
Red Hat Ceph Storage 2

Block Device Guide

Manging, creating, configuring, and using Red Hat Ceph Storage block devices

Last Updated: 2018-02-21

Red Hat Ceph Storage 2 Block Device Guide

Manging, creating, configuring, and using Red Hat Ceph Storage block devices

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to manage, create, configure, and use Red Hat Ceph Storage block
devices.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. BLOCK DEVICE COMMANDS
2.1. PREREQUISITES
2.2. CREATING BLOCK DEVICE IMAGES
2.3. LISTING BLOCK DEVICE IMAGES
2.4. RETRIEVING IMAGE INFORMATION
2.5. RESIZING BLOCK DEVICE IMAGES
2.6. REMOVING BLOCK DEVICE IMAGES
2.7. ENABLING AND DISABLING IMAGE FEATURES
2.8. WORKING WITH IMAGE METADATA
2.9. DISPLAYING HELP

CHAPTER 3. SNAPSHOTS
3.1. CEPHX NOTES
3.2. SNAPSHOT BASICS

3.2.1. Creating Snapshots
3.2.2. Listing Snapshots
3.2.3. Rollbacking Snapshots
3.2.4. Deleting Snapshots
3.2.5. Purging Snapshots
3.2.6. Renaming Snapshots

3.3. LAYERING
3.3.1. Getting Started with Layering
3.3.2. Protecting Snapshots
3.3.3. Cloning Snapshots
3.3.4. Unprotecting Snapshots
3.3.5. Listing Children of a Snapshot
3.3.6. Flattening Cloned Images

CHAPTER 4. BLOCK DEVICE MIRRORING
4.1. ENABLING JOURNALING
4.2. POOL CONFIGURATION

Enabling Mirroring on a Pool
Disabling Mirroring on a Pool
Viewing Information about Peers
Removing a Cluster Peer
Getting Mirroring Status for a Pool

4.3. IMAGE CONFIGURATION
Enabling Image Mirroring
Disabling Image Mirroring
Image Promotion and Demotion
Image Resynchronization
Getting Mirroring Status for a Single Image

4.4. CONFIGURING ONE-WAY MIRRORING
4.5. CONFIGURING TWO-WAY MIRRORING
4.6. RECOVERING FROM A DISASTER
4.7. UPDATING INSTANCES WITH MIRRORING

CHAPTER 5. LIBRBD (PYTHON)

CHAPTER 6. KERNEL MODULE OPERATIONS
6.1. GETTING A LIST OF IMAGES

4

5
5
5
5
6
6
6
7
7
9

10
10
11
11
11
11
11
12
12
12
14
15
15
15
16
16

17
18
19
19
20
20
21
21
21
21
22
22
23
23
23
27
32
34

35

37
37

Table of Contents

1

. .

6.2. MAPPING BLOCK DEVICES
6.3. SHOWING MAPPED BLOCK DEVICES
6.4. UNMAPPING A BLOCK DEVICE

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE
7.1. GENERAL SETTINGS
7.2. DEFAULT SETTINGS
7.3. CACHE SETTINGS
7.4. PARENT/CHILD READS SETTINGS
7.5. READ-AHEAD SETTINGS
7.6. BLACKLIST SETTINGS
7.7. JOURNAL SETTINGS

37
37
37

39
39
41
43
45
46
47
48

Red Hat Ceph Storage 2 Block Device Guide

2

Table of Contents

3

CHAPTER 1. OVERVIEW
A block is a sequence of bytes, for example, a 512-byte block of data. Block-based storage interfaces
are the most common way to store data with rotating media such as:

hard disks,

CDs,

floppy disks,

and even traditional 9-track tape.

The ubiquity of block device interfaces makes a virtual block device an ideal candidate to interact with a
mass data storage system like Red Hat Ceph Storage.

Ceph Block Devices, also known as Reliable Autonomic Distributed Object Store (RADOS) Block
Devices (RBDs), are thin-provisioned, resizable and store data striped over multiple Object Storage
Devices (OSD) in a Ceph Storage Cluster. Ceph Block Devices leverage RADOS capabilities such as:

creating snapshots,

replication,

and consistency.

Ceph Block Devices interact with OSDs by using the librbd library.

Ceph Block Devices deliver high performance with infinite scalability to Kernel Virtual Machines (KVMs)
such as Quick Emulator (QEMU), and cloud-based computing systems like OpenStack and CloudStack
that rely on the libvirt and QEMU utilities to integrate with Ceph Block Devices. You can use the
same cluster to operate the Ceph Object Gateway and Ceph Block Devices simultaneously.

IMPORTANT

To use Ceph Block Devices, you must have access to a running Ceph Storage Cluster.
For details on installing the Red Hat Ceph Storage, see the Installation Guide for Red Hat
Enterprise Linux or Installation Guide for Ubuntu.

Red Hat Ceph Storage 2 Block Device Guide

4

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu

CHAPTER 2. BLOCK DEVICE COMMANDS
The rbd command enables you to create, list, introspect, and remove block device images. You can
also use it to clone images, create snapshots, rollback an image to a snapshot, view a snapshot, and so
on.

2.1. PREREQUISITES

There are two prerequisites that you must meet before you can use the Ceph Block Devices and the rbd
command:

You must have access to a running Ceph Storage Cluster. For details, see the Installation Guide
for Red Hat Enterprise Linux or Installation Guide for Ubuntu.

You must install the Ceph Block Device client. For details, see the Installation Guide for Red Hat
Enterprise Linux or Installation Guide for Ubuntu.

IMPORTANT

The Client Installation chapter also provides information on mounting and using Ceph
Block Devices on client nodes. Execute these steps on client nodes only after creating an
image for the Block Device in the Ceph Storage Cluster. See Section 2.2, “Creating Block
Device Images” for details.

2.2. CREATING BLOCK DEVICE IMAGES

Before adding a block device to a node, create an image for it in the Ceph storage cluster. To create a
block device image, execute the following command:

rbd create <image-name> --size <megabytes> --pool <pool-name>

For example, to create a 1GB image named data that stores information in a pool named stack, run:

$ rbd create data --size 1024 --pool stack

NOTE

You must create a pool first before you can specify it as a source. See the Pools chapter
in the Storage Strategies for Red Hat Ceph Storage 2 guide for details.

2.3. LISTING BLOCK DEVICE IMAGES

To list block devices in the rbd pool, execute the following (rbd is the default pool name):

rbd ls

To list block devices in a particular pool, execute the following, but replace {poolname} with the name
of the pool:

rbd ls {poolname}

CHAPTER 2. BLOCK DEVICE COMMANDS

5

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/installation-guide-for-red-hat-enterprise-linux/chapter-4-client-installation
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-4-pools

For example:

rbd ls swimmingpool

2.4. RETRIEVING IMAGE INFORMATION

To retrieve information from a particular image, execute the following, but replace {image-name} with
the name for the image:

rbd --image {image-name} info

For example:

rbd --image foo info

To retrieve information from an image within a pool, execute the following, but replace {image-name}
with the name of the image and replace {pool-name} with the name of the pool:

rbd --image {image-name} -p {pool-name} info

For example:

rbd --image bar -p swimmingpool info

2.5. RESIZING BLOCK DEVICE IMAGES

Ceph block device images are thin provisioned. They do not actually use any physical storage until you
begin saving data to them. However, they do have a maximum capacity that you set with the --size
option.

To increase or decrease the maximum size of a Ceph block device image:

rbd resize --image <image-name> --size <size>

2.6. REMOVING BLOCK DEVICE IMAGES

To remove a block device, execute the following, but replace {image-name} with the name of the
image you want to remove:

rbd rm {image-name}

For example:

rbd rm foo

To remove a block device from a pool, execute the following, but replace {image-name} with the name
of the image to remove and replace {pool-name} with the name of the pool:

rbd rm {image-name} -p {pool-name}

Red Hat Ceph Storage 2 Block Device Guide

6

For example:

rbd rm bar -p swimmingpool

2.7. ENABLING AND DISABLING IMAGE FEATURES

You can enable or disable image features, such as fast-diff, exclusive-lock, object-map, or
journaling, on already existing images.

To enable a feature:

rbd feature enable <pool-name>/<image-name> <feature-name>

To disable a feature:

rbd feature disable <pool-name>/<image-name> <feature-name>

Examples

To enable the exclusive-lock feature on the image1 image in the data pool:

$ rbd feature enable data/image1 exclusive-lock

To disable the fast-diff feature on the image2 image in the data pool:

$ rbd feature disable data/image2 fast-diff

IMPORTANT

After enabling the fast-diff and object-map features, rebuild the object map:

rbd object-map rebuild <pool-name>/<image-name>

NOTE

The deep flatten feature can be only disabled on already existing images but not
enabled. To use deep flatten, enable it when creating images.

2.8. WORKING WITH IMAGE METADATA

Ceph supports adding custom image metadata as key-value pairs. The pairs do not have any strict
format.

Also, by using metadata, you can set the RBD configuration parameters for particular images. See
Overriding the Default Configuration for Particular Images for details.

Use the rbd image-meta commands to work with metadata.

Setting Image Metadata

To set a new metadata key-value pair:

CHAPTER 2. BLOCK DEVICE COMMANDS

7

rbd image-meta set <pool-name>/<image-name> <key> <value>

Example

To set the last_update key to the 2016-06-06 value on the dataset image in the data
pool:

$ rbd image-meta set data/dataset last_update 2016-06-06

Removing Image Metadata

To remove a metadata key-value pair:

rbd image-meta remove <pool-name>/<image-name> <key>

Example

To remove the last_update key-value pair from the dataset image in the data pool:

$ rbd image-meta remove data/dataset last_update

Getting a Value for a Key

To view a value of a key:

rbd image-meta get <pool-name>/<image-name> <key>

Example

To view the value of the last_update key:

$ rbd image-meta get data/dataset last_update

Listing Image Metadata

To show all metadata on an image:

rbd image-meta list <pool-name>/<image-name>

Example

To list metadata set on the dataset image in the data pool:

$ rbd data/dataset image-meta list

Overriding the Default Configuration for Particular Images

To override the RBD image configuration settings set in the Ceph configuration file for a particular image,
set the configuration parameters with the conf_ prefix as image metadata:

rbd image-meta set <pool-name>/<image-name> conf_<parameter> <value>

Example

Red Hat Ceph Storage 2 Block Device Guide

8

To disable the RBD cache for the dataset image in the data pool:

$ rbd image-meta set data/dataset conf_rbd_cache false

See Block Device Configuration Reference for a list of possible configuration options.

2.9. DISPLAYING HELP

Use the rbd help command to display help for a particular rbd command and its subcommand:

rbd help <command> <subcommand>

Example

To display help for the snap list command:

$ rbd help snap list

NOTE

The -h option still displays help for all available commands.

CHAPTER 2. BLOCK DEVICE COMMANDS

9

CHAPTER 3. SNAPSHOTS
A snapshot is a read-only copy of the state of an image at a particular point in time. One of the advanced
features of Ceph block devices is that you can create snapshots of the images to retain a history of an
image’s state. Ceph also supports snapshot layering, which allows you to clone images (for example a
VM image) quickly and easily. Ceph supports block device snapshots using the rbd command and many
higher level interfaces, including QEMU, libvirt,OpenStack and CloudStack.

IMPORTANT

To use RBD snapshots, you must have a running Ceph cluster.

NOTE

If a snapshot is taken while I/O is still in progress in a image, the snapshot might not get
the exact or latest data of the image and the snapshot may have to be cloned to a new
image to be mountable. So, we recommend to stop I/O before taking a snapshot of an
image. If the image contains a filesystem, the filesystem must be in a consistent state
before taking a snapshot. To stop I/O you can use fsfreeze command. See
fsfreeze(8) man page for more details. For virtual machines, qemu-guest-agent
can be used to automatically freeze filesystems when creating a snapshot.

3.1. CEPHX NOTES

When cephx is enabled (it is by default), you must specify a user name or ID and a path to the keyring
containing the corresponding key for the user. You may also add the CEPH_ARGS environment variable
to avoid re-entry of the following parameters:

rbd --id {user-ID} --keyring=/path/to/secret [commands]
rbd --name {username} --keyring=/path/to/secret [commands]

For example:

rbd --id admin --keyring=/etc/ceph/ceph.keyring [commands]
rbd --name client.admin --keyring=/etc/ceph/ceph.keyring [commands]

TIP

Add the user and secret to the CEPH_ARGS environment variable so that you don’t need to enter them
each time.

Red Hat Ceph Storage 2 Block Device Guide

10

3.2. SNAPSHOT BASICS

The following procedures demonstrate how to create, list, and remove snapshots using the rbd
command on the command line.

3.2.1. Creating Snapshots

To create a snapshot with rbd, specify the snap create option, the pool name and the image name:

rbd --pool {pool-name} snap create --snap {snap-name} {image-name}
rbd snap create {pool-name}/{image-name}@{snap-name}

For example:

rbd --pool rbd snap create --snap snapname foo
rbd snap create rbd/foo@snapname

3.2.2. Listing Snapshots

To list snapshots of an image, specify the pool name and the image name:

rbd --pool {pool-name} snap ls {image-name}
rbd snap ls {pool-name}/{image-name}

For example:

rbd --pool rbd snap ls foo
rbd snap ls rbd/foo

3.2.3. Rollbacking Snapshots

To rollback to a snapshot with rbd, specify the snap rollback option, the pool name, the image name
and the snap name:

rbd --pool {pool-name} snap rollback --snap {snap-name} {image-name}
rbd snap rollback {pool-name}/{image-name}@{snap-name}

For example:

rbd --pool rbd snap rollback --snap snapname foo
rbd snap rollback rbd/foo@snapname

NOTE

Rolling back an image to a snapshot means overwriting the current version of the image
with data from a snapshot. The time it takes to execute a rollback increases with the size
of the image. It is faster to clone from a snapshot than to rollback an image to a
snapshot, and it is the preferred method of returning to a pre-existing state.

3.2.4. Deleting Snapshots

CHAPTER 3. SNAPSHOTS

11

To delete a snapshot with rbd, specify the snap rm option, the pool name, the image name and the
snapshot name:

rbd --pool <pool-name> snap rm --snap <snap-name> <image-name>
rbd snap rm <pool-name-/<image-name>@<snap-name>

For example:

$ rbd --pool rbd snap rm --snap snapname foo
$ rbd snap rm rbd/foo@snapname

IMPORTANT

If an image has any clones, the cloned images retain reference to the parent image
snapshot. To delete the parent image snapshot, you must flatten the child images first.
See Flattening a Cloned Image for details.

NOTE

Ceph OSD daemons delete data asynchronously, so deleting a snapshot does not free up
the disk space immediately.

3.2.5. Purging Snapshots

To delete all snapshots for an image with rbd, specify the snap purge option and the image name:

rbd --pool {pool-name} snap purge {image-name}
rbd snap purge {pool-name}/{image-name}

For example:

rbd --pool rbd snap purge foo
rbd snap purge rbd/foo

3.2.6. Renaming Snapshots

To rename a snapshot:

rbd snap rename <pool-name>/<image-name>@<original-snapshot-name> <pool-
name>/<image-name>@<new-snapshot-name>

Example

To rename the snap1 snapshot of the dataset image on the data pool to snap2:

$ rbd snap rename data/dataset@snap1 data/dataset@snap2

Execute the rbd help snap rename command to display additional details on renaming snapshots.

3.3. LAYERING

Red Hat Ceph Storage 2 Block Device Guide

12

Ceph supports the ability to create many copy-on-write (COW) or copy-on-read (COR) clones of a block
device snapshot. Snapshot layering enables Ceph block device clients to create images very quickly.
For example, you might create a block device image with a Linux VM written to it; then, snapshot the
image, protect the snapshot, and create as many clones as you like. A snapshot is read-only, so cloning
a snapshot simplifies semantics— ​making it possible to create clones rapidly.

NOTE

The terms parent and child mean a Ceph block device snapshot (parent), and the
corresponding image cloned from the snapshot (child). These terms are important for the
command line usage below.

Each cloned image (child) stores a reference to its parent image, which enables the cloned image to
open the parent snapshot and read it. This reference is removed when the clone is flattened that is,
when information from the snapshot is completely copied to the clone. For more information on
flattening see Section 3.3.6, “Flattening Cloned Images”.

A clone of a snapshot behaves exactly like any other Ceph block device image. You can read to, write
from, clone, and resize cloned images. There are no special restrictions with cloned images. However,
the clone of a snapshot refers to the snapshot, so you MUST protect the snapshot before you clone it.

A clone of a snapshot can be a copy-on-write (COW) or copy-on-read (COR) clone. Copy-on-write
(COW) is always enabled for clones while copy-on-read (COR) has to be enabled explicitly. Copy-on-
write (COW) copies data from the parent to the clone when it writes to an unallocated object within the
clone. Copy-on-read (COR) copies data from the parent to the clone when it reads from an unallocated
object within the clone. Reading data from a clone will only read data from the parent if the object does
not yet exist in the clone. Rados block device breaks up large images into multiple objects (defaults to 4
MB) and all copy-on-write (COW) and copy-on-read (COR) operations occur on a full object (that is
writing 1 byte to a clone will result in a 4 MB object being read from the parent and written to the clone if
the destination object does not already exist in the clone from a previous COW/COR operation).

Whether or not copy-on-read (COR) is enabled, any reads that cannot be satisfied by reading an
underlying object from the clone will be rerouted to the parent. Since there is practically no limit to the
number of parents (meaning that you can clone a clone), this reroute continues until an object is found or
you hit the base parent image. If copy-on-read (COR) is enabled, any reads that fail to be satisfied
directly from the clone result in a full object read from the parent and writing that data to the clone so that
future reads of the same extent can be satisfied from the clone itself without the need of reading from the
parent.

This is essentially an on-demand, object-by-object flatten operation. This is specially useful when the
clone is in a high-latency connection away from it’s parent (parent in a different pool in another
geographical location). Copy-on-read (COR) reduces the amortized latency of reads. The first few reads

CHAPTER 3. SNAPSHOTS

13

will have high latency because it will result in extra data being read from the parent (for example, you
read 1 byte from the clone but now 4 MB has to be read from the parent and written to the clone), but all
future reads will be served from the clone itself.

To create copy-on-read (COR) clones from snapshot you have to explicitly enable this feature by adding
rbd_clone_copy_on_read = true under [global] or [client] section in your ceph.conf file.

NOTE

Ceph only supports cloning for format 2 images (created with rbd create --image-
format 2), and is not yet supported by the kernel rbd module. So you MUST use
QEMU/KVM or librbd directly to access clones in the current release.

3.3.1. Getting Started with Layering

Ceph block device layering is a simple process. You must have an image. You must create a snapshot
of the image. You must protect the snapshot. Once you have performed these steps, you can begin
cloning the snapshot.

The cloned image has a reference to the parent snapshot, and includes the pool ID, image ID and
snapshot ID. The inclusion of the pool ID means that you may clone snapshots from one pool to images
in another pool.

1. Image Template: A common use case for block device layering is to create a master image and
a snapshot that serves as a template for clones. For example, a user may create an image for a
RHEL7 distribution and create a snapshot for it. Periodically, the user may update the image and
create a new snapshot (for example yum update, yum upgrade, followed by rbd snap
create). As the image matures, the user can clone any one of the snapshots.

2. Extended Template: A more advanced use case includes extending a template image that
provides more information than a base image. For example, a user may clone an image (for
example, a VM template) and install other software (for example, a database, a content
management system, an analytics system, and so on) and then snapshot the extended image,
which itself may be updated just like the base image.

3. Template Pool: One way to use block device layering is to create a pool that contains master
images that act as templates, and snapshots of those templates. You may then extend read-only
privileges to users so that they may clone the snapshots without the ability to write or execute
within the pool.

4. Image Migration/Recovery: One way to use block device layering is to migrate or recover data
from one pool into another pool.

Red Hat Ceph Storage 2 Block Device Guide

14

3.3.2. Protecting Snapshots

Clones access the parent snapshots. All clones would break if a user inadvertently deleted the parent
snapshot. To prevent data loss, you MUST protect the snapshot before you can clone it. To do so, run
the following commands:

rbd --pool {pool-name} snap protect --image {image-name} --snap {snapshot-
name}
rbd snap protect {pool-name}/{image-name}@{snapshot-name}

For example:

rbd --pool rbd snap protect --image my-image --snap my-snapshot
rbd snap protect rbd/my-image@my-snapshot

NOTE

You cannot delete a protected snapshot.

3.3.3. Cloning Snapshots

To clone a snapshot, you need to specify the parent pool, image and snapshot; and the child pool and
image name. You must protect the snapshot before you can clone it. To do so, run the following
commands:

rbd --pool {pool-name} --image {parent-image} --snap {snap-name} --dest-
pool {pool-name} --dest {child-image}
rbd clone {pool-name}/{parent-image}@{snap-name} {pool-name}/{child-image-
name}

For example:

rbd clone rbd/my-image@my-snapshot rbd/new-image

NOTE

You may clone a snapshot from one pool to an image in another pool. For example, you
may maintain read-only images and snapshots as templates in one pool, and writable
clones in another pool.

3.3.4. Unprotecting Snapshots

Before you can delete a snapshot, you must unprotect it first. Additionally, you may NOT delete
snapshots that have references from clones. You must flatten each clone of a snapshot, before you can
delete the snapshot. To do so, run the following commands:

rbd --pool {pool-name} snap unprotect --image {image-name} --snap
{snapshot-name}
rbd snap unprotect {pool-name}/{image-name}@{snapshot-name}

For example:

CHAPTER 3. SNAPSHOTS

15

rbd --pool rbd snap unprotect --image my-image --snap my-snapshot
rbd snap unprotect rbd/my-image@my-snapshot

3.3.5. Listing Children of a Snapshot

To list the children of a snapshot, execute the following:

rbd --pool {pool-name} children --image {image-name} --snap {snap-name}
rbd children {pool-name}/{image-name}@{snapshot-name}

For example:

rbd --pool rbd children --image my-image --snap my-snapshot
rbd children rbd/my-image@my-snapshot

3.3.6. Flattening Cloned Images

Cloned images retain a reference to the parent snapshot. When you remove the reference from the child
clone to the parent snapshot, you effectively "flatten" the image by copying the information from the
snapshot to the clone. The time it takes to flatten a clone increases with the size of the snapshot.

To delete a parent image snapshot associated with child images, you must flatten the child images first:

rbd --pool <pool-name> flatten --image <image-name>
rbd flatten <pool-name>/<image-name>

For example:

$ rbd --pool rbd flatten --image my-image
$ rbd flatten rbd/my-image

Because a flattened image contains all the information from the snapshot, a flattened image will use
more storage space than a layered clone.

NOTE

If the deep flatten feature is enabled on an image, the image clone is dissociated from
its parent by default.

Red Hat Ceph Storage 2 Block Device Guide

16

CHAPTER 4. BLOCK DEVICE MIRRORING
RADOS Block Device (RBD) mirroring is a process of asynchronous replication of Ceph block device
images between two or more Ceph clusters. Mirroring ensures point-in-time consistent replicas of all
changes to an image, including reads and writes, block device resizing, snapshots, clones and flattening.
Mirroring can run in either an active-passive or active-active configuration; that is, using mandatory
exclusive locks and the RBD journaling feature, RBD records all modifications to an image in the order in
which they occur. This ensures that a crash-consistent mirror of the remote image is available locally.
Therefore, before an image can be mirrored to a peer cluster, you must enable journaling. See
Section 4.1, “Enabling Journaling” for details.

Since, it is the images stored in the local and remote pools associated to the block device that get
mirrored, the CRUSH hierarchy for the local and remote pools should have the same storage
capacity and performance characteristics. Additionally, the network connection between the
local and remote sites should have sufficient bandwidth to ensure mirroring happens without too
much latency.

IMPORTANT

The CRUSH hierarchies supporting local and remote pools that mirror block device
images SHOULD have the same capacity and performance characteristics, and SHOULD
have adequate bandwidth to ensure mirroring without excess latency. For example, if you
have X MiB/s average write throughput to images in the primary cluster, the network must
support N * X throughput in the network connection to the secondary site plus a safety
factor of Y% to mirror N images.

Mirroring serves primarily for recovery from a disaster. See Section 4.6, “Recovering from a Disaster” for
details.

The rbd-mirror Daemon

The rbd-mirror daemon is responsible for synchronizing images from one Ceph cluster to another.

Depending on the type of replication, rbd-mirror runs either on a single cluster or on all clusters that
participate in mirroring:

One-way Replication

When data is mirrored from a primary cluster to a secondary cluster that serves as a
backup,rbd-mirror runs ONLY on the backup cluster. RBD mirroring may have multiple
secondary sites in an active-passive configuration.

Two-way Replication

When the data is mirrored from mirrored from a primary cluster to a secondary cluster and
the secondary cluster can mirror back to the primary and each other, both clusters must
have rbd-mirror running. Currently, two-way replication, also known as an active-active
configuration, is supported only between two sites.

The rbd-mirror package provides rbd-mirror.

CHAPTER 4. BLOCK DEVICE MIRRORING

17

IMPORTANT

In two-way replication, each instance of rbd-mirror must be able to connect to the
other Ceph cluster simultaneously. Additionally, the network must have sufficient
bandwidth between the two data center sites to handle mirroring.

WARNING

Only run a single rbd-mirror daemon per a Ceph cluster.

Mirroring Modes

Mirroring is configured on a per-pool basis within peer clusters. Ceph supports two modes, depending on
what images in a pool are mirrored:

Pool Mode

All images in a pool with the journaling feature enabled are mirrored. See Configuring Pool Mirroring
for details.

Image Mode

Only a specific subset of images within a pool is mirrored and you must enable mirroring for each
image separately. See Configuring Image Mirroring for details.

Image States

In an active-passive configuration, the mirrored images are:

primary (can be modified)

non-primary (cannot be modified).

Images are automatically promoted to primary when mirroring is first enabled on an image. The
promotion can happen:

implicitly by enabling mirroring in pool mode (see Section 4.2, “Pool Configuration”)

explicitly by enabling mirroring of a specific image (see Section 4.3, “Image Configuration”)

It is possible to demote primary images and promote non-primary images. See Section 4.3, “Image
Configuration” for details.

4.1. ENABLING JOURNALING

You can enable the RBD journaling feature:

when an image is created

dynamically on already existing images



Red Hat Ceph Storage 2 Block Device Guide

18

IMPORTANT

Journaling depends on the exclusive-lock feature which must be enabled too. See
the following steps.

To enable journaling when creating an image, use the --image-feature option:

rbd create <image-name> --size <megabytes> --pool <pool-name> --image-
feature <feature>

For example:

$ rbd create image-1 --size 1024 --pool pool-1 --image-feature exclusive-
lock,journaling

To enable journaling on already existing images, use the rbd feature enable command:

rbd feature enable <pool-name>/<image-name> <feature-name>

For example:

$ rbd feature enable pool-1/image-1 exclusive-lock
$ rbd feature enable pool-1/image-1 journaling

To enable journaling on all new images by default, add the following setting to the Ceph configuration file:

rbd default features = 125

4.2. POOL CONFIGURATION

This chapter shows how to do the following tasks:

Enabling Mirroring on a Pool

Disabling Mirroring on a Pool

Adding a Cluster Peer

Viewing Information about Peers

Removing a Cluster Peer

Getting Mirroring Status for a Pool

Execute the following commands on both peer clusters.

Enabling Mirroring on a Pool
To enable mirroring on a pool:

rbd mirror pool enable <pool-name> <mode>

Examples

CHAPTER 4. BLOCK DEVICE MIRRORING

19

To enable mirroring of the whole pool named data:

$ rbd mirror pool enable data pool

To enable image mode mirroring on the pool named stack:

$ rbd mirror pool enable stack image

See Mirroring Modes for details.

Disabling Mirroring on a Pool
To disable mirroring on a pool:

rbd mirror pool disable <pool-name>

Example

To disable mirroring of a pool named data:

$ rbd mirror pool disable data

Before disabling mirroring, remove the peer clusters. See Section 4.2, “Pool Configuration” for details.

NOTE

When you disable mirroring on a pool, you also disable it on any images within the pool
for which mirroring was enabled separately in image mode. See Image Configuration for
details.

Adding a Cluster Peer

In order for the rbd-mirror daemon to discover its peer cluster, you must register the peer to the pool:

rbd mirror pool peer add <pool-name> <client-name>@<cluster-name>

Example

To add the remote cluster as a peer to the local cluster or the other way around:

$ rbd --cluster local mirror pool peer add data client.remote@remote
$ rbd --cluster remote mirror pool peer add data client.local@local

Viewing Information about Peers
To view information about the peers:

rbd mirror pool info <pool-name>

Example

$ rbd mirror pool info data
Enabled: true
Peers:

Red Hat Ceph Storage 2 Block Device Guide

20

 UUID NAME CLIENT
 786b42ea-97eb-4b16-95f4-867f02b67289 ceph-remote client.admin

Removing a Cluster Peer
To remove a mirroring peer cluster:

rbd mirror pool peer remove <pool-name> <peer-uuid>

Specify the pool name and the peer Universally Unique Identifier (UUID). To view the peer UUID, use the
rbd mirror pool info command.

Example

$ rbd mirror pool peer remove data 55672766-c02b-4729-8567-f13a66893445

Getting Mirroring Status for a Pool
To get the mirroring pool summary:

rbd mirror pool status <pool-name>

Example

To get the status of the data pool:

$ rbd mirror pool status data
health: OK
images: 1 total

To output status details for every mirroring image in a pool, use the --verbose option.

4.3. IMAGE CONFIGURATION

This chapter shows how to do the following tasks:

Enabling Image Mirroring

Disabling Image Mirroring

Image Promotion and Demotion

Image Resynchronization

Getting Mirroring Status for a Single Image

Execute the following commands on a single cluster only.

Enabling Image Mirroring
To enable mirroring of a specific image:

1. Enable mirroring of the whole pool in image mode on both peer clusters. See Section 4.2, “Pool
Configuration” for details.

2. Then explicitly enable mirroring for a specific image within the pool:

CHAPTER 4. BLOCK DEVICE MIRRORING

21

rbd mirror image enable <pool-name>/<image-name>

Example

To enable mirroring for the image2 image in the data pool:

$ rbd mirror image enable data/image2

Disabling Image Mirroring
To disable mirroring for a specific image:

rbd mirror image disable <pool-name>/<image-name>

Example

To disable mirroring of the image2 image in the data pool:

$ rbd mirror image disable data/image2

Image Promotion and Demotion
To demote an image to non-primary:

rbd mirror image demote <pool-name>/<image-name>

Example

To demote the image2 image in the data pool:

$ rbd mirror image demote data/image2

To promote an image to primary:

rbd mirror image promote <pool-name>/<image-name>

Example

To promote the image2 image in the data pool:

$ rbd mirror image promote data/image2

See Section 4.6, “Recovering from a Disaster” for details.

Use the --force option to force promote a non-primary image:

$ rbd mirror image promote --force data/image2

Use forced promotion when the demotion cannot be propagated to the peer Ceph cluster, for example
because of cluster failure or communication outage. See Failover After a Non-Orderly Shutdown for
details.

Red Hat Ceph Storage 2 Block Device Guide

22

NOTE

Do not force promote non-primary images that are still syncing, because the images will
not be valid after the promotion.

Image Resynchronization
To request a resynchronization to the primary image:

rbd mirror image resync <pool-name>/<image-name>

Example

To request resynchronization of the image2 image in the data pool:

$ rbd mirror image resync data/image2

In case of an inconsistent state between the two peer clusters, the rbd-mirror daemon does not
attempt to mirror the image that causing it. For details on fixing this issue, see Section 4.6, “Recovering
from a Disaster”.

Getting Mirroring Status for a Single Image
To get status of a mirrored image:

rbd mirror image status <pool-name>/<image-name>

Example

To get the status of the image2 image in the data pool:

$ rbd mirror image status data/image2
image2:
 global_id: 2c928338-4a86-458b-9381-e68158da8970
 state: up+replaying
 description: replaying, master_position=[object_number=6, tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:47:39

4.4. CONFIGURING ONE-WAY MIRRORING

One-way mirroring implies that a primary image in one cluster gets replicated in a secondary cluster. In
the secondary or remote cluster, the replicated image is non-primary; that is, block device clients cannot
write to the image.

NOTE

One-way mirroring is appropriate for maintaining a crash-consistent copy of an image.
One-way mirroring may not be appropriate for all situations, such as using the secondary
image for automatic failover and failback with OpenStack, since the cluster cannot failback
when using one-way mirrroring. In those scenarios, use two-way mirroring. See
Section 4.5, “Configuring Two-Way Mirroring” for details.

CHAPTER 4. BLOCK DEVICE MIRRORING

23

The following procedures assume:

Two Ceph clusters for replicating block device images one way; that is, replicating images from a
primary image in a cluster named local to a second cluster named remote as used in this
procedure. The clusters have corresponding configuration files located in the /etc/ceph/
directory - local.conf and remote.conf. For information on installing the Ceph Storage
Cluster see the Installation Guide for Red Hat Enterprise Linux or Installation Guide for Ubuntu. If
you have two Ceph clusters with the same name, usually the default ceph name, see
Configuring Mirroring Between Clusters With The Same Name for additional required steps.

One block device client is connected to the local cluster - client.local. For information on
installing Ceph clients, see the Installation Guide for Red Hat Enterprise Linux or the Installation
Guide for Ubuntu.

The data pool is created on both clusters. See the Pools chapter in the Storage Strategies for
Red Hat Ceph Storage 2 guide for details.

The data pool on the local cluster contains images you want to mirror (in the procedures
below named image1 and image2) and journaling is enabled on the images. See Enabling
Journaling for details.

There are two ways to configure block device mirroring:

Pool Mirroring: To mirror all images within a pool, use the Configure Pool Mirroring procedure.

Image Mirroring: To mirror select images within a pool, use the Configuring Image Mirroring
procedure.

Configuring Pool Mirroring

1. Ensure that all images within the data pool have exclusive lock and journaling enabled. See
Section 4.1, “Enabling Journaling” for details.

2. On the monitor node of the remote cluster, install the rbd-mirror package. The package is
provided by the Red Hat Ceph 2 Tools repository.

yum install rbd-mirror

NOTE

The rbd-mirror daemon can run on any host in the cluster. It does not have to be
a monitor or OSD host. However, only one rbd-mirror daemon per secondary or
remote cluster.

3. On both clusters, specify the cluster name by adding the CLUSTER option to the
/etc/sysconfig/ceph file:

CLUSTER=local

CLUSTER=remote

4. On both clusters, create users with permissions to access the data pool and output their
keyrings to a <cluster-name>.client.<user-name>.keyring file.

Red Hat Ceph Storage 2 Block Device Guide

24

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-4-pools

a. On the monitor host in the local cluster, create the client.local user and output the
keyring to the local.client.local.keyring file:

ceph auth get-or-create client.local mon 'allow r' osd 'allow
class-read object_prefix rbd_children, allow pool data rwx' -o
/etc/ceph/local.client.local.keyring --cluster local

b. On the monitor host in the remote cluster, create the client.remote user and output the
keyring to the remote.client.remote.keyring file:

ceph auth get-or-create client.remote mon 'allow r' osd 'allow
class-read object_prefix rbd_children, allow pool data rwx' -o
/etc/ceph/remote.client.remote.keyring --cluster remote

5. Copy the Ceph configuration file and the newly created keyring from the monitor host in the
local cluster to the remote cluster and to the client hosts in the remote cluster:

scp /etc/ceph/local.conf <user>@<remote_mon-host-name>:/etc/ceph/
scp /etc/ceph/local.client.local.keyring <user>@<remote_mon-host-
name>:/etc/ceph/

scp /etc/ceph/local.conf <user>@<remote_client-host-
name>:/etc/ceph/
scp /etc/ceph/local.client.local.keyring <user>@<remote_client-
host-name>:/etc/ceph/

6. On the monitor host of the remote cluster, enable and start the rbd-mirror daemon:

systemctl enable ceph-rbd-mirror.target
systemctl enable ceph-rbd-mirror@<client-id>
systemctl start ceph-rbd-mirror@<client-id>

Where <client-id> is the Ceph Storage cluster user that the rbd-mirror daemon will use.
The user must have the appropriate cephx access to the cluster. For detailed information, see
the User Management chapter in the Administration Guide for Red Hat Ceph Storage 2.

For example:

systemctl enable ceph-rbd-mirror.target
systemctl enable ceph-rbd-mirror@remote
systemctl start ceph-rbd-mirror@remote

7. Enable pool mirroring of the data pool residing on the local and the remote cluster:

$ rbd mirror pool enable data pool --cluster local
$ rbd mirror pool enable data pool --cluster remote

And ensure that mirroring has been successfully enabled:

$ rbd mirror pool info data --cluster local
$ rbd mirror pool info data --cluster remote

8. Add the local cluster as a peer of the remote cluster:

CHAPTER 4. BLOCK DEVICE MIRRORING

25

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/administration-guide/chapter-5-user-management

$ rbd mirror pool peer add data client.local@local --cluster remote

And ensure that the peer was successfully added:

$ rbd mirror pool info data --cluster remote
Mode: pool
Peers:
 UUID NAME CLIENT
 87ea0826-8ffe-48fb-b2e8-9ca81b012771 local client.local

Configuring Image Mirroring

1. Ensure that select images to mirrored within the data pool have exclusive lock and journaling
enabled. See Section 4.1, “Enabling Journaling” for details.

2. Follow the steps 2 - 5 in the Configuring Pool Mirroring procedure.

3. Enable image mirroring of the data pool on the local cluster:

$ rbd --cluster local mirror pool enable data image

And ensure that mirroring has been successfully enabled:

$ rbd mirror pool info --cluster local

4. Add the local cluster as a peer of remote:

$ rbd --cluster remote mirror pool peer add data client.local@local

And ensure that the peer was successfully added:

$ rbd --cluster remote mirror pool info
Mode: pool
Peers:
 UUID NAME CLIENT
 87ea0826-8ffe-48fb-b2e8-9ca81b012771 local client.local

5. On the local cluster, explicitly enable image mirroring of the image1 and image2 images:

$ rbd --cluster local mirror image enable data/image1
Mirroring enabled
$ rbd --cluster local mirror image enable data/image2
Mirroring enabled

And ensure that mirroring has been successfully enabled:

$ rbd mirror image status data/image1 --cluster local
image1:
 global_id: 2c928338-4a86-458b-9381-e68158da8970
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,

Red Hat Ceph Storage 2 Block Device Guide

26

entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:47:39

$ rbd mirror image status data/image1 --cluster remote
image1:
 global_id: 2c928338-4a86-458b-9381-e68158da8970
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:47:39

$ rbd mirror image status data/image2 --cluster master
image1:
 global_id: 4c818438-4e86-e58b-2382-f61658dc8932
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:48:05

$ rbd mirror image status data/image2 --cluster remote
image1:
 global_id: 4c818438-4e86-e58b-2382-f61658dc8932
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:48:05

4.5. CONFIGURING TWO-WAY MIRRORING

The following procedures assume that:

You have two Ceph clusters, named local and remote. The clusters have corresponding
configuration files located in the /etc/ceph/ directory - local.conf and remote.conf. For
information on installing the Ceph Storage Cluster see the Installation Guide for Red Hat
Enterprise Linux or Installation Guide for Ubuntu. If you have two Ceph clusters with the same
name, usually the default ceph name, see Configuring Mirroring Between Clusters With The
Same Name for additional required steps.

One block device client is connected to each of the clusters - client.local and
client.remote. For information on installing Ceph clients, see the Installation Guide for Red
Hat Enterprise Linux or the Installation Guide for Ubuntu.

The data pool is created on both clusters. See the Pools chapter in the Storage Strategies for
Red Hat Ceph Storage 2 guide for details.

The data pool on the local cluster contains images you want to mirror (in the procedures
below named image1 and image2) and journaling is enabled on the images. See Enabling
Journaling for details.

CHAPTER 4. BLOCK DEVICE MIRRORING

27

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-red-hat-enterprise-linux/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/installation-guide-for-ubuntu/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/storage-strategies-guide/chapter-4-pools

Configuring Pool Mirroring

1. On both clients, install the rbd-mirror package. The package is provided by the Red Hat
Ceph 2 Tools repository.

yum install rbd-mirror

2. On both client hosts, specify the cluster name by adding the CLUSTER option to the
/etc/sysconfig/ceph file:

CLUSTER=local

CLUSTER=remote

3. On both clusters, create users with permissions to access the data pool and output their
keyrings to a <cluster-name>.client.<user-name>.keyring file.

a. On the monitor host in the local cluster, create the client.local user and output the
keyring to the local.client.local.keyring file:

ceph auth get-or-create client.local mon 'allow r' osd 'allow
class-read object_prefix rbd_children, allow pool data rwx' -o
/etc/ceph/local.client.local.keyring --cluster local

b. On the monitor host in the remote cluster, create the client.remote user and output the
keyring to the remote.client.remote.keyring file:

ceph auth get-or-create client.remote mon 'allow r' osd 'allow
class-read object_prefix rbd_children, allow pool data rwx' -o
/etc/ceph/remote.client.remote.keyring --cluster remote

4. Copy the Ceph configuration files and the newly created keyrings between the peer clusters.

a. Copy local.conf and local.client.local.keyring from the monitor host in the
local cluster to the monitor host in the remote cluster and to the client hosts in the
remote cluster:

scp /etc/ceph/local.conf <user>@<remote_mon-host-
name>:/etc/ceph/
scp /etc/ceph/local.client.local.keyring <user>@<remote_mon-
host-name>:/etc/ceph/

scp /etc/ceph/local.conf <user>@<remote_client-host-
name>:/etc/ceph/
scp /etc/ceph/local.client.local.keyring <user>@<remote_client-
host-name>:/etc/ceph/

b. Copy remote.conf and remote.client.remote.keyring from the monitor host in the
remote cluster to the monitor host in the local cluster and to the client hosts in the local
cluster:

scp /etc/ceph/remote.conf <user>@<local_mon-host-
name>:/etc/ceph/

Red Hat Ceph Storage 2 Block Device Guide

28

scp /etc/ceph/remote.client.remote.keyring <user>@<local-mon-
host-name>:/etc/ceph/

scp /etc/ceph/remote.conf <user>@<local_client-host-
name>:/etc/ceph/
scp /etc/ceph/remote.client.remote.keyring
<user>@<local_client-host-name>:/etc/ceph/

5. If the Monitor and Mirroring daemons are not colocated on the same node, then copy
local.client.local.keyring and local.conf from the monitor host in the local cluster
to the mirroring host in the local and remote cluster:

scp /etc/ceph/local.client.local.keyring <user>@<local-mirroring-
host-name>:/etc/ceph/

scp /etc/ceph/local.conf <user>@<local-mirroring-host-
name>:/etc/ceph/

scp /etc/ceph/local.client.local.keyring <user>@<remote-mirroring-
host-name>:/etc/ceph/

scp /etc/ceph/local.conf <user>@<remote-mirroring-host-
name>:/etc/ceph/

And copy remote.client.remote.keyring and remote.conf from the monitor host in the
remote cluster to the mirroring host in the remote and local cluster:

scp /etc/ceph/remote.client.remote.keyring <user>@<remote-
mirroring-host-name>:/etc/ceph/

scp /etc/ceph/remote.conf <user>@<remote-mirroring-host-
name>:/etc/ceph/

scp /etc/ceph/remote.client.remote.keyring <user>@<local-
mirroring-host-name>:/etc/ceph/

scp /etc/ceph/remote.conf <user>@<local-mirroring-host-
name>:/etc/ceph/

6. On both client hosts, enable and start the rbd-mirror daemon:

systemctl enable ceph-rbd-mirror.target
systemctl enable ceph-rbd-mirror@<client-id>
systemctl start ceph-rbd-mirror@<client-id>

Where <client-id> is a unique client ID for use by the rbd-mirror daemon. The client
must have the appropriate cephx access to the cluster. For detailed information, see the User
Management chapter in the Administration Guide for Red Hat Ceph Storage 2.

For example:

systemctl enable ceph-rbd-mirror.target
systemctl enable ceph-rbd-mirror@local
systemctl start ceph-rbd-mirror@local

CHAPTER 4. BLOCK DEVICE MIRRORING

29

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/paged/administration-guide/chapter-5-user-management

7. Enable pool mirroring of the data pool on both clusters:

$ rbd mirror pool enable data pool --cluster local
$ rbd mirror pool enable data pool --cluster remote

And ensure that mirroring has been successfully enabled:

$ rbd mirror pool status data
health: OK
images: 1 total

8. Add the clusters as peers:

$ rbd mirror pool peer add data client.remote@remote --cluster local
$ rbd mirror pool peer add data client.local@local --cluster remote

And ensure that the peers were successfully added:

$ rbd mirror pool info data --cluster local
Mode: pool
Peers:
 UUID NAME CLIENT
 de32f0e3-1319-49d3-87f9-1fc076c83946 remote client.remote

$ rbd mirror pool info data --cluster remote
Mode: pool
Peers:
 UUID NAME CLIENT
 87ea0826-8ffe-48fb-b2e8-9ca81b012771 local client.local

Configuring Image Mirroring

1. Follow the steps 1 - 5 in the Configuring Pool Mirroring procedure.

2. Enable image mirroring of the data pool on both clusters:

$ rbd --cluster local mirror pool enable data image
$ rbd --cluster remote mirror pool enable data image

And ensure that mirroring has been successfully enabled:

$ rbd mirror pool status data
health: OK
images: 2 total

3. Add the clusters as peers:

$ rbd --cluster local mirror pool peer add data client.remote@remote
$ rbd --cluster remote mirror pool peer add data client.local@local

And ensure that the peers were successfully added:

$ rbd --cluster local mirror pool info

Red Hat Ceph Storage 2 Block Device Guide

30

Mode: pool
Peers:
 UUID NAME CLIENT
 de32f0e3-1319-49d3-87f9-1fc076c83946 remote client.remote

$ rbd --cluster remote mirror pool info
Mode: pool
Peers:
 UUID NAME CLIENT
 87ea0826-8ffe-48fb-b2e8-9ca81b012771 local client.local

4. On the local cluster, explicitly enable image mirroring of the image1 and image2 images:

$ rbd --cluster local mirror image enable data/image1
Mirroring enabled
$ rbd --cluster local mirror image enable data/image2
Mirroring enabled

And ensure that mirroring has been successfully enabled:

$ rbd mirror image status data/image1 --cluster local
image1:
 global_id: 2c928338-4a86-458b-9381-e68158da8970
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:47:39

$ rbd mirror image status data/image1 --cluster remote
image1:
 global_id: 2c928338-4a86-458b-9381-e68158da8970
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:47:39

$ rbd mirror image status data/image2 --cluster master
image1:
 global_id: 4c818438-4e86-e58b-2382-f61658dc8932
 state: up+replaying
 description: replaying, master_position=[object_number=6,
tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:48:05

$ rbd mirror image status data/image2 --cluster remote
image1:
 global_id: 4c818438-4e86-e58b-2382-f61658dc8932
 state: up+replaying
 description: replaying, master_position=[object_number=6,

CHAPTER 4. BLOCK DEVICE MIRRORING

31

tag_tid=2,
entry_tid=22598], mirror_position=[object_number=6, tag_tid=2,
entry_tid=29598], entries_behind_master=0
 last_update: 2016-04-28 18:48:05

Configuring Mirroring Between Clusters With The Same Name

Sometimes administrators create clusters using the same cluster name, usually the default ceph name.
For example, Ceph 2.2 and earlier releases support OSD encryption, but the dm-crypt function
expects a cluster named ceph. When both clusters have the same name, currently you must perform 3
additional steps to configure rbd-mirror:

1. Change the name of the cluster in the `/etc/sysconfig/ceph file on the rbd-mirror node
on cluster A. For example, CLUSTER=master. On Ubuntu change the cluster name in the
/etc/default/ceph file.

2. Create a symlink to the ceph.conf file. For example:

ln -s ceph.conf master.conf #only on the mirror node on cluster
A.

3. Use the symlink files in each rbd-mirror setup. For example executing either of the following:

ceph -s
ceph -s --cluster master

now refer to the same cluster.

4.6. RECOVERING FROM A DISASTER

The following procedures show how to fail over to the mirrored data on the secondary cluster (named
remote) after the primary one (named local) terminated, and how to Failback. The shutdown can be:

orderly (Failover After an Orderly Shutdown)

non-orderly (Failover After a Non-Orderly Shutdown).

If the shutdown is non-orderly, the Failback procedure requires resynchronizing the image.

The procedures assume that you have successfully configured either:

pool mode mirroring (see Configuring Pool Mirroring),

or image mode mirroring (see Configuring Image Mirroring).

Failover After an Orderly Shutdown

1. Stop all clients that use the primary image. This step depends on what clients use the image.
For example, detach volumes from any OpenStack instances that use the image. See the Block
Storage and Volumes chapter in the Storage Guide for Red Hat OpenStack Platform 10.

2. Demote the primary image located on the local cluster. The following command demotes the
image named image1 in the pool named stack:

$ rbd mirror image demote stack/image1 --cluster=local

Red Hat Ceph Storage 2 Block Device Guide

32

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/storage-guide/#ch-cinder

See Section 4.3, “Image Configuration” for details.

3. Promote the non-primary image located on the remote cluster:

$ rbd mirror image promote stack/image1 --cluster=remote

See Section 4.3, “Image Configuration” for details.

4. Resume the access to the peer image. This step depends on what clients use the image.

Failover After a Non-Orderly Shutdown

1. Verify that the primary cluster is down.

2. Stop all clients that use the primary image. This step depends on what clients use the image.
For example, detach volumes from any OpenStack instances that use the image. See the Block
Storage and Volumes chapter in the Storage Guide for Red Hat OpenStack Platform 10.

3. Promote the non-primary image located on the remote cluster. Use the --force option,
because the demotion cannot be propagated to the local cluster:

$ rbd mirror image promote --force stack/image1 --cluster remote

See Section 4.3, “Image Configuration” for details

4. Resume the access to the peer image. This step depends on what clients use the image.

Failback

When the formerly primary cluster recovers, failback to it.

1. If there was a non-orderly shutdown, demote the old primary image on the local cluster. The
following command demotes the image named image1 in the pool named stack on the local
cluster:

$ rbd mirror image demote stack/image1 --cluster local

2. Resynchronize the image ONLY if there was a non-orderly shutdown. The following command
resynchronizes the image named image1 in the pool named stack:

$ rbd mirror image resync stack/image1 --cluster local

See Section 4.3, “Image Configuration” for details.

3. Before proceeding further, ensure that resynchronization is complete and in the up+replaying
state. The following command checks the status of the image named image1 in the pool named
stack:

$ rbd mirror image status stack/image1 --cluster local

4. Demote the secondary image located on the remote cluster. The following command demotes
the image named image1 in the pool named stack:

CHAPTER 4. BLOCK DEVICE MIRRORING

33

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/storage-guide/#ch-cinder

$ rbd mirror image demote stack/image1 --cluster=remote

See Section 4.3, “Image Configuration” for details.

5. Promote the formerly primary image located on the local cluster:

$ rbd mirror image promote stack/image1 --cluster=local

See Section 4.3, “Image Configuration” for details.

4.7. UPDATING INSTANCES WITH MIRRORING

When updating a cluster using Ceph Block Device mirroring with an asynchronous update, follow the
installation instruction for the update. Then, restart the Ceph Block Device instances.

NOTE

There is no required order for restarting the instances. Red Hat recommends restarting
the instance pointing to the pool with primary images followed by the instance pointing to
the mirrored pool.

Red Hat Ceph Storage 2 Block Device Guide

34

CHAPTER 5. LIBRBD (PYTHON)
The rbd python module provides file-like access to RBD images.

Creating and writing to an image

1. Connect to RADOS and open an IO context:

cluster = rados.Rados(conffile='my_ceph.conf')
cluster.connect()
ioctx = cluster.open_ioctx('mypool')

2. Instantiate an :class:rbd.RBD object, which you use to create the image:

rbd_inst = rbd.RBD()
size = 4 * 1024**3 # 4 GiB
rbd_inst.create(ioctx, 'myimage', size)

3. To perform I/O on the image, instantiate an :class:rbd.Image object:

image = rbd.Image(ioctx, 'myimage')
data = 'foo' * 200
image.write(data, 0)

This writes 'foo' to the first 600 bytes of the image. Note that data cannot be :type:unicode -
librbd does not know how to deal with characters wider than a :c:type:char.

4. Close the image, the IO context and the connection to RADOS:

image.close()
ioctx.close()
cluster.shutdown()

To be safe, each of these calls must to be in a separate :finally block:

cluster = rados.Rados(conffile='my_ceph_conf')
try:
 ioctx = cluster.open_ioctx('my_pool')
 try:
 rbd_inst = rbd.RBD()
 size = 4 * 1024**3 # 4 GiB
 rbd_inst.create(ioctx, 'myimage', size)
 image = rbd.Image(ioctx, 'myimage')
 try:
 data = 'foo' * 200
 image.write(data, 0)
 finally:
 image.close()
 finally:
 ioctx.close()
finally:
 cluster.shutdown()

CHAPTER 5. LIBRBD (PYTHON)

35

This can be cumbersome, so the Rados, Ioctx, and Image classes can be used as context
managers that close or shut down automatically. Using them as context managers, the above
example becomes:

with rados.Rados(conffile='my_ceph.conf') as cluster:
 with cluster.open_ioctx('mypool') as ioctx:
 rbd_inst = rbd.RBD()
 size = 4 * 1024**3 # 4 GiB
 rbd_inst.create(ioctx, 'myimage', size)
 with rbd.Image(ioctx, 'myimage') as image:
 data = 'foo' * 200
 image.write(data, 0)

Red Hat Ceph Storage 2 Block Device Guide

36

CHAPTER 6. KERNEL MODULE OPERATIONS

IMPORTANT

To use kernel module operations, you must have a running Ceph cluster.

6.1. GETTING A LIST OF IMAGES

To mount a block device image, first return a list of the images.

To do so, execute the following:

rbd list

6.2. MAPPING BLOCK DEVICES

Use rbd to map an image name to a kernel module. You must specify the image name, the pool name
and the user name. rbd will load RBD kernel module on your behalf if it is not already loaded.

To do so, execute the following:

sudo rbd map {image-name} --pool {pool-name} --id {user-name}

For example:

sudo rbd map --pool rbd myimage --id admin

If you use cephx authentication, you must also specify a secret. It may come from a keyring or a file
containing the secret.

To do so, execute the following:

sudo rbd map --pool rbd myimage --id admin --keyring /path/to/keyring
sudo rbd map --pool rbd myimage --id admin --keyfile /path/to/file

6.3. SHOWING MAPPED BLOCK DEVICES

To show block device images mapped to kernel modules with the rbd command, specify the
showmapped option.

To do so, execute the following:

rbd showmapped

6.4. UNMAPPING A BLOCK DEVICE

To unmap a block device image with the rbd command, specify the unmap option and the device name
(by convention the same as the block device image name).

To do so, execute the following:

CHAPTER 6. KERNEL MODULE OPERATIONS

37

sudo rbd unmap /dev/rbd/{poolname}/{imagename}

For example:

sudo rbd unmap /dev/rbd/rbd/foo

Red Hat Ceph Storage 2 Block Device Guide

38

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

7.1. GENERAL SETTINGS

rbd_op_threads

Description

The number of block device operation threads.

Type

Integer

Default

1

WARNING

Do not change the default value of rbd_op_threads because setting it to a
number higher than 1 might cause data corruption.

rbd_op_thread_timeout

Description

The timeout (in seconds) for block device operation threads.

Type

Integer

Default

60

rbd_non_blocking_aio

Description

If true, Ceph will process block device asynchronous I/O operations from a worker thread to
prevent blocking.

Type

Boolean

Default

true

rbd_concurrent_management_ops

Description

The maximum number of concurrent management operations in flight (for example, deleting or
resizing an image).

Type

Integer



CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

39

Default

10

rbd_request_timed_out_seconds

Description

The number of seconds before a maintenance request times out.

Type

Integer

Default

30

rbd_clone_copy_on_read

Description

When set to true, copy-on-read cloning is enabled.

Type

Boolean

Default

false

rbd_enable_alloc_hint

Description

If true, allocation hinting is enabled, and the block device will issue a hint to the OSD back end to
indicate the expected size object.

Type

Boolean

Default

true

rbd_skip_partial_discard

Description

If true, the block device will skip zeroing a range when trying to discard a range inside an object.

Type

Boolean

Default

false

rbd_tracing

Description

Set this option to true to enable the Linux Trace Toolkit Next Generation User Space Tracer
(LTTng-UST) tracepoints. See Tracing RADOS Block Device (RBD) Workloads with the RBD
Replay Feature for details.

Type

Boolean

Red Hat Ceph Storage 2 Block Device Guide

40

https://access.redhat.com/articles/1605163

Default

false

rbd_validate_pool

Description

Set this option to true to validate empty pools for RBD compatibility.

Type

Boolean

Default

true

rbd_validate_names

Description

Set this option to true to validate image specifications.

Type

Boolean

Default

true

7.2. DEFAULT SETTINGS

It is possible to override the default settings for creating an image. Ceph will create images with format 2
and no striping.

rbd_default_format

Description

The default format (2) if no other format is specified. Format 1 is the original format for a new
image, which is compatible with all versions of librbd and the kernel module, but does not
support newer features like cloning. Format 2 is supported by librbd and the kernel module
since version 3.11 (except for striping). Format 2 adds support for cloning and is more easily
extensible to allow more features in the future.

Type

Integer

Default

2

rbd_default_order

Description

The default order if no other order is specified.

Type

Integer

Default

22

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

41

rbd_default_stripe_count

Description

The default stripe count if no other stripe count is specified. Changing the default value requires
striping v2 feature.

Type

64-bit Unsigned Integer

Default

0

rbd_default_stripe_unit

Description

The default stripe unit if no other stripe unit is specified. Changing the unit from 0 (that is, the
object size) requires the striping v2 feature.

Type

64-bit Unsigned Integer

Default

0

rbd_default_features

Description

The default features enabled when creating an block device image. This setting only applies to
format 2 images. The settings are:
1: Layering support. Layering enables you to use cloning.

2: Striping v2 support. Striping spreads data across multiple objects. Striping helps with
parallelism for sequential read/write workloads.

4: Exclusive locking support. When enabled, it requires a client to get a lock on an object
before making a write.

8: Object map support. Block devices are thin provisioned— ​meaning, they only store data that
actually exists. Object map support helps track which objects actually exist (have data stored on a
drive). Enabling object map support speeds up I/O operations for cloning, or importing and
exporting a sparsely populated image.

16: Fast-diff support. Fast-diff support depends on object map support and exclusive lock
support. It adds another property to the object map, which makes it much faster to generate diffs
between snapshots of an image, and the actual data usage of a snapshot much faster.

32: Deep-flatten support. Deep-flatten makes rbd flatten work on all the snapshots of an
image, in addition to the image itself. Without it, snapshots of an image will still rely on the parent,
so the parent will not be delete-able until the snapshots are deleted. Deep-flatten makes a parent
independent of its clones, even if they have snapshots.

64: Journaling support. Journaling records all modifications to an image in the order they occur.
This ensures that a crash-consistent mirror of the remote image is available locally

The enabled features are the sum of the numeric settings.

Type

Red Hat Ceph Storage 2 Block Device Guide

42

Integer

Default

61 - layering, exclusive-lock, object-map, fast-diff, and deep-flatten are enabled

IMPORTANT

The current default setting is not compatible with the RBD kernel driver nor older
RBD clients.

rbd_default_map_options

Description

Most of the options are useful mainly for debugging and benchmarking. See man rbd under Map
Options for details.

Type

String

Default

""

7.3. CACHE SETTINGS

The user space implementation of the Ceph block device (that is, librbd) cannot take advantage of the
Linux page cache, so it includes its own in-memory caching, called RBD caching. RBD caching
behaves just like well-behaved hard disk caching. When the OS sends a barrier or a flush request, all
dirty data is written to the OSDs. This means that using write-back caching is just as safe as using a well-
behaved physical hard disk with a VM that properly sends flushes (that is, Linux kernel >= 2.6.32). The
cache uses a Least Recently Used (LRU) algorithm, and in write-back mode it can coalesce contiguous
requests for better throughput.

Ceph supports write-back caching for RBD. To enable it, add rbd cache = true to the [client]
section of your ceph.conf file. By default librbd does not perform any caching. Writes and reads go
directly to the storage cluster, and writes return only when the data is on disk on all replicas. With
caching enabled, writes return immediately, unless there are more than rbd cache max dirty
unflushed bytes. In this case, the write triggers writeback and blocks until enough bytes are flushed.

Ceph supports write-through caching for RBD. You can set the size of the cache, and you can set
targets and limits to switch from write-back caching to write through caching. To enable write-through
mode, set rbd cache max dirty to 0. This means writes return only when the data is on disk on all
replicas, but reads may come from the cache. The cache is in memory on the client, and each RBD
image has its own. Since the cache is local to the client, there is no coherency if there are others
accessing the image. Running GFS or OCFS on top of RBD will not work with caching enabled.

The ceph.conf file settings for RBD should be set in the [client] section of your configuration file.
The settings include:

rbd cache

Description

Enable caching for RADOS Block Device (RBD).

Type

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

43

Boolean

Required

No

Default

true

rbd cache size

Description

The RBD cache size in bytes.

Type

64-bit Integer

Required

No

Default

32 MiB

rbd cache max dirty

Description

The dirty limit in bytes at which the cache triggers write-back. If 0, uses write-through caching.

Type

64-bit Integer

Required

No

Constraint

Must be less than rbd cache size.

Default

24 MiB

rbd cache target dirty

Description

The dirty target before the cache begins writing data to the data storage. Does not block
writes to the cache.

Type

64-bit Integer

Required

No

Constraint

Must be less than rbd cache max dirty.

Default

16 MiB

rbd cache max dirty age

Description

Red Hat Ceph Storage 2 Block Device Guide

44

The number of seconds dirty data is in the cache before writeback starts.

Type

Float

Required

No

Default

1.0

rbd_cache_max_dirty_object

Description

The dirty limit for objects - set to 0 for auto calculate from rbd_cache_size.

Type

Integer

Default

0

rbd_cache_block_writes_upfront

Description

If true, it will block writes to the cache before the aio_write call completes. If false, it will
block before the aio_completion is called.

Type

Boolean

Default

false

rbd cache writethrough until flush

Description

Start out in write-through mode, and switch to write-back after the first flush request is received.
Enabling this is a conservative but safe setting in case VMs running on rbd are too old to send
flushes, like the virtio driver in Linux before 2.6.32.

Type

Boolean

Required

No

Default

true

7.4. PARENT/CHILD READS SETTINGS

rbd_balance_snap_reads

Description

Ceph typically reads objects from the primary OSD. Since reads are immutable, you may enable
this feature to balance snap reads between the primary OSD and the replicas.

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

45

Type

Boolean

Default

false

rbd_localize_snap_reads

Description

Whereas rbd_balance_snap_reads will randomize the replica for reading a snapshot, if you
enable rbd_localize_snap_reads, the block device will look to the CRUSH map to find the
closest (local) OSD for reading the snapshot.

Type

Boolean

Default

false

rbd_balance_parent_reads

Description

Ceph typically reads objects from the primary OSD. Since reads are immutable, you may enable
this feature to balance parent reads between the primary OSD and the replicas.

Type

Boolean

Default

false

rbd_localize_parent_reads

Description

Whereas rbd_balance_parent_reads will randomize the replica for reading a parent, if you
enable rbd_localize_parent_reads, the block device will look to the CRUSH map to find the
closest (local) OSD for reading the parent.

Type

Boolean

Default

true

7.5. READ-AHEAD SETTINGS

RBD supports read-ahead/prefetching to optimize small, sequential reads. This should normally be
handled by the guest OS in the case of a VM, but boot loaders may not issue efficient reads. Read-
ahead is automatically disabled if caching is disabled.

rbd readahead trigger requests

Description

Number of sequential read requests necessary to trigger read-ahead.

Type

Red Hat Ceph Storage 2 Block Device Guide

46

Integer

Required

No

Default

10

rbd readahead max bytes

Description

Maximum size of a read-ahead request. If zero, read-ahead is disabled.

Type

64-bit Integer

Required

No

Default

512 KiB

rbd readahead disable after bytes

Description

After this many bytes have been read from an RBD image, read-ahead is disabled for that image
until it is closed. This allows the guest OS to take over read-ahead once it is booted. If zero, read-
ahead stays enabled.

Type

64-bit Integer

Required

No

Default

50 MiB

7.6. BLACKLIST SETTINGS

rbd_blacklist_on_break_lock

Description

Whether to blacklist clients whose lock was broken.

Type

Boolean

Default

true

rbd_blacklist_expire_seconds

Description

The number of seconds to blacklist - set to 0 for OSD default.

Type

Integer

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

47

Default

0

7.7. JOURNAL SETTINGS

rbd_journal_order

Description

The number of bits to shift to compute the journal object maximum size. The value is between 12
and 64.

Type

32-bit Unsigned Integer

Default

24

rbd_journal_splay_width

Description

The number of active journal objects.

Type

32-bit Unsigned Integer

Default

4

rbd_journal_commit_age

Description

The commit time interval in seconds.

Type

Double Precision Floating Point Number

Default

5

rbd_journal_object_flush_interval

Description

The maximum number of pending commits per a journal object.

Type

Integer

Default

0

rbd_journal_object_flush_bytes

Description

The maximum number of pending bytes per a journal object.

Type

Integer

Red Hat Ceph Storage 2 Block Device Guide

48

Default

0

rbd_journal_object_flush_age

Description

The maximum time interval in seconds for pending commits.

Type

Double Precision Floating Point Number

Default

0

rbd_journal_pool

Description

Specifies a pool for journal objects.

Type

String

Default

""

CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE

49

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. BLOCK DEVICE COMMANDS
	2.1. PREREQUISITES
	2.2. CREATING BLOCK DEVICE IMAGES
	2.3. LISTING BLOCK DEVICE IMAGES
	2.4. RETRIEVING IMAGE INFORMATION
	2.5. RESIZING BLOCK DEVICE IMAGES
	2.6. REMOVING BLOCK DEVICE IMAGES
	2.7. ENABLING AND DISABLING IMAGE FEATURES
	2.8. WORKING WITH IMAGE METADATA
	2.9. DISPLAYING HELP

	CHAPTER 3. SNAPSHOTS
	3.1. CEPHX NOTES
	3.2. SNAPSHOT BASICS
	3.2.1. Creating Snapshots
	3.2.2. Listing Snapshots
	3.2.3. Rollbacking Snapshots
	3.2.4. Deleting Snapshots
	3.2.5. Purging Snapshots
	3.2.6. Renaming Snapshots

	3.3. LAYERING
	3.3.1. Getting Started with Layering
	3.3.2. Protecting Snapshots
	3.3.3. Cloning Snapshots
	3.3.4. Unprotecting Snapshots
	3.3.5. Listing Children of a Snapshot
	3.3.6. Flattening Cloned Images

	CHAPTER 4. BLOCK DEVICE MIRRORING
	4.1. ENABLING JOURNALING
	4.2. POOL CONFIGURATION
	Enabling Mirroring on a Pool
	Disabling Mirroring on a Pool
	Viewing Information about Peers
	Removing a Cluster Peer
	Getting Mirroring Status for a Pool

	4.3. IMAGE CONFIGURATION
	Enabling Image Mirroring
	Disabling Image Mirroring
	Image Promotion and Demotion
	Image Resynchronization
	Getting Mirroring Status for a Single Image

	4.4. CONFIGURING ONE-WAY MIRRORING
	4.5. CONFIGURING TWO-WAY MIRRORING
	4.6. RECOVERING FROM A DISASTER
	4.7. UPDATING INSTANCES WITH MIRRORING

	CHAPTER 5. LIBRBD (PYTHON)
	CHAPTER 6. KERNEL MODULE OPERATIONS
	6.1. GETTING A LIST OF IMAGES
	6.2. MAPPING BLOCK DEVICES
	6.3. SHOWING MAPPED BLOCK DEVICES
	6.4. UNMAPPING A BLOCK DEVICE

	CHAPTER 7. BLOCK DEVICE CONFIGURATION REFERENCE
	7.1. GENERAL SETTINGS
	7.2. DEFAULT SETTINGS
	7.3. CACHE SETTINGS
	7.4. PARENT/CHILD READS SETTINGS
	7.5. READ-AHEAD SETTINGS
	7.6. BLACKLIST SETTINGS
	7.7. JOURNAL SETTINGS

