& RedHat

Red Hat AMQ 7.7

Using the AMQ Ruby Client

For Use with AMQ Clients 2.7

Last Updated: 2020-06-23

Red Hat AMQ 7.7 Using the AMQ Ruby Client

For Use with AMQ Clients 2.7

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW ittt ettt ettt ettt ettt e et e aneeeaneenneeeanaenaneennneennns 4
1.1. KEY FEATURES 4
1.2. SUPPORTED STANDARDS AND PROTOCOLS 4
1.3. SUPPORTED CONFIGURATIONS 4
1.4. TERMS AND CONCEPTS 5
1.5. DOCUMENT CONVENTIONS 6

The sudo command 6
File paths 6
Variable text 6

CHAPTER 2. INST ALLATION Lttt ettt ettt ettt e et aaeeeaneeeaneeannesaneesaneennneenns 7
2.1. PREREQUISITES 7
2.2. INSTALLING ON RED HAT ENTERPRISE LINUX 7

CHAPTER 3. GETTING STARTED .. ttttttttittteitteeiteeaeeenaeeaneeeaneeeaneeanneeaneeeaneennneenns 8
3.1. PREREQUISITES 8
3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX 8

CHAPTER 4. EXAMPLES .ttt e ettt ettt et e et et e et eeaneeanneeaneesaneennneenns 9
4.1. SENDING MESSAGES 9

Running the example 9
4.2. RECEIVING MESSAGES 10
Running the example n

CHAPTER 5. NETWORK CONNECTIONS ..ottt et ei ettt eaet et eeneenaneenaneenneenns 12
5.1. CONNECTION URLS 12

CHAPTER 6. SENDERS AND RECEIVERS ...\ttt ittt et eit et eeneenaneennneenneenns 13
6.1. CREATING QUEUES AND TOPICS ON DEMAND 13
6.2. CREATING DURABLE SUBSCRIPTIONS 13
6.3. CREATING SHARED SUBSCRIPTIONS 13

CHAPTER 7. LOGGING oottt ittt et ettt et e aeeaateeaeeenneenneesaneesaneennneenneennn 14
7.]. ENABLING PROTOCOL LOGGING 14

CHAPTER 8. INTEROPE RABILITY ottt ittt ettt et e e ettt e ateaneeeaneenaneennneeaneenns 15
8.1. INTEROPERATING WITH OTHER AMQP CLIENTS 15
8.2. INTEROPERATING WITH AMQ JMS 18

JMS message types 18
8.3. CONNECTING TO AMQ BROKER 18
8.4. CONNECTING TO AMQ INTERCONNECT 19

APPENDIX A. USING YOUR SUBSCRIPTIONttiiitttiitttiitttit ettt eeieenaneennneeaneennneennnes 20
A1 ACCESSING YOUR ACCOUNT 20
A.2. ACTIVATING A SUBSCRIPTION 20
A.3. DOWNLOADING RELEASE FILES 20
A.4. REGISTERING YOUR SYSTEM FOR PACKAGES 20

APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES iiitiiiiiiiiii i riinneennnens 22
B.1. OVERVIEW 22
B.2. SEARCHING FOR PACKAGES 22
B.3.INSTALLING PACKAGES 22
B.4. QUERYING PACKAGE INFORMATION 22

Red Hat AMQ 7.7 Using the AMQ Ruby Client

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES
C.1. INSTALLING THE BROKER
C.2. STARTING THE BROKER
C.3. CREATING A QUEUE
C.4. STOPPING THE BROKER

24
24
24
24

Table of Contents

Red Hat AMQ 7.7 Using the AMQ Ruby Client

CHAPTER 1. OVERVIEW

AMQ Ruby is a library for developing messaging applications. It enables you to write Ruby applications
that send and receive AMQP messages.

IMPORTANT

The AMQ Ruby client is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

AMQ Ruby is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,
see AMQ Clients 2.7 Release Notes .

AMQ Ruby is based on the Proton APl from Apache Qpid. For detailed APl documentation, see the
AMQ Ruby API reference.

1.1. KEY FEATURES

An event-driven API that simplifies integration with existing applications
SSL/TLS for secure communication

Flexible SASL authentication

Automatic reconnect and failover

Seamless conversion between AMQP and language-native data types

Access to all the features and capabilities of AMQP 1.0

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ Ruby supports the following industry-recognized standards and network protocols:

Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
Versions 1.0, 1.1, 1.2, and 1.3 of the Transport Layer Security (TLS) protocol, the successor to SSL

Simple Authentication and Security Layer (SASL) mechanisms supported by Cyrus SASL,
including ANONYMOUS, PLAIN, SCRAM, EXTERNAL, and GSSAPI (Kerberos)

Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

AMQ Ruby supports the OS and language versions listed below. For more information, see Red Hat
AMQ 7 Supported Configurations.

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/amq_clients_2.7_release_notes/
http://qpid.apache.org/
https://qpid.apache.org/releases/qpid-proton-0.31.0/proton/ruby/api
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://www.cyrusimap.org/sasl/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

CHAPTER 1. OVERVIEW

® Red Hat Enterprise Linux 7 with Ruby 2.0
® Red Hat Enterprise Linux 8 with Ruby 2.5
AMQ Ruby is supported in combination with the following AMQ components and versions:
e All versions of AMQ Broker
® Allversions of AMQ Interconnect
e All versions of AMQ Online

® A-MQ 6 versions 6.2.1 and newer

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

Container A top-level container of connections.

Connection A channel for communication between two peers on a network. It contains
sessions.

Session A context for sending and receiving messages. It contains senders and receivers.

Sender A channel for sending messages to a target. It has a target.

Receiver A channel for receiving messages from a source. It has a source.

Source A named point of origin for messages.

Target A named destination for messages.

Message An application-specific piece of information.

Delivery A message transfer.

AMQ Ruby sends and receives messages. Messages are transferred between connected peers over
senders and receivers. Senders and receivers are established over sessions. Sessions are established over
connections. Connections are established between two uniquely identified containers. Though a
connection can have multiple sessions, often this is not needed. The API allows you to ignore sessions
unless you require them.

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or
topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a
source that identifies a queue or topic at the remote peer.

Red Hat AMQ 7.7 Using the AMQ Ruby Client

The sending of a message is called a delivery. The message is the content sent, including all metadata
such as headers and annotations. The delivery is the protocol exchange associated with the transfer of
that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side
learns that it has been settled, it will no longer communicate about that delivery. The receiver can also
indicate whether it accepts or rejects the message.

1.5. DOCUMENT CONVENTIONS

The sudo command

In this document, sudo is used for any command that requires root privileges. Exercise caution when
using sudo because any changes can affect the entire system. For more information about sudo, see
Using the sudo command.

File paths

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/andrea). On Microsoft Windows, you must use the equivalent Windows paths (for example,
C:\Users\andrea).

Variable text

This document contains code blocks with variables that you must replace with values specific to your
environment. Variable text is enclosed in arrow braces and styled as italic monospace. For example, in
the following command, replace <project-dir> with the value for your environment:

I $ cd <project-dir>

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-gaining_privileges#sect-Gaining_Privileges-The_sudo_Command

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ Ruby in your environment.

2.1. PREREQUISITES
® You must have a subscription to access AMQ release files and repositories.
® Toinstall packages on Red Hat Enterprise Linux, you must register your system.

® To use AMQ Ruby, you must install Ruby in your environment.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

Procedure

1. Use the subscription-manager command to subscribe to the required package repositories. If
necessary, replace <variant> with the value for your variant of Red Hat Enterprise Linux (for
example, server or workstation).

Red Hat Enterprise Linux 7

I $ sudo subscription-manager repos --enable=amq-clients-2-for-rhel-7- <variant>-rpms
Red Hat Enterprise Linux 8

I $ sudo subscription-manager repos --enable=amq-clients-2-for-rhel-8-x86_64-rpms

2. Use the yum command to install the rubygem-qpid_proton and rubygem-qpid_proton-doc
packages.

I $ sudo yum install rubygem-qpid_proton rubygem-qpid_proton-doc

For more information about using packages, see Appendix B, Using Red Hat Enterprise Linux packages .

Red Hat AMQ 7.7 Using the AMQ Ruby Client

CHAPTER 3. GETTING STARTED

This chapter guides you through the steps to set up your environment and run a simple messaging
program.

3.1. PREREQUISITES

® You must complete the installation procedure for your environment.

® You must have an AMQP 1.0 message broker listening for connections on interface localhost
and port 5672. It must have anonymous access enabled. For more information, see Starting the
broker.

® You must have a queue named examples. For more information, see Creating a queue.

3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX

The Hello World example creates a connection to the broker, sends a message containing a greeting to
the examples queue, and receives it back. On success, it prints the received message to the console.

Change to the examples directory and run the helloworld.rb example.

$ cd /usr/share/proton/examples/ruby/
$ ruby helloworld.rb amqp://127.0.0.1 examples
Hello World!

CHAPTER 4. EXAMPLES

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ Ruby through example programs.

For more examples, see the AMQ Ruby example suite .

4.1. SENDING MESSAGES

This client program connects to a server using <connection-url>, creates a sender for target
<address>, sends a message containing <message-body>, closes the connection, and exits.

Example: Sending messages

require 'qpid_proton'

class SendHandler < Qpid::Proton::MessagingHandler
def initialize(conn_url, address, message_body)
super()

@conn_url = conn_url

@address = address

@message_body = message_body
end

def on_container_start(container)
conn = container.connect(@conn_url)
conn.open_sender(@address)

end

def on_sender_open(sender)
puts "SEND: Opened sender for target address '#{sender.target.address}\n"
end

def on_sendable(sender)
message = Qpid::Proton::Message.new(@message_body)
sender.send(message)

puts "SEND: Sent message '#{message.body}"\n"

sender.close
sender.connection.close
end
end

if ARGV.size ==
conn_url, address, message_body = ARGV
else

abort "Usage: send.rb <connection-url> <address> <message-body>\n"
end

handler = SendHandler.new(conn_url, address, message_body)

container = Qpid::Proton::Container.new(handler)
container.run

Running the example

https://github.com/amqphub/equipage/tree/master/qpid-proton-ruby/

Red Hat AMQ 7.7 Using the AMQ Ruby Client

To run the example program, copy it to a local file and invoke it using the ruby command.

I $ ruby send.rb amqp://localhost queue1 hello

4.2. RECEIVING MESSAGES

This client program connects to a server using <connection-url>, creates a receiver for source
<address>, and receives messages until it is terminated or it reaches <count> messages.

Example: Receiving messages

10

require 'qpid_proton'

class ReceiveHandler < Qpid::Proton::MessagingHandler
def initialize(conn_url, address, desired)
super()

@conn_url = conn_url
@address = address

@desired = desired
@received =0
end

def on_container_start(container)
conn = container.connect(@conn_url)
conn.open_receiver(@address)

end

def on_receiver_open(receiver)
puts "RECEIVE: Opened receiver for source address '#{receiver.source.address}"\n"
end

def on_message(delivery, message)
puts "RECEIVE: Received message '#{message.body}\n"

@received += 1

if @received == @desired
delivery.receiver.close
delivery.receiver.connection.close
end
end
end

if ARGV.size > 1

conn_url, address = ARGV[0..1]
else

abort "Usage: receive.rb <connection-url> <address> [<message-count>]\n"
end

begin

desired = Integer(ARGV[2])
rescue TypeError

desired = 0

CHAPTER 4. EXAMPLES

end

handler = ReceiveHandler.new(conn_url, address, desired)
container = Qpid::Proton::Container.new(handler)
container.run

Running the example
To run the example program, copy it to a local file and invoke it using the ruby command.

I $ ruby receive.rb amqp://localhost queue1

1

Red Hat AMQ 7.7 Using the AMQ Ruby Client

CHAPTER 5. NETWORK CONNECTIONS

5.1. CONNECTION URLS

Connection URLs encode the information used to establish new connections.

Connection URL syntax
I scheme://host[:port]

® Scheme - The connection transport, either amqp for unencrypted TCP or amqps for TCP with
SSL/TLS encryption.

® Host - The remote network host. The value can be a hostname or a numeric IP address. IPv6
addresses must be enclosed in square brackets.

® Port - The remote network port. This value is optional. The default value is 5672 for the amqp
scheme and 5671 for the amqps scheme.

Connection URL examples

amgqps://example.com
amqps://example.net:56720
amqp://127.0.0.1
amaqp://[::1]:2000

12

CHAPTER 6. SENDERS AND RECEIVERS

CHAPTER 6. SENDERS AND RECEIVERS

The client uses sender and receiver links to represent channels for delivering messages. Senders and
receivers are unidirectional, with a source end for the message origin, and a target end for the message
destination.

Source and targets often point to queues or topics on a message broker. Sources are also used to
represent subscriptions.

6.1. CREATING QUEUES AND TOPICS ON DEMAND
Some message servers support on-demand creation of queues and topics. When a sender or receiver is
attached, the server uses the sender target address or the receiver source address to create a queue or
topic with a name matching the address.
The message server typically defaults to creating either a queue (for one-to-one message delivery) or a
topic (for one-to-many message delivery). The client can indicate which it prefers by setting the queue
or topic capability on the source or target.
For more details, see the following examples:

® queue-send.rb

® queue-receive.rb

® topic-send.rb

® topic-receive.rb

6.2. CREATING DURABLE SUBSCRIPTIONS

A durable subscription is a piece of state on the remote server representing a message receiver.
Ordinarily, message receivers are discarded when a client closes. However, because durable
subscriptions are persistent, clients can detach from them and then re-attach later. Any messages
received while detached are available when the client re-attaches.

Durable subscriptions are uniquely identified by combining the client container ID and receiver name to
form a subscription ID. These must have stable values so that the subscription can be recovered.

Example

6.3. CREATING SHARED SUBSCRIPTIONS

A shared subscription is a piece of state on the remote server representing one or more message
receivers. Because it is shared, multiple clients can consume from the same stream of messages.

The client configures a shared subscription by setting the shared capability on the receiver source.
Shared subscriptions are uniquely identified by combining the client container ID and receiver name to
form a subscription ID. These must have stable values so that multiple client processes can locate the
same subscription. If the global capability is set in addition to shared, the receiver name alone is used to

identify the subscription.

Example

13

https://github.com/amqphub/equipage/blob/master/qpid-proton-ruby/auto-create/queue-send.rb
https://github.com/amqphub/equipage/blob/master/qpid-proton-ruby/auto-create/queue-receive.rb
https://github.com/amqphub/equipage/blob/master/qpid-proton-ruby/auto-create/topic-send.rb
https://github.com/amqphub/equipage/blob/master/qpid-proton-ruby/auto-create/topic-receive.rb
https://github.com/amqphub/equipage/blob/master/qpid-proton-ruby/subscriptions/durable-subscribe.rb
https://github.com/amqphub/equipage/blob/master/qpid-proton-ruby/subscriptions/shared-subscribe.rb

Red Hat AMQ 7.7 Using the AMQ Ruby Client

CHAPTER 7. LOGGING

7.1. ENABLING PROTOCOL LOGGING

The client can log AMQP protocol frames to the console. This data is often critical when diagnosing
problems.

To enable protocol logging, set the PN_TRACE_FRM environment variable to 1:

Example: Enabling protocol logging

$ export PN_TRACE_FRM=1
$ <your-client-program>

To disable protocol logging, unset the PN_TRACE_FRM environment variable.

14

CHAPTER 8. INTEROPERABILITY

CHAPTER 8. INTEROPERABILITY

This chapter discusses how to use AMQ Ruby in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

8.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ Ruby automatically converts language-native types to AMQP-encoded
data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 8.1. AMQP types

AMQP type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

15

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

Red Hat AMQ 7.7 Using the AMQ Ruby Client

AMQP type Description

double A 64-bit floating point number

array A sequence of values of a single type

list A sequence of values of variable type

map A mapping from distinct keys to values

uuid A universally unique identifier

symbol A 7-bit ASClI string from a constrained domain
timestamp An absolute point in time

Table 8.2. AMQ Ruby types before encoding and after decoding

AMQP type AMQ Ruby type before encoding AMQ Ruby type after decoding
null nil nil
boolean true, false true, false
char - String
string String String
binary - String
byte - Integer
short - Integer
int - Integer
long Integer Integer
ubyte - Integer
ushort - Integer
uint - Integer
ulong - Integer

16

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

CHAPTER 8. INTEROPERABILITY

AMQP type AMQ Ruby type before encoding AMQ Ruby type after decoding
float - Float

double Float Float

array - Array

list Array Array

map Hash Hash

symbol Symbol Symbol

timestamp Date, Time Time

Table 8.3. AMQ Ruby and other AMQ client types (1 of 2)

AMQ Ruby type before encoding AMQ C++ type AMQ JavaScript type
nil nullptr null

true, false bool boolean

String std::string string

Integer int64_t number

Float double number

Array std::vector Array

Hash std::map object

Symbol proton::symbol string

Date, Time proton::timestamp number

Table 8.4. AMQ Ruby and other AMQ client types (2 of 2)

AMQ Ruby type before encoding AMQ .NET type AMQ Python type
nil null None
true, false System.Boolean bool

Red Hat AMQ 7.7 Using the AMQ Ruby Client

AMQ Ruby type before encoding AMQ .NET type AMQ Python type
String System.String unicode

Integer System.Int64 long

Float System.Double float

Array Amgp.List list

Hash Amqgp.Map dict

Symbol Amqp.Symbol str

Date, Time System.DateTime long

8.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JUMS Interoperability chapter.

JMS message types

AMQ Ruby provides a single message type whose body type can vary. By contrast, the JMS API uses
different message types to represent different kinds of data. The table below indicates how particular
body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 8.5. AMQ Ruby and JMS message types

AMQ Ruby body type JMS message type

String TextMessage
nil TextMessage

- BytesMessage
Any other type ObjectMessage

8.3. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging:

® Port 5672 in the network firewall is open.

18

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html

CHAPTER 8. INTEROPERABILITY

® The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.
® The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

® The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

8.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly:

® Port 5672 in the network firewall is open.

® The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Securing network connections.

19

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#default-acceptor-settings-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_interconnect/#securing-network-connections-router-rhel

Red Hat AMQ 7.7 Using the AMQ Ruby Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

A.1. ACCESSING YOUR ACCOUNT

Procedure

1. Go to access.redhat.com.
2. If you do not already have an account, create one.

3. Login to your account.

A.2. ACTIVATING A SUBSCRIPTION

Procedure

1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

A.3. DOWNLOADING RELEASE FILES

To access .zip, .tar.gz, and other release files, use the customer portal to find the relevant files for
download. If you are using RPM packages or the Red Hat Maven repository, this step is not required.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
downloaded release files, this step is not required.

Procedure

1. Go to access.redhat.com.
2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

20

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com

APPENDIX A. USING YOUR SUBSCRIPTION

4. Use the listed command in your system terminal to complete the registration.

For more information, see How to Register and Subscribe a System to the Red Hat Customer Portal .

21

https://access.redhat.com/solutions/253273

Red Hat AMQ 7.7 Using the AMQ Ruby Client

APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES

This section describes how to use software delivered as RPM packages for Red Hat Enterprise Linux.

B.1. OVERVIEW

A component such as a library or server often has multiple packages associated with it. You do not have
to install them all. You can install only the ones you need.

The primary package typically has the simplest name, without additional qualifiers. This package
provides all the required interfaces for using the component at program run time.

Packages with names ending in -devel contain headers for C and C++ libraries. These are required at
compile time to build programs that depend on this package.

Packages with names ending in -docs contain documentation and example programs for the
component.

For more information about using RPM packages, see one of the following resources:
® Red Hat Enterprise Linux 6 - Installing and managing software
® Red Hat Enterprise Linux 7 - Installing and managing software

® Red Hat Enterprise Linux 8 - Managing software packages

B.2. SEARCHING FOR PACKAGES

To search for packages, use the yum search command. The search results include package names,
which you can use as the value for <package> in the other commands listed in this section.

I $ yum search <keyword>...

B.3. INSTALLING PACKAGES

To install packages, use the yum install command.

I $ sudo yum install <package>...

B.4. QUERYING PACKAGE INFORMATION

To list the packages installed in your system, use the rpm -qa command.
I $ rom -ga

To get information about a particular package, use the rpm -qi command.
I $ rpm -qi <package>

To list all the files associated with a package, use the rpm -gl command.

I $ rom -gl <package>

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html-single/deployment_guide/index#part-Installing_and_Managing_Software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#part-Installing_and_Managing_Software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#managing-software-packages_configuring-basic-system-settings

APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES

23

Red Hat AMQ 7.7 Using the AMQ Ruby Client

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

The AMQ Ruby examples require a running message broker with a queue named examples. Use the
procedures below to install and start the broker and define the queue.

C.1. INSTALLING THE BROKER

Follow the instructions in Getting Started with AMQ Broker to install the broker and create a broker
instance. Enable anonymous access.

The following procedures refer to the location of the broker instance as <broker-instance-dir>.

C.2.STARTING THE BROKER

Procedure

1. Use the artemis run command to start the broker.

I $ <broker-instance-dir>/bin/artemis run

2. Check the console output for any critical errors logged during startup. The broker logs Server
is now live when it is ready.

$ example-broker/bin/artemis run

ANV NV A |
NN e
[ANTIVITE T </ NV
N O <
7\ N\ A\ N]

Red Hat AMQ <version>

2020-06-03 12:12:11,807 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server

2020-06-03 12:12:12,336 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live

C.3. CREATING A QUEUE

In a new terminal, use the artemis queue command to create a queue named examples.

$ <broker-instance-dir>/bin/artemis queue create --name examples --address examples --auto-
create-address --anycast

You are prompted to answer a series of yes or no questions. Answer N for no to all of them.

Once the queue is created, the broker is ready for use with the example programs.

C.4.STOPPING THE BROKER

24

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

When you are done running the examples, use the artemis stop command to stop the broker.

I $ <broker-instance-dir>/bin/artemis stop

Revised on 2020-06-23 07:16:12 UTC

25

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	File paths
	Variable text

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

	CHAPTER 3. GETTING STARTED
	3.1. PREREQUISITES
	3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the example

	4.2. RECEIVING MESSAGES
	Running the example

	CHAPTER 5. NETWORK CONNECTIONS
	5.1. CONNECTION URLS

	CHAPTER 6. SENDERS AND RECEIVERS
	6.1. CREATING QUEUES AND TOPICS ON DEMAND
	6.2. CREATING DURABLE SUBSCRIPTIONS
	6.3. CREATING SHARED SUBSCRIPTIONS

	CHAPTER 7. LOGGING
	7.1. ENABLING PROTOCOL LOGGING

	CHAPTER 8. INTEROPERABILITY
	8.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	8.2. INTEROPERATING WITH AMQ JMS
	JMS message types

	8.3. CONNECTING TO AMQ BROKER
	8.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	A.1. ACCESSING YOUR ACCOUNT
	A.2. ACTIVATING A SUBSCRIPTION
	A.3. DOWNLOADING RELEASE FILES
	A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

	APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES
	B.1. OVERVIEW
	B.2. SEARCHING FOR PACKAGES
	B.3. INSTALLING PACKAGES
	B.4. QUERYING PACKAGE INFORMATION

	APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES
	C.1. INSTALLING THE BROKER
	C.2. STARTING THE BROKER
	C.3. CREATING A QUEUE
	C.4. STOPPING THE BROKER

