
Red Hat CodeReady Workspaces 2.0

End-user Guide

Using Red Hat CodeReady Workspaces 2.0

Last Updated: 2020-06-04

Red Hat CodeReady Workspaces 2.0 End-user Guide

Using Red Hat CodeReady Workspaces 2.0

Supriya Takkhi

Robert Kratky
rkratky@redhat.com

Michal Maléř
mmaler@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Yana Hontyk
yhontyk@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for users using Red Hat CodeReady Workspaces.

. .

. .

. .

Table of Contents

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD
1.1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD ON OPENSHIFT

CHAPTER 2. CHE-THEIA IDE BASICS
2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA

2.1.1. Che-Theia task types
2.1.2. Running and debugging
2.1.3. Editing a task and launch configuration

2.2. VERSION CONTROL
2.2.1. Managing Git configuration: identity
2.2.2. Accessing a Git repository via HTTPS
2.2.3. Accessing a Git repository via SSH

2.2.3.1. Generating an SSH key
2.2.3.2. Adding the associated public key to a repository or account on GitHub
2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

2.2.4. Configuring GitHub OAuth
2.2.5. Managing pull requests using the GitHub PR plug-in

2.2.5.1. Using the GitHub Pull Requests plug-in
2.2.5.2. Creating a new pull request

2.3. CHE-THEIA TROUBLESHOOTING

CHAPTER 3. WORKSPACES OVERVIEW
3.1. CREATING AND CONFIGURING A NEW CODEREADY WORKSPACES 2.0 WORKSPACE

3.1.1. Creating a new workspace from the dashboard
3.1.2. Adding projects to your workspace
3.1.3. Configuring the workspace and adding tooling

3.1.3.1. Adding plug-ins
3.1.3.2. Defining the workspace editor
3.1.3.3. Defining specific container images
3.1.3.4. Adding commands to your workspace

3.2. CONFIGURING A WORKSPACE USING A DEVFILE
3.2.1. What is a devfile
3.2.2. Disambiguation between stacks and devfiles
3.2.3. Creating a workspace from the default branch of a Git repository
3.2.4. Creating a workspace from a feature branch of a Git repository
3.2.5. Creating a workspace from a publicly accessible standalone devfile using HTTP
3.2.6. Overriding devfile values using factory parameters
3.2.7. Creating a workspace using crwctl and a local devfile

3.3. CREATING A WORKSPACE FROM CODE SAMPLE
3.3.1. Creating a workspace from User Dashboard
3.3.2. Changing the configuration of an existing workspace from the User Dashboard
3.3.3. Running an existing workspace from the User Dashboard

3.3.3.1. Running an existing workspace from the User Dashboard with the Run button
3.3.3.2. Running an existing workspace from the User Dashboard using the Open button
3.3.3.3. Running an existing workspace from the User Dashboard using the Recent Workspaces

3.4. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF A PROJECT
3.4.1. Importing from the Dashboard into an existing workspace

3.4.1.1. Creating a new repository
3.4.1.2. Editing an existing repository
3.4.1.3. Editing the commands after importing a project

3.4.2. Importing to a running workspace using the Git: Clone command

5
5

6
6
7
7
11
11
11

13
14
14
14
15
16
17
17
17
18

19
20
20
22
23
23
24
25
29
32
32
33
33
33
34
34
35
36
36
37
40
40
41
41

42
42
43
44
45
46

Table of Contents

1

. .

3.4.3. Importing to a running workspace with git clone in a terminal
3.5. MAKING A WORKSPACE PORTABLE USING A DEVFILE

3.5.1. What is a devfile
3.5.2. A minimal devfile
3.5.3. Generating workspace names
3.5.4. Writing a devfile for a project

3.5.4.1. Preparing a minimal devfile
3.5.4.2. Specifying multiple projects in a devfile

3.5.5. Devfile reference
3.5.5.1. Adding projects to a devfile

3.5.5.1.1. Project-source type: git
3.5.5.1.2. Project-source type: zip
3.5.5.1.3. Project clone-path parameter: clonePath

3.5.5.2. Adding components to a devfile
3.5.5.2.1. Component type: cheEditor
3.5.5.2.2. Component type: chePlugin
3.5.5.2.3. Specifying an alternative component registry
3.5.5.2.4. Specifying a component by linking to its descriptor
3.5.5.2.5. Tuning chePlugin component configuration
3.5.5.2.6. Component type: kubernetes
3.5.5.2.7. Overriding container entrypoints
3.5.5.2.8. Overriding container environment variables
3.5.5.2.9. Specifying mount-source option
3.5.5.2.10. Component type: dockerimage

3.5.5.2.10.1. Mounting project sources
3.5.5.2.10.2. Container Entrypoint
3.5.5.2.10.3. Persistent Storage

3.5.5.2.11. Specifying container memory limit for components
3.5.5.2.12. Environment variables

3.5.5.2.12.1. Endpoints
3.5.5.2.12.2. OpenShift resources

3.5.5.3. Adding commands to a devfile
3.5.5.3.1. CodeReady Workspaces-specific commands
3.5.5.3.2. Editor-specific commands
3.5.5.3.3. Command preview URL

3.5.5.3.3.1. Setting the default way of opening preview URLs
3.5.5.4. Devfile attributes

3.5.5.4.1. Attribute: editorFree
3.5.5.4.2. Attribute: persistVolumes (ephemeral mode)

3.5.6. Objects supported in Red Hat CodeReady Workspaces 2.0
3.6. CONVERTING A CODEREADY WORKSPACES 1.2 WORKSPACE TO A CODEREADY WORKSPACES 2.0
DEVFILE

3.6.1. Converting a CodeReady Workspaces 1.2 workspace to a basic CodeReady Workspaces 2.0 devfile
3.6.2. Accessing a CodeReady Workspaces 1.2 workspace configuration

3.7. IMPORTING A OPENSHIFT APPLICATION INTO A WORKSPACE
3.7.1. Including a OpenShift application in a workspace devfile definition
3.7.2. Adding a OpenShift application to an existing workspace using the dashboard
3.7.3. Generating a devfile from an existing OpenShift application

3.8. REMOTELY ACCESSING WORKSPACES
3.8.1. Remotely accessing workspaces using the OpenShift command-line tool
3.8.2. Downloading and uploading a file to a workspace using the command-line interface

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

47
48
48
48
49
49
49
50
51
51
52
52
52
53
53
53
54
54
54
54
55
56
56
56
57
57
58
58
58
59
61

64
64
65
66
66
67
67
67
68

68
72
74
75
76
77
78
79
79
81

82

Red Hat CodeReady Workspaces 2.0 End-user Guide

2

4.1. WHAT IS A CHE-THEIA PLUG-IN
4.1.1. Features and benefits of Che-Theia plug-ins
4.1.2. Che-Theia plug-in concept in detail

4.1.2.1. Client-side and server-side Che-Theia plug-ins
4.1.2.2. Che-Theia plug-in APIs
4.1.2.3. Che-Theia plug-in capabilities
4.1.2.4. VS Code extensions and Eclipse Theia plug-ins

4.1.3. Che-Theia plug-in metadata
4.1.3.1. meta.yaml
4.1.3.2. che-plugin.yaml

4.1.4. Che-Theia plug-in lifecycle
4.1.5. Embedded and remote Che-Theia plug-ins

4.1.5.1. Embedded (or local) plug-ins
4.1.5.2. Remote plug-ins
4.1.5.3. Comparison matrix

4.2. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES
4.3. USING A VISUAL STUDIO CODE EXTENSION IN CODEREADY WORKSPACES

4.3.1. Publishing a VS Code extension into the CodeReady Workspaces plug-in registry
4.3.1.1. Writing a meta.yaml file and adding it to a plug-in registry

4.3.2. Adding a plug-in registry VS Code extension to a workspace
4.3.2.1. Adding the VS Code extension using the CodeReady Workspaces Plugins panel
4.3.2.2. Adding the VS Code extension using the workspace configuration

4.3.3. Choosing the sidecar image
4.3.4. Verifying the VS Code extension API compatibility level

82
83
83
84
84
84
85
85
86
86
88
90
90
91

92
93
93
94
94
95
95
96
97
97

Table of Contents

3

Red Hat CodeReady Workspaces 2.0 End-user Guide

4

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING
THE DASHBOARD

The Dashboard is accessible on your cluster from a URL like http://<che-instance>.<IP-
address>.mycluster.mycompany.com/dashboard/. This section describes how to access this URL on
OpenShift.

1.1. NAVIGATING CODEREADY WORKSPACES USING THE
DASHBOARD ON OPENSHIFT

This section describes how to access the Red Hat CodeReady Workspaces Dashboard on OpenShift.

Prerequisites

Know some way to contact the administrator of the OpenShift instance.

Procedure

Contact the administrator of the OpenShift instance to obtain the URL for the Red Hat
CodeReady Workspaces instance.

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD

5

CHAPTER 2. CHE-THEIA IDE BASICS
This section describes basics workflows and commands for Che-Theia: the native integrated
development environment for Red Hat CodeReady Workspaces.

2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA

The Che-Theia IDE allows users to define custom commands in a devfile that are then available when
working in a workspace.

The following is an example of the commands section of a devfile.

CodeReady Workspaces commands

commands:
- name: theia:build
 actions:
 - type: exec
 component: che-dev
 command: >
 yarn
 workdir: /projects/theia
- name: run
 actions:
 - type: vscode-task
 referenceContent: |
 {
 "version": "2.0.0",
 "tasks":
 [
 {
 "label": "theia:watch",
 "type": "shell",
 "options": {"cwd": "/projects/theia"},
 "command": "yarn",
 "args": ["watch"]
 }
]
 }
- name: debug
 actions:
 - type: vscode-launch
 referenceContent: |
 {
 "version": "0.2.0",
 "configurations": [
 {
 "type": "node",
 "request": "attach",
 "name": "Attach by Process ID",
 "processId": "${command:PickProcess}"
 }
]
 }

Red Hat CodeReady Workspaces 2.0 End-user Guide

6

theia:build

The exec type implies that the CodeReady Workspaces runner is used for command
execution. The user can specify the component in whose container the command is
executed.

The command field contains the command line for execution.

The workdir is the working directory in which the command is executed.

Visual Studio Code (VS Code) tasks

run

The type is vscode-task.

For this type of command, the referenceContent field must contain content with task
configurations in the VS Code format.

For more information about VS Code tasks, see the Task section on the Visual Studio User
Guide page.

VS Code launch configurations

debug

The type is vscode-launch.

It contains the launch configurations in the VS Code format.

For more information about VS Code launch configurations, see the Debugging section on
the Visual Studio documentation page .

For a list of available tasks and launch configurations, see the tasks.json and the launch.json
configuration files in the /workspace/.theia directory where the configuration from the devfile is
exported to.

2.1.1. Che-Theia task types

There are two types of tasks in a devfile: tasks in the VS Code format and CodeReady Workspaces
commands. Tasks from the devfile are copied to the configuration file when the workspace is started.
Depending on the type of the task, the task is then available for running:

CodeReady Workspaces commands: From the Terminal → Run Task menu in the configured
tasks section, or from the My Workspace panel

Tasks in the VS Code format: From the Run Tasks menu

To run the task definitions provided by plug-ins, select the Terminal → Run Task menu option. The
tasks are placed in the detected tasks section.

2.1.2. Running and debugging

Che-Theia supports the Debug Adapter Protocol. This protocol defines a generic way for how a
development tool can communicate with a debugger. It means Che-Theia works with all
implementations.

CHAPTER 2. CHE-THEIA IDE BASICS

7

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/debugging#_launch-configurations
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/implementors/adapters/

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

Procedure

To debug an application:

1. Click Debug → Add Configuration to add debugging or launch configuration to the project.

2. From the pop-up menu, select the appropriate configuration for the application that you want
to debug.

Red Hat CodeReady Workspaces 2.0 End-user Guide

8

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

3. Update the configuration by modifying or adding attributes.

4. Breakpoints can be toggled by clicking the editor margin.

CHAPTER 2. CHE-THEIA IDE BASICS

9

5. Open the context menu of the breakpoint to add conditions.

6. To start debugging, click View → Debug.

7. In the Debug view, select the configuration and press F5 to debug the application. Or, start the
application without debugging by pressing Ctrl+F5.

Red Hat CodeReady Workspaces 2.0 End-user Guide

10

2.1.3. Editing a task and launch configuration

Procedure

To customize the configuration file:

1. Edit the tasks.json or launch.json configuration files.

2. Add new definitions to the configuration file or modify the existing ones.

NOTE

The changes are stored in the configuration file.

3. To customize the task configuration provided by plug-ins, select the Terminal → Configure
TasksS menu option, and choose the task to configure. The configuration is then copied to the
tasks.json file and is available for editing.

2.2. VERSION CONTROL

Red Hat CodeReady Workspaces natively supports the VS Code SCM model . By default, Red Hat
CodeReady Workspaces includes the native VS Code Git extension as a Source Code Management
(SCM) provider.

2.2.1. Managing Git configuration: identity

The first thing to do before starting to use Git is to set a user name and email address. This is important
because every Git commit uses this information.

Prerequisites

The Visual Studio Code Git extension installed.

Procedure

To configure Git identity using the CodeReady Workspaces user interface, go to in Preferences.

1. Open File > Settings > Open Preferences:

CHAPTER 2. CHE-THEIA IDE BASICS

11

https://code.visualstudio.com/docs/editor/versioncontrol#_scm-providers
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support

2. In the opened window, navigate to the Git section, and find:

 user.name
 user.email

And configure the identity.

To configure Git identity using the command line, open the terminal of the Che-Theia container.

1. Navigate to the My Workspace view, and open Plugins > theia-ide…​ > New terminal:

Red Hat CodeReady Workspaces 2.0 End-user Guide

12

2. Execute the following commands:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Che-Theia permanently stores this information and restores it on future workspace starts.

2.2.2. Accessing a Git repository via HTTPS

Prerequisites

Git is installed. Install Git if needed by following Getting Started - Installing Git .

Procedure

To clone a repository using HTTPS:

1. Use the clone command provided by the Visual Studio Code Git extension.

CHAPTER 2. CHE-THEIA IDE BASICS

13

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://code.visualstudio.com/docs/editor/versioncontrol#_cloning-a-repository

Alternatively, use the native Git commands in the terminal to clone a project.

1. Navigate to destination folder using the cd command.

2. Use git clone to clone a repository:

$ git clone <link>

WARNING

Self-signed SSL certificates are not supported. Use SSH keys instead.

2.2.3. Accessing a Git repository via SSH

Prerequisites

Personal GitHub account or other Git provider account created.

2.2.3.1. Generating an SSH key

A common SSH key that works with all Git providers is present by default. To start using it, add the
public key to the Git provider.

To generate an SSH key pair that only works with a particular Git provider:

1. Run the SSH: generate key pair for particular host command.

2. After the key is generated, click the View button and copy the public key from the editor.

3. Add the public key to the Git provider.

2.2.3.2. Adding the associated public key to a repository or account on GitHub

To add the associated public key to a repository or account on GitHub:

1. Navigate to github.com.

2. Click the drop-down arrow next to the user icon in the top-right corner of the window.

3. Click Settings → SSH and GPG keys and then click the New SSH key button.

4. In the Title field, type a title for the key, and in the Key field, paste the public key copied from
CodeReady Workspaces.

5. Click the Add SSH key button.



Red Hat CodeReady Workspaces 2.0 End-user Guide

14

https://help.github.com/en/articles/types-of-github-accounts
https://github.com

2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

To add the associated public key to a Git repository or account on GitLab:

1. Navigate to gitlab.com.

2. Click the user icon in the top-right corner of the window.

3. Click Settings → SSH Keys.

4. In the Title field, type a title for the key and in the Key field, paste the public key copied from
CodeReady Workspaces.

5. Click the Add key button.

CHAPTER 2. CHE-THEIA IDE BASICS

15

https://gitlab.com

2.2.4. Configuring GitHub OAuth

OAuth for Github allows users to clone projects using SSH addresses (git@) and push to repositories.

Procedure

To enable automatic SSH key upload to GitHub for users:

1. On github.com, click your user icon (top right).

2. Go to Settings > Developer settings > OAuth Apps.

3. Click the Register a new application button.

4. In the Application name field, enter, for example, Red Hat CodeReady Workspaces.

5. In the Homepage URL field, enter http://$\{CODEREADY_HOST}:$\{CODEREADY_PORT}.

6. In the Authorization callback URL field, enter http://$\{CODEREADY_HOST}:$\
{CODEREADY_PORT}/api/oauth/callback.

Red Hat CodeReady Workspaces 2.0 End-user Guide

16

NOTE

Substitute all occurrences of ${CODEREADY_HOST} and
${CODEREADY_PORT} with the URL and port of your CodeReady Workspaces
installation.

Substitute <your-github-client-id> and <your-github-secret> with your GitHub
client ID and secret.

2.2.5. Managing pull requests using the GitHub PR plug-in

To manage GitHub pull requests, the VS Code GitHub Pull Request plug-in is available in the list of
plug-ins of the workspace.

2.2.5.1. Using the GitHub Pull Requests plug-in

1. Authenticate by running the GitHub Pull Requests: Manually Provide Authentication
Response command and paste the GitHub token.

2. Select the repository permissions when generating the token.

2.2.5.2. Creating a new pull request

1. Open the GitHub repository. To be able to execute remote operations, the repository must

CHAPTER 2. CHE-THEIA IDE BASICS

17

1. Open the GitHub repository. To be able to execute remote operations, the repository must
have a remote with an SSH URL.

2. Checkout a new branch and make changes that you want to publish.

3. Run the GitHub Pull Requests: Create Pull Request command.

2.3. CHE-THEIA TROUBLESHOOTING

This section describes some of the most frequent issues with the Che-Theia IDE.

Che-Theia shows a notification with the following message: Plugin runtime crashed unexpectedly,
all plugins are not working, please reload the page. Probably there is not enough memory for the
plugins.

This means that one of the Che-Theia plug-ins that are running in the Che-Theia IDE container
requires more memory than the container has. To fix this problem, increase the amount of memory
for the Che-Theia IDE container:

1. Navigate to the CodeReady Workspaces Dashboard.

2. Select the workspace in which the problem happened.

3. Switch to the Devfile tab.

4. In the components section of the devfile, find a component of the cheEditor type.

5. Add a new property, memoryLimit: 1024M (or increase the value if it already exists).

6. Save changes and restart the workspace.

Additional resources

Asking the community for help: Mattermost channel dedicated to Red Hat CodeReady
Workspaces.

Reporting a bug: Red Hat CodeReady Workspaces repository issues .

Red Hat CodeReady Workspaces 2.0 End-user Guide

18

https://mattermost.eclipse.org/eclipse/channels/eclipse-che
https://github.com/eclipse/che

CHAPTER 3. WORKSPACES OVERVIEW
Red Hat CodeReady Workspaces provides developer workspaces with everything needed to a code,
build, test, run, and debug applications. To allow that, the developer workspaces provide four main
components:

1. The source code of a project.

2. A web-based IDE.

3. Tool dependencies, needed by developers to work on a project

4. Application runtime: a replica of the environment where the application runs in production

Pods manage each component of a workspace. Therefore, everything running in a workspace is running
inside containers. This makes a workspace highly portable.

The embedded browser-based IDE is the point of access for everything running in a workspace. This
makes a workspace easily shareable.

IMPORTANT

By default, it is possible to run only one workspace at a time.

To change the default value, see the CodeReady Workspaces 2.0 Installation Guide .

Table 3.1. Features and benefits

Features Traditional IDE workspaces Red Hat CodeReady
Workspaces workspaces

Configuration and installation
required

Yes. No.

Embedded tools Partial. IDE plug-ins need
configuration. Dependencies
need installation and
configuration. Example: JDK,
Maven, Node.

Yes. Plug-ins provide their
dependencies.

Application runtime provided No. Developers have to manage
that separately.

Yes. Application runtime is
replicated in the workspace.

Shareable No. Or not easily Yes. Developer workspaces are
shareable with a URL.

Versionable No Yes. Devfiles exist with project
source code.

Accessible from anywhere No. Installation is needed. Yes. Only requires a browser.

To start a workspace, following options are available:

CHAPTER 3. WORKSPACES OVERVIEW

19

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

Section 3.1, “Creating and configuring a new CodeReady Workspaces 2.0 workspace” .

Section 3.2, “Configuring a workspace using a devfile”

Use the Dashboard to discover CodeReady Workspaces 2.0:

Section 3.3, “Creating a workspace from code sample”

Section 3.4, “Creating a workspace by importing the source code of a project”

Use a devfile as the preferred way to start a CodeReady Workspaces 2.0 workspace:

Section 3.5, “Making a workspace portable using a devfile”

See the CodeReady Workspaces 2.0 End-user Guide .

Section 3.7, “Importing a OpenShift application into a workspace”

Use the browser-based IDE as the preferred way to interact with a CodeReady Workspaces 2.0
workspace. For an alternative way to interact with a CodeReady Workspaces 2.0 workspace, see:
Section 3.8, “Remotely accessing workspaces”.

3.1. CREATING AND CONFIGURING A NEW CODEREADY
WORKSPACES 2.0 WORKSPACE

3.1.1. Creating a new workspace from the dashboard

This procedure describes how to create and edit a new CodeReady Workspaces 2.0 devfile using the
Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

Procedure

To edit the devfile:

1. In the Workspaces window, click the Add Workspace button.

2. In the SELECT STACK list, select one of the default stacks.

Red Hat CodeReady Workspaces 2.0 End-user Guide

20

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/end-user_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

3. Click the Create & Proceed Editing button. The Workspaces → Configs page is shown.

4. Change the workspace name and click the Devfile tab.

CHAPTER 3. WORKSPACES OVERVIEW

21

5. Delete all the components and commands in the devfile to get an empty devfile.

3.1.2. Adding projects to your workspace

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

To add a project to your workspace:

1. Click the Projects tab, and then click the Add Project button.

2. Select the type of the project. Choose from: Samples, Blank, Git, GitHub, or Zip.

3. Fill in the required details for the project type that you selected, and click the Add button.

Red Hat CodeReady Workspaces 2.0 End-user Guide

22

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

4. To add another project to the workspace, click the Add Project button.

5. After configuring the project for the workspace, check the change in the devfile, which is the
configuration file of the workspace, by opening the Devfile tab.

3.1.3. Configuring the workspace and adding tooling

3.1.3.1. Adding plug-ins

CodeReady Workspaces 2.0 plug-ins replace CodeReady Workspaces 1.2 installers. The following table
lists the CodeReady Workspaces 2.0 plug-ins that have replaced CodeReady Workspaces 1.2 installers.

Table 3.2. CodeReady Workspaces 2.0 plug-ins that have replaced CodeReady Workspaces 1.2
installers

CodeReady Workspaces 1.2 installer CodeReady Workspaces 2.0 plug-in

org.eclipse.che.ws-agent Deprecated and not necessary

org.eclipse.che.terminal Deprecated and not necessary anymore-

org.eclipse.che.exec CodeReady Workspaces machine-exec Service

org.eclipse.che.ls.java Language Support for Java

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,

CHAPTER 3. WORKSPACES OVERVIEW

23

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

To add plug-ins to your workspace:

1. Click the Plugins tab.

2. Enable the plug-in that you want to add and click the Save button.

3.1.3.2. Defining the workspace editor

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

To define the editor to use with the workspace:

1. Click the Editors tab.

NOTE

The recommended editor for CodeReady Workspaces 2.0 is Che-Theia.

2. Enable the editor to add and click the Save button.

Red Hat CodeReady Workspaces 2.0 End-user Guide

24

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

3. Click the Devfile tab to view the changes.

3.1.3.3. Defining specific container images

Procedure

To add a new container image:

1. Copy the following section from the devfile into components:

- mountSources: true
 command:
 - sleep
 args:
 - infinity
 memoryLimit: 1Gi
 alias: maven3-jdk11
 type: dockerimage
 endpoints:

CHAPTER 3. WORKSPACES OVERVIEW

25

2. When using type: kubernetes or type: openshift, you must:

Use seperate recipe files.

NOTE

To use separate recipe files, the paths can be relative or absolute. For
example:

Alternatively, add the content as referenceContent (the referenceContent field replaces
the CodeReady Workspaces 1.2 recipe content).

3. Add a CodeReady Workspaces 1.2 recipe content to the CodeReady Workspaces 2.0 devfile as
referenceContent:

a. Click the Containers tab (Workspace → Details → Containers).

 - name: 8080/tcp
 port: 8080
 volumes:
 - name: projects
 containerPath: /projects
 image: 'maven:3.6.0-jdk-11'

...
 type: kubernetes
 reference: deploy_k8s.yaml
...

...
 type: openshift
 reference: deploy_openshift.yaml
...

Red Hat CodeReady Workspaces 2.0 End-user Guide

26

b. Copy the CodeReady Workspaces 1.2 recipe, and paste it into the separate CodeReady
Workspaces 2.0 component as a referenceContent.

c. Set the type from the original CodeReady Workspaces 1.2 configuration. The following is an
example of the resulting file:

4. Copy the required fields from the old workspace (image, volumes, endpoints). For example:

 type: kubernetes
 referenceContent: |
 apiVersion: v1
 kind: Pod
 metadata:
 name: ws
 spec:
 containers:
 -
 image: 'rhche/centos_jdk8:latest'
 name: dev
 resources:
 limits:
 memory: 512Mi

CHAPTER 3. WORKSPACES OVERVIEW

27

Table 3.3. Сhe 6 and Сhe 7 equivalence table

CodeReady Workspaces 1.2 workspace
configuration

CodeReady Workspaces 2.0 workspace devfile

environments['defaultEnv'].machines['tar
get'].servers

components[n].endpoints

environments['defaultEnv'].machines['ma
chineName'].volumes

components[n].volumes

environments['defaultEnv'].recipe.type components[n].type

environments['defaultEnv'].recipe.conten
t

components[n].image

5. Change the memoryLimit and alias variables, if needed. Here, the field alias is used to set a

Red Hat CodeReady Workspaces 2.0 End-user Guide

28

5. Change the memoryLimit and alias variables, if needed. Here, the field alias is used to set a
name for the component. It is generated automatically from the image field, if not set.

6. Change the memoryLimit field to specify the RAM required for the component.

7. Open the Devfile tab to see the changes.

8. Repeat the steps to add additional container images.

3.1.3.4. Adding commands to your workspace

The following is a comparison between workspace configuration commands in CodeReady Workspaces
1.2 (Figure 1) and CodeReady Workspaces 2.0 (Figure 2):

Figure 3.1. An example of the Workspace configuration commands in CodeReady Workspaces 1.2

 image: 'maven:3.6.0-jdk-11'
 alias: maven3-jdk11

 alias: maven3-jdk11
 memoryLimit: 256M

CHAPTER 3. WORKSPACES OVERVIEW

29

Figure 3.1. An example of the Workspace configuration commands in CodeReady Workspaces 1.2

Figure 3.2. An example of the Workspace configuration commands in CodeReady Workspaces 2.0

Table 3.4. Сhe 6 and Сhe 7 equivalence table

CodeReady Workspaces 1.2 workspace
configuration

CodeReady Workspaces 2.0 workspace devfile

environments['defaultEnv'].commands[n].na
me

commands[n].name

environments['defaultEnv'].commands[n].act
ions.command

components[n].commandLine

Procedure

To define commands to your workspace, edit the workspace devfile:

1. Add (or replace) the commands section with the first command. Change the name and the
command fields from the original workspace configuration (see the preceding equivalence
table).

commands:

Red Hat CodeReady Workspaces 2.0 End-user Guide

30

2. Copy the following YAML code into the commands section to add a new command. Change
the name and the command fields from the original workspace configuration (see the
preceding equivalence table).

3. Optionally, add the component field into actions. This indicates the component alias where the
command will be performed.

4. Repeat step 2 to add more commands to the devfile.

5. Click the Devfile tab to view the changes.

6. Save changes and start the new CodeReady Workspaces 2.0 workspace.

 - name: build
 actions:
 - type: exec
 command: mvn clean install

 - name: build and run
 actions:
 - type: exec
 command: mvn clean install && java -jar

CHAPTER 3. WORKSPACES OVERVIEW

31

3.2. CONFIGURING A WORKSPACE USING A DEVFILE

To quickly and easily configure a workspace, use a devfile. For an introduction to devfiles and
instructions for their use, see below.

3.2.1. What is a devfile

A devfile is a file that describes and define a development environment:

the source code

the development components (browser IDE tools and application runtimes)

a list of pre-defined commands

projects to clone

Devfiles are YAML files that CodeReady Workspaces consumes and transforms into a cloud workspace
composed of multiple containers. The devfile can be saved in the root folder of a Git repository, a
feature branch of a Git repository, a publicly accessible destination, or as a separate, locally stored
artifact.

When creating a workspace, CodeReady Workspaces uses that definition to initiate everything and run
all the containers for the required tools and application runtimes. CodeReady Workspaces also mounts
file-system volumes to make source code available to the workspace.

Devfiles can be versioned with the project source code. When there is a need for a workspace to fix an
old maintenance branch, the project devfile provides a definition of the workspace with the tools and
the exact dependencies to start working on the old branch. Use it to instantiate workspaces on demand.

CodeReady Workspaces maintains the devfile up-to-date with the tools used in the workspace:

Projects of the workspace (path, Git location, branch)

Commands to perform daily tasks (build, run, test, debug)

Runtime environment (container images to run the application)

Che-Theia plug-ins with tools, IDE features, and helpers that a developer would use in the

Red Hat CodeReady Workspaces 2.0 End-user Guide

32

Che-Theia plug-ins with tools, IDE features, and helpers that a developer would use in the
workspace (Git, Java support, Sonarlint, Pull Request)

3.2.2. Disambiguation between stacks and devfiles

This section describes differences between stacks in CodeReady Workspaces 1.2 and devfiles in
CodeReady Workspaces 2.0

Starting with CodeReady Workspaces 2.0:

A stack is a pre-configured workspace.

A devfile is a configuration YAML file that CodeReady Workspaces consumes and transforms in
a cloud workspace composed of multiple containers.

In CodeReady Workspaces 1.2, stacks were defined by a stacks.json file that was included with the che
server. In contrast, in CodeReady Workspaces 2.0, the stacks.json file does not exist. Instead, a stack is
defined in the devfile registry, which is a separate service. Every single devfile in the registry
corresponds to a stack.

Note that in CodeReady Workspaces 1.2, stacks and workspaces were defined using two different
formats. However, with CodeReady Workspaces 2.0, the devfile format is used to define both.
Nevertheless, a user opening the user dashboard does not notice any difference: in CodeReady
Workspaces 2.0, a list of stacks is still present to choose from as a starting point to create a workspace.

3.2.3. Creating a workspace from the default branch of a Git repository

A workspace can be created by pointing to a devfile that is stored in a Git source repository. The
CodeReady Workspaces instance then uses the discovered devfile.yaml file to build a workspace using
the /f?url= API.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

The devfile.yaml file in the root folder of a Git repository available over HTTPS. See
Section 3.5, “Making a workspace portable using a devfile” for detailed information about
creating and using devfiles.

Procedure

Run the workspace by opening the following URL: https://<CheHost>/f?url=https://<GitRepository>

Example

https://che.openshift.io/f?url=https://github.com/eclipse/che

3.2.4. Creating a workspace from a feature branch of a Git repository

A workspace can be created by pointing to devfile that is stored in a Git source repository on a feature
branch of the user’s choice. The CodeReady Workspaces instance then uses the discovered devfile to
build a workspace.

Prerequisites

CHAPTER 3. WORKSPACES OVERVIEW

33

https://github.com/eclipse/che/blob/master/devfile.yaml
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

The devfile.yaml file in the root folder of a Git repository on a specific branch of the user’s
choice available over HTTPS. See Section 3.5, “Making a workspace portable using a devfile” for
detailed information about creating and using devfiles.

Procedure

Execute the workspace by opening the following URL: https://<CheHost>/f?url=<GitHubBranch>

Example

Use following URL format to open an experimental quarkus-quickstarts branch hosted on
che.openshift.io.

https://che.openshift.io/f?url=https://github.com/maxandersen/quarkus-quickstarts/tree/che

3.2.5. Creating a workspace from a publicly accessible standalone devfile using
HTTP

A workspace can be created using a devfile, the URL of which is pointing to the raw content of the
devfile. The CodeReady Workspaces instance then uses the discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

The publicly-accessible standalone devfile.yaml file. See Section 3.5, “Making a workspace
portable using a devfile” for detailed information about creating and using devfiles.

Procedure

1. Execute the workspace by opening the following URL: https://<your-che-host>/f?
url=https://<yourhosturl>/devfile.yaml

Example

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml

3.2.6. Overriding devfile values using factory parameters

Values in the following sections of a remote devfile can be overridden using specially constructed
additional factory parameters:

apiVersion

metadata

projects

Red Hat CodeReady Workspaces 2.0 End-user Guide

34

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://github.com/quarkusio/quarkus-quickstarts
https://che.openshift.io
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

A publicly accessible standalone devfile.yaml file. See Section 3.5, “Making a workspace
portable using a devfile” for detailed information about creating and using devfiles.

Procedure

1. Open the workspace by navigating to the following URL: https://<che-host>/f?
url=https://<hostURL>/devfile.yaml&override.<parameter.path>=<value>

Example of overriding the generateName property

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml&override.metadata.generateName=myprefix

Example of overriding project source branch property

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml&override.projects.web-java-spring-
petclinic.source.branch=1.0.x

3.2.7. Creating a workspace using crwctl and a local devfile

A workspace can be created by pointing the crwctl tool to a locally stored devfile. The CodeReady
Workspaces instance then uses the discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

The CodeReady Workspaces CLI management tool. See the CodeReady Workspaces 2.0
Installation Guide.

The devfile is available on the local filesystem in the current working directory. See Section 3.5,
“Making a workspace portable using a devfile” for detailed information about creating and using
devfiles.

Example

Download the devfile.yaml file from the GitHub repository to the current working directory.

Procedure

1. Run a workspace from a devfile using the workspace:start parameter with the crwctl tool as
follows:

$ crwctl workspace:start --devfile=devfile.yaml

Additional resources

CHAPTER 3. WORKSPACES OVERVIEW

35

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://github.com/eclipse/che/blob/master/devfile.yaml

Additional resources

Section 3.5, “Making a workspace portable using a devfile”

3.3. CREATING A WORKSPACE FROM CODE SAMPLE

Every stack includes a sample codebase, which is defined by the devfile of the stack. This section
explains how to create a workspace from this code sample in a sequence of three procedures.

1. Creating a workspace from the user dashboard .

2. Changing the configuration of the workspace to add code sample.

3. Running an existing workspace from the user dashboard .

For more information on devfiles, see Section 3.2, “Configuring a workspace using a devfile” .

3.3.1. Creating a workspace from User Dashboard

This section describes how to create a workspace from the User Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Chapter 1, Navigating CodeReady
Workspaces using the Dashboard.

2. In the left navigation panel, navigate to Workspaces.

3. Click on the Add Workspace button.

4. Define a Name for the workspace. A generated name is proposed. It can be modified.

5. In the Stack section, select the workspace runtime environment that will be used to build and
run projects from the list.

Red Hat CodeReady Workspaces 2.0 End-user Guide

36

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

VIEWING THE COMPUTE RESOURCE LIMITS

The memory needed by the stack is pre-calculated and displayed on the stack
description line. Changing the memory requirements is only possible from the
devfile.

6. Start the workspace: click on the Create & Open button at the top or bottom of the form:

CONFIGURING THE WORKSPACE BEFORE START

Instead of configuring the workspace once it has started, it is possible to configure the workspace
before start.

1. From the top of the page, click the down arrow next to the Create & Open button.

2. Select the menu item below to edit the workspace configuration.

DEVFILE’S NAME IS IGNORED

The dashboard always use name specified in step 4. as a workspace name. The stack’s
underlying devfile’s name and generateName are overriden by it.

3.3.2. Changing the configuration of an existing workspace from the User
Dashboard

This section describes how to change the configuration of an existing workspace from the User

CHAPTER 3. WORKSPACES OVERVIEW

37

This section describes how to change the configuration of an existing workspace from the User
Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Chapter 1, Navigating CodeReady
Workspaces using the Dashboard.

2. In the left navigation panel, navigate to Workspaces.

3. Click on the name of a workspace to navigate to the configuration overview page.

4. Click on the Overview tab, to execute following actions:

Change the Workspace name.

Toggle Ephemeral mode.

Export the workspace configuration to a file or private cloud.

Delete the workspace.

1. In the Projects section, choose the projects to integrate in the workspace.

a. Click on the Add Project button

b. Select the projects to integrate in the workspace.

c. Click on th Add button.

Red Hat CodeReady Workspaces 2.0 End-user Guide

38

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

2. In the Plugins section, choose the plugins to integrate in the workspace.

EXAMPLE

Start with a generic Java-based stack, then later add support for Node or Python.

3. In the Editors section, choose the editors to integrate in the workspace. The CodeReady
Workspaces 2.0 editor is based on Che-Theia.

EXAMPLE: SWITCH TO THE CODEREADY WORKSPACES 1.2 EDITOR

To Switch to the CodeReady Workspaces 1.2 editor, select the GWT IDE.

5. From the Devfile tab, edit the workspace’s YAML configuration. See Section 3.5.5, “Devfile
reference”.

EXAMPLE: ADD COMMANDS

CHAPTER 3. WORKSPACES OVERVIEW

39

EXAMPLE: ADD COMMANDS

EXAMPLE: ADD A PROJECT

To add a project into the workspace, add or edit the following section:

projects:
 - name: che
 source:
 type: git
 location: 'https://github.com/eclipse/che.git'

3.3.3. Running an existing workspace from the User Dashboard

This section describes how to run an existing workspace from the User Dasboard

3.3.3.1. Running an existing workspace from the User Dashboard with the Run button

This section describes how to run an existing workspace from the User Dashboard using the Run button.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Chapter 1, Navigating CodeReady
Workspaces using the Dashboard.

2. In the left navigation panel, navigate to Workspaces.

Red Hat CodeReady Workspaces 2.0 End-user Guide

40

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

3. Click on the name of a non-running workspace to navigate to the overview page.

4. Click on the Run button in the top right corner of the page.

5. The workspace is started.

6. The browser does not navigates to the workspace.

3.3.3.2. Running an existing workspace from the User Dashboard using the Open button

This section describes how to run an existing workspace from the User Dashboard using the Open
button.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Chapter 1, Navigating CodeReady
Workspaces using the Dashboard.

2. In the left navigation panel, navigate to Workspaces.

3. Click on the name of a non-running workspace to navigate to the overview page.

4. Click on the Open button in the top right corner of the page.

5. The workspace is started.

6. The browser navigates to the workspace.

3.3.3.3. Running an existing workspace from the User Dashboard using the Recent
Workspaces

This section describes how to run an existing workspace from the User Dashboard using the Recent
Workspaces.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Chapter 1, Navigating CodeReady
Workspaces using the Dashboard.

2. In the left navigation panel, in the Recent Workspaces section, right-click on the name of a

CHAPTER 3. WORKSPACES OVERVIEW

41

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

2. In the left navigation panel, in the Recent Workspaces section, right-click on the name of a
non-running workspace and click on Start in the contextual menu to start it.

3.4. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF
A PROJECT

This section describes how to create a new workspace to edit an existing codebase.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace with plug-ins related to your development environment defined on this
instance of Red Hat CodeReady Workspaces Section 3.1, “Creating and configuring a new
CodeReady Workspaces 2.0 workspace”.

There are two ways to do that before starting a workspace:

Select a stack from the Dashboard, then change the devfile to include your project

To create a new workspace to edit an existing codebase, use one of the following three methods after
you have started the workspace:

Import from the Dashboard into an existing workspace

Import to a running workspace using the git clone command

Import to a running workspace using git clone in a terminal

3.4.1. Importing from the Dashboard into an existing workspace

Red Hat CodeReady Workspaces 2.0 End-user Guide

42

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

1. Import the project. There are at least two ways to import a project via the Dashboard.

From the Dashboard, select Workspaces, then select your workspace by clicking on its
name. This will link you to the workspace’s Overview tab.

Or, use the gear icon. This will link to the Devfile tab where you can enter your own YAML
configuration.

2. Click the Projects tab.

3. Click Add Project. You can then import a sample project, create a blank project, import from a
Git project, or import from a zip file.

NOTE

You can add a project to a non-running workspace, but you must start the workspace to
delete it.

3.4.1.1. Creating a new repository

To add a blank project:

1. Type a name and a description in the Name and Description fields.

CHAPTER 3. WORKSPACES OVERVIEW

43

2. Click Open to open your workspace.

3.4.1.2. Editing an existing repository

To edit an existing repository:

1. Choose the Git project or zip file, and CodeReady Workspaces will load it into your workspace.

2. To open the workspace, click the Open button.

Red Hat CodeReady Workspaces 2.0 End-user Guide

44

3.4.1.3. Editing the commands after importing a project

After you have a project in your workspace, you can add commands to it. Adding commands to your
projects allows you to run, debug, or launch your application in a browser.

To add commands to the project:

1. Open the workspace configuration in the Dashboard, then select the Devfile tab.

2. Open the workspace.

3. To run a command, select Terminal > Run Task from the main menu.

CHAPTER 3. WORKSPACES OVERVIEW

45

4. To configure commands, select Terminal > Configure Tasks from the main menu.

3.4.2. Importing to a running workspace using the Git: Clone command

To import to a running workspace using the Git: Clone command:

1. Start a workspace, then use the Git: Clone command from the command palette or the
Welcome screen to import a project to a running workspace.

Red Hat CodeReady Workspaces 2.0 End-user Guide

46

2. Open the command palette using F1 or CTRL-SHIFT-P, or from the link in the Welcome screen.

3. Enter the path to the project you want to clone.

3.4.3. Importing to a running workspace with git clone in a terminal

In addition to the approaches above, you can also start a workspace, open a Terminal, and type git
clone to pull code.

NOTE

CHAPTER 3. WORKSPACES OVERVIEW

47

NOTE

Importing or deleting workspace projects in the terminal does not update the workspace
configuration, and the change is not reflected in the Project and Devfile tabs in the
dashboard.

Similarly, if you add a project via the Dashboard, then delete it with rm -fr myproject, it
may still appear in the Projects or Devfile tab.

3.5. MAKING A WORKSPACE PORTABLE USING A DEVFILE

To transfer a configured CodeReady Workspaces workspace, create and export the devfile of the
workspace and load the devfile on a different host to initialize a new instance of the workspace. For
detailed instructions on how to create such a devfile, see below.

3.5.1. What is a devfile

A devfile is a file that describes and define a development environment:

the source code

the development components (browser IDE tools and application runtimes)

a list of pre-defined commands

projects to clone

Devfiles are YAML files that CodeReady Workspaces consumes and transforms into a cloud workspace
composed of multiple containers. The devfile can be saved in the root folder of a Git repository, a
feature branch of a Git repository, a publicly accessible destination, or as a separate, locally stored
artifact.

When creating a workspace, CodeReady Workspaces uses that definition to initiate everything and run
all the containers for the required tools and application runtimes. CodeReady Workspaces also mounts
file-system volumes to make source code available to the workspace.

Devfiles can be versioned with the project source code. When there is a need for a workspace to fix an
old maintenance branch, the project devfile provides a definition of the workspace with the tools and
the exact dependencies to start working on the old branch. Use it to instantiate workspaces on demand.

CodeReady Workspaces maintains the devfile up-to-date with the tools used in the workspace:

Projects of the workspace (path, Git location, branch)

Commands to perform daily tasks (build, run, test, debug)

Runtime environment (container images to run the application)

Che-Theia plug-ins with tools, IDE features, and helpers that a developer would use in the
workspace (Git, Java support, Sonarlint, Pull Request)

3.5.2. A minimal devfile

The following is the minimum content required in a devfile.yaml file:

apiVersion

Red Hat CodeReady Workspaces 2.0 End-user Guide

48

https://redhat-developer.github.io/devfile/devfile#apiversion

metadata name

projects name and source

For a complete devfile example, see Red Hat CodeReady Workspaces in CodeReady Workspaces
devfile.yaml.

NAME OR GENERATENAME MUST BE DEFINED

Both name and generateName are optional parameters, but at least one of them must
be defined. See Section 3.5.3, “Generating workspace names” .

3.5.3. Generating workspace names

To specify a prefix for automatically generated workspace names, set the generateName parameter in
the devfile.yaml file:

The workspace name will be in the <generateName>YYYYY format (for example, che-2y7kp). Y is
random [a-z0-9] character.

The following naming rules apply when creating workspaces:

When name is defined, it is used as the workspace name: <name>

When only generateName is defined, it is used as the base of the generated name:
<generateName>YYYYY

NOTE

For workspaces created using a factory, defining name or generateName has the same
effect. The defined value is used as the name prefix: <name>YYYYY or
<generateName>YYYYY. The generateName has precedence over name when both are
defined.

3.5.4. Writing a devfile for a project

This section describes how to create a minimal devfile for your project and how to include more than one
projects in a devfile.

3.5.4.1. Preparing a minimal devfile

apiVersion: 1.0.0
metadata:
 name: che-in-che-out
projects:
 - name: che
 source:
 type: git
 location: 'https://github.com/eclipse/che.git'

apiVersion: 1.0.0
metadata:
 generateName: che-

CHAPTER 3. WORKSPACES OVERVIEW

49

https://redhat-developer.github.io/devfile/devfile#metadata
https://redhat-developer.github.io/devfile/devfile#projects
https://github.com/eclipse/che/blob/master/devfile.yaml

A minimal devfile sufficient to run a workspace consists of the following parts:

Specification version

Name

Example of a minimal devfile with no project

Without any further configuration, a workspace with the default editor is launched along with its default
plug-ins, which are configured on the CodeReady Workspaces Server. Che-Theia is configured as the
default editor along with the CodeReady Workspaces Machine Exec plug-in.

Add the following parts for a more functional workspace:

List of components: Development components and user runtimes

List of projects: Source code repositories

List of commands: Actions to manage the workspace components, such as running the
development tools, starting the runtime environments, and others

Example of a minimal devfile with a project

3.5.4.2. Specifying multiple projects in a devfile

A single devfile can specify multiple projects. For each project, specify the type of the source
repository, its location, and optionally also the directory to which the project should be cloned to.

Example of a devfile with two projects

apiVersion: 1.0.0
metadata:
 name: minimal-workspace

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/spring-projects/spring-petclinic.git'
components:
 - type: chePlugin
 id: redhat/java/latest

apiVersion: 1.0.0
metadata:
 name: example-devfile
projects:
- name: frontend
 source:
 type: git
 location: https://github.com/acmecorp/frontend.git
- name: backend

Red Hat CodeReady Workspaces 2.0 End-user Guide

50

In the preceding example, there are two projects defined, frontend and backend. Each project is
located in its own repository. The backend project has a specific requirement to be cloned into the
src/github.com/acmecorp/backend/ directory under the source root (implicitly defined by the
CodeReady Workspaces runtime) while the frontend project will be cloned into the frontend/ directory
under the source root.

Additional resources

For a detailed explanation of all devfile component assignments and possible values, see:

Specification repository

Detailed json-schema documentation

These sample devfiles are a good source of inspiration:

Sample devfiles for Red Hat CodeReady Workspaces workspaces used by default in the user
interface.

Sample devfiles for Red Hat CodeReady Workspaces workspaces from Red Hat Developer
program.

3.5.5. Devfile reference

This section contains devfile reference and instructions on how to use the various elements that
devfiles consist of.

3.5.5.1. Adding projects to a devfile

In most cases, a devfile contains one or more projects. A workspace is created to develop those projects.
Projects are added in the projects section of devfiles.

Each project in a single devfile must have:

Unique name

Source specified

Project source consists of two mandatory values: type and location.

type

The kind of project-source provider.

location

The URL of project source.

CodeReady Workspaces supports the following project types:

git

Projects with sources in Git. The location points to a clone link.

github

 clonePath: src/github.com/acmecorp/backend
 source:
 type: git
 location: https://github.com/acmecorp/backend.git

CHAPTER 3. WORKSPACES OVERVIEW

51

https://github.com/redhat-developer/devfile
https://redhat-developer.github.io/devfile/devfile
https://github.com/eclipse/che-devfile-registry/tree/master/devfiles
https://github.com/redhat-developer/devfile/tree/master/samples

1

2

Same as git but for projects hosted on GitHub only. Use git for projects that do not use GitHub-
specific features.

zip

Projects with sources in a ZIP archive. Location points to a ZIP file.

3.5.5.1.1. Project-source type: git

startPoint is the general value for tag, commitId, and branch. The startPoint, tag, commitId, and
branch parameters are mutually exclusive. When more than one is supplied, the following order is
used: startPoint, tag, commitId, branch.

sparseCheckoutDir the template for the sparse checkout Git feature. This is useful when only a
part of a project (typically only a single directory) is needed.

Example 3.1. sparseCheckoutDir parameter settings

Set to /my-module/ to create only the root my-module directory (and its content).

Omit the leading slash (my-module/) to create all my-module directories that exist in the
project. Including, for example, /addons/my-module/.
The trailing slash indicates that only directories with the given name (including their content)
should be created.

Use wildcards to specify more than one directory name. For example, setting module-*
checks out all directories of the given project that start with module-.

For more information, see Sparse checkout in Git documentation .

3.5.5.1.2. Project-source type: zip

3.5.5.1.3. Project clone-path parameter: clonePath

The clonePath parameter specifies the path into which the project is to be cloned. The path must be
relative to the /projects/ directory, and it cannot leave the /projects/ directory. The default value is the
project name.

Example devfile with projects

source:
 type: git
 location: https://github.com/eclipse/che.git
 startPoint: master 1
 tag: 7.2.0
 commitId: 36fe587
 branch: master
 sparseCheckoutDir: wsmaster 2

source:
 type: zip
 location: http://host.net/path/project-src.zip

Red Hat CodeReady Workspaces 2.0 End-user Guide

52

https://github.com/
https://git-scm.com/docs/git-read-tree#_sparse_checkout

See Section 3.5.5.2, “Adding components to a devfile” for instructions on how to add tooling to a devfile.

3.5.5.2. Adding components to a devfile

Each component in a single devfile must have a unique name.

3.5.5.2.1. Component type: cheEditor

Describes the editor used in the workspace by defining its id. A devfile can only contain one component
of the cheEditor type.

When cheEditor is missing, a default editor is provided along with its default plug-ins. The default plug-
ins are also provided for an explicitly defined editor with the same id as the default one (even if it is a
different version). Che-Theia is configured as default editor along with the CodeReady Workspaces
Machine Exec plug-in.

To specify that a workspace requires no editor, use the editorFree:true attribute in the devfile
attributes.

3.5.5.2.2. Component type: chePlugin

Describes plug-ins in a workspace by defining their id. It is allowed to have several chePlugin
components.

Both types above use an ID, which is slash-separated publisher, name and version of plug-in from the
CodeReady Workspaces Plug-in registry.
List of available CodeReady Workspaces plugins and more information about registry can be found in
the CodeReady Workspaces plug-in registry GitHub repository.

apiVersion: 1.0.0
metadata:
 name: my-project-dev
projects:
 - name: my-project-resourse
 clonePath: resources/my-project
 source:
 type: zip
 location: http://host.net/path/project-res.zip
 - name: my-project
 source:
 type: git
 location: https://github.com/my-org/project.git
 branch: develop

components:
 - alias: theia-editor
 type: cheEditor
 id: eclipse/che-theia/next

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1

CHAPTER 3. WORKSPACES OVERVIEW

53

https://github.com/eclipse/che-plugin-registry

3.5.5.2.3. Specifying an alternative component registry

To specify an alternative registry for the cheEditor and chePlugin component types, use the
registryUrl parameter:

3.5.5.2.4. Specifying a component by linking to its descriptor

An alternative way of specifying cheEditor or chePlugin, instead of using the editor or plug-in id (and
optionally an alternative registry), is to provide a direct link to the component descriptor (typically
named meta.yaml) by using the reference field:

NOTE

It is not possible to mix the id and reference fields in a single component definition; they
are mutually exclusive.

3.5.5.2.5. Tuning chePlugin component configuration

A chePlugin component may need to be precisely tuned, and in such case, component preferences can
be used. The example shows how to configure JVM using plug-in preferences.

3.5.5.2.6. Component type: kubernetes

A complex component type that allows to apply configuration from a list of OpenShift components.

The content can be provided either via the reference attribute, which points to the file with the
component content.

Alternatively, to post a devfile with such components to REST API, the contents of the OpenShift list

 components:
 - alias: exec-plugin
 type: chePlugin
 registryUrl: https://my-customregistry.com
 id: eclipse/che-machine-exec-plugin/0.0.1

 components:
 - alias: exec-plugin
 type: chePlugin
 reference: https://raw.githubusercontent.com.../plugin/1.0.1/meta.yaml

 id: redhat/java/0.38.0
 type: chePlugin
 preferences:
 java.jdt.ls.vmargs: '-noverify -Xmx1G -XX:+UseG1GC -XX:+UseStringDeduplication'

 components:
 - alias: mysql
 type: kubernetes
 reference: petclinic.yaml
 selector:
 app.kubernetes.io/name: mysql
 app.kubernetes.io/component: database
 app.kubernetes.io/part-of: petclinic

Red Hat CodeReady Workspaces 2.0 End-user Guide

54

Alternatively, to post a devfile with such components to REST API, the contents of the OpenShift list
can be embedded into the devfile using the referenceContent field:

3.5.5.2.7. Overriding container entrypoints

As with the understood by OpenShift).

There can be more containers in the list (contained in pods or pod templates of deployments). To select
which containers to apply the entrypoint changes to.

The entrypoints can be defined as follows:

The entrypoints list contains constraints for picking the containers along with the command and args
parameters to apply to them. In the example above, the constraint is parentName: mysqlServer, which
will cause the command to be applied to all containers defined in any parent object called mysqlServer.
The parent object is assumed to be a top level object in the list defined in the referenced file, which is
app-deployment.yaml in the example above.

Other types of constraints (and their combinations) are possible:

containerName

the name of the container

parentName

the name of the parent object that (indirectly) contains the containers to override

parentSelector

 components:
 - alias: mysql
 type: kubernetes
 reference: petclinic.yaml
 referenceContent: |
 kind: List
 items:
 -
 apiVersion: v1
 kind: Pod
 metadata:
 name: ws
 spec:
 containers:
 ... etc

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 entrypoints:
 - parentName: mysqlServer
 command: ['sleep']
 args: ['infinity']
 - parentSelector:
 app: prometheus
 args: ['-f', '/opt/app/prometheus-config.yaml']

CHAPTER 3. WORKSPACES OVERVIEW

55

the set of labels the parent object needs to have

A combination of these constraints can be used to precisely locate the containers inside the referenced
OpenShift list.

3.5.5.2.8. Overriding container environment variables

To provision or override entrypoints in a OpenShift or OpensShift component, configure it in the
following way:

This is useful for temporary content or without access to editing the referenced content. The specified
environment variables are provisioned into each init container and containers inside all Pods and
Deployments.

3.5.5.2.9. Specifying mount-source option

To specify a project sources directory mount into container(s), use the mountSources parameter:

If enabled, project sources mounts will be applied to every container of the given component. This
parameter is also applicable for chePlugin type components.

3.5.5.2.10. Component type: dockerimage

A component type that allows to define a container image-based configuration of a container in a
workspace. A devfile can only contain one component of the dockerimage type. The dockerimage
type of component brings in custom tooling into the workspace. The component is identified by its
image.

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 env:
 - name: ENV_VAR
 value: value

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 mountSources: true

 components:
 - alias: maven
 type: dockerimage
 image: eclipe/maven-jdk8:latest
 volumes:
 - name: mavenrepo
 containerPath: /root/.m2
 env:
 - name: ENV_VAR
 value: value
 endpoints:
 - name: maven-server

Red Hat CodeReady Workspaces 2.0 End-user Guide

56

Example of a minimal dockerimage component

It specifies the type of the component, dockerimage and the image attribute names the image to be
used for the component using the usual docker naming conventions, that is, the above type attribute is
equal to docker.io/library/golang:latest.

A dockerimage component has many features that enable augmenting the image with additional
resources and information needed for meaningful integration of the tool provided by the image with
Red Hat CodeReady Workspaces.

3.5.5.2.10.1. Mounting project sources

For the dockerimage component to have access to the project sources, you must set the
mountSources attribute to true.

The sources is mounted on a location stored in the CHE_PROJECTS_ROOT environment variable that
is made available in the running container of the image. This location defaults to /projects.

3.5.5.2.10.2. Container Entrypoint

The command attribute of the dockerimage along with other arguments, is used to modify the
entrypoint command of the container created from the image. In Red Hat CodeReady Workspaces the
container is needed to run indefinitely so that you can connect to it and execute arbitrary commands in
it at any time. Because the availability of the sleep command and the support for the infinity argument

 port: 3101
 attributes:
 protocol: http
 secure: 'true'
 public: 'true'
 discoverable: 'false'
 memoryLimit: 1536M
 command: ['tail']
 args: ['-f', '/dev/null']

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
type: dockerimage
image: golang
memoryLimit: 512Mi
command: ['sleep', 'infinity']

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
type: dockerimage
image: golang
memoryLimit: 512Mi
mountSources: true
command: ['sleep', 'infinity']

CHAPTER 3. WORKSPACES OVERVIEW

57

for it is different and depends on the base image used in the particular images, CodeReady Workspaces
cannot insert this behavior automatically on its own. However, you can take advantage of this feature to,
for example, start up necessary servers with modified configurations, etc.

3.5.5.2.10.3. Persistent Storage

Docker image tools can specify the custom volumes to be mounted on specific locations within the
image. Note that the volume names are shared across all components and therefore this mechanism can
also be used to share file systems between components.

3.5.5.2.11. Specifying container memory limit for components

To specify a container(s) memory limit for dockerimage, chePlugin, cheEditor, kubernetes,
openshift, use the memoryLimit parameter:

This limit will be applied to every container of the given component.

3.5.5.2.12. Environment variables

Red Hat CodeReady Workspaces allows you to configure Docker containers by modifying the
environment variables available in component’s configuration. Environment variables are supported by
the following component types: dockerimage, chePlugin, cheEditor, kubernetes, openshift. In case
component has multiple containers, environment variables will be provisioned to each container.

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 volumes:
 - name: cache
 containerPath: /.cache

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1
 memoryLimit: 1Gi
 - type: kubernetes
 reference: ../relative/path/postgres.yaml
 memoryLimit: 512M

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true

Red Hat CodeReady Workspaces 2.0 End-user Guide

58

NOTE

The variable expansion works between the environment variables, and it uses the
OpenShift convention for the variable references.

The predefined variables are available for use in custom definitions.

The following environment variables are pre-set by the CodeReady Workspaces server:

CHE_PROJECTS_ROOT: The location of the projects directory (note that if the component
does not mount the sources, the projects will not be accessible).

CHE_WORKSPACE_LOGS_ROOT__DIR: The location of the logs common to all the
components. If the component chooses to put logs into this directory, the log files are
accessible from all other components.

CHE_API_INTERNAL: The URL to the CodeReady Workspaces server API endpoint used for
communication with the CodeReady Workspaces server.

CHE_WORKSPACE_ID: The ID of the current workspace.

CHE_WORKSPACE_NAME: The name of the current workspace.

CHE_WORKSPACE_NAMESPACE: The namespace of the current workspace.

CHE_MACHINE_TOKEN: The token used to authenticate the request against the CodeReady
Workspaces server.

CHE_MACHINE_AUTH_SIGNATUREPUBLICKEY: The public key used to secure the
communication with the CodeReady Workspaces server.

CHE_MACHINE_AUTH_SIGNATURE__ALGORITHM: The encryption algorithm used in the
secured communication with the CodeReady Workspaces server.

A devfiles may only need the CHE_PROJECTS_ROOT environment variable to locate the cloned
projects in the component’s container. More advanced devfiles might use the
CHE_WORKSPACE_LOGS_ROOT__DIR environment variable to read the logs (for example as part of
a devfile command). The environment variables used to securely access the CodeReady Workspaces
server are mostly out of scope for devfiles and are present only for advanced use cases that are usually
handled by the CodeReady Workspaces plug-ins.

3.5.5.2.12.1. Endpoints

You can specify the endpoints that the docker image exposes. These endpoints can be made accessible

 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next
 memoryLimit: 2Gi
 env:
 - name: HOME
 value: $(CHE_PROJECTS_ROOT)

CHAPTER 3. WORKSPACES OVERVIEW

59

to the users if the CodeReady Workspaces cluster is running using a OpenShift ingress or an OpenShift
route and to the other components within the workspace. You can create an endpoint for your
application or database, if your application or database server is listening on a port and you want to be
able to directly interact with it yourself or you want other components to interact with it.

Endpoints have a number of properties as shown in the following example:

Here, there are two dockerimages, each defining a single endpoint. Endpoint is an accessible port that
can be made accessible inside the workspace or also publicly (example, from the UI). Each endpoint has
a name and port, which is the port on which certain server running inside the container is listening. The
following are a few attributes that you can set on the endpoint:

discoverable: If an endpoint is discoverable, it means that it can be accessed using its name as

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - name: GOCACHE
 value: /tmp/go-cache
 endpoints:
 - name: web
 port: 8080
 attributes:
 discoverable: false
 public: true
 protocol: http
 - type: dockerimage
 image: postgres
 memoryLimit: 512Mi
 env:
 - name: POSTGRES_USER
 value: user
 - name: POSTGRES_PASSWORD
 value: password
 - name: POSTGRES_DB
 value: database
 endpoints:
 - name: postgres
 port: 5432
 attributes:
 discoverable: true
 public: false

Red Hat CodeReady Workspaces 2.0 End-user Guide

60

discoverable: If an endpoint is discoverable, it means that it can be accessed using its name as
the hostname within the workspace containers (in the OpenShift parlance, a service is created
for it with the provided name).

public: The endpoint will be accessible outside of the workspace, too (such endpoint can be
accessed from the CodeReady Workspaces user interface). Such endpoints are publicized
always on port 80 or 443 (depending on whether tls is enabled in CodeReady Workspaces).

protocol: For public endpoints the protocol is a hint to the UI on how to construct the URL for
the endpoint access. Typical values are http, https, ws, wss.

secure: A boolean (defaulting to false) specifying whether the endpoint is put behind a JWT
proxy requiring a JWT workspace token to grant access.

path: The URL of the endpoint

unsecuredPaths: A comma-separated list of paths in the endpoint that should not be secured,
even if the secure attribute is set to true

cookiesAuthEnabled: When set to true (the default is false), the JWT workspace token is
automatically fetched and included in a workspace-specific cookie to allow requests to pass
through the JWT proxy.

WARNING

This setting potentially allows a CSRF attack when used in conjunction with
a server using POST requests.

When starting a new server within a component, CodeReady Workspaces autodetects this, and the UI
offers to automatically expose this port as a public port. This is useful for debugging a web application,
for example. It is not possible to do this for servers that autostart with the container (for example, a
database server). For such components, specify the endpoints explicitly.

3.5.5.2.12.2. OpenShift resources

Complex deployments can be described using OpenShift resource lists that can be referenced in the
devfile. This makes them a part of the workspace.

IMPORTANT



CHAPTER 3. WORKSPACES OVERVIEW

61

https://en.wikipedia.org/wiki/Cross-site_request_forgery

IMPORTANT

Because a workspace is internally represented as a single deployment, all
resources from the OpenShift list are merged into that single deployment.

Be careful when designing such lists because this can result in name conflicts and
other problems.

Only the following subset of the OpenShift objects are supported: deployments,
pods, services, persistent volume claims, secrets, and config maps.
Kubernetes Ingresses are ignored, but OpenShift routes are supported. A
workspace created from a devfile using any other object types fails to start.

When running CodeReady Workspaces on a OpenShift cluster, only OpenShift
lists are supported. When running CodeReady Workspaces on an OpenShift
cluster, both OpenShift lists are supported.

The preceding component references a file that is relative to the location of the devfile itself. Meaning,
this devfile is only loadable by a CodeReady Workspaces factory to which you supply the location of the
devfile and therefore it is able to figure out the location of the referenced OpenShift resource list.

The following is an example of the postgres.yaml file.

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: kubernetes
 reference: ../relative/path/postgres.yaml

apiVersion: v1
kind: List
items:
-
 apiVersion: v1
 kind: Deployment
 metadata:
 name: postgres
 labels:
 app: postgres
 spec:
 template:
 metadata:
 name: postgres
 app:
 name: postgres
 spec:
 containers:
 - image: postgres

Red Hat CodeReady Workspaces 2.0 End-user Guide

62

For a basic example of a devfile with an associated OpenShift list, see web-nodejs-with-db-sample on
redhat-developer GitHub.

If you use generic or large resource lists from which you will only need a subset of resources, you can
select particular resources from the list using a selector (which, as the usual OpenShift selectors, works
on the labels of the resources in the list).

 name: postgres
 ports:
 - name: postgres
 containerPort: 5432
 volumeMounts:
 - name: pg-storage
 mountPath: /var/lib/postgresql/data
 volumes:
 - name: pg-storage
 persistentVolumeClaim:
 claimName: pg-storage
-
 apiVersion: v1
 kind: Service
 metadata:
 name: postgres
 labels:
 app: postgres
 name: postgres
 spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 app: postgres
-
 apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: pg-storage
 labels:
 app: postgres
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:

CHAPTER 3. WORKSPACES OVERVIEW

63

https://github.com/redhat-developer/devfile/tree/master/samples/web-nodejs-with-db-sample

Additionally, it is also possible to modify the entrypoints (command and arguments) of the containers
present in the resource list. For details of the advanced use case, see the reference (TODO: link).

3.5.5.3. Adding commands to a devfile

A devfile allows to specify commands to be available for execution in a workspace. Every command can
contain a subset of actions, which are related to a specific component in whose container it will be
executed.

You can use commands to automate the workspace. You can define commands for building and testing
your code, or cleaning the database.

The following are two kinds of commands:

CodeReady Workspaces specific commands: You have full control over what component
executes the command.

Editor specific commands: You can use the editor-specific command definitions (example:
tasks.json and launch.json in Che-Theia, which is equivalent to how these files work in VS
Code).

3.5.5.3.1. CodeReady Workspaces-specific commands

Each che-specific command has an action attribute that is a command to execute and a component
attribute that specifies the container in which the command should be executed. The commands are run
using the default shell in the container.

 - type: kubernetes
 reference: ../relative/path/postgres.yaml
 selector:
 app: postgres

 commands:
 - name: build
 actions:
 - type: exec
 component: mysql
 command: mvn clean
 workdir: /projects/spring-petclinic

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: dockerimage
 image: golang
 alias: go-cli
 memoryLimit: 512Mi
 mountSources: true

Red Hat CodeReady Workspaces 2.0 End-user Guide

64

+

NOTE

If a component to be used in a command must have an alias. This alias is used to
reference the component in the command definition. Example: alias: go-cli in
the component definition and component: go-cli in the command definition.
This ensures that Red Hat CodeReady Workspaces can find the correct container
to run the command in.

A command can have only one action.

3.5.5.3.2. Editor-specific commands

If the editor in the workspace supports it, the devfile can specify additional configuration in the editor-
specific format. This is dependent on the integration code present in the workspace editor itself and so
is not a generic mechanism. However, the default Che-Theia editor within Red Hat CodeReady
Workspaces is equipped to understand the tasks.json and launch.json files provided in the devfile.

 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - name: GOCACHE
 value: /tmp/go-cache
commands:
 - name: compile and run
 actions:
 - type: exec
 component: go-cli
 command: “go get -d && go run main.go”
 workdir: “${CHE_PROJECTS_ROOT}/src/github.com/acme/my-go-project”

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
commands:
 - name: tasks
 actions:
 - type: vscode-task
 referenceContent: >
 {
 "version": "2.0.0",
 "tasks": [
 {
 "label": "create test file",
 "type": "shell",
 "command": "touch ${workspaceFolder}/test.file"

CHAPTER 3. WORKSPACES OVERVIEW

65

1

2

This example shows association of a tasks.json file with a devfile. Notice the vscode-task type that
instructs the Che-Theia editor to interpret this command as a tasks definition and referenceContent
attribute that contains the contents of the file itself. You can also save this file separately from the
devfile and use reference attribute to specify a relative or absolute URL to it.

In addition to the vscode-task commands, the Che-Theia editor understands vscode-launch type
using which you can specify the launch configurations.

3.5.5.3.3. Command preview URL

WARNING

This is a Beta feature. Definition may change in future releases without any warning.
It’s available in devfile version 1.0.1-beta.

It is possible to specify a preview URL for commands that expose web UI. This URL is offered for
opening when the command is executed.

TCP port where the application listens. Mandatory parameter.

The path part of the URL to the UI. Optional parameter. The default is root (/).

The example above opens http://__<server-domain>__/myweb, where <server-domain> is the URL to
the dynamically created OpenShift Ingress or OpenShift Route.

3.5.5.3.3.1. Setting the default way of opening preview URLs

By default, a notification is displayed to ask the user how the URL should be opened. To specify the
preferred way of previewing a service URL, use preferences.

1. Open CodeReady Workspaces preferences in File → Settings → Open Preferences and find
che.task.preview.notifications in the Che section.

 }
]
 }



apiVersion: 1.0.1-beta

commands:
 - name: tasks
 previewUrl:
 port: 8080 1
 path: /myweb 2
 actions:
 - type: exec
 component: go-cli
 command: "go run webserver.go"
 workdir: ${CHE_PROJECTS_ROOT}/webserver

Red Hat CodeReady Workspaces 2.0 End-user Guide

66

2. Choose from the list of possible values:

on — enables a notification to ask the user how the URL should be opened

alwaysPreview — the preview URL opens automatically in the Preview panel as soon as a
task is running

alwaysGoTo — the preview URL opens automatically in a separate browser tab as soon as a
task is running

off — disables opening the preview URL (automatically and with a notification)

3.5.5.4. Devfile attributes

Devfile attributes can be used to configure various features.

3.5.5.4.1. Attribute: editorFree

When an editor is not specified in a devfile, a default is provided. When no editor is needed, the
editorFree attribute should be used. The default value is false, and it means that the devfile needs the
default editor to be provisioned.

Example of a devfile without an editor

3.5.5.4.2. Attribute: persistVolumes (ephemeral mode)

By default, volumes and PVCs specified in a devfile are bound to a host folder to persist data even after
a container restart. Sometimes, it may be necessary to disable data persistence, such as when volume
backend is slow, and it is needed to make workspace faster. To achieve it, the persistVolumes devfile
attribute should be used. The default value is true, and in case of false, emptyDir volumes will be used
for configured volumes and PVC.

Example of a devfile with ephemeral mode enabled

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
components:
 - alias: myApp
 type: kubernetes
 local: my-app.yaml
attributes:
 editorFree: true

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/che-samples/web-java-spring-petclinic.git'
attributes:
 persistVolumes: false

CHAPTER 3. WORKSPACES OVERVIEW

67

3.5.6. Objects supported in Red Hat CodeReady Workspaces 2.0

The following table lists the objects that are partially supported in Red Hat CodeReady Workspaces 2.0:

Object API OpenShi
ft Infra

OpenShi
ft Infra

Notes

Pod OpenShi
ft

Yes Yes -

Deploy
ment

OpenShi
ft

Yes Yes -

ConfigM
ap

OpenShi
ft

Yes Yes -

PVC OpenShi
ft

Yes Yes -

Secret OpenShi
ft

Yes Yes -

Service OpenShi
ft

Yes Yes -

Ingress OpenShi
ft

Yes No Minishift allows you to create Ingress and it works when the
host is specified (OpenShift creates a route for it). But, the
loadBalancer IP is not provisioned. To add Ingress support
for the OpenShift infrastructure node, generate routes
based on the provided Ingress.

Route OpenShi
ft

No Yes The OpenShift recipe must be made compatible with the
OpenShift Infrastructure and, instead of the provided route,
generate Ingress.

Templat
e

OpenShi
ft

Yes Yes The OpenShift API does not support templates. A
workspace with a template in the recipe starts successfully
and the default parameters are resolved.

Additional resources

Devfile specifications

3.6. CONVERTING A CODEREADY WORKSPACES 1.2 WORKSPACE TO
A CODEREADY WORKSPACES 2.0 DEVFILE

This section describes how to manually convert an old CodeReady Workspaces 1.2 workspace
configuration to a CodeReady Workspaces 2.0 devfile. The following are the benefits of using a
CodeReady Workspaces 2.0 devfile:

Using a portable file that works with any installation of CodeReady Workspaces; nothing needs

Red Hat CodeReady Workspaces 2.0 End-user Guide

68

https://redhat-developer.github.io/devfile/devfile

Using a portable file that works with any installation of CodeReady Workspaces; nothing needs
to be changed on the server to start a workspace.

Configuration can be stored in project repository and automatically used by CodeReady
Workspaces to start a workspace. To start a workspace, specify a devfile using the following
format: <che-instance-domain>/f?url=path, for example:

https://che.openshift.io/f?url=https://raw.githubusercontent.com/redhat-
developer/devfile/master/getting-started/vertx/devfile.yaml

This creates and starts a new workspace based on the devfile defined in the URL attribute. * A human-
readable YAML format for all content.

Below, there is a comparison of a CodeReady Workspaces 1.2 workspace configuration and a
CodeReady Workspaces 2.0 devfile. Both are Java Vert.x stacks with a default project and default
settings:

CodeReady Workspaces 1.2 configuration file

{
 "defaultEnv": "default",
 "environments": {
 "default": {
 "machines": {
 "dev-machine": {
 "attributes": {
 "memoryLimitBytes": "2147483648"
 },
 "servers": {
 "8080/tcp": {
 "attributes": {},
 "port": "8080",
 "protocol": "http"
 }
 },
 "volumes": {},
 "installers": [
 "com.redhat.oc-login",
 "com.redhat.bayesian.lsp",
 "org.eclipse.che.ls.java",
 "org.eclipse.che.ws-agent",
 "org.eclipse.che.exec",
 "org.eclipse.che.terminal"
],
 "env": {}
 }
 },
 "recipe": {
 "type": "dockerimage",
 "content": "quay.io/openshiftio/che-vertx"
 }
 }
 },
 "projects": [
 {
 "links": [],

CHAPTER 3. WORKSPACES OVERVIEW

69

https://github.com/redhat-developer/devfile/blob/master/getting-started/vertx/devfile.yaml

 "name": "vertx-http-booster",
 "attributes": {
 "language": [
 "java"
]
 },
 "type": "maven",
 "source": {
 "location": "https://github.com/openshiftio-vertx-boosters/vertx-http-booster",
 "type": "git",
 "parameters": {}
 },
 "path": "/vertx-http-booster",
 "description": "HTTP Vert.x Booster",
 "problems": [],
 "mixins": []
 }
],
 "name": "wksp-jhwp",
 "commands": [
 {
 "commandLine": "scl enable rh-maven33 'mvn compile vertx:debug -f ${current.project.path} -
Dvertx.disableDnsResolver=true'",
 "name": "debug",
 "attributes": {
 "goal": "Debug",
 "previewUrl": "${server.8080/tcp}"
 },
 "type": "custom"
 },
 {
 "commandLine": "scl enable rh-maven33 'mvn compile vertx:run -f ${current.project.path} -
Dvertx.disableDnsResolver=true'",
 "name": "run",
 "attributes": {
 "goal": "Run",
 "previewUrl": "${server.8080/tcp}"
 },
 "type": "custom"
 },
 {
 "commandLine": "scl enable rh-maven33 'mvn clean install -f ${current.project.path}'",
 "name": "build",
 "attributes": {
 "goal": "Build",
 "previewUrl": ""
 },
 "type": "mvn"
 },
 {
 "commandLine": "mvn -Duser.home=${HOME} -f ${CHE_PROJECTS_ROOT}/vertx-http-booster
clean package",
 "name": "vertx-http-booster:build",
 "attributes": {
 "goal": "Build",
 "previewUrl": ""

Red Hat CodeReady Workspaces 2.0 End-user Guide

70

CodeReady Workspaces 2.0 devfile

 },
 "type": "mvn"
 },
 {
 "commandLine": "mvn -Duser.home=${HOME} -f ${CHE_PROJECTS_ROOT}/vertx-http-booster
vertx:run",
 "name": "vertx-http-booster:run",
 "attributes": {
 "goal": "Run",
 "previewUrl": "${server.8080/tcp}"
 },
 "type": "mvn"
 }
],
 "links": []
}

metadata:
 name: testing-workspace
projects:
 - name: java-web-vertx
 source:
 location: 'https://github.com/che-samples/web-java-vertx'
 type: git
components:
 - id: redhat/java/latest
 type: chePlugin
 - mountSources: true
 endpoints:
 - name: 8080/tcp
 port: 8080
 memoryLimit: 512Mi
 type: dockerimage
 volumes:
 - name: m2
 containerPath: /home/user/.m2
 alias: maven
 image: 'quay.io/eclipse/che-java8-maven:nightly'
apiVersion: 1.0.0
commands:
 - name: maven build
 actions:
 - workdir: '${CHE_PROJECTS_ROOT}/java-web-vertx'
 type: exec
 command: 'mvn -Duser.home=${HOME} clean install'
 component: maven
 - name: run app
 actions:
 - workdir: '${CHE_PROJECTS_ROOT}/java-web-vertx'
 type: exec
 command: >
 JDBC_URL=jdbc:h2:/tmp/db \

 java -jar -Xdebug

CHAPTER 3. WORKSPACES OVERVIEW

71

3.6.1. Converting a CodeReady Workspaces 1.2 workspace to a basic CodeReady
Workspaces 2.0 devfile

This section describes how to convert a CodeReady Workspaces 1.2 workspace to a CodeReady
Workspaces 2.0 devfile. The result is a basic CodeReady Workspaces 2.0 devfile that can be used for
further workspace creation.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

To convert a CodeReady Workspaces 1.2 workspace to a CodeReady Workspaces 2.0 devfile:

1. Open an old CodeReady Workspaces 1.2 configuration file to identify which CodeReady
Workspaces 1.2 stack is used in the workspace. Below, there is a detailed guide for Section 3.6.2,
“Accessing a CodeReady Workspaces 1.2 workspace configuration”.

2. Create a new workspace from the CodeReady Workspaces 2.0 devfile that corresponds to the
CodeReady Workspaces 1.2 stack.

Table 3.5. CodeReady Workspaces 2.0 devfile corresponding to the respective CodeReady
Workspaces 1.2 stacks.

CodeReady Workspaces 1.2 stacks CodeReady Workspaces 2.0 devfile

Apache Camel based projects,
Apache Camel based projects on CodeReady
Workspaces 2.0

Apache Camel based on Spring Boot

 -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005 \

 ./target/*fat.jar
 component: maven
 - name: Debug remote java application
 actions:
 - referenceContent: |
 {
 "version": "0.2.0",
 "configurations": [
 {
 "type": "java",
 "name": "Debug (Attach) - Remote",
 "request": "attach",
 "hostName": "localhost",
 "port": 5005
 }]
 }
 type: vscode-launch

Red Hat CodeReady Workspaces 2.0 End-user Guide

72

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

.NET,

.NET Core with Che-Theia IDE
.NET Core

Go,
CentOS Go,
Go with Che-Theia IDE

Go

Java Gradle Java Gradle

Blank,
Java,
Java-MySQL,
Red Hat CodeReady Workspaces,
Java CentOS

Java Maven

Node,
CentOS nodejs

NodeJS Express Web Application

Python,
Python with Che-Theia IDE

Python

Eclipse Vert.x Java Vert.x

PHP PHP Simple

Spring Boot Java Spring Boot

CodeReady Workspaces 1.2 stacks CodeReady Workspaces 2.0 devfile

a. By default, the example project is added to the workspace. To remove the default project,
click the Remove button:

b. To import a custom project that was used in CodeReady Workspaces 1.2 workspace, click
the Add or Import Project and select Git or GitHub option:

c. Various commands can be added to devfiles of imported projects, for example, run, build,
and test. The commands are then accessible from the IDE when a workspace is started.
Custom commands and other devfile components can be added in the Devfile
configuration.

CHAPTER 3. WORKSPACES OVERVIEW

73

d. Click the Create & Proceed Editing button.

Select the Devfile tab to update the configuration. Machine servers in CodeReady
Workspaces 1.2 workspaces can be specified as components endpoints in a Devfile and
CodeReady Workspaces 1.2 installers as components of type chePlugin. See the Devfile
specification for the detailed information about the supported properties and attributes.

e. Once the Devfile configuration is completed, click the Open button to start a newly created
CodeReady Workspaces 2.0 workspace.

3.6.2. Accessing a CodeReady Workspaces 1.2 workspace configuration

CodeReady Workspaces 1.2 workspace configuration is not supported in CodeReady Workspaces 2.0 but
can be accessed for further conversion to a devfile.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

To access the CodeReady Workspaces 1.2 workspace configuration:

1. In the Dashboard, click the Workspaces menu to open the workspaces list and locate the
workspace to migrate to CodeReady Workspaces 2.0.

2. In the Actions column, click the Configure workspace icon. The raw workspace configuration is
available under the Config tab.

Red Hat CodeReady Workspaces 2.0 End-user Guide

74

https://redhat-developer.github.io/devfile/devfile
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

3.7. IMPORTING A OPENSHIFT APPLICATION INTO A WORKSPACE

This section describes how to import a OpenShift application into a workspace.

For demonstration purposes, the section uses a sample OpenShift application having the following two
pods:

A NodeJS application specified by this nodejs-app.yaml

A MongoDB pod specified by this mongo-db.yaml

To run the application on a OpenShift cluster:

$ node=https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-
db-sample/nodejs-app.yaml && \
mongo=https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-
db-sample/mongo-db.yaml && \
oc apply -f ${mongo} && \
oc apply -f ${node}

To deploy a new instance of this application in a workspace, use one of the following three scenarios:

Starting from scratch: Section 3.7.1, “Including a OpenShift application in a workspace devfile
definition”

Modifying an existing workspace: Section 3.7.2, “Adding a OpenShift application to an existing
workspace using the dashboard”

CHAPTER 3. WORKSPACES OVERVIEW

75

https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-db-sample/nodejs-app.yaml
https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-db-sample/mongo-db.yaml

From a running application: Section 3.7.3, “Generating a devfile from an existing OpenShift
application”

3.7.1. Including a OpenShift application in a workspace devfile definition

This procedure demonstrates how to define the CodeReady Workspaces 2.0 workspace devfile by
OpenShift application.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

crwctl management tool is installed. See the CodeReady Workspaces 2.0 Installation Guide

The devfile format is used to define a workspace, and its format is described in the Section 3.5, “Making
a workspace portable using a devfile” section. The following is an example of the simplest devfile:

Only the name (minimal-workspace) is specified. After the CodeReady Workspaces server processes
this devfile, the devfile is converted to a minimal workspace that only has the default editor (Che-Theia)
and the default editor plug-ins (example: the terminal).

Use the OpenShift type of components in the devfile to add OpenShift applications to a workspace.

For example, the user can embed the NodeJS-Mongo application in the minimal-workspace defined in
this paragraph by adding a components section.

Note that the sleep infinity command is added as the entrypoint of the Node.js application. This
prevents the application from starting at the workspace start phase. It allows the user to start it when
needed for testing or debugging purposes.

To make it easier for a developer to test the application, add the commands in the devfile:

apiVersion: 1.0.0
metadata:
 name: minimal-workspace

apiVersion: 1.0.0
metadata:
 name: minimal-workspace
components:
 - type: kubernetes
 reference: https://raw.githubusercontent.com/.../mongo-db.yaml
 - alias: nodejs-app
 type: kubernetes
 reference: https://raw.githubusercontent.com/.../nodejs-app.yaml
 entrypoints:
 - command: ['sleep']
 args: ['infinity']

apiVersion: 1.0.0
metadata:
 name: minimal-workspace
components:
 - type: kubernetes

Red Hat CodeReady Workspaces 2.0 End-user Guide

76

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

Use this devfile to create and start a workspace with the crwctl command:

$ crwctl worspace:start --devfile <devfile-path>

The run command added to the devfile is available as a task in Che-Theia from the command palette.
When executed, the command starts the NodeJS application.

3.7.2. Adding a OpenShift application to an existing workspace using the dashboard

This procedure demonstrates how to modify an existing workspace and import the OpenShift
application using the newly created devfile.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

1. After the creation of a workspace, use the Workspace menu and then the Configure
workspace icon to manage the workspace.

2. To modify the workspace details, use the Devfile tab. The workspace details are displayed in
this tab in the devfile format.

 reference: https://raw.githubusercontent.com/.../mongo-db.yaml
 - alias: nodejs-app
 type: kubernetes
 reference: https://raw.githubusercontent.com/.../nodejs-app.yaml
 entrypoints:
 - command: ['sleep']
 args: ['infinity']
commands:
 - name: run
 actions:
 - type: exec
 component: nodejs-app
 command: cd ${CHE_PROJECTS_ROOT}/nodejs-mongo-app/EmployeeDB/ && npm install &&
sed -i -- ''s/localhost/mongo/g'' app.js && node app.js

CHAPTER 3. WORKSPACES OVERVIEW

77

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

3. To add a OpenShift component, use the Devfile editor on the dashboard.

4. For the changes to take effect, save the devfile and restart the workspace.

3.7.3. Generating a devfile from an existing OpenShift application

This procedure demonstrates how to generate a devfile from an existing OpenShift application using the
crwctl tool.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

crwctl management tool is installed. See the CodeReady Workspaces 2.0 Installation Guide

Procedure

1. Use the crwctl devfile:generate command to generate a devfile:

$ crwctl devfile:generate

The user can also use the crwctl devfile:generate command to generate a devfile from, for
example, the NodeJS-MongoDB application.
The following example generates a devfile that includes the NodeJS component:

$ crwctl devfile:generate --selector="app=nodejs"
apiVersion: 1.0.0
metadata:
 name: crwctl-generated
components:
 - type: kubernetes
 alias: app=nodejs
 referenceContent: |
 kind: List
 apiVersion: v1

Red Hat CodeReady Workspaces 2.0 End-user Guide

78

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

 metadata:
 name: app=nodejs
 items:
 - apiVersion: apps/v1
 kind: Deployment
 metadata:
 labels:
 app: nodejs
 name: web
(...)

The NodeJS application YAML definition is included in the devfile, inline, using the
referenceContent attribute.

To include support for a language, use the --language parameter:

$ crwctl devfile:generate --selector="app=nodejs" --language="typescript"
apiVersion: 1.0.0
metadata:
 name: crwctl-generated
components:
 - type: kubernetes
 alias: app=nodejs
 referenceContent: |
 kind: List
 apiVersion: v1
(...)
 - type: chePlugin
 alias: typescript-ls
 id: che-incubator/typescript/latest

2. Use the generated devfile to start a workspace with crwctl.

3.8. REMOTELY ACCESSING WORKSPACES

This section describes how to remotely access workspaces outside of the browser.

workspaces exist as containers and are, by default, modified from a browser window. In addition to this,
there are the following methods of interacting with a workspace:

Opening a command line in the workspace container using the OpenShift command-line tool,
kubectl

Uploading and downloading files using the kubectl tool

3.8.1. Remotely accessing workspaces using the OpenShift command-line tool

To access workspaces remotely using OpenShift command-line tool (kubectl), follow the instructions in
this section.

NOTE

The kubectl tool is used in this section to open a shell and manage files in a workspace.
Alternatively, it is possible to use the oc OpenShift command-line tool.

CHAPTER 3. WORKSPACES OVERVIEW

79

Prerequisites

The kubectl binary from the OpenShift website.

Verify the installation of kubectl using the oc version command:

$ oc version
Client Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.0",
GitCommit:"e8462b5b5dc2584fdcd18e6bcfe9f1e4d970a529", GitTreeState:"clean",
BuildDate:"2019-06-19T16:40:16Z", GoVersion:"go1.12.5", Compiler:"gc",
Platform:"darwin/amd64"}
Server Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.0",
GitCommit:"e8462b5b5dc2584fdcd18e6bcfe9f1e4d970a529", GitTreeState:"clean",
BuildDate:"2019-06-19T16:32:14Z", GoVersion:"go1.12.5", Compiler:"gc",
Platform:"linux/amd64"}

For versions 1.5.0 or higher, proceed with the steps in this section.

Procedure

1. Use the exec command to open a remote shell.

2. To find the name of the OpenShift namespace and pod that runs the workspace:

$ oc get pod -l che.workspace_id --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
che workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4 4/4 Running 0
6m4s

In the example above, the pod name is workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4, and
the namespace is workspaces.

1. To find the name of the container:

$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ oc get pod ${POD} -o custom-columns=CONTAINERS:.spec.containers[*].name
CONTAINERS
maven,che-machine-execpau,theia-ide6dj,vscode-javaw92

2. When you have the namespace, pod name, and the name of the container, use the kubectl
command to open a remote shell:

$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc exec -ti -n ${NAMESPACE} ${POD} -c ${CONTAINER} bash
user@workspace7b2wemdf3hx7s3ln $

3. From the container, execute the build and run commands (as if from the workspace terminal):

user@workspace7b2wemdf3hx7s3ln $ mvn clean install
[INFO] Scanning for projects...
(...)

Red Hat CodeReady Workspaces 2.0 End-user Guide

80

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Additional resources

For more about kubectl, see the OpenShift documentation.

3.8.2. Downloading and uploading a file to a workspace using the command-line
interface

This procedure describes how to use the kubectl tool to download or upload files remotely from or to an
Red Hat CodeReady Workspaces workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

Remote access to the workspace you intend to modify. For instructions see Section 3.8.1,
“Remotely accessing workspaces using the OpenShift command-line tool”.

The kubectl binary from the OpenShift website.

Verify the installation of kubectl using the oc version command:

Procedure

To download a local file named downloadme.txt from a workspace container to the current
home directory of the user, use the following in the CodeReady Workspaces remote shell.

$ REMOTE_FILE_PATH=/projects/downloadme.txt
$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc cp ${NAMESPACE}/${POD}:${REMOTE_FILE_PATH} ~/downloadme.txt -c
${CONTAINER}

To upload a local file named uploadme.txt to a workspace container in the /projects directory:

$ LOCAL_FILE_PATH=./uploadme.txt
$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc cp ${LOCAL_FILE_PATH} ${NAMESPACE}/${POD}:/projects -c ${CONTAINER}

Using the preceding steps, the user can also download and upload directories.

CHAPTER 3. WORKSPACES OVERVIEW

81

https://kubernetes.io/docs/reference/kubectl/overview/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS
Red Hat CodeReady Workspaces is an extensible and customizable developer-workspaces platform.

There are three different ways to extend Red Hat CodeReady Workspaces:

Alternative IDEs allow to provide specialized tooling within Red Hat CodeReady Workspaces.
For example, a Jupyter notebook for a data analyst. Alternate IDEs can be based on Eclipse
Theia or any other web IDE. The default IDE in Red Hat CodeReady Workspaces is Che-Theia.

Che-Theia plug-ins add capabilities to the Che-Theia IDE. They rely on plug-in APIs that are
compatible with Visual Studio Code. The plug-ins are isolated from the IDE itself. They can be
packaged as files or as containers to provide their own dependencies.

Stacks are pre-configured workspaces with a dedicated set of tools, which cover different
developer personas. For example, it is possible to pre-configure a workbench for a tester with
only the tools needed for their purposes.

Figure 4.1. CodeReady Workspaces extensibility

Extending Red Hat CodeReady Workspaces can be done entirely using Red Hat CodeReady
Workspaces. Since version 7, Red Hat CodeReady Workspaces provides a self-hosting mode.

4.1. WHAT IS A CHE-THEIA PLUG-IN

A Che-Theia plug-in is an extension of the development environment isolated from the IDE. Plug-ins
can be packaged as files or containers to provide their own dependencies.

Red Hat CodeReady Workspaces 2.0 End-user Guide

82

Extending Che-Theia using plug-ins can enable the following capabilities:

Language support: Extend the supported languages by relying on the Language Server
Protocol.

Debuggers: Extend debugging capabilities with the Debug Adapter Protocol.

Development Tools: Integrate your favorite linters, and as testing and performance tools.

Menus, panels, and commands: Add your own items to the IDE components.

Themes: Build custom themes, extend the UI, or customize icon themes.

Snippets, formatters, and syntax highlighting: Enhance comfort of use with supported
programming languages.

Keybindings: Add new keymaps and popular keybindings to make the environment feel natural.

4.1.1. Features and benefits of Che-Theia plug-ins

Features Description Benefits

Fast Loading Plug-ins are loaded at runtime
and are already compiled. IDE is
loading the plug-in code.

Avoid any compilation time. Avoid
post-installation steps.

Secure Loading Plug-ins are loaded separately
from the IDE. The IDE stays
always in a usable state.

Plug-ins do not break the whole
IDE if it has bugs. Handle network
issue.

Tooling Dependencies Dependencies for the plug-in are
packaged with the plug-in in its
own container.

No-installation for tools.
Dependencies running into
container.

Code isolation Guarantee that plug-ins cannot
block the main functions of the
IDE like opening a file or typing

Plug-ins are running into separate
threads. Avoid dependencies
mismatch.

VS Code Extension
Compatibility

Extend the capabilities of the IDE
with existing VS Code Extensions.

Target multiple platform. Allow
easy discovery of Visual Studio
Code Extension with required
installation.

4.1.2. Che-Theia plug-in concept in detail

Red Hat CodeReady Workspaces provides a default web IDE for workspaces: Che-Theia. It is based on
Eclipse Theia. It is a slightly different version than the plain Eclipse Theia one because there are
functionalities that have been added based on the nature of the Red Hat CodeReady Workspaces
workspaces. This version of Eclipse Theia for CodeReady Workspaces is called Che-Theia .

You can extend the IDE provided with Red Hat CodeReady Workspaces by building a Che-Theia plug-
in. Che-Theia plug-ins are compatible with any other Eclipse Theia-based IDE.

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

83

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/debug-adapter-protocol/

4.1.2.1. Client-side and server-side Che-Theia plug-ins

The Che-Theia editor plug-ins let you add languages, debuggers, and tools to your installation to
support your development workflow. Plug-ins run when the editor completes loading. If a Che-Theia
plug-in fails, the main Che-Theia editor continues to work.

Che-Theia plug-ins run either on the client side or on the server side. This is a scheme of the client and
server-side plug-in concept:

Figure 4.2. Client and server-side Che-Theia plug-ins

The same Che-Theia plug-in API is exposed to plug-ins running on the client side (Web Worker) or the
server side (Node.js).

4.1.2.2. Che-Theia plug-in APIs

For the purpose of providing tool isolation and easy extensibility in Red Hat CodeReady Workspaces,
the Che-Theia IDE has a set of plug-in APIs. The APIs are compatible with Visual Studio Code extension
APIs. In most cases, Che-Theia can run VS Code extensions as its own plug-ins.

When developing a plug-in that depends on or interacts with components of workspaces (containers,
preferences, factories), use the CodeReady Workspaces APIs embedded in Che-Theia.

4.1.2.3. Che-Theia plug-in capabilities

Che-Theia plug-ins have the following capabilities:

Plug-in Description Repository

Red Hat CodeReady Workspaces 2.0 End-user Guide

84

CodeReady Workspaces
Extended Tasks

Handles the CodeReady
Workspaces commands and
provides the ability to start those
into a specific container of the
workspace.

CodeReady Workspaces
Extended Terminal

Allows to provide terminal for any
of the containers of the
workspace.

CodeReady Workspaces Factory Handles the Red Hat CodeReady
Workspaces Factories

CodeReady Workspaces
Container

Provides a container view that
shows all the containers that are
running in the workspace and
allows to interact with them.

Containers plugins

Dashboard Integrates the IDE with the
Dashboard and facilitate the
navigation.

CodeReady Workspaces APIs Extends the IDE APIs to allow
interacting with CodeReady
Workspaces-specific components
(workspaces, preferences).

Plug-in Description Repository

4.1.2.4. VS Code extensions and Eclipse Theia plug-ins

A Che-Theia plug-in can be based on a VS Code extension or an Eclipse Theia plug-in.

A Visual Studio Code extension

To repackage a VS Code extension as a Che-Theia plug-in with its own set of dependencies,
package the dependencies into a container. This ensures that Red Hat CodeReady Workspaces users
do not need to install the dependencies when using the extension. See Section 4.3, “Using a Visual
Studio Code extension in CodeReady Workspaces”.

An Eclipse Theia plug-in

You can build a Che-Theia plug-in by implementing an Eclipse Theia plug-in and packaging it to Red
Hat CodeReady Workspaces.

Additional resources

Section 4.1.5, “Embedded and remote Che-Theia plug-ins”

4.1.3. Che-Theia plug-in metadata

Che-Theia plug-in metadata is information about individual plug-ins for the plug-in registry.

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

85

https://github.com/eclipse/che-theia/tree/master/plugins/containers-plugin

1

2

4.1.3.1. meta.yaml

The Che-Theia plug-in metadata is defined in a meta.yaml file for the specific plug-in.

Interface for a Che-Theia plug-in metadata object

The most important part of the object is the url, which defines the location of plug-in configuration.
Typically, it is a tar archive with the plug-in meta.yaml file.

When adding a VS Code extension from the oficial marketplace using its ID, the url field should be
replaced with an attributes section that would contain extension and container-image fields:

Interface for a VS Code plug-in metadata object

VS Code extension ID with a vscode:extension/ prefix

Points to the container image in which the extension runs. Use images based on eclipse/che-theia-
endpoint-runtime to be able to host VS Code extensions or Che-Theia plug-ins.

4.1.3.2. che-plugin.yaml

The most detailed information about a plug-in is in the che-plugin.yaml file. For example:

che-plugin.yaml file for the che-editor-theia plug-in

{
 id: string;
 version: string;
 type: string;
 name: string;
 title: string;
 description: string;
 url: string;
}

{
 id: string;
 version: string;
 type: string;
 name: string;
 title: string;
 description: string;
 Attributes: {
 extension: string; 1
 containerImage: string; 2
 }
}

version: 1.0.0
type: {prod-short} Editor
name: theia-ide
id: org.eclipse.che.editor.theia
title: Eclipse Theia for {prod-short}

Red Hat CodeReady Workspaces 2.0 End-user Guide

86

https://github.com/ws-skeleton/che-editor-theia/blob/master/etc/che-plugin.yaml

che-plugin.yaml file for the che-machine-exec plug-in

description: Eclipse Theia
icon: https://pbs.twimg.com/profile_images/929088242456190976/xjkS2L-0_400x400.jpg
endpoints:
 - name: "theia"
 public: true
 targetPort: 3100
 attributes:
 protocol: http
 type: ide
 secure: true
 cookiesAuthEnabled: true
 discoverable: false
 - name: "theia-dev"
 public: true
 targetPort: 3130
 attributes:
 protocol: http
 type: ide-dev
 discoverable: false
containers:
 - name: theia-ide
 image: eclipse/che-theia:0.3.18-nightly
 env:
 - name: THEIA_PLUGINS
 value: local-dir:///plugins
 - name: HOSTED_PLUGIN_HOSTNAME
 value: 0.0.0.0
 - name: HOSTED_PLUGIN_PORT
 value: 3130
 volumes:
 - mountPath: "/plugins"
 name: plugins
 - mountPath: "/projects"
 name: projects
 ports:
 - exposedPort: 3100
 - exposedPort: 3130
 memory-limit: "1536M"
 memoryLimit: "1536M"

endpoints:
 - name: "che-machine-exec"
 public: true
 targetPort: 4444
 attributes:
 protocol: ws
 type: terminal
 discoverable: false
containers:
 - name: che-machine-exec
 image: eclipse/che-machine-exec
 ports:

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

87

https://github.com/eclipse/che-machine-exec/blob/master/assembly/etc/che-plugin.yaml

4.1.4. Che-Theia plug-in lifecycle

When a user is starting a workspace, the following procedure is followed:

1. CodeReady Workspaces master checks for plug-ins to start from the workspace definition.

2. Plug-in metadata is retrieved, and the type of each plug-in is recognized.

3. A broker is selected according to the plug-in type.

4. The broker processes the installation and deployment of the plug-in (the installation process is
different for each broker).

NOTE

There are different types of plug-ins. A broker ensures all installation requirements are
met for a plug-in to deploy correctly.

Figure 4.3. Che-Theia plug-in lifecycle

 - exposedPort: 4444
editors:
 - id: org.eclipse.che.editor.theia

Red Hat CodeReady Workspaces 2.0 End-user Guide

88

Figure 4.3. Che-Theia plug-in lifecycle

Before a workspace is launched, CodeReady Workspaces master starts containers for the workspace:

1. The Che-Theia plug-in broker extracts the plug-in (from the .theia file) to get the sidecar
containers that the plug-in needs.

2. The broker sends the appropriate container informations to CodeReady Workspaces master.

3. The broker copies the Che-Theia plug-in to a volume to have it available for the Che-Theia
editor container.

4. workspace master then starts all the containers of the workspace.

5. Che-Theia is started in its own container and checks the correct folder to load the plug-ins.

Che-Theia plug-in lifecycle:

1. When a user is opening a browser tab or window with Che-Theia, Che-Theia starts a new plug-in
session (browser or remote TODO: 'what is remote in this context?'). Every Che-Theia plug-in
is notified that a new session has been started (the start() function of the plug-in triggered).

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

89

2. A Che-Theia plug-in session is running and interacting with the Che-Theia backend and
frontend.

3. When the user is closing the browser tab or there is a timeout, every plug-in is notified (the
stop() function of the plug-in triggered).

4.1.5. Embedded and remote Che-Theia plug-ins

Developer workspaces in Red Hat CodeReady Workspaces provide all dependencies needed to work on
a project. The application includes the dependencies needed by all the tools and plug-ins used.

There are two different ways a Che-Theia plug-in can run. This is based on the dependencies that are
needed for the plug-in: embedded (or local) and remote.

4.1.5.1. Embedded (or local) plug-ins

The plug-in does not have specific dependencies - it only uses a Node.js runtime, and it runs in the same
container as the IDE. The plug-in is injected into the IDE.

Examples:

Code linting

New set of commands

New UI components

To include a Che-Theia plug-in as embedded, define a URL to the plug-in binary (the .theia archive) in
the meta.yaml file. In the case of a VS Code extension, provide the extension ID from the Visual Studio
Code marketplace (see Section 4.3, “Using a Visual Studio Code extension in CodeReady Workspaces”).

When starting a workspace, CodeReady Workspaces downloads and unpacks the plug-in binaries and
includes them in the Che-Theia editor container. The Che-Theia editor initializes the plug-ins when it
starts.

Figure 4.4. Local Che-Theia plug-in

Red Hat CodeReady Workspaces 2.0 End-user Guide

90

Figure 4.4. Local Che-Theia plug-in

4.1.5.2. Remote plug-ins

The plug-in relies on dependencies or it has a backend. It runs in its own sidecar container, and all
dependencies are packaged in the container.

A remote Che-Theia plug-in consist of two parts:

Che-Theia plug-in or VS Code extension binaries. The definition in the meta.yaml file is the
same as for embedded plug-ins.

Container image definition, for example, eclipse/che-theia-dev:nightly. From this image,
CodeReady Workspaces creates a separate container inside a workspace.

Examples:

Java Language Server

Python Language Server

When starting a workspace, CodeReady Workspaces creates a container from the plug-in image,
downloads and unpacks the plug-in binaries, and includes them in the created container. The Che-Theia
editor connects to the remote plug-ins when it starts.

Figure 4.5. Remote Che-Theia plug-in

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

91

Figure 4.5. Remote Che-Theia plug-in

4.1.5.3. Comparison matrix

When a Che-Theia plug-in (or a VS Code extension) does not need extra dependencies inside its
container, it is an embedded plug-in. A container with extra dependencies that includes a plug-in is a
remote plug-in.

Table 4.1. Che-Theia plug-in comparison matrix: embedded vs remote

 Configure RAM per
plug-in

Environment
dependencies

Create separated
container

Remote TRUE Plug-in uses
dependencies defined in
the remote container.

TRUE

Embedded FALSE (users can
configure RAM for the
whole editor container,
but not per plug-in)

Plug-in uses
dependencies from the
editor container; if
container does not
include these
dependencies, the plug-
in fails or does not
function as expected.

FALSE

Depending on your use case and the capabilities provided by your plug-in, select one of the described

Red Hat CodeReady Workspaces 2.0 End-user Guide

92

Depending on your use case and the capabilities provided by your plug-in, select one of the described
running modes.

4.2. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES

Extending Red Hat CodeReady Workspaces developer workspaces using different IDEs (integrated
development environments) enables:

Re-purposing the environment for different use cases.

Providing a dedicated custom IDE for specific tools.

Providing different perspectives for individual users or groups of users.

Red Hat CodeReady Workspaces provides a default web IDE to be used with the developer workspaces.
This IDE is completely decoupled. You can bring your own custom IDE for Red Hat CodeReady
Workspaces:

Built from Eclipse Theia, which is a framework to build web IDEs. Example: Sirius on the web.

Completely different web IDEs, such as Jupyter, Eclipse Dirigible, or others. Example: Jupyter
in Red Hat CodeReady Workspaces workspaces.

Bringing custom IDE built from Eclipse Theia

Creating your own custom IDE based on Eclipse Theia

Adding CodeReady Workspaces-specific tools to your custom IDE

Packaging your custom IDE into the available editors for CodeReady Workspaces

Bringing your completely different web IDE into CodeReady Workspaces

Packaging your custom IDE into the available editors for CodeReady Workspaces

4.3. USING A VISUAL STUDIO CODE EXTENSION IN CODEREADY
WORKSPACES

Starting with Red Hat CodeReady Workspaces 2.0, Visual Studio Code (VS Code) extensions can be
installed to extend the functionality of a workspace. VS Code extensions can run in the Che-Theia editor
container, or they can be packaged in their own isolated and pre-configured containers with their
prerequisites.

This document describes:

Use of a VS Code extension in CodeReady Workspaces with workspaces

CodeReady Workspaces Plug-ins panel

How to publish a VS Code extension in the CodeReady Workspaces plug-in registry (to share
the extension with other CodeReady Workspaces users)

The extension-hosting sidecar container and the use of the extension in a devfile are
optional for this.

How to review the compatibility of the VS Code extensions to be informed whether a

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

93

https://www.youtube.com/watch?v=B6aCqywKpyY
https://www.youtube.com/watch?v=VooNzKxRFgw

1

2

3

4

5

6

How to review the compatibility of the VS Code extensions to be informed whether a
specific API is supported or has not been implemented yet.

4.3.1. Publishing a VS Code extension into the CodeReady Workspaces plug-in
registry

4.3.1.1. Writing a meta.yaml file and adding it to a plug-in registry

The plug-in meta information is required to publish a VS Code extension in an Red Hat CodeReady
Workspaces plug-in registry. This meta information is provided as a meta.yaml file. This section
describes how to create a meta.yaml file for an extension.

Procedure

1. Create a meta.yaml file in the following plug-in registry directory:
<apiVersion>/plugins/<publisher>/<plug-inName>/<plug-inVersion>/.

2. Edit the meta.yaml file and provide the necessary information. The configuration file must
adhere to the following structure:

Version of the file structure.

Name of the plug-in publisher. Must be the same as the publisher in the path.

Plug-in name. Must be the same as in path.

The CodeReady Workspaces plug-in version. Must be the same as in path.

Type of the CodeReady Workspaces plug-in. For VS Code extensions, it must be VS Code
extension.

A short name of the plug-in.

apiVersion: v2 1
publisher: myorg 2
name: my-vscode-ext 3
version: 1.7.2 4
type: value 5
displayName: 6
title: 7
description: 8
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg 9
repository: 10
category: 11
spec:
 containers: 12
 - image: 13
 memoryLimit: 14
 extensions: 15
 - https://github.com/redhat-developer/vscode-
yaml/releases/download/0.4.0/redhat.vscode-yaml-0.4.0.vsix
 - vscode:extension/SonarSource.sonarlint-vscode

Red Hat CodeReady Workspaces 2.0 End-user Guide

94

7

8

9

10

11

12

13

14

15

Plug-in title.

A brief explanation of the plug-in and what it does.

The link to the plug-in logo.

Optional. The link to the source-code repository of the plug-in.

Defines the category that this plug-in belongs to. Should be one of the following: Editor,
Debugger, Formatter, Language, Linter, Snippet, Theme, or Other.

If this section is omitted, the VS Code extension is added into the Che-Theia IDE
container.

The Docker image from which the sidecar container will be started. Example: eclipse/che-
theia-endpoint-runtime:next.

The RAM which is given for the sidecar container by default. Example: "256Mi". This value
might be overridden by the user in the component configuration.

A list of VS Code extensions that should be run in this sidecar container.

4.3.2. Adding a plug-in registry VS Code extension to a workspace

When the required VS Code extension is added into a CodeReady Workspaces plug-in registry, the user
can add it into the workspace through the CodeReady Workspaces Plugins panel or through the
workspace configuration.

4.3.2.1. Adding the VS Code extension using the CodeReady Workspaces Plugins panel

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide

Procedure

To add the VS Code extension using the CodeReady Workspaces Plugins panel:

1. Open the CodeReady Workspaces Plugin panel.

2. Change the current registry to the registry in which the VS Code extension was added.

3. In the search bar, click the Menu button and then click Change Registry to choose the registry
from the list. If the required registry is not in the list, add it using the Add Registry menu option.
The registry link should point to the plugins segment of the registry. For example: https://my-
registry.com/v3/plugins/index.json.

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

95

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://my-registry.com/v3/plugins/index.json

1

4. Search for the required plug-in using the filter, and then click the Install button.

5. Restart the workspace for the changes to take effect.

4.3.2.2. Adding the VS Code extension using the workspace configuration

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Section 3.1,
“Creating and configuring a new CodeReady Workspaces 2.0 workspace”.

Procedure

To add the VS Code extension using the workspace configuration:

1. Click the Workspaces tab on the Dashboard and select the workspace in which you want to add
the plug-in. The Workspace <workspace-name> window is opened showing the details of the
workspace.

2. Click the devfile tab.

3. Locate the components section, and add a new entry with the following structure:

Link to the meta.yaml file in your registry, for example, https://my-plug-in-
registry/v3/plugins/<publisher>/<plug-inName>/<plug-inVersion>/meta.yaml

CodeReady Workspaces automatically adds the other fields to the new component.

 - type: chePlugin
 id: 1

Red Hat CodeReady Workspaces 2.0 End-user Guide

96

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/
https://my-plug-in-registry/v3/plugins/

4. Restart the workspace for the changes to take effect.

4.3.3. Choosing the sidecar image

CodeReady Workspaces plug-ins are special services that extend the workspace capabilities.
CodeReady Workspaces plug-ins are packaged as containers. The containers that the plug-ins are
packaged into run as sidecars of the workspace editor and augment its capabilities.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.0 Installation Guide .

Procedure

To choose a sidecar image:

1. If the VS code extension does not have any external dependencies, use eclipse/che-theia-
endpoint-runtime: next as a sidecar container image for the extension.

NOTE

In addition to the eclipse/che-theia-endpoint-runtime:next base image, the
following ready-to-use sidecar images that include language-specific
dependencies are available:

eclipse/che-remote-plugin-runner-java8

eclipse/che-remote-plugin-runner-java11

eclipse/che-remote-plugin-go-1.10.7

eclipse/che-remote-plugin-python-3.7.3

eclipse/che-remote-plugin-dotnet-2.2.105

eclipse/che-remote-plugin-php7

eclipse/che-remote-plugin-kubernetes-tooling-1.0.0

eclipse/che-remote-plugin-kubernetes-tooling-0.1.17

eclipse/che-remote-plugin-openshift-connector-0.0.17

eclipse/che-remote-plugin-openshift-connector-0.0.21

2. If a VS Code extension has external dependencies that are not found in one of the ready-to-use
images, use a container image that contains the needed dependencies for the extension and is
based on the eclipse/che-theia-endpoint-runtime:next image.
Example: The FROM directive should be similar to FROM eclipse/che-theia-endpoint-
runtime:next. This is required because this base image contains tools for running the remote
VS Code extension and communications between the sidecar and the Che-Theia editor, so that
the VS Code extension does not have to know that it is a remote one.

4.3.4. Verifying the VS Code extension API compatibility level

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

97

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.0/html/installation_guide/

Che-Theia does not fully support the VS Code extensions API. The vscode-theia-comparator is used to
analyze the compatibility between the Che-Theia plug-in API and the VS Code extension API. This tool
runs in a nightly cycle, and the results are published on the vscode-theia-comparator GitHub page.

Prerequisites

Personal GitHub access token. For information on creating a personal access token for the
command line see Creating a personal access token for the command line . A GitHub access
token is required to increase the GitHub download limit for your IP address.

Procedure

To run the vscode-theia comparator manually:

1. Clone the vscode-theia-comparator repository, and build it using the yarn command.

2. Set the GITHUB_TOKEN environment variable to your token.

3. Execute the yarn run generate command to generate a report.

4. Open the out/status.html file to view the report.

Red Hat CodeReady Workspaces 2.0 End-user Guide

98

https://github.com/che-incubator/vscode-theia-comparator/
https://github.com/che-incubator/vscode-theia-comparator/
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://github.com/che-incubator/vscode-theia-comparator/

	Table of Contents
	CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD
	1.1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD ON OPENSHIFT

	CHAPTER 2. CHE-THEIA IDE BASICS
	2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA
	2.1.1. Che-Theia task types
	2.1.2. Running and debugging
	2.1.3. Editing a task and launch configuration

	2.2. VERSION CONTROL
	2.2.1. Managing Git configuration: identity
	2.2.2. Accessing a Git repository via HTTPS
	2.2.3. Accessing a Git repository via SSH
	2.2.3.1. Generating an SSH key
	2.2.3.2. Adding the associated public key to a repository or account on GitHub
	2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

	2.2.4. Configuring GitHub OAuth
	2.2.5. Managing pull requests using the GitHub PR plug-in
	2.2.5.1. Using the GitHub Pull Requests plug-in
	2.2.5.2. Creating a new pull request

	2.3. CHE-THEIA TROUBLESHOOTING

	CHAPTER 3. WORKSPACES OVERVIEW
	3.1. CREATING AND CONFIGURING A NEW CODEREADY WORKSPACES 2.0 WORKSPACE
	3.1.1. Creating a new workspace from the dashboard
	3.1.2. Adding projects to your workspace
	3.1.3. Configuring the workspace and adding tooling
	3.1.3.1. Adding plug-ins
	3.1.3.2. Defining the workspace editor
	3.1.3.3. Defining specific container images
	3.1.3.4. Adding commands to your workspace

	3.2. CONFIGURING A WORKSPACE USING A DEVFILE
	3.2.1. What is a devfile
	3.2.2. Disambiguation between stacks and devfiles
	3.2.3. Creating a workspace from the default branch of a Git repository
	3.2.4. Creating a workspace from a feature branch of a Git repository
	3.2.5. Creating a workspace from a publicly accessible standalone devfile using HTTP
	3.2.6. Overriding devfile values using factory parameters
	3.2.7. Creating a workspace using crwctl and a local devfile

	3.3. CREATING A WORKSPACE FROM CODE SAMPLE
	3.3.1. Creating a workspace from User Dashboard
	3.3.2. Changing the configuration of an existing workspace from the User Dashboard
	3.3.3. Running an existing workspace from the User Dashboard
	3.3.3.1. Running an existing workspace from the User Dashboard with the Run button
	3.3.3.2. Running an existing workspace from the User Dashboard using the Open button
	3.3.3.3. Running an existing workspace from the User Dashboard using the Recent Workspaces

	3.4. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF A PROJECT
	3.4.1. Importing from the Dashboard into an existing workspace
	3.4.1.1. Creating a new repository
	3.4.1.2. Editing an existing repository
	3.4.1.3. Editing the commands after importing a project

	3.4.2. Importing to a running workspace using the Git: Clone command
	3.4.3. Importing to a running workspace with git clone in a terminal

	3.5. MAKING A WORKSPACE PORTABLE USING A DEVFILE
	3.5.1. What is a devfile
	3.5.2. A minimal devfile
	3.5.3. Generating workspace names
	3.5.4. Writing a devfile for a project
	3.5.4.1. Preparing a minimal devfile
	3.5.4.2. Specifying multiple projects in a devfile

	3.5.5. Devfile reference
	3.5.5.1. Adding projects to a devfile
	3.5.5.2. Adding components to a devfile
	3.5.5.3. Adding commands to a devfile
	3.5.5.4. Devfile attributes

	3.5.6. Objects supported in Red Hat CodeReady Workspaces 2.0

	3.6. CONVERTING A CODEREADY WORKSPACES 1.2 WORKSPACE TO A CODEREADY WORKSPACES 2.0 DEVFILE
	3.6.1. Converting a CodeReady Workspaces 1.2 workspace to a basic CodeReady Workspaces 2.0 devfile
	3.6.2. Accessing a CodeReady Workspaces 1.2 workspace configuration

	3.7. IMPORTING A OPENSHIFT APPLICATION INTO A WORKSPACE
	3.7.1. Including a OpenShift application in a workspace devfile definition
	3.7.2. Adding a OpenShift application to an existing workspace using the dashboard
	3.7.3. Generating a devfile from an existing OpenShift application

	3.8. REMOTELY ACCESSING WORKSPACES
	3.8.1. Remotely accessing workspaces using the OpenShift command-line tool
	3.8.2. Downloading and uploading a file to a workspace using the command-line interface

	CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS
	4.1. WHAT IS A CHE-THEIA PLUG-IN
	4.1.1. Features and benefits of Che-Theia plug-ins
	4.1.2. Che-Theia plug-in concept in detail
	4.1.2.1. Client-side and server-side Che-Theia plug-ins
	4.1.2.2. Che-Theia plug-in APIs
	4.1.2.3. Che-Theia plug-in capabilities
	4.1.2.4. VS Code extensions and Eclipse Theia plug-ins

	4.1.3. Che-Theia plug-in metadata
	4.1.3.1. meta.yaml
	4.1.3.2. che-plugin.yaml

	4.1.4. Che-Theia plug-in lifecycle
	4.1.5. Embedded and remote Che-Theia plug-ins
	4.1.5.1. Embedded (or local) plug-ins
	4.1.5.2. Remote plug-ins
	4.1.5.3. Comparison matrix

	4.2. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES
	4.3. USING A VISUAL STUDIO CODE EXTENSION IN CODEREADY WORKSPACES
	4.3.1. Publishing a VS Code extension into the CodeReady Workspaces plug-in registry
	4.3.1.1. Writing a meta.yaml file and adding it to a plug-in registry

	4.3.2. Adding a plug-in registry VS Code extension to a workspace
	4.3.2.1. Adding the VS Code extension using the CodeReady Workspaces Plugins panel
	4.3.2.2. Adding the VS Code extension using the workspace configuration

	4.3.3. Choosing the sidecar image
	4.3.4. Verifying the VS Code extension API compatibility level

