
Red Hat Ceph Storage 2

Developer Guide

Using the various application programming interfaces for Red Hat Ceph Storage

Last Updated: 2017-10-20

Red Hat Ceph Storage 2 Developer Guide

Using the various application programming interfaces for Red Hat Ceph Storage

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for Using the various application programming interfaces for
Red Hat Ceph Storage running on AMD64 and Intel 64 architectures.

. .

. .

Table of Contents

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)
1.1. AUTHENTICATING REQUESTS
1.2. CREATING AN ADMINISTRATIVE USER
1.3. ADMINISTRATIVE OPERATIONS

1.3.1. Get Usage
1.3.2. Trim Usage
1.3.3. Get User Information
1.3.4. Creating a User
1.3.5. Modifying a User
1.3.6. Removing a User
1.3.7. Creating a Subuser
1.3.8. Modifying a Subuser
1.3.9. Removing a Subuser
1.3.10. Creating a Key
1.3.11. Removing a Key
1.3.12. Getting Bucket Information
1.3.13. Checking a Bucket Index
1.3.14. Removing a Bucket
1.3.15. Linking a Bucket
1.3.16. Unlinking a Bucket
1.3.17. Removing an Object
1.3.18. Getting Bucket or Object Policy
1.3.19. Adding a Capability to an Existing User

1.3.19.1. Example Request
1.3.20. Removing a Capability from an Existing User
1.3.21. Quotas

1.3.21.1. Getting User Quota
1.3.21.2. Setting User Quota
1.3.21.3. Getting Bucket Quota
1.3.21.4. Setting Bucket Quota

1.3.22. Standard Error Responses

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)
2.1. AUTHENTICATION AND ACCESS CONTROL LISTS

2.1.1. Authentication
2.1.2. Access Control Lists (ACLs)

2.2. ACCESSING THE GATEWAY
2.2.1. Prerequisites
2.2.2. Ruby AWS::S3 Examples (aws-s3 gem)
2.2.3. Ruby AWS::SDK Examples (aws-sdk gem ~>2)
2.2.4. PHP S3 Examples

2.3. COMMON OPERATIONS
2.3.1. Bucket and Host Name
2.3.2. Common Request Headers
2.3.3. Common Response Status

2.4. SERVICE OPERATIONS
2.4.1. List Buckets

2.5. BUCKET OPERATIONS
2.5.1. Bucket Operations with Multi Tenancy
2.5.2. PUT Bucket
2.5.3. DELETE Bucket

5
6

13
15
15
17
18
19
22
24
24
26
28
28
30
31
32
33
34
35
36
37
38
39
39
40
40
41
41
41
41

43
45
45
46
46
47
48
53
59
64
64
64
65
66
66
67
67
68
69

Table of Contents

1

. .

2.5.4. GET Bucket
2.5.5. Get Bucket Location
2.5.6. Get Bucket Versioning
2.5.7. PUT Bucket Versioning
2.5.8. Get Bucket ACLs
2.5.9. PUT Bucket ACLs
2.5.10. GET Bucket cors
2.5.11. PUT Bucket cors
2.5.12. DELETE Bucket cors
2.5.13. List Bucket Object Versions
2.5.14. List Bucket Multipart Uploads
2.5.15. PUT Bucket Request Payment
2.5.16. GET Bucket Request Payment

2.6. OBJECT OPERATIONS
2.6.1. PUT Object
2.6.2. Copy Object
2.6.3. POST Object
2.6.4. OPTIONS Object
2.6.5. Delete Multiple Objects
2.6.6. Remove Object
2.6.7. Get Object
2.6.8. Get Object Information
2.6.9. Get Object ACL
2.6.10. Set Object ACL
2.6.11. Initiate Multipart Upload
2.6.12. Multipart Upload Part
2.6.13. List Multipart Upload Parts
2.6.14. Complete Multipart Upload
2.6.15. Abort Multipart Upload
2.6.16. Copy Multipart Upload

2.7. HADOOP S3A INTEROPERABILITY
2.8. S3 LIMITATIONS

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)
3.1. AUTHENTICATION

3.1.1. Authentication GET
3.2. SERVICE OPERATIONS

3.2.1. List Containers
3.3. CONTAINER OPERATIONS

3.3.1. Container Operations with Multi Tenancy
3.3.2. Create a Container
3.3.3. List a Container’s Objects
3.3.4. Update a Container’s Access Control Lists (ACLs)
3.3.5. Add/Update Container Metadata
3.3.6. Delete a Container

3.4. OBJECT OPERATIONS
3.4.1. Create/Update an Object
3.4.2. Copy an Object
3.4.3. Delete an Object
3.4.4. Get an Object
3.4.5. Get Object Metadata
3.4.6. Add/Update Object Metadata

3.5. TEMP URL OPERATIONS

69
71
71
71

72
73
73
74
74
74
76
78
78
79
79
79
80
81
81
81
81
82
83
84
85
86
86
88
88
89
89
90

91
92
92
93
93
94
95
95
96
97
98
99
99
99

100
101
101
102
102
103

Red Hat Ceph Storage 2 Developer Guide

2

3.5.1. POST Temp-URL Keys
3.5.2. GET Temp-URL Objects

3.6. SWIFT API LIMITATIONS

103
103
104

Table of Contents

3

Red Hat Ceph Storage 2 Developer Guide

4

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION
APPLICATION PROGRAMMING INTERFACE (API)

The Ceph Object Gateway exposes features of the radosgw-admin command-line interface in a
RESTful API too. Red Hat recommends using the command-line interface when setting up the Ceph
Object Gateway. When you want to manage users, data, quotas and usage, the Ceph Object Gateway’s
administrative API provides a RESTful interface that you can integrate with other management
platforms. The administrative API provides the following functionality:

Authentication Requests

User/Subuser Account Management

Administrative User

Getting User Information

Creating

Modifying

Removing

Creating Subuser

Modifying Subuser

Removing Subuser

User Capabilities Management

Adding

Removing

Key Management

Creating

Removing

Bucket Management

Getting Bucket Information

Checking Index

Removing

Linking

Unlinking

Policy

Object Management

Removing

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

5

Policy

Quota Management

Getting User

Setting User

Getting Bucket

Setting Bucket

Getting Usage Information

Trimming Usage Information

1.1. AUTHENTICATING REQUESTS

Amazon’s S3 service uses the access key and a hash of the request header and the secret key to
authenticate the request, which has the benefit of providing an authenticated request (especially large
uploads) without SSL overhead.

Most use cases for the S3 API involve using open source S3 clients such as the AmazonS3Client in
the Amazon SDK for Java or Python Boto. These libraries do not support the Ceph Object Gateway
Admin API. You can subclass and extend these libraries to support the Ceph Admin API. Alternatively,
you can create a unique Gateway client.

The CephAdminAPI example class in this section illustrates how to create an execute() method that
can take request parameters, authenticate the request, call the Ceph Admin API and receive a
response. The CephAdminAPI class example is not supported or intended for commercial use. It is
for illustrative purposes only. The client code contains five calls to the Ceph Object Gateway to
demonstrate CRUD operations:

Create a User

Get a User

Modify a User

Create a Subuser

Delete a User

To use this example, you will have to get the Apache HTTP Components , unzip the tar file, navigate to
its lib directory and copy the contents to the /jre/lib/ext directory of the JAVA_HOME directory,
or a custom classpath.

As you examine the CephAdminAPI class example, notice that the execute() method takes an HTTP
method, a request path, an optional subresource, null if not specified, and a map of parameters. To
execute with subresources, for example, subuser, and key, you will need to specify the subresource
as an argument in the execute() method.

The example method:

1. Builds a URI.

2. Builds an HTTP header string.

Red Hat Ceph Storage 2 Developer Guide

6

https://www.apache.org/dist/httpcomponents/httpclient/binary/httpcomponents-client-4.5-bin.tar.gz

3. Instantiates an HTTP request, for example, PUT, POST, GET, DELETE.

4. Adds the Date header to the HTTP header string and the request header.

5. Adds the Authorization header to the HTTP request header.

6. Instantiates an HTTP client and passes it the instantiated HTTP request.

7. Makes a request.

8. Returns a response.

Building the header string is the portion of the process that involves Amazon’s S3 authentication
procedure. Specifically, the example method does the following:

1. Adds a request type, for example, PUT, POST, GET, DELETE.

2. Adds the date.

3. Adds the requestPath.

The request type should be upper case with no leading or trailing white space. If you do not trim white
space, authentication will fail. The date MUST be expressed in GMT, or authentication will fail.

The exemplary method does not have any other headers. The Amazon S3 authentication procedure
sorts x-amz headers lexicographically. So if you are adding x-amz headers, be sure to add them
lexicographically. See S3 Authentication in this guide for additional details. For a more extensive
explanation of the Amazon S3 authentication procedure, consult the Signing and Authenticating REST
Requests section of Amazon Simple Storage Service documentation.

Once you have built the header string, the next step is to instantiate an HTTP request and pass it the
URI. The examplary method uses PUT for creating a user and subuser, GET for getting a user, POST for
modifying a user and DELETE for deleting a user.

Once you instantiate a request, add the Date header followed by the Authorization header.
Amazon’s S3 authentication uses the standard Authorization header, and has the following
structure:

Authorization: AWS <access_key>:<hash_of_header_and_secret>

The CephAdminAPI example class has a base64Sha1Hmac() method, which takes the header string
and the secret key for the admin user, and returns a SHA1 HMAC as a base-64 encoded string. Each
execute() call will invoke the same line of code to build the Authorization header:

httpRequest.addHeader("Authorization", "AWS " + this.getAccessKey() + ":"
+ base64Sha1Hmac(headerString.toString(), this.getSecretKey()));

The following CephAdminAPI example class requires you to pass the access key, secret key and an
endpoint to the constructor. The class provides accessor methods to change them at runtime.

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.time.OffsetDateTime;
import java.time.format.DateTimeFormatter;

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

7

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

import java.time.ZoneId;

import org.apache.http.HttpEntity;
import org.apache.http.NameValuePair;
import org.apache.http.Header;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpPut;
import org.apache.http.client.methods.HttpDelete;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.message.BasicNameValuePair;
import org.apache.http.util.EntityUtils;
import org.apache.http.client.utils.URIBuilder;

import java.util.Base64;
import java.util.Base64.Encoder;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import javax.crypto.spec.SecretKeySpec;
import javax.crypto.Mac;

import java.util.Map;
import java.util.Iterator;
import java.util.Set;
import java.util.Map.Entry;

public class CephAdminAPI {

 /*
 * Each call must specify an access key, secret key, endpoint and format.
 */
 String accessKey;
 String secretKey;
 String endpoint;
 String scheme = "http"; //http only.
 int port = 80;

 /*
 * A constructor that takes an access key, secret key, endpoint and
format.
 */
 public CephAdminAPI(String accessKey, String secretKey, String endpoint){
 this.accessKey = accessKey;
 this.secretKey = secretKey;
 this.endpoint = endpoint;
 }

 /*
 * Accessor methods for access key, secret key, endpoint and format.
 */
 public String getEndpoint(){
 return this.endpoint;

Red Hat Ceph Storage 2 Developer Guide

8

 }

 public void setEndpoint(String endpoint){
 this.endpoint = endpoint;
 }

 public String getAccessKey(){
 return this.accessKey;
 }

 public void setAccessKey(String accessKey){
 this.accessKey = accessKey;
 }

 public String getSecretKey(){
 return this.secretKey;
 }

 public void setSecretKey(String secretKey){
 this.secretKey = secretKey;
 }

 /*
 * Takes an HTTP Method, a resource and a map of arguments and
 * returns a CloseableHTTPResponse.
 */
 public CloseableHttpResponse execute(String HTTPMethod, String resource,
 String subresource, Map
arguments) {

 String httpMethod = HTTPMethod;
 String requestPath = resource;
 StringBuffer request = new StringBuffer();
 StringBuffer headerString = new StringBuffer();
 HttpRequestBase httpRequest;
 CloseableHttpClient httpclient;
 URI uri;
 CloseableHttpResponse httpResponse = null;

 try {

 uri = new URIBuilder()
 .setScheme(this.scheme)
 .setHost(this.getEndpoint())
 .setPath(requestPath)
 .setPort(this.port)
 .build();

 if (subresource != null){
 uri = new URIBuilder(uri)
 .setCustomQuery(subresource)
 .build();
 }

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

9

 for (Iterator iter = arguments.entrySet().iterator();
 iter.hasNext();) {
 Entry entry = (Entry)iter.next();
 uri = new URIBuilder(uri)
 .setParameter(entry.getKey().toString(),
 entry.getValue().toString())
 .build();

 }

 request.append(uri);

 headerString.append(HTTPMethod.toUpperCase().trim() + "\n\n\n");

 OffsetDateTime dateTime = OffsetDateTime.now(ZoneId.of("GMT"));
 DateTimeFormatter formatter = DateTimeFormatter.RFC_1123_DATE_TIME;
 String date = dateTime.format(formatter);

 headerString.append(date + "\n");
 headerString.append(requestPath);

 if (HTTPMethod.equalsIgnoreCase("PUT")){
 httpRequest = new HttpPut(uri);
 } else if (HTTPMethod.equalsIgnoreCase("POST")){
 httpRequest = new HttpPost(uri);
 } else if (HTTPMethod.equalsIgnoreCase("GET")){
 httpRequest = new HttpGet(uri);
 } else if (HTTPMethod.equalsIgnoreCase("DELETE")){
 httpRequest = new HttpDelete(uri);
 } else {
 System.err.println("The HTTP Method must be PUT,
 POST, GET or DELETE.");
 throw new IOException();
 }

 httpRequest.addHeader("Date", date);
 httpRequest.addHeader("Authorization", "AWS " + this.getAccessKey()
 + ":" + base64Sha1Hmac(headerString.toString(),
 this.getSecretKey()));

 httpclient = HttpClients.createDefault();
 httpResponse = httpclient.execute(httpRequest);

 } catch (URISyntaxException e){
 System.err.println("The URI is not formatted properly.");
 e.printStackTrace();
 } catch (IOException e){
 System.err.println("There was an error making the request.");
 e.printStackTrace();
 }
 return httpResponse;
 }

 /*
 * Takes a uri and a secret key and returns a base64-encoded
 * SHA-1 HMAC.

Red Hat Ceph Storage 2 Developer Guide

10

 */
 public String base64Sha1Hmac(String uri, String secretKey) {
 try {

 byte[] keyBytes = secretKey.getBytes("UTF-8");
 SecretKeySpec signingKey = new SecretKeySpec(keyBytes, "HmacSHA1");

 Mac mac = Mac.getInstance("HmacSHA1");
 mac.init(signingKey);

 byte[] rawHmac = mac.doFinal(uri.getBytes("UTF-8"));

 Encoder base64 = Base64.getEncoder();
 return base64.encodeToString(rawHmac);

 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

}

The subsequent CephAdminAPIClient example illustrates how to instantiate the CephAdminAPI
class, build a map of request parameters, and use the execute() method to create, get, update and
delete a user.

import java.io.IOException;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.HttpEntity;
import org.apache.http.util.EntityUtils;
import java.util.*;

public class CephAdminAPIClient {

 public static void main (String[] args){

 CephAdminAPI adminApi = new CephAdminAPI ("FFC6ZQ6EMIF64194158N",
 "Xac39eCAhlTGcCAUreuwe1ZuH5oVQFa51lbEMVoT",
 "ceph-client");

 /*
 * Create a user
 */
 Map requestArgs = new HashMap();
 requestArgs.put("access", "usage=read, write; users=read, write");
 requestArgs.put("display-name", "New User");
 requestArgs.put("email", "new-user@email.com");
 requestArgs.put("format", "json");
 requestArgs.put("uid", "new-user");

 CloseableHttpResponse response =
 adminApi.execute("PUT", "/admin/user", null, requestArgs);

 System.out.println(response.getStatusLine());
 HttpEntity entity = response.getEntity();

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

11

 try {
 System.out.println("\nResponse Content is: "
 + EntityUtils.toString(entity, "UTF-8") + "\n");
 response.close();
 } catch (IOException e){
 System.err.println ("Encountered an I/O exception.");
 e.printStackTrace();
 }

 /*
 * Get a user
 */
 requestArgs = new HashMap();
 requestArgs.put("format", "json");
 requestArgs.put("uid", "new-user");

 response = adminApi.execute("GET", "/admin/user", null, requestArgs);

 System.out.println(response.getStatusLine());
 entity = response.getEntity();

 try {
 System.out.println("\nResponse Content is: "
 + EntityUtils.toString(entity, "UTF-8") + "\n");
 response.close();
 } catch (IOException e){
 System.err.println ("Encountered an I/O exception.");
 e.printStackTrace();
 }

 /*
 * Modify a user
 */
 requestArgs = new HashMap();
 requestArgs.put("display-name", "John Doe");
 requestArgs.put("email", "johndoe@email.com");
 requestArgs.put("format", "json");
 requestArgs.put("uid", "new-user");
 requestArgs.put("max-buckets", "100");

 response = adminApi.execute("POST", "/admin/user", null, requestArgs);

 System.out.println(response.getStatusLine());
 entity = response.getEntity();

 try {
 System.out.println("\nResponse Content is: "
 + EntityUtils.toString(entity, "UTF-8") + "\n");
 response.close();
 } catch (IOException e){
 System.err.println ("Encountered an I/O exception.");
 e.printStackTrace();
 }

Red Hat Ceph Storage 2 Developer Guide

12

 /*
 * Create a subuser
 */
 requestArgs = new HashMap();
 requestArgs.put("format", "json");
 requestArgs.put("uid", "new-user");
 requestArgs.put("subuser", "foobar");

 response = adminApi.execute("PUT", "/admin/user", "subuser",
requestArgs);
 System.out.println(response.getStatusLine());
 entity = response.getEntity();

 try {
 System.out.println("\nResponse Content is: "
 + EntityUtils.toString(entity, "UTF-8") + "\n");
 response.close();
 } catch (IOException e){
 System.err.println ("Encountered an I/O exception.");
 e.printStackTrace();
 }

 /*
 * Delete a user
 */
 requestArgs = new HashMap();
 requestArgs.put("format", "json");
 requestArgs.put("uid", "new-user");

 response = adminApi.execute("DELETE", "/admin/user", null, requestArgs);
 System.out.println(response.getStatusLine());
 entity = response.getEntity();

 try {
 System.out.println("\nResponse Content is: "
 + EntityUtils.toString(entity, "UTF-8") + "\n");
 response.close();
 } catch (IOException e){
 System.err.println ("Encountered an I/O exception.");
 e.printStackTrace();
 }
 }
}

Return to the API function list.

1.2. CREATING AN ADMINISTRATIVE USER

Follow these steps to use the Ceph Object Gateway Administrative API:

1. Create an object gateway user:

Syntax

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

13

radosgw-admin user create --uid="<user_name>" --display-name="
<display_name>"

Example

radosgw-admin user create --uid="admin-api-user" --display-
name="Admin API User"

The radosgw-admin command-line interface will return the user. For example:

{
 "user_id": "admin-api-user",
 "display_name": "Admin API User",
 "email": "",
 "suspended": 0,
 "max_buckets": 1000,
 "auid": 0,
 "subusers": [],
 "keys": [
 {
 "user": "admin-api-user",
 "access_key": "NRWGT19TWMYOB1YDBV1Y",
 "secret_key": "gr1VEGIV7rxcP3xvXDFCo4UDwwl2YoNrmtRlIAty"
 }
],
 "swift_keys": [],
 "caps": [],
 "op_mask": "read, write, delete",
 "default_placement": "",
 "placement_tags": [],
 "bucket_quota": {
 "enabled": false,
 "max_size_kb": -1,
 "max_objects": -1
 },
 "user_quota": {
 "enabled": false,
 "max_size_kb": -1,
 "max_objects": -1
 },
 "temp_url_keys": []
}

2. Assign administrative capabilities to the user you create:

Syntax

radosgw-admin caps add --uid="<user_name>" --caps="users=*"

Example

radosgw-admin caps add --uid=admin-api-user --caps="users=*"

Red Hat Ceph Storage 2 Developer Guide

14

The radosgw-admin command-line interface will return the user. The "caps": will have the
capabilities you assigned to the user:

{
 "user_id": "admin-api-user",
 "display_name": "Admin API User",
 "email": "",
 "suspended": 0,
 "max_buckets": 1000,
 "auid": 0,
 "subusers": [],
 "keys": [
 {
 "user": "admin-api-user",
 "access_key": "NRWGT19TWMYOB1YDBV1Y",
 "secret_key": "gr1VEGIV7rxcP3xvXDFCo4UDwwl2YoNrmtRlIAty"
 }
],
 "swift_keys": [],
 "caps": [
 {
 "type": "users",
 "perm": "*"
 }
],
 "op_mask": "read, write, delete",
 "default_placement": "",
 "placement_tags": [],
 "bucket_quota": {
 "enabled": false,
 "max_size_kb": -1,
 "max_objects": -1
 },
 "user_quota": {
 "enabled": false,
 "max_size_kb": -1,
 "max_objects": -1
 },
 "temp_url_keys": []
}

Now you have a user with administrative privileges.

Return to the API function list.

1.3. ADMINISTRATIVE OPERATIONS

An administrative Application Programming Interface (API) request will be done on a URI that starts
with the configurable 'admin' resource entry point. Authorization for the administrative API duplicates
the S3 authorization mechanism. Some operations require that the user holds special administrative
capabilities. The response entity type, either XML or JSON, might be specified as the 'format' option in
the request and defaults to JSON if not specified.

1.3.1. Get Usage

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

15

Requesting bandwidth usage information.

caps

usage=read

Syntax

GET /admin/usage?format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>

Table 1.1. Request Parameters

Name Description Type Requ
ired

uid The user for which the information is requested. String. Yes

start Date and (optional) time that specifies the start time of
the requested data. E.g., 2012-09-25 16:00:00

String No

end Date and (optional) time that specifies the end time of
the requested data (non-inclusive). E.g., 2012-09-25
16:00:00

String No

show-entries Specifies whether data entries should be returned. Boolean No

show-summary Specifies whether data summary should be returned. Boolean No

Table 1.2. Response Entities

Name Description Type

usage A container for the usage information. Container

entries A container for the usage entries information. Container

user A container for the user data information. Container

owner The name of the user that owns the buckets. String

bucket The bucket name. String

time Time lower bound for which data is being specified
(rounded to the beginning of the first relevant hour).

String

epoch The time specified in seconds since 1/1/1970. String

categories A container for stats categories. Container

Red Hat Ceph Storage 2 Developer Guide

16

entry A container for stats entry. Container

category Name of request category for which the stats are
provided.

String

bytes_sent Number of bytes sent by the Ceph Object Gateway. Integer

bytes_receiv
ed

Number of bytes received by the Ceph Object Gateway. Integer

ops Number of operations. Integer

successful_o
ps

Number of successful operations. Integer

summary A container for stats summary. Container

total A container for stats summary aggregated total. Container

Name Description Type

If successful, the response contains the requested information.

Return to the API function list.

1.3.2. Trim Usage

Remove usage information. With no dates specified, removes all usage information.

caps

usage=write

Syntax

DELETE /admin/usage?format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>

Table 1.3. Request Parameters

Name Description Type Example Requir
ed

uid The user for which the information is
requested.

String foo_user No

start Date and (optional) time that specifies the
start time of the requested data.

String 2012-09-25
16:00:00

No

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

17

end Date and (optional) time that specifies the
end time of the requested data (none
inclusive).

String 2012-09-25
16:00:00

No

remove-
all

Required when uid is not specified, in
order to acknowledge multi-user data
removal.

Boolean True [False] No

Name Description Type Example Requir
ed

Return to the API function list.

1.3.3. Get User Information

Get the user’s information.

caps

users=read

Syntax

GET /admin/user?format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>

Table 1.4. Request Parameters

Name Description Type Example Requir
ed

uid The user for which the information is
requested.

String foo_user Yes

Table 1.5. Response Entities

Name Description Type Pare
nt

user A container for the user data information. Container N/A

user_id The user ID. String use
r

display_name Display name for the user. String use
r

Red Hat Ceph Storage 2 Developer Guide

18

suspended True if the user is suspended. Boolean use
r

max_buckets The maximum number of buckets to be owned by the
user.

Integer use
r

subusers Subusers associated with this user account. Container use
r

keys S3 keys associated with this user account. Container use
r

swift_keys Swift keys associated with this user account. Container use
r

caps User capabilities. Container use
r

Name Description Type Pare
nt

If successful, the response contains the user information.

Special Error Responses

None.

Return to the API function list.

1.3.4. Creating a User

Create a new user. By Default, a S3 key pair will be created automatically and returned in the response.
If only one of access-key or secret-key is provided, the omitted key will be automatically
generated. By default, a generated key is added to the keyring without replacing an existing key pair. If
access-key is specified and refers to an existing key owned by the user then it will be modified.

caps

users=write

Syntax

PUT /admin/user?format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>

Table 1.6. Request Parameters

Name Description Type Example Requir
ed

uid The user ID to be created. String foo_user Yes

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

19

display-
name

The display name of the user to be created. String foo user Yes

email The email address associated with the user. String foo@bar.com No

key-type Key type to be generated, options are:
swift, s3 (default).

String s3 [s3] No

access-
key

Specify access key. String ABCD0EF12GHI
J2K34LMN

No

secret-
key

Specify secret key. String 0AbCDEFg1h2i
34JklM5nop6Q
rSTUV+WxyzaB
C7D8

No

user-caps User capabilities. String usage=read,
write;
users=read

No

generate-
key

Generate a new key pair and add to the
existing keyring.

Boolean True [True] No

max-
buckets

Specify the maximum number of buckets
the user can own.

Integer 500 [1000] No

suspended Specify whether the user should be
suspended.

Boolean False [False] No

Name Description Type Example Requir
ed

Table 1.7. Response Entities

Name Description Type Pare
nt

user A container for the user data information. Container N/A

user_id The user ID. String use
r

display_name Display name for the user. String use
r

suspended True if the user is suspended. Boolean use
r

Red Hat Ceph Storage 2 Developer Guide

20

max_buckets The maximum number of buckets to be owned by the
user.

Integer use
r

subusers Subusers associated with this user account. Container use
r

keys S3 keys associated with this user account. Container use
r

swift_keys Swift keys associated with this user account. Container use
r

caps User capabilities. Container use
r

Name Description Type Pare
nt

If successful, the response contains the user information.

Table 1.8. Special Error Responses

Name Description Code

UserExists Attempt to create existing user. 409 Conflict

InvalidAcces
sKey

Invalid access key specified. 400 Bad Request

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

InvalidSecre
tKey

Invalid secret key specified. 400 Bad Request

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

KeyExists Provided access key exists and belongs to another
user.

409 Conflict

EmailExists Provided email address exists. 409 Conflict

InvalidCap Attempt to grant invalid admin capability. 400 Bad Request

See Section 1.3.7, “Creating a Subuser” for creating subusers.

Return to the API function list.

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

21

1.3.5. Modifying a User

Modify an existing user.

caps

users=write

Syntax

POST /admin/user?format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>

Table 1.9. Request Parameters

Name Description Type Example Requir
ed

uid The user ID to be modified. String foo_user Yes

display-
name

The display name of the user to be modified. String foo user No

email The email address to be associated with the
user.

String foo@bar.com No

generate-
key

Generate a new key pair and add to the
existing keyring.

Boolean True [False] No

access-
key

Specify access key. String ABCD0EF12GHI
J2K34LMN

No

secret-
key

Specify secret key. String 0AbCDEFg1h2i
34JklM5nop6Q
rSTUV+WxyzaB
C7D8

No

key-type Key type to be generated, options are:
swift, s3 (default).

String s3 No

user-caps User capabilities. String usage=read,
write;
users=read

No

max-
buckets

Specify the maximum number of buckets
the user can own.

Integer 500 [1000] No

suspended Specify whether the user should be
suspended.

Boolean False [False] No

Table 1.10. Response Entities

Red Hat Ceph Storage 2 Developer Guide

22

Name Description Type Pare
nt

user A container for the user data information. Container N/A

user_id The user ID. String use
r

display_name Display name for the user. String use
r

suspended True if the user is suspended. Boolean use
r

max_buckets The maximum number of buckets to be owned by the
user.

Integer use
r

subusers Subusers associated with this user account. Container use
r

keys S3 keys associated with this user account. Container use
r

swift_keys Swift keys associated with this user account. Container use
r

caps User capabilities. Container use
r

If successful, the response contains the user information.

Table 1.11. Special Error Responses

Name Description Code

InvalidAcces
sKey

Invalid access key specified. 400 Bad Request

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

InvalidSecre
tKey

Invalid secret key specified. 400 Bad Request

KeyExists Provided access key exists and belongs to another
user.

409 Conflict

EmailExists Provided email address exists. 409 Conflict

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

23

InvalidCap Attempt to grant invalid admin capability. 400 Bad Request

Name Description Code

See Section 1.3.8, “Modifying a Subuser” for modifying subusers.

Return to the API function list.

1.3.6. Removing a User

Remove an existing user.

caps

users=write

Syntax

DELETE /admin/user?format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>

Table 1.12. Request Parameters

Name Description Type Example Requir
ed

uid The user ID to be removed. String foo_user Yes.

purge-
data

When specified the buckets and objects
belonging to the user will also be removed.

Boolean True No

Response Entities

None.

Special Error Responses

None.

See Section 1.3.9, “Removing a Subuser” for removing subusers.

Return to the API function list.

1.3.7. Creating a Subuser

Create a new subuser, primarily useful for clients using the Swift API. Note that either gen-subuser
or subuser is required for a valid request. Also, note that in general for a subuser to be useful, it must
be granted permissions by specifying access. As with user creation if subuser is specified without
secret, then a secret key will be automatically generated.

caps

users=write

Red Hat Ceph Storage 2 Developer Guide

24

Syntax

PUT /admin/user?subuser&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.13. Request Parameters

Name Description Type Example Required

uid The user ID under
which a subuser is to
be created.

String foo_user Yes

subuser Specify the subuser
ID to be created.

String sub_foo Yes (or gen-
subuser)

gen-subuser Specify the subuser
ID to be created.

String sub_foo Yes (or
subuser)

secret-key Specify secret key. String 0AbCDEFg1h
2i34JklM5n
op6QrSTUVW
xyzaBC7D8

No

key-type Key type to be
generated, options
are: swift (default),
s3.

String swift
[swift]

No

access Set access
permissions for sub-
user, should be one
of read, write,
readwrite,
full.

String read No

generate-secret Generate the secret
key.

Boolean True [False] No

Table 1.14. Response Entities

Name Description Type Pare
nt

subusers Subusers associated with the user account. Container N/A

id Subuser ID. String sub
use
rs

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

25

permissions Subuser access to user account. String sub
use
rs

Name Description Type Pare
nt

If successful, the response contains the subuser information.

Table 1.15. Special Error Responses

Name Description Code

SubuserExist
s

Specified subuser exists. 409 Conflict

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

InvalidSecre
tKey

Invalid secret key specified. 400 Bad Request

InvalidAcces
s

Invalid subuser access specified. 400 Bad Request

Return to the API function list.

1.3.8. Modifying a Subuser

Modify an existing subuser.

caps

users=write

Syntax

POST /admin/user?subuser&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.16. Request Parameters

Name Description Type Example Requir
ed

uid The user ID under which the
subuser is to be modified.

String foo_user Yes

subuser The subuser ID to be modified. String sub_foo Yes

Red Hat Ceph Storage 2 Developer Guide

26

generate-secret Generate a new secret key for
the subuser, replacing the
existing key.

Boolea
n

True [False] No

secret Specify secret key. String 0AbCDEFg1h2i
34JklM5nop6Q
rSTUV+WxyzaB
C7D8

No

key-type Key type to be generated,
options are: swift (default), s3.

String swift [swift] No

access Set access permissions for
sub-user, should be one of
read, write,
readwrite, full.

String read No

Name Description Type Example Requir
ed

Table 1.17. Response Entities

Name Description Type Pare
nt

subusers Subusers associated with the user account. Container N/A

id Subuser ID. String sub
use
rs

permissions Subuser access to user account. String sub
use
rs

If successful, the response contains the subuser information.

Table 1.18. Special Error Responses

Name Description Code

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

InvalidSecre
tKey

Invalid secret key specified. 400 Bad Request

InvalidAcces
s

Invalid subuser access specified. 400 Bad Request

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

27

Return to the API function list.

1.3.9. Removing a Subuser

Remove an existing subuser.

caps

users=write

Syntax

DELETE /admin/user?subuser&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.19. Request Parameters

Name Description Type Example Requir
ed

uid The user ID under which the
subuser is to be removed.

String foo_user Yes

subuser The subuser ID to be removed. String sub_foo Yes

purge-keys Remove keys belonging to the
subuser.

Boolea
n

True [True] No

Response Entities

None.

Special Error Responses

None.

Return to the API function list.

1.3.10. Creating a Key

Create a new key. If a subuser is specified then by default created keys will be swift type. If only one of
access-key or secret-key is provided the committed key will be automatically generated, that is if
only secret-key is specified then access-key will be automatically generated. By default, a
generated key is added to the keyring without replacing an existing key pair. If access-key is
specified and refers to an existing key owned by the user then it will be modified. The response is a
container listing all keys of the same type as the key created. Note that when creating a swift key,
specifying the option access-key will have no effect. Additionally, only one swift key might be held by
each user or subuser.

caps

users=write

Syntax

Red Hat Ceph Storage 2 Developer Guide

28

PUT /admin/user?key&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.20. Request Parameters

Name Description Type Example Requir
ed

uid The user ID to receive the
new key.

String foo_user Yes

subuser The subuser ID to receive the
new key.

String sub_foo No

key-type Key type to be generated,
options are: swift, s3 (default).

String s3 [s3] No

access-key Specify the access key. String AB01C2D3EF45
G6H7IJ8K

No

secret-key Specify the secret key. String 0ab/CdeFGhij
1klmnopqRSTU
v1WxyZabcDEF
gHij

No

generate-key Generate a new key pair and
add to the existing keyring.

Boolea
n

True [True] No

Table 1.21. Response Entities

Name Description Type Pare
nt

keys Keys of type created associated with this user account. Container N/A

user The user account associated with the key. String key
s

access-key The access key. String key
s

secret-key The secret key String key
s

Table 1.22. Special Error Responses

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

29

Name Description Code

InvalidAcces
sKey

Invalid access key specified. 400 Bad Request

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

InvalidSecre
tKey

Invalid secret key specified. 400 Bad Request

InvalidKeyTy
pe

Invalid key type specified. 400 Bad Request

KeyExists Provided access key exists and belongs to another
user.

409 Conflict

Return to the API function list.

1.3.11. Removing a Key

Remove an existing key.

caps

users=write

Syntax

DELETE /admin/user?key&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.23. Request Parameters

Name Description Type Example Requir
ed

access-key The S3 access key belonging
to the S3 key pair to remove.

String AB01C2D3EF45
G6H7IJ8K

Yes

uid The user to remove the key
from.

String foo_user No

subuser The subuser to remove the
key from.

String sub_foo No

key-type Key type to be removed,
options are: swift, s3. NOTE:
Required to remove swift key.

String swift No

Red Hat Ceph Storage 2 Developer Guide

30

Special Error Responses

None.

Response Entities

None.

Return to the API function list.

1.3.12. Getting Bucket Information

Get information about a subset of the existing buckets. If uid is specified without bucket then all
buckets belonging to the user will be returned. If bucket alone is specified, information for that
particular bucket will be retrieved.

caps

buckets=read

Syntax

GET /admin/bucket?format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.24. Request Parameters

Name Description Type Example Requir
ed

bucket The bucket to return info on. String foo_bucket No

uid The user to retrieve bucket
information for.

String foo_user No

stats Return bucket statistics. Boolea
n

True [False] No

Table 1.25. Response Entities

Name Description Type Pare
nt

stats Per bucket information. Container N/A

buckets Contains a list of one or more bucket containers. Container buc
ket

Container for
single bucket
information.

Container buckets nam
e

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

31

The name of the
bucket.

String bucket poo
l

The pool the
bucket is stored
in.

String bucket id

The unique bucket
ID.

String bucket mar
ker

Internal bucket
tag.

String bucket own
er

The user ID of the
bucket owner.

String bucket usa
ge

Storage usage
information.

Container bucket ind
ex

Name Description Type Pare
nt

If successful the request returns a buckets container containing the desired bucket information.

Table 1.26. Special Error Responses

Name Description Code

IndexRepairF
ailed

Bucket index repair failed. 409 Conflict

Return to the API function list.

1.3.13. Checking a Bucket Index

Check the index of an existing bucket.

NOTE

To check multipart object accounting with check-objects, fix must be set to True.

caps

buckets=write

Syntax

Red Hat Ceph Storage 2 Developer Guide

32

GET /admin/bucket?index&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.27. Request Parameters

Name Description Type Example Requir
ed

bucket The bucket to return info on. String foo_bucket Yes

check-objects Check multipart object
accounting.

Boolea
n

True [False] No

fix Also fix the bucket index when
checking.

Boolea
n

False [False] No

Table 1.28. Response Entities

Name Description Type

index Status of bucket index. String

Table 1.29. Special Error Responses

Name Description Code

IndexRepairF
ailed

Bucket index repair failed. 409 Conflict

Return to the API function list.

1.3.14. Removing a Bucket

Removes an existing bucket.

caps

buckets=write

Syntax

DELETE /admin/bucket?format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.30. Request Parameters

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

33

Name Description Type Example Requir
ed

bucket The bucket to remove. String foo_bucket Yes

purge-objects Remove a buckets objects
before deletion.

Boolea
n

True [False] No

Response Entities

None.

Table 1.31. Special Error Responses

Name Description Code

BucketNotEmp
ty

Attempted to delete non-empty bucket. 409 Conflict

ObjectRemova
lFailed

Unable to remove objects. 409 Conflict

Return to the API function list.

1.3.15. Linking a Bucket

Link a bucket to a specified user, unlinking the bucket from any previous user.

caps

buckets=write

Syntax

PUT /admin/bucket?format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.32. Request Parameters

Name Description Type Example Requir
ed

bucket The bucket to unlink. String foo_bucket Yes

uid The user ID to link the bucket
to.

String foo_user Yes

Table 1.33. Response Entities

Red Hat Ceph Storage 2 Developer Guide

34

Name Description Type Pare
nt

bucket Container for single bucket information. Container N/A

name The name of the bucket. String buc
ket

pool The pool the bucket is stored in. String buc
ket

id The unique bucket ID. String buc
ket

marker Internal bucket tag. String buc
ket

owner The user ID of the bucket owner. String buc
ket

usage Storage usage information. Container buc
ket

index Status of bucket index. String buc
ket

Table 1.34. Special Error Responses

Name Description Code

BucketUnlink
Failed

Unable to unlink bucket from specified user. 409 Conflict

BucketLinkFa
iled

Unable to link bucket to specified user. 409 Conflict

Return to the API function list.

1.3.16. Unlinking a Bucket

Unlink a bucket from a specified user. Primarily useful for changing bucket ownership.

caps

buckets=write

Syntax

POST /admin/bucket?format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

35

Table 1.35. Request Parameters

Name Description Type Example Requir
ed

bucket The bucket to unlink. String foo_bucket Yes

uid The user ID to unlink the
bucket from.

String foo_user Yes

Response Entities

None.

Table 1.36. Special Error Responses

Name Description Code

BucketUnlink
Failed

Unable to unlink bucket from specified user. 409 Conflict

Return to the API function list.

1.3.17. Removing an Object

Remove an existing object.

NOTE

Does not require owner to be non-suspended.

caps

buckets=write

Syntax

DELETE /admin/bucket?object&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.37. Request Parameters

Name Description Type Example Requir
ed

bucket The bucket containing the
object to be removed.

String foo_bucket Yes

object The object to remove. String foo.txt Yes

Red Hat Ceph Storage 2 Developer Guide

36

Response Entities

None.

Table 1.38. Special Error Responses

Name Description Code

NoSuchObject Specified object does not exist. 404 Not Found

ObjectRemova
lFailed

Unable to remove objects. 409 Conflict

Return to the API function list.

1.3.18. Getting Bucket or Object Policy

Read the policy of an object or bucket.

caps

buckets=read

Syntax

GET /admin/bucket?policy&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.39. Request Parameters

Name Description Type Example Requir
ed

bucket The bucket to read the policy
from.

String foo_bucket Yes

object The object to read the policy
from.

String foo.txt No

Table 1.40. Response Entities

Name Description Type Pare
nt

policy Access control policy. Container N/A

If successful, returns the object or bucket policy

Table 1.41. Special Error Responses

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

37

Name Description Code

IncompleteBo
dy

Either bucket was not specified for a bucket policy
request or bucket and object were not specified for an
object policy request.

400 Bad Request

Return to the API function list.

1.3.19. Adding a Capability to an Existing User

Add an administrative capability to a specified user.

caps

users=write

Syntax

PUT /admin/user?caps&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.42. Request Parameters

Name Description Type Example Requir
ed

uid The user ID to add an
administrative capability to.

String foo_user Yes

user-caps The administrative capability
to add to the user.

String usage=read,
write

Yes

Table 1.43. Response Entities

Name Description Type Pare
nt

user A container for the user data information. Container N/A

user_id The user ID. String use
r

caps User capabilities. Container use
r

If successful, the response contains the user’s capabilities.

Table 1.44. Special Error Responses

Red Hat Ceph Storage 2 Developer Guide

38

Name Description Code

InvalidCap Attempt to grant invalid admin capability. 400 Bad Request

Return to the API function list.

1.3.19.1. Example Request

PUT /admin/user?caps&format=json HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
Content-Type: text/plain
Authorization: <Authorization_Token>

usage=read

1.3.20. Removing a Capability from an Existing User

Remove an administrative capability from a specified user.

caps

users=write

Syntax

DELETE /admin/user?caps&format=json HTTP/1.1
Host <Fully_Qualified_Domain_Name>

Table 1.45. Request Parameters

Name Description Type Example Requir
ed

uid The user ID to remove an
administrative capability
from.

String foo_user Yes

user-caps The administrative
capabilities to remove from
the user.

String usage=read,
write

Yes

Table 1.46. Response Entities

Name Description Type Pare
nt

user A container for the user data information. Container N/A

user_id The user ID. String use
r

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

39

caps User capabilities. Container use
r

Name Description Type Pare
nt

If successful, the response contains the user’s capabilities.

Table 1.47. Special Error Responses

Name Description Code

InvalidCap Attempt to remove an invalid admin capability. 400 Bad Request

NoSuchCap User does not possess specified capability. 404 Not Found

Return to the API function list.

1.3.21. Quotas

The administrative Operations API enables you to set quotas on users and on bucket owned by users.
See Quota Management for additional details. Quotas include the maximum number of objects in a
bucket and the maximum storage size in megabytes.

To view quotas, the user must have a users=read capability. To set, modify or disable a quota, the
user must have users=write capability. See the Administration (CLI) for details.

Valid parameters for quotas include:

Bucket: The bucket option allows you to specify a quota for buckets owned by a user.

Maximum Objects: The max-objects setting allows you to specify the maximum number of
objects. A negative value disables this setting.

Maximum Size: The max-size option allows you to specify a quota for the maximum number
of bytes. A negative value disables this setting.

Quota Scope: The quota-scope option sets the scope for the quota. The options are bucket
and user.

Return to the API function list.

1.3.21.1. Getting User Quota

To get a quota, the user must have users capability set with read permission.

Syntax

Red Hat Ceph Storage 2 Developer Guide

40

GET /admin/user?quota&uid=<uid>"a-type=user

Return to the API function list.

1.3.21.2. Setting User Quota

To set a quota, the user must have users capability set with write permission.

Syntax

PUT /admin/user?quota&uid=<uid>"a-type=user

The content must include a JSON representation of the quota settings as encoded in the
corresponding read operation.

Return to the API function list.

1.3.21.3. Getting Bucket Quota

To get a quota, the user must have users capability set with read permission.

Syntax

GET /admin/user?quota&uid=<uid>"a-type=bucket

Return to the API function list.

1.3.21.4. Setting Bucket Quota

To set a quota, the user must have users capability set with write permission.

Syntax

PUT /admin/user?quota&uid=<uid>"a-type=bucket

The content must include a JSON representation of the quota settings as encoded in the
corresponding read operation.

Return to the API function list.

1.3.22. Standard Error Responses

Name Description Code

AccessDenied Access denied. 403 Forbidden

InternalErro
r

Internal server error. 500 Internal Server Error

NoSuchUser User does not exist. 404 Not Found

CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)

41

NoSuchBucket Bucket does not exist. 404 Not Found

NoSuchKey No such access key. 404 Not Found

Name Description Code

Red Hat Ceph Storage 2 Developer Guide

42

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION
PROGRAMMING INTERFACE (API)

Red Hat Ceph Object Gateway supports a RESTful API that is compatible with the basic data access
model of the Amazon S3 API.

The following table describes the support status for current Amazon S3 functional features.

Table 2.1. Features

Feature Status Remarks

List Buckets Supported

Create Bucket Supported Different set of canned ACLs

Get Bucket Supported

Get Bucket Location Supported

Get Bucket Versioning Supported

Delete Bucket Supported

Bucket ACLs (Get, Put) Supported Different set of canned ACLs

Bucket cors (Get, Put, Delete) Supported

Bucket Object Versions Supported

Get Bucket Info (HEAD) Supported

List Bucket Multipart Uploads Supported

Bucket Lifecycle Not Supported

Policy (Buckets, Objects) Not Supported ACLs are supported

Bucket Website Supported

Bucket Notification Not Supported

Bucket Request Payment (Get, Put) Supported

Put Object Supported

Delete Object Supported

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

43

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#configuring_gateways_for_static_web_hosting

Get Object Supported

Object ACLs (Get, Put) Supported

Get Object Info (HEAD) Supported

Copy Object Supported

Post Object Supported

Options Object Supported

Delete Multiple Objects Supported

Initiate Multipart Upload Supported

Initiage Multipart Upload Part Supported

List Multipart Upload Parts Supported

Complete Multipart Upload Supported

Abort Multipart Upload Supported

Multipart Uploads Supported

Copy Multipart Upload Supported

Multi Tenancy Supported

Feature Status Remarks

The following table lists the common request header fields that are not supported.

Table 2.2. Unsupported Header Fields

Name Type

x-amz-security-token Request

Server Response

x-amz-delete-marker Response

x-amz-id-2 Response

x-amz-request-id Response

Red Hat Ceph Storage 2 Developer Guide

44

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#multi_tenancy

x-amz-version-id Response

Name Type

2.1. AUTHENTICATION AND ACCESS CONTROL LISTS

Requests to the Ceph Object Gateway can be either authenticated or unauthenticated. Ceph Object
Gateway assumes unauthenticated requests are sent by an anonymous user. Ceph Object Gateway
supports canned ACLs.

2.1.1. Authentication

For most use cases, clients use existing open source libraries like the Amazon SDK’s
AmazonS3Client for Java, and Python Boto. where you simply pass in the access key and secret key,
and the library builds the request header and authentication signature for you. However, you can
create requests and sign them too.

Authenticating a request requires including an access key and a base 64-encoded Hash-based
Message Authentication Code (HMAC) in the request before it is sent to the Ceph Object Gateway
server. Ceph Object Gateway uses an S3-compatible authentication approach.

Example

HTTP/1.1
PUT /buckets/bucket/object.mpeg
Host: cname.domain.com
Date: Mon, 2 Jan 2012 00:01:01 +0000
Content-Encoding: mpeg
Content-Length: 9999999

Authorization: AWS <access_key>:<hash_of_header_and_secret>

In the foregoing example, replace <access_key> with the value for the access key ID followed by a
colon (:). Replace <hash_of_header_and_secret> with a hash of a canonicalized header string and
the secret corresponding to the access key ID.

To generate the hash of the header string and secret, you must:

1. Get the value of the header string.

2. Normalize the request header string into canonical form.

3. Generate an HMAC using a SHA-1 hashing algorithm.

4. Encode the hmac result as base-64.

To normalize the header into canonical form:

1. Get all content- headers.

2. Remove all content- headers except for content-type and content-md5.

3. Ensure the content- header names are lowercase.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

45

4. Sort the content- headers lexicographically.

5. Ensure you have a Date header AND ensure the specified date uses GMT and not an offset.

6. Get all headers beginning with x-amz-.

7. Ensure that the x-amz- headers are all lowercase.

8. Sort the x-amz- headers lexicographically.

9. Combine multiple instances of the same field name into a single field and separate the field
values with a comma.

10. Replace white space and line breaks in header values with a single space.

11. Remove white space before and after colons.

12. Append a new line after each header.

13. Merge the headers back into the request header.

Replace the <hash_of_header_and_secret> with the base-64 encoded HMAC string.

For additional details, consult the Signing and Authenticating REST Requests section of Amazon
Simple Storage Service documentation.

2.1.2. Access Control Lists (ACLs)

Ceph Object Gateway supports S3-compatible ACL functionality. An ACL is a list of access grants that
specify which operations a user can perform on a bucket or on an object. Each grant has a different
meaning when applied to a bucket versus applied to an object:

Table 2.3. User Operations

Permission Bucket Object

READ Grantee can list the objects in the bucket. Grantee can read the object.

WRITE Grantee can write or delete objects in the
bucket.

N/A

READ_ACP Grantee can read bucket ACL. Grantee can read the object ACL.

WRITE_ACP Grantee can write bucket ACL. Grantee can write to the object ACL.

FULL_CONT
ROL

Grantee has full permissions for object in the
bucket.

Grantee can read or write to the object
ACL.

2.2. ACCESSING THE GATEWAY

You can use various programming languages to create a connection with the gateway server and do
the bucket management tasks. There are different open source libraries available for these
programming languages that are used for authentication with the gateway.

Red Hat Ceph Storage 2 Developer Guide

46

http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

The sections mentioned below will describe the procedure for some of the popular programming
languages.

2.2.1. Prerequisites

You have to follow some pre-requisites on the Ceph Object Gateway node before attempting to access
the gateway server. The pre-requisites are as follows:

1. Set up the gateway server properly by following the instructions based on the operating
system:

a. For Red Hat Enterprise Linux, see the Ceph Object Gateway Installation chapter in the Red
Hat Ceph Storage 2 Installation Guide.

b. For Ubuntu, see the Ceph Object Gateway Installation chapter in the Red Hat Ceph
Storage 2 Installation Guide.

2. DO NOT modify the Ceph configuration file to use port 80 and let Civetweb use the default
port 7480.

3. As root, open port 7480 on firewall:

firewall-cmd --zone=public --add-port=7480/tcp --permanent
firewall-cmd --reload

4. Add a wildcard to the DNS server that you are using for the gateway as mentioned in the Red
Hat Ceph Storage Object Gateway Guide.
You can also set up the gateway node for local DNS caching. To do so, execute the following
steps:

a. As root, install and setup dnsmasq:

yum install dnsmasq
echo "address=/.<FQDN_of_gateway_node>/<IP_of_gateway_node>" |
tee --append /etc/dnsmasq.conf
systemctl start dnsmasq
systemctl enable dnsmasq

Replace <IP_of_gateway_node> and <FQDN_of_gateway_node> with the IP address
and FQDN of the gateway node.

b. As root, stop NetworkManager:

systemctl stop NetworkManager
systemctl disable NetworkManager

c. As root, set the gateway server’s IP as the nameserver:

echo "DNS1=<IP_of_gateway_node>" | tee --append
/etc/sysconfig/network-scripts/ifcfg-eth0
echo "<IP_of_gateway_node> <FQDN_of_gateway_node>" | tee --
append /etc/hosts
systemctl restart network
systemctl enable network
systemctl restart dnsmasq

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

47

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux#ceph_object_gateway_installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu#ceph_object_gateway_installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#adding_a_wildcard_to_dns

Replace <IP_of_gateway_node> and <FQDN_of_gateway_node> with the IP address
and FQDN of the gateway node.

d. Verify subdomain requests:

$ ping mybucket.<FQDN_of_gateway_node>

Replace <FQDN_of_gateway_node> with the FQDN of the gateway node.

WARNING

Setting up the gateway server for local DNS caching is for testing
purposes only. You won’t be able to access outside network after
doing this. It is strongly recommended to use a proper DNS server
for the Ceph cluster and gateway node.

5. Create the radosgw user for S3 access carefully as mentioned in the Red Hat Ceph Storage
Object Gateway Guide and copy the generated access_key and secret_key. You will need
these keys for S3 access and subsequent bucket management tasks.

2.2.2. Ruby AWS::S3 Examples (aws-s3 gem)

You can use Ruby programming language along with aws-s3 gem for S3 access. Execute the steps
mentioned below on the node used for accessing the Ceph Object Gateway server with Ruby
AWS::S3.

Setup Ruby

Execute the following steps to setup Ruby:

1. As root, install ruby:

yum install ruby

NOTE

The above command will install ruby and it’s essential dependencies like
rubygems and ruby-libs too. If somehow the command doesn’t install all the
dependencies, install them separately.

2. As root, install aws-s3:

gem install aws-s3

Creating a connection

1. Create a project directory:

Red Hat Ceph Storage 2 Developer Guide

48

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#creating_a_literal_radosgw_literal_user_for_s3_access

$ mkdir ruby_aws_s3
$ cd ruby_aws_s3

2. Create the connection file:

$ vim conn.rb

3. Paste the following contents into the conn.rb file:

#!/usr/bin/env ruby

require 'aws/s3'
require 'resolv-replace'

AWS::S3::Base.establish_connection!(
 :server => '<FQDN_of_gateway_node>',
 :port => '7480',
 :access_key_id => 'my-access-key',
 :secret_access_key => 'my-secret-key'
)

Replace <FQDN_of_gateway_node> with the FQDN of you gateway node. Replace my-
access-key and my-secret-key with the access_key and secret_key that was
generated when you created the radosgw user for S3 access as mentioned in the Red Hat
Ceph Storage Object Gateway Guide.

An example connection file will look like the following:

#!/usr/bin/env ruby

require 'aws/s3'

require 'resolv-replace'

AWS::S3::Base.establish_connection!(
 :server => 'testclient.englab.pnq.redhat.com',
 :port => '7480',
 :access_key_id => '98J4R9P22P5CDL65HKP8',
 :secret_access_key =>
'6C+jcaP0dp0+FZfrRNgyGA9EzRy25pURldwje049'
)

Save the file and exit the editor.

4. Make the file executable:

$ chmod +x conn.rb

5. Run the file:

$./conn.rb | echo $?

If you have provided the values correctly in the file, the output of the command will be 0.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

49

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#creating_a_literal_radosgw_literal_user_for_s3_access

Creating a bucket

1. Create a new file:

$ vim create_bucket.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

AWS::S3::Bucket.create('my-new-bucket1')

Save the file and exit the editor.

2. Make the file executable:

$ chmod +x create_bucket.rb

3. Run the file:

$./create_bucket.rb

If the output of the command is true it would mean that bucket my-new-bucket1 was
created successfully.

Listing owned buckets

1. Create a new file:

$ vim list_owned_buckets.rb

Paste the following content into the file:

#!/usr/bin/env ruby

load 'conn.rb'

AWS::S3::Service.buckets.each do |bucket|
 puts "#{bucket.name}\t#{bucket.creation_date}"
end

Save the file and exit the editor.

2. Make the file executable:

$ chmod +x list_owned_buckets.rb

3. Run the file:

$./list_owned_buckets.rb

Red Hat Ceph Storage 2 Developer Guide

50

The output should look something like this:

my-new-bucket1 2016-01-21 10:33:19 UTC

Creating an object

1. Create a new file:

$ vim create_object.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

AWS::S3::S3Object.store(
 'hello.txt',
 'Hello World!',
 'my-new-bucket1',
 :content_type => 'text/plain'
)

Save the file and exit the editor.

2. Make the file executable:

$ chmod +x create_object.rb

3. Run the file:

$./create_object.rb

This will create a file hello.txt with the string Hello World!.

Listing a Bucket’s Content

1. Create a new file:

$ vim list_bucket_content.rb

Paste the following content into the file:

#!/usr/bin/env ruby

load 'conn.rb'

new_bucket = AWS::S3::Bucket.find('my-new-bucket1')
new_bucket.each do |object|
 puts "#{object.key}\t#{object.about['content-length']}\t#
{object.about['last-modified']}"
end

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

51

Save the file and exit the editor.

2. Make the file executable.

$ chmod +x list_bucket_content.rb

3. Run the file:

$./list_bucket_content.rb

The output will look something like this:

hello.txt 12 Fri, 22 Jan 2016 15:54:52 GMT

Deleting a empty bucket

1. Create a new file:

$ vim del_empty_bucket.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

AWS::S3::Bucket.delete('my-new-bucket1')

Save the file and exit the editor.

2. Make the file executable:

$ chmod +x del_empty_bucket.rb

3. Run the file:

$./del_empty_bucket.rb | echo $?

If the bucket is successfully deleted, the command will return 0 as output.

NOTE

Please edit the create_bucket.rb file to create empty buckets like my-new-
bucket9, my-new-bucket10 etc and edit the above mentioned
del_empty_bucket.rb file accordingly before trying to delete empty buckets.

Deleting a non-empty bucket (forcefully)

1. Create a new file:

$ vim del_non_empty_bucket.rb

Red Hat Ceph Storage 2 Developer Guide

52

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

AWS::S3::Bucket.delete('my-new-bucket1', :force => true)

Save the file and exit the editor.

2. Make the file executable:

$ chmod +x del_non_empty_bucket.rb

3. Run the file:

$./del_non_empty_bucket.rb | echo $?

If the bucket is successfully deleted, the command will return 0 as output.

Deleting an object

1. Create a new file:

$ vim delete_object.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

AWS::S3::S3Object.delete('hello.txt', 'my-new-bucket1')

Save the file and exit the editor.

2. Make the file executable:

$ chmod +x delete_object.rb

3. Run the file:

$./delete_object.rb

This will delete the object hello.txt.

2.2.3. Ruby AWS::SDK Examples (aws-sdk gem ~>2)

You can use the Ruby programming language along with aws-sdk gem for S3 access. Execute the
steps mentioned below on the node used for accessing the Ceph Object Gateway server with Ruby
AWS::SDK.

Setup Ruby

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

53

Execute the following steps to setup Ruby:

1. As root, install ruby:

yum install ruby

NOTE

The above command will install ruby and it’s essential dependencies like
rubygems and ruby-libs too. If somehow the command doesn’t install all the
dependencies, install them separately.

2. As root, install aws-sdk:

gem install aws-sdk

Creating a connection

1. Create a project directory:

$ mkdir ruby_aws_sdk
$ cd ruby_aws_sdk

2. Create the connection file:

$ vim conn.rb

3. Paste the following contents into the conn.rb file:

#!/usr/bin/env ruby

require 'aws-sdk'
require 'resolv-replace'

Aws.config.update(
 endpoint: 'http://<FQDN_of_gateway_node>:7480',
 access_key_id: 'my-access-key',
 secret_access_key: 'my-secret-key',
 force_path_style: true,
 region: 'us-east-1'
)

Replace <FQDN_of_gateway_node> with the FQDN of you gateway node. Replace my-
access-key and my-secret-key with the access_key and secret_key that was
generated when you created the radosgw user for S3 access as mentioned in the Red Hat
Ceph Storage Object Gateway Guide.

An example connection file will look like the following:

#!/usr/bin/env ruby

require 'aws-sdk'

Red Hat Ceph Storage 2 Developer Guide

54

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#creating_a_literal_radosgw_literal_user_for_s3_access

require 'resolv-replace'

Aws.config.update(
 endpoint: 'http://testclient.englab.pnq.redhat.com:7480',
 access_key_id: '98J4R9P22P5CDL65HKP8',
 secret_access_key:
'6C+jcaP0dp0+FZfrRNgyGA9EzRy25pURldwje049',
 force_path_style: true,
 region: 'us-east-1'
)

Save the file and exit the editor.

4. Make the file executable:

chmod +x conn.rb

5. Run the file:

./conn.rb | echo $?

If you have provided the values correctly in the file, the output of the command will be 0.

Creating a bucket

1. Create a new file:

vim create_bucket.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
s3_client.create_bucket(bucket: 'my-new-bucket2')

Save the file and exit the editor.

2. Make the file executable:

chmod +x create_bucket.rb

3. Run the file:

./create_bucket.rb

If the output of the command is true it would mean that bucket my-new-bucket2 was
created successfully.

Listing owned buckets

1. Create a new file:

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

55

vim list_owned_buckets.rb

Paste the following content into the file:

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
s3_client.list_buckets.buckets.each do |bucket|
 puts "#{bucket.name}\t#{bucket.creation_date}"
end

Save the file and exit the editor.

2. Make the file executable:

chmod +x list_owned_buckets.rb

3. Run the file:

./list_owned_buckets.rb

The output should look something like this:

my-new-bucket2 2016-01-21 10:33:19 UTC

Creating an object

1. Create a new file:

vim create_object.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
s3_client.put_object(
 key: 'hello.txt',
 body: 'Hello World!',
 bucket: 'my-new-bucket2',
 content_type: 'text/plain'
)

Save the file and exit the editor.

2. Make the file executable:

chmod +x create_object.rb

Red Hat Ceph Storage 2 Developer Guide

56

3. Run the file:

./create_object.rb

This will create a file hello.txt with the string Hello World!.

Listing a Bucket’s Content

1. Create a new file:

vim list_bucket_content.rb

Paste the following content into the file:

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
s3_client.list_objects(bucket: 'my-new-bucket2').contents.each do
|object|
 puts "#{object.key}\t#{object.size}"
end

Save the file and exit the editor.

2. Make the file executable.

chmod +x list_bucket_content.rb

3. Run the file:

./list_bucket_content.rb

The output will look something like this:

hello.txt 12 Fri, 22 Jan 2016 15:54:52 GMT

Deleting a empty bucket

1. Create a new file:

vim del_empty_bucket.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
s3_client.delete_bucket(bucket: 'my-new-bucket2')

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

57

Save the file and exit the editor.

2. Make the file executable:

chmod +x del_empty_bucket.rb

3. Run the file:

./del_empty_bucket.rb | echo $?

If the bucket is successfully deleted, the command will return 0 as output.

NOTE

Please edit the create_bucket.rb file to create empty buckets like my-new-
bucket6, my-new-bucket7 etc and edit the above mentioned
del_empty_bucket.rb file accordingly before trying to delete empty buckets.

Deleting a non-empty bucket (forcefully)

1. Create a new file:

vim del_non_empty_bucket.rb

Paste the following contents into the file:

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
Aws::S3::Bucket.new('my-new-bucket2', client: s3_client).clear!
s3_client.delete_bucket(bucket: 'my-new-bucket2')

Save the file and exit the editor.

2. Make the file executable:

chmod +x del_non_empty_bucket.rb

3. Run the file:

./del_non_empty_bucket.rb | echo $?

If the bucket is successfully deleted, the command will return 0 as output.

Deleting an object

1. Create a new file:

vim delete_object.rb

Paste the following contents into the file:

Red Hat Ceph Storage 2 Developer Guide

58

#!/usr/bin/env ruby

load 'conn.rb'

s3_client = Aws::S3::Client.new
s3_client.delete_object(key: 'hello.txt', bucket: 'my-new-bucket2')

Save the file and exit the editor.

2. Make the file executable:

chmod +x delete_object.rb

3. Run the file:

./delete_object.rb

This will delete the object hello.txt.

2.2.4. PHP S3 Examples

You can use PHP scripts too for S3 access. Execute the steps mentioned below on the node used for
accessing the Ceph Object Gateway server with PHP.

IMPORTANT

The examples given below are tested against php v5.4.16 and aws-sdk v2.8.24.
DO NOT use the latest version of aws-sdk for php as it requires php >= 5.5+. php
5.5 is not available in the default repos of RHEL 7. If you want to use php 5.5, you will
have to enable epel and other third party repos. Also, the configuration options for php
5.5 and latest version of aws-sdk are different.

Setup PHP/AWS SDK

Execute the following steps to setup PHP:

1. As root, install php:

yum install php

2. Install aws-sdk for php:
Download the zip archive of aws-sdk for php and extract it.

Creating a connection

1. Create a project directory:

$ mkdir php_s3
$ cd php_s3

2. Copy the extracted aws directory to the project directory. For example:

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

59

https://github.com/aws/aws-sdk-php/releases/download/2.8.24/aws.zip

$ cp -r ~/Downloads/aws/ ~/php_s3/

3. Create the connection file:

$ vim conn.php

4. Paste the following contents in the conn.php file:

<?php
define('AWS_KEY', 'my_access_key');
define('AWS_SECRET_KEY', 'my_secret_key');
define('HOST', '<FQDN_of_gateway_node>');
define('PORT', '7480');

// require the AWS SDK for php library
require '/path_to_aws/aws-autoloader.php';

use Aws\S3\S3Client;

// Establish connection with host using S3 Client
$client = S3Client::factory(array(
 'base_url' => HOST,
 'port' => PORT,
 'key' => AWS_KEY,
 'secret' => AWS_SECRET_KEY
));
?>

Replace <FQDN_of_gateway_node> with the FQDN of the gateway node. Replace my-
access-key and my-secret-key with the access_key and secret_key that was
generated when you created the radosgw user for S3 access as mentioned in the Red Hat
Ceph Storage Object Gateway Guide. Also, replace path_to_aws with absolute path to the
extracted aws directory that you copied to the php project directory.

An example connection file will look like the following:

<?php
define('AWS_KEY', '{key}');
define('AWS_SECRET_KEY', '{secret}');
define('HOST', 'http://{hostname}');

// require the AWS SDK for php library
require '/home/ceph/php_s3/aws/aws-autoloader.php';

use Aws\S3\S3Client;

// Establish connection with host using S3 Client
$client = S3Client::factory(array(
 'base_url' => HOST,
 'port' => PORT,
 'key' => AWS_KEY,
 'secret' => AWS_SECRET_KEY
));
?>

Red Hat Ceph Storage 2 Developer Guide

60

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#creating_a_literal_radosgw_literal_user_for_s3_access

Save the file and exit the editor.

5. Run the file:

$ php -f conn.php | echo $?

If you have provided the values correctly in the file, the output of the command will be 0.

Creating a bucket

1. Create a new file:

vim create_bucket.php

Paste the following contents into the file:

<?php

include 'conn.php';

$client->createBucket(array('Bucket' => 'my-new-bucket3'));

?>

Save the file and exit the editor.

2. Run the file:

php -f create_bucket.php

Listing owned buckets

1. Create a new file:

vim list_owned_buckets.php

Paste the following content into the file:

<?php

include 'conn.php';

$blist = $client->listBuckets();
echo " Buckets belonging to " . $blist['Owner']['ID'] . ":\n";
foreach ($blist['Buckets'] as $b) {
 echo "{$b['Name']}\t{$b['CreationDate']}\n";
}

?>

Save the file and exit the editor.

2. Run the file:

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

61

php -f list_owned_buckets.php

The output should look something like this:

my-new-bucket3 2016-01-21 10:33:19 UTC

Creating an object

1. Create a source file hello.txt:

echo "Hello World!" > hello.txt

2. Create a new php file:

vim create_object.php

Paste the following contents into the file:

<?php

include 'conn.php';

$key = 'hello.txt';
$source_file = './hello.txt';
$acl = 'private';
$bucket = 'my-new-bucket3';
$client->upload($bucket, $key, fopen($source_file, 'r'), $acl);

?>

Save the file and exit the editor.

3. Run the file:

php -f create_object.php

This will create the object hello.txt in bucket my-new-bucket3.

Listing a Bucket’s Content

1. Create a new file:

vim list_bucket_content.php

Paste the following content into the file:

<?php

include 'conn.php';

$o_iter = $client->getIterator('ListObjects', array(
 'Bucket' => 'my-new-bucket3'
));

Red Hat Ceph Storage 2 Developer Guide

62

foreach ($o_iter as $o) {
 echo "{$o['Key']}\t{$o['Size']}\t{$o['LastModified']}\n";
}
?>

Save the file and exit the editor.

2. Run the file:

php -f list_bucket_content.php

The output will look something like this:

hello.txt 12 Fri, 22 Jan 2016 15:54:52 GMT

Deleting an empty bucket

1. Create a new file:

vim del_empty_bucket.php

Paste the following contents into the file:

<?php

include 'conn.php';

$client->deleteBucket(array('Bucket' => 'my-new-bucket3'));
?>

Save the file and exit the editor.

2. Run the file:

php -f del_empty_bucket.php | echo $?

If the bucket is successfully deleted, the command will return 0 as output.

NOTE

Edit the create_bucket.php file to create empty buckets like my-new-
bucket4, my-new-bucket5 etc and edit the above mentioned
del_empty_bucket.php file accordingly before trying to delete empty
buckets.

Deleting a non-empty bucket (forcefully)

Deleting a non-empty bucket is not currently supported in php 2 and newer versions of aws-sdk.

Deleting an object

1. Create a new file:

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

63

vim delete_object.php

Paste the following contents into the file:

<?php

include 'conn.php';

$client->deleteObject(array(
 'Bucket' => 'my-new-bucket3',
 'Key' => 'hello.txt',
));
?>

Save the file and exit the editor.

2. Run the file:

php -f delete_object.php

This will delete the object hello.txt.

2.3. COMMON OPERATIONS

2.3.1. Bucket and Host Name

There are two different modes of accessing the buckets. The first, and preferred method identifies the
bucket as the top-level directory in the URI.

Example

GET /mybucket HTTP/1.1
Host: cname.domain.com

The second method identifies the bucket via a virtual bucket host name.

Example

GET / HTTP/1.1
Host: mybucket.cname.domain.com

TIP

Red Hat prefers the first method, because the second method requires expensive domain certification
and DNS wild cards.

2.3.2. Common Request Headers

The following table lists the valid common request headers and their descriptions.

Table 2.4. Request Headers

Red Hat Ceph Storage 2 Developer Guide

64

Request Header Description

CONTENT_LENGTH Length of the request body.

DATE Request time and date (in UTC).

HOST The name of the host server.

AUTHORIZATION Authorization token.

2.3.3. Common Response Status

The following table lists the valid common HTTP response status and its corresponding code.

Table 2.5. Response Status

HTTP Status Response Code

100 Continue

200 Success

201 Created

202 Accepted

204 NoContent

206 Partial content

304 NotModified

400 InvalidArgument

400 InvalidDigest

400 BadDigest

400 InvalidBucketName

400 InvalidObjectName

400 UnresolvableGrantByEmailAddress

400 InvalidPart

400 InvalidPartOrder

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

65

400 RequestTimeout

400 EntityTooLarge

403 AccessDenied

403 UserSuspended

403 RequestTimeTooSkewed

404 NoSuchKey

404 NoSuchBucket

404 NoSuchUpload

405 MethodNotAllowed

408 RequestTimeout

409 BucketAlreadyExists

409 BucketNotEmpty

411 MissingContentLength

412 PreconditionFailed

416 InvalidRange

422 UnprocessableEntity

500 InternalError

HTTP Status Response Code

2.4. SERVICE OPERATIONS

2.4.1. List Buckets

GET / returns a list of buckets created by the user making the request. GET / only returns buckets
created by an authenticated user. You cannot make an anonymous request.

Syntax

GET / HTTP/1.1
Host: cname.domain.com

Red Hat Ceph Storage 2 Developer Guide

66

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Table 2.6. Response Entities

Name Type Description

Buckets Containe
r

Container for list of buckets.

Bucket Containe
r

Container for bucket information.

Name String Bucket name.

CreationDate Date UTC time when the bucket was created.

ListAllMyBucketsRes
ult

Containe
r

A container for the result.

Owner Containe
r

A container for the bucket owner’s ID and DisplayName.

ID String The bucket owner’s ID.

DisplayName String The bucket owner’s display name.

Return to the features table.

2.5. BUCKET OPERATIONS

2.5.1. Bucket Operations with Multi Tenancy

When a client application accesses buckets, it always operates with credentials of a particular user. In
Red Hat Ceph Storage 2, every user belongs to a tenant. See Multi Tenancy for additional details.
Consequently, every bucket operation has an implicit tenant in its context if no tenant is specified
explicitly. Thus multi tenancy is completely backward compatible with previous releases, as long as
the referred buckets and referring user belong to the same tenant.

Extensions employed to specify an explicit tenant differ according to the protocol and authentication
system used.

In the following example, a colon character separates tenant and bucket. Thus a sample URL would be:

https://rgw.domain.com/tenant:bucket

By contrast, a simple Python example separates the tenant and bucket in the bucket method itself:

from boto.s3.connection import S3Connection, OrdinaryCallingFormat
 c = S3Connection(

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

67

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#multi_tenancy

 aws_access_key_id="TESTER",
 aws_secret_access_key="test123",
 host="rgw.domain.com",
 calling_format = OrdinaryCallingFormat()
)
 bucket = c.get_bucket("tenant:bucket")

NOTE

It’s not possible to use S3-style subdomains using multi-tenancy, since host names
cannot contain colons or any other separators that are not already valid in bucket
names. Using a period creates an ambiguous syntax. Therefore, the bucket-in-URL-
path format has to be used with multi-tenancy.

2.5.2. PUT Bucket

Creates a new bucket. To create a bucket, you must have a user ID and a valid AWS Access Key ID to
authenticate requests. You can not create buckets as an anonymous user.

Constraints

In general, bucket names should follow domain name constraints.

Bucket names must be unique.

Bucket names must begin and end with a lowercase letter.

Bucket names can contain a dash (-).

Syntax

PUT /<bucket> HTTP/1.1
Host: cname.domain.com
x-amz-acl: public-read-write

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Table 2.7. Parameters

Name Description Valid Values Requir
ed

x-amz-
acl

Canned ACLs. private, public-read,public-read-write,
authenticated-read

No

HTTP Response

If the bucket name is unique, within constraints and unused, the operation will succeed. If a bucket
with the same name already exists and the user is the bucket owner, the operation will succeed. If the
bucket name is already in use, the operation will fail.

Red Hat Ceph Storage 2 Developer Guide

68

HTTP Status Status Code Description

409 BucketAlreadyExists Bucket already exists under different user’s ownership.

Return to the features table.

2.5.3. DELETE Bucket

Deletes a bucket. You can reuse bucket names following a successful bucket removal.

Syntax

DELETE /<bucket> HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Table 2.8. HTTP Response

HTTP Status Status Code Description

204 No Content Bucket removed.

Return to the features table.

2.5.4. GET Bucket

Returns a list of bucket objects.

Syntax

GET /<bucket>?max-keys=25 HTTP/1.1
Host: cname.domain.com

Table 2.9. Parameters

Name Type Description

prefix String Only returns objects that contain the specified prefix.

delimiter String The delimiter between the prefix and the rest of the object name.

marker String A beginning index for the list of objects returned.

max-keys Integer The maximum number of keys to return. Default is 1000.

Table 2.10. HTTP Response

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

69

HTTP Status Status Code Description

200 OK Buckets retrieved

GET /<bucket> returns a container for buckets with the following fields:

Table 2.11. Bucket Response Entities

Name Type Description

ListBucketRes
ult

Entity The container for the list of objects.

Name String The name of the bucket whose contents will be returned.

Prefix String A prefix for the object keys.

Marker String A beginning index for the list of objects returned.

MaxKeys Integer The maximum number of keys returned.

Delimiter String If set, objects with the same prefix will appear in the CommonPrefixes
list.

IsTruncated Boolea
n

If true, only a subset of the bucket’s contents were returned.

CommonPrefixe
s

Contai
ner

If multiple objects contain the same prefix, they will appear in this list.

The ListBucketResult contains objects, where each object is within a Contents container.

Table 2.12. Object Response Entities

Name Type Description

Contents Object A container for the object.

Key String The object’s key.

LastModified Date The object’s last-modified date/time.

ETag String An MD-5 hash of the object. (entity tag)

Size Integer The object’s size.

StorageClass String Should always return STANDARD.

Red Hat Ceph Storage 2 Developer Guide

70

Return to the features table.

2.5.5. Get Bucket Location

Retrieves the bucket’s zone group. The user needs to be the bucket owner to call this. A bucket can be
constrained to a zone group by providing LocationConstraint during a PUT request.

Add the location subresource to bucket resource as shown below.

Syntax

GET /<bucket>?location HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Table 2.13. Response Entities

Name Type Description

LocationConstraint String The zone group where bucket resides, empty string for
defult zone group

Return to the features table.

2.5.6. Get Bucket Versioning

Retrieves the versioning state of a bucket. The user needs to be the bucket owner to call this.

Add the versioning subresource to bucket resource as shown below.

Syntax

GET /<bucket>?versioning HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Return to the features table.

2.5.7. PUT Bucket Versioning

This subresource set the versioning state of an existing bucket. The user needs to be the bucket owner
to set the versioning state. If the versioning state has never been set on a bucket, then it has no
versioning state. Doing a GET versioning request does not return a versioning state value.

Setting the bucket versioning state:

Enabled : Enables versioning for the objects in the bucket. All objects added to the bucket receive a
unique version ID. Suspended : Disables versioning for the objects in the bucket. All objects added to
the bucket receive the version ID null.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

71

Syntax

PUT /<bucket>?versioning HTTP/1.1

Table 2.14. Bucket Request Entities

Name Type Description

VersioningCon
figuration

contain
er

A container for the request.

Status String Sets the versioning state of the bucket. Valid Values: Suspended/Enabled

Return to the features table.

2.5.8. Get Bucket ACLs

Retrieves the bucket access control list. The user needs to be the bucket owner or to have been
granted READ_ACP permission on the bucket.

Add the acl subresource to the bucket request as shown below.

Syntax

GET /<bucket>?acl HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Table 2.15. Response Entities

Name Type Description

AccessControl
Policy

Contai
ner

A container for the response.

AccessControl
List

Contai
ner

A container for the ACL information.

Owner Contai
ner

A container for the bucket owner’s ID and DisplayName.

ID String The bucket owner’s ID.

DisplayName String The bucket owner’s display name.

Grant Contai
ner

A container for Grantee and Permission.

Red Hat Ceph Storage 2 Developer Guide

72

Grantee Contai
ner

A container for the DisplayName and ID of the user receiving a grant
of permission.

Permission String The permission given to the Grantee bucket.

Name Type Description

Return to the features table.

2.5.9. PUT Bucket ACLs

Sets an access control to an existing bucket. The user needs to be the bucket owner or to have been
granted WRITE_ACP permission on the bucket.

Add the acl subresource to the bucket request as shown below.

Syntax

PUT /<bucket>?acl HTTP/1.1

Table 2.16. Request Entities

Name Type Description

AccessControl
Policy

Contai
ner

A container for the request.

AccessControl
List

Contai
ner

A container for the ACL information.

Owner Contai
ner

A container for the bucket owner’s ID and DisplayName.

ID String The bucket owner’s ID.

DisplayName String The bucket owner’s display name.

Grant Contai
ner

A container for Grantee and Permission.

Grantee Contai
ner

A container for the DisplayName and ID of the user receiving a grant
of permission.

Permission String The permission given to the Grantee bucket.

2.5.10. GET Bucket cors

Retrieves the cors configuration information set for the bucket. The user needs to be the bucket owner
or to have been granted READ_ACP permission on the bucket.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

73

Add the cors subresource to the bucket request as shown below.

Syntax

GET /<bucket>?cors HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Return to the features table.

2.5.11. PUT Bucket cors

Sets the cors configuration for the bucket. The user needs to be the bucket owner or to have been
granted READ_ACP permission on the bucket.

Add the cors subresource to the bucket request as shown below.

Syntax

PUT /<bucket>?cors HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

2.5.12. DELETE Bucket cors

Deletes the cors configuration information set for the bucket. The user needs to be the bucket owner
or to have been granted READ_ACP permission on the bucket.

Add the cors subresource to the bucket request as shown below.

Syntax

DELETE /<bucket>?cors HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

2.5.13. List Bucket Object Versions

Returns a list of metadata about all the version of objects within a bucket. Requires READ access to the
bucket.

Add the versions subresource to the bucket request as shown below.

Syntax

GET /<bucket>?versions HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Red Hat Ceph Storage 2 Developer Guide

74

You can specify parameters for GET /<bucket>?versions, but none of them are required.

Table 2.17. Parameters

Name Type Description

prefix String Returns in-progress uploads whose keys contains the specified prefix.

delimiter String The delimiter between the prefix and the rest of the object name.

key-marker String The beginning marker for the list of uploads.

max-keys Intege
r

The maximum number of in-progress uploads. The default is 1000.

version-id-
marker

String Specifies the object version to begin the list.

Table 2.18. Response Entities

Name Type Description

KeyMarker Strin
g

The key marker specified by the key-marker request parameter (if
any).

NextKeyMarker Strin
g

The key marker to use in a subsequent request if IsTruncated is
true.

NextUploadIdMarker Strin
g

The upload ID marker to use in a subsequent request if
IsTruncated is true.

IsTruncated Bool
ean

If true, only a subset of the bucket’s upload contents were returned.

Size Integ
er

The size of the uploaded part.

DisplayName Strin
g

The owners’s display name.

ID Strin
g

The owners’s ID.

Owner Cont
ainer

A container for the ID and DisplayName of the user who owns the
object.

StorageClass Strin
g

The method used to store the resulting object. STANDARD or
REDUCED_REDUNDANCY

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

75

Version Cont
ainer

Container for the version information.

versionId Strin
g

Version ID of an object.

versionIdMarker Strin
g

The last version of the key in a truncated response.

Name Type Description

Return to the features table.

2.5.14. List Bucket Multipart Uploads

GET /?uploads returns a list of the current in-progress multipart uploads, that is, the application
initiates a multipart upload, but the service hasn’t completed all the uploads yet.

Syntax

GET /<bucket>?uploads HTTP/1.1

You can specify parameters for GET /<bucket>?uploads, but none of them are required.

Table 2.19. Parameters

Name Type Description

prefix String Returns in-progress uploads whose keys contains the specified prefix.

delimiter String The delimiter between the prefix and the rest of the object name.

key-marker String The beginning marker for the list of uploads.

max-keys Intege
r

The maximum number of in-progress uploads. The default is 1000.

max-uploads Intege
r

The maximum number of multipart uploads. The range from 1-1000. The
default is 1000.

version-id-
marker

String Ignored if key-marker isn’t specified. Specifies the ID of first upload to
list in lexicographical order at or following the ID.

Table 2.20. Response Entities

Red Hat Ceph Storage 2 Developer Guide

76

Name Type Description

ListMultipartUploa
dsResult

Cont
ainer

A container for the results.

ListMultipartUploa
dsResult.Prefix

Strin
g

The prefix specified by the prefix request parameter (if any).

Bucket Strin
g

The bucket that will receive the bucket contents.

KeyMarker Strin
g

The key marker specified by the key-marker request parameter (if
any).

UploadIdMarker Strin
g

The marker specified by the upload-id-marker request
parameter (if any).

NextKeyMarker Strin
g

The key marker to use in a subsequent request if IsTruncated is
true.

NextUploadIdMarker Strin
g

The upload ID marker to use in a subsequent request if
IsTruncated is true.

MaxUploads Integ
er

The max uploads specified by the max-uploads request parameter.

Delimiter Strin
g

If set, objects with the same prefix will appear in the
CommonPrefixes list.

IsTruncated Bool
ean

If true, only a subset of the bucket’s upload contents were returned.

Upload Cont
ainer

A container for Key, UploadId, InitiatorOwner,
StorageClass, and Initiated elements.

Key Strin
g

The key of the object once the multipart upload is complete.

UploadId Strin
g

The ID that identifies the multipart upload.

Initiator Cont
ainer

Contains the ID and DisplayName of the user who initiated the
upload.

DisplayName Strin
g

The initiator’s display name.

ID Strin
g

The initiator’s ID.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

77

Owner Cont
ainer

A container for the ID and DisplayName of the user who owns the
uploaded object.

StorageClass Strin
g

The method used to store the resulting object. STANDARD or
REDUCED_REDUNDANCY

Initiated Date The date and time the user initiated the upload.

CommonPrefixes Cont
ainer

If multiple objects contain the same prefix, they will appear in this list.

CommonPrefixes.Pre
fix

Strin
g

The substring of the key after the prefix as defined by the prefix
request parameter.

Name Type Description

Return to the features table.

2.5.15. PUT Bucket Request Payment

Uses the requestPayment subresource to set the request payment configuration of a bucket. By
default, the bucket owner pays for downloads from the bucket. This configuration parameter enables
the bucket owner to specify that the person requesting the download will be charged for the request
and the data download from the bucket.

Add the requestPayment subresource to the bucket request as shown below.

Syntax

PUT /<bucket>?requestPayment HTTP/1.1
Host: cname.domain.com

Table 2.21. Request Entities

Name Type Description

Payer Enum Specifies who pays for the download and request fees.

RequestPaymen
tConfiguratio
n

Contai
ner

A container for Payer.

Return to the features table.

2.5.16. GET Bucket Request Payment

Uses the requestPayment subresource to return the request payment configuration of a bucket. The
user needs to be the bucket owner or to have been granted READ_ACP permission on the bucket.

Add the requestPayment subresource to the bucket request as shown below.

Red Hat Ceph Storage 2 Developer Guide

78

Syntax

GET /<bucket>?requestPayment HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

2.6. OBJECT OPERATIONS

2.6.1. PUT Object

Adds an object to a bucket. You must have write permissions on the bucket to perform this operation.

Syntax

PUT /<bucket>/<object> HTTP/1.1

Table 2.22. Request Headers

Name Description Valid Values Requ
ired

content-md5 A base64 encoded MD-5
hash of the message.

A string. No defaults or constraints. No

content-type A standard MIME type. Any MIME type. Default: binary/octet-
stream

No

x-amz-meta-
<… >

User metadata. Stored
with the object.

A string up to 8kb. No defaults. No

x-amz-acl A canned ACL. private, public-read, public-read-
write, authenticated-read

No

Table 2.23. Response Headers

Name Description

x-amz-version-
id

Returns the version ID or null.

Return to the features table.

2.6.2. Copy Object

To copy an object, use PUT and specify a destination bucket and the object name.

Syntax

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

79

PUT /<dest_bucket>/<dest_object> HTTP/1.1
x-amz-copy-source: <source_bucket>/<source_object>

Table 2.24. Request Headers

Name Description Valid Values Requir
ed

x-amz-copy-source The source bucket name + object name. <bucket>/<objec
t>

Yes

x-amz-acl A canned ACL. private,
public-read,
public-read-
write,
authenticate
d-read

No

x-amz-copy-if-modified-since Copies only if modified since the
timestamp.

Timestamp No

x-amz-copy-if-unmodified-
since

Copies only if unmodified since the
timestamp.

Timestamp No

x-amz-copy-if-match Copies only if object ETag matches
ETag.

Entity Tag No

x-amz-copy-if-none-match Copies only if object ETag doesn’t
match.

Entity Tag No

Table 2.25. Response Entities

Name Type Description

CopyObjectResult Container A container for the response elements.

LastModified Date The last modified date of the source object.

Etag String The ETag of the new object.

Return to the features table.

2.6.3. POST Object

Adds an object to a bucket using HTML forms. You must have write permissions on the bucket to
perform this operation.

Syntax

POST /<bucket>/<object> HTTP/1.1

Red Hat Ceph Storage 2 Developer Guide

80

Return to the features table.

2.6.4. OPTIONS Object

A preflight request to determine if an actual request can be sent with the specific origin, HTTP method,
and headers.

Syntax

OPTIONS /<object> HTTP/1.1

Return to the features table.

2.6.5. Delete Multiple Objects

Deletes multiple objects from a bucket.

Syntax

POST /<bucket>/<object>?delete HTTP/1.1

Return to the features table.

2.6.6. Remove Object

Removes an object. Requires WRITE permission set on the containing bucket.

Deletes an object. If object versioning is on, it creates a marker.

Syntax

DELETE /<bucket>/<object> HTTP/1.1

To delete an object when versioning is on, you must specify the versionId subresource and the
version of the object to delete.

DELETE /<bucket>/<object>?versionId=<versionID> HTTP/1.1

Return to the features table.

2.6.7. Get Object

Retrieves an object from a bucket:

Syntax

GET /<bucket>/<object> HTTP/1.1

Add the versionId subresource to retrieve a particular version of the object:

Syntax

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

81

GET /<bucket>/<object>?versionId=<versionID> HTTP/1.1

Table 2.26. Request Headers

Name Description Valid Values Requir
ed

range The range of the object to retrieve. Range: bytes=beginbyte-
endbyte

No

if-modified-since Gets only if modified since the
timestamp.

Timestamp No

if-unmodified-since Gets only if not modified since the
timestamp.

Timestamp No

if-match Gets only if object ETag matches ETag. Entity Tag No

if-none-match Gets only if object ETag matches ETag. Entity Tag No

Table 2.27. Response Headers

Name Description

Content-Range Data range, will only be returned if the range header field was specified in the request

x-amz-version-
id

Returns the version ID or null.

Return to the features table.

2.6.8. Get Object Information

Returns information about an object. This request will return the same header information as with the
Get Object request, but will include the metadata only, not the object data payload.

Retrieves the current version of the object:

Syntax

HEAD /<bucket>/<object> HTTP/1.1

Add the versionId subresource to retrieve info for a particular version:

Syntax

HEAD /<bucket>/<object>?versionId=<versionID> HTTP/1.1

Table 2.28. Request Headers

Red Hat Ceph Storage 2 Developer Guide

82

Name Description Valid Values Requir
ed

range The range of the object to retrieve. Range: bytes=beginbyte-
endbyte

No

if-modified-since Gets only if modified since the
timestamp.

Timestamp No

if-unmodified-since Gets only if not modified since the
timestamp.

Timestamp No

if-match Gets only if object ETag matches ETag. Entity Tag No

if-none-match Gets only if object ETag matches ETag. Entity Tag No

Table 2.29. Response Headers

Name Description

x-amz-version-
id

Returns the version ID or null.

Return to the features table.

2.6.9. Get Object ACL

Returns the ACL for the current version of the object:

Syntax

GET /<bucket>/<object>?acl HTTP/1.1

Add the versionId subresource to retrieve the ACL for a particular version:

Syntax

GET /<bucket>/<object>versionId=<versionID>&acl HTTP/1.1

Table 2.30. Response Headers

Name Description

x-amz-version-
id

Returns the version ID or null.

Table 2.31. Response Entities

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

83

Name Type Description

AccessControl
Policy

Contai
ner

A container for the response.

AccessControl
List

Contai
ner

A container for the ACL information.

Owner Contai
ner

A container for the object owner’s ID and DisplayName.

ID String The object owner’s ID.

DisplayName String The object owner’s display name.

Grant Contai
ner

A container for Grantee and Permission.

Grantee Contai
ner

A container for the DisplayName and ID of the user receiving a grant
of permission.

Permission String The permission given to the Grantee object.

Return to the features table.

2.6.10. Set Object ACL

Sets an object ACL for the current version of the object.

Syntax

PUT /<bucket>/<object>?acl

Table 2.32. Request Entities

Name Type Description

AccessControl
Policy

Contai
ner

A container for the response.

AccessControl
List

Contai
ner

A container for the ACL information.

Owner Contai
ner

A container for the object owner’s ID and DisplayName.

ID String The object owner’s ID.

Red Hat Ceph Storage 2 Developer Guide

84

DisplayName String The object owner’s display name.

Grant Contai
ner

A container for Grantee and Permission.

Grantee Contai
ner

A container for the DisplayName and ID of the user receiving a grant
of permission.

Permission String The permission given to the Grantee object.

Name Type Description

2.6.11. Initiate Multipart Upload

Initiates a multi-part upload process. Returns a UploadId, which you can specify when adding
additional parts, listing parts, and completing or abandoning a multi-part upload.

Syntax

POST /<bucket>/<object>?uploads

Table 2.33. Request Headers

Name Description Valid Values Requ
ired

content-md5 A base64 encoded MD-5
hash of the message.

A string. No defaults or constraints. No

content-type A standard MIME type. Any MIME type. Default: binary/octet-
stream

No

x-amz-meta-
<…>

User metadata. Stored
with the object.

A string up to 8kb. No defaults. No

x-amz-acl A canned ACL. private, public-read, public-read-
write, authenticated-read

No

Table 2.34. Response Entities

Name Type Description

InitiatedMultipart
UploadsResult

Cont
ainer

A container for the results.

Bucket Strin
g

The bucket that will receive the object contents.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

85

Key Strin
g

The key specified by the key request parameter (if any).

UploadId Strin
g

The ID specified by the upload-id request parameter identifying
the multipart upload (if any).

Name Type Description

Return to the features table.

2.6.12. Multipart Upload Part

Adds a part to a multi-part upload.

Specify the uploadId subresource and the upload ID to add a part to a multi-part upload:

Syntax

PUT /<bucket>/<object>?partNumber=&uploadId=<upload_id> HTTP/1.1

The following HTTP response might be returned:

Table 2.35. HTTP Response

HTTP Status Status Code Description

404 NoSuchUplo
ad

Specified upload-id does not match any initiated upload on this object

Return to the features table.

2.6.13. List Multipart Upload Parts

Specify the uploadId subresource and the upload ID to list the parts of a multi-part upload:

Syntax

GET /<bucket>/<object>?uploadId=<upload-id> HTTP/1.1

Table 2.36. Response Entities

Name Type Description

InitiatedMultipart
UploadsResult

Cont
ainer

A container for the results.

Bucket Strin
g

The bucket that will receive the object contents.

Red Hat Ceph Storage 2 Developer Guide

86

Key Strin
g

The key specified by the key request parameter (if any).

UploadId Strin
g

The ID specified by the upload-id request parameter identifying
the multipart upload (if any).

Initiator Cont
ainer

Contains the ID and DisplayName of the user who initiated the
upload.

ID Strin
g

The initiator’s ID.

DisplayName Strin
g

The initiator’s display name.

Owner Cont
ainer

A container for the ID and DisplayName of the user who owns the
uploaded object.

StorageClass Strin
g

The method used to store the resulting object. STANDARD or
REDUCED_REDUNDANCY

PartNumberMarker Strin
g

The part marker to use in a subsequent request if IsTruncated is
true. Precedes the list.

NextPartNumberMark
er

Strin
g

The next part marker to use in a subsequent request if
IsTruncated is true. The end of the list.

MaxParts Integ
er

The max parts allowed in the response as specified by the max-
parts request parameter.

IsTruncated Bool
ean

If true, only a subset of the object’s upload contents were returned.

Part Cont
ainer

A container for Key, Part, InitiatorOwner, StorageClass,
and Initiated elements.

PartNumber Integ
er

The identification number of the part.

ETag Strin
g

The part’s entity tag.

Size Integ
er

The size of the uploaded part.

Name Type Description

Return to the features table.

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

87

2.6.14. Complete Multipart Upload

Assembles uploaded parts and creates a new object, thereby completing a multipart upload.

Specify the uploadId subresource and the upload ID to complete a multi-part upload:

Syntax

POST /<bucket>/<object>?uploadId= HTTP/1.1

Table 2.37. Request Entities

Name Type Description Requi
red

CompleteMultipartUploa
d

Containe
r

A container consisting of one or more parts. Yes

Part Containe
r

A container for the PartNumber and ETag. Yes

PartNumber Integer The identifier of the part. Yes

ETag String The part’s entity tag. Yes

Table 2.38. Response Entities

Name Type Description

CompleteMultipartUploadRes
ult

Containe
r

A container for the response.

Location URI The resource identifier (path) of the new object.

Bucket String The name of the bucket that contains the new object.

Key String The object’s key.

ETag String The entity tag of the new object.

Return to the features table.

2.6.15. Abort Multipart Upload

Aborts a multipart upload.

Specify the uploadId subresource and the upload ID to abort a multi-part upload:

Syntax

Red Hat Ceph Storage 2 Developer Guide

88

DELETE /<bucket>/<object>?uploadId=<upload_id> HTTP/1.1

Return to the features table.

2.6.16. Copy Multipart Upload

Uploads a part by copying data from an existing object as data source.

Specify the uploadId subresource and the upload ID to perform a multi-part upload copy:

Syntax

PUT /<bucket>/<object>?partNumber=PartNumber&uploadId=UploadId HTTP/1.1
Host: cname.domain.com

Authorization: AWS <access_key>:<hash_of_header_and_secret>

Table 2.39. Request Headers

Name Description Valid Values Requ
ired

x-amz-
copy-
source

The source bucket name
and object name.

<bucket>/<object> Yes

x-amz-
copy-
source-
range

The range of bytes to copy
from the source object.

Range: bytes=first-last, where the first and
last are the zero-based byte offsets to copy. For
example, bytes=0-9 indicates that you want to
copy the first ten bytes of the source.

No

Table 2.40. Response Entities

Name Type Description

CopyPartResul
t

Contai
ner

A container for all response elements.

ETag String Returns the ETag of the new part.

LastModified String Returns the date the part was last modified.

For more information about this feature, see the Amazon S3 site.

Return to the features table.

2.7. HADOOP S3A INTEROPERABILITY

For data analytics applications that require Hadoop Distributed File System (HDFS) access, the Ceph
Object Gateway can be accessed using the Apache S3A connector for Hadoop. The S3A connector is an
open source tool that presents S3 compatible object storage as an HDFS file system with HDFS file

CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)

89

http://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html

system read and write semantics to the applications while data is stored in the Ceph Object Gateway.

Ceph Object Gateway is fully compatible with the S3A connector that ships with Hadoop 2.7.3.

2.8. S3 LIMITATIONS

IMPORTANT

The following limitations should be used with caution. There are implications related to
your hardware selections, so you should always discuss these requirements with your
Red Hat account team.

Maximum object size when using Amazon S3: Individual Amazon S3 objects can range in size
from a minimum of 0B to a maximum of 5TB. The largest object that can be uploaded in a single
PUT is 5GB. For objects larger than 100MB, you should consider using the Multipart Upload
capability.

Maximum metadata size when using Amazon S3: There is no defined limit on the total size of
user metadata that can be applied to an object, but a single HTTP request is limited to 16,000.

The amount of data overhead Red Hat Ceph Storage produces to store S3 objects and
metadata: The estimate here is 200-300 bytes plus the length of the object name. Versioned
objects consume additional space proportional to the number of versions. Also, transient
overhead is produced during multi-part upload and other transactional updates, but these
overheads are recovered during garbage collection.

Red Hat Ceph Storage 2 Developer Guide

90

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION
PROGRAMMING INTERFACE (API)

Ceph supports a RESTful API that is compatible with the basic data access model of the Swift API.

The following table describes the support status for current Swift functional features:

Table 3.1. Features

Feature Status Remarks

Authentication Supported

Get Account Metadata Supported No custom metadata

Swift ACLs Supported Supports a subset of Swift ACLs

List Containers Supported

Delete Container Supported

Create Container Supported

Get Container Metadata Supported

Update Container Metadata Supported

Delete Container Metadata Supported

List Objects Supported

Static Website Not Supported

Multi Tenancy Supported

Create/Update an Object Supported

Create Large Object Supported

Delete Object Supported

Get Object Supported

Copy Object Supported

Get Object Metadata Supported

Add/Update Object Metadata Supported

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

91

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#multi_tenancy

Temp URL Operations Supported

Expiring Objects Supported

Object Versioning Not Supported

CORS Not Supported

Feature Status Remarks

3.1. AUTHENTICATION

Swift API requests that require authentication must contain an X-Storage-Token authentication
token in the request header. The token can be retrieved from Ceph Object Gateway, or from another
authenticator. To obtain a token from Ceph Object Gateway, you must create a user.

Syntax

radosgw-admin user create --uid="<user_name>" --display-name="
<display_name>"

Example

radosgw-admin user create --uid="swift1" --display-name="First Swift
User"

Return to the features table.

3.1.1. Authentication GET

To authenticate a user, make a request containing an X-Auth-User and a X-Auth-Key in the header.

Syntax

GET /auth HTTP/1.1
Host: swift.radosgwhost.com
X-Auth-User: johndoe
X-Auth-Key: R7UUOLFDI2ZI9PRCQ53K

Table 3.2. Request Headers

Name Description Type Requir
ed

X-Auth-User The key Ceph Object Gateway username to authenticate. String Yes

X-Auth-Key The key associated to a Ceph Object Gateway username. String Yes

Red Hat Ceph Storage 2 Developer Guide

92

The response from the server should include an X-Auth-Token value. The response might also
contain a X-Storage-Url that provides the <api_version>/<account> prefix that is specified in
other requests throughout the API documentation.

Table 3.3. Response Headers

Name Description Type

X-Storage-
Token

The authorization token for the X-Auth-User specified in the request. String

X-Storage-
Url

The URL and <api_version>/<account> path for the user. String

Example Response

HTTP/1.1 204 No Content
Date: Mon, 16 Jul 2012 11:05:33 GMT
Server: swift
X-Storage-Url: https://swift.radosgwhost.com/v1/ACCT-12345
X-Storage-Token: UOlCCC8TahFKlWuv9DB09TWHF0nDjpPElha0kAa
Content-Length: 0
Content-Type: text/plain; charset=UTF-8

3.2. SERVICE OPERATIONS

To retrieve data about our Swift-compatible service, you can execute GET requests using the X-
Storage-Url value retrieved during authentication.

3.2.1. List Containers

A GET request that specifies the API version and the account will return a list of containers for a
particular user account. Since the request returns a particular user’s containers, the request requires
an authentication token. The request cannot be made anonymously.

Syntax

GET /<api_version>/<account> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>

Table 3.4. Request Parameters

Name Description Typ
e

Req
uire
d

Valid Values

limit Limits the number of results to the specified value. Inte
ger

No N/A

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

93

format Defines the format of the result. Stri
ng

No json or xml

marker Returns a list of results greater than the marker
value.

Stri
ng

No N/A

Name Description Typ
e

Req
uire
d

Valid Values

The response contains a list of containers, or returns with an HTTP 204 response code

Table 3.5. Response Entities

Name Description Type

account A list for account information. Contai
ner

container The list of containers. Contai
ner

name The name of a container. String

bytes The size of the container. Integer

Return to the features table.

3.3. CONTAINER OPERATIONS

A container is a mechanism for storing data objects. An account can have many containers, but
container names must be unique. This API enables a client to create a container, set access controls
and metadata, retrieve a container’s contents, and delete a container. Since this API makes requests
related to information in a particular user’s account, all requests in this API must be authenticated
unless a container’s access control is deliberately made publicly accessible, that is, allows anonymous
requests.

NOTE

The Amazon S3 API uses the term 'bucket' to describe a data container. When you hear
someone refer to a 'bucket' within the Swift API, the term 'bucket' might be construed
as the equivalent of the term 'container.'

One facet of object storage is that it does not support hierarchical paths or directories. Instead, it
supports one level consisting of one or more containers, where each container might have objects. The
RADOS Gateway’s Swift-compatible API supports the notion of 'pseudo-hierarchical containers', which
is a means of using object naming to emulate a container, or directory hierarchy without actually
implementing one in the storage system. You can name objects with pseudo-hierarchical names, for
example, photos/buildings/empire-state.jpg, but container names cannot contain a forward slash (/)
character.

Red Hat Ceph Storage 2 Developer Guide

94

3.3.1. Container Operations with Multi Tenancy

When a client application accesses containers, it always operates with credentials of a particular user.
In Red Hat Ceph Storage 2, every user belongs to a tenant. See Multi Tenancy for additional details.
Consequently, every container operation has an implicit tenant in its context if no tenant is specified
explicitly. Thus multi tenancy is completely backward compatible with previous releases, as long as
the referred containers and referring user belong to the same tenant.

Extensions employed to specify an explicit tenant differ according to the protocol and authentication
system used.

A colon character separates tenant and container, thus a sample URL would be:

Example

https://rgw.domain.com/tenant:container

By contrast, in a create_container() method, simply separate the tenant and container in the
container method itself:

Example

create_container("tenant:container")

3.3.2. Create a Container

To create a new container, make a PUT request with the API version, account, and the name of the new
container. The container name must be unique, must not contain a forward-slash (/) character, and
should be less than 256 bytes. You can include access control headers and metadata headers in the
request. You can also include a storage policy identifying a key for a set of placement pools, for
example, execute radosgw-admin zone get to see a list of available keys under
placement_pools. A storage policy enables you to specify a special set of pools for the container, for
example, SSD-based storage. The operation is idempotent; that is, if you make a request to create a
container that already exists, it will return with a HTTP 202 return code, but will not create another
container.

Syntax

PUT /<api_version>/<account>/<tenant>:<container> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>
X-Container-Read: <comma_separated_uids>
X-Container-Write: <comma_separated_uids>
X-Container-Meta-<key>: <value>
X-Storage-Policy: <placement_pools_key>

Table 3.6. Headers

Name Description Type Requir
ed

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

95

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux/#multi_tenancy

X-Container-
Read

The user IDs with read permissions for the container. Comma
-
separat
ed
string
values
of user
IDs.

No

X-Container-
Write

The user IDs with write permissions for the container. Comma
-
separat
ed
string
values
of user
IDs.

No

X-Container-
Meta-{key}

A user-defined meta data key that takes an arbitrary string
value.

String No

X-Storage-
Policy

The key that identifies the storage policy under
placement_pools for the Ceph Object Gateway. Execute
radosgw-admin zone get for available keys.

String No

Name Description Type Requir
ed

If a container with the same name already exists, and the user is the container owner then the
operation will succeed. Otherwise the operation will fail.

Table 3.7. HTTP Response

Name Description Status
Code

409 The container already exists under a different user’s ownership. Bucke
tAlre
adyEx
ists

Return to the features table.

3.3.3. List a Container’s Objects

To list the objects within a container, make a GET request with the with the API version, account, and
the name of the container. You can specify query parameters to filter the full list, or leave out the
parameters to return a list of the first 10,000 object names stored in the container.

Syntax

Red Hat Ceph Storage 2 Developer Guide

96

GET /<api_version>/<tenant>:<container> HTTP/1.1
 Host: <Fully_Qualified_Domain_Name>
 X-Auth-Token: <auth_token>

Table 3.8. Parameters

Name Description Type Valid
Values

Requ
ired

format Defines the format of the result. Strin
g

json or
xml

No

prefix Limits the result set to objects beginning with the
specified prefix.

Strin
g

N/A No

marker Returns a list of results greater than the marker
value.

Strin
g

N/A No

limit Limits the number of results to the specified value. Integ
er

0 - 10,000 No

delimiter The delimiter between the prefix and the rest of the
object name.

Strin
g

N/A No

path The pseudo-hierarchical path of the objects. Strin
g

N/A No

Table 3.9. Response Entities

Name Description Type

container The container. Contai
ner

object An object within the container. Contai
ner

name The name of an object within the container. String

hash A hash code of the object’s contents. String

last_modifie
d

The last time the object’s contents were modified. Date

content_type The type of content within the object. String

Return to the features table.

3.3.4. Update a Container’s Access Control Lists (ACLs)

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

97

IMPORTANT

Red Hat Ceph Storage does not support ACLs if using the OpenStack Keystone
authentication framework in RHCS 2 and earlier releases.

When a user creates a container, the user has read and write access to the container by default. To
allow other users to read a container’s contents or write to a container, you must specifically enable
the user. You can also specify * in the X-Container-Read or X-Container-Write settings, which
effectively enables all users to either read from or write to the container. Setting * makes the
container public. That is it enables anonymous users to either read from or write to the container.

Syntax

POST /<api_version>/<account>/<tenant>:<container> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
 X-Auth-Token: <auth_token>
 X-Container-Read: *
 X-Container-Write: <uid1>, <uid2>, <uid3>

Table 3.10. Request Headers

Name Description Type Requir
ed

X-Container-
Read

The user IDs with read permissions for
the container.

Comma-separated string
values of user IDs.

No

X-Container-
Write

The user IDs with write permissions for
the container.

Comma-separated string
values of user IDs.

No

Return to the features table.

3.3.5. Add/Update Container Metadata

To add metadata to a container, make a POST request with the API version, account, and container
name. You must have write permissions on the container to add or update metadata.

Syntax

POST /<api_version>/<account>/<tenant>:<container> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
 X-Auth-Token: <auth_token>
 X-Container-Meta-Color: red
 X-Container-Meta-Taste: salty

Table 3.11. Request Headers

Red Hat Ceph Storage 2 Developer Guide

98

Name Description Type Require
d

X-Container-Meta-
<key>

A user-defined meta data key that takes an arbitrary
string value.

String No

Return to the features table.

3.3.6. Delete a Container

To delete a container, make a DELETE request with the API version, account, and the name of the
container. The container must be empty. If you’d like to check if the container is empty, execute a HEAD
request against the container. Once you’ve successfully removed the container, you’ll be able to reuse
the container name.

Syntax

DELETE /<api version>/<account>/<tenant>:<container> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth-token>

Table 3.12. HTTP Response

Name Description Status Code

204 The container was removed. NoContent

Return to the features table.

3.4. OBJECT OPERATIONS

An object is a container for storing data and metadata. A container might have many objects, but the
object names must be unique. This API enables a client to create an object, set access controls and
metadata, retrieve an object’s data and metadata, and delete an object. Since this API makes requests
related to information in a particular user’s account, all requests in this API must be authenticated
unless the container or object’s access control is deliberately made publicly accessible, that is, allows
anonymous requests.

3.4.1. Create/Update an Object

To create a new object, make a PUT request with the API version, account, container name and the
name of the new object. You must have write permission on the container to create or update an
object. The object name must be unique within the container. The PUT request is not idempotent, so if
you do not use a unique name, the request will update the object. However, you can use pseudo-
hierarchical syntax in the object name to distinguish it from another object of the same name if it is
under a different pseudo-hierarchical directory. You can include access control headers and metadata
headers in the request.

Syntax

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

99

PUT /<api_version>/<account>/<tenant>:<container>/<object> HTTP/1.1
 Host: <Fully_Qualified_Domain_Name>
 X-Auth-Token: <auth_token>

Table 3.13. Request Headers

Name Description Type Requir
ed

Valid
Values

ETag An MD5 hash of the object’s contents.
Recommended.

String No N/A

Content-Type The type of content the object contains. String No N/A

Transfer-
Encoding

Indicates whether the object is part of a larger
aggregate object.

String No chunk
ed

Return to the features table.

3.4.2. Copy an Object

Copying an object allows you to make a server-side copy of an object, so that you don’t have to
download it and upload it under another container/name. To copy the contents of one object to
another object, you can make either a PUT request or a COPY request with the API version, account,
and the container name. For a PUT request, use the destination container and object name in the
request, and the source container and object in the request header. For a Copy request, use the source
container and object in the request, and the destination container and object in the request header.
You must have write permission on the container to copy an object. The destination object name must
be unique within the container. The request is not idempotent, so if you do not use a unique name, the
request will update the destination object. However, you can use pseudo-hierarchical syntax in the
object name to distinguish the destination object from the source object of the same name if it is under
a different pseudo-hierarchical directory. You can include access control headers and metadata
headers in the request.

Syntax

PUT /<api_version>/<account>/<tenant>:<dest_container>/<dest_object>
HTTP/1.1
X-Copy-From: <tenant>:<source_container>/<source_object>
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>

or alternatively:

Syntax

COPY /<api_version>/<account>/<tenant>:<source_container>/<source_object>
HTTP/1.1
Destination: <tenant>:<dest_container>/<dest_object>

Table 3.14. Request Headers

Red Hat Ceph Storage 2 Developer Guide

100

Name Description Type Requir
ed

X-Copy-From Used with a PUT request to define the source container/object
path.

String Yes, if
using
PUT

Destination Used with a COPY request to define the destination
container/object path.

String Yes, if
using
COPY

If-Modified-
Since

Only copies if modified since the date/time of the source
object’s last_modified attribute.

Date No

If-
Unmodified-
Since

Only copies if not modified since the date/time of the source
object’s last_modified attribute.

Date No

Copy-If-
Match

Copies only if the ETag in the request matches the source
object’s ETag.

ETag. No

Copy-If-
None-Match

Copies only if the ETag in the request does not match the
source object’s ETag.

ETag. No

Return to the features table.

3.4.3. Delete an Object

To delete an object, make a DELETE request with the API version, account, container and object name.
You must have write permissions on the container to delete an object within it. Once you’ve
successfully deleted the object, you’ll be able to reuse the object name.

Syntax

DELETE /<api_version>/<account>/<tenant>:<container>/<object> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>

Return to the features table.

3.4.4. Get an Object

To retrieve an object, make a GET request with the API version, account, container and object name.
You must have read permissions on the container to retrieve an object within it.

Syntax

GET /<api version>/<account>/<tenant>:<container>/<object> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth-token>

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

101

Table 3.15. Request Headers

Name Description Type Requir
ed

range To retrieve a subset of an object’s contents, you can specify a
byte range.

Date No

If-Modified-
Since

Only copies if modified since the date/time of the source
object’s last_modified attribute.

Date No

If-
Unmodified-
Since

Only copies if not modified since the date/time of the source
object’s last_modified attribute.

Date No

Copy-If-
Match

Copies only if the ETag in the request matches the source
object’s ETag.

ETag. No

Copy-If-
None-Match

Copies only if the ETag in the request does not match the
source object’s ETag.

ETag. No

Table 3.16. Response Headers

Name Description

Content-
Range

The range of the subset of object contents. Returned only if the range header field was
specified in the request.

Return to the features table.

3.4.5. Get Object Metadata

To retrieve an object’s metadata, make a HEAD request with the API version, account, container and
object name. You must have read permissions on the container to retrieve metadata from an object
within the container. This request returns the same header information as the request for the object
itself, but it does not return the object’s data.

Syntax

HEAD /<api_version>/<account>/<tenant>:<container>/<object> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>

Return to the features table.

3.4.6. Add/Update Object Metadata

To add metadata to an object, make a POST request with the API version, account, container and
object name. You must have write permissions on the parent container to add or update metadata.

Red Hat Ceph Storage 2 Developer Guide

102

Syntax

POST /<api_version>/<account>/<tenant>:<container>/<object> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>

Table 3.17. Request Headers

Name Description Type Requir
ed

X-Object-
Meta-<key>

A user-defined meta data key that takes an arbitrary string
value.

String No

Return to the features table.

3.5. TEMP URL OPERATIONS

To allow temporary access, for example GET requests, to objects without the need to share credentials,
temp url functionality is supported by swift endpoint of radosgw. For this functionality, initially the
value of X-Account-Meta-Temp-URL-Key and optionally X-Account-Meta-Temp-URL-Key-2
should be set. The Temp URL functionality relies on a HMAC-SHA1 signature against these secret keys.

3.5.1. POST Temp-URL Keys

A POST request to the swift account with the required Key will set the secret temp url key for the
account against which temporary url access can be provided to accounts. Up to two keys are
supported, and signatures are checked against both the keys, if present, so that keys can be rotated
without invalidating the temporary urls.

Syntax

POST /<api_version>/<account> HTTP/1.1
Host: <Fully_Qualified_Domain_Name>
X-Auth-Token: <auth_token>

Table 3.18. Request Headers

Name Description Type Requir
ed

X-Account-Meta-Temp-
URL-Key

A user-defined key that takes an arbitrary string
value.

String Yes

X-Account-Meta-Temp-
URL-Key-2

A user-defined key that takes an arbitrary string
value.

String No

3.5.2. GET Temp-URL Objects

Temporary URL uses a cryptographic HMAC-SHA1 signature, which includes the following elements:

CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)

103

The value of the Request method, "GET" for instance

The expiry time, in format of seconds since the epoch, that is, Unix time

The request path starting from "v1" onwards

The above items are normalized with newlines appended between them, and a HMAC is generated
using the SHA-1 hashing algorithm against one of the Temp URL Keys posted earlier.

A sample python script to demonstrate the above is given below:

Example

import hmac
from hashlib import sha1
from time import time

method = 'GET'
host = 'https://objectstore.example.com'
duration_in_seconds = 300 # Duration for which the url is valid
expires = int(time() + duration_in_seconds)
path = '/v1/your-bucket/your-object'
key = 'secret'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
hmac_body = hmac.new(key, hmac_body, sha1).hexdigest()
sig = hmac.new(key, hmac_body, sha1).hexdigest()
rest_uri = "{host}{path}?temp_url_sig={sig}&temp_url_expires=
{expires}".format(
 host=host, path=path, sig=sig, expires=expires)
print rest_uri

Example Output

https://objectstore.example.com/v1/your-bucket/your-object?
temp_url_sig=ff4657876227fc6025f04fcf1e82818266d022c6&temp_url_expires=142
3200992

3.6. SWIFT API LIMITATIONS

IMPORTANT

The following limitations should be used with caution. There are implications related to
your hardware selections, so you should always discuss these requirements with your
Red Hat account team.

Maximum object size when using Swift API: 5GB

Maximum metadata size when using Swift API: There is no defined limit on the total size of
user metadata that can be applied to an object, but a single HTTP request is limited to 16,000.

Red Hat Ceph Storage 2 Developer Guide

104

	Table of Contents
	CHAPTER 1. OBJECT GATEWAY ADMINISTRATION APPLICATION PROGRAMMING INTERFACE (API)
	1.1. AUTHENTICATING REQUESTS
	1.2. CREATING AN ADMINISTRATIVE USER
	1.3. ADMINISTRATIVE OPERATIONS
	1.3.1. Get Usage
	1.3.2. Trim Usage
	1.3.3. Get User Information
	1.3.4. Creating a User
	1.3.5. Modifying a User
	1.3.6. Removing a User
	1.3.7. Creating a Subuser
	1.3.8. Modifying a Subuser
	1.3.9. Removing a Subuser
	1.3.10. Creating a Key
	1.3.11. Removing a Key
	1.3.12. Getting Bucket Information
	1.3.13. Checking a Bucket Index
	1.3.14. Removing a Bucket
	1.3.15. Linking a Bucket
	1.3.16. Unlinking a Bucket
	1.3.17. Removing an Object
	1.3.18. Getting Bucket or Object Policy
	1.3.19. Adding a Capability to an Existing User
	1.3.19.1. Example Request

	1.3.20. Removing a Capability from an Existing User
	1.3.21. Quotas
	1.3.21.1. Getting User Quota
	1.3.21.2. Setting User Quota
	1.3.21.3. Getting Bucket Quota
	1.3.21.4. Setting Bucket Quota

	1.3.22. Standard Error Responses

	CHAPTER 2. OBJECT GATEWAY S3 APPLICATION PROGRAMMING INTERFACE (API)
	2.1. AUTHENTICATION AND ACCESS CONTROL LISTS
	2.1.1. Authentication
	2.1.2. Access Control Lists (ACLs)

	2.2. ACCESSING THE GATEWAY
	2.2.1. Prerequisites
	2.2.2. Ruby AWS::S3 Examples (aws-s3 gem)
	2.2.3. Ruby AWS::SDK Examples (aws-sdk gem ~>2)
	2.2.4. PHP S3 Examples

	2.3. COMMON OPERATIONS
	2.3.1. Bucket and Host Name
	2.3.2. Common Request Headers
	2.3.3. Common Response Status

	2.4. SERVICE OPERATIONS
	2.4.1. List Buckets

	2.5. BUCKET OPERATIONS
	2.5.1. Bucket Operations with Multi Tenancy
	2.5.2. PUT Bucket
	2.5.3. DELETE Bucket
	2.5.4. GET Bucket
	2.5.5. Get Bucket Location
	2.5.6. Get Bucket Versioning
	2.5.7. PUT Bucket Versioning
	2.5.8. Get Bucket ACLs
	2.5.9. PUT Bucket ACLs
	2.5.10. GET Bucket cors
	2.5.11. PUT Bucket cors
	2.5.12. DELETE Bucket cors
	2.5.13. List Bucket Object Versions
	2.5.14. List Bucket Multipart Uploads
	2.5.15. PUT Bucket Request Payment
	2.5.16. GET Bucket Request Payment

	2.6. OBJECT OPERATIONS
	2.6.1. PUT Object
	2.6.2. Copy Object
	2.6.3. POST Object
	2.6.4. OPTIONS Object
	2.6.5. Delete Multiple Objects
	2.6.6. Remove Object
	2.6.7. Get Object
	2.6.8. Get Object Information
	2.6.9. Get Object ACL
	2.6.10. Set Object ACL
	2.6.11. Initiate Multipart Upload
	2.6.12. Multipart Upload Part
	2.6.13. List Multipart Upload Parts
	2.6.14. Complete Multipart Upload
	2.6.15. Abort Multipart Upload
	2.6.16. Copy Multipart Upload

	2.7. HADOOP S3A INTEROPERABILITY
	2.8. S3 LIMITATIONS

	CHAPTER 3. OBJECT GATEWAY SWIFT APPLICATION PROGRAMMING INTERFACE (API)
	3.1. AUTHENTICATION
	3.1.1. Authentication GET

	3.2. SERVICE OPERATIONS
	3.2.1. List Containers

	3.3. CONTAINER OPERATIONS
	3.3.1. Container Operations with Multi Tenancy
	3.3.2. Create a Container
	3.3.3. List a Container’s Objects
	3.3.4. Update a Container’s Access Control Lists (ACLs)
	3.3.5. Add/Update Container Metadata
	3.3.6. Delete a Container

	3.4. OBJECT OPERATIONS
	3.4.1. Create/Update an Object
	3.4.2. Copy an Object
	3.4.3. Delete an Object
	3.4.4. Get an Object
	3.4.5. Get Object Metadata
	3.4.6. Add/Update Object Metadata

	3.5. TEMP URL OPERATIONS
	3.5.1. POST Temp-URL Keys
	3.5.2. GET Temp-URL Objects

	3.6. SWIFT API LIMITATIONS

