
Red Hat build of OpenJDK 11

Migrating Red Hat build of OpenJDK 8 to Red
Hat build of OpenJDK 11

Last Updated: 2023-08-16

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to
Red Hat build of OpenJDK 11

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11 guide provides
information on how to upgrade your Red Hat build of OpenJDK 8 application to Red Hat build of
OpenJDK 11.

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. MIGRATING OPENJDK 8 TO OPENJDK 11 OVERVIEW
1.1. ABOUT THE RED HAT BUILD OF OPENJDK 8U AND 11U

CHAPTER 2. MAJOR DIFFERENCES BETWEEN RED HAT BUILD OF OPENJDK 8 AND RED HAT BUILD OF
OPENJDK 11

2.1. CRYPTOGRAPHY AND SECURITY
2.2. GARBAGE COLLECTOR (GC)
2.3. GARBAGE COLLECTOR (GC) LOGGING OPTIONS
2.4. OPENJDK GRAPHICS
2.5. WEBSTART AND APPLETS
2.6. JAVA LIBRARY CLASSES
2.7. EXTENSION AND ENDORSED OVERRIDE MECHANISMS
2.8. DEPRECATED AND REMOVED FUNCTIONALITY FROM OPENJDK 11

CHAPTER 3. PREPARATION FOR MIGRATION

CHAPTER 4. TOOLS FOR APPLICATION MIGRATION

3

4

5
5

6
6
7
7
8
9
9

10
10

13

14

Table of Contents

1

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. To provide feedback, you can highlight the text in a
document and add comments.

This section explains how to submit feedback.

Prerequisites

You are logged in to the Red Hat Customer Portal.

In the Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

4

CHAPTER 1. MIGRATING OPENJDK 8 TO OPENJDK 11
OVERVIEW

The Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11 guide describes changes in
the Red Hat build of OpenJDK 11 release, including new features and deprecated or removed APIs, that
might impact your migration from Red Hat build of OpenJDK 8. You can use the information in the guide
to upgrade your Java applications in Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11.

The OpenJDK project is known for its conservative approach to providing updates and for providing
backward compatibility. However, to guarantee the evolution, security and stability of the project, the
Red Hat build of OpenJDK project might sometimes introduce a few incompatibilities across major
releases of Red Hat build of OpenJDK. These incompatibilities are relevant for the following scenarios:

When you use APIs that are considered obsolete or unsecure.

When you access internals of the project that are considered implementation details and not
public or supported API details.

1.1. ABOUT THE RED HAT BUILD OF OPENJDK 8U AND 11U

OpenJDK is the free and open source reference implementation of the Java Platform, Standard Edition
(Java SE). The Red Hat builds of OpenJDK are based on the upstream OpenJDK 8u, OpenJDK 11u, and
OpenJDK 17u projects. The Shenandoah Garbage Collector is included in Red Hat build of OpenJDK
versions 8, 11, and 17.

The Red Hat builds of OpenJDK provide the following benefits:

Multi-platform - The Red Hat build of OpenJDK is now supported on RHEL and Microsoft
Windows, so you can standardize applications on a single Java platform across desktop,
datacenter, and hybrid cloud environments.

Frequent releases - Red Hat delivers quarterly updates of JRE and JDK for the Red Hat build
of OpenJDK 8, Red Hat build of OpenJDK 11, and Red Hat build of OpenJDK 17 distributions.
These updates are available as archive, RPM, and Windows MSI-based installer files and
container images.

Long-term support - Red Hat supports the recently released Red Hat build of OpenJDK 8,
Red Hat build of OpenJDK 11, and Red Hat build of OpenJDK 17 distributions.

Additional resources

For more information about the support lifecycle, see OpenJDK Life Cycle and Support Policy .

CHAPTER 1. MIGRATING OPENJDK 8 TO OPENJDK 11 OVERVIEW

5

https://access.redhat.com/articles/1299013

CHAPTER 2. MAJOR DIFFERENCES BETWEEN RED HAT
BUILD OF OPENJDK 8 AND RED HAT BUILD OF OPENJDK 11

Before you migrate your Java applications from Red Hat build of OpenJDK 8 to Red Hat build of
OpenJDK 11, you must understand the updates and changes in Red Hat build of OpenJDK 11. These
updates and changes might require you to configure Red Hat build of OpenJDK 8 before you migrate
your applications to Red Hat build of OpenJDK 11.

One of the major differences between Red Hat build of OpenJDK 8 and Red Hat build of OpenJDK 11 is
the inclusion of a module system in Red Hat build of OpenJDK 11. If you want to migrate your Red Hat
build of OpenJDK 8 applications to Red Hat build of OpenJDK 11, consider moving the application’s
libraries and modules from the Red Hat build of OpenJDK 8 class path to the Red Hat build of
OpenJDK 11 module class. This change can improve the class-loading capabilities of your application.

Red Hat build of OpenJDK 11 includes new features and enhancements that can improve the
performance of your application, such as enhanced memory usage, improved startup speed, and
increased container integration.

NOTE

Some features might differ between the Red Hat build of OpenJDK and other upstream
or third-party versions of OpenJDK. For example, the Shenandoah garbage collector
(GC) is available on all the Red Hat builds of OpenJDK, but this feature might not be
available by default in other builds of OpenJDK.

2.1. CRYPTOGRAPHY AND SECURITY

Certain minor cryptography and security differences exist between Red Hat build of OpenJDK 8 and
Red Hat build of OpenJDK 11. However, both Red Hat build of OpenJDK versions have many similar
cryptography and security behaviors.

Red Hat builds of OpenJDK use system-wide certificates, and each build obtains its list of disabled
cryptographic algorithms from a system’s global configuration settings. These settings are common to
all the Red Hat supported Red Hat build of OpenJDK releases, so you can easily change from Red Hat
build of OpenJDK 8 to Red Hat build of OpenJDK 11.

In FIPS mode, Red Hat build of OpenJDK 8 and Red Hat build of OpenJDK 11 releases are self-
configured, so that either release uses the same security providers at startup.

The TLS stacks in Red Hat build of OpenJDK 8 and Red Hat build of OpenJDK 11 are similar, because
the SunJSSE engine from Red Hat build of OpenJDK 11 was backported to Red Hat build of OpenJDK 8.
Both Red Hat build of OpenJDK versions support the TLS 1.3 protocol.

The following minor cryptography and security differences exist between Red Hat build of OpenJDK 8
and Red Hat build of OpenJDK 11:

Red Hat build of OpenJDK 8 disabled the client-side TLSv1.3 by default, so an Red Hat build of
OpenJDK 8 TLS client does not use the TLSv1.3 protocol during the communication process
with the target server. You can use the jdk.tls.client.protocols system property to change this
behavior by setting the -Djdk.tls.client.protocols=TLSv1.3 property for Red Hat build of
OpenJDK 11.

Red Hat build of OpenJDK 11 supports the use of the X25519 and X448 EC curves in the Diffie-
Hellman key exchange. This support is not available in Red Hat build of OpenJDK 8.

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

6

Red Hat build of OpenJDK 11 does not support the legacy KRB5-based cipher suites. Red Hat
build of OpenJDK 8 still supports the legacy KRB5-based cipher suites, but you must enable
these cipher suites by changing the jdk.tls.client.cipherSuites and jdk.tls.server.cipherSuites
system properties.

Red Hat build of OpenJDK 11 supports the Datagram Transport Layer Security (DTLS) protocol,
so TLS clients and servers can use the max_fragment_length extension for DTLS. Red Hat
build of OpenJDK 8 does not support this protocol.

2.2. GARBAGE COLLECTOR (GC)

Red Hat build of OpenJDK 8 uses the Parallel GC as its default garbage collector, while Red Hat build of
OpenJDK 11 uses the G1 GC as its default garbage collector. Before you choose a garbage collector
consider the following details:

Use the Parallel GC if you want to improve throughput. The Parallel GC maximizes throughput,
but at the expense of occasional pauses for stop-the-world collections.

Use the G1 GC for a balance between throughput and latency. This GC can perform latencies
with pause times in the 100 ms range. If you notice throughput issues when migrating
applications from the Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11, you can
switch to the Parallel GC.

Use the Shenandoah GC for low latency collection.

You can select the GC type by using the -XX:+<gc_type> JVM option, such as - XX:+UseParallelGC to
switch to the Parallel GC.

2.3. GARBAGE COLLECTOR (GC) LOGGING OPTIONS

Red Hat build of OpenJDK 11 includes a new logging framework that works more effectively when
compared to the old logging framework. Red Hat build of OpenJDK 11 also includes unified JVM logging
options and unified GC logging options.

The logging system for Red Hat build of OpenJDK 11 activates the -XX:+PrintGCTimeStamps and -
XX:+PrintGCDateStamps options by default. Because the logging format in Red Hat build of
OpenJDK 11 is different from Red Hat build of OpenJDK 8, you might need to update any of your code
that parses GC logs.

You can still access the old logging framework options in Red Hat build of OpenJDK 11 through aliases of
the new framework options. If you want to work more effectively with Red Hat build of OpenJDK 11, use
the new logging framework options.

Red Hat build of OpenJDK 11 replaced or removed the following Red Hat build of OpenJDK 8 options
from the logging framework:

Options in Red Hat build of OpenJDK 8 Options in Red Hat build of OpenJDK 11

-verbose:gc -Xlog:gc

-XX:+PrintGC -Xlog:gc

-XX:+PrintGCDetails -Xlog:gc*

CHAPTER 2. MAJOR DIFFERENCES BETWEEN RED HAT BUILD OF OPENJDK 8 AND RED HAT BUILD OF OPENJDK 11

7

-Xloggc -Xlog:gc:file=<path_to_filename>

Options in Red Hat build of OpenJDK 8 Options in Red Hat build of OpenJDK 11

When using the -XX:+PrintGCDetails option, pass the -Xlog:gc* flag.The * activates more detailed
logging.

When using -Xloggc, append the :file=<filename> option to redirect log output to the specified file. For
example -Xlog:gc:file=<filename>.

NOTE

If you specify an old tag option on the Java HotSpot VM, the VM prompts you with an
available newer tag option. You can choose to use either the old or new tag option.

Red Hat build of OpenJDK 11 does not include the following options. If you attempt to use any of the
options in Red Hat build of OpenJDK 11, you will receive startup errors.

-Xincgc

-XX:+CMSIncrementalMode

-XX:+UseCMSCompactAtFullCollection

-XX:+CMSFullGCsBeforeCompaction

-XX:+UseCMSCollectionPassing

NOTE

If you want to use any of the previously listed options in Red Hat build of OpenJDK 11, you
can ignore any startup issues by issuing the -XX:+IgnoreUnrecognizedVMOptions
option in your command-line interface.

Additional resources

For more information about the common framework for unified JVM logging and the format of
Xlog options, see JEP 158: Unified JVM Logging .

For more details on removed options, see JEP 214: Remove GC Combinations Deprecated in
JDK 8.

For more information about unified GC logging, see JEP 271: Unified GC Logging .

2.4. OPENJDK GRAPHICS

Red Hat build of OpenJDK 11 uses Marlin as its default rendering engine, as opposed to Pisces in
Red Hat build of OpenJDK 8. The Marlin rendering engine improves the handling of intensive application
graphics.

The Marlin engine is available in Red Hat build of OpenJDK 8 and you can enable the Marlin engine by
issuing -Dsun.java2d.renderer=sun.java2d.marlin.MarlinRenderingEngine for the Java runtime.

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

8

https://openjdk.java.net/jeps/158
https://openjdk.java.net/jeps/214
https://openjdk.java.net/jeps/271

2.5. WEBSTART AND APPLETS

You can use Java WebStart with Red Hat build of OpenJDK 8 on RHEL 7, RHEL 8 and Microsoft
Windows operating systems by using the IcedTea-Web plug-in. Red Hat build of OpenJDK 11 and later
versions of Red Hat build of OpenJDK do not support Java Webstart.

Applets are not supported on Red Hat build of OpenJDK.

2.6. JAVA LIBRARY CLASSES

The Java Platform Module System (JPMS), which was introduced in Red Hat build of OpenJDK 9, limits
or prevents access to non-public APIs. JPMS also impacts how you can start and compile your Java
application, such as using a class path or using a module path.

By default, Red Hat build of OpenJDK 11 restricts access to JDK internal modules. As a workaround for
this restriction when porting applications, you can provide access to an internal package for your
application by passing options to the java command. These options are demonstrated in the following
examples:

--add-opens <module-name>/<package-in-module>=ALL-UNNAMED

--add-opens java.base/jdk.internal.math=ALL-UNNAMED

NOTE

The previous workaround will not work indefinitely, because of the update behavior of
Red Hat build of OpenJDK release cycles. A future release of Red Hat build of OpenJDK
will close this workaround route.

Additionally, you can check illegal access cases by passing the --illegal-access=warn option to the java
command. This option changes the default behavior of the Red Hat build of OpenJDK.

The JPMS refactoring changes the ClassLoader hierarchy in Red Hat build of OpenJDK 11. Red Hat
build of OpenJDK 11 sets the system class loader to internal classes, so Java programs cannot access
the system class loader.

For example, existing Red Hat build of OpenJDK 11 application code that invokes
ClassLoader::getSystemClassLoader and casts the result to a URLClassLoader on Red Hat build of
OpenJDK 11 might not work, because URLClassLoader is not part of the system class loader. If you
attempt to cast a result to a URLClassLoader on Red Hat build of OpenJDK 11, you might receive a
runtime exception message.

Red Hat build of OpenJDK 11 includes a new class loader that can control the loading of certain classes.
This improves the way that a class loader can locate all of its required classes.

When you create a class loader, you can no longer pass null as its parent. If you do this in Red Hat build
of OpenJDK 11, no class loader is selected as its parent, and your new class loader fails to locate platform
classes. You can retrieve an instance of the platform class loader by using the
ClassLoader.getPlatformClassLoader() API.

Additional resources

For more information about JPMS, see JEP 261: Module System .

CHAPTER 2. MAJOR DIFFERENCES BETWEEN RED HAT BUILD OF OPENJDK 8 AND RED HAT BUILD OF OPENJDK 11

9

http://openjdk.java.net/jeps/261

2.7. EXTENSION AND ENDORSED OVERRIDE MECHANISMS

In Red Hat build of OpenJDK 11, the extension mechanism, which supported optional packages, is no
longer available. Red Hat build of OpenJDK 11 also removed the endorsed standards override
mechanism.

You cannot use the libraries added to <JAVA_HOME>/lib/ext or <JAVA_HOME>/lib/endorsed.
Red Hat build of OpenJDK 11 generates an error if it detects these directories. If you want to use optional
packages on Red Hat build of OpenJDK 11, you can create a module for your optional package with the
jlink tool, and then use the tool to include a custom runtime in your created module.

Additional resources

For more information about the removed mechanisms, see JEP 220: Modular Run-Time Images .

2.8. DEPRECATED AND REMOVED FUNCTIONALITY FROM OPENJDK
11

Some features supported by Red Hat build of OpenJDK 8 have been either deprecated or removed in
Red Hat build of OpenJDK 11.

COBRA

Red Hat build of OpenJDK 11 does not support the following tools:

Idlj

orbd

servertool

tnamesrv

Logging framework

Red Hat build of OpenJDK 11 does not support the following APIs:

java.util.logging.LogManager.addPropertyChangeListener

java.util.logging.LogManager.removePropertyChangeListener

java.util.jar.Pack200.Packer.addPropertyChangeListener

java.util.jar.Pack200.Packer.removePropertyChangeListener

java.util.jar.Pack200.Unpacker.addPropertyChangeListener

java.util.jar.Pack200.Unpacker.removePropertyChangeListener

Java EE modules

Red Hat build of OpenJDK 11 does not support the following APIs:

java.activation

java.corba

java.se.ee (aggregator)

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

10

https://openjdk.java.net/jeps/220

java.transaction

java.xml.bind

java.xml.ws

java.xml.ws.annotation

NOTE

External dependencies might provide some of the previously listed APIs, so consider
using these APIs if they were provided by dependencies.

java.awt.peer

Red Hat build of OpenJDK 11 sets the java.awt.peer package as internal. This means that
applications cannot automatically access the package by default. Because of this change, Red Hat
build of OpenJDK 11 removed classes and methods that refer to the peer API, such as the
Component.getPeer method.
An example use case is using the peer API to check the following criteria:

A component can be displayed

The component is a lightweight component.

The component is backed by an OS native UI component.

This code can be updated with calls to Component.isDisplayable() and Component.isLightweight()
to perform the same task.

javax.security and java.lang APIs

Red Hat build of OpenJDK 11 does not support the following APIs:

javax.security.auth.Policy

java.lang.Runtime.runFinalizersOnExit(boolean)

java.lang.SecurityManager.checkAwtEventQueueAccess()

java.lang.SecurityManager.checkMemberAccess(java.lang.Class,int)

java.lang.SecurityManager.checkSystemClipboardAccess()

java.lang.SecurityManager.checkTopLevelWindow(java.lang.Object)

java.lang.System.runFinalizersOnExit(boolean)

java.lang.Thread.destroy()

java.lang.Thread.stop(java.lang.Throwable)

Sun.misc

The sun.misc package is internal and unsupported. In Red Hat build of OpenJDK 11, the following
packages are deprecated or removed:

CHAPTER 2. MAJOR DIFFERENCES BETWEEN RED HAT BUILD OF OPENJDK 8 AND RED HAT BUILD OF OPENJDK 11

11

sun.misc.BASE64Encoder

sun.misc.BASE64Decoder

sun.reflect.Reflection
In Red Hat build of OpenJDK 11, some methods were removed from the sun.misc.Unsafe
package.

NOTE

Wherever possible, use public APIs instead of the sun.misc package
components. For example, use the VarHandles package instead of the
sun.misc.Unsafe package, or use the StackWalker API instead of the
sun.reflect.Reflection API.

An application’s use of classes in the sun.misc package is restricted in
Red Hat build of OpenJDK 11. For more information about a workaround for
this issue, see Java library classes .

Additional resources

For more information about Red Hat build of OpenJDK 8 features, see JDK 8 Features.

For more information about Red Hat build of OpenJDK 11 features, see JDK 11.

For more information about a list of all available JEPs, see JEP 0: JEP Index .

For more information about the removed Java EE modules and COBRA modules and potential
replacements for these modules, see JEP 320: Remove the Java EE and CORBA Modules .

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

12

https://access.redhat.com/documentation/en-us/openjdk/11/html/migrating_openjdk_8_to_openjdk_11/assembly_major-differences-between-openjdk-8-and-openjdk-11_openjdk#con_java-library-classes_openjdk
https://openjdk.java.net/projects/jdk8/features
https://openjdk.java.net/projects/jdk/11/
https://openjdk.java.net/jeps/0
https://openjdk.java.net/jeps/320

CHAPTER 3. PREPARATION FOR MIGRATION
Red Hat build of OpenJDK 11 includes updates and changes that might require you to re-configure your
applications, which were already successfully deployed on Red Hat build of OpenJDK 8.

You can ensure an effective migration plan by reviewing the Major differences between Red Hat build of
OpenJDK 8 and Red Hat build of OpenJDK 11 section and integrating the differences into your migration
plan.

Red Hat provides the following tool that you can use to help with your migration tasks:

The Migration Toolkit for Applications (MTA), which is a specific tool that you can use to
migrate Java applications from Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11.

Additional resources

For more information about the major differences between Red Hat build of OpenJDK releases,
see Major differences between Red Hat build of OpenJDK 8 and Red Hat build of OpenJDK 11 .

For more details about the installation of Red Hat build of OpenJDK 11 on RHEL, see the
Installing and using Red Hat build of OpenJDK 11 on RHEL guide.

For more details about the installation of Red Hat build of OpenJDK 11 on Microsoft Windows,
see the Installing and using Red Hat build of OpenJDK 11 for Microsoft Windows guide.

For more information about switching between Red Hat build of OpenJDK versions on RHEL,
see Interactively selecting a system-wide Red Hat build of OpenJDK version of RHEL in the
Configuring Red Hat build of OpenJDK 11 on RHEL guide.

For more information about switching between Red Hat build of OpenJDK versions on Microsoft
Windows, see Selecting a specific Red Hat build of OpenJDK from the installed versions of an
application in the Configuring Red Hat build of OpenJDK 11 on Microsoft Windows guide.

For more information about the MTA tool, see the Introduction to the Migration Toolkit for
Applications guide.

CHAPTER 3. PREPARATION FOR MIGRATION

13

https://access.redhat.com/documentation/en-us/openjdk/11/html/migrating_openjdk_8_to_openjdk_11/assembly_major-differences-between-openjdk-8-and-openjdk-11_openjdk
https://access.redhat.com/documentation/en-us/openjdk/11/html-single/using_jdk_flight_recorder_with_openjdk/index#
https://access.redhat.com/documentation/en-us/openjdk/11/html/installing_and_using_openjdk_11_for_windows/
https://access.redhat.com/documentation/en-us/openjdk/11/html/configuring_openjdk_11_on_rhel/interactively-selecting-systemwide-openjdk-version-on-rhel8
https://access.redhat.com/documentation/en-us/openjdk/11/html/configuring_openjdk_11_for_windows/openjdk11-windows-select-specific-openjdk-per-app
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/introduction_to_the_migration_toolkit_for_applications/index

CHAPTER 4. TOOLS FOR APPLICATION MIGRATION
Before you migrate your applications from Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11,
you can use tools to test the suitability of your application to run on Red Hat build of OpenJDK 11.

You can use the following steps to enhance your testing process:

Update third-party libraries.

Compile your application code.

Run jdeps on your application’s code.

Use the Migration Toolkit for Applications (MTA) to migrate Java applications from Red Hat
build of OpenJDK 8 to Red Hat build of OpenJDK 11.

Additional resources

For more information about the MTA tool, see the Introduction to the Migration Toolkit for
Applications guide.

Red Hat build of OpenJDK 11 Migrating Red Hat build of OpenJDK 8 to Red Hat build of OpenJDK 11

14

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/introduction_to_the_migration_toolkit_for_applications/index

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. MIGRATING OPENJDK 8 TO OPENJDK 11 OVERVIEW
	1.1. ABOUT THE RED HAT BUILD OF OPENJDK 8U AND 11U

	CHAPTER 2. MAJOR DIFFERENCES BETWEEN RED HAT BUILD OF OPENJDK 8 AND RED HAT BUILD OF OPENJDK 11
	2.1. CRYPTOGRAPHY AND SECURITY
	2.2. GARBAGE COLLECTOR (GC)
	2.3. GARBAGE COLLECTOR (GC) LOGGING OPTIONS
	2.4. OPENJDK GRAPHICS
	2.5. WEBSTART AND APPLETS
	2.6. JAVA LIBRARY CLASSES
	2.7. EXTENSION AND ENDORSED OVERRIDE MECHANISMS
	2.8. DEPRECATED AND REMOVED FUNCTIONALITY FROM OPENJDK 11

	CHAPTER 3. PREPARATION FOR MIGRATION
	CHAPTER 4. TOOLS FOR APPLICATION MIGRATION

