
Red Hat AMQ 7.6

Migrating to Red Hat AMQ 7

For Use with Red Hat AMQ 7.6

Last Updated: 2020-03-04

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

For Use with Red Hat AMQ 7.6

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the important changes that require your attention when transitioning from
AMQ 6 to AMQ 7.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. WHEN TO GET ASSISTANCE BEFORE MIGRATING
1.2. SUPPORTED MIGRATION PATHS
1.3. UNDERSTANDING THE IMPORTANT NEW CONCEPTS IN AMQ 7

1.3.1. Architectural Changes in AMQ 7
Transport Connector Changes for Incoming Connections
Message Store and Paging Changes
Broker Deployment Changes

1.3.2. Message Address Changes in AMQ 7
1.4. REVIEWING NEW FEATURES AND KNOWN ISSUES IN AMQ 7
1.5. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document

CHAPTER 2. PREPARING FOR THE MIGRATION
2.1. MIGRATION REQUIREMENTS
2.2. CREATING A BROKER INSTANCE
2.3. UNDERSTANDING THE BROKER INSTANCE DIRECTORY STRUCTURE
2.4. HOW BROKERS ARE CONFIGURED IN AMQ 7
2.5. VERIFYING THAT CLIENTS CAN CONNECT TO THE BROKER INSTANCE

CHAPTER 3. ACCEPTING INCOMING CONNECTIONS
3.1. INCOMING NETWORK CONNECTIONS CHANGES
3.2. HOW ACCEPTORS ARE CONFIGURED

CHAPTER 4. USER AUTHENTICATION
4.1. USER AUTHENTICATION CHANGES
4.2. HOW USER AUTHENTICATION IS CONFIGURED

CHAPTER 5. MESSAGE ADDRESSES AND QUEUES
5.1. ADDRESSING CHANGES
5.2. HOW ADDRESSING IS CONFIGURED

CHAPTER 6. SECURITY
6.1. HOW TRANSPORT LAYER SECURITY IS CONFIGURED
6.2. AUTHORIZATION

6.2.1. Authorization Changes
6.2.2. How Authorization is Configured

CHAPTER 7. RESOURCE LIMITS AND POLICIES
7.1. HOW RESOURCE LIMITS AND POLICIES ARE CONFIGURED
7.2. RESOURCE LIMIT AND POLICY CONFIGURATION PROPERTIES

7.2.1. Queue Management Configuration Properties
7.2.2. Producer Policy Configuration Properties
7.2.3. Consumer Policy Configuration Properties
7.2.4. Slow Consumer Handling Configuration Properties
7.2.5. Message Paging Configuration Properties
7.2.6. Dead Letter Policy Configuration Properties

Dead Letter Policies in AMQ 6
Dead Letter Policies in AMQ 7

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING
8.1. MESSAGE PERSISTENCE CHANGES

4
4
4
4
4
4
4
5
5
5
5
6
6

7
7
7
8
9

10

12
12
12

14
14
14

16
16
17

19
19

20
20
21

23
23
24
24
25
26
28
29
29
29
30

32
32

Table of Contents

1

. .

. .

8.2. HOW MESSAGE PERSISTENCE IS CONFIGURED
8.3. MESSAGE PERSISTENCE CONFIGURATION PROPERTY CHANGES

8.3.1. Journal Size and Management
8.3.2. Write Boundaries
8.3.3. Index Configuration
8.3.4. Journal Archival
8.3.5. Journal Recovery

CHAPTER 9. BROKER CLUSTERS
9.1. BROKER CLUSTERING CHANGES
9.2. HOW BROKER CLUSTERS ARE CONFIGURED

9.2.1. Creating a Broker Cluster
9.2.2. Additional Broker Cluster Topologies

9.3. BROKER CLUSTER CONFIGURATION PROPERTIES

CHAPTER 10. HIGH AVAILABILITY AND FAILOVER
10.1. HIGH AVAILABILITY AND FAILOVER CHANGES
10.2. HOW HIGH AVAILABILITY IS CONFIGURED

32
33
33
35
36
37
37

38
38
38
38
40
42

45
45
46

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
This guide describes the new features and changes to behavior in AMQ 7. If you have an existing AMQ 6
environment, this guide will help you to understand the differences in AMQ 7 so that you are prepared to
configure new broker instances in AMQ 7.

1.1. WHEN TO GET ASSISTANCE BEFORE MIGRATING

If you plan to migrate a production environment, you should seek further assistance and guidance from a
Red Hat support representative. You can open a support case at https://access.redhat.com/support/.

1.2. SUPPORTED MIGRATION PATHS

You can use this guide to understand the configuration changes that might be required to create a AMQ
Broker 7 configuration to which existing OpenWire JMS clients can connect.

This guide does not describe how to migrate the following features:

The message store
This guide provides information about configuration changes that will help you to configure a
new AMQ 7 broker instance. Data, such as messages stored on the AMQ 6 broker, will not be
migrated.

Clients (other than OpenWire JMS clients)
This guide helps you to configure a AMQ 7 broker instance to which existing OpenWire JMS
clients can connect. For information about creating new clients that can connect to a AMQ 7
broker, see the client guides at the Red Hat Customer Portal .

1.3. UNDERSTANDING THE IMPORTANT NEW CONCEPTS IN AMQ 7

Before learning about the specific configuration changes in each AMQ feature area, you should first
understand the important conceptual differences between AMQ 6 and AMQ 7.

There are several key architectural differences in AMQ 7. In addition, a new message addressing and
routing model has been implemented in this release.

1.3.1. Architectural Changes in AMQ 7

AMQ 7 offers key architectural changes for how incoming network connections are made to the broker,
the message store, and the way in which brokers are deployed.

Transport Connector Changes for Incoming Connections
AMQ 6 used different types of transport connectors, such as TCP (synchronous) and Java NIO (non-
blocking).

In AMQ 7, you no longer have to choose which transport type to use: all incoming network connections
between entities in different virtual machines use Netty connections. Netty is a high-performance, low-
level network library that allows network connections to be configured to use Java IO, Java NIO, TCP
sockets, SSL/TLS, HTTP, and HTTPS.

Message Store and Paging Changes
The process by which the broker stores messages in memory and pages them to disk is different in AMQ
7.

AMQ 6 used KahaDB for a message store, which consists of both a message journal for fast, sequential

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

4

https://access.redhat.com/support/
https://access.redhat.com/products/red-hat-amq

AMQ 6 used KahaDB for a message store, which consists of both a message journal for fast, sequential
message storing, and an index to retrieve messages when needed.

AMQ 7 contains its own built-in message store, which consists of an append-only message journal. It
does not use an index.

For more information about these changes, see Message Persistence.

Broker Deployment Changes
In AMQ Broker 7, broker deployment differs from AMQ 6 in the following ways:

Deployment mechanism
AMQ 6, by default, was deployed in Apache Karaf containers. AMQ Broker 7 is not.

Deploying multiple brokers
In AMQ 6, to deploy multiple brokers, you either had to deploy a collection of standalone
brokers (which required you to install and configure each broker separately), or deploy a fabric
of AMQ brokers using JBoss Fuse Fabric.

In AMQ Broker 7, deploying multiple brokers involves installing AMQ Broker 7 once, and then on
the same machine, creating as many broker instances as you require. AMQ Broker 7 is not
intended to be deployed using fabrics.

1.3.2. Message Address Changes in AMQ 7

AMQ 7 introduces a new addressing and routing model to configure message routing semantics for any
messaging protocol (or API in the case of JMS). However, this model does require you to configure
address, queue, topic, and routing functionality differently than in AMQ 6. As part of your migration
planning, you should be prepared to carefully review the new addressing model and its configuration
elements.

AMQ Broker 7 does not distinguish between JMS and non-JMS configuration. AMQ Broker 7
implements addresses, routing mechanisms, and queues. Messages are delivered by routing messages
to queues based on addresses and routing mechanisms.

Two new routing mechanisms—​multicast and anycast—​enable AMQ Broker 7 to route messages in
standard messaging patterns. Multicast routing implements a publish-subscribe pattern in which all
subscribers to an address receive messages sent to the address. Alternatively, anycast routing
implements a point-to-point pattern in which only a single queue is attached to an address, and
consumers subscribe to that queue to receive messages in round-robin order.

Related Information

For more information about the new addressing model in AMQ Broker 7, see Addresses,
Queues, and Topics in Configuring AMQ Broker.

For more information about how message addressing is configured in AMQ Broker 7, see
Message Addresses and Queues.

1.4. REVIEWING NEW FEATURES AND KNOWN ISSUES IN AMQ 7

Before migrating to AMQ 7, you should understand the key new features, enhancements, and known
issues. For a list, see the Release Notes for Red Hat AMQ Broker 7.6 .

1.5. DOCUMENT CONVENTIONS

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/amq_broker_7.6_release_notes/

This document uses the following conventions for the sudo command and file paths.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. PREPARING FOR THE MIGRATION
Before learning about the configuration changes in each feature area, you should ensure that your
environment meets the migration requirements and understand how broker instances are configured in
AMQ Broker 7.

2.1. MIGRATION REQUIREMENTS

Before migrating to AMQ 7, your environment should meet the following requirements:

AMQ 6 requirements

You should be running AMQ 6.2.x or later.

OpenWire clients should use OpenWire version 10 or later.

AMQ 7 requirements

You should have a supported operating system and JVM.
You can view supported configurations for AMQ 7 at:
https://access.redhat.com/articles/2791941

AMQ Broker 7 should be installed.
For more information, see Installing AMQ Broker in Getting Started with AMQ Broker .

2.2. CREATING A BROKER INSTANCE

Before migrating to AMQ 7, you should create a AMQ broker instance. You can configure this broker
instance as you learn about the configuration differences in AMQ 7 that are described in this guide.

When you installed AMQ Broker, the binaries, libraries, and other important files needed to run AMQ
Broker were installed. However, in AMQ 7, you must explicitly create a broker instance whenever a new
broker is needed. Each broker instance is a separate directory containing its own configuration and
runtime data.

NOTE

Keeping broker installation and configuration separate means that you can install AMQ
Broker just once in a central location and then create as many broker instances as you
require. Additionally, keeping installation and configuration separate makes it easier to
manage and upgrade your brokers as needed.

Prerequisites

AMQ Broker 7 must be installed.

Procedure

1. Navigate to the location where you want to create the broker instance.

$ sudo mkdir /var/lib/amq7
$ cd /var/lib/amq7

CHAPTER 2. PREPARING FOR THE MIGRATION

7

https://access.redhat.com/articles/2791941
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/getting_started_with_amq_broker/#installing-broker-getting-started

2. Do one of the following to create the broker instance:

If…​ Then…​

AMQ Broker 7 is installed
on the same machine as
AMQ 6

Use the artemis create command with the --port-offset parameter
to create the new broker instance that will not conflict with your
existing AMQ 6 broker.

NOTE

AMQ Broker 7 and AMQ 6 both listen for client traffic
on the same set of default ports. Therefore, you must
offset the default ports on the AMQ Broker broker
instance to avoid potential conflicts.

This example creates a new broker instance that listens for client
traffic on different ports than the AMQ 6 broker:

$ sudo INSTALL_DIR/bin/artemis create mybroker --port-
offset 100 --user admin --password pass --role amq --allow-
anonymous true

AMQ Broker 7 and AMQ 6
are installed on separate
machines

Use the artemis create command to create the new broker instance.

This example creates a new broker instance and prompts you for any
required values:

$ sudo INSTALL_DIR/bin/artemis create mybroker

Creating ActiveMQ Artemis instance at:
/var/lib/amq7/mybroker

--user: is mandatory with this configuration:
Please provide the default username:
user

--password: is mandatory with this configuration:
Please provide the default password:
password

--role: is mandatory with this configuration:
Please provide the default role:
amq

--allow-anonymous

Related Information

For full details on creating broker instances, see Creating a broker instance in Getting Started with AMQ
Broker.

2.3. UNDERSTANDING THE BROKER INSTANCE DIRECTORY
STRUCTURE

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

8

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

Each AMQ 7 broker instance contains its own directory. You should understand the directory content
and where to find the configuration files for the broker instance you created.

When you create a broker instance, the following directory structure is created:

$ ls /var/lib/amq7/mybroker
bin data etc lock log tmp

BROKER_INSTANCE_DIR

The location where the broker instance was created. This is a different location than the AMQ Broker
installation.

/bin

Shell scripts for starting and stopping the broker instance.

/data

Contains broker state data, such as the message store.

/etc

The broker instance’s configuration files. These are the files you need to access to configure the
broker instance.

/lock

Contains the cli.lock file.

/log

Log files for the broker instance.

/tmp

A utility directory for temporary files.

2.4. HOW BROKERS ARE CONFIGURED IN AMQ 7

You should understand how the broker instance you created should be configured and which
configuration files you will need to edit.

Like AMQ 6, you configure AMQ 7 broker instances by editing plain text and XML files. Changing a
broker’s configuration involves opening the appropriate configuration file in the broker instance’s
directory, locating the proper element in the XML hierarchy, and then making the actual change—​which
typically involves adding or removing XML elements and attributes.

Within BROKER_INSTANCE_DIR/etc, there are several configuration files that you can edit:

Configuration File Description

broker.xml The main configuration file. Similar to activemq.xml in AMQ 6, you use
this file to configure most aspects of the broker, such as acceptors for
incoming network connections, security settings, message addresses, and
so on.

bootstrap.xml The file that AMQ Broker uses to start the broker instance. You use it to
change the location of the main broker configuration file, configure the web
server, and set some security settings.

CHAPTER 2. PREPARING FOR THE MIGRATION

9

logging.properties You use this file to set logging properties for the broker instance. This file is
similar to the org.ops4j.pax.logging.cfg file in AMQ 6.

JAAS configuration files
(login.config,
users.properties,
roles.properties)

You use these files to set up authentication for user access to the broker
instance.

Configuration File Description

Migrating to AMQ 7 primarily involves editing the broker.xml file. For more information about the
broker.xml structure and default configuration settings, see Understanding the default broker
configuration in Configuring AMQ Broker.

2.5. VERIFYING THAT CLIENTS CAN CONNECT TO THE BROKER
INSTANCE

To verify that your existing clients can connect to the broker instance you created, you should start the
broker instance and send some test messages.

Procedure

1. Start the broker instance by using one of the following commands:

To…​ Use this command…​

Start the broker in the
foreground $ sudo BROKER_INSTANCE_DIR/bin/artemis run

Start the broker as a
service $ sudo BROKER_INSTANCE_DIR/bin/artemis-service start

The broker instance starts. By default, an OpenWire connector is started on the broker instance
on the same port as your AMQ 6 broker. This should enable your existing clients to connect to
the broker instance.

2. If you want to check the status of the broker instance, open the
BROKER_INSTANCE_DIR/logs/artemis.log file.

3. In your AMQ 6 broker, use the producer command to send some test messages to the AMQ 7
broker instance.
This command sends five test messages to a AMQ 7 broker instance hosted on localhost and
listening on the default acceptor:

If you offset the port numbers when you created the broker instance (using --port-offset), make

JBossA-MQ:karaf@root> producer --brokerUrl tcp://0.0.0.0:61616 --message "Test
message" --messageCount 5

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

10

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#understanding-default-broker-configuration-configuring

If you offset the port numbers when you created the broker instance (using --port-offset), make
sure that you use the correct port number for the broker URL. For example, if you set the port
offset to 100, then you would need to set --brokerUrl to tcp://0.0.0.0:61716.

4. In your AMQ 6 broker, use the consumer command to verify that you can consume the test
messages that you sent to the AMQ 7 broker instance.
This command receives the five test messages sent to the AMQ 7 broker instance:

You can also verify that the messages were sent and received by checking the
INSTALL_DIR/data/log/amq.log file on the AMQ 6 broker.

5. Stop the broker instance:

$ BROKER_INSTANCE_DIR/bin/artemis stop

JBossA-MQ:karaf@root> consumer --brokerUrl tcp://0.0.0.0:61616

CHAPTER 2. PREPARING FOR THE MIGRATION

11

CHAPTER 3. ACCEPTING INCOMING CONNECTIONS
Network connections define how clients connect to your broker instance. In AMQ 7, these connections
function differently and are configured differently than in AMQ 6.

3.1. INCOMING NETWORK CONNECTIONS CHANGES

AMQ 6 and AMQ Broker 7 both enable you to define the way that clients connect to the broker. These
connection points were called transport connectors in AMQ 6, but now are called acceptors in AMQ
Broker 7.

AMQ 6 provided multiple implementations of the transport layer (such as TCP and NIO), which meant
that you had to use different transport connectors depending on whether you wanted a client
connection point to use a blocking or non-blocking transport. In AMQ Broker 7, the transport layer uses
Netty only, which is non-blocking by default. There are two types of acceptors in AMQ Broker 7:

TCP

Netty TCP connections are used when the client and broker are located in different virtual machines,
whether on the same server or physically remote.
Netty uses non-blocking (Java NIO) by default, which means that all client connections to the broker
instance are non-blocking. It also has built-in support for WebSockets.

In-VM

An In-VM connection is used when the client, whether an application or a server, resides within the
same virtual machine as the broker.

AMQ 6 also required you to use separate transport connectors for each messaging protocol. In AMQ
Broker 7, the low-level transport (either TCP or In-VM) is distinct from the messaging protocol used by
the client (such as AMQP, MQTT, and so on). This means that a single acceptor can use multiple
protocols on the same port. In fact, an acceptor will accept all supported message protocols unless you
explicitly restrict the protocols that it can use.

For example, the default acceptor in AMQ Broker 7 automatically accepts all message protocols:

3.2. HOW ACCEPTORS ARE CONFIGURED

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to configure acceptors to
accept incoming client connections for your broker instance.

The broker.xml configuration file contains the following default acceptors in the <acceptors> section:

<acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP,STOMP,HORNE
TQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits=300</acceptor>

<configuration>
...
 <core>
 ...
 <acceptors>
 <!-- Acceptor for every supported protocol -->
 <acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP,STOMP,HORNE

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

12

1 The default acceptor, which accepts incoming client connections for any of the supported
messaging protocols.

To configure the incoming client connections for your broker instance, you can modify the configuration
properties for any of the default acceptors, or you can add new acceptors. This example shows a new
acceptor configured to accept TCP connections using the OpenWire protocol:

Related Information

For more information about the default acceptor configuration, see Default acceptor settings in
Configuring AMQ Broker.

For step-by-step details about configuring acceptors, see Network Connections: Acceptors and
Connectors in Configuring AMQ Broker.

For a description of every property you can use to configure an acceptor, see Acceptor and
Connector Configuration Parameters in Configuring AMQ Broker.

TQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits=300</acceptor> 1

 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP traffic.-->
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useEpoll=true;amqpCre
dits=1000;amqpMinCredits=300</acceptor>

 <!-- STOMP Acceptor. -->
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;useEpoll=true</acce
ptor>

 <!-- HornetQ Compatibility Acceptor. Enables HornetQ Core and STOMP for legacy HornetQ
clients. -->
 <acceptor name="hornetq">tcp://0.0.0.0:5445?
protocols=HORNETQ,STOMP;useEpoll=true</acceptor>

 <!-- MQTT Acceptor -->
 <acceptor name="mqtt">tcp://0.0.0.0:1883?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=MQTT;useEpoll=true</accept
or>
 ...
 </core>
</configuration>

<acceptor name="my_acceptor">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=OPENWIRE;useEpoll=true</
acceptor>

CHAPTER 3. ACCEPTING INCOMING CONNECTIONS

13

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#default-acceptor-settings-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#transports
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#acceptor_connector_params

CHAPTER 4. USER AUTHENTICATION
User authentication enables you to verify the identity of users by adding usernames and assigning them
to security roles. In AMQ Broker 7, this process is similar to AMQ 6. However, there are some differences
in terminology, configuration file locations, and configuration syntax. Once you understand the
differences, there are several methods you can use to configure user access to your broker instance.

4.1. USER AUTHENTICATION CHANGES

In both AMQ Broker 7 and AMQ 6, authentication is provided by pluggable login modules based on the
Java Authentication and Authorization Service (JAAS). However, groups in AMQ 6 are now called roles
in AMQ Broker 7.

In addition, the names and locations of the login modules have changed in AMQ Broker 7.

Login Module Location in AMQ 6 Location in AMQ Broker 7

Users etc/users.properties BROKER_INSTANCE_DIR/etc/artemis-
users.properties

Roles (groups) etc/groups.propertie
s

BROKER_INSTANCE_DIR/etc/artemis-
roles.properties

The syntax for adding users and roles is also different.

In AMQ 6

Non-privileged users could be added and assigned a password and security role in the
users.properties file:

USER=PASSWORD,ROLE

In AMQ Broker 7

Users and roles are assigned in separate login modules. You add users in the artemis-
users.properties file:

USER=PASSWORD

You assign users to a security role in the artemis-roles.properties file:

ROLE=USER

4.2. HOW USER AUTHENTICATION IS CONFIGURED

You can access the AMQ 7 broker instance using the default username and password that you created
when you created the broker instance. To enable additional users to access the broker instance, you can
configure user authentication for the broker using any of the following methods:

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

14

Authentication Method Description

Guest Authentication Enables anonymous access. In this configuration, any user who connects
without credentials or with the wrong credentials will be authenticated
automatically and assigned a specific user and role.

For more information, see Enabling Guest Access in Configuring AMQ
Broker.

Basic User and Password
Authentication

For each user, you must define a username and password and assign a
security role. Users can only access the broker instance using these
credentials.

For more information, see Adding Users in Configuring AMQ Broker.

Certificate-Based
Authentication

Users are authenticated using SSL certificates.

For more information, see Adding Certificate-based Authentication in
Configuring AMQ Broker.

LDAP Authentication Users are authenticated and authorized by checking the credentials against
user data stored in a central X.500 directory server.

For more information, see Using LDAP for Authentication in Configuring
AMQ Broker.

CHAPTER 4. USER AUTHENTICATION

15

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#enable_guest
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#pass_auth
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#cert_auth
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#using_ldap_for_authentication

CHAPTER 5. MESSAGE ADDRESSES AND QUEUES
AMQ 7 introduces a new, flexible addressing model that enables you to define standard messaging
patterns that work for any messaging protocol. Therefore, the process for configuring queues and
topic-like behavior has changed significantly.

5.1. ADDRESSING CHANGES

AMQ 6 implemented JMS concepts such as queues, topics, and durable subscriptions as directly-
configurable destinations.

Example: Default Queue and Topic Configuration in AMQ 6

AMQ Broker 7 uses addresses, routing types, and queues to achieve queue and topic-like behavior. An
address represents a messaging endpoint. Queues are associated with addresses. A routing type defines
how messages are distributed to the queues associated with an address. There are two routing types:
Anycast distributes messages to a single queue within the matching address, and Multicast distributes
messages to every queue associated with the address.

By associating queues with addresses and routing types, you can implement a variety of messaging
patterns, such as point-to-point (queues) and publish-subscribe (topic-like).

Example: Point-to-Point Address Configuration in AMQ Broker 7

In this example, when the broker receives a message on address.foo, the message will be routed to my-
queue. If multiple anycast queues are associated with the address, the messages are distributed evenly
across the queues.

Example: Publish-Subscribe Address Configuration in AMQ Broker 7

In this example, when the broker receives a message on topic.foo, a copy of the message will be routed
to both my-topic-1 and my-topic-2.

Related Information

For full details about the addressing model in AMQ Broker 7, see Addresses, Queues, and

<destinations>
 <queue physicalName="my-queue" />
 <topic physicalName="my-topic" />
</destinations>

<address name="address.foo">
 <anycast>
 <queue name="my-queue"/>
 </anycast>
</address>

<address name="topic.foo">
 <multicast>
 <queue name="my-topic-1"/>
 <queue name="my-topic-2"/>
 </multicast>
</address>

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

16

For full details about the addressing model in AMQ Broker 7, see Addresses, Queues, and
Topics in Configuring AMQ Broker.

5.2. HOW ADDRESSING IS CONFIGURED

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to configure addresses and
queues for your broker instance.

The broker.xml configuration file contains the following default addressing configuration in the
<addresses> section. There are default entries for the Dead Letter Queue (DLQ) and Expiry Queue
(ExpiryQueue):

You can configure addressing for your broker instance by using any of the following methods:

Method Description

Manually configure an address You define the routing types and queues that the broker should use when
receiving a message on the address. You can configure an address in the
following ways:

Configuring an Address for Point-to-Point Messaging in
Configuring AMQ Broker

Configuring a Point-to-Point Address with Two Queues in
Configuring AMQ Broker

Configuring an Address for Publish-Subscribe Messaging in
Configuring AMQ Broker

Configuring an Address to Use Point-to-Point and Publish-
Subscribe in Configuring AMQ Broker

Configuring Subscription Queues in Configuring AMQ Broker

<addresses>
 <address name="DLQ">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 <address name="ExpiryQueue">
 <anycast>
 <queue name="ExpiryQueue" />
 </anycast>
 </address>
</addresses>

CHAPTER 5. MESSAGE ADDRESSES AND QUEUES

17

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#configuring_point_to_point_messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#configuring_point_to_point_using_two_queues
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#configuring_publish_subscribe_messaging
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#using_point_to_point_and_publish_subscribe_together
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#configuring_subscription_queues

Configure the broker to create
addresses automatically

You specify an address prefix and routing type for which addresses you want
to be created automatically. When the broker receives a message on an
address that matches the prefix, the address and routing type will be
created automatically. You can also specify that the address be deleted
automatically when all of its queues have been deleted, and that its queues
be deleted automatically when they have no consumers or messages.

For more information, see Creating and Deleting Queues and Addresses
Automatically in Configuring AMQ Broker.

Method Description

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

18

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#auto_create_queues_addresses

CHAPTER 6. SECURITY
AMQ Broker 7 provides transport layer security to secure incoming network connections, and
authorization to secure access to queues based on their respective addresses. In both of these areas,
the security model is very similar to AMQ 6. However, the configuration processes are different.

6.1. HOW TRANSPORT LAYER SECURITY IS CONFIGURED

Like AMQ 6, AMQ Broker 7 enables you to secure incoming network connections using SSL/TLS.
However, there are some differences in configuration syntax and configuration properties.

In AMQ 6, transport layer security was configured by creating an SSL context to define the keystores
and truststores, and then adding SSL attributes to each transport connector that you wanted to secure.

In AMQ Broker 7, the transport layer is based on Netty, which uses SSL natively. This means that to
configure transport layer security, you just add the necessary SSL attributes to each acceptor that you
want to secure. You do not need to add a separate SSL context.

For example, the following configuration accepts secure connections from an OpenWire client:

In AMQ 6

1. Define the SSL context in the INSTALL_DIR/etc/activemq.xml file:

2. In the broker configuration file, create a transport connector to accept secure connections from
the OpenWire client:

In AMQ Broker 7

In the BROKER_INSTANCE_DIR/etc/broker.xml configuration file, create or update an
acceptor to accept secure connections from the OpenWire client:

You can configure either one-way or two-way TLS. The following table describes these methods:

Method Description

One-way TLS Only the broker presents a certificate. This method requires you to have a
Java KeyStore for the server-side certificates.

For more information, see Securing Network Connections in Configuring
AMQ Broker.

<sslContext>
 <sslContext keyStore="file:${activemq.conf}/broker.ks" keyStorePassword="password"/>
</sslContext>

<transportConnector name="ssl" uri="ssl://localhost:61617?transport.needClientAuth=true"/>

<acceptor name="netty-ssl-acceptor">tcp://localhost:61617?
sslEnabled=true;keyStorePath=${data.dir}/../etc/broker.ks;keyStorePassword=password;needCl
ientAuth=true</acceptor>

CHAPTER 6. SECURITY

19

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#tls

Two-way TLS (mutual
authentication)

Both the broker and the client present certificates. This method requires
you to have a Java KeyStore for the server-side certificates, and a
TrustStore that holds the keys of the clients that the broker trusts.

For more information, see Securing Network Connections in Configuring
AMQ Broker.

Method Description

NOTE

To reuse your existing keystores and truststores for AMQ Broker 7, copy them to your
AMQ Broker 7 broker instance.

Related Information

For a full list of all transport layer security configuration properties, see Netty TLS Parameters
in Configuring AMQ Broker.

6.2. AUTHORIZATION

AMQ Broker 7 provides a role-based security model in which you apply security settings to queues
based on their addresses. This security model is similar to AMQ 6; however, the permissions and wildcard
syntax are different, and authorization is configured differently.

6.2.1. Authorization Changes

AMQ Broker 7 uses a different set of permissions and a slightly different wildcard syntax than AMQ 6.

The following table describes the different types of permissions that you can apply in AMQ 6 and AMQ
Broker 7:

Permission in AMQ 6 Corresponding Permissions in AMQ Broker 7

write send

read consume

browse

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

20

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#tls
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#netty_tls_parameters

admin createAddress

deleteAddress

createNonDurableQueue

deleteNonDurableQueue

createDurableQueue

deleteDurableQueue

manage

Permission in AMQ 6 Corresponding Permissions in AMQ Broker 7

For more information about permissions in AMQ Broker 7, see Setting Permissions in Configuring AMQ
Broker.

The wildcard syntax for matching addresses is also different in AMQ Broker 7.

To…​ In AMQ 6 In AMQ Broker 7

Separate words in the path . .

Match a single word * *

Match any word recursively > #

6.2.2. How Authorization is Configured

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to assign security settings to
queues.

The broker.xml configuration file contains the following default security settings, which provide
complete access to all addresses and queues for the default role that you created when you created the
broker instance:

<configuration ...>
 <core ...>
 ...
 <security-settings>
 <security-setting match="#"> 1
 <permission type="createNonDurableQueue" roles="admin"/> 2
 <permission type="deleteNonDurableQueue" roles="admin"/>
 <permission type="createDurableQueue" roles="admin"/>
 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="createAddress" roles="admin"/>
 <permission type="deleteAddress" roles="admin"/>
 <permission type="consume" roles="admin"/>
 <permission type="browse" roles="admin"/>

CHAPTER 6. SECURITY

21

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#permissions

1

2

The address or address prefix to which a set of security permissions are applied. The permissions
are applied to the set of queues that match the address. In this example, the # wildcard matches all
addresses.

A permission granted to a role. In this example, all users belonging to the admin role are granted
permission to create non-durable queues.

You can configure authorization for a queue or set of queues by specifying an address that matches the
queues, and then specifying the roles that should be granted each permission type.

Related Information

Setting Permissions in Configuring AMQ Broker

 <permission type="send" roles="admin"/>
 <permission type="manage" roles="admin"/>
 </security-setting>
 </security-settings>
 ...
 </core>
</configuration>

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

22

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#permissions

1

CHAPTER 7. RESOURCE LIMITS AND POLICIES
You can define resource limits and policies to control important aspects of how the broker instance
should handle messages. The process for configuring these resource limits and policies is different in
AMQ Broker 7 than in AMQ 6, and many of the configuration properties have changed.

7.1. HOW RESOURCE LIMITS AND POLICIES ARE CONFIGURED

In AMQ 6, resource limits and policies were configured as destination policies in the broker’s
configuration file.

In AMQ Broker 7, you define resource limits and policies for an address or set of addresses. When the
broker instance receives a message, the resource limits and policies defined for the message’s address
are applied to the message.

To configure resource limits and policies in AMQ Broker 7, you use the
BROKER_INSTANCE_DIR/etc/broker.xml configuration file to define <address-setting> elements
with the appropriate configuration properties.

The broker.xml configuration file contains the following default address settings configuration:

The default management address setting. The nested resource limits and policies are applied to all
messages with an address that matches activemq.management#.

<address-settings>
 <!-- if you define auto-create on certain queues, management has to be auto-create -->
 <address-setting match="activemq.management#"> 1
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!-- with -1 only the global-max-size is in use for limiting -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
 <!--default for catch all-->
 <address-setting match="#"> 2
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!-- with -1 only the global-max-size is in use for limiting -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
</address-settings>

CHAPTER 7. RESOURCE LIMITS AND POLICIES

23

2 The default address setting. The # wildcard matches all addresses, so the defined resource limits
and policies are applied to all messages.

To configure resource limits and policies, you specify an address or set of addresses (using <address-
setting>), and then add resource limit and policy properties to it. These properties are applied to each
message sent to the address (or addresses) that you specified.

Related Information

For more information on using wildcards to match sets of addresses, see The AMQ Broker
Wildcard Syntax in Configuring AMQ Broker.

7.2. RESOURCE LIMIT AND POLICY CONFIGURATION PROPERTIES

Like AMQ 6, in AMQ Broker 7, you can add resource limits and policies to control how the broker handles
certain aspects of how and when messages are delivered, the number of delivery attempts that should
be made, and when messages should expire. However, the configuration properties you use to define
these resource limits and policies are different in AMQ Broker 7.

This section compares the <policyEntry> configuration properties in AMQ 6 to the equivalent
<address-setting> properties in AMQ Broker 7. For complete details on each configuration property in
AMQ Broker 7, see Address Setting Configuration Elements in Configuring AMQ Broker.

7.2.1. Queue Management Configuration Properties

The following table compares the queue management configuration properties in AMQ 6 to the
equivalent properties in AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

The memory limit memoryLimit

Sets a memory limit for the
destination. The default is none.

<max-size-bytes>

Sets the memory limit for the
address. The default is -1 (no
limit).

The order of the messages by
priority within the queue

prioritizedMessages

This is off by default, which means
that messages are prioritized on
the consumer (not the broker),
and therefore are ordered based
on the priorities of the messages
on the consumer.

Messages are automatically
ordered by priority within the
queue.

How often the broker should scan
for expired messages

expiredMessagesPeriod <message-expiry-scan-
period>

The default is 30000 ms.

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

24

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#wildcard_syntax
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#address_setting_attributes

Whether the broker should delete
destinations that are inactive for a
period of time

gcInactiveDestinations

The default is false.

No equivalent. However, for
automatically-created queues,
you can set the queue to be
automatically deleted when the
last consumer is detached. For
more information, see Creating
and Deleting Queues and
Addresses Automatically in
Configuring AMQ Broker.

The inactive timeout inactiveTimeoutBeforeGC

The default is 60 seconds.

No equivalent. However, for
automatically-created queues,
you can set the queue to be
automatically deleted when the
last consumer is detached. For
more information, see Creating
and Deleting Queues and
Addresses Automatically in
Configuring AMQ Broker.

Whether the broker should use a
separate thread when dispatching
from a queue

optimizedDispatch

The default is false.

This cannot be set for an address
or queue. However, you can
control it from the incoming
connection on which the message
arrives. Use the directDeliver
property on an acceptor or
connector to control whether the
message should be delivered on
the same thread on which it
arrived. For more information, see
Acceptor and Connector
Configuration Parameters in
Configuring AMQ Broker.

To set…​ In AMQ 6 In AMQ Broker 7

7.2.2. Producer Policy Configuration Properties

The following table compares the producer policy configuration properties in AMQ 6 to the equivalent
properties in AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

CHAPTER 7. RESOURCE LIMITS AND POLICIES

25

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#auto_create_queues_addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#auto_create_queues_addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#acceptor_connector_params

Producer flow control producerFlowControl

Sets the broker to throttle the
producer. The throttling is
achieved by either withholding the
producer’s acknowledgement, or
by raising a
javax.jms.ResourceAllocatio
nException exception and
propagating it back to the client
when local resources have been
exhausted (such as memory or
storage). The default is true.

For the address, set <max-size-
bytes> to the size at which the
producer should be throttled, and
then set <address-full-policy>
to BLOCK.

Configuring these two properties
will also throttle your existing
AMQ 6 OpenWire producers.

The amount of credits a producer
can request at one time

No equivalent. <producer-window-size>

Limiting the window size sets a
limit on the number of bytes that
the producer can have "in-flight"
at any one time, which can
prevent the remote connection
from becoming overloaded.

To set…​ In AMQ 6 In AMQ Broker 7

7.2.3. Consumer Policy Configuration Properties

The following table compares the server-side destination policy configuration properties in AMQ 6 to
the equivalent properties in AMQ Broker 7. These properties only apply to OpenWire clients:

To set…​ In AMQ 6 In AMQ Broker 7

The queue prefetch queuePrefetch No equivalent on the broker.
However, you can set the
maximum size of messages (in
bytes) that will be buffered on a
consumer by setting the
consumerWindowSize on the
connection URL or directly on the
ActiveMQConnectionFactory
API.

Whether to use the priority of a
consumer when dispatching
messages from a queue

useConsumerPriority

The default is true.

This functionality does not exist in
AMQ Broker 7.

Whether to use the prefetch
extension to enable the broker to
dispatch "prefetched" messages
when the previous message is
delivered but not acknowledged

usePrefetchExtension

The default is true.

This functionality does not exist in
AMQ Broker 7.

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

26

Initial redelivery delay initialRedeliveryDelay

The default is 1000 ms.

No equivalent. The broker
instance automatically handles
this.

How long to wait before
attempting to redeliver a canceled
message

redeliveryDelay

The delivery delay if
initialRedeliveryDelay is set to
0. The default is 1000 ms.

<redelivery-delay>

The default is 0 ms.

Exponential back-off useExponentialBackoff

The default is false.

No equivalent. You can use any of
the other consumer policy
configuration properties to
configure redelivery for a
consumer.

Backoff multiplier backOffMultiplier

The default is 5.

<redelivery-multiplier>

The multiplier to apply to the
redelivery delay. The default is 1.0.

The maximum number of times a
cancelled message can be
redelivered before it is returned to
the broker’s Dead Letter Queue

maximumRedeliveries

The default is 6.

<max-delivery-attempts>

The default is 10.

The maximum value for the
redelivery delay

maximumRedeliveryDelay

This is only applied if the
useExponentialBackoff
property is set. The default is -1
(no maximum redelivery delay).

<max-redelivery-delay>

The default is 0.

The number of messages that a
client can consume in a second

No equivalent. No equivalent on the broker.
However, you can set this on a
consumer by setting the
consumerMaxRate on the
connection URL or directly on the
ActiveMQConnectionFactory
API.

The consumerMaxRate
property does not affect the
number of messages that a client
has in its buffer. Therefore, if the
client has a slow rate limit and a
high window size, the client’s
internal buffer would quickly fill
up with messages.

To set…​ In AMQ 6 In AMQ Broker 7

CHAPTER 7. RESOURCE LIMITS AND POLICIES

27

7.2.4. Slow Consumer Handling Configuration Properties

Like AMQ 6, AMQ Broker 7 can detect slow consumers and automatically stop the ones that are
consistently slow. This was enabled by default in AMQ 6, but is disabled by default in AMQ Broker 7.

The way in which the broker determines that a consumer is "slow" is also different. In AMQ Broker 7, a
consumer is considered to be slow based on the number of messages the consumer has acknowledged.
In AMQ 6, a consumer was considered to be slow based on the fullness of the prefetch buffer (if the
buffer is consistently full, then the client may be consuming messages too slowly).

The following table compares the slow consumer handling configuration properties in AMQ 6 to the
equivalent properties in AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

The number of times a consumer
can be considered to be slow
before it is aborted

maxSlowCount

The default is -1 (no limit).

No equivalent. You can use the
other slow consumer handling
properties to control slow
consumers.

The amount of time a consumer
can be continuously slow before it
is aborted

maxSlowDuration

The default is 30000 ms.

<slow-consumer-threshold>

In AMQ Broker 7, this is the
minimum rate of message
consumption before a consumer
is considered to be "slow"
(measured in messages per
second). The default is -1 (no
threshold).

The amount of time the broker
should wait before performing
another check for slow consumers

checkPeriod

The default is 30000 ms.

<slow-consumer-check-
period>

In AMQ Broker 7, this is measured
in seconds. The default is 5.

Whether the broker should close
the connection along with a slow
consumer

abortConnection

The default is false.

No equivalent. In AMQ Broker 7,
when a slow consumer is aborted,
the connection is also closed.

The policy to apply if a slow
consumer is detected.

No equivalent. <slow-consumer-policy>

The default is NOTIFY, which will
send a CONSUMER_SLOW
management notification to the
application.

You can also use the KILL policy
to close the consumer’s
connection. However, this will
impact any other client threads
using that connection.

Related Information

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

28

Related Information

For more information about how to handle slow consumers, see Handling Slow Consumers in
Configuring AMQ Broker.

7.2.5. Message Paging Configuration Properties

In AMQ Broker 7, the process by which the broker stores messages in memory and stores them to disk is
significantly different than AMQ 6. Therefore, most of the paging configuration properties in AMQ 6 do
not apply to AMQ Broker 7.

In AMQ Broker 7, paging is configured on message addresses. Each address is configured to use a
maximum number of bytes. When this limit is reached, messages sent to that address are paged to an
on-disk buffer before they reach their queues. The queues are de-paged one page at a time when the
address has enough available space.

The following table compares the message paging size limits in AMQ 6 to the equivalent properties in
AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

The paging size maxPageSize

This is measured in number of
messages, and is variable based
on the number of available
messages.

<page-size-bytes>

This is measured in the physical
page size in bytes (not messages).

7.2.6. Dead Letter Policy Configuration Properties

AMQ Broker 7 handles undeliverable and expired messages much differently than AMQ 6. Dead letter
policies are applied to addresses (instead of destinations), there are separate dead letter and expiry
destinations (instead of a single dead letter queue), and the dead letter policy configuration is
significantly different.

Dead Letter Policies in AMQ 6
In AMQ 6, an expired or undeliverable message would be sent to the dead letter queue (DLQ)
configured for each message’s destination. To configure the DLQ for a destination, you could use any of
the following dead letter policies:

sharedDeadLetterStrategy

The destination’s undeliverable messages are sent to the shared, default DLQ called ActiveMQ.DLQ.

individualDeadLetterStrategy

The destination’s undeliverable messages are sent to a dedicated DLQ for this destination.

discardingDeadLetterStrategy

The destination’s undeliverable messages are discarded.

Within a destination’s dead letter policy, you could add the following configuration properties to control
the types of messages that should be sent to the destination’s DLQ:

CHAPTER 7. RESOURCE LIMITS AND POLICIES

29

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#handling_slow_consumers

AMQ 6 Configuration
Property

Description

processNotPersistent Whether non-persistent messages should be sent to the destination’s DLQ.
The default is false.

processExpired Whether expired messages should be sent to the destination’s DLQ. The
default is true.

expiration Whether an expiry should be applied to the messages sent to the
destination’s DLQ. The default is 0.

Dead Letter Policies in AMQ 7
In AMQ Broker 7, undeliverable messages are sent to the applicable dead letter address, and expired
messages are sent to the applicable expiry address .

In the broker.xml configuration file, the default address setting specifies a dead letter address and
expiry address. Undeliverable and expired messages will be delivered to the destinations specified by
these settings:

By default, the dead letter and expiry addresses specify the DLQ and ExpiryQueue destinations, which
are defined in the <addresses> section:

To configure a non-default dead letter policy for an address, you can add a <dead-letter-address> and

...
<address-settings>
 <address-setting match="#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 ...
 </address-setting>
 ...
</address-settings>
...

...
<addresses>
 <address name="DLQ">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 <address name="ExpiryQueue">
 <anycast>
 <queue name="ExpiryQueue" />
 </anycast>
 </address>
...
</addresses>
...

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

30

To configure a non-default dead letter policy for an address, you can add a <dead-letter-address> and
<expiry-address> to the address’s <address-setting> and specify the DLQ and expiry queue it should
use.

Unlike AMQ 6, in AMQ Broker 7, you cannot set an expiry time on messages sent to the DLQ. In addition,
both persistent and non-persistent messages are sent to the DLQ specified by the address’s <dead-
letter-address>.

CHAPTER 7. RESOURCE LIMITS AND POLICIES

31

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING
AMQ Broker 7 provides persistence through either a message journal or a JDBC store. The method by
which the broker stores messages and pages them to disk is different than AMQ 6, and the
configuration properties you use to configure message persistence are changed.

8.1. MESSAGE PERSISTENCE CHANGES

AMQ Broker 7 uses a different type of message journal than AMQ 6, and it does not use a journal index.

AMQ 6 used KahaDB for a message store, and it maintained a message journal index to track the
position of each message inside the journal. This index enabled the broker to pull paged messages from
its journal in batches and place them in its cache.

By default, AMQ Broker 7 uses an in-memory message journal from which the broker can dispatch
messages. Therefore, AMQ Broker 7 does not use a message journal index. If a broker instance runs out
of memory, messages are paged as they arrive at the broker, but before they are queued. These
message page files are stored on disk sequentially in the same order in which they arrived. Then, when
memory is freed on the broker, the messages are moved from the page file to the journal on the broker.
Because the journal is read sequentially, there is no need to keep an index of messages in the journal.

In addition, AMQ Broker 7 also offers a different JDBC-based message journal option that was not
available in AMQ 6.

The AMQ Broker 7 message journal supports the following shared file systems:

NFSv4

GFS2

Related Information

For more information about the default in-memory message journal, see About Journal-Based
Persistence in Configuring AMQ Broker.

For more information about the new JDBC-based persistence option, see Configuring JDBC
Persistence in Configuring AMQ Broker.

8.2. HOW MESSAGE PERSISTENCE IS CONFIGURED

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to configure the broker
instance’s message journal.

The broker.xml configuration file contains the following default message journal configuration
properties:

<core>

 <name>0.0.0.0</name>

 <persistence-enabled>true</persistence-enabled>

 <journal-type>ASYNCIO</journal-type>

 <paging-directory>./data/paging</paging-directory>

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

32

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#journal_persistence
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#jdbc_persistence

To configure the message journal, you can change the default values for any of the journal configuration
properties. You can also add additional configuration properties.

8.3. MESSAGE PERSISTENCE CONFIGURATION PROPERTY CHANGES

AMQ 6 and AMQ Broker 7 both offer a number of configuration properties to control how the broker
persists messages. This section compares the configuration properties in the AMQ 6 KahaDB journal to
the equivalent properties in the AMQ Broker 7 in-memory message journal.

For complete details on each message persistence configuration property for the in-memory message
journal, see the following:

The Bindings Journal in Configuring AMQ Broker

Messaging Journal Configuration Elements in Configuring AMQ Broker

8.3.1. Journal Size and Management

The following table compares the journal size and management configuration properties in AMQ 6 to
the equivalent properties in AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

The time interval between
cleaning up data logs that are no
longer used

cleanupInterval

The default is 30000 ms.

No equivalent. In AMQ Broker 7,
journal files that exceed the pool
size are no longer used.

 <bindings-directory>./data/bindings</bindings-directory>

 <journal-directory>./data/journal</journal-directory>

 <large-messages-directory>./data/large-messages</large-messages-directory>

 <journal-datasync>true</journal-datasync>

 <journal-min-files>2</journal-min-files>

 <journal-pool-files>-1</journal-pool-files>

 <journal-buffer-timeout>744000</journal-buffer-timeout>

 <disk-scan-period>5000</disk-scan-period>

 <max-disk-usage>90</max-disk-usage>

 <global-max-size>104857600</global-max-size>

 ...

</core>

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING

33

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#the_bindings_journal
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#configuring_message_journal

The number of message store GC
cycles that must be completed
without cleaning up other files
before compaction is triggered

compactAcksAfterNoGC No equivalent. In AMQ Broker 7,
compaction is not related to
particular record types.

Whether compaction should be
run when the message store is still
growing, or if it should only occur
when it has stopped growing

compactAcksIgnoresStoreGr
owth

The default is false.

No equivalent.

The minimum number of journal
files that can be stored on the
broker before it will compact them

No equivalent. <journal-compact-min-files>

The default is 10. If you set this
value to 0, compaction will be
deactivated.

The threshold to reach before
compaction starts

No equivalent. <journal-compact-
percentage>

The default is 30%. When less
than this percentage is
considered to be live data,
compaction will start.

The path to the top-level folder
that holds the message store’s
data files

directory AMQ Broker 7 has a separate
directory for each type of journal:

<journal-directory> -
The default is
/data/journal.

<bindings-directory>
- The default is
/data/bindings.

<paging-directory> -
The default is
/data/paging.

<large-message-
directory> - The
default is /data/large-
messages.

Whether the bindings directory
should be created automatically if
it does not already exist

No equivalent. <create-bindings-dir>

The default is true.

Whether the journal directory
should be created automatically if
it does not already exist

No equivalent. <create-journal-dir>

The default is true.

To set…​ In AMQ 6 In AMQ Broker 7

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

34

Whether the message store
should periodically compact older
journal log files that contain only
message acknowledgements

enableAckCompaction No equivalent.

The maximum size of the data log
files

journalMaxFileLength

The default is 32 MB.

<journal-file-size>

The default is 10485760 bytes (10
MiB).

The policy that the broker should
use to preallocate the journal files
when a new journal file is needed

preallocationStrategy

The default is sparse_file.

No equivalent. By default,
preallocated journal files are
typically filled with zeroes, but it
can vary depending on the file
system.

The policy the broker should use
to preallocate the journal files

preallocationScope

The default is entire_journal.

AMQ Broker 7 automatically
preallocates the journal files
specified by <journal-min-
files> when the broker instance is
started.

The journal type (either NIO or
AIO)

No equivalent. <journal-type>

You can choose either NIO (Java
NIO journal), or ASYNCIO (Linux
asynchronous I/O journal).

The minimum number of files that
the journal should maintain

No equivalent. <journal-min-files>

The number of journal files the
broker should keep when
reclaiming files

No equivalent. <journal-pool-files>

The default is -1, which means the
broker instance will never delete
files on the journal once created.

To set…​ In AMQ 6 In AMQ Broker 7

8.3.2. Write Boundaries

The following table compares the write boundary configuration properties in AMQ 6 to the equivalent
properties in AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

The time interval between writing
the metadata cache to disk

checkpointInterval

The default is 5000 ms.

No equivalent.

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING

35

Whether the message store
should dispatch queue messages
to clients concurrently with
message storage

concurrentStoreAndDispatc
hQueues

The default is true.

No equivalent.

Whether the message store
should dispatch topic messages to
interested clients concurrently
with message storage

concurrentStoreAndDispatc
hTopics

The default is false.

No equivalent.

Whether a disk sync should be
performed after each non-
transactional journal write

enableJournalDiskSyncs

The default is true.

<journal-sync-transactional>
Flushes transaction data to
disk whenever a transaction
boundary is reached (commit,
prepare, and rollback). The
default is true.

<journal-sync-
nontransactional>

Flushes non-transactional
message data to disk (sends
and acknowledgements). The
default is true.

When to flush the entire journal
buffer

No equivalent. <journal-buffer-timeout>

The default for NIO is 3,333,333
nanoseconds, and the default for
AIO is 500,000 nanoseconds.

The amount of data to buffer
between journal disk writes

journalMaxWriteBatchSize

The default is 4000 bytes.

No equivalent.

The size of the task queue used to
buffer the journal’s write requests

maxAsyncJobs

The default is 10000.

<journal-max-io>

This property controls the
maximum number of write
requests that can be in the I/O
queue at any given point. The
default for NIO is 1, and the
default for AIO is 500.

Whether to use fdatasync on
journal writes

No equivalent. <journal-datasync>

The default is true.

To set…​ In AMQ 6 In AMQ Broker 7

8.3.3. Index Configuration

AMQ 6 has a number of configuration properties for configuring the journal index. Because AMQ Broker

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

36

AMQ 6 has a number of configuration properties for configuring the journal index. Because AMQ Broker
7 does not use journal indexes, you do not need to configure any of these properties for your broker
instance.

8.3.4. Journal Archival

AMQ 6 has several configuration properties for controlling which files are archived and where the
archives are stored. In AMQ Broker 7, however, when old journal files are no longer needed, the broker
reuses them instead of archiving them. Therefore, you do not need to configure any journal archival
properties for your broker instance.

8.3.5. Journal Recovery

AMQ 6 has several configuration properties for controlling how the broker checks for corrupted journal
files and what to do when it encounters a missing journal file.

In AMQ Broker 7, however, you do not need to configure any journal recovery properties for your broker
instance. Journal files have a different format in AMQ Broker 7, which should prevent a corrupted entry
in the journal from corrupting the entire journal file. Even if the journal is partially damaged, the broker
should still be able to extract data from the undamaged entries.

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING

37

CHAPTER 9. BROKER CLUSTERS
You can connect brokers together to form a cluster. Broker clusters enable you to distribute message
processing load and balance client connections. They also provide fault tolerance by increasing the
number of brokers to which clients can connect.

9.1. BROKER CLUSTERING CHANGES

In AMQ Broker 7, broker networks are called broker clusters. The brokers in the cluster are connected by
cluster connections (which reference connector elements). Members of a cluster can be configured to
discover each other dynamically (using UDP or JGroups), or statically (by manually specifying a list of
cluster members).

A cluster configuration is a required prerequisite for high-availability (HA). You must configure the
cluster before you can configure HA, even if the cluster consists of only a single live broker.

You can configure broker clusters in many different topologies, though symmetric and chain clusters
are the most common. Regardless of the topology, you can scale clusters up and down without message
loss (as long as you have configured the broker to send its messages to another broker in the cluster).

Broker clusters distribute (and redistribute) messages differently than broker networks in AMQ 6. In
AMQ 6, messages always arrived on a specific queue and were then pulled from one broker to another
based on consumer interest. In AMQ Broker 7, queue definitions and consumers are shared across the
cluster, and messages are routed across the cluster as they are received at the broker.

IMPORTANT

Do not attempt to combine AMQ 6 brokers and AMQ Broker 7 brokers in the same
cluster.

9.2. HOW BROKER CLUSTERS ARE CONFIGURED

You configure a broker cluster by creating a broker instance for each member of the cluster, and then
adding the cluster settings to each broker instance.

Cluster settings consist of the following:

Discovery groups

For use with dynamic discovery, a discovery group defines how the broker instance discovers other
members in the cluster. Discovery can use either UDP or JGroups.

Broadcast groups

For use with dynamic discovery, a broadcast group defines how the broker instance transmits
cluster-related information to other members in the cluster. Broadcast can use either UDP or
JGroups, but it must match its discovery groups counterpart.

Cluster connections

How the broker instance should connect to other members of the cluster. You can specify a
discovery group or a static list of cluster members. You can also specify message redistribution and
max hop properties.

9.2.1. Creating a Broker Cluster

This procedure demonstrates how to create a basic, two-broker cluster with static discovery.

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

38

Procedure

1. Create the first broker instance by using the artemis create command.
This example creates a new broker instance called broker1.

$ sudo INSTALL_DIR/bin/artemis create broker1 --user user --password pass --role amq

2. Create a second broker instance for the second member of the cluster.
For each additional broker instance, you should use the --port-offset parameter to avoid port
collisions with the previous broker instances.

This example creates a second broker instance called broker2.

$ sudo INSTALL_DIR/bin/artemis create broker2 --port-offset 100 --user user --password
pass --role amq

3. For the first broker instance, open the BROKER_INSTANCE_DIR/etc/broker.xml
configuration file and add the cluster settings.
For static discovery, you must add a connector and a static cluster connection. This example
configures broker1 to connect to broker2.

4. For the second broker instance, open the BROKER_INSTANCE_DIR/etc/broker.xml
configuration file and add the cluster settings.
This example configures broker2 to connect to broker1.

<!-- Connectors -->
<connectors>
 <connector name="netty-connector">tcp://localhost:61616</connector>
 <!-- connector to broker2 -->
 <connector name="broker2-connector">tcp://localhost:61617</connector>
</connectors>

<!-- Clustering configuration -->
<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors>
 <connector-ref>broker2-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<!-- Connectors -->
<connectors>
 <connector name="netty-connector">tcp://localhost:61617</connector>
 <!-- connector to broker1 -->
 <connector name="broker1-connector">tcp://localhost:61616</connector>
</connectors>

<!-- Clustering configuration -->

CHAPTER 9. BROKER CLUSTERS

39

Related Information

For full details about creating broker clusters and configuring message redistribution and client
load balancing, see Setting up a broker cluster in Configuring AMQ Broker.

9.2.2. Additional Broker Cluster Topologies

Broker clusters can be connected in many different topologies. In AMQ Broker 7, symmetric and chain
clusters are the most common.

Example: Symmetric Cluster

In a full mesh topology, each broker is connected to every other broker in the cluster. This means that
every broker in the cluster is no more than one hop away from every other broker.

This example uses dynamic discovery to enable the brokers in the cluster to discover each other. By
setting max-hops to 1, each broker will connect to every other broker:

<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors>
 <connector-ref>broker1-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<!-- Clustering configuration -->
<broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <group-address>${udp-address:231.7.7.7}</group-address>
 <group-port>9876</group-port>
 <broadcast-period>100</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
</broadcast-groups>

<discovery-groups>
 <discovery-group name="my-discovery-group">
 <group-address>${udp-address:231.7.7.7}</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
</discovery-groups>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>ON_DEMAND</message-load-balancing>

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

40

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/index#setting-up-broker-cluster-configuring

Example: Chain Cluster

In a chain cluster, the brokers form a linear "chain" with a broker on each end and all other brokers
connecting to the previous and next brokers in the chain (for example, A→B→C).

This example uses static discovery to connect three brokers into a chain cluster. Each broker connects
to the next broker in the chain, and max-hops is set to 2 to enable messages to flow through the full
chain.

The first broker is configured like this:

The second broker is configured like this:

 <max-hops>1</max-hops>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>
</cluster-connections>

<connectors>
 <connector name="netty-connector">tcp://localhost:61616</connector>
 <!-- connector to broker2 -->
 <connector name="broker2-connector">tcp://localhost:61716</connector>
</connectors>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>2</max-hops>
 <static-connectors allow-direct-connections-only="true">
 <connector-ref>broker2-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<connectors>
 <connector name="netty-connector">tcp://localhost:61716</connector>
 <!-- connector to broker3 -->
 <connector name="broker3-connector">tcp://localhost:61816</connector>
</connectors>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors allow-direct-connections-only="true">
 <connector-ref>broker3-connector</connector-ref>

CHAPTER 9. BROKER CLUSTERS

41

Finally, the third broker is configured like this:

9.3. BROKER CLUSTER CONFIGURATION PROPERTIES

The following table compares the broker network configuration properties in AMQ 6 to the equivalent
cluster-connection properties in AMQ Broker 7:

To set…​ In AMQ 6 In AMQ Broker 7

Excluded destinations excludedDestinations No equivalent.

The number of hops that a
message can make through the
cluster

networkTTL

The default is 1, which means that
a message can make just one hop
to a neighboring broker.

<max-hops>

Sets this broker instance to load
balance messages to brokers
which might be connected to it
indirectly with other brokers are
intermediaries in a chain. The
default is 1, which means that
messages are distributed only to
other brokers directly connected
to this broker instance.

Replay messages when there are
no consumers

replayWhenNoConsumers No equivalent. However, you can
set <redistribution-delay> to
define the amount of time with no
consumers (in milliseconds) after
which messages should be
redelivered as though arriving for
the first time.

 </static-connectors>
 </cluster-connection>
</cluster-connections>

<connectors>
 <connector name="netty-connector">tcp://localhost:61816</connector>
</connectors>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>0</max-hops>
 </cluster-connection>
</cluster-connections>

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

42

Whether to broadcast advisory
messages for temporary
destinations in the cluster

bridgeTempDestinations

The default is true. This property
was typically used for temporary
destinations created for request-
reply messages. This would
enable consumers of these
messages to be connected to
another broker in the network and
still be able to send the reply to
the temporary destination
specified in the JMSReplyTo
header.

No equivalent. In AMQ Broker 7,
temporary destinations are never
clustered.

The credentials to use to
authenticate this broker with a
remote broker

userNamepassword <cluster-user><cluster-
password>

Set the route priority for a
connector

decreaseNetworkConsumer
Priority

The default is false. If set to true,
local consumers have a priority of
0, and network subscriptions have
a priority of -5. In addition, the
priority of a network subscription
is reduced by 1 for every network
hop that it traverses.

No equivalent.

Whether and how messages
should be distributed between
other brokers in the cluster

No equivalent. <message-load-balancing>

This can be set to OFF (no load
balancing), STRICT (forward
messages to all brokers in the
cluster that have a matching
queue), or ON_DEMAND
(forward messages only to
brokers in the cluster that have
active consumers or a matching
selector). The default is
ON_DEMAND.

To set…​ In AMQ 6 In AMQ Broker 7

CHAPTER 9. BROKER CLUSTERS

43

Enable a cluster network
connection to both produce and
consume messages

duplex

By default, network connectors
are unidirectional. However, you
could set them to duplex to
enable messages to flow in both
directions. This was typically used
for hub-and-spoke networks in
which the hub was behind a
firewall.

No equivalent. Cluster
connections are unidirectional
only. However, you can configure
a pair of cluster connections
between each broker, one from
each end. For more information
about setting up a broker cluster,
see Setting up a broker cluster in
Configuring AMQ Broker.

To set…​ In AMQ 6 In AMQ Broker 7

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

44

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/index#setting-up-broker-cluster-configuring

CHAPTER 10. HIGH AVAILABILITY AND FAILOVER
After creating a cluster configuration, you can link broker instances together to form high availability
(HA) pairs. An HA pair consists of a master broker that serves client requests, and one or more slave
brokers that replace the master if it can no longer communicate with clients.

In AMQ Broker 7, a cluster configuration is required for HA. Broker clusters can consist of either a set of
non-HA brokers or HA pairs.

AMQ Broker 7 provides the following HA policies:

Replication

Replication synchronizes the data between the master and slave brokers over the network. With
replication, you can enable failback to return control to the master broker when it comes back online
after a failure event and allow clients to fail back to it. You can also create HA groups in which
multiple master brokers share one or more slave brokers, and colocate slave brokers in the same
JVM as the master broker.

IMPORTANT

Starting in 7.5, network pinging, which was previously available for use with the replication
HA policy, is a deprecated feature. Network pinging cannot protect a broker cluster from
network isolation issues that can lead to irrecoverable message loss. This feature will be
removed in a future release. Red Hat continues to support existing AMQ Broker
deployments that use network pinging. However, Red Hat no longer recommends use of
network pinging in new deployments. For guidance on configuring a broker cluster for
high availability and to avoid network isolation issues, see Implementing high availability .

Shared Store

Shared store provides a location for the master and slave brokers to share messaging data. Using a
shared store is generally preferable, as it offers the following benefits over replication:

Performance (shared stores are faster)

No split-brain issues

Fewer brokers required to maintain quorum (replication requires at least three)
Like with replication, you can enable failback to return control to the master broker after a
failure event and allow clients to fail back to it. You can configure multiple slave brokers for a
master broker, and colocate slave brokers.

For more information about HA and failover, see Implementing high availability in Configuring AMQ
Broker.

10.1. HIGH AVAILABILITY AND FAILOVER CHANGES

High availability in AMQ Broker 7 differs from AMQ 6 based on how the master is determined and when
the broker connections become active.

In AMQ Broker 7, the master and slave roles are fixed. You specify which broker instance is the master,
and the slave only becomes active in certain conditions. In AMQ 6, the master and slave roles were not
fixed. Instead, the brokers in an HA pair would compete for a lock, and the winner would become the
master.

CHAPTER 10. HIGH AVAILABILITY AND FAILOVER

45

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/setting-up-broker-cluster-configuring#implementing-high-availability-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#implementing-high-availability-configuring

In AMQ Broker 7, in an HA pair, the slave broker’s acceptors are active even if the broker is inactive. In
AMQ 6, the slave broker’s transport connectors did not become active until the broker became active.

10.2. HOW HIGH AVAILABILITY IS CONFIGURED

You configure HA by adding an HA policy configuration to the
BROKER_INSTANCE_DIR/etc/broker.xml configuration file of each broker.

Example: HA Pair with Shared Store

The master broker is configured like this. By setting failover-on-shutdown to true, the HA pair will fail
over to the slave broker if the master broker is shut down:

The slave broker is configured like this. By setting failover-on-shutdown to true, this slave broker will
become the master if the current master broker is shut down:

Related Information

For full details on configuring HA policies, see the following topics:

Configuring high availability in Configuring AMQ Broker

Revised on 2020-03-04 13:45:00 UTC

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <master/>
 <failover-on-shutdown>true</failover-on-shutdown>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <slave/>
 <failover-on-shutdown>true</failover-on-shutdown>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

Red Hat AMQ 7.6 Migrating to Red Hat AMQ 7

46

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/configuring_amq_broker/#configuring-high-availability-configuring

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHEN TO GET ASSISTANCE BEFORE MIGRATING
	1.2. SUPPORTED MIGRATION PATHS
	1.3. UNDERSTANDING THE IMPORTANT NEW CONCEPTS IN AMQ 7
	1.3.1. Architectural Changes in AMQ 7
	Transport Connector Changes for Incoming Connections
	Message Store and Paging Changes
	Broker Deployment Changes

	1.3.2. Message Address Changes in AMQ 7

	1.4. REVIEWING NEW FEATURES AND KNOWN ISSUES IN AMQ 7
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document

	CHAPTER 2. PREPARING FOR THE MIGRATION
	2.1. MIGRATION REQUIREMENTS
	2.2. CREATING A BROKER INSTANCE
	2.3. UNDERSTANDING THE BROKER INSTANCE DIRECTORY STRUCTURE
	2.4. HOW BROKERS ARE CONFIGURED IN AMQ 7
	2.5. VERIFYING THAT CLIENTS CAN CONNECT TO THE BROKER INSTANCE

	CHAPTER 3. ACCEPTING INCOMING CONNECTIONS
	3.1. INCOMING NETWORK CONNECTIONS CHANGES
	3.2. HOW ACCEPTORS ARE CONFIGURED

	CHAPTER 4. USER AUTHENTICATION
	4.1. USER AUTHENTICATION CHANGES
	4.2. HOW USER AUTHENTICATION IS CONFIGURED

	CHAPTER 5. MESSAGE ADDRESSES AND QUEUES
	5.1. ADDRESSING CHANGES
	5.2. HOW ADDRESSING IS CONFIGURED

	CHAPTER 6. SECURITY
	6.1. HOW TRANSPORT LAYER SECURITY IS CONFIGURED
	6.2. AUTHORIZATION
	6.2.1. Authorization Changes
	6.2.2. How Authorization is Configured

	CHAPTER 7. RESOURCE LIMITS AND POLICIES
	7.1. HOW RESOURCE LIMITS AND POLICIES ARE CONFIGURED
	7.2. RESOURCE LIMIT AND POLICY CONFIGURATION PROPERTIES
	7.2.1. Queue Management Configuration Properties
	7.2.2. Producer Policy Configuration Properties
	7.2.3. Consumer Policy Configuration Properties
	7.2.4. Slow Consumer Handling Configuration Properties
	7.2.5. Message Paging Configuration Properties
	7.2.6. Dead Letter Policy Configuration Properties
	Dead Letter Policies in AMQ 6
	Dead Letter Policies in AMQ 7

	CHAPTER 8. MESSAGE PERSISTENCE AND PAGING
	8.1. MESSAGE PERSISTENCE CHANGES
	8.2. HOW MESSAGE PERSISTENCE IS CONFIGURED
	8.3. MESSAGE PERSISTENCE CONFIGURATION PROPERTY CHANGES
	8.3.1. Journal Size and Management
	8.3.2. Write Boundaries
	8.3.3. Index Configuration
	8.3.4. Journal Archival
	8.3.5. Journal Recovery

	CHAPTER 9. BROKER CLUSTERS
	9.1. BROKER CLUSTERING CHANGES
	9.2. HOW BROKER CLUSTERS ARE CONFIGURED
	9.2.1. Creating a Broker Cluster
	9.2.2. Additional Broker Cluster Topologies

	9.3. BROKER CLUSTER CONFIGURATION PROPERTIES

	CHAPTER 10. HIGH AVAILABILITY AND FAILOVER
	10.1. HIGH AVAILABILITY AND FAILOVER CHANGES
	10.2. HOW HIGH AVAILABILITY IS CONFIGURED

