example, remain those provided by the base Red Hat Enterprise Linux system.

What Is New in Red Hat Developer Toolset 7.1
Since Red Hat Developer Toolset 4.1, the Red Hat Developer Toolset content is also available in the ISO
format together with the rest of Red Hat Software Collections content at
https://access.redhat.com/downloads, specifically for Server and Workstation. Note that packages that
require the Optional channel, which are discussed in Section 1.5.3, “Installing Optional Packages”,
cannot be installed from the ISO image.

Table 1.1. Red Hat Developer Toolset Components

Name Version Description

GCC 7.3.1 A portable compiler suite with support for C, C++, and Fortran.

binutils 2.28 A collection of binary tools and other utilities to inspect and manipulate
object files and binaries.

elfutils 0.170 A collection of binary tools and other utilities to inspect and manipulate
ELF files.

dwz 0.12 A tool to optimize DWARF debugging information contained in ELF
shared libraries and ELF executables for size.

GDB 8.0.1 A command line debugger for programs written in C, C++, and Fortran.

ltrace 0.7.91 A debugging tool to display calls to dynamic libraries that a program
makes. It can also monitor system calls executed by programs.

strace 4.17 A debugging tool to monitor system calls that a program uses and signals
it receives.

memstomp 0.1.5 A debugging tool to identify calls to library functions with overlapping
memory regions that are not allowed by various standards.

SystemTap 3.1 A tracing and probing tool to monitor the activities of the entire system
without the need to instrument, recompile, install, and reboot.

Red Hat Developer Toolset 7 User Guide

8

https://access.redhat.com/downloads
https://access.redhat.com/downloads/content/201/ver=1/rhel---7/3.1/x86_64/product-software
https://access.redhat.com/downloads/content/203

Valgrind 3.13.0 An instrumentation framework and a number of tools to profile
applications in order to detect memory errors, identify memory
management problems, and report any use of improper arguments in
system calls.

OProfile 1.2.0 A system-wide profiler that uses the performance monitoring hardware
on the processor to retrieve information about the kernel and
executables on the system.

Dyninst 9.3.2 A library for instrumenting and working with user-space executables
during their execution.

make 4.2.1 A dependency-tracking build automation tool.

Name Version Description

Red Hat Developer Toolset differs from "Technology Preview" compiler releases previously supplied in
Red Hat Enterprise Linux in two important respects:

1. Red Hat Developer Toolset can be used on multiple major and minor releases of Red Hat
Enterprise Linux, as detailed in Section 1.3, “Compatibility”.

2. Unlike Technology Preview compilers and other tools shipped in earlier Red Hat Enterprise
Linux, Red Hat Developer Toolset is fully supported under Red Hat Enterprise Linux
Subscription Level Agreements, is functionally complete, and is intended for production use.

Important bug fixes and security errata are issued to Red Hat Developer Toolset subscribers in a similar
manner to Red Hat Enterprise Linux for two years from the release of each major version release. A new
major version of Red Hat Developer Toolset is released annually, providing significant updates for
existing components and adding major new components. A single minor release, issued six months after
each new major version release, provides a smaller update of bug fixes, security errata, and new minor
components.

Additionally, the Red Hat Enterprise Linux Application Compatibility Specification also applies to Red Hat
Developer Toolset (subject to some constraints on the use of newer C++11 language features, detailed
in Section 2.2.4, “C++ Compatibility”).

IMPORTANT

Applications and libraries provided by Red Hat Developer Toolset do not replace the Red
Hat Enterprise Linux system versions, nor are they used in preference to the system
versions. Using a framework called Software Collections, an additional set of developer
tools is installed into the /opt/ directory and is explicitly enabled by the user on demand
using the scl utility.

1.2. MAIN FEATURES

Red Hat Developer Toolset 7.1 brings the following changes:

The Red Hat Developer Toolset version of the GNU Compiler Collection (GCC) has been
upgraded to version 7.3.1 with many new features and bug fixes.

CHAPTER 1. RED HAT DEVELOPER TOOLSET

9

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/rhel-abi-compatibility

The Red Hat Developer Toolset version of the GNU Debugger (GDB) has been upgraded to
version 8.0.1 with many new features and bug fixes.

For a full list of changes and features introduced in this release, see Section A.1, “Changes in Version
7.1”.

1.3. COMPATIBILITY

Red Hat Developer Toolset 7.1 is available for Red Hat Enterprise Linux 6 and 7 for a number of
architectures. Figure 1.1, “Red Hat Developer Toolset 7.1 Compatibility Matrix” illustrates the support for
binaries built with Red Hat Developer Toolset on a certain version of Red Hat Enterprise Linux when
those binaries are run on various other versions of this system.

For ABI compatibility information, see Section 2.2.4, “C++ Compatibility”.

Figure 1.1. Red Hat Developer Toolset 7.1 Compatibility Matrix

Architecture support
Red Hat Developer Toolset is available on the following architectures:

The 64-bit Intel and AMD architectures

The 64-bit ARM architecture

The IBM POWER architecture

The little-endian variant of IBM POWER architecture

The IBM z Systems architecture

1.4. GETTING ACCESS TO RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is an offering that is distributed as a part of the following content sets:

Red Hat Developer Toolset 7 User Guide

10

Red Hat Software Collections

This content set is available to customers with Red Hat Enterprise Linux 6 and 7 subscriptions listed
at https://access.redhat.com/solutions/472793.

Red Hat Developer Tools

This content set is available to customers with deployments of Red Hat Enterprise Linux 7.

NOTE

Please note the difference: Red Hat Developer Toolset is an offering distributed as a
part of the Red Hat Developer Tools content set.

Enable Red Hat Developer Toolset by using the Red Hat Subscription Management. For information on
how to register your system with this subscription management service, see the Red Hat Subscription
Management collection of guides.

1.4.1. Using Red Hat Software Collections

Complete the following steps to attach a subscription that provides access to the repository for Red Hat
Software Collections (which includes Red Hat Developer Toolset), and then enable that repository:

1. Determine the pool ID of a subscription that provides Red Hat Software Collections (and thus
also Red Hat Developer Toolset). To do so, display a list of all subscriptions that are available for
your system:

subscription-manager list --available

For each available subscription, this command displays its name, unique identifier, expiration
date, and other details related to your subscription. The pool ID is listed on a line beginning with
Pool ID.

For a complete list of subscriptions that provide access to Red Hat Developer Toolset, see
https://access.redhat.com/solutions/472793.

2. Attach the appropriate subscription to your system:

subscription-manager attach --pool=pool_id

Replace pool_id with the pool ID you determined in the previous step. To verify the list of
subscriptions your system has currently attached, at any time:

subscription-manager list --consumed

3. Determine the exact name of the Red Hat Software Collections repository. Retrieve repository
metadata and to display a list of available Yum repositories:

subscription-manager repos --list

The repository names depend on the specific version of Red Hat Enterprise Linux you are using
and are in the following format:

rhel-variant-rhscl-version-rpms
rhel-variant-rhscl-version-debug-rpms

CHAPTER 1. RED HAT DEVELOPER TOOLSET

11

https://access.redhat.com/solutions/472793
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/solutions/472793

rhel-variant-rhscl-version-source-rpms

In addition, certain packages, such as devtoolset-7-gcc-plugin-devel , depend on packages
that are only available in the Optional channel. The repository names with these packages use
the following format:

rhel-version-variant-optional-rpms
rhel-version-variant-optional-debug-rpms
rhel-version-variant-optional-source-rpms

For both the regular repositories and optional repositories, replace variant with the Red Hat
Enterprise Linux system variant (server or workstation), and version with the Red Hat
Enterprise Linux system version (6-eus, 6, or 7).

4. Enable the repositories from step no. 3:

subscription-manager repos --enable repository

Replace repository with the name of the repository to enable.

Once the subscription is attached to the system, you can install Red Hat Developer Toolset as described
in Section 1.5, “Installing Red Hat Developer Toolset”. For more information on how to register your
system using Red Hat Subscription Management and associate it with subscriptions, see the Red Hat
Subscription Management collection of guides.

1.4.2. Using Red Hat Developer Tools

1. Enable the rhel-7-variant-devtools-rpms repository:

subscription-manager repos --enable rhel-7-variant-devtools-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

2. Add the Red Hat Developer Tools key to your system:

cd /etc/pki/rpm-gpg
wget -O RPM-GPG-KEY-redhat-devel
https://www.redhat.com/security/data/a5787476.txt
rpm --import RPM-GPG-KEY-redhat-devel

Once the subscription is attached to the system, you can install Red Hat Developer Toolset as described
in Section 1.5, “Installing Red Hat Developer Toolset”. For more information on how to register your
system using Red Hat Subscription Management and associate it with subscriptions, see the Red Hat
Subscription Management collection of guides.

1.5. INSTALLING RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is distributed as a collection of RPM packages that can be installed, updated,
uninstalled, and inspected by using the standard package management tools that are included in Red
Hat Enterprise Linux. Note that a valid subscription that provides access to the Red Hat Software
Collections content set is required in order to install Red Hat Developer Toolset on your system. For
detailed instructions on how to associate your system with an appropriate subscription and get access to
Red Hat Developer Toolset, see Section 1.4, “Getting Access to Red Hat Developer Toolset”.

Red Hat Developer Toolset 7 User Guide

12

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

IMPORTANT

Before installing Red Hat Developer Toolset, install all available Red Hat Enterprise Linux
updates.

1.5.1. Installing All Available Components

To install all components that are included in Red Hat Developer Toolset, install the devtoolset-7
package:

yum install devtoolset-7

This installs all development, debugging, and performance monitoring tools, and other dependent
packages to the system. Alternatively, you can choose to install only a selected package group as
described in Section 1.5.2, “Installing Individual Package Groups”.

NOTE

Note that since Red Hat Developer Toolset 3.0, the scl-utils package is not a part of Red
Hat Developer Toolset, which is a change from preceding versions where the scl utility
was installed along with the Red Hat Developer Toolset software collection.

1.5.2. Installing Individual Package Groups

To make it easier to install only certain components, such as the integrated development environment or
the software development toolchain, Red Hat Developer Toolset is distributed with a number of meta
packages that allow you to install selected package groups as described in Table 1.2, “Red Hat
Developer Toolset Meta Packages”.

Table 1.2. Red Hat Developer Toolset Meta Packages

Package Name Description Installed Components

devtoolset-7-perftools Performance monitoring tools SystemTap, Valgrind, OProfile,
Dyninst

devtoolset-7-toolchain Development and debugging tools GCC, make, GDB, binutils,
elfutils, dwz, memstomp, strace,
ltrace

To install any of these meta packages:

yum install package_name

Replace package_name with a space-separated list of meta packages you want to install. For example,
to install only the development and debugging toolchain and packages that depend on it:

yum install devtoolset-7-toolchain

Alternatively, you can choose to install all available components as described in Section 1.5.1, “Installing
All Available Components”.

CHAPTER 1. RED HAT DEVELOPER TOOLSET

13

1.5.3. Installing Optional Packages

Red Hat Developer Toolset is distributed with a number of optional packages that are not installed by
default. To list all Red Hat Developer Toolset packages that are available to you but not installed on your
system:

$ yum list available devtoolset-7-*

To install any of these optional packages:

yum install package_name

Replace package_name with a space-separated list of packages that you want to install. For example, to
install the devtoolset-7-gdb-gdbserver and devtoolset-7-gdb-doc packages:

yum install devtoolset-7-gdb-gdbserver devtoolset-7-gdb-doc

1.5.4. Installing Debugging Information

To install debugging information for any of the Red Hat Developer Toolset packages, make sure that the
yum-utils package is installed and run:

debuginfo-install package_name

For example, to install debugging information for the devtoolset-7-dwz package:

debuginfo-install devtoolset-7-dwz

Note that in order to use this command, you need to have access to the repository with these packages.
If your system is registered with Red Hat Subscription Management, enable the rhel-variant-
rhscl-version-debug-rpms repository as described in Section 1.4, “Getting Access to Red Hat
Developer Toolset”. For more information on how to get access to debuginfo packages, see
https://access.redhat.com/site/solutions/9907.

NOTE

The devtoolset-7-package_name-debuginfo packages can conflict with the
corresponding packages from the base Red Hat Enterprise Linux system or from other
versions of Red Hat Developer Toolset. This conflict also occurs in a multilib environment,
where 64-bit debuginfo packages conflict with 32-bit debuginfo packages.

Manually uninstall the conflicting debuginfo packages prior to installing Red Hat Developer
Toolset 7.1 and install only relevant debuginfo packages when necessary.

1.6. UPDATING RED HAT DEVELOPER TOOLSET

1.6.1. Updating to a Minor Version

When a new minor version of Red Hat Developer Toolset is available, update your Red Hat Enterprise
Linux installation:

yum update

Red Hat Developer Toolset 7 User Guide

14

https://access.redhat.com/site/solutions/9907

This updates all packages on your Red Hat Enterprise Linux system, including the Red Hat Developer
Toolset versions of development, debugging, and performance monitoring tools, and other dependent
packages.

IMPORTANT

Use of Red Hat Developer Toolset requires the removal of any earlier pre-release
versions of it. Additionally, it is not possible to update to Red Hat Developer Toolset 7.1
from a pre-release version of Red Hat Developer Toolset, including beta releases. If you
have previously installed any pre-release version of Red Hat Developer Toolset, uninstall
it from your system as described in Section 1.7, “Uninstalling Red Hat Developer Toolset”
and install the new version as documented in Section 1.5, “Installing Red Hat Developer
Toolset”.

1.6.2. Updating to a Major Version

When a new major version of Red Hat Developer Toolset is available, you can install it in parallel with
the previous version. For detailed instructions on how to install Red Hat Developer Toolset on your
system, see Section 1.5, “Installing Red Hat Developer Toolset”.

1.7. UNINSTALLING RED HAT DEVELOPER TOOLSET

To uninstall Red Hat Developer Toolset packages from your system:

yum remove devtoolset-7* libasan libatomic libcilkrts libitm liblsan
libtsan libubsan

This removes the GNU Compiler Collection, GNU Debugger, binutils, and other packages that are a
part of Red Hat Developer Toolset from the system.

NOTE

Red Hat Developer Toolset 7.1 for Red Hat Enterprise Linux 7 no longer includes the
libatomic and libitm libraries, which the above command attempts to remove,
because they are not required for a proper function of Red Hat Developer Toolset
components on that system. Nevertheless, the above command works as expected even
on Red Hat Enterprise Linux 7.

Note that the uninstallation of the tools provided by Red Hat Developer Toolset does not affect the Red
Hat Enterprise Linux system versions of these tools.

1.8. USING RED HAT DEVELOPER TOOLSET CONTAINER IMAGES

Docker-formatted container images can be used to run Red Hat Developer Toolset components inside
virtual software containers, thus isolating them from the host system and allowing for their rapid
deployment. For detailed description of the Red Hat Developer Toolset docker-formatted container
images and Red Hat Developer Toolset Dockerfiles, see Using Red Hat Software Collections Container
Images.

CHAPTER 1. RED HAT DEVELOPER TOOLSET

15

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/devtoolset-images

NOTE

The docker package, which contains the Docker daemon, command-line tool, and other
necessary components for building and using docker-formatted container images, is
currently available only for the Server variant of the Red Hat Enterprise Linux 7 product.
Docker-formatted container images cannot be run on Red Hat Enterprise Linux 6, and Red
Hat Developer Toolset Dockerfiles are not distributed for Red Hat Enterprise Linux 6.

Follow the instructions outlined at Getting Docker in RHEL 7 to set up an environment for
building and using docker-formatted container images.

1.9. ADDITIONAL RESOURCES

For more information about Red Hat Developer Toolset and Red Hat Enterprise Linux, see the resources
listed below.

Online Documentation

Red Hat Subscription Management collection of guides — The Red Hat Subscription
Management collection of guides provides detailed information on how to manage subscriptions
on Red Hat Enterprise Linux.

Red Hat Developer Toolset 7.1 Release Notes — The Release Notes for Red Hat Developer
Toolset 7.1 contain more information.

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide
— The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on the
Eclipse IDE, libraries and runtime support, compiling and building, debugging, and profiling on
these systems.

Red Hat Enterprise Linux 6 Installation Guide and Red Hat Enterprise Linux 7 Installation Guide
— The Installation Guides for Red Hat Enterprise Linux 6 an 7 explain how to obtain, install, and
update the system.

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat Enterprise
Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Red Hat Enterprise Linux 7 System Administrator’s Guide — The System Administrator’s Guide
for Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

Using Red Hat Software Collections Container Images — This book provides information on how
to use container images based on Red Hat Software Collections. The available container images
include applications, daemons, databases, as well as the Red Hat Developer Toolset container
images. The images can be run on Red Hat Enterprise Linux 7 Server and Red Hat Enterprise
Linux Atomic Host.

Get Started with Docker Formatted Container Images on Red Hat Systems — The guide
contains a comprehensive overview of information about building and using docker-formatted
container images on Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux Atomic.

See Also

Section A.1, “Changes in Version 7.1” — A list of changes and improvements over the version of
the Red Hat Developer Toolset tools in the previous version of Red Hat Developer Toolset.

Red Hat Developer Toolset 7 User Guide

16

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#getting_docker_in_rhel_7
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/7/html/7.1_Release_Notes/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#get_started_with_docker_formatted_container_images

PART II. DEVELOPMENT TOOLS

PART II. DEVELOPMENT TOOLS

17

CHAPTER 2. GNU COMPILER COLLECTION (GCC)
The GNU Compiler Collection, commonly abbreviated GCC, is a portable compiler suite with support
for a wide selection of programming languages.

Red Hat Developer Toolset is distributed with GCC 7.3.1. This version is more recent than the version
included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

2.1. GNU C COMPILER

2.1.1. Installing the C Compiler

In Red Hat Developer Toolset, the GNU C compiler is provided by the devtoolset-7-gcc package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

2.1.2. Using the C Compiler

To compile a C program on the command line, run the gcc compiler as follows:

$ scl enable devtoolset-7 'gcc -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line,:

$ scl enable devtoolset-7 'gcc -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary file:

$ scl enable devtoolset-7 'gcc -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset gcc as default:

$ scl enable devtoolset-7 'bash'

Red Hat Developer Toolset 7 User Guide

18

NOTE

To verify the version of gcc you are using at any point:

$ which gcc

Red Hat Developer Toolset’s gcc executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red
Hat Developer Toolset gcc:

$ gcc -v

Example 2.1. Compiling a C Program on the Command Line

Consider a source file named hello.c with the following contents:

Compile this source code on the command line by using the gcc compiler from Red Hat Developer
Toolset:

$ scl enable devtoolset-7 'gcc -o hello hello.c'

This creates a new binary file called hello in the current working directory.

2.1.3. Running a C Program

When gcc compiles a program, it creates an executable binary file. To run this program on the command
line, change to the directory with the executable file and run it:

$./file_name

Example 2.2. Running a C Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.1,
“Compiling a C Program on the Command Line”, you can run it by typing the following at a shell
prompt:

$./hello
Hello, World!

2.2. GNU C++ COMPILER

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

19

2.2.1. Installing the C++ Compiler

In Red Hat Developer Toolset, the GNU C++ compiler is provided by the devtoolset-7-gcc-c++ package
and is automatically installed with the devtoolset-7-toolchain package as described in Section 1.5,
“Installing Red Hat Developer Toolset”.

2.2.2. Using the C++ Compiler

To compile a C++ program on the command line, run the g++ compiler as follows:

$ scl enable devtoolset-7 'g++ -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the g++ compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line:

$ scl enable devtoolset-7 'g++ -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the g++ compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary file:

$ scl enable devtoolset-7 'g++ -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset g++ as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of g++ you are using at any point:

$ which g++

Red Hat Developer Toolset’s g++ executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red
Hat Developer Toolset g++:

$ g++ -v

Example 2.3. Compiling a C++ Program on the Command Line

Consider a source file named hello.cpp with the following contents:

#include <iostream>

Red Hat Developer Toolset 7 User Guide

20

Compile this source code on the command line by using the g++ compiler from Red Hat Developer
Toolset:

$ scl enable devtoolset-7 'g++ -o hello hello.cpp'

This creates a new binary file called hello in the current working directory.

2.2.3. Running a C++ Program

When g++ compiles a program, it creates an executable binary file. To run this program on the command
line, change to the directory with the executable file and run it:

$./file_name

Example 2.4. Running a C++ Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.3,
“Compiling a C++ Program on the Command Line”, you can run it:

$./hello
Hello, World!

2.2.4. C++ Compatibility

All compilers from Red Hat Enterprise Linux versions 5, 6, and 7 and from Red Hat Developer Toolset
versions 1, 2, 3, 4, and 6 in any -std mode are compatible with any other of those compilers in C++98
mode.

A compiler in C++11 or C++14 mode is only guaranteed to be compatible with another compiler in
C++11 or C++14 mode if they are from the same release series (for example from Red Hat Developer
Toolset 6.x).

IMPORTANT

All compatibility information mentioned in this section is relevant only for Red Hat-supplied
versions of the GCC C++ compiler.

2.2.4.1. C++ ABI

Any C++98-compliant binaries or libraries built explicitly with -std=c++98 or -std=gnu++98 can be
freely mixed with binaries and shared libraries built by the Red Hat Enterprise Linux 5, 6 or 7 system
toolchain GCC. Red Hat recommends use of the -std=c++98 or -std=gnu++98 modes for production
software development.

using namespace std;

int main(int argc, char *argv[]) {
 cout << "Hello, World!" << endl;
 return 0;
}

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

21

The default language standard setting for Red Hat Developer Toolset is C++14 with GNU extensions,
equivalent to explicitly using option -std=gnu++14.

Using and mixing the C++11, C++14, and C++17 language versions is supported in Red Hat Developer
Toolset only when all C++ objects compiled with the respective flag have been built using the same
major version of GCC. As later major versions of Red Hat Developer Toolset may use a later major
release of GCC, forward-compatibility of objects, binaries, and libraries built with the options -
std=c++11, -std=gnu++11, -std=c++14, -std=gnu++14, -std=c++17, and -std=gnu++17
options cannot be guaranteed, and so is not supported.

IMPORTANT

Use of C++11, C++14 and C++17 features in your application requires careful
consideration of the above ABI compatibility information.

The mixing of objects, binaries and libraries, built by the Red Hat Enterprise Linux 6 or 7 system
toolchain GCC using the -std=c++0x or -std=gnu++0x flags, with those built with the -std=c++11
or -std=gnu++11 or -std=c++14 or -std=gnu++14 or -std=c++17 or -std=gnu++17 flags using
the GCC in Red Hat Developer Toolset is explicitly not supported.

Aside from the C++11, C++14 and C++17 ABI, discussed above, the Red Hat Enterprise Linux
Application Compatibility Specification is unchanged for Red Hat Developer Toolset. When mixing
objects built with Red Hat Developer Toolset with those built with the Red Hat Enterprise Linux 6 or 7
toolchain (particularly .o/.a files), the Red Hat Developer Toolset toolchain should be used for any
linkage. This ensures any newer library features provided only by Red Hat Developer Toolset are
resolved at link-time.

A new standard mangling for SIMD vector types has been added to avoid name clashes on systems with
vectors of varying lengths. The compiler in Red Hat Developer Toolset uses the new mangling by
default. It is possible to use the previous standard mangling by adding the -fabi-version=2 or -
fabi-version=3 options to GCC C++ compiler calls. To display a warning about code that uses the
old mangling, use the -Wabi option.

On Red Hat Enterprise Linux 7, the GCC C++ compiler still uses the old mangling by default, but emits
aliases with the new mangling on targets that support strong aliases. It is possible to use the new
standard mangling by adding the -fabi-version=4 option to compiler calls. To display a warning
about code that uses the old mangling, use the -Wabi option.

On Red Hat Enterprise Linux 6, the GCC C++ compiler supports only the previous standard mangling.

2.3. GNU FORTRAN COMPILER

2.3.1. Installing the Fortran Compiler

In Red Hat Developer Toolset, the GNU Fortran compiler is provided by the devtoolset-7-gcc-gfortran
package and is automatically installed with devtoolset-7-toolchain as described in Section 1.5,
“Installing Red Hat Developer Toolset”.

2.3.2. Using the Fortran Compiler

To compile a Fortran program on the command line, run the gfortran compiler as follows:

$ scl enable devtoolset-7 'gfortran -o output_file source_file...'

Red Hat Developer Toolset 7 User Guide

22

https://access.redhat.com/articles/rhel-abi-compatibility

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line:

$ scl enable devtoolset-7 'gfortran -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary file:

$ scl enable devtoolset-7 'gfortran -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset gfortran as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of gfortran you are using at any point:

$ which gfortran

Red Hat Developer Toolset’s gfortran executable path will begin with /opt.
Alternatively, you can use the following command to confirm that the version number
matches that for Red Hat Developer Toolset gfortran:

$ gfortran -v

Example 2.5. Compiling a Fortran Program on the Command Line

Consider a source file named hello.f with the following contents:

Compile this source code on the command line by using the gfortran compiler from Red Hat
Developer Toolset:

$ scl enable devtoolset-7 'gfortran -o hello hello.f'

This creates a new binary file called hello in the current working directory.

2.3.3. Running a Fortran Program

program hello
 print *, "Hello, World!"
end program hello

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

23

When gfortran compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and run it:

$./file_name

Example 2.6. Running a Fortran Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.5,
“Compiling a Fortran Program on the Command Line”, you can run it:

$./hello
 Hello, World!

2.4. SPECIFICS OF GCC IN RED HAT DEVELOPER TOOLSET

Static linking of libraries

Certain more recent library features are statically linked into applications built with Red Hat Developer
Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This creates an additional
minor security risk as standard Red Hat Enterprise Linux errata do not change this code. If the need
arises for developers to rebuild their applications due to this risk, Red Hat will communicate this using a
security erratum.

IMPORTANT

Because of this additional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Specify libraries after object files when linking

In Red Hat Developer Toolset, libraries are linked using linker scripts which might specify some symbols
through static archives. This is required to ensure compatibility with multiple versions of Red Hat
Enterprise Linux. However, the linker scripts use the names of the respective shared object files. As a
consequence, the linker uses different symbol handling rules than expected, and does not recognize
symbols required by object files when the option adding the library is specified before options specifying
the object files:

$ scl enable devtoolset-7 'gcc -lsomelib objfile.o'

Using a library from the Red Hat Developer Toolset in this manner results in the linker error message
undefined reference to symbol. To prevent this problem, follow the standard linking practice,
and specify the option adding the library after the options specifying the object files:

$ scl enable devtoolset-7 'gcc objfile.o -lsomelib'

Note that this recommendation also applies when using the base Red Hat Enterprise Linux version of
GCC.

2.5. ADDITIONAL RESOURCES

Red Hat Developer Toolset 7 User Guide

24

A detailed description of the GNU Compiler Collections and its features is beyond the scope of this book.
For more information, see the resources listed below.

Installed Documentation

gcc(1) — The manual page for the gcc compiler provides detailed information on its usage; with
few exceptions, g++ accepts the same command line options as gcc. To display the manual
page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man gcc'

gfortran(1) — The manual page for the gfortran compiler provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man gfortran'

C++ Standard Library Documentation — Documentation on the C++ standard library can be
optionally installed:

yum install devtoolset-7-libstdc++-docs

Once installed, HTML documentation is available at /opt/rh/devtoolset-
7/root/usr/share/doc/devtoolset-7-libstdC++-docs-7.3.1/html/index.html.

Online Documentation

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide
— The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide in-depth information
about GCC.

Using the GNU Compiler Collection — The official GCC manual provides an in-depth description
of the GNU compilers and their usage.

The GNU C++ Library — The GNU C++ library documentation provides detailed information
about the GNU implementation of the standard C++ library.

The GNU Fortran Compiler — The GNU Fortran compiler documentation provides detailed
information on gfortran's usage.

See Also

Section A.2.4, “Changes in GCC” — A list of features and improvements over the version of the
GNU Compiler Collection distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz — Instructions on using the dwz tool to optimize DWARF debugging information
contained in ELF shared libraries and ELF executables for size.

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

25

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/
http://gcc.gnu.org/onlinedocs/gcc-7.3.0/libstdc++/manual/
http://gcc.gnu.org/onlinedocs/gcc-7.3.0/gfortran/

Chapter 7, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Red Hat Developer Toolset 7 User Guide

26

CHAPTER 3. GNU MAKE
The GNU make utility, commonly abbreviated make, is a tool for controlling the generation of
executables from source files. make automatically determines which parts of a complex program have
changed and need to be recompiled. make uses configuration files called Makefiles to control the way
programs are built.

Red Hat Developer Toolset is distributed with make 4.2.1. This version is more recent than the version
included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

3.1. INSTALLING MAKE

In Red Hat Developer Toolset, GNU make is provided by the devtoolset-7-make package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

3.2. USING MAKE

To build a program without using a Makefile, run the make tool as follows:

$ scl enable devtoolset-7 'make source_file_without_extension'

This command makes use of implicit rules that are defined for a number of programming languages,
including C, C++, and Fortran. The result is a binary file named source_file_without_extension
in the current working directory.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset make as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of make you are using at any point:

$ which make

Red Hat Developer Toolset’s make executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset make:

$ make -v

Example 3.1. Building a C Program Using make

Consider a source file named hello.c with the following contents:

#include <stdio.h>

int main(int argc, char *argv[]) {

CHAPTER 3. GNU MAKE

27

Build this source code using the implicit rules defined by the make utility from Red Hat Developer
Toolset:

$ scl enable devtoolset-7 'make hello'
cc hello.c -o hello

This creates a new binary file called hello in the current working directory.

3.3. USING MAKEFILES

To build complex programs that consist of a number of source files, make uses configuration files called
Makefiles that control how to compile the components of a program and build the final executable.
Makefiles can also contain instructions for cleaning the working directory, installing and uninstalling
program files, and other operations.

make automatically uses files named GNUmakefile, makefile, or Makefile in the current directory.
To specify another file name, use the -f option:

$ make -f make_file

Describing the details of Makefile syntax is beyond the scope of this guide. See GNU make, the official
GNU make manual, which provides an in-depth description of the GNU make utility, Makefile syntax, and
their usage.

The full make manual is also available in the Texinfo format as a part of your installation. To view this
manual:

$ scl enable devtoolset-7 'info make'

Example 3.2. Building a C Program Using a Makefile

Consider the following universal Makefile named Makefile for building the simple C program
introduced in Example 3.1, “Building a C Program Using make”. The Makefile defines some variables
and specifies four rules, which consist of targets and their recipes. Note that the lines with recipes
must start with the TAB character:

 printf("Hello, World!\n");
 return 0;
}

CC=gcc
CFLAGS=-c -Wall
SOURCE=hello.c
OBJ=$(SOURCE:.c=.o)
EXE=hello

all: $(SOURCE) $(EXE)

$(EXE): $(OBJ)
 $(CC) $(OBJ) -o $@

.o: .c

Red Hat Developer Toolset 7 User Guide

28

http://www.gnu.org/software/make/manual/make.html

To build the hello.c program using this Makefile, run the make utility:

$ scl enable devtoolset-7 'make'
gcc -c -Wall hello.c -o hello.o
gcc hello.o -o hello

This creates a new object file hello.o and a new binary file called hello in the current working
directory.

To clean the working directory, run:

$ scl enable devtoolset-7 'make clean'
rm -rf hello.o hello

This removes the object and binary files from the working directory.

3.4. ADDITIONAL RESOURCES

A detailed description of the GNU make tool and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

make(1) — The manual page for the make utility provides information on its usage. To display
the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man make'

The full make manual, which includes detailed information about Makefile syntax, is also
available in the Texinfo format. To display the info manual for the version included in Red Hat
Developer Toolset:

$ scl enable devtoolset-7 'info make'

Online Documentation

GNU make — The official GNU make manual provides an in-depth description of the GNU make
utility, Makefile syntax, and their usage.

See Also

Section A.2.6, “Changes in make” — A comprehensive list of features and improvements over
the Red Hat Enterprise Linux version of GNU make and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

 $(CC) $(CFLAGS) $< -o $@

clean:
 rm -rf $(OBJ) $(EXE)

CHAPTER 3. GNU MAKE

29

http://www.gnu.org/software/make/manual/make.html

Chapter 2, GNU Compiler Collection (GCC) — Instructions on using the GNU Compiler
Collection, a portable compiler suite with support for a wide selection of programming
languages.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz — Instructions on using the dwz tool to optimize DWARF debugging information
contained in ELF shared libraries and ELF executables for size.

Chapter 7, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Red Hat Developer Toolset 7 User Guide

30

CHAPTER 4. BINUTILS
binutils is a collection of various binary tools, such as the GNU linker, GNU assembler, and other
utilities that allow you to inspect and manipulate object files and binaries. See Table 4.1, “Tools Included
in binutils for Red Hat Developer Toolset” for a complete list of binary tools that are distributed with the
Red Hat Developer Toolset version of binutils.

Red Hat Developer Toolset is distributed with binutils 2.28. This version is more recent than the version
included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset and
provides bug fixes and enhancements.

Table 4.1. Tools Included in binutils for Red Hat Developer Toolset

Name Description

addr2line Translates addresses into file names and line
numbers.

ar Creates, modifies, and extracts files from archives.

as The GNU assembler.

c++filt Decodes mangled C++ symbols.

dwp Combines DWARF object files into a single DWARF
package file.

elfedit Examines and edits ELF files.

gprof Display profiling information.

ld The GNU linker.

ld.bfd An alternative to the GNU linker.

ld.gold Another alternative to the GNU linker.

nm Lists symbols from object files.

objcopy Copies and translates object files.

objdump Displays information from object files.

ranlib Generates an index to the contents of an archive to
make access to this archive faster.

readelf Displays information about ELF files.

size Lists section sizes of object or archive files.

CHAPTER 4. BINUTILS

31

strings Displays printable character sequences in files.

strip Discards all symbols from object files.

Name Description

4.1. INSTALLING BINUTILS

In Red Hat Developer Toolset, binutils are provided by the devtoolset-7-binutils package and are
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

4.2. USING THE GNU ASSEMBLER

To produce an object file from an assembly language program, run the as tool as follows:

$ scl enable devtoolset-7 'as option ... -o object_file source_file'

This creates an object file named object_file in the current working directory.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset as as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of as you are using at any point:

$ which as

Red Hat Developer Toolset’s as executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red
Hat Developer Toolset as:

$ as -v

4.3. USING THE GNU LINKER

To create an executable binary file or a library from object files, run the ld tool as follows:

$ scl enable devtoolset-7 'ld option ... -o output_file object_file ...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

Red Hat Developer Toolset 7 User Guide

32

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset ld as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of ld you are using at any point:

$ which ld

Red Hat Developer Toolset’s ld executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red
Hat Developer Toolset ld:

$ ld -v

4.4. USING OTHER BINARY TOOLS

The binutils provide many binary tools other than a linker and an assembler. For a complete list of these
tools, see Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” .

To execute any of the tools that are a part of binutils:

$ scl enable devtoolset-7 'tool option ... file_name'

See Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” for a list of tools that are
distributed with binutils. For example, to use the objdump tool to inspect an object file:

$ scl enable devtoolset-7 'objdump option ... object_file'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of binutils you are using at any point:

$ which objdump

Red Hat Developer Toolset’s objdump executable path will begin with /opt.
Alternatively, you can use the following command to confirm that the version number
matches that for Red Hat Developer Toolset objdump:

$ objdump -v

CHAPTER 4. BINUTILS

33

4.5. SPECIFICS OF BINUTILS IN RED HAT DEVELOPER TOOLSET

Static linking of libraries

Certain more recent library features are statically linked into applications built with Red Hat Developer
Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This creates an additional
minor security risk as standard Red Hat Enterprise Linux errata do not change this code. If the need
arises for developers to rebuild their applications due to this risk, Red Hat will communicate this using a
security erratum.

IMPORTANT

Because of this additional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Specify libraries after object files when linking

In Red Hat Developer Toolset, libraries are linked using linker scripts which might specify some symbols
through static archives. This is required to ensure compatibility with multiple versions of Red Hat
Enterprise Linux. However, the linker scripts use the names of the respective shared object files. As a
consequence, the linker uses different symbol handling rules than expected, and does not recognize
symbols required by object files when the option adding the library is specified before options specifying
the object files:

$ scl enable devtoolset-7 'ld -lsomelib objfile.o'

Using a library from the Red Hat Developer Toolset in this manner results in the linker error message
undefined reference to symbol. To prevent this problem, follow the standard linking practice,
and specify the option adding the library after the options specifying the object files:

$ scl enable devtoolset-7 'ld objfile.o -lsomelib'

Note that this recommendation also applies when using the base Red Hat Enterprise Linux version of
binutils.

4.6. ADDITIONAL RESOURCES

A detailed description of binutils is beyond the scope of this book. For more information, see the
resources listed below.

Installed Documentation

as(1), ld(1), addr2line(1), ar(1), c++filt(1), dwp(1), elfedit(1), gprof(1), nm(1), objcopy(1),
objdump(1), ranlib(1), readelf(1), size(1), strings(1), strip(1), — Manual pages for various
binutils tools provide more information about their respective usage. To display a manual page
for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man tool'

Online Documentation

Documentation for binutils — The binutils documentation provides an in-depth description of the
binary tools and their usage.

Red Hat Developer Toolset 7 User Guide

34

http://sourceware.org/binutils/docs-2.28/

See Also

Section A.2.1, “Changes in binutils” — A comprehensive list of features and improvements over
the Red Hat Enterprise Linux version of binutils and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 5, elfutils — Information on how to use elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Chapter 2, GNU Compiler Collection (GCC) — Information on how to compile programs written
in C, C++, and Fortran.

CHAPTER 4. BINUTILS

35

CHAPTER 5. ELFUTILS
elfutils is a collection of various binary tools, such as eu-objdump, eu-readelf, and other utilities that
allow you to inspect and manipulate ELF files. See Table 5.1, “Tools Included in elfutils for Red Hat
Developer Toolset” for a complete list of binary tools that are distributed with the Red Hat Developer
Toolset version of elfutils.

Red Hat Developer Toolset is distributed with elfutils 0.170. This version is more recent than the version
included the previous release of Red Hat Developer Toolset and provides some bug fixes and
enhancements.

Table 5.1. Tools Included in elfutils for Red Hat Developer Toolset

Name Description

eu-addr2line Translates addresses into file names and line
numbers.

eu-ar Creates, modifies, and extracts files from archives.

eu-elfcmp Compares relevant parts of two ELF files for equality.

eu-elflint Verifies that ELF files are compliant with the generic
ABI (gABI) and processor-specific supplement ABI
(psABI) specification.

eu-findtextrel Locates the source of text relocations in files.

eu-make-debug-archive Creates an offline archive for debugging.

eu-nm Lists symbols from object files.

eu-objdump Displays information from object files.

eu-ranlib Generates an index to the contents of an archive to
make access to this archive faster.

eu-readelf Displays information about ELF files.

eu-size Lists section sizes of object or archive files.

eu-stack A new utility for unwinding processes and cores.

eu-strings Displays printable character sequences in files.

eu-strip Discards all symbols from object files.

eu-unstrip Combines stripped files with separate symbols and
debug information.

Red Hat Developer Toolset 7 User Guide

36

5.1. INSTALLING ELFUTILS

In Red Hat Developer Toolset, elfutils is provided by the devtoolset-7-elfutils package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

5.2. USING ELFUTILS

To execute any of the tools that are part of elfutils, run the tool as follows:

$ scl enable devtoolset-7 'tool option ... file_name'

See Table 5.1, “Tools Included in elfutils for Red Hat Developer Toolset” for a list of tools that are
distributed with elfutils. For example, to use the eu-objdump tool to inspect an object file:

$ scl enable devtoolset-7 'eu-objdump option ... object_file'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of elfutils you are using at any point:

$ which eu-objdump

Red Hat Developer Toolset’s eu-objdump executable path will begin with /opt.
Alternatively, you can use the following command to confirm that the version number
matches that for Red Hat Developer Toolset eu-objdump:

$ eu-objdump -V

5.3. ADDITIONAL RESOURCES

A detailed description of elfutils is beyond the scope of this book. For more information, see the
resources listed below.

See Also

Section A.2.3, “Changes in elfutils” — A comprehensive list of features and improvements over
the Red Hat Enterprise Linux version of elfutils and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Instructions on compiling programs written in C,
C++, and Fortran.

CHAPTER 5. ELFUTILS

37

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 6, dwz — Instructions on using the dwz tool to optimize DWARF debugging information
contained in ELF shared libraries and ELF executables for size.

Red Hat Developer Toolset 7 User Guide

38

CHAPTER 6. DWZ
dwz is a command line tool that attempts to optimize DWARF debugging information contained in ELF
shared libraries and ELF executables for size. To do so, dwz replaces DWARF information
representation with equivalent smaller representation where possible and reduces the amount of
duplication by using techniques from Appendix E of the DWARF Standard.

Red Hat Developer Toolset is distributed with dwz 0.12.

6.1. INSTALLING DWZ

In Red Hat Developer Toolset, the dwz utility is provided by the devtoolset-7-dwz package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

6.2. USING DWZ

To optimize DWARF debugging information in a binary file, run the dwz tool as follows:

$ scl enable devtoolset-7 'dwz option... file_name'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset dwz as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of dwz you are using at any point:

$ which dwz

Red Hat Developer Toolset’s dwz executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red
Hat Developer Toolset dwz:

$ dwz -v

6.3. ADDITIONAL RESOURCES

A detailed description of dwz and its features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

dwz(1) — The manual page for the dwz utility provides detailed information on its usage. To
display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man dwz'

CHAPTER 6. DWZ

39

http://www.dwarfstd.org/doc/DWARF4.pdf

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Instructions on compiling programs written in C,
C++, and Fortran.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Red Hat Developer Toolset 7 User Guide

40

PART III. DEBUGGING TOOLS

PART III. DEBUGGING TOOLS

41

CHAPTER 7. GNU DEBUGGER (GDB)
The GNU Debugger, commonly abbreviated as GDB, is a command line tool that can be used to debug
programs written in various programming languages. It allows you to inspect memory within the code
being debugged, control the execution state of the code, detect the execution of particular sections of
code, and much more.

Red Hat Developer Toolset is distributed with GDB 8.0.1. This version is more recent than the version
included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset and
provides some enhancements and numerous bug fixes.

7.1. INSTALLING THE GNU DEBUGGER

In Red Hat Developer Toolset, the GNU Debugger is provided by the devtoolset-7-gdb package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

7.2. PREPARING A PROGRAM FOR DEBUGGING

Compiling Programs with Debugging Information
To compile a C program with debugging information that can be read by the GNU Debugger, make sure
the gcc compiler is run with the -g option:

$ scl enable devtoolset-7 'gcc -g -o output_file input_file...'

Similarly, to compile a C++ program with debugging information:

$ scl enable devtoolset-7 'g++ -g -o output_file input_file...'

Example 7.1. Compiling a C Program With Debugging Information

Consider a source file named fibonacci.c that has the following contents:

Compile this program on the command line using GCC from Red Hat Developer Toolset with
debugging information for the GNU Debugger:

#include <stdio.h>
#include <limits.h>

int main (int argc, char *argv[]) {
 unsigned long int a = 0;
 unsigned long int b = 1;
 unsigned long int sum;

 while (b < LONG_MAX) {
 printf("%ld ", b);
 sum = a + b;
 a = b;
 b = sum;
 }

 return 0;
}

Red Hat Developer Toolset 7 User Guide

42

$ scl enable devtoolset-7 'gcc -g -o fibonacci fibonacci.c'

This creates a new binary file called fibonacci in the current working directory.

Installing Debugging Information for Existing Packages
To install debugging information for a package that is already installed on the system:

debuginfo-install package_name

Note that the yum-utils package must be installed for the debuginfo-install utility to be available on
your system.

Example 7.2. Installing Debugging Information for the glibc Package

Install debugging information for the glibc package:

debuginfo-install glibc
Loaded plugins: product-id, refresh-packagekit, subscription-manager
--> Running transaction check
---> Package glibc-debuginfo.x86_64 0:2.17-105.el7 will be installed
...

7.3. RUNNING THE GNU DEBUGGER

To run the GNU Debugger on a program you want to debug:

$ scl enable devtoolset-7 'gdb file_name'

This starts the gdb debugger in interactive mode and displays the default prompt, (gdb). To quit the
debugging session and return to the shell prompt, run the following command at any time:

(gdb) quit

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset gdb as default:

$ scl enable devtoolset-7 'bash'

CHAPTER 7. GNU DEBUGGER (GDB)

43

NOTE

To verify the version of gdb you are using at any point:

$ which gdb

Red Hat Developer Toolset’s gdb executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for Red
Hat Developer Toolset gdb:

$ gdb -v

Example 7.3. Running the gdb Utility on the fibonacci Binary File

This example assumes that you have successfully compiled the fibonacci binary file as shown in
Example 7.1, “Compiling a C Program With Debugging Information”.

Start debugging fibonacci with gdb:

$ scl enable devtoolset-7 'gdb fibonacci'
GNU gdb (GDB) Red Hat Enterprise Linux 8.0-25.el7
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show
copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from fibonacci...done.
(gdb)

7.4. LISTING SOURCE CODE

To view the source code of the program you are debugging:

(gdb) list

Before you start the execution of the program you are debugging, gdb displays the first ten lines of the
source code, and any subsequent use of this command lists another ten lines. Once you start the
execution, gdb displays the lines that are surrounding the line on which the execution stops, typically
when you set a breakpoint.

You can also display the code that is surrounding a particular line:

Red Hat Developer Toolset 7 User Guide

44

(gdb) list file_name:line_number

Similarly, to display the code that is surrounding the beginning of a particular function:

(gdb) list file_name:function_name

Note that you can change the number of lines the list command displays:

(gdb) set listsize number

Example 7.4. Listing the Source Code of the fibonacci Binary File

The fibonacci.c file listed in Example 7.1, “Compiling a C Program With Debugging Information”
has exactly 17 lines. Assuming that you have compiled it with debugging information and you want
the gdb utility to be capable of listing the entire source code, you can run the following command to
change the number of listed lines to 20:

(gdb) set listsize 20

You can now display the entire source code of the file you are debugging by running the list
command with no additional arguments:

(gdb) list
1 #include <stdio.h>
2 #include <limits.h>
3
4 int main (int argc, char *argv[]) {
5 unsigned long int a = 0;
6 unsigned long int b = 1;
7 unsigned long int sum;
8
9 while (b < LONG_MAX) {
10 printf("%ld ", b);
11 sum = a + b;
12 a = b;
13 b = sum;
14 }
15
16 return 0;
17 }

7.5. SETTING BREAKPOINTS

Setting a New Breakpoint
To set a new breakpoint at a certain line:

(gdb) break file_name:line_number

You can also set a breakpoint on a certain function:

(gdb) break file_name:function_name

CHAPTER 7. GNU DEBUGGER (GDB)

45

Example 7.5. Setting a New Breakpoint

This example assumes that you have compiled the fibonacci.c file listed in Example 7.1,
“Compiling a C Program With Debugging Information” with debugging information.

Set a new breakpoint at line 10:

(gdb) break 10
Breakpoint 1 at 0x4004e5: file fibonacci.c, line 10.

Listing Breakpoints
To display a list of currently set breakpoints:

(gdb) info breakpoints

Example 7.6. Listing Breakpoints

This example assumes that you have followed the instructions in Example 7.5, “Setting a New
Breakpoint”.

Display the list of currently set breakpoints:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004004e5 in main at
fibonacci.c:10

Deleting Existing Breakpoints
To delete a breakpoint that is set at a certain line:

(gdb) clear line_number

Similarly, to delete a breakpoint that is set on a certain function:

(gdb) clear function_name

Example 7.7. Deleting an Existing Breakpoint

This example assumes that you have compiled the fibonacci.c file listed in Example 7.1,
“Compiling a C Program With Debugging Information” with debugging information.

Set a new breakpoint at line 7:

(gdb) break 7
Breakpoint 2 at 0x4004e3: file fibonacci.c, line 7.

Remove this breakpoint:

Red Hat Developer Toolset 7 User Guide

46

(gdb) clear 7
Deleted breakpoint 2

7.6. STARTING EXECUTION

To start an execution of the program you are debugging:

(gdb) run

If the program accepts any command line arguments, you can provide them as arguments to the run
command:

(gdb) run argument…

The execution stops when the first breakpoint (if any) is reached, when an error occurs, or when the
program terminates.

Example 7.8. Executing the fibonacci Binary File

This example assumes that you have followed the instructions in Example 7.5, “Setting a New
Breakpoint”.

Execute the fibonacci binary file:

(gdb) run
Starting program: /home/john/fibonacci

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

7.7. DISPLAYING CURRENT VALUES

The gdb utility allows you to display the value of almost anything that is relevant to the program, from a
variable of any complexity to a valid expression or even a library function. However, the most common
task is to display the value of a variable.

To display the current value of a certain variable:

(gdb) print variable_name

Example 7.9. Displaying the Current Values of Variables

This example assumes that you have followed the instructions in Example 7.8, “Executing the
fibonacci Binary File” and the execution of the fibonacci binary stopped after reaching the
breakpoint at line 10.

Display the current values of variables a and b:

(gdb) print a

CHAPTER 7. GNU DEBUGGER (GDB)

47

$1 = 0
(gdb) print b
$2 = 1

7.8. CONTINUING EXECUTION

To resume the execution of the program you are debugging after it reached a breakpoint:

(gdb) continue

The execution stops again when another breakpoint is reached. To skip a certain number of breakpoints
(typically when you are debugging a loop):

(gdb) continue number

The gdb utility also allows you to stop the execution after executing a single line of code:

(gdb) step

Finally, you can execute a certain number of lines:

(gdb) step number

Example 7.10. Continuing the Execution of the fibonacci Binary File

This example assumes that you have followed the instructions in Example 7.8, “Executing the
fibonacci Binary File”, and the execution of the fibonacci binary stopped after reaching the
breakpoint at line 10.

Resume the execution:

(gdb) continue
Continuing.

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

The execution stops the next time the breakpoint is reached.

Execute the next three lines of code:

(gdb) step 3
13 b = sum;

This allows you to verify the current value of the sum variable before it is assigned to b:

(gdb) print sum
$3 = 2

Red Hat Developer Toolset 7 User Guide

48

7.9. ADDITIONAL RESOURCES

A detailed description of the GNU Debugger and all its features is beyond the scope of this book. For
more information, see the resources listed below.

Online Documentation

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide
— The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on the
GNU Debugger and debugging.

GDB Documentation — The official GDB documentation includes the GDB User Manual and
other reference material.

See Also

Section A.2.5, “Changes in GDB” — A list of features and improvements over the version of the
GNU Debugger distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Further information on how to compile programs
written in C, C++, and Fortran.

Chapter 8, strace — Instructions on using the strace utility to monitor system calls that a
program uses and signals it receives.

Chapter 10, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

CHAPTER 7. GNU DEBUGGER (GDB)

49

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
http://www.gnu.org/software/gdb/documentation/

CHAPTER 8. STRACE
strace is a diagnostic and debugging tool for the command line that can be used to trace system calls
that are made and received by a running process. It records the name of each system call, its
arguments, and its return value, as well as signals received by the process and other interactions with
the kernel, and prints this record to standard error output or a selected file.

Red Hat Developer Toolset is distributed with strace 4.17.

8.1. INSTALLING STRACE

In Red Hat Enterprise Linux, the strace utility is provided by the devtoolset-7-strace package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

8.2. USING STRACE

To run the strace utility on a program you want to analyze:

$ scl enable devtoolset-7 'strace program argument...'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility on an
already running process by using the -p command line option followed by the process ID:

$ scl enable devtoolset-7 'strace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset strace as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of strace you are using at any point:

$ which strace

Red Hat Developer Toolset’s strace executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset strace:

$ strace -V

8.2.1. Redirecting Output to a File

By default, strace prints the name of each system call, its arguments and the return value to standard
error output. To redirect this output to a file, use the -o command line option followed by the file name:

$ scl enable devtoolset-7 'strace -o file_name program argument...'

Red Hat Developer Toolset 7 User Guide

50

Replace file_name with the name of the file.

Example 8.1. Redirecting Output to a File

Consider a slightly modified version of the fibonacci file from Example 7.1, “Compiling a C
Program With Debugging Information”. This executable file displays the Fibonacci sequence and
optionally allows you to specify how many members of this sequence to list. Run the strace utility
on this file and redirect the trace output to fibonacci.log:

$ scl enable devtoolset-7 'strace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

8.2.2. Tracing Selected System Calls

To trace only a selected set of system calls, run the strace utility with the -e command line option:

$ scl enable devtoolset-7 'strace -e expression program argument...'

Replace expression with a comma-separated list of system calls to trace or any of the keywords listed in
Table 8.1, “Commonly Used Values of the -e Option”. For a detailed description of all available values,
see the strace(1) manual page.

Table 8.1. Commonly Used Values of the -e Option

Value Description

%file System calls that accept a file name as an argument.

%process System calls that are related to process
management.

%network System calls that are related to networking.

%signal System calls that are related to signal management.

%ipc System calls that are related to inter-process
communication (IPC).

%desc System calls that are related to file descriptors.

Note that the syntax -e expression is a shorthand for the full form -e trace=expression.

Example 8.2. Tracing Selected System Calls

Consider the employee file from Example 10.1, “Using memstomp”. Run the strace utility on this
executable file and trace only the mmap and munmap system calls:

CHAPTER 8. STRACE

51

$ scl enable devtoolset-7 'strace -e mmap,munmap ./employee'
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f896c744000
mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f896c735000
mmap(0x3146a00000, 3745960, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x3146a00000
mmap(0x3146d89000, 20480, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x189000) = 0x3146d89000
mmap(0x3146d8e000, 18600, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x3146d8e000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f896c734000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f896c733000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f896c732000
munmap(0x7f896c735000, 61239) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x7f896c743000
John,john@example.comDoe,
+++ exited with 0 +++

8.2.3. Displaying Time Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
strace utility with the -t command line option:

$ scl enable devtoolset-7 'strace -t program argument...'

To also display milliseconds, supply the -t option twice:

$ scl enable devtoolset-7 'strace -tt program argument...'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

$ scl enable devtoolset-7 'strace -r program argument...'

Example 8.3. Displaying Time Stamps

Consider an executable file named pwd. Run the strace utility on this file and include time stamps in
the output:

$ scl enable devtoolset-7 'strace -tt pwd'
19:43:28.011815 execve("./pwd", ["./pwd"], [/* 36 vars */]) = 0
19:43:28.012128 brk(0) = 0xcd3000
19:43:28.012174 mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fc869cb0000
19:43:28.012427 open("/etc/ld.so.cache", O_RDONLY) = 3
19:43:28.012446 fstat(3, {st_mode=S_IFREG|0644, st_size=61239, ...}) = 0
19:43:28.012464 mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) =
0x7fc869ca1000

Red Hat Developer Toolset 7 User Guide

52

19:43:28.012483 close(3) = 0
...
19:43:28.013410 +++ exited with 0 +++

8.2.4. Displaying a Summary

To display a summary of how much time was required to execute each system call, how many times
were these system calls executed, and how many errors were encountered during their execution, run
the strace utility with the -c command line option:

$ scl enable devtoolset-7 'strace -c program argument...'

Example 8.4. Displaying a Summary

Consider an executable file named lsblk. Run the strace utility on this file and display a trace
summary:

$ scl enable devtoolset-7 'strace -c lsblk > /dev/null'
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 80.88 0.000055 1 106 16 open
 19.12 0.000013 0 140 munmap
 0.00 0.000000 0 148 read
 0.00 0.000000 0 1 write
 0.00 0.000000 0 258 close
 0.00 0.000000 0 37 2 stat
...
------ ----------- ----------- --------- --------- ----------------
100.00 0.000068 1790 35 total

8.2.5. Tampering with System Call Results

Simulating errors returned from system calls can help identify missing error handling in programs.

To make a program receive a generic error as the result of a particular system call, run the strace utility
with the -e fault= option and supply the system call:

$ scl enable devtoolset-7 'strace -e fault=syscall program argument...'

To specify the error type or return value, use the -e inject= option:

$ scl enable devtoolset-7 'strace -e inject=syscall:error=error-type
program argument'
$ scl enable devtoolset-7 'strace -e inject=syscall:retval=return-value
program argument'

Note that specifying the error type and return value is mutually exclusive.

Example 8.5. Tampering with System Call Results

CHAPTER 8. STRACE

53

Consider an executable file named lsblk. Run the strace utility on this file and make the mmap()
system call return an error:

$ scl enable devtoolset-7 'strace -e fault=mmap:error=EPERM lsblk >
/dev/null'
execve("/usr/bin/lsblk", ["lsblk"], 0x7fff1c0e02a0 /* 54 vars */) = 0
brk(NULL) = 0x55d9e8b43000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= -1 EPERM (Operation not permitted) (INJECTED)
writev(2, [{iov_base="lsblk", iov_len=5}, {iov_base=": ", iov_len=2},
{iov_base="error while loading shared libra"..., iov_len=36},
{iov_base=": ", iov_len=2}, {iov_base="", iov_len=0}, {iov_base="",
iov_len=0}, {iov_base="cannot create cache for search p"...,
iov_len=35}, {iov_base=": ", iov_len=2}, {iov_base="Cannot allocate
memory", iov_len=22}, {iov_base="\n", iov_len=1}], 10lsblk: error while
loading shared libraries: cannot create cache for search path: Cannot
allocate memory
) = 105
exit_group(127) = ?
+++ exited with 127 +++

8.3. ADDITIONAL RESOURCES

A detailed description of strace and its features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

strace(1) — The manual page for the strace utility provides detailed information about its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man strace'

See Also

Section A.2.8, “Changes in strace” — A comprehensive list of features and improvements over
the Red Hat Enterprise Linux version of strace and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 9, ltrace — Instructions on tracing program library calls using the ltrace tool.

Chapter 7, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Chapter 10, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Red Hat Developer Toolset 7 User Guide

54

CHAPTER 9. LTRACE
ltrace is a diagnostic and debugging tool for the command line that can be used to display calls that are
made to shared libraries. It uses the dynamic library hooking mechanism, which prevents it from tracing
calls to statically linked libraries. ltrace also displays return values of the library calls. The output is
printed to standard error output or to a selected file.

Red Hat Developer Toolset is distributed with ltrace 0.7.91. While the base version ltrace remains the
same as in the previous release of Red Hat Developer Toolset, various enhancements and bug fixes
have ported.

9.1. INSTALLING LTRACE

In Red Hat Enterprise Linux, the ltrace utility is provided by the devtoolset-7-ltrace package and is
automatically installed with devtoolset-7-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

9.2. USING LTRACE

To run the ltrace utility on a program you want to analyze:

$ scl enable devtoolset-7 'ltrace program argument...'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility on an
already running process by using the -p command line option followed by the process ID:

$ scl enable devtoolset-7 'ltrace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset ltrace as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of ltrace you are using at any point:

$ which ltrace

Red Hat Developer Toolset’s ltrace executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset ltrace:

$ ltrace -V

9.2.1. Redirecting Output to a File

By default, ltrace prints the name of each system call, its arguments and the return value to standard
error output. To redirect this output to a file, use the -o command line option followed by the file name:

CHAPTER 9. LTRACE

55

$ scl enable devtoolset-7 'ltrace -o file_name program argument...'

Replace file_name with the name of the file.

Example 9.1. Redirecting Output to a File

Consider a slightly modified version of the fibonacci file from Example 7.1, “Compiling a C
Program With Debugging Information”. This executable file displays the Fibonacci sequence and
optionally allows you to specify how many members of this sequence to list. Run the ltrace utility
on this file and redirect the trace output to fibonacci.log:

$ scl enable devtoolset-7 'ltrace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

9.2.2. Tracing Selected Library Calls

To trace only a selected set of library calls, run the ltrace utility with the -e command line option:

$ scl enable devtoolset-7 'ltrace -e expression program argument...'

Replace expression with a chain of rules to specify the library calls to trace. The rules can consist of
patterns that identify symbol names (such as malloc or free) and patterns that identify library
SONAMEs (such as libc.so). For example, to trace call to the malloc and free function but to omit
those that are done by the libc library:

$ scl enable devtoolset-7 'ltrace -e malloc+free-@libc.so* program'

Example 9.2. Tracing Selected Library Calls

Consider the ls command. Run the ltrace utility on this program and trace only the opendir,
readdir, and closedir function calls:

$ scl enable devtoolset-7 'ltrace -e opendir+readdir+closedir ls'
ls->opendir(".") = { 3 }
ls->readdir({ 3 }) = { 61533, "." }
ls->readdir({ 3 }) = { 131, ".." }
ls->readdir({ 3 }) = { 67185100, "BUILDROOT" }
ls->readdir({ 3 }) = { 202390772, "SOURCES" }
ls->readdir({ 3 }) = { 60249, "SPECS" }
ls->readdir({ 3 }) = { 67130110, "BUILD" }
ls->readdir({ 3 }) = { 136599168, "RPMS" }
ls->readdir({ 3 }) = { 202383274, "SRPMS" }
ls->readdir({ 3 }) = nil
ls->closedir({ 3 }) = 0
BUILD BUILDROOT RPMS SOURCES SPECS SRPMS
+++ exited (status 0) +++

For a detailed description of available filter expressions, see the ltrace(1) manual page.

Red Hat Developer Toolset 7 User Guide

56

9.2.3. Displaying Time Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
ltrace utility with the -t command line option:

$ scl enable devtoolset-7 'ltrace -t program argument...'

To also display milliseconds, supply the -t option twice:

$ scl enable devtoolset-7 'ltrace -tt program argument...'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

$ scl enable devtoolset-7 'ltrace -r program argument...'

Example 9.3. Displaying Time Stamps

Consider the pwd command. Run the ltrace utility on this program and include time stamps in the
output:

$ scl enable devtoolset-7 'ltrace -tt pwd'
13:27:19.631371 __libc_start_main(["pwd"] <unfinished ...>
13:27:19.632240 getenv("POSIXLY_CORRECT") = nil
13:27:19.632520 strrchr("pwd", '/') = nil
13:27:19.632786 setlocale(LC_ALL, "") =
"en_US.UTF-8"
13:27:19.633220 bindtextdomain("coreutils", "/usr/share/locale") =
"/usr/share/locale"
13:27:19.633471 textdomain("coreutils") =
"coreutils"
(...)
13:27:19.637110 exited (status 0)

9.2.4. Displaying a Summary

To display a summary of how much time was required to execute each system call and how many times
were these system calls executed, run the ltrace utility with the -c command line option:

$ scl enable devtoolset-7 'ltrace -c program argument...'

Example 9.4. Displaying a Summary

Consider the lsblk command. Run the ltrace utility on this program and display a trace summary:

$ scl enable devtoolset-7 'ltrace -c lsblk > /dev/null'
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 53.60 0.261644 261644 1 __libc_start_main
 4.48 0.021848 58 374 mbrtowc
 4.41 0.021524 57 374 wcwidth

CHAPTER 9. LTRACE

57

 4.39 0.021409 57 374 __ctype_get_mb_cur_max
 4.38 0.021359 57 374 iswprint
 4.06 0.019838 74 266 readdir64
 3.21 0.015652 69 224 strlen
...
------ ----------- ----------- --------- --------------------
100.00 0.488135 3482 total

9.3. ADDITIONAL RESOURCES

A detailed description of ltrace and its features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation

ltrace(1) — The manual page for the ltrace utility provides detailed information about its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man ltrace'

Online Documentation

ltrace for RHEL 6 and 7 — This article on the Red Hat Developer Blog offers additional in-depth
information (including practical examples) on how to use ltrace for application debugging.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 8, strace — Instructions on tracing program system calls using the strace tool.

Chapter 7, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Chapter 10, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Red Hat Developer Toolset 7 User Guide

58

https://developers.redhat.com/blog/2014/07/10/ltrace-for-rhel-6-and-7/

CHAPTER 10. MEMSTOMP
memstomp is a command line tool that can be used to identify function calls with overlapping memory
regions in situations when such an overlap is not permitted by various standards. It intercepts calls to the
library functions listed in Table 10.1, “Function Calls Inspected by memstomp” and for each memory
overlap, it displays a detailed backtrace to help you debug the problem.

Similarly to Valgrind, the memstomp utility inspects applications without the need to recompile them.
However, it is much faster than this tool and therefore serves as a convenient alternative to it.

Red Hat Developer Toolset is distributed with memstomp 0.1.5.

Table 10.1. Function Calls Inspected by memstomp

Function Description

memcpy Copies n bytes from one memory area to another and returns a pointer to the second
memory area.

memccpy Copies a maximum of n bytes from one memory area to another and stops when a certain
character is found. It either returns a pointer to the byte following the last written byte, or
NULL if the given character is not found.

mempcpy Copies n bytes from one memory area to another and returns a pointer to the byte
following the last written byte.

strcpy Copies a string from one memory area to another and returns a pointer to the second
string.

stpcpy Copies a string from one memory area to another and returns a pointer to the terminating
null byte of the second string.

strncpy Copies a maximum of n characters from one string to another and returns a pointer to the
second string.

stpncpy Copies a maximum of n characters from one string to another. It either returns a pointer to
the terminating null byte of the second string, or if the string is not null-terminated, a pointer
to the byte following the last written byte.

strcat Appends one string to another while overwriting the terminating null byte of the second
string and adding a new one at its end. It returns a pointer to the new string.

strncat Appends a maximum of n characters from one string to another while overwriting the
terminating null byte of the second string and adding a new one at its end. It returns a
pointer to the new string.

wmemcpy The wide-character equivalent of the memcpy() function that copies n wide characters
from one array to another and returns a pointer to the second array.

CHAPTER 10. MEMSTOMP

59

wmempcpy The wide-character equivalent of the mempcpy() function that copies n wide characters
from one array to another and returns a pointer to the byte following the last written wide
character.

wcscpy The wide-character equivalent of the strcpy() function that copies a wide-character
string from one array to another and returns a pointer to the second array.

wcsncpy The wide-character equivalent of the strncpy() function that copies a maximum of n wide
characters from one array to another and returns a pointer to the second string.

wcscat The wide-character equivalent of the strcat() function that appends one wide-character
string to another while overwriting the terminating null byte of the second string and adding
a new one at its end. It returns a pointer to the new string.

wcsncat The wide-character equivalent of the strncat() function that appends a maximum of n
wide characters from one array to another while overwriting the terminating null byte of the
second wide-character string and adding a new one at its end. It returns a pointer to the
new string.

Function Description

10.1. INSTALLING MEMSTOMP

In Red Hat Developer Toolset, the memstomp utility is provided by the devtoolset-7-memstomp
package and is automatically installed with devtoolset-7-toolchain as described in Section 1.5,
“Installing Red Hat Developer Toolset”.

10.2. USING MEMSTOMP

To run the memstomp utility on a program you want to analyze:

$ scl enable devtoolset-7 'memstomp program argument...'

To immediately terminate the analyzed program when a problem is detected, run the utility with the --
kill (or -k for short) command line option:

$ scl enable devtoolset-7 'memstomp --kill program argument...'

The use of the --kill option is especially recommended if you are analyzing a multi-threaded program;
the internal implementation of backtraces is not thread-safe and running the memstomp utility on a multi-
threaded program without this command line option can therefore produce unreliable results.

Additionally, if you have compiled the analyzed program with the debugging information or this
debugging information is available to you, you can use the --debug-info (or -d) command line option
to produce a more detailed backtrace:

$ scl enable devtoolset-7 'memstomp --debug-info program argument...'

For detailed instructions on how to compile your program with the debugging information built in the
binary file, see Section 7.2, “Preparing a Program for Debugging”. For information on how to install

Red Hat Developer Toolset 7 User Guide

60

debugging information for any of the Red Hat Developer Toolset packages, see Section 1.5.4, “Installing
Debugging Information”.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset memstomp as default:

$ scl enable devtoolset-7 'bash'

Example 10.1. Using memstomp

In the current working directory, create a source file named employee.c with the following contents:

Compile this program into a binary file named employee:

$ scl enable devtoolset-7 'gcc -rdynamic -g -o employee employee.c'

To identify erroneous function calls with overlapping memory regions:

$ scl enable devtoolset-7 'memstomp --debug-info ./employee'
memstomp: 0.1.4 successfully initialized for process employee (pid
14887).

strcat(dest=0x7fff13afc265, src=0x7fff13afc269, bytes=21) overlap for

#include <stdio.h>
#include <string.h>

#define BUFSIZE 80

int main(int argc, char *argv[]) {
 char employee[BUFSIZE] = "John,Doe,john@example.com";
 char name[BUFSIZE] = {0};
 char surname[BUFSIZE] = {0};
 char *email;
 size_t length;

 /* Extract the information: */
 memccpy(name, employee, ',', BUFSIZE);
 length = strlen(name);
 memccpy(surname, employee + length, ',', BUFSIZE);
 length += strlen(surname);
 email = employee + length;

 /* Compose the new entry: */
 strcat(employee, surname);
 strcpy(employee, name);
 strcat(employee, email);

 /* Print the result: */
 puts(employee);

 return 0;
}

CHAPTER 10. MEMSTOMP

61

employee(14887)
 ??:0 strcpy()
 ??:0 strcpy()
 ??:0 _Exit()
 ??:0 strcat()
 employee.c:26 main()
 ??:0 __libc_start_main()
 ??:0 _start()
John,john@example.comDoe,

10.3. ADDITIONAL RESOURCES

A detailed description of memstomp and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

memstomp(1) — The manual page for the memstomp utility provides detailed information about
its usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man memstomp'

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 7, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Chapter 8, strace — Instructions on using the strace utility to monitor system calls that a program
uses and signals it receives.

Chapter 12, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Red Hat Developer Toolset 7 User Guide

62

PART IV. PERFORMANCE MONITORING TOOLS

PART IV. PERFORMANCE MONITORING TOOLS

63

CHAPTER 11. SYSTEMTAP
SystemTap is a tracing and probing tool that allows users to monitor the activities of the entire system
without needing to instrument, recompile, install, and reboot. It is programmable with a custom scripting
language, which gives it expressiveness (to trace, filter, and analyze) and reach (to look into the running
kernel and applications).

SystemTap can monitor various types of events, such as function calls within the kernel or applications,
timers, tracepoints, performance counters, and so on. Some included example scripts produce output
similar to netstat, ps, top, and iostat, others include pretty-printed function callgraph traces or
tools for working around security bugs.

Red Hat Developer Toolset is distributed with SystemTap 3.1. This version is more recent than the
version included in the previous release of Red Hat Developer Toolset and provides numerous bug fixes
and enhancements.

Table 11.1. Tools Distributed with SystemTap for Red Hat Developer Toolset

Name Description

stap Translates probing instructions into C code, builds a kernel module, and loads it into a
running Linux kernel.

stapdyn The Dyninst backend for SystemTap.

staprun Loads, unloads, attaches to, and detaches from kernel modules built with the stap utility.

stapsh Serves as a remote shell for SystemTap.

stap-prep Determines and—if possible—downloads the kernel information packages that are required
to run SystemTap.

stap-merge Merges per-CPU files. This script is automatically executed when the stap utility is
executed with the -b command line option.

stap-
report

Gathers important information about the system for the purpose of reporting a bug in
SystemTap.

stap-
server

A compile server, which listens for requests from stap clients.

11.1. INSTALLING SYSTEMTAP

In Red Hat Developer Toolset, SystemTap is provided by the devtoolset-7-systemtap package and is
automatically installed with devtoolset-7-perftools as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

Red Hat Developer Toolset 7 User Guide

64

NOTE

The Red Hat Developer Toolset version of SystemTap is available for both Red Hat
Enterprise Linux 6 and Red Hat Enterprise Linux 7, but some new features are only
offered by the Red Hat Developer Toolset version of SystemTap for Red Hat Enterprise
Linux 7.

In order to place instrumentation into the Linux kernel, SystemTap may also require installation of
additional packages with debugging information. To determine which packages to install, run the stap-
prep utility as follows:

$ scl enable devtoolset-7 'stap-prep'

Note that if you execute this command as the root user, the utility automatically offers the packages for
installation. For more information on how to install these packages on your system, see the Red Hat
Enterprise Linux 6 SystemTap Beginners Guide or the Red Hat Enterprise Linux 7 SystemTap Beginners
Guide.

11.2. USING SYSTEMTAP

To execute any of the tools that are part of SystemTap:

$ scl enable devtoolset-7 'tool option...'

See Table 11.1, “Tools Distributed with SystemTap for Red Hat Developer Toolset” for a list of tools that
are distributed with SystemTap. For example, to run the stap tool to build an instrumentation module:

$ scl enable devtoolset-7 'stap option... argument...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset SystemTap as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of SystemTap you are using at any point:

$ which stap

Red Hat Developer Toolset’s stap executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset SystemTap:

$ stap -V

11.3. ADDITIONAL RESOURCES

A detailed description of SystemTap and its features is beyond the scope of this book. For more
information, see the resources listed below.

CHAPTER 11. SYSTEMTAP

65

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

Installed Documentation

stap(1) — The manual page for the stap command provides detailed information on its usage,
as well as references to other related manual pages. To display the manual page for the version
included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man stap'

staprun(8) — The manual page for the staprun command provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man staprun'

SystemTap Tapset Reference Manual — HTML documentation on the most common tapset
definitions is located at /opt/rh/devtoolset-7/root/usr/share/doc/devtoolset-7-
systemtap-client-2.8/index.html.

Online Documentation

Red Hat Enterprise Linux 6 SystemTap Beginners Guide and Red Hat Enterprise Linux 7
SystemTap Beginners Guide — The SystemTap Beginners Guides for Red Hat Enterprise
Linux 6 and 7 provide an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 6 SystemTap Tapset Reference and Red Hat Enterprise Linux 7
SystemTap Tapset Reference — The SystemTap Tapset Reference for Red Hat Enterprise
Linux 6 and 7 provides further details about SystemTap.

The SystemTap Documentation — The official SystemTap documentation provides further
documentation on SystemTap, as well as numerous examples of SystemTap scripts.

See Also

Section A.2.9, “Changes in SystemTap” — A comprehensive list of features and improvements
over the version of SystemTap distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 12, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 13, OProfile — Instructions on using the OProfile tool to determine which sections of
code consume the greatest amount of CPU time and why.

Chapter 14, Dyninst — Instructions on using the Dyninst library to instrument a user-space
executable.

Red Hat Developer Toolset 7 User Guide

66

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Tapset_Reference/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Tapset_Reference/index.html
http://sourceware.org/systemtap/documentation.html

CHAPTER 12. VALGRIND
Valgrind is an instrumentation framework that ships with a number of tools for profiling applications. It
can be used to detect various memory errors and memory-management problems, such as the use of
uninitialized memory or an improper allocation and freeing of memory, or to identify the use of improper
arguments in system calls. For a complete list of profiling tools that are distributed with the Red Hat
Developer Toolset version of Valgrind, see Table 12.1, “Tools Distributed with Valgrind for Red Hat
Developer Toolset”.

Valgrind profiles an application by rewriting it and instrumenting the rewritten binary. This allows you to
profile your application without the need to recompile it, but it also makes Valgrind significantly slower
than other profilers, especially when performing extremely detailed runs. It is therefore not suited to
debugging time-specific issues, or kernel-space debugging.

Red Hat Developer Toolset is distributed with Valgrind 3.13.0. This version is more recent than the
version included in the previous release of Red Hat Developer Toolset and provides numerous bug fixes
and enhancements.

Table 12.1. Tools Distributed with Valgrind for Red Hat Developer Toolset

Name Description

Memcheck Detects memory management problems by intercepting system calls and checking all read
and write operations.

Cachegrind Identifies the sources of cache misses by simulating the level 1 instruction cache (I1), level
1 data cache (D1), and unified level 2 cache (L2).

Callgrind Generates a call graph representing the function call history.

Helgrind Detects synchronization errors in multithreaded C, C++, and Fortran programs that use
POSIX threading primitives.

DRD Detects errors in multithreaded C and C++ programs that use POSIX threading primitives
or any other threading concepts that are built on top of these POSIX threading primitives.

Massif Monitors heap and stack usage.

12.1. INSTALLING VALGRIND

In Red Hat Developer Toolset, Valgrind is provided by the devtoolset-7-valgrind package and is
automatically installed with devtoolset-7-perftools.

For detailed instructions on how to install Red Hat Developer Toolset and related packages to your
system, see Section 1.5, “Installing Red Hat Developer Toolset”.

NOTE

Note that if you use Valgrind in combination with the GNU Debugger, it is recommended
that you use the version of GDB that is included in Red Hat Developer Toolset to ensure
that all features are fully supported.

CHAPTER 12. VALGRIND

67

12.2. USING VALGRIND

To run any of the Valgrind tools on a program you want to profile:

$ scl enable devtoolset-7 'valgrind --tool=tool program argument...'

See Table 12.1, “Tools Distributed with Valgrind for Red Hat Developer Toolset” for a list of tools that are
distributed with Valgrind. The argument of the --tool command line option must be specified in lower
case, and if this option is omitted, Valgrind uses Memcheck by default. For example, to run
Cachegrind on a program to identify the sources of cache misses:

$ scl enable devtoolset-7 'valgrind --tool=cachegrind program argument...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset Valgrind as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of Valgrind you are using at any point:

$ which valgrind

Red Hat Developer Toolset’s valgrind executable path will begin with /opt.
Alternatively, you can use the following command to confirm that the version number
matches that for Red Hat Developer Toolset Valgrind:

$ valgrind --version

12.3. ADDITIONAL RESOURCES

A detailed description of Valgrind and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

valgrind(1) — The manual page for the valgrind utility provides detailed information on how
to use Valgrind. To display the manual page for the version included in Red Hat Developer
Toolset:

$ scl enable devtoolset-7 'man valgrind'

Valgrind Documentation — HTML documentation for Valgrind is located at
/opt/rh/devtoolset-7/root/usr/share/doc/devtoolset-7-valgrind-
3.13.0/html/index.html.

Online Documentation

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide
— The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information about
Valgrind and its Eclipse plug-in.

Red Hat Developer Toolset 7 User Guide

68

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html

Valgrind and its Eclipse plug-in.

Red Hat Enterprise Linux 6 Performance Tuning Guide and Red Hat Enterprise Linux 7
Performance Tuning Guide — The Performance Tuning Guides for Red Hat Enterprise Linux 6
and 7 provide more detailed information about using Valgrind to profile applications.

See Also

Section A.2.10, “Changes in Valgrind” — A comprehensive list of features and improvements
over the Red Hat Enterprise Linux version of Valgrind and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 10, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapter 11, SystemTap — An introduction to the SystemTap tool and instructions on how to
use it to monitor the activities of a running system.

Chapter 13, OProfile — Instructions on using the OProfile tool to determine which sections of
code consume the greatest amount of CPU time and why.

Chapter 14, Dyninst — Instructions on using the Dyninst library to instrument a user-space
executable.

CHAPTER 12. VALGRIND

69

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html

CHAPTER 13. OPROFILE
OProfile is a low overhead, system-wide profiler that uses the performance-monitoring hardware on the
processor to retrieve information about the kernel and executables on the system, such as when memory
is referenced, the number of level 2 cache (L2) requests, and the number of hardware interrupts
received. It consists of a configuration utility, a daemon for collecting data, and a number of tools that can
be used to transform the data into a human-readable form. For a complete list of tools that are distributed
with the Red Hat Developer Toolset version of OProfile, see Table 13.1, “Tools Distributed with OProfile
for Red Hat Developer Toolset”.

OProfile profiles an application without adding any instrumentation by recording the details of every nth
event. This allows it to consume fewer resources than Valgrind, but it also causes its samples to be less
precise. Unlike Valgrind, which only collects data for a single process and its children in user-space,
OProfile is well suited to collect system-wide data on both user-space and kernel-space processes, and
requires root privileges to run.

Red Hat Developer Toolset is distributed with OProfile 1.2.0.

Table 13.1. Tools Distributed with OProfile for Red Hat Developer Toolset

Name Description

operf Records samples either for a single process or system-wide using the Linux Performance
Events subsystem.

opannotate Generates an annotated source file or assembly listing from the profiling data.

oparchive Generates a directory containing executable, debug, and sample files.

opgprof Generates a summary of a profiling session in a format compatible with gprof.

ophelp Displays a list of available events.

opimport Converts a sample database file from a foreign binary format to the native format.

opjitconv Converts a just-in-time (JIT) dump file to the Executable and Linkable Format (ELF).

opreport Generates image and symbol summaries of a profiling session.

ocount A new tool for counting the number of times particular events occur during the duration of a
monitored command.

13.1. INSTALLING OPROFILE

In Red Hat Developer Toolset, OProfile is provided by the devtoolset-7-oprofile package and is
automatically installed with devtoolset-7-perftools as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

13.2. USING OPROFILE

To run any of the tools that are distributed with OProfile:

Red Hat Developer Toolset 7 User Guide

70

scl enable devtoolset-7 'tool option...'

See Table 13.1, “Tools Distributed with OProfile for Red Hat Developer Toolset” for a list of tools that are
distributed with OProfile. For example, to use the ophelp command to list available events in the XML
format:

$ scl enable devtoolset-7 'ophelp -X'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset OProfile as default:

$ scl enable devtoolset-7 'bash'

NOTE

To verify the version of OProfile you are using at any point:

$ which operf

Red Hat Developer Toolset’s operf executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset OProfile:

operf --version

13.3. ADDITIONAL RESOURCES

A detailed description of OProfile and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

oprofile(1) — The manual page named oprofile provides an overview of OProfile and available
tools. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-7 'man oprofile'

opannotate(1), oparchive(1), operf(1), opgprof(1), ophelp(1), opimport(1), opreport(1) —
Manual pages for various tools distributed with OProfile provide more information on their
respective usage. To display the manual page for the version included in Red Hat Developer
Toolset:

scl enable devtoolset-7 'man tool'

Online Documentation

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide
— The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information on
OProfile.

CHAPTER 13. OPROFILE

71

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat Enterprise
Linux 6 describes in detail how to install, configure, and start using OProfile on this system.

Red Hat Enterprise Linux 7 System Administrator’s Guide — The System Administrator’s Guide
for Red Hat Enterprise Linux 7 documents how to use the operf tool.

See Also

Section A.2.7, “Changes in OProfile” — A comprehensive list of features and improvements over
the Red Hat Enterprise Linux version of OProfile and the version distributed in the previous
release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, SystemTap — An introduction to SystemTap and instructions on how to use it to
monitor the activities of a running system.

Chapter 12, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 14, Dyninst — Instructions on using the Dyninst library to instrument a user-space
executable.

Red Hat Developer Toolset 7 User Guide

72

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

CHAPTER 14. DYNINST
The Dyninst library provides an application programming interface (API) for instrumenting and working
with user-space executables during their execution. It can be used to insert code into a running program,
change certain subroutine calls, or even remove them from the program. It serves as a valuable
debugging and performance-monitoring tool. The Dyninst API is also commonly used along with
SystemTap to allow non-root users to instrument user-space executables.

Red Hat Developer Toolset is distributed with Dyninst 9.3.2.

14.1. INSTALLING DYNINST

In Red Hat Developer Toolset, the Dyninst library is provided by the devtoolset-7-dyninst package and
is automatically installed with devtoolset-7-perftools as described in Section 1.5, “Installing Red Hat
Developer Toolset”. In addition, it is recommended that you also install the GNU Compiler Collection
provided by the devtoolset-7-toolchain package.

If you intend to write a custom instrumentation for binaries, install the relevant header files:

yum install devtoolset-7-dyninst-devel

You can also install API documentation for this library:

yum install devtoolset-7-dyninst-doc

For a complete list of documents that are included in the devtoolset-7-dyninst-doc package, see
Section 14.3, “Additional Resources”. For detailed instructions on how to install optional packages to
your system, see Section 1.5, “Installing Red Hat Developer Toolset”.

14.2. USING DYNINST

14.2.1. Using Dyninst with SystemTap

To use Dyninst along with SystemTap to allow non-root users to instrument user-space executables,
run the stap command with the --dyninst (or --runtime=dyninst) command line option. This tells
stap to translate a SystemTap script into C code that uses the Dyninst library, compile this C code into
a shared library, and then load the shared library and run the script. Note that when executed like this,
the stap command also requires the -c or -x command line option to be specified.

To use the Dyninst runtime to instrument an executable file:

$ scl enable devtoolset-7 "stap --dyninst -c 'command' option...
argument..."

Similarly, to use the Dyninst runtime to instrument a user’s process:

$ scl enable devtoolset-7 "stap --dyninst -x process_id option...
argument..."

See Chapter 11, SystemTap for more information about the Red Hat Developer Toolset version of
SystemTap. For a general introduction to SystemTap and its usage, see the SystemTap Beginners
Guide for Red Hat Enterprise Linux 6 or the SystemTap Beginners Guide for Red Hat Enterprise Linux 7.

CHAPTER 14. DYNINST

73

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html

Example 14.1. Using Dyninst with SystemTap

Consider a source file named exercise.C that has the following contents:

This program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to the standard output.
Compile this program on the command line using the g++ compiler from Red Hat Developer Toolset:

$ scl enable devtoolset-7 'g++ -g -o exercise exercise.C'

Now consider another source file named count.stp with the following contents:

#!/usr/bin/stap

global count = 0

probe process.function("print_iteration") {
 count++
}

probe end {
 printf("Function executed %d times.\n", count)
}

This SystemTap script prints the total number of times the print_iteration() function was
called during the execution of a process. Run this script on the exercise binary file:

$ scl enable devtoolset-7 "stap --dyninst -c './exercise' count.stp"
Enter the starting number: 5
Iteration number 5
Iteration number 4
Iteration number 3
Iteration number 2
Iteration number 1
Function executed 5 times.

14.2.2. Using Dyninst as a Stand-alone Library

#include <stdio.h>

void print_iteration(int value) {
 printf("Iteration number %d\n", value);
}

int main(int argc, char **argv) {
 int i;
 printf("Enter the starting number: ");
 scanf("%d", &i);
 for(; i>0; --i)
 print_iteration(i);
 return 0;
}

Red Hat Developer Toolset 7 User Guide

74

Before using the Dyninst library as a part of your application, set the value of the DYNINSTAPI_RT_LIB
environment variable to the path to the runtime library file:

$ export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
7/root/usr/lib64/dyninst/libdyninstAPI_RT.so

This sets the DYNINSTAPI_RT_LIB environment variable in the current shell session.

Example 14.2, “Using Dyninst as a Stand-alone Application” illustrates how to write and build a program
to monitor the execution of a user-space process. For a detailed explanation of how to use Dyninst, see
the resources listed in Section 14.3, “Additional Resources”.

Example 14.2. Using Dyninst as a Stand-alone Application

Consider the exercise.C source file from Example 14.1, “Using Dyninst with SystemTap”: this
program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to standard output.

Now consider another source file named count.C with the following contents:

#include <stdio.h>
#include <fcntl.h>
#include "BPatch.h"
#include "BPatch_process.h"
#include "BPatch_function.h"
#include "BPatch_Vector.h"
#include "BPatch_thread.h"
#include "BPatch_point.h"

void usage() {
 fprintf(stderr, "Usage: count <process_id> <function>\n");
}

// Global information for counter
BPatch_variableExpr *counter = NULL;

void createCounter(BPatch_process *app, BPatch_image *appImage) {
 int zero = 0;
 counter = app->malloc(*appImage->findType("int"));
 counter->writeValue(&zero);
}

bool interceptfunc(BPatch_process *app,
 BPatch_image *appImage,
 char *funcName) {
 BPatch_Vector<BPatch_function *> func;
 appImage->findFunction(funcName, func);
 if(func.size() == 0) {
 fprintf(stderr, "Unable to find function to instrument()\n");
 exit (-1);
 }
 BPatch_Vector<BPatch_snippet *> incCount;
 BPatch_Vector<BPatch_point *> *points;
 points = func[0]->findPoint(BPatch_entry);
 if ((*points).size() == 0) {

CHAPTER 14. DYNINST

75

Note that a client application is expected to destroy all Bpatch objects before any of the Dyninst
library destructors are called. Otherwise the mutator might terminate unexpectedly with a
segmentation fault. To work around this problem, set the BPatch object of the mutator as a local
variable in the main() function. Or, if you need to use BPatch as a global variable, manually detach
all the mutatee processes before the mutator exits.

This program accepts a process ID and a function name as command line arguments and then prints
the total number of times the function was called during the execution of the process. You can use
the following Makefile to build these two files:

 exit (-1);
 }

 BPatch_arithExpr counterPlusOne(BPatch_plus, *counter,
BPatch_constExpr(1));
 BPatch_arithExpr addCounter(BPatch_assign, *counter, counterPlusOne);

 return app->insertSnippet(addCounter, *points);
}

void printCount(BPatch_thread *thread, BPatch_exitType) {
 int val = 0;
 counter->readValue(&val, sizeof(int));
 fprintf(stderr, "Function executed %d times.\n", val);
}

int main(int argc, char *argv[]) {
 int pid;
 BPatch bpatch;
 if (argc != 3) {
 usage();
 exit(1);
 }
 pid = atoi(argv[1]);
 BPatch_process *app = bpatch.processAttach(NULL, pid);
 if (!app) exit (-1);
 BPatch_image *appImage = app->getImage();
 createCounter(app, appImage);
 fprintf(stderr, "Finding function %s(): ", argv[2]);
 BPatch_Vector<BPatch_function*> countFuncs;
 fprintf(stderr, "OK\nInstrumenting function %s(): ", argv[2]);
 interceptfunc(app, appImage, argv[2]);
 bpatch.registerExitCallback(printCount);
 fprintf(stderr, "OK\nWaiting for process %d to exit...\n", pid);
 app->continueExecution();
 while (!app->isTerminated())
 bpatch.waitForStatusChange();
 return 0;
}

DTS = /opt/rh/devtoolset-4/root
CXXFLAGS = -g -I$(DTS)/usr/include/dyninst
LBITS := $(shell getconf LONG_BIT)

ifeq ($(LBITS),64)
 DYNINSTLIBS = $(DTS)/usr/lib64/dyninst

Red Hat Developer Toolset 7 User Guide

76

To compile the two programs on the command line using the g++ compiler from Red Hat Developer
Toolset, run the make utility:

$ scl enable devtoolset-7 make
g++ -g -I/opt/rh/devtoolset-7/root/usr/include/dyninst count.C -c
g++ -g -I/opt/rh/devtoolset-7/root/usr/include/dyninst count.o -L
/opt/rh/devtoolset-7/root/usr/lib64/dyninst -ldyninstAPI -o count
g++ -g -I/opt/rh/devtoolset-7/root/usr/include/dyninst exercise.C -o
exercise

This creates new binary files called exercise and count in the current working directory.

In one shell session, execute the exercise binary file as follows and wait for it to prompt you to
enter the starting number:

$./exercise
Enter the starting number:

Do not enter this number. Instead, start another shell session and type the following at its prompt to
set the DYNINSTAPI_RT_LIB environment variable and execute the count binary file:

$ export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
7/root/usr/lib64/dyninst/libdyninstAPI_RT.so
$./count `pidof exercise` print_iteration
Finding function print_iteration(): OK
Instrumenting function print_iteration(): OK
Waiting for process 8607 to exit...

Now switch back to the first shell session and enter the starting number as requested by the
exercise program. For example:

Enter the starting number: 5
Iteration number 5
Iteration number 4

else
 DYNINSTLIBS = $(DTS)/usr/lib/dyninst
endif

.PHONY: all
all: count exercise

count: count.C
 g++ $(CXXFLAGS) count.C -I /usr/include/dyninst -c
 g++ $(CXXFLAGS) count.o -L $(DYNINSTLIBS) -ldyninstAPI -o count

exercise: exercise.C
 g++ $(CXXFLAGS) exercise.C -o exercise

.PHONY: clean
clean:
 rm -rf *~ *.o count exercise

CHAPTER 14. DYNINST

77

Iteration number 3
Iteration number 2
Iteration number 1

When the exercise program terminates, the count program displays the number of times the
print_iteration() function was executed:

Function executed 5 times.

14.3. ADDITIONAL RESOURCES

A detailed description of Dyninst and its features is beyond the scope of this book. For more information,
see the resources listed below.

Installed Documentation
The devtoolset-7-dyninst-doc package installs the following documents in the
/opt/rh/devtoolset-7/root/usr/share/doc/devtoolset-7-dyninst-doc-8.2.1/
directory:

Dyninst Programmer’s Guide — A detailed description of the Dyninst API is stored in the
DyninstAPI.pdf file.

DynC API Programmer’s Guide — An introduction to DynC API is stored in the dynC_API.pdf
file.

ParseAPI Programmer’s Guide — An introduction to the ParseAPI is stored in the
ParseAPI.pdf file.

PatchAPI Programmer’s Guide — An introduction to PatchAPI is stored in the PatchAPI.pdf
file.

ProcControlAPI Programmer’s Guide — A detailed description of ProcControlAPI is stored in the
ProcControlAPI.pdf file.

StackwalkerAPI Programmer’s Guide — A detailed description of StackwalkerAPI is stored in
the stackwalker.pdf file.

SymtabAPI Programmer’s Guide — An introduction to SymtabAPI is stored in the
SymtabAPI.pdf file.

InstructionAPI Reference Manual — A detailed description of the InstructionAPI is stored in the
InstructionAPI.pdf file.

For information on how to install this package on your system, see Section 14.1, “Installing Dyninst”.

Online Documentation

Dyninst Home Page — The project home page provides links to additional documentation and
related publications.

Red Hat Enterprise Linux 6 SystemTap Beginners Guide — The SystemTap Beginners Guide
for Red Hat Enterprise Linux 6 provides an introduction to SystemTap and its usage.

Red Hat Developer Toolset 7 User Guide

78

http://www.dyninst.org/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html

Red Hat Enterprise Linux 7 SystemTap Beginners Guide — The SystemTap Beginners Guide
for Red Hat Enterprise Linux 7 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 6 SystemTap Tapset Reference — The SystemTap Tapset Reference
for Red Hat Enterprise Linux 6 provides further details about SystemTap.

Red Hat Enterprise Linux 7 SystemTap Tapset Reference — The SystemTap Tapset Reference
for Red Hat Enterprise Linux 7 provides further details about SystemTap.

See Also

Section A.2.2, “Changes in dyninst” — A comprehensive list of features and improvements over
the version of Dyninst distributed in the previous release of Red Hat Developer Toolset.

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, SystemTap — An introduction to SystemTap and instructions on how to use it to
monitor the activities of a running system.

Chapter 12, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 13, OProfile — Instructions on using the OProfile tool to determine which sections of
code consume the greatest amount of CPU time and why.

CHAPTER 14. DYNINST

79

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Beginners_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Tapset_Reference/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SystemTap_Tapset_Reference/index.html

PART V. COMPILER TOOLSETS
The descriptions of the three compiler toolsets have been moved to a separate documentation set under
Red Hat Developer Tools.

Red Hat Developer Toolset 7 User Guide

80

CHAPTER 15. LLVM TOOLSET
The LLVM Toolset documentation has been moved to a separate title Using Clang and LLVM Toolset.

CHAPTER 15. LLVM TOOLSET

81

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/2018.2/html/using_clang_and_llvm_toolset/

CHAPTER 16. RUST TOOLSET
The Rust Toolset documentation has been moved to a separate title Using Rust Toolset.

Red Hat Developer Toolset 7 User Guide

82

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/2018.2/html/using_rust_toolset/

CHAPTER 17. GO TOOLSET
The Go Toolset documentation has been moved to a separate title Using Go Toolset.

CHAPTER 17. GO TOOLSET

83

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/2018.2/html/using_go_toolset/

PART VI. GETTING HELP

Red Hat Developer Toolset 7 User Guide

84

CHAPTER 18. ACCESSING RED HAT PRODUCT
DOCUMENTATION

Red Hat Product Documentation located at https://access.redhat.com/site/documentation/ serves as a
central source of information. It is currently translated in 23 languages, and for each product, it provides
different kinds of books from release and technical notes to installation, user, and reference guides in
HTML, PDF, and EPUB formats.

Below is a brief list of documents that are directly or indirectly relevant to this book.

Red Hat Developer Toolset

Red Hat Developer Toolset 7.1 Release Notes — The Release Notes for Red Hat Developer
Toolset 7.1 contain more information.

Using Red Hat Software Collections Container Images — The Using Red Hat Software
Collections Container Images provides instructions for obtaining, configuring, and using
container images that are shipped with Red Hat Software Collections, including the Red Hat
Developer Toolset container images.

Red Hat Software Collections Packaging Guide — The Software Collections Packaging Guide
explains the concept of Software Collections and documents how to create, build, and extend
them.

Red Hat Enterprise Linux

Red Hat Enterprise Linux 6 Developer Guide and Red Hat Enterprise Linux 7 Developer Guide
— The Developer Guides for Red Hat Enterprise Linux 6 and 7 provide more information about
libraries and runtime support, compiling and building, debugging, and profiling.

Red Hat Enterprise Linux 6 Installation Guide — The Installation Guide for Red Hat Enterprise
Linux 6 explains how to obtain, install, and update the system.

Red Hat Enterprise Linux 6 Installation Guide and Red Hat Enterprise Linux 7 Installation Guide
— The Installation Guides for Red Hat Enterprise Linux 6 an 7 explain how to obtain, install, and
update the system.

Red Hat Enterprise Linux 6 Deployment Guide — The Deployment Guide for Red Hat Enterprise
Linux 6 documents relevant information regarding the deployment, configuration, and
administration of Red Hat Enterprise Linux 6.

Red Hat Enterprise Linux 7 System Administrator’s Guide — The System Administrator’s Guide
for Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

CHAPTER 18. ACCESSING RED HAT PRODUCT DOCUMENTATION

85

https://access.redhat.com/site/documentation/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Developer_Toolset/7/html/7.1_Release_Notes/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Software_Collections/3/html/using_red_hat_software_collections_container_images/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Software_Collections/3/html/Packaging_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Developer_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

CHAPTER 19. CONTACTING GLOBAL SUPPORT SERVICES
Unless you have a Self-Support subscription, when both the Red Hat Documentation website and
Customer Portal fail to provide the answers to your questions, you can contact Global Support Services
(GSS).

19.1. GATHERING REQUIRED INFORMATION

Several items of information should be gathered before contacting GSS.

Background Information
Ensure you have the following background information at hand before calling GSS:

Hardware type, make, and model on which the product runs

Software version

Latest upgrades

Any recent changes to the system

An explanation of the problem and the symptoms

Any messages or significant information about the issue

NOTE

If you ever forget your Red Hat login information, it can be recovered at
https://access.redhat.com/site/help/LoginAssistance.html.

Diagnostics
The diagnostics report for Red Hat Enterprise Linux is required as well. This report is also known as a
sosreport and the program to create the report is provided by the sos package. To install the sos
package and all its dependencies on your system:

yum install sos

To generate the report:

sosreport

For more information, access the Knowledgebase article at https://access.redhat.com/kb/docs/DOC-
3593.

Account and Contact Information
In order to help you, GSS requires your account information to customize their support, as well contact
information to get back to you. When you contact GSS ensure you have your:

Red Hat customer number or Red Hat Network (RHN) login name

Company name

Contact name

Red Hat Developer Toolset 7 User Guide

86

https://access.redhat.com/site/help/LoginAssistance.html
https://access.redhat.com/kb/docs/DOC-3593

Preferred method of contact (phone or email) and contact information (phone number or email
address)

Issue Severity
Determining an issue’s severity is important to allow the GSS team to prioritize their work. There are four
levels of severity.

Severity 1 (urgent)

A problem that severely impacts your use of the software for production purposes. It halts your
business operations and has no procedural workaround.

Severity 2 (high)

A problem where the software is functioning, but production is severely reduced. It causes a high
impact to business operations, and no workaround exists.

Severity 3 (medium)

A problem that involves partial, non-critical loss of the use of the software. There is a medium to low
impact on your business, and business continues to function by utilizing a workaround.

Severity 4 (low)

A general usage question, report of a documentation error, or a recommendation for a future product
improvement.

For more information on determining the severity level of an issue, see
https://access.redhat.com/support/policy/severity.

Once the issue severity has been determined, submit a service request through the Customer Portal
under the Connect option, or at https://access.redhat.com/support/contact/technicalSupport.html. Note
that you need your Red Hat login details in order to submit service requests.

If the severity is level 1 or 2, then follow up your service request with a phone call. Contact information
and business hours are found at https://access.redhat.com/support/contact/technicalSupport.html.

If you have a premium subscription, then after hours support is available for Severity 1 and 2 cases.

Turn-around rates for both premium subscriptions and standard subscription can be found at
https://access.redhat.com/support/offerings/production/sla.html.

19.2. ESCALATING AN ISSUE

If you feel an issue is not being handled correctly or adequately, you can escalate it. There are two types
of escalations:

Technical escalation

If an issue is not being resolved appropriately or if you need a more senior resource to attend to it.

Management escalation

If the issue has become more severe or you believe it requires a higher priority.

More information on escalation, including contacts, is available at
https://access.redhat.com/support/policy/mgt_escalation.html.

19.3. RE-OPENING A SERVICE REQUEST

If there is more relevant information regarding a closed service request (such as the problem
reoccurring), you can re-open the request via the Red Hat Customer Portal at

CHAPTER 19. CONTACTING GLOBAL SUPPORT SERVICES

87

https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/offerings/production/sla.html
https://access.redhat.com/support/policy/mgt_escalation.html

https://access.redhat.com/support/policy/mgt_escalation.html or by calling your local support center, the
details of which can be found at https://access.redhat.com/support/contact/technicalSupport.html.

IMPORTANT

In order to re-open a service request, you need the original service-request number.

19.4. ADDITIONAL RESOURCES

For more information, see the resources listed below.

Online Documentation

Getting Started — The Getting Started page serves as a starting point for people who purchased
a Red Hat subscription and offers the Red Hat Welcome Kit and the Quick Guide to Red Hat
Support for download.

How can a RHEL Self-Support subscription be used? — A Knowledgebase article for customers
with a Self-Support subscription.

Red Hat Global Support Services and public mailing lists — A Knowledgebase article that
answers frequent questions about public Red Hat mailing lists.

Red Hat Developer Toolset 7 User Guide

88

https://access.redhat.com/support/policy/mgt_escalation.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/start/
https://access.redhat.com/knowledge/articles/54702
https://access.redhat.com/knowledge/articles/92323

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

A.1. CHANGES IN VERSION 7.1

The sections below document features and compatibility changes introduced in Red Hat
Developer Toolset 7.1.

A.1.1. Changes in GCC

Red Hat Developer Toolset 7.1 is distributed with GCC 7.3.1, which provides a number of bug fixes and
improvements over the version included in the previous release of Red Hat Developer Toolset.

A.1.1.1. Changes Since Red Hat Developer Toolset 7.0

The following changes have been made since the release of GCC included in Red Hat Developer
Toolset 7.0:

The -fstack-clash-protection option has been added to the GCC compiler to generate
additional code guarding against stack clash. As a result, applications can be hardened against
this type of attacks. For more details, see the manual page for GCC. (BZ#1500856)

Previously, the GCC compiler handled the Debugging Information Entries (DIE) incorrectly when
generating them for a C++ class method nested in another class method. As a consequence, the
compiler might terminate unexpectedly when compiling such C++ code. Handling of DIE in this
situation has been corrected and the problem no longer occurs. (BZ#1525304)

Previously, the GCC compiler did not emit the DW_AT_linkage_name and
DW_AT_MIPS_linkage_name linkage name attributes for inline functions in debug information.
As a consequence, applications using the DWARF debug information, such as the GDB
debugger, could not use this information. GCC has been changed to include these attributes
even for inline functions with no out-of-line copies and this information is available for GDB and
other tools. (BZ#977960)

Previously, the code for the std::promise and std::future C++ standard library class
templates contained a data race. The code has been fixed and the race condition no longer
exists. (BZ#1512587)

Previously, the devtoolset-7-gcc package did not contain a symbolic link to the objcopy utility
installed by the devtoolset-7-binutils package. As a consequence, GCC from Red Hat
Developer Toolset used the system version of objcopy which lacked some features, such as
the -gsplit-dwarf option. The symbolic link has been added and the correct version of
objcopy is now used. (BZ#1501355)

Previously, some symbols in the libstdc++_nonshared.a static library file used incorrect
visibility. As a consequence, linking some C++ programs failed. This bug has been fixed and no
longer occurs. (BZ#1519073)

A.1.2. Changes in GDB

Red Hat Developer Toolset 7.1 is distributed with GDB 8.0.1, which provides a number of bug fixes and
enhancements over the version included in the previous release of Red Hat Developer Toolset.

A.1.2.1. Changes Since Red Hat Developer Toolset 7.0

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

89

https://bugzilla.redhat.com/show_bug.cgi?id=1500856
https://bugzilla.redhat.com/show_bug.cgi?id=1525304
https://bugzilla.redhat.com/show_bug.cgi?id=977960
https://bugzilla.redhat.com/show_bug.cgi?id=1512587
https://bugzilla.redhat.com/show_bug.cgi?id=1501355
https://bugzilla.redhat.com/show_bug.cgi?id=1519073

The following changes have been added since the release of GDB included in Red Hat Developer
Toolset 7.0:

Previously, the GDB debugger showed caller function names instead of inlined callee function
names when listing breakpoints. As a consequence, GDB users were not able to identify
breakpoints placed on inline functions from the function name. GDB has been extended to store
names of inline callee functions when breakpoints are placed. As a result, GDB now correctly
displays names of inline functions when listing breakpoints. (BZ#1228556)

Support for accessing the IBM z14 processor Guarded Storage Facility hardware control
registers and software based broadcast control registers has been added to GDB. As a result,
GDB can now display the described registers of the IBM z Systems architecture z14 machines,
and enables users to investigate more easily boundary check violations on these machines.
(BZ#1498758)

A.1.3. Changes in elfutils

Red Hat Developer Toolset 7.1 is distributed with elfutils 0.170, which provides a number of bug fixes
and feature enhancements over the version included in the previous release of Red Hat Developer
Toolset.

A.1.3.1. Changes Since Red Hat Developer Toolset 7.0

The following bugs have been fixed since the release of elfutils included in Red Hat Developer
Toolset 7.0:

Previously, the dwarf_aggregate_size() calculated wrong size for multidimensional arrays.
The function has been fixed and correctly reports sizes of multidimensional arrays.
(BZ#1527966)

A.1.3.2. Changes Since Red Hat Enterprise Linux 7.5

The elfutils version in Red Hat Developer Toolset 7.1 is the same as the version included in Red Hat
Enterprise Linux 7.5.

A.1.4. Changes in Valgrind

Red Hat Developer Toolset 7.1 is distributed with Valgrind 3.13.0, which provides numerous
enhancements over the version included in the previous release of Red Hat Developer Toolset.

A.1.4.1. Changes Since Red Hat Developer Toolset 7.0

The following bugs have been fixed in Valgrind in Red Hat Developer Toolset version 7.1:

The 64-bit timebase register of the PowerPC architecture is no longer modeled by Valgrind as
only 32-bit. (BZ#1523871)

Previously, Valgrind closed immediately the socket used for output when the option --xml-
socket was used. Consequently, using this option caused Valgrind to report an error. This bug
has been fixed and the option can be used again.

Support for the IBM Power Systems architecture has been extended to include the ISA 3.0B
specification.

Previously, the memcheck tool could produce a warning "conditional jump or move depends on

Red Hat Developer Toolset 7 User Guide

90

https://bugzilla.redhat.com/show_bug.cgi?id=1228556
https://bugzilla.redhat.com/show_bug.cgi?id=1498758
https://bugzilla.redhat.com/show_bug.cgi?id=1527966
https://bugzilla.redhat.com/show_bug.cgi?id=1523871

uninitialised value(s)" in the _dl_runtime_resolve_avx_slow function from the ld.so
dynamic linker because of a complicated optimization technique. The function has been added
to an exception list and this warning is no longer produced. (BZ#1523872)

A.1.4.2. Changes Since Red Hat Enterprise Linux 7.5

The Valgrind version in Red Hat Developer Toolset 7.1 is the same as the version included in Red Hat
Enterprise Linux 7.5.

A.2. CHANGES IN VERSION 7.0

The sections below document features and compatibility changes introduced in Red Hat
Developer Toolset 7.0.

A.2.1. Changes in binutils

Red Hat Developer Toolset 7.0 is distributed with binutils 2.28, which provides numerous
enhancements over the version included in Red Hat Enterprise Linux and the previous version of Red
Hat Developer Toolset.

A.2.1.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of binutils included in Red Hat Developer
Toolset 6.1:

The ld linker has been extended:

Support for creating Secure Gateway Veneers in applications for the ARM architectures has
been added.

The --no-eh-frame-hdr option has been added to disable generation of
.eh_frame_hdr sections in ELF executable files. This results in smaller application size
when exception handling is not required.

The ld.gold linker has been extended to support the HIDDEN command in linker scripts and
generation of executable files for the big-endian ARM architectures.

The nm tool --with-version-strings option has been added to display symbol version
information.

The objcopy tool options --remove-section and --only-section have been extended to
accept regular expressions.

Support for locating separate debug information files using the build-id method has been
added.

GNU Build Notes
The binutils tools in Red Hat Developer Toolset 7.0 contain support for the GNU Build Notes feature.
This enables compilers to record additional information in object files:

How the object file was built

What tests were run when building the object file

What are the requirements of the object file for the runtime system

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

91

https://bugzilla.redhat.com/show_bug.cgi?id=1523872

When the linker creates an executable file or a library file, these notes are combined and added. Various
tools can extract this information from the resulting file to find out more about it.

Architecture and processor support

Support for the IBM Power Systems architecture has been extended.

Support for the Scalable Vector Extensions (SVE) on the 64-bit ARM architecture has been
added.

Support for additional instructions on the IBM z Systems architecture has been added.

Support for the ARM Cortex M23 and M33 processors has been added.

A.2.1.2. Changes Since Red Hat Enterprise Linux 7.4

The changes in binutils since the version included in Red Hat Enterprise Linux 7.4 are equivalent to the
above listed changes since the version included in Red Hat Developer Toolset 6.1.

A.2.2. Changes in dyninst

Red Hat Developer Toolset 7.0 is distributed with Dyninst 9.3.2, which provides enhancements over the
version included in the previous version of Red Hat Developer Toolset.

A.2.2.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of Dyninst included in Red Hat Developer
Toolset 6.1:

Relocation and instrumentation of code containing C++ exceptions has been implemented.

Stack analysis on the 32-bit Intel and AMD architecture has been improved.

A.2.3. Changes in elfutils

Red Hat Developer Toolset 7.0 is distributed with elfutils 0.170, which provides a number of bug fixes
and feature enhancements over the version included in the previous release of Red Hat Developer
Toolset.

A.2.3.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of elfutils included in Red Hat Developer
Toolset 6.1:

The back ends for 32 and 64-bit Intel and AMD architectures, the 64-bit ARM architecture, and
the IBM Power Systems architecture have been extended with a fallback for unwinding based on
the frame pointer. As a result, the eu-stack utility and the functions dwfl_thread_getframes
and dwfl_getthread_frames from the libdw library can unwind code even if the DWARF-
based call frame information is not present.

The dwarf.h header file from the libdw library has been extended to enable recognition of
DWARF format version 5 attributes, tags, character encodings, language codes, calling
conventions, defaulted member functions, and macro constants. This enables the eu-readelf
tool to show DWARF version 5 extensions in non-strict DWARF mode (version 4 format with
version 5 extensions). (BZ#1472979)

Red Hat Developer Toolset 7 User Guide

92

https://bugzilla.redhat.com/show_bug.cgi?id=1472979

Two new functions have been added to the libdw library: dwarf_default_lower_bound
and dwarf_line_file.

The eu-strip tool has been extended with options -R, --remove-section=section, and --
keep-section=section to control handling of sections.

The eu-objdump option -d has been extended to support disassembling Extended Berkeley
Packet Filter (eBPF) code in ELF files by default.

The version of elfutils included in Red Hat Developer Toolset 7.0 includes two bug fixes:

Previously, using the eu-strip utility could leave an unused .shstrtab section in the executable
file. As a consequence, the optimization resulted in an unoptimized executable file. The utility
has been fixed and as a result, eu-strip always removes unused .shstrtab sections.
(BZ#1455687)

Previously, the eu-strip utility produced empty files if there was no action possible. As a
consequence, eu-strip created empty executable files when the file was already optimized, and
empty debug files with the -f option if no debug information was found. The utility has been
extended to recognize the situation. As a result, eu-strip produces executable file identical to the
input when the input is already optimized, and does not write an empty debug file with the -f
option if no debug information is found. (BZ#1455620)

A.2.3.2. Changes Since Red Hat Enterprise Linux 7.4

The changes in elfutils since the version included in Red Hat Enterprise Linux 7.4 are equivalent to the
above listed changes since the version included in Red Hat Developer Toolset 6.1.

A.2.4. Changes in GCC

Red Hat Developer Toolset 7.0 is distributed with GCC 7.2.1, which provides numerous enhancements
over the version included in the previous release of Red Hat Developer Toolset.

A.2.4.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of GCC included in Red Hat Developer
Toolset 6.1:

Support for the DWARF 5 debug information format has been added.

A sanitizer to detect variables whose address was taken and used outside the variable’s scope
has been added and is available under the -fsanitize-address-use-after-scope
option.

New warnings for statically detecting certain common types of programming errors have been
added. Apart from others, the detected errors include:

implicit fall through in switch statements

pointer comparison with a zero character constant

identical branches of an if-else statement

wrong usage of restrict-qualified parameters

suspicious arguments to a memset call

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

93

https://bugzilla.redhat.com/show_bug.cgi?id=1455687
https://bugzilla.redhat.com/show_bug.cgi?id=1455620

suspicious uses of integer values in boolean contexts

unreachable statements in a switch statement

unbounded uses of variable-length arrays

The spell-checker has been improved and is now able to detect many more cases.

Various compile-time checks for buffer overflows and invalid memory access have been added.

Support for the _FloatN and _FloatNx type names specified by the ISO/IEC TS 18661-3:2015
standard has been added to the C front end.

The C++ front end fix-it hints have been improved.

Experimental support for C17 has been added to the C standard library and the C++ front end.

Optimization Improvements

A store merging optimization pass for reducing store operations has been added. This
optimization merges constant stores to adjacent memory locations.

Better optimization of sprintf function family return values has been added. The function calls
can be completely folded into a constant.

The code hoisting optimization has been extended to enable moving the expressions evaluated
on all paths to the function exit, to the front of the function’s code. This further reduces the code
size.

The optimization of interprocedural constant propagation has been improved. Information about
which bits of variables are known to be zero and ranges of integral variables can be propagated.

A new loop splitting optimization pass has been added to better optimize loops which contain a
condition that is always true or always false for a certain range of the iteration variable.

The shrink-wrapping optimization has been improved.

Architecture support

Support for the z14 processor of the IBM z Systems architecture has been added.

Support for the ARMv8.2-A and ARMv8.3-A architecture variants and the ARMv8.2-A 16-bit
Floating-Point Extensions has been added.

Support for the latest revision of the AAPCS64 procedure call standard on the 64-bit ARM
architecture has been added.

Support for the following ISA extensions for the Intel 64 architecture has been added:

AVX-512 Fused Multiply Accumulation Packed Single precision (4FMAPS)

AVX-512 Vector Neural Network Instructions Word variable precision (4VNNIW)

AVX-512 Vector Population Count (VPOPCNTDQ)

Software Guard Extensions (SGX)

Deprecated Features

Red Hat Developer Toolset 7 User Guide

94

The Cilk+ extensions have been deprecated. Support of Cilk++ in future versions of GCC is not
guaranteed.

A.2.5. Changes in GDB

Red Hat Developer Toolset 7.0 is distributed with GDB 8.0.1, which provides a number of enhancements
over the version included in the previous release of Red Hat Developer Toolset.

A.2.5.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of GDB included in Red Hat Developer
Toolset 6.1:

Support for C++11 R-value references has been added.

Python scripting has been extended with functions to start, stop, and access a running btrace
recording. Additionally, support for R-value references has been added to gdb.Type.

Support for recording and replaying rdrand and rdseed instructions of the 64-bit Intel
architecture has been added.

User commands have been extended to accept an unlimited number of arguments istead of the
previous maximum of ten.

The eval command has been extended to expand user-defined command arguments.

Support for the debug information format DWARF version 5 has been added. However, the
.debug_names index is not yet supported.

The options set disassembler-options and show disassembler-options have been
added to control the passing of target-specific information to the disassembler. Multiple
disassembler options can be specified as a comma-separated list. Currently, this feature is
supported for ARM, PowerPC, and System/390 targets.

A new MI command -file-list-shared-libraries has been added to list the shared
libraries in the program.

A.2.6. Changes in make

Red Hat Developer Toolset 7.0 is distributed with make 4.2.1, which provides a number of bug fixes and
feature enhancements over the version included in the previous release of Red Hat Developer Toolset.

A.2.6.1. Changes Since Red Hat Developer Toolset 6.1

The following changes have been added since the release of make included in Red Hat Developer
Toolset 6.1:

Previously, running the make tool without arguments resulted in a segmentation fault when the
pseudo-terminal /dev/pts was not mounted. The tool has been extended to use the default
terminal in such cases. As a result, make no longer produces a segmentation fault when
/dev/pts is not present. (BZ#1451452)

The functionality of the internal option --jobserver-fds has been made available with the
option --jobserver-auth. The former name --jobserver-fds has been removed.

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

95

https://bugzilla.redhat.com/show_bug.cgi?id=1451452

A.2.6.2. Changes Since Red Hat Enterprise Linux 7.4

Since the release of make included in Red Hat Enterprise Linux , the following changes have been made
in addition to the changes listed above:

Integration with GNU Guile versions 1.8 as well as 2.0 and later is supported.

When the special target .POSIX is specified, make adheres to the POSIX requirements for
handling backslash and newline. This changes how make handles backslash and newline in
non-recipe lines:

Trailing spaces before the backslash are preserved

Each backslash and newline, including subsequent white space, is converted to single space

The BSD != shell assignment operator is now supported as an alternative to the $(shell … ​)
function. As a consequence, variable names ending in an exclamation mark, defined as
myvariable!= somevalue, are now interpreted as shell assignments. To restore the
previous behaviour, add white space after the intended variable name, such as
myvariable! = somevalue.

A.2.7. Changes in OProfile

Red Hat Developer Toolset 7.0 is distributed with OProfile 1.2.0, which provides a number of bug fixes
and feature enhancements over the version included in the previous release of Red Hat Developer
Toolset.

A.2.7.1. Changes Since Red Hat Developer Toolset 6.1

Since the release of OProfile included in Red Hat Developer Toolset 6.1, support for the following
processors and architectures has been improved:

The 8NV and NVL variants of the IBM Power architecture

The z14 processor of the IBM z Systems architecture

2nd generation Intel Xeon Phi

A.2.7.2. Changes Since Red Hat Enterprise Linux 7.4

Since the release of OProfile included in Red Hat Enterprise Linux 7.4, the following changes have been
made in addition to the changes listed above:

The deprecated opcontrol and oprof_start commands have been removed. The operf
command should be used in their place. The opreport command is still used to analyze data
stored in the oprofile_data/ directory by operf.

Fixes have been included to avoid dropping samples from Java programs using Just-In-Time
(JIT) translation due to use of anonymous hugepages and changes in the anonymous page
mappings.

The search logic has been corrected to properly store data in an archive and make use of the
archive data.

Red Hat Developer Toolset 7 User Guide

96

operf now only starts the command to be measured if the performance monitoring hardware is
properly set up. This fixes a bug that caused operf to start the command that is to be measured
regardless of whether the performance monitoring set up was successful.

Changes in OProfile processor support since Red Hat Enterprise Linux 7.4 are identical to the changes
in processor support since Red Hat Developer Toolset 6.1 listed above.

A.2.8. Changes in strace

Red Hat Developer Toolset 7.0 is distributed with strace 4.17, which provides numerous bug fixes and
feature enhancements over the version included in the previous release of Red Hat Developer Toolset.

A.2.8.1. Changes Since Red Hat Developer Toolset 6.1

The following enhancements have been added since the release of strace included in Red Hat
Developer Toolset 6.1:

System call tampering and fault injection capability has been added. This function allows users
to specify the system call to intercept, a return value or error code to return as a result of the call,
a signal to send, and a condition for the call order. The -e fault=specification and -e
inject=specification options allows specifying the details. Multiple fault injections can be
specified. For more details, see the strace manual page.

Support for tracing 32-bit executable files with the 64-bit strace version has been improved.

Time stamp output has been changed to conform to the ISO 8601 specification.

A general netlink socket parser and improved decoding of socket addresses have been added.

The system call classes %stat, %lstat, %fstat, %%stat, %statfs, %fstatfs, and
%%statfs have been added to allow filtering of system calls used to query file system
information. For more details, see the strace manual page.

System Call Specification Changes
The way in which system calls are specified has been significantly changed and extended:

Specifying classes of system calls for tracing now uses a % prefix:

strace -e trace=%class

The old specification style without % is deprecated but still supported.

Specifying system calls for tracing has been extended to support regular expressions. To use a
regular expression, prepend the system call specification with a forward slash:

strace -e trace=/regexp

Error suppression for cases where no system calls match the provided specification has been
added. To use the error suppression, prepend the system call specification with a question
mark:

strace -e trace=?function

Decoding Improvements

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

97

The following improvements to decoding of system calls, their parameters, and return values have been
implemented:

Improvements have been made to decoding of several ioctl call classes:

Decoding of the DM_* and NS_* commands has been implemented.

Decoding of the SG_* and V4L2 commands has been improved.

Decoding of the sg_io_hdr and sg_io_v4 structures has been improved.

Decoding of the following system calls has been improved: futex, keyctl, quotactl,
timerfd_settime, bpf, accept, accept4, bind, getpeername, getsockname, ipc,
recvfrom, recvmsg, recvmmsg, sendto, sendmmsg, socketcall, sched_attr and the
POSIX asynchronous I/O (aio) system call family.

Decoding of the following system calls has been implemented: statx, pkey_alloc,
pkey_free, pkey_mprotect, and ustat.

Decoding of the perf_event_open call parameter attr has been implemented.

Decoding of the message structures cmsghdr, msghdr, and mmsghdr has been improved.

Display of mode_t, umode_t, and umask types has been fixed.

A.2.8.2. Changes Since Red Hat Enterprise Linux 7.4

The changes in strace since the version included in Red Hat Enterprise Linux 7.4 are equivalent to the
above listed changes since the version included in Red Hat Developer Toolset 6.1.

A.2.9. Changes in SystemTap

Red Hat Developer Toolset 7.0 is distributed with SystemTap 3.1, which provides a number of bug fixes
and feature enhancements over the version included in the previous release of Red Hat Developer
Toolset.

A.2.9.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of SystemTap included in Red Hat Developer
Toolset 6.1:

The probes for system calls no longer default to being based on debuginfo information.

Support for probing Python functions has been added.

Access to Java function parameters has been made more uniform.

The performance of statistical aggregate variables has been improved.

A new statistics operator @variance has been added.

More options for fetching and setting user-space values have been added.

NFS monitoring has been improved with sample scripts and tapset compatibility fixes.

Red Hat Developer Toolset 7 User Guide

98

A.2.9.2. Changes Since Red Hat Enterprise Linux 7.4

The SystemTap version included in Red Hat Developer Toolset 7.0 is the same as the version included
in Red Hat Enterprise Linux 7.4.

A.2.10. Changes in Valgrind

Red Hat Developer Toolset 7.0 is distributed with Valgrind 3.13.0, which provides numerous
enhancements over the version included in the previous release of Red Hat Developer Toolset.

A.2.10.1. Changes Since Red Hat Developer Toolset 6.1

The following features have been added since the release of Valgrind included in Red Hat Developer
Toolset 6.1:

Valgrind has been extended in several ways to run large programs:

The translation cache size has been increased. The maximum number of sectors has been
increased from 24 to 48 and the default number of sectors from 16 to 32.

The amount of memory usable by Valgrind has been increased from 64 GB to 128 GB. As a
consequence, the Memcheck tool supports running applications that allocate up to
approximately 60 GB.

The default load address of Valgrind has been changed from 0x38000000 to 0x58000000.
As a consequence, Valgrind can load executable files 1200 MB in size.

A new representation of stack traces called XTree has been added. An XTree is a tree of stack
traces and data associated with these stack traces. The tools Memcheck, Helgrind, and Massif
can use this representation to report heap consumption of the analyzed application. Reporting is
controlled by the new options --xtree-memory and --xtree-memory-file. Additionally,
Valgrind’s internal gdbserver has been extended for the XTrees:

A report can be produced on demand by issuing the command xtmemory filename in the
external gdb monitor.

The Memcheck monitor command leak_check accepts a new option xtleak to produce
the leak report in an XTree file.
For more information consult the Valgrind manual installed on your system. See
Section 12.3, “Additional Resources”.

The symbol demangler has been updated to support the C++11 standard as well as the Rust
programming language.

File name template argument format has been extended with a new letter %n which is replaced
by a sequentially increased number. This is useful for processes that produce several files from
the same filename template and can be used as an alternative to the process id letter %p.

Architecture updates

Failures with long blocks of code using AVX2 instructions on the Intel and AMD 64-bit
architecture have been fixed.

Recognition of Intel Control Flow Enforcement (CET) on the Intel and AMD 64-bit architecture
has been added.

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

99

Support for the IBM Power Systems architecture has been extended to include the ISA 3.0B
specification.

An alternative implementation of Load-Linked and Store-Conditional instructions for the 64-bit
ARM architecture has been added. The alternative implementation is enabled automatically
when required. To enable the alternative implementation manually, use the --sim-
hints=fallback-llsc option.

A.2.10.2. Changes Since Red Hat Enterprise Linux 7.4

The changes in Valgrind since the version included in Red Hat Enterprise Linux 7.4 are equivalent to
the above listed changes since the version included in Red Hat Developer Toolset 6.1.

A.2.11. Changes in devtoolset-7-perftools-rhel7

Red Hat Developer Toolset 7.0 is distributed with devtoolset-7-perftools-rhel7, a pre-built docker
image that includes other Red Hat Developer Toolset components. The image is available as a package
devtoolset-7-perftools-docker .

A.2.11.1. Changes Since Red Hat Developer Toolset 6.1

Since the release of devtoolset-6-perftools-rhel7 included in Red Hat Developer Toolset 6.1, the
following tools have been added to the container image:

dwz

ltrace

make

memstomp

strace

For the changes in application features since the release of devtoolset-6-perftools-rhel7 included in
Red Hat Developer Toolset 6.1, see the sections describing changes in the individual tools:

Section A.2.2, “Changes in dyninst”

Section A.2.3, “Changes in elfutils”

Section A.2.7, “Changes in OProfile”

Section A.2.9, “Changes in SystemTap”

Section A.2.10, “Changes in Valgrind”

Section A.2.6, “Changes in make”

A.2.12. Changes in devtoolset-7-toolchain-rhel7

Red Hat Developer Toolset 7.0 is distributed with devtoolset-7-toolchain-rhel7 , a pre-built docker
image that includes other Red Hat Developer Toolset components. The image is available as a package
devtoolset-7-toolchain-docker .

Red Hat Developer Toolset 7 User Guide

100

A.2.12.1. Changes Since Red Hat Developer Toolset 6.1

For the changes since the release of devtoolset-6-toolchain-rhel7 included in Red Hat Developer
Toolset 6.1, see the sections describing changes to the individual tools:

Section A.2.1, “Changes in binutils”

Section A.2.4, “Changes in GCC”

Section A.2.5, “Changes in GDB”

APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET

101

APPENDIX B. REVISION HISTORY
7.0-9

Tue 27 Nov 2018, Lenka Špačková (lspackova@redhat.com)

Fixed links to compiler toolsets documentation.

7.0-8

Thu 03 May 2018, Vladimír Slávik (vslavik@redhat.com)

Release of Red Hat Developer Toolset 7.1 User Guide.

7.0-7

Wed 04 Apr 2018, Vladimír Slávik (vslavik@redhat.com)

Release of Red Hat Developer Toolset 7.1 Beta User Guide.

7.0-6

Tue 24 Oct 2017, Vladimír Slávik (vslavik@redhat.com)

Release of Red Hat Developer Toolset 7.0 User Guide.

7.0-5

Tue 17 Oct 2017, Vladimír Slávik (vslavik@redhat.com)

Release with minor fixes.

7.0-2

Tue 03 Oct 2017, Vladimír Slávik (vslavik@redhat.com)

Release of Red Hat Developer Toolset 7.0 Beta User Guide.

6.1-3

Fri 26 May 2017, Vladimír Slávik (vslavik@redhat.com)

Clarified C++ compatibility information.

6.1-2

Wed 26 Apr 2017, Vladimír Slávik (vslavik@redhat.com)

Release of Red Hat Developer Toolset 6.1 User Guide.

6.1-1

Wed 05 Apr 2017, Vladimír Slávik (vslavik@redhat.com)

Release of Red Hat Developer Toolset 6.1 Beta User Guide.

6.0-9

Tue 04 Apr 2017, Lenka Špačková (lspackova@redhat.com)

Removed outdated information.

Red Hat Developer Toolset 7 User Guide

102

mailto:lspackova@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:vslavik@redhat.com
mailto:lspackova@redhat.com

6.0-8

Fri 31 Mar 2017, Vladimír Slávik (vslavik@redhat.com)

Release with minor fixes.

6.0-7

Sun 13 Nov 2016, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 6.0 User Guide.

0.0-36

Tue 24 May 2016, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 4.1 User Guide.

0.0-33

Fri 13 Nov 2015, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 4.0 User Guide.

0.0-29

Wed 4 Nov 2015, Robert Krátký (rkratky@redhat.com)

Re-release of Red Hat Developer Toolset 4.0 Beta User Guide with a section on docker-
formatted container images.

0.0-28

Wed 14 Oct 2015, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 4.0 Beta User Guide.

0.0-25

Thu 4 June 2015, Robert Krátký (rkratky@redhat.com)

Update to reflect RHSCL 2.0 GA.

0.0-23

Thu 23 Apr 2015, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 3.1 User Guide.

0.0-17

Tue 10 Mar 2015, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 3.1 Beta User Guide.

0.0-16

Thu 13 Nov 2014, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 3.0 User Guide with minor post-GA fixes.

APPENDIX B. REVISION HISTORY

103

mailto:vslavik@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com

0.0-14

Thu 30 Oct 2014, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 3.0 User Guide.

0.0-10

Tue 07 Oct 2014, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 3.0 Beta-2 User Guide.

0.0-8

Tue Sep 09 2014, Robert Krátký (rkratky@redhat.com)

Release of Red Hat Developer Toolset 3.0 Beta-1 User Guide.

Red Hat Developer Toolset 7 User Guide

104

mailto:rkratky@redhat.com
mailto:rkratky@redhat.com
mailto:rkratky@redhat.com

	Table of Contents
	PART I. INTRODUCTION
	CHAPTER 1. RED HAT DEVELOPER TOOLSET
	1.1. ABOUT RED HAT DEVELOPER TOOLSET
	What Is New in Red Hat Developer Toolset 7.1

	1.2. MAIN FEATURES
	1.3. COMPATIBILITY
	Architecture support

	1.4. GETTING ACCESS TO RED HAT DEVELOPER TOOLSET
	1.4.1. Using Red Hat Software Collections
	1.4.2. Using Red Hat Developer Tools

	1.5. INSTALLING RED HAT DEVELOPER TOOLSET
	1.5.1. Installing All Available Components
	1.5.2. Installing Individual Package Groups
	1.5.3. Installing Optional Packages
	1.5.4. Installing Debugging Information

	1.6. UPDATING RED HAT DEVELOPER TOOLSET
	1.6.1. Updating to a Minor Version
	1.6.2. Updating to a Major Version

	1.7. UNINSTALLING RED HAT DEVELOPER TOOLSET
	1.8. USING RED HAT DEVELOPER TOOLSET CONTAINER IMAGES
	1.9. ADDITIONAL RESOURCES
	Online Documentation
	See Also

	PART II. DEVELOPMENT TOOLS
	CHAPTER 2. GNU COMPILER COLLECTION (GCC)
	2.1. GNU C COMPILER
	2.1.1. Installing the C Compiler
	2.1.2. Using the C Compiler
	2.1.3. Running a C Program

	2.2. GNU C++ COMPILER
	2.2.1. Installing the C++ Compiler
	2.2.2. Using the C++ Compiler
	2.2.3. Running a C++ Program
	2.2.4. C++ Compatibility
	2.2.4.1. C++ ABI

	2.3. GNU FORTRAN COMPILER
	2.3.1. Installing the Fortran Compiler
	2.3.2. Using the Fortran Compiler
	2.3.3. Running a Fortran Program

	2.4. SPECIFICS OF GCC IN RED HAT DEVELOPER TOOLSET
	2.5. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 3. GNU MAKE
	3.1. INSTALLING MAKE
	3.2. USING MAKE
	3.3. USING MAKEFILES
	3.4. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 4. BINUTILS
	4.1. INSTALLING BINUTILS
	4.2. USING THE GNU ASSEMBLER
	4.3. USING THE GNU LINKER
	4.4. USING OTHER BINARY TOOLS
	4.5. SPECIFICS OF BINUTILS IN RED HAT DEVELOPER TOOLSET
	4.6. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 5. ELFUTILS
	5.1. INSTALLING ELFUTILS
	5.2. USING ELFUTILS
	5.3. ADDITIONAL RESOURCES
	See Also

	CHAPTER 6. DWZ
	6.1. INSTALLING DWZ
	6.2. USING DWZ
	6.3. ADDITIONAL RESOURCES
	Installed Documentation
	See Also

	PART III. DEBUGGING TOOLS
	CHAPTER 7. GNU DEBUGGER (GDB)
	7.1. INSTALLING THE GNU DEBUGGER
	7.2. PREPARING A PROGRAM FOR DEBUGGING
	Compiling Programs with Debugging Information
	Installing Debugging Information for Existing Packages

	7.3. RUNNING THE GNU DEBUGGER
	7.4. LISTING SOURCE CODE
	7.5. SETTING BREAKPOINTS
	Setting a New Breakpoint
	Listing Breakpoints
	Deleting Existing Breakpoints

	7.6. STARTING EXECUTION
	7.7. DISPLAYING CURRENT VALUES
	7.8. CONTINUING EXECUTION
	7.9. ADDITIONAL RESOURCES
	Online Documentation
	See Also

	CHAPTER 8. STRACE
	8.1. INSTALLING STRACE
	8.2. USING STRACE
	8.2.1. Redirecting Output to a File
	8.2.2. Tracing Selected System Calls
	8.2.3. Displaying Time Stamps
	8.2.4. Displaying a Summary
	8.2.5. Tampering with System Call Results

	8.3. ADDITIONAL RESOURCES
	Installed Documentation
	See Also

	CHAPTER 9. LTRACE
	9.1. INSTALLING LTRACE
	9.2. USING LTRACE
	9.2.1. Redirecting Output to a File
	9.2.2. Tracing Selected Library Calls
	9.2.3. Displaying Time Stamps
	9.2.4. Displaying a Summary

	9.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 10. MEMSTOMP
	10.1. INSTALLING MEMSTOMP
	10.2. USING MEMSTOMP
	10.3. ADDITIONAL RESOURCES
	Installed Documentation
	See Also

	PART IV. PERFORMANCE MONITORING TOOLS
	CHAPTER 11. SYSTEMTAP
	11.1. INSTALLING SYSTEMTAP
	11.2. USING SYSTEMTAP
	11.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 12. VALGRIND
	12.1. INSTALLING VALGRIND
	12.2. USING VALGRIND
	12.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 13. OPROFILE
	13.1. INSTALLING OPROFILE
	13.2. USING OPROFILE
	13.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 14. DYNINST
	14.1. INSTALLING DYNINST
	14.2. USING DYNINST
	14.2.1. Using Dyninst with SystemTap
	14.2.2. Using Dyninst as a Stand-alone Library

	14.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	PART V. COMPILER TOOLSETS
	CHAPTER 15. LLVM TOOLSET
	CHAPTER 16. RUST TOOLSET
	CHAPTER 17. GO TOOLSET
	PART VI. GETTING HELP
	CHAPTER 18. ACCESSING RED HAT PRODUCT DOCUMENTATION
	Red Hat Developer Toolset
	Red Hat Enterprise Linux

	CHAPTER 19. CONTACTING GLOBAL SUPPORT SERVICES
	19.1. GATHERING REQUIRED INFORMATION
	Background Information
	Diagnostics
	Account and Contact Information
	Issue Severity

	19.2. ESCALATING AN ISSUE
	19.3. RE-OPENING A SERVICE REQUEST
	19.4. ADDITIONAL RESOURCES
	Online Documentation

	APPENDIX A. CHANGES IN RED HAT DEVELOPER TOOLSET
	A.1. CHANGES IN VERSION 7.1
	A.1.1. Changes in GCC
	A.1.1.1. Changes Since Red Hat Developer Toolset 7.0

	A.1.2. Changes in GDB
	A.1.2.1. Changes Since Red Hat Developer Toolset 7.0

	A.1.3. Changes in elfutils
	A.1.3.1. Changes Since Red Hat Developer Toolset 7.0
	A.1.3.2. Changes Since Red Hat Enterprise Linux 7.5

	A.1.4. Changes in Valgrind
	A.1.4.1. Changes Since Red Hat Developer Toolset 7.0
	A.1.4.2. Changes Since Red Hat Enterprise Linux 7.5

	A.2. CHANGES IN VERSION 7.0
	A.2.1. Changes in binutils
	A.2.1.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.1.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.2. Changes in dyninst
	A.2.2.1. Changes Since Red Hat Developer Toolset 6.1

	A.2.3. Changes in elfutils
	A.2.3.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.3.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.4. Changes in GCC
	A.2.4.1. Changes Since Red Hat Developer Toolset 6.1

	A.2.5. Changes in GDB
	A.2.5.1. Changes Since Red Hat Developer Toolset 6.1

	A.2.6. Changes in make
	A.2.6.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.6.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.7. Changes in OProfile
	A.2.7.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.7.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.8. Changes in strace
	A.2.8.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.8.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.9. Changes in SystemTap
	A.2.9.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.9.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.10. Changes in Valgrind
	A.2.10.1. Changes Since Red Hat Developer Toolset 6.1
	A.2.10.2. Changes Since Red Hat Enterprise Linux 7.4

	A.2.11. Changes in devtoolset-7-perftools-rhel7
	A.2.11.1. Changes Since Red Hat Developer Toolset 6.1

	A.2.12. Changes in devtoolset-7-toolchain-rhel7
	A.2.12.1. Changes Since Red Hat Developer Toolset 6.1

	APPENDIX B. REVISION HISTORY

