
OpenShift Enterprise 3.0

Administrator Guide

OpenShift Enterprise 3.0 Administration

Last Updated: 2018-10-18

OpenShift Enterprise 3.0 Administrator Guide

OpenShift Enterprise 3.0 Administration

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Administration topics cover the basics of installing and running OpenShift in your
environment. Configuration, management, and logging are also covered. Use these topics to quickly
set up your OpenShift environment and configure it based on your organizational needs.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. MASTER AND NODE CONFIGURATION
2.1. OVERVIEW
2.2. CREATING NEW CONFIGURATION FILES
2.3. LAUNCHING SERVERS USING CONFIGURATION FILES
2.4. MASTER CONFIGURATION FILES
2.5. NODE CONFIGURATION FILES

CHAPTER 3. MANAGING NODES
3.1. OVERVIEW
3.2. LISTING NODES
3.3. ADDING NODES
3.4. DELETING NODES
3.5. UPDATING LABELS ON NODES
3.6. LISTING PODS ON NODES
3.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
3.8. EVACUATING PODS ON NODES

CHAPTER 4. ROUTING FROM EDGE LOAD BALANCERS
4.1. OVERVIEW
4.2. INCLUDING THE LOAD BALANCER IN THE SDN
4.3. ESTABLISHING A TUNNEL USING A RAMP NODE

4.3.1. Configuring a Highly-Available Ramp Node

CHAPTER 5. AGGREGATING CONTAINER LOGS
5.1. OVERVIEW
5.2. USING A CENTRALIZED FILE SYSTEM

5.2.1. Installing fluentd (td-agent) on Nodes
5.2.2. Optional Method to Verify Working Nodes

CHAPTER 6. CONFIGURING AUTHENTICATION
6.1. OVERVIEW
6.2. IDENTITY PROVIDERS

6.2.1. Allow All
6.2.2. Deny All
6.2.3. HTPasswd
6.2.4. LDAP Authentication
6.2.5. Basic Authentication (Remote)
6.2.6. Request Header
6.2.7. GitHub
6.2.8. Google
6.2.9. OpenID Connect

6.3. TOKEN OPTIONS
6.4. GRANT OPTIONS
6.5. SESSION OPTIONS

CHAPTER 7. SERVICE ACCOUNTS
7.1. OVERVIEW
7.2. USERNAMES AND GROUPS
7.3. ENABLE SERVICE ACCOUNT AUTHENTICATION
7.4. MANAGED SERVICE ACCOUNTS
7.5. INFRASTRUCTURE SERVICE ACCOUNTS

6

7
7
7
7
8

10

12
12
12
13
13
13
14
14
14

16
16
16
16
18

20
20
20
20
22

23
23
23
23
24
24
25
28
29
35
36
37
40
40
40

43
43
43
43
44
44

Table of Contents

1

. .

. .

. .

. .

CHAPTER 8. MANAGING AUTHORIZATION POLICIES
8.1. OVERVIEW
8.2. VIEWING ROLES AND BINDINGS

8.2.1. Viewing Cluster Policy
8.2.2. Viewing Local Policy

8.3. MANAGING ROLE BINDINGS

CHAPTER 9. MANAGING SECURITY CONTEXT CONSTRAINTS
9.1. OVERVIEW
9.2. LISTING SECURITY CONTEXT CONSTRAINTS
9.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT
9.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS
9.5. DELETING SECURITY CONTEXT CONSTRAINTS
9.6. UPDATING SECURITY CONTEXT CONSTRAINTS
9.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS
9.8. HOW DO I?

9.8.1. Grant Access to the Privileged SCC
9.8.2. Grant a Service Account Access to the Privileged SCC
9.8.3. Enable Images to Run with USER in the Dockerfile
9.8.4. Use --mount-host on the Registry
9.8.5. Provide Additional Capabilities
9.8.6. Modify Cluster Default Behavior
9.8.7. Use the hostPath Volume Plug-in

CHAPTER 10. SCHEDULER
10.1. OVERVIEW
10.2. GENERIC SCHEDULER

10.2.1. Filter the nodes
10.2.2. Prioritize the filtered list of nodes
10.2.3. Select the best fit node

10.3. AVAILABLE PREDICATES
10.3.1. Static Predicates
10.3.2. Configurable Predicates

10.4. AVAILABLE PRIORITY FUNCTIONS
10.4.1. Static Priority Functions
10.4.2. Configurable Priority Functions

10.5. SCHEDULER POLICY
10.5.1. Default Scheduler Policy

10.6. USE CASES
10.6.1. Infrastructure Topological Levels
10.6.2. Affinity
10.6.3. Anti Affinity

10.7. SAMPLE POLICY CONFIGURATIONS
10.8. SCHEDULER EXTENSIBILITY

10.8.1. Enhancements
10.8.2. Replacement

CHAPTER 11. PRUNING OBJECTS
11.1. OVERVIEW
11.2. BASIC PRUNE OPERATIONS
11.3. PRUNING DEPLOYMENTS
11.4. PRUNING BUILDS
11.5. PRUNING IMAGES

46
46
46
46
50
51

53
53
53
53
53
54
54
54
55
55
55
56
56
56
57
57

59
59
59
59
59
59
59
59
60
61
61
61
62
62
62
62
62
63
63
65
65
65

66
66
66
66
67
67

OpenShift Enterprise 3.0 Administrator Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 12. MONITORING ROUTERS
12.1. OVERVIEW
12.2. VIEWING STATISTICS
12.3. VIEWING LOGS
12.4. VIEWING THE ROUTER INTERNALS

CHAPTER 13. HIGH AVAILABILITY
13.1. OVERVIEW
13.2. CONFIGURING IP FAILOVER

13.2.1. Virtual IP Addresses
13.2.2. Configuring a Highly-available Routing Service
13.2.3. Configuring a Highly-available Network Service

CHAPTER 14. SELF-PROVISIONED PROJECTS
14.1. OVERVIEW
14.2. TEMPLATE FOR NEW PROJECTS
14.3. DISABLING SELF-PROVISIONING

CHAPTER 15. PERSISTENT STORAGE USING NFS
15.1. OVERVIEW
15.2. PROVISIONING

15.2.1. Enforcing Disk Quotas
15.2.2. Volume Security

15.3. RECLAIMING RESOURCES
15.4. AUTOMATION
15.5. SELINUX AND NFS EXPORT SETTINGS

CHAPTER 16. IPTABLES
16.1. OVERVIEW
16.2. RESTARTING

CHAPTER 17. NATIVE CONTAINER ROUTING
17.1. OVERVIEW
17.2. NETWORK LAYOUT
17.3. NETWORK OVERVIEW
17.4. NODE SETUP
17.5. ROUTER SETUP

CHAPTER 18. SECURING BUILDS BY STRATEGY
18.1. OVERVIEW
18.2. DISABLING A BUILD STRATEGY GLOBALLY
18.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY
18.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

CHAPTER 19. BUILDING DEPENDENCY TREES
19.1. OVERVIEW
19.2. USAGE

CHAPTER 20. CUSTOMIZING THE WEB CONSOLE
20.1. OVERVIEW
20.2. LOADING CUSTOM SCRIPTS AND STYLESHEETS
20.3. SERVING STATIC FILES

20.3.1. Enabling.adoc5 Mode
20.4. CUSTOMIZING THE LOGIN PAGE
20.5. CHANGING THE LOGOUT URL

70
70
70
70
70

71
71
71
72
72
74

77
77
77
77

79
79
79
79
80
80
80
80

82
82
82

83
83
83
83
84
84

85
85
85
86
86

88
88
88

89
89
89
90
91
91
91

Table of Contents

3

. .

. .

CHAPTER 21. WORKING WITH HTTP PROXIES
21.1. OVERVIEW
21.2. CONFIGURING HOSTS FOR PROXIES
21.3. PROXYING DOCKER PULL
21.4. CONFIGURING S2I BUILDS FOR PROXIES
21.5. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
21.6. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
21.7. GIT REPOSITORY ACCESS

CHAPTER 22. REVISION HISTORY: ADMINISTRATION
22.1. THU MAY 19 2016
22.2. WED FEB 17 2016
22.3. MON FEB 08 2016
22.4. TUE JUN 23 2015

93
93
93
93
93
94
94
94

96
96
96
96
96

OpenShift Enterprise 3.0 Administrator Guide

4

Table of Contents

5

CHAPTER 1. OVERVIEW
OpenShift Administration topics cover the basics of installing and running OpenShift in your
environment. Configuration, management, and logging are also covered. Use these topics to quickly set
up your OpenShift environment and configure it based on your organizational needs.

OpenShift Enterprise 3.0 Administrator Guide

6

CHAPTER 2. MASTER AND NODE CONFIGURATION

2.1. OVERVIEW

The openshift start command is used to launch OpenShift servers. The command and its
subcommands (master to launch a master server and node to launch a node server) all take a limited
set of arguments that are sufficient for launching servers in a development or experimental environment.

However, these arguments are insufficient to describe and control the full set of configuration and
security options that are necessary in a production environment. To provide those options, it is
necessary to use the dedicated master and node configuration files.

Master configuration files and node configuration files are fully specified with no default values.
Therefore, any empty value indicates that you want to start up with an empty value for that parameter.
This makes it easy to reason about exactly what your configuration is, but it also makes it difficult to
remember all of the options to specify. To make this easier, the configuration files can be created with
the --write-config option and then used with the --config option.

2.2. CREATING NEW CONFIGURATION FILES

For masters, the openshift start command accepts options that indicate that it should simply write
the configuration files that it would have used, then terminate. For nodes, a configuration file can be
written using the oadm create-node-config command. Creating new configuration files is useful to
get a starting point for defining your configuration.

The following commands write the relevant launch configuration file(s), certificate files, and any other
necessary files to the specified --write-config or --node-dir directory.

To create configuration files for an all-in-one server (a master and a node on the same host) in the
specified directory:

$ openshift start --write-config=/openshift.local.config

To create a master configuration file and other required files in the specified directory:

$ openshift start master --write-config=/openshift.local.config/master

To create a node configuration file and other related files in the specified directory:

$ oadm create-node-config --node-dir=/openshift.local.config/node-
<node_hostname> --node=<node_hostname> --hostnames=<hostname>,<ip_address>

For the --hostnames option in the above command, use a comma-delimited list of every host name or
IP address you want server certificates to be valid for. The above command also assumes that certificate
files are located in an openshift.local.config/master/ directory. If they are not, you can include options
to specify their location. Run the command with the -h option to see details.

2.3. LAUNCHING SERVERS USING CONFIGURATION FILES

Once you have modified the master and/or node configuration files to your specifications, you can use
them when launching servers by specifying them as an argument. Keep in mind that if you specify a
configuration file, none of the other command line options you pass are respected.

CHAPTER 2. MASTER AND NODE CONFIGURATION

7

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node

To launch an all-in-one server using a master configuration and a node configuration file:

$ openshift start --master-config=/openshift.local.config/master/master-
config.yaml --node-config=/openshift.local.config/node-
<node_hostname>/node-config.yaml

To launch a master server using a master configuration file:

$ openshift start master --config=/openshift.local.config/master/master-
config.yaml

To launch a node server using a node configuration file:

$ openshift start node --config=/openshift.local.config/node-
<node_hostname>/node-config.yaml

2.4. MASTER CONFIGURATION FILES

The following master-config.yaml file is a sample master configuration file taken at a point in time. You
can create a new master configuration file to see the valid options for your installed version of OpenShift.

Sample Master Configuration File

apiLevels:
- v1beta3
- v1
apiVersion: v1
assetConfig:
 logoutURL: ""
 masterPublicURL: https://10.0.2.15:8443
 publicURL: https://10.0.2.15:8443/console/
 servingInfo:
 bindAddress: 0.0.0.0:8443
 certFile: master.server.crt
 clientCA: ""
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 0
controllers: '*'
corsAllowedOrigins:
- 10.0.2.15:8443
- 127.0.0.1
- localhost
dnsConfig:
 bindAddress: 0.0.0.0:53
etcdClientInfo:
 ca: ca.crt
 certFile: master.etcd-client.crt
 keyFile: master.etcd-client.key
 urls:
 - https://10.0.2.15:4001
etcdConfig:
 address: 10.0.2.15:4001
 peerAddress: 10.0.2.15:7001

OpenShift Enterprise 3.0 Administrator Guide

8

 peerServingInfo:
 bindAddress: 0.0.0.0:7001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 servingInfo:
 bindAddress: 0.0.0.0:4001
 certFile: etcd.server.crt
 clientCA: ca.crt
 keyFile: etcd.server.key
 storageDirectory: /root/openshift.local.etcd
etcdStorageConfig:
 kubernetesStoragePrefix: kubernetes.io
 kubernetesStorageVersion: v1
 openShiftStoragePrefix: openshift.io
 openShiftStorageVersion: v1
imageConfig:
 format: openshift/origin-${component}:${version}
 latest: false
kind: MasterConfig
kubeletClientInfo:
 ca: ca.crt
 certFile: master.kubelet-client.crt
 keyFile: master.kubelet-client.key
 port: 10250
kubernetesMasterConfig:
 apiLevels:
 - v1beta3
 - v1
 apiServerArguments: null
 controllerArguments: null
 masterCount: 1
 masterIP: 10.0.2.15
 podEvictionTimeout: 5m
 schedulerConfigFile: ""
 servicesNodePortRange: 30000-32767
 servicesSubnet: 172.30.0.0/16
 staticNodeNames: []
masterClients:
 externalKubernetesKubeConfig: ""
 openshiftLoopbackKubeConfig: openshift-master.kubeconfig
masterPublicURL: https://10.0.2.15:8443
networkConfig:
 clusterNetworkCIDR: 10.1.0.0/16
 hostSubnetLength: 8
 networkPluginName: ""
 serviceNetworkCIDR: 172.30.0.0/16
oauthConfig:
 assetPublicURL: https://10.0.2.15:8443/console/
 grantConfig:
 method: auto
 identityProviders:
 - challenge: true
 login: true
 name: anypassword
 provider:

CHAPTER 2. MASTER AND NODE CONFIGURATION

9

2.5. NODE CONFIGURATION FILES

The following node-config.yaml file is a sample node configuration file taken at a point in time. You can
create a new node configuration file to see the valid options for your installed version of OpenShift.

Example 2.1. Sample Node Configuration File

 apiVersion: v1
 kind: AllowAllPasswordIdentityProvider
 masterPublicURL: https://10.0.2.15:8443
 masterURL: https://10.0.2.15:8443
 sessionConfig:
 sessionMaxAgeSeconds: 300
 sessionName: ssn
 sessionSecretsFile: ""
 tokenConfig:
 accessTokenMaxAgeSeconds: 86400
 authorizeTokenMaxAgeSeconds: 300
policyConfig:
 bootstrapPolicyFile: policy.json
 openshiftInfrastructureNamespace: openshift-infra
 openshiftSharedResourcesNamespace: openshift
projectConfig:
 defaultNodeSelector: ""
 projectRequestMessage: ""
 projectRequestTemplate: ""
 securityAllocator:
 mcsAllocatorRange: s0:/2
 mcsLabelsPerProject: 5
 uidAllocatorRange: 1000000000-1999999999/10000
routingConfig:
 subdomain: router.default.svc.cluster.local
serviceAccountConfig:
 managedNames:
 - default
 - builder
 - deployer
 masterCA: ca.crt
 privateKeyFile: serviceaccounts.private.key
 publicKeyFiles:
 - serviceaccounts.public.key
servingInfo:
 bindAddress: 0.0.0.0:8443
 certFile: master.server.crt
 clientCA: ca.crt
 keyFile: master.server.key
 maxRequestsInFlight: 0
 requestTimeoutSeconds: 3600

allowDisabledDocker: true
apiVersion: v1
dnsDomain: cluster.local
dnsIP: 10.0.2.15
dockerConfig:
 execHandlerName: native

OpenShift Enterprise 3.0 Administrator Guide

10

1

2

3

Allows pods to be placed directly on certain set of nodes, or on all nodes without going through
the scheduler. You can then use pods to perform the same administrative tasks and support the
same services on each node.

Specifies the path for the pod manifest file or directory. If it is a directory, then it is expected to
contain one or more manifest files. This is used by the Kubelet to create pods on the node.

This is the interval (in seconds) for checking the manifest file for new data. The interval must be
a positive value.

imageConfig:
 format: openshift/origin-${component}:${version}
 latest: false
kind: NodeConfig
masterKubeConfig: node.kubeconfig
networkConfig:
 mtu: 1450
 networkPluginName: ""
nodeIP: ""
nodeName: node1.example.com

podManifestConfig: 1

 path: "/path/to/pod-manifest-file" 2

 fileCheckIntervalSeconds: 30 3
servingInfo:
 bindAddress: 0.0.0.0:10250
 certFile: server.crt
 clientCA: node-client-ca.crt
 keyFile: server.key
volumeDirectory: /root/openshift.local.volumes

CHAPTER 2. MASTER AND NODE CONFIGURATION

11

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#pods

CHAPTER 3. MANAGING NODES

3.1. OVERVIEW

You can manage nodes in your instance using the CLI.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

3.2. LISTING NODES

To list all nodes that are known to the master:

$ oc get nodes
NAME LABELS
STATUS
node1.example.com kubernetes.io/hostname=node1.example.com Ready
node2.example.com kubernetes.io/hostname=node2.example.com Ready

To only list information about a single node, replace <node> with the full node name:

$ oc get node <node>

The STATUS column in the output of these commands can show nodes with the following conditions:

Table 3.1. Node Conditions

Condition Description

Ready The node is passing the health checks performed from the master by returning
StatusOK.

NotReady The node is not passing the health checks performed from the master.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

NOTE

The STATUS column can also show Unknown for a node if the CLI cannot find any node
condition.

To get more detailed information about a specific node, including the reason for the current condition:

$ oc describe node <node>

For example:

$ oc describe node node1.example.com
Name: node1.example.com

OpenShift Enterprise 3.0 Administrator Guide

12

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node-object-definition
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#node

Labels: kubernetes.io/hostname=node1.example.com
CreationTimestamp: Wed, 10 Jun 2015 17:22:34 +0000
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime Reason Message
 Ready True Wed, 10 Jun 2015 19:56:16 +0000 Wed, 10 Jun 2015 17:22:34
+0000 kubelet is posting ready status
Addresses: 127.0.0.1
Capacity:
 memory: 1017552Ki
 pods: 100
 cpu: 2
Version:
 Kernel Version: 3.17.4-301.fc21.x86_64
 OS Image: Fedora 21 (Twenty One)
 Container Runtime Version: docker://1.6.0
 Kubelet Version: v0.17.1-804-g496be63
 Kube-Proxy Version: v0.17.1-804-g496be63
ExternalID: node1.example.com
Pods: (2 in total)
 docker-registry-1-9yyw5
 router-1-maytv
No events.

3.3. ADDING NODES

To add nodes to your existing OpenShift cluster, you can run an Ansible playbook that handles installing
the node components, generating the required certificates, and other important steps. See the advanced
installation method for instructions on running the playbook directly.

Alternatively, if you used the quick installation method, you can re-run the installer to add nodes, which
performs the same steps.

3.4. DELETING NODES

When you delete a node with the CLI, although the node object is deleted in Kubernetes, the pods that
exist on the node itself are not deleted. However, the pods cannot be accessed by OpenShift. The
behavior around deleting nodes and pods with the CLI is under active development.

To delete a node:

$ oc delete node <node>

3.5. UPDATING LABELS ON NODES

To add or update labels on a node:

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

To see more detailed usage:

$ oc label -h

CHAPTER 3. MANAGING NODES

13

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#adding-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#adding-nodes-or-reinstalling
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#labels

3.6. LISTING PODS ON NODES

To list all or selected pods on one or more nodes:

$ oadm manage-node <node1> <node2> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

To list all or selected pods on selected nodes:

$ oadm manage-node --selector=<node_selector> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

3.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE

By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are
allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods
from being scheduled on the node. Existing pods on the node are not affected.

To mark a node or nodes as unschedulable:

$ oadm manage-node <node1> <node2> --schedulable=false

For example:

$ oadm manage-node node1.example.com --schedulable=false
NAME LABELS
STATUS
node1.example.com kubernetes.io/hostname=node1.example.com
Ready,SchedulingDisabled

To mark a currently unschedulable node or nodes as schedulable:

$ oadm manage-node <node1> <node2> --schedulable

Alternatively, instead of specifying specific node names (e.g., <node1><node2>), you can use the --
selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

3.8. EVACUATING PODS ON NODES

Evacuating pods allows you to migrate all or selected pods from a given node or nodes. Nodes must first
be marked unschedulable to perform pod evacuation.

Only pods backed by a replication controller can be evacuated; the replication controllers create new
pods on other nodes and remove the existing pods from the specified node(s). Bare pods, meaning those
not backed by a replication controller, are unaffected by default. You can evacuate a subset of pods by
specifying a pod-selector. Pod selector is based on labels, so all the pods with the specified label will be
evacuated.

To list pods that will be migrated without actually performing the evacuation, use the --dry-run option:

$ oadm manage-node <node1> <node2> \
 --evacuate --dry-run [--pod-selector=<pod_selector>]

OpenShift Enterprise 3.0 Administrator Guide

14

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#replication-controllers

To actually evacuate all or selected pods on one or more nodes:

$ oadm manage-node <node1> <node2> \
 --evacuate [--pod-selector=<pod_selector>]

You can force deletion of bare pods by using the --force option:

$ oadm manage-node <node1> <node2> \
 --evacuate --force [--pod-selector=<pod_selector>]

Alternatively, instead of specifying specific node names (e.g., <node1><node2>), you can use the --
selector=<node_selector> option to evacuate pods on selected nodes.

CHAPTER 3. MANAGING NODES

15

CHAPTER 4. ROUTING FROM EDGE LOAD BALANCERS

4.1. OVERVIEW

Pods inside of an OpenShift cluster are only reachable via their IP addresses on the cluster network. An
edge load balancer can be used to accept traffic from outside networks and proxy the traffic to pods
inside the OpenShift cluster. In cases where the load balancer is not part of the cluster network, routing
becomes a hurdle as the internal cluster network is not accessible to the edge load balancer.

To solve this problem where the OpenShift cluster is using OpenShift SDN as the cluster networking
solution, there are two ways to achieve network access to the pods.

4.2. INCLUDING THE LOAD BALANCER IN THE SDN

If possible, run an OpenShift node instance on the load balancer itself that uses OpenShift SDN as the
networking plug-in. This way, the edge machine gets its own Open vSwitch bridge that the SDN
automatically configures to provide access to the pods and nodes that reside in the cluster. The routing
table is dynamically configured by the SDN as pods are created and deleted, and thus the routing
software is able to reach the pods.

Mark the load balancer machine as an unschedulable node so that no pods end up on the load balancer
itself:

$ oadm manage-node <load_balancer_hostname> --schedulable=false

If the load balancer comes packaged as a Docker container, then it is even easier to integrate with
OpenShift: Simply run the load balancer as a pod with the host port exposed. The pre-packaged
HAProxy router in OpenShift runs in precisely this fashion.

4.3. ESTABLISHING A TUNNEL USING A RAMP NODE

In some cases, the previous solution is not possible. For example, an F5 BIG-IP® host cannot run an
OpenShift node instance or the OpenShift SDN because F5® uses a custom, incompatible Linux kernel
and distribution.

Instead, to enable F5 BIG-IP® to reach pods, you can choose an existing node within the cluster network
as a ramp node and establish a tunnel between the F5 BIG-IP® host and the designated ramp node.
Because it is otherwise an ordinary OpenShift node, the ramp node has the necessary configuration to
route traffic to any pod on any node in the cluster network. The ramp node thus assumes the role of a
gateway through which the F5 BIG-IP® host has access to the entire cluster network.

Following is an example of establishing an ipip tunnel between an F5 BIG-IP® host and a designated
ramp node.

On the F5 BIG-IP® host:

1. Set the following variables:

F5_IP=10.3.89.66 1

RAMP_IP=10.3.89.89 2

TUNNEL_IP1=10.3.91.216 3

CLUSTER_NETWORK=10.1.0.0/16 4

OpenShift Enterprise 3.0 Administrator Guide

16

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/rest_api_reference/#v1-containerport
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#routers

1 2

3

4

1

The F5_IP and RAMP_IP variables refer to the F5 BIG-IP® host’s and the ramp node’s IP
addresses, respectively, on a shared, internal network.

An arbitrary, non-conflicting IP address for the F5® host’s end of the ipip tunnel.

The overlay network CIDR that the OpenShift SDN uses to assign addresses to pods.

2. Delete any old route, self, tunnel and SNAT pool:

tmsh delete net route $CLUSTER_NETWORK || true
tmsh delete net self SDN || true
tmsh delete net tunnels tunnel SDN || true
tmsh delete ltm snatpool SDN_snatpool || true

3. Create the new tunnel, self, route and SNAT pool and use the SNAT pool in the virtual servers:

tmsh create net tunnels tunnel SDN \
 \{ description "OpenShift SDN" local-address \
 $F5_IP profile ipip remote-address $RAMP_IP \}
tmsh create net self SDN \{ address \
 ${TUNNEL_IP1}/24 allow-service all vlan SDN \}
tmsh create net route $CLUSTER_NETWORK interface SDN
tmsh create ltm snatpool SDN_snatpool members add { $TUNNEL_IP1 }
tmsh modify ltm virtual ose-vserver source-address-translation {
type snat pool SDN_snatpool }
tmsh modify ltm virtual https-ose-vserver source-address-
translation { type snat pool SDN_snatpool }

On the ramp node:

1. Set the following variables:

F5_IP=10.3.89.66
TUNNEL_IP1=10.3.91.216

TUNNEL_IP2=10.3.91.217 1

A second, arbitrary IP address for the ramp node’s end of the ipip tunnel.

2. Delete any old tunnel:

ip tunnel del tun1 || true

3. Create the ipip tunnel on the ramp node, using a suitable L2-connected interface (e.g., eth0):

ip tunnel add tun1 mode ipip \
 remote $F5_IP dev eth0
ip addr add $TUNNEL_IP2 dev tun1
ip link set tun1 up
ip route add $TUNNEL_IP1 dev tun1
ping -c 5 $TUNNEL_IP1

4. SNAT the tunnel IP with an unused IP from the SDN subnet:

CHAPTER 4. ROUTING FROM EDGE LOAD BALANCERS

17

source /etc/openshift-sdn/config.env
subaddr=$(echo $OPENSHIFT_SDN_TAP1_ADDR | cut -d "." -f 1,2,3)
export RAMP_SDN_IP=${subaddr}.254

5. Assign this RAMP_SDN_IP as an additional address to tun0 (the local SDN’s gateway):

ip addr add ${RAMP_SDN_IP} dev tun0

6. Modify the OVS rules for SNAT:

ovs-ofctl -O OpenFlow13 add-flow br0 \

"cookie=0x999,ip,nw_src=${TUNNEL_IP1},actions=mod_nw_src:${RAMP_SDN_
IP},resubmit(,0)"
ovs-ofctl -O OpenFlow13 add-flow br0 \

"cookie=0x999,ip,nw_dst=${RAMP_SDN_IP},actions=mod_nw_dst:${TUNNEL_I
P1},resubmit(,0)"
ovs-ofctl -O OpenFlow13 add-flow br0 \
 "cookie=0x999, table=0, arp, arp_tpa=${RAMP_SDN_IP},
actions=output:2"

7. Mark the ramp node as an unschedulable node so that no pods end up on the ramp node itself:

$ oadm manage-node <ramp_node_hostname> --schedulable=false

4.3.1. Configuring a Highly-Available Ramp Node

You can use OpenShift’s ipfailover feature, which uses keepalived internally, to make the ramp node
highly available from F5 BIG-IP®'s point of view. To do so, first bring up two nodes, for example called
ramp-node-1 and ramp-node-2, on the same L2 subnet.

Then, choose some unassigned IP address from within the same subnet to use for your virtual IP, or VIP.
This will be set as the RAMP_IP variable with which you will configure your tunnel on F5 BIG-IP®.

For example, suppose you are using the 10.20.30.0/24 subnet for your ramp nodes, and you have
assigned 10.20.30.2 to ramp-node-1 and 10.20.30.3 to ramp-node-2. For your VIP, choose some
unassigned address from the same 10.20.30.0/24 subnet, for example 10.20.30.4. Then, to configure
ipfailover, mark both nodes with a label, such as f5rampnode:

$ oc label node ramp-node-1 f5rampnode=true
$ oc label node ramp-node-2 f5rampnode=true

Similar to instructions from the ipfailover documentation, you must now create a service account and
add it to the privileged SCC. First, create the f5ipfailover service account:

$ echo '
 { "kind": "ServiceAccount",
 "apiVersion": "v1",
 "metadata": { "name": "f5ipfailover" }
 }
 ' | oc create -f -

OpenShift Enterprise 3.0 Administrator Guide

18

1

Next, you can manually edit the privileged SCC and add the f5ipfailover service account, or you can
script editing the privileged SCC if you have jq installed. To manually edit the privileged SCC, run:

$ oc edit scc privileged

Then add the f5ipfailover service account in form system:serviceaccount:<project>:<name> to the
users section:

...
users:
- system:serviceaccount:openshift-infra:build-controller
- system:serviceaccount:default:router
- system:serviceaccount:default:f5ipfailover

Alternatively, to script editing privileged SCC if you have jq installed, run:

$ oc get scc privileged -o json |
 jq '.users |= .+ ["system:serviceaccount:default:f5ipfailover"]' |
 oc replace scc -f -

Finally, configure ipfailover using your chosen VIP (the RAMP_IP variable) and the f5ipfailover service
account, assigning the VIP to your two nodes using the f5rampnode label you set earlier:

RAMP_IP=10.20.30.4

IFNAME=eth0 1
oadm ipfailover <name-tag> \
 --virtual-ips=$RAMP_IP \
 --interface=$IFNAME \
 --watch-port=0 \
 --replicas=2 \
 --service-account=f5ipfailover \
 --selector='f5rampnode=true'

The interface where RAMP_IP should be configured.

With the above setup, the VIP (the RAMP_IP variable) is automatically re-assigned when the ramp node
host that currently has it assigned fails.

CHAPTER 4. ROUTING FROM EDGE LOAD BALANCERS

19

CHAPTER 5. AGGREGATING CONTAINER LOGS

5.1. OVERVIEW

As an OpenShift administrator, you may want to view the logs from all containers in one user interface.
The currently supported method for aggregating container logs in OpenShift Enterprise is using a
centralized file system. Additional supported methods are planned for inclusion in future releases.

NOTE

As packaging improvements are made, these instructions will be simplified.

5.2. USING A CENTRALIZED FILE SYSTEM

This method reads all container logs and forwards them to a central server for storage on the file system.

5.2.1. Installing fluentd (td-agent) on Nodes

Perform the following steps on each node to install and configure fluentd (td-agent):

1. Run the following commands:

export RPM=td-agent-2.2.0-0.x86_64.rpm
curl https://packages.treasuredata.com/2/redhat/7/x86_64/$RPM \
 -o /tmp/$RPM
yum localinstall /tmp/$RPM
/opt/td-agent/embedded/bin/gem install fluent-plugin-kubernetes
mkdir -p /etc/td-agent/config.d
chown td-agent:td-agent /etc/td-agent/config.d

2. Create a directory to house the logs:

mkdir -p /var/log/td-agent/tmp
chown td-agent:td-agent /var/log/td-agent/tmp

To allow td-agent access to the containers logs, create the /etc/sysconfig/td-agent file and
ensure it contains the following:

DAEMON_ARGS=
TD_AGENT_ARGS="/usr/sbin/td-agent --log /var/log/td-agent/td-
agent.log --use-v1-config"

3. Add the following line to the /etc/td-agent/td-agent.conf file:

 @include config.d/*.conf

4. Create the /etc/td-agent/config.d/kubernetes.conf file with the following contents:

 <source>
 type tail
 path /var/lib/docker/containers/*/*-json.log
 pos_file /var/log/td-agent/tmp/fluentd-docker.pos

OpenShift Enterprise 3.0 Administrator Guide

20

1

2

The name for the master that will be used during logging.

The IP or a DNS resolvable name used to access the master.

5. Enable fluentd:

 time_format %Y-%m-%dT%H:%M:%S
 tag docker.*
 format json
 read_from_head true
 </source>

 <match docker.var.lib.docker.containers.*.*.log>
 type kubernetes
 container_id ${tag_parts[5]}
 tag docker.${name}
 </match>

 <match kubernetes>
 type copy
 <store>
 type forward
 send_timeout 60s
 recover_wait 10s
 heartbeat_interval 1s
 phi_threshold 16
 hard_timeout 60s
 log_level trace
 require_ack_response true
 heartbeat_type tcp
 <server>

 name logging_name 1

 host host_name 2
 port 24224
 weight 60
 </server>

 <secondary>
 type file
 path /var/log/td-agent/forward-failed
 </secondary>
 </store>

 <store>
 type file
 path /var/log/td-agent/containers.log
 time_slice_format %Y%m%d
 time_slice_wait 10m
 time_format %Y%m%dT%H%M%S%z
 compress gzip
 utc
 </store>
 </match>

CHAPTER 5. AGGREGATING CONTAINER LOGS

21

systemctl enable td-agent
systemctl start td-agent

TIP

Any errors are logged in the /var/log/td-agent/td-agent.log file.

5.2.2. Optional Method to Verify Working Nodes

You can optionally set up the master to be the aggregator to test and verify that the nodes are working
properly.

1. Install fluentd (td-agent) on the master:

export RPM=td-agent-2.2.0-0.x86_64.rpm
curl https://packages.treasuredata.com/2/redhat/7/x86_64/$RPM \
 -o /tmp/$RPM
yum localinstall /tmp/$RPM
mkdir -p /etc/td-agent/config.d
chown td-agent:td-agent /etc/td-agent/config.d

2. Ensure port 24224 is open on the master’s firewall to allow the nodes access.

3. Configure fluentd to aggregate container logs by adding the following line to the /etc/td-
agent/td-agent.conf file:

 @include config.d/*.conf

4. Create the /etc/td-agent/config.d/kubernetes.conf file with the following contents:

 <match kubernetes.**>
 type file
 path /var/log/td-agent/containers.log
 time_slice_format %Y%m%d
 time_slice_wait 10m
 time_format %Y%m%dT%H%M%S%z
 compress gzip
 utc
 </match>

5. Enable fluentd:

systemctl enable td-agent
systemctl start td-agent

TIP

Any errors are logged in the /var/log/td-agent/td-agent.log file.

You should now find all the containers' logs available on the master in the /var/log/td-
agent/containers.log file.

OpenShift Enterprise 3.0 Administrator Guide

22

CHAPTER 6. CONFIGURING AUTHENTICATION

6.1. OVERVIEW

The OpenShift master includes a built-in OAuth server. Developers and administrators obtain OAuth
access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth using a master configuration file to specify an identity
provider. If you installed OpenShift using the Quick Installation or Advanced Installation method, the
Deny All identity provider is used by default, which denies access for all user names and passwords. To
allow access, you must choose a different identity provider and configure the master configuration file
appropriately (located at /etc/openshift/master/master-config.yaml by default).

When running a master without a configuration file, the Allow All identity provider is used by default,
which allows any non-empty user name and password to log in. This is useful for testing purposes. To
use other identity providers, or to modify any token, grant, or session options, you must run the master
from a configuration file.

6.2. IDENTITY PROVIDERS

You can configure the master for authentication using your desired identity provider by modifying the
master configuration file. The following sections detail the identity providers supported by OpenShift.

There are three parameters common to all identity providers:

Parameter Description

name The provider name is prefixed to provider user names to form an identity name.

challenge When true, unauthenticated token requests from non-web clients (like the CLI) are sent
a WWW-Authenticate challenge header. Not supported by all identity providers.

To prevent cross-site request forgery (CSRF) attacks against browser clients Basic
authentication challenges are only sent if a X-CSRF-Token header is present on the
request. Clients that expect to receive Basic WWW-Authenticate challenges should
set this header to a non-empty value.

login When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider. Not supported by all identity
providers.

6.2.1. Allow All

Set AllowAllPasswordIdentityProvider in the identityProviders stanza to allow any non-empty
user name and password to log in. This is the default identity provider when running OpenShift without a
master configuration file.

Example 6.1. Master Configuration Using AllowAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

CHAPTER 6. CONFIGURING AUTHENTICATION

23

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#api-authentication
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-advanced-install

1

2

3

1

2

3

 - name: my_allow_provider 1

 challenge: true 2

 login: true 3
 provider:
 apiVersion: v1
 kind: AllowAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

6.2.2. Deny All

Set DenyAllPasswordIdentityProvider in the identityProviders stanza to deny access for all user
names and passwords.

Example 6.2. Master Configuration Using DenyAllPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_deny_provider 1

 challenge: true 2

 login: true 3
 provider:
 apiVersion: v1
 kind: DenyAllPasswordIdentityProvider

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

6.2.3. HTPasswd

Set HTPasswdPasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against a flat file generated using htpasswd.

OpenShift Enterprise 3.0 Administrator Guide

24

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

1

2

3

4

NOTE

The htpasswd utility is in the httpd-tools package:

yum install httpd-tools

Only MD5, bcrypt, and SHA encryption types are supported. MD5 encryption is recommended, and is the
default for htpasswd. Plaintext and crypt hashes are not currently supported.

The flat file is re-read if its modification time changes, without requiring a server restart.

To create the file, run:

$ htpasswd -c </path/to/users.htpasswd> <user_name>

To add or update a login to the file, run:

$ htpasswd </path/to/users.htpasswd> <user_name>

To remove a login from the file, run:

$ htpasswd -D </path/to/users.htpasswd> <user_name>

Example 6.3. Master Configuration Using HTPasswdPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_htpasswd_provider 1

 challenge: true 2

 login: true 3
 provider:
 apiVersion: v1
 kind: HTPasswdPasswordIdentityProvider

 file: /path/to/users.htpasswd 4

This provider name is prefixed to provider user names to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

File generated using htpasswd.

6.2.4. LDAP Authentication

Set LDAPPasswordIdentityProvider in the identityProviders stanza to validate user names and
passwords against an LDAPv3 server, using simple bind authentication.

CHAPTER 6. CONFIGURING AUTHENTICATION

25

http://httpd.apache.org/docs/2.4/programs/htpasswd.html

During authentication, the LDAP directory is searched for an entry that matches the provided user name.
If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of the
entry plus the provided password. Here are the steps taken:

1. Generate a search filter by combining the attribute and filter in the configured url with the user-
provided user name.

2. Search the directory using the generated filter. If the search does not return exactly one entry,
deny access.

3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and the
user-provided password.

4. If the bind is unsuccessful, deny access.

5. If the bind is successful, build an identity using the configured attributes as the identity, email
address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use.
The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For the above example:

URL Component Description

ldap For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps
instead.

host:port The name and port of the LDAP server. Defaults to localhost:389 for ldap and
localhost:636 for LDAPS.

basedn The DN of the branch of the directory where all searches should start from. At the very
least, this must be the top of your directory tree, but it could also specify a subtree in
the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of
attributes, only the first attribute will be used, no matter how many are provided. If no
attributes are provided, the default is to use uid. It is recommended to choose an
attribute that will be unique across all entries in the subtree you will be using.

scope The scope of the search. Can be either either one or sub. If the scope is not provided,
the default is to use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*)

When doing searches, the attribute, filter, and provided user name are combined to create a search filter
that looks like:

(&(<filter>)(<attribute>=<username>))

OpenShift Enterprise 3.0 Administrator Guide

26

1

2

3

4

5

6

7

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&
(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to
perform the entry search.

Example 6.4. Master Configuration Using LDAPPasswordIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: "my_ldap_provider" 1

 challenge: true 2

 login: true 3
 provider:
 apiVersion: v1
 kind: LDAPPasswordIdentityProvider
 attributes:

 id: 4
 - dn

 email: 5
 - mail

 name: 6
 - cn

 preferredUsername: 7
 - uid

 bindDN: "" 8

 bindPassword: "" 9

 ca: my-ldap-ca-bundle.crt 10

 insecure: false 11

 url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 12

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is
required. If none of the listed attribute have a value, authentication fails.

List of attributes to use as the email address. First non-empty attribute is used.

List of attributes to use as the display name. First non-empty attribute is used.

List of attributes to use as the preferred user name when provisioning a user for this identity.
First non-empty attribute is used.

CHAPTER 6. CONFIGURING AUTHENTICATION

27

8

9

10

11

12

1

Optional DN to use to bind during the search phase.

Optional password to use to bind during the search phase.

Certificate bundle to use to validate server certificates for the configured URL. If empty, system
trusted roots are used. Only applies if insecure: false.

When true, no TLS connection is made to the server. When false, ldaps:// URLs connect
using TLS, and ldap:// URLs are upgraded to TLS.

An RFC 2255 URL which specifies the LDAP host and search parameters to use, as described
above.

6.2.5. Basic Authentication (Remote)

Set BasicAuthPasswordIdentityProvider in the identityProviders stanza to validate user names
and passwords against a remote server using a server-to-server Basic authentication request. User
names and passwords are validated against a remote URL that is protected by Basic authentication and
returns JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

{"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"} 1

The subject must be unique to the authenticated user and must not be able to be modified.

A successful response may optionally provide additional data, such as:

A display name using the name key. For example:

{"sub":"userid", "name": "User Name", ...}

An email address using the email key. For example:

{"sub":"userid", "email":"user@example.com", ...}

A preferred user name using the preferred_username key. This is useful when the unique,
unchangeable subject is a database key or UID, and a more human-readable name exists. This
is used as a hint when provisioning the OpenShift user for the authenticated identity. For
example:

{"sub":"014fbff9a07c", "preferred_username":"bob", ...}

Example 6.5. Master Configuration Using BasicAuthPasswordIdentityProvider

OpenShift Enterprise 3.0 Administrator Guide

28

1

2

3

4

5

6

7

oauthConfig:
 ...
 identityProviders:

 - name: my_remote_basic_auth_provider 1

 challenge: true 2

 login: true 3
 provider:
 apiVersion: v1
 kind: BasicAuthPasswordIdentityProvider

 url: https://www.example.com/remote-idp 4

 ca: /path/to/ca.file 5

 certFile: /path/to/client.crt 6

 keyFile: /path/to/client.key 7

This provider name is prefixed to the returned user ID to form an identity name.

When true, unauthenticated token requests from non-web clients (like the CLI) are sent a WWW-
Authenticate challenge header for this provider.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to a login page backed by this provider.

URL accepting credentials in Basic authentication headers.

Optional: Certificate bundle to use to validate server certificates for the configured URL.

Optional: Client certificate to present when making requests to the configured URL.

Key for the client certificate. Required if certFile is specified.

6.2.6. Request Header

Set RequestHeaderIdentityProvider in the identityProviders stanza to identify users from request
header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy,
which sets the request header value. This is similar to how the remote user plug-in in OpenShift
Enterprise 2 allowed administrators to provide Kerberos, LDAP, and many other forms of enterprise
authentication.

For users to authenticate using this identity provider, they must access <master>/oauth/authorize via an
authenticating proxy. You can either proxy the entire master API server so that all access goes through
the proxy, or you can configure the OAuth server to redirect unauthenticated requests to the proxy.

To redirect unauthenticated requests from clients expecting login flows:

1. Set the login parameter to true.

2. Set the provider.loginURL parameter to the proxy URL to send those clients to.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

1. Set the challenge parameter to true.

CHAPTER 6. CONFIGURING AUTHENTICATION

29

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#Configuring_OpenShift_Enterprise_Authentication

1

2

3

4

2. Set the provider.challengeURL parameter to the proxy URL to send those clients to.

The provider.challengeURL and provider.loginURL parameters can include the following
tokens in the query portion of the URL:

${url} is replaced with the current URL, escaped to be safe in a query parameter.
For example: https://www.example.com/sso-login?then=${url}

${query} is replaced with the current query string, unescaped.
For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

WARNING

If you expect unauthenticated requests to reach the OAuth server, a clientCA
parameter should be set for this identity provider, so that incoming requests are
checked for a valid client certificate before the request’s headers are checked for a
user name. Otherwise, any direct request to the OAuth server can impersonate any
identity from this provider, merely by setting a request header.

Example 6.6. Master Configuration Using RequestHeaderIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: my_request_header_provider 1

 challenge: true 2

 login: true 3
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://www.example.com/challenging-

proxy/oauth/authorize?${query}" 4
 loginURL: "https://www.example.com/login-proxy/oauth/authorize?

${query}" 5

 clientCA: /path/to/client-ca.file 6

 headers: 7
 - X-Remote-User
 - SSO-User

This provider name is prefixed to the user name in the request header to form an identity name.

RequestHeaderIdentityProvider can only respond to clients that request WWW-Authenticate
challenges by redirecting to a configured challengeURL. The configured URL should respond
with a WWW-Authenticate challenge.

RequestHeaderIdentityProvider can only respond to clients requesting a login flow by
redirecting to a configured loginURL. The configured URL should respond with a login flow.



OpenShift Enterprise 3.0 Administrator Guide

30

https://www.example.com/sso-login?then=${url}
https://www.example.com/auth-proxy/oauth/authorize?${query}

5

6

7

Optional: URL to redirect unauthenticated /oauth/authorize requests to, for clients which expect
interactive logins. ${url} is replaced with the current URL, escaped to be safe in a query

Optional: URL to redirect unauthenticated /oauth/authorize requests to, for clients which expect
WWW-Authenticate challenges. ${url} is replaced with the current URL, escaped to be safe in
a query parameter. ${query} is replaced with the current query string.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and
validated against the certificate authorities in the specified file before the request headers are
checked for user names.

Header names to check, in order, for user names. The first header containing a value is used as
the user name. Required, case-insensitive.

Example 6.7. Apache Authentication Using RequestHeaderIdentityProvider

This example configures an authentication proxy on the same host as the master. Having the proxy
and master on the same host is merely a convenience and may not be suitable for your environment.
For example, if you were already running a router on the master, port 443 would not be available.

It is also important to note that while this reference configuration uses Apache’s mod_auth_form, it is
by no means required and other proxies can easily be used if the following requirements are met:

1. Block the X-Remote-User header from client requests to prevent spoofing.

2. Enforce client certificate authentication in the RequestHeaderIdentityProvider
configuration.

3. Require the X-Csrf-Token header be set for all authentication request using the challenge
flow.

4. Only the /oauth/authorize endpoint should be proxied, and redirects should not be rewritten to
allow the backend server to send the client to the correct location.

Installing the Prerequisites

The mod_auth_form module is shipped as part of the mod_session package that is found in the
Optional channel:

yum install -y httpd mod_ssl mod_session apr-util-openssl

Generate a CA for validating requests that submit the trusted header. This CA should be used as the
file name for clientCA in the master’s identity provider configuration.

oadm ca create-signer-cert \
 --cert='/etc/openshift/master/proxyca.crt' \
 --key='/etc/openshift/master/proxyca.key' \
 --name='openshift-proxy-signer@1432232228' \
 --serial='/etc/openshift/master/proxyca.serial.txt'

Generate a client certificate for the proxy. This can be done using any x509 certificate tooling. For
convenience, the oadm CLI can be used:

CHAPTER 6. CONFIGURING AUTHENTICATION

31

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-deploy-router
https://access.redhat.com/solutions/392003

1

2

oadm create-api-client-config \
 --certificate-authority='/etc/openshift/master/proxyca.crt' \
 --client-dir='/etc/openshift/master/proxy' \
 --signer-cert='/etc/openshift/master/proxyca.crt' \
 --signer-key='/etc/openshift/master/proxyca.key' \
 --signer-serial='/etc/openshift/master/proxyca.serial.txt' \

 --user='system:proxy' 1

pushd /etc/openshift/master

cp master.server.crt /etc/pki/tls/certs/localhost.crt 2
cp master.server.key /etc/pki/tls/private/localhost.key
cp ca.crt /etc/pki/CA/certs/ca.crt
cat proxy/system\:proxy.crt \
 proxy/system\:proxy.key > \
 /etc/pki/tls/certs/authproxy.pem
popd

The user name can be anything, however it is useful to give it a descriptive name as it will
appear in logs.

When running the authentication proxy on a different host name than the master, it is important
to generate a certificate that matches the host name instead of using the default master
certificate as shown above. The value for masterPublicURL in the
/etc/openshift/master/master-config.yaml file must be included in the X509v3 Subject
Alternative Name in the certificate that is specified for SSLCertificateFile. If a new
certificate needs to be created, the oadm ca create-server-cert command can be used.

Configuring Apache

Unlike OpenShift Enterprise 2, this proxy does not need to reside on the same host as the master. It
uses a client certificate to connect to the master, which is configured to trust the X-Remote-User
header.

Configure Apache per the following:

LoadModule auth_form_module modules/mod_auth_form.so
LoadModule session_module modules/mod_session.so
LoadModule request_module modules/mod_request.so

Nothing needs to be served over HTTP. This virtual host simply
redirects to
HTTPS.
<VirtualHost *:80>
 DocumentRoot /var/www.adoc
 RewriteEngine On
 RewriteRule ^(.*)$ https://%{HTTP_HOST}$1 [R,L]
</VirtualHost>

<VirtualHost *:443>
 # This needs to match the certificates you generated. See the CN and
X509v3
 # Subject Alternative Name in the output of:
 # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
 ServerName www.example.com

OpenShift Enterprise 3.0 Administrator Guide

32

 DocumentRoot /var/www.adoc
 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/localhost.crt
 SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
 SSLCACertificateFile /etc/pki/CA/certs/ca.crt

 SSLProxyEngine on
 SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
 # It's critical to enforce client certificates on the Master.
Otherwise
 # requests could spoof the X-Remote-User header by accessing the
Master's
 # /oauth/authorize endpoint directly.
 SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem

 # Send all requests to the console
 RewriteEngine On
 RewriteRule ^/console(.*)$ https://%
{HTTP_HOST}:8443/console$1 [R,L]

 # In order to using the challenging-proxy an X-Csrf-Token must be
present.
 RewriteCond %{REQUEST_URI} ^/challenging-proxy
 RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
 RewriteRule ^.* - [F,L]

 <Location /challenging-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize
 AuthType basic
 </Location>

 <Location /login-proxy/oauth/authorize>
 # Insert your backend server name/ip here.
 ProxyPass https://[MASTER]:8443/oauth/authorize

 # mod_auth_form providers are implemented by mod_authn_dbm,
mod_authn_file,
 # mod_authn_dbd, mod_authnz_ldap and mod_authn_socache.
 AuthFormProvider file
 AuthType form
 AuthName openshift
 ErrorDocument 401 /login.adoc
 </Location>

 <ProxyMatch /oauth/authorize>
 AuthUserFile /etc/openshift/htpasswd
 AuthName openshift
 Require valid-user
 RequestHeader set X-Remote-User %{REMOTE_USER}s

 # For ldap:
 # AuthBasicProvider ldap
 # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-
domain,dc=com?uid?sub?(objectClass=*)"

CHAPTER 6. CONFIGURING AUTHENTICATION

33

 # It's possible to remove the mod_auth_form usage and replace it
with
 # something like mod_auth_kerb, mod_auth_gsspai or even
mod_auth_mellon.
 # The former would be able to support both the login and challenge
flows
 # from the Master. Mellon would likely only support the login flow.

 # For Kerberos
 # yum install mod_auth_gssapi
 # AuthType GSSAPI
 # GssapiCredStore keytab:/etc/httpd.keytab
 </ProxyMatch>

</VirtualHost>

RequestHeader unset X-Remote-User

Additional mod_auth_form Requirements

A sample login page is available from the openshift_extras repository. This file should be placed in the
DocumentRoot location (/var/www.adoc by default).

Creating Users

At this point, you can create the users in the system Apache is using to store accounts information. In
this example, file-backed authentication is used:

yum -y install httpd-tools
touch /etc/openshift/htpasswd
htpasswd -c /etc/openshift/htpasswd <user_name>

Configuring the Master

The identityProviders stanza in the /etc/openshift/master/master-config.yaml file must be
updated as well:

 identityProviders:
 - name: requestheader
 challenge: true
 login: true
 provider:
 apiVersion: v1
 kind: RequestHeaderIdentityProvider
 challengeURL: "https://[MASTER]/challenging-proxy/oauth/authorize?
${query}"
 loginURL: "https://[MASTER]/login-proxy/oauth/authorize?${query}"
 clientCA: /etc/openshift/master/proxyca.crt
 headers:
 - X-Remote-User

Restarting Services

Finally, restart the following services:

OpenShift Enterprise 3.0 Administrator Guide

34

https://github.com/openshift/openshift-extras/tree/master/misc/form_auth

systemctl restart httpd
systemctl restart openshift-master

Verifying the Configuration

1. Test by bypassing the proxy. You should be able to request a token if you supply the correct
client certificate and header:

curl -L -k -H "X-Remote-User: joe" \
 --cert /etc/pki/tls/certs/authproxy.pem \
 https://[MASTER]:8443/oauth/token/request

2. If you do not supply the client certificate, the request should be denied:

curl -L -k -H "X-Remote-User: joe" \
 https://[MASTER]:8443/oauth/token/request

3. This should show a redirect to the configured challengeURL (with additional query
parameters):

curl -k -v -H 'X-Csrf-Token: 1' \
 '<masterPublicURL>/oauth/authorize?client_id=openshift-
challenging-client&response_type=token'

4. This should show a 401 response with a WWW-Authenticate basic challenge:

curl -k -v -H 'X-Csrf-Token: 1' \
 '<redirected challengeURL from step 3 +query>'

5. This should show a redirect with an access token:

curl -k -v -u <your_user>:<your_password> \
 -H 'X-Csrf-Token: 1' '<redirected_challengeURL_from_step_3
+query>'

6.2.7. GitHub

Set GitHubIdentityProvider in the identityProviders stanza to use GitHub as an identity provider,
using the OAuth integration.

NOTE

Using GitHub as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Example 6.8. Master Configuration Using GitHubIdentityProvider

oauthConfig:
 ...
 identityProviders:

CHAPTER 6. CONFIGURING AUTHENTICATION

35

https://github.com/
https://developer.github.com/v3/oauth/

1

2

3

4

5

1

 - name: github 1

 challenge: false 2

 login: true 3
 provider:
 apiVersion: v1
 kind: GitHubIdentityProvider

 clientID: ... 4

 clientSecret: ... 5

This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also
used to build the callback URL.

GitHubIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to GitHub to log in.

The client ID of a registered GitHub OAuth application. The application must be configured with
a callback URL of <master>/oauth2callback/<identityProviderName>.

The client secret issued by GitHub.

6.2.8. Google

Set GoogleIdentityProvider in the identityProviders stanza to use Google as an identity provider,
using Google’s OpenID Connect integration.

NOTE

Using Google as an identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Example 6.9. Master Configuration Using GoogleIdentityProvider

oauthConfig:
 ...
 identityProviders:

 - name: google 1

 challenge: false 2

 login: true 3
 provider:
 apiVersion: v1
 kind: GoogleIdentityProvider

 clientID: ... 4

 clientSecret: ... 5

 hostedDomain: "" 6

This provider name is prefixed to the Google numeric user ID to form an identity name. It is also
used to build the redirect URL.

OpenShift Enterprise 3.0 Administrator Guide

36

https://github.com/settings/applications/new
https://developers.google.com/identity/protocols/OpenIDConnect

2

3

4

5

6

GoogleIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to Google to log in.

The client ID of a registered Google project. The project must be configured with a redirect URI
of <master>/oauth2callback/<identityProviderName>.

The client secret issued by Google.

Optional hosted domain to restrict sign-in accounts to. If empty, any Google account is allowed
to authenticate.

6.2.9. OpenID Connect

Set OpenIDIdentityProvider in the identityProviders stanza to integrate with an OpenID Connect
identity provider using an Authorization Code Flow.

NOTE

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the
extraScopes field.

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified,
from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email
address. If multiple claims are specified, the first one with a non-empty value is used. The standard
claims are:

sub The user identity.

preferred
_username

The preferred user name when provisioning a user.

email Email address.

name Display name.

NOTE

Using an OpenID Connect identity provider requires users to get a token using
<master>/oauth/token/request to use with command-line tools.

Example 6.10. Standard Master Configuration Using OpenIDIdentityProvider

CHAPTER 6. CONFIGURING AUTHENTICATION

37

https://console.developers.google.com/
https://developers.google.com/identity/protocols/OpenIDConnect#hd-param
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

1

2

3

4

5

6

7

8

oauthConfig:
 ...
 identityProviders:

 - name: my_openid_connect 1

 challenge: false 2

 login: true 3
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider

 clientID: ... 4

 clientSecret: ... 5
 claims:
 id:

 - sub 6
 preferredUsername:
 - preferred_username
 name:
 - name
 email:
 - email
 urls:

 authorize: https://myidp.example.com/oauth2/authorize 7

 token: https://myidp.example.com/oauth2/token 8

This provider name is prefixed to the value of the identity claim to form an identity name. It is
also used to build the redirect URL.

OpenIDIdentityProvider cannot be used to send WWW-Authenticate challenges.

When true, unauthenticated token requests from web clients (like the web console) are
redirected to the authorize URL to log in.

The client ID of a client registered with the OpenID provider. The client must be allowed to
redirect to <master>/oauth2callback/<identityProviderName>.

The client secret.

Use the value of the sub claim in the returned id_token as the user’s identity.

Authorization Endpoint described in the OpenID spec. Must use https.

Token Endpoint described in the OpenID spec. Must use https.

A custom certificate bundle, extra scopes, extra authorization request parameters, and userInfo URL
can also be specified:

Example 6.11. Full Master Configuration Using OpenIDIdentityProvider

oauthConfig:
 ...
 identityProviders:
 - name: my_openid_connect

OpenShift Enterprise 3.0 Administrator Guide

38

http://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint

1

2

3

4

5

6

7

8

 challenge: false
 login: true
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider
 clientID: ...
 clientSecret: ...

 ca: my-openid-ca-bundle.crt 1

 extraScopes: 2
 - email
 - profile

 extraAuthorizeParameters: 3
 include_granted_scopes: "true"
 claims:

 id: 4
 - custom_id_claim
 - sub

 preferredUsername: 5
 - preferred_username
 - email

 name: 6
 - nickname
 - given_name
 - name

 email: 7
 - custom_email_claim
 - email
 urls:
 authorize: https://myidp.example.com/oauth2/authorize
 token: https://myidp.example.com/oauth2/token

 userInfo: https://myidp.example.com/oauth2/userinfo 8

Certificate bundle to use to validate server certificates for the configured URLs. If empty, system
trusted roots are used.

Optional list of scopes to request, in addition to the openid scope, during the authorization token
request.

Optional map of extra parameters to add to the authorization token request.

List of claims to use as the identity. First non-empty claim is used. At least one claim is required.
If none of the listed claims have a value, authentication fails.

List of claims to use as the preferred user name when provisioning a user for this identity. First
non-empty claim is used.

List of claims to use as the display name. First non-empty claim is used.

List of claims to use as the email address. First non-empty claim is used.

UserInfo Endpoint described in the OpenID spec. Must use https.

CHAPTER 6. CONFIGURING AUTHENTICATION

39

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

1

2

6.3. TOKEN OPTIONS

The OAuth server generates two kinds of tokens:

Access
tokens

Longer-lived tokens that grant access to the API.

Authorize
codes

Short-lived tokens whose only use is to be exchanged for an access token.

Use the tokenConfig stanza to set token options:

Example 6.12. Master Configuration Token Options

oauthConfig:
 ...
 tokenConfig:

 accessTokenMaxAgeSeconds: 86400 1

 authorizeTokenMaxAgeSeconds: 300 2

Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default lifetime
is 24 hours.

Set authorizeTokenMaxAgeSeconds to control the lifetime of authorize codes. The default
lifetime is five minutes.

6.4. GRANT OPTIONS

To configure how the OAuth server responds to token requests for a client the user has not previously
granted permission, set the method value in the grantConfig stanza. Valid values for method are:

auto Auto-approve the grant and retry the request.

prompt Prompt the user to approve or deny the grant.

deny Auto-deny the grant and return a failure error to the client.

Example 6.13. Master Configuration Grant Options

oauthConfig:
 ...
 grantConfig:
 method: auto

6.5. SESSION OPTIONS

OpenShift Enterprise 3.0 Administrator Guide

40

1

2

3

1

2

The OAuth server uses a signed and encrypted cookie-based session during login and redirect flows.

Use the sessionConfig stanza to set session options:

Example 6.14. Master Configuration Session Options

oauthConfig:
 ...
 sessionConfig:

 sessionMaxAgeSeconds: 300 1

 sessionName: ssn 2

 sessionSecretsFile: "..." 3

Controls the maximum age of a session; sessions auto-expire once a token request is complete.
If auto-grant is not enabled, sessions must last as long as the user is expected to take to
approve or reject a client authorization request.

Name of the cookie used to store the session.

File name containing serialized SessionSecrets object. If empty, a random signing and
encryption secret is generated at each server start.

If no sessionSecretsFile is specified, a random signing and encryption secret is generated at each
start of the master server. This means that any logins in progress will have their sessions invalidated if
the master is restarted. It also means that if multiple masters are configured, they will not be able to
decode sessions generated by one of the other masters.

To specify the signing and encryption secret to use, specify a sessionSecretsFile. This allows you
separate secret values from the configuration file and keep the configuration file distributable, for
example for debugging purposes.

Multiple secrets can be specified in the sessionSecretsFile to enable rotation. New sessions are
signed and encrypted using the first secret in the list. Existing sessions are decrypted and authenticated
by each secret until one succeeds.

Example 6.15. Session Secret Configuration:

apiVersion: v1
kind: SessionSecrets

secrets: 1

- authentication: "..." 2

 encryption: "..." 3
- authentication: "..."
 encryption: "..."
...

List of secrets used to authenticate and encrypt cookie sessions. At least one secret must be
specified. Each secret must set an authentication and encryption secret.

Signing secret, used to authenticate sessions using HMAC. Recommended to use a secret with
32 or 64 bytes.

CHAPTER 6. CONFIGURING AUTHENTICATION

41

3 Encrypting secret, used to encrypt sessions. Must be 16, 24, or 32 characters long, to select
AES-128, AES-192, or AES-256.

OpenShift Enterprise 3.0 Administrator Guide

42

CHAPTER 7. SERVICE ACCOUNTS

7.1. OVERVIEW

When a person uses the command line or web console, their API token authenticates them to the
OpenShift API. However, when a regular user’s credentials are not available, it is common for
components to make API calls independently. For example:

Replication controllers make API calls to create or delete pods

Applications inside containers can make API calls for discovery purposes

External applications can make API calls for monitoring or integration purposes

Service accounts provide a flexible way to control API access without sharing a regular user’s
credentials.

7.2. USERNAMES AND GROUPS

Every service account has an associated username that can be granted roles, just like a regular user.
The username is derived from its project and name: system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

Every service account is also a member of two groups:

system:serviceaccounts, which includes all service accounts in the system

system:serviceaccounts:<project>, which includes all service accounts in the specified project

For example, to allow all service accounts in all projects to view resources in the top-secret project:

$ oc policy add-role-to-group view system:serviceaccounts -n top-secret

To allow all service accounts in the managers project to edit resources in the top-secret project:

$ oc policy add-role-to-group edit system:serviceaccounts:managers -n top-
secret

7.3. ENABLE SERVICE ACCOUNT AUTHENTICATION

Service accounts authenticate to the API using tokens signed by a private RSA key. The authentication
layer verifies the signature using a matching public RSA key.

To enable service account token generation, update the master configurationserviceAccountConfig
stanza to specify a privateKeyFile (for signing), and a matching public key file in the
publicKeyFiles list:

serviceAccountConfig:
 ...

CHAPTER 7. SERVICE ACCOUNTS

43

1

2

3

1 2

3

4

 masterCA: ca.crt 1

 privateKeyFile: serviceaccounts.private.key 2
 publicKeyFiles:

 - serviceaccounts.public.key 3
 - ...

CA file used to validate the API server’s serving certificate

Private RSA key file (for token signing)

Public RSA key files (for token verification). If private key files are provided, then the public key
component is used. Multiple public key files can be specified, and a token will be accepted if it can
be validated by one of the public keys. This allows rotation of the signing key, while still accepting
tokens generated by the previous signer.

7.4. MANAGED SERVICE ACCOUNTS

Service accounts are required in each project to run builds, deployments, and other pods. The
managedNames setting in the master configuration file controls which service accounts are automatically
created in every project:

serviceAccountConfig:
 ...

 managedNames: 1

 - builder 2

 - deployer 3

 - default 4
 - ...

List of service accounts to automatically create in every project

A builder service account in each project is required by build pods, and is given the
system:image-builder role, which allows pushing images to any image stream in the project using
the internal Docker registry.

A deployer service account in each project is required by deployment pods, and is given the
system:deployer role, which allows viewing and modifying replication controllers and pods in the
project.

A default service account is used by all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal Docker registry.

7.5. INFRASTRUCTURE SERVICE ACCOUNTS

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift infrastructure namespace at server start, and given the following roles
cluster-wide:

The replication-controller service account is assigned the system:replication-controller role

OpenShift Enterprise 3.0 Administrator Guide

44

The deployment-controller service account is assigned the system:deployment-controller
role

The build-controller service account is assigned the system:build-controller role.
Additionally, the build-controller service account is included in the privileged security context
constraint in order to create privileged build pods.

To configure the namespace where those service accounts are created, set the
openshiftInfrastructureNamespace field in the master configuration file:

policyConfig:
 ...
 openshiftInfrastructureNamespace: openshift-infra

Set limitSecretReferences field in master configuration file to true to require pod secret
references to be whitelisted by their service accounts. Set its value to false to allow pods to reference
any secret in the namespace.

serviceAccountConfig:
 ...
 limitSecretReferences: false

CHAPTER 7. SERVICE ACCOUNTS

45

CHAPTER 8. MANAGING AUTHORIZATION POLICIES

8.1. OVERVIEW

You can use the CLI to view authorization policies and the administrator CLI to manage the roles and
bindings within a policy.

8.2. VIEWING ROLES AND BINDINGS

Roles grant various levels of access in the system-wide cluster policy as well as project-scoped local
policies. Users and groups can be associated with, or bound to, multiple roles at the same time. You can
view details about the roles and their bindings using the oc describe command.

Users with the cluster-admindefault role in the cluster policy can view cluster policy and all local
policies. Users with the admindefault role in a given local policy can view that project-scoped policy.

8.2.1. Viewing Cluster Policy

To view the cluster roles and their associated rule sets in the cluster policy:

$ oc describe clusterPolicy default

Example 8.1. Viewing Cluster Roles

$ oc describe clusterPolicy default
Name: default
Created: 4 hours ago
Labels: <none>
Last Modified: 2015-06-10 17:22:25 +0000 UTC
admin Verbs Resources Resource Names Non-
Resource URLs Extension
 [create delete get list update watch] [pods/proxy projects
resourcegroup:exposedkube resourcegroup:exposedopenshift
resourcegroup:granter secrets] [][]
 [get list watch] [pods/exec pods/portforward resourcegroup:allkube
resourcegroup:allkube-status resourcegroup:allopenshift-status
resourcegroup:policy] [][]
 [get update] [imagestreams/layers] [][]
basic-user Verbs Resources Resource Names Non-
Resource URLs Extension
 [get] [users] [~][]
 [list] [projectrequests] [][]
 [get list] [clusterroles] [][]
 [list] [projects] [][]
 [create] [subjectaccessreviews] [][]
IsPersonalSubjectAccessReview
cluster-admin Verbs Resources Resource Names Non-
Resource URLs Extension
 [*] [*] [][]
 [*] [] [][*]
cluster-reader Verbs Resources Resource Names
Non-Resource URLs Extension
 [get list watch] [*] [][]

OpenShift Enterprise 3.0 Administrator Guide

46

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#users-and-groups
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles

 [get] [] [][*]
cluster-status Verbs Resources Resource Names
Non-Resource URLs Extension
 [get] [] [][/api /healthz /healthz/* /osapi
/version]
edit Verbs Resources Resource Names Non-Resource
URLs Extension
 [create delete get list update watch] [pods/proxy
resourcegroup:exposedkube resourcegroup:exposedopenshift secrets]
[][]
 [get list watch] [pods/exec pods/portforward projects
resourcegroup:allkube resourcegroup:allkube-status
resourcegroup:allopenshift-status] [][]
self-provisioner Verbs Resources Resource Names
Non-Resource URLs Extension
 [create] [projectrequests] [][]
system:build-controller Verbs Resources Resource
Names Non-Resource URLs Extension
 [get list watch] [builds] [][]
 [update] [builds] [][]
 [get] [imagestreams] [][]
 [create delete get list] [pods] [][]
 [create update] [events] [][]
system:component Verbs Resources Resource Names
Non-Resource URLs Extension
 [*] [*] [][]
system:deployer Verbs Resources Resource Names
Non-Resource URLs Extension
 [get list] [replicationcontrollers] [][]
 [get update] [replicationcontrollers] [][]
 [create get list watch] [pods] [][]
system:deployment-controller Verbs Resources
Resource Names Non-Resource URLs Extension
 [list watch] [replicationcontrollers] [][]
 [get update] [replicationcontrollers] [][]
 [create delete get list update] [pods] [][]
 [create update] [events] [][]
system:image-builder Verbs Resources Resource Names
Non-Resource URLs Extension
 [get update] [imagestreams/layers] [][]
system:image-pruner Verbs Resources Resource Names
Non-Resource URLs Extension
 [delete] [images] [][]
 [get list] [buildconfigs builds deploymentconfigs images
imagestreams pods replicationcontrollers] [][]
 [update] [imagestreams/status] [][]
system:image-puller Verbs Resources Resource Names
Non-Resource URLs Extension
 [get] [imagestreams/layers] [][]
system:node Verbs Resources Resource Names Non-
Resource URLs Extension
 [get list watch] [services] [][]
 [create get list watch] [nodes] [][]
 [update] [nodes/status] [][]
 [create update] [events] [][]
 [get list watch] [pods] [][]

CHAPTER 8. MANAGING AUTHORIZATION POLICIES

47

 [create delete get] [pods] [][]
 [update] [pods/status] [][]
 [get] [secrets] [][]
 [get] [persistentvolumeclaims persistentvolumes] []
[]
 [get] [endpoints] [][]
system:node-proxier Verbs Resources Resource Names
Non-Resource URLs Extension
 [list watch] [endpoints services] [][]
system:oauth-token-deleter Verbs Resources Resource
Names Non-Resource URLs Extension
 [delete] [oauthaccesstokens oauthauthorizetokens] []
[]
system:registry Verbs Resources Resource Names
Non-Resource URLs Extension
 [delete get] [images] [][]
 [get] [imagestreamimages imagestreams imagestreamtags]
[][]
 [update] [imagestreams] [][]
 [create] [imagestreammappings] [][]
system:replication-controller Verbs Resources
Resource Names Non-Resource URLs Extension
 [list watch] [replicationcontrollers] [][]
 [get update] [replicationcontrollers] [][]
 [list watch] [pods] [][]
 [create delete] [pods] [][]
 [create update] [events] [][]
system:router Verbs Resources Resource Names Non-
Resource URLs Extension
 [list watch] [endpoints routes] [][]
system:sdn-manager Verbs Resources Resource Names
Non-Resource URLs Extension
 [create delete get list watch] [hostsubnets] [][]
 [get list watch] [nodes] [][]
 [create get] [clusternetworks] [][]
system:sdn-reader Verbs Resources Resource Names
Non-Resource URLs Extension
 [get list watch] [hostsubnets] [][]
 [get list watch] [nodes] [][]
 [get] [clusternetworks] [][]
system:webhook Verbs Resources Resource Names Non-
Resource URLs Extension
 [create get] [buildconfigs/webhooks] [][]
view Verbs Resources Resource Names Non-Resource
URLs Extension
 [get list watch] [projects resourcegroup:allkube
resourcegroup:allkube-status resourcegroup:allopenshift-status
resourcegroup:exposedopenshift] [][]

To view the current set of cluster bindings, which shows the users and groups that are bound to various
roles:

$ oc describe clusterPolicyBindings :default

OpenShift Enterprise 3.0 Administrator Guide

48

Example 8.2. Viewing Cluster Bindings

$ oc describe clusterPolicyBindings :default
Name: :default
Created: 4 hours ago
Labels: <none>
Last Modified: 2015-06-10 17:22:26 +0000 UTC
Policy: <none>
RoleBinding[basic-users]:
 Role: basic-user
 Users: []
 Groups: [system:authenticated]
RoleBinding[cluster-admins]:
 Role: cluster-admin
 Users: []
 Groups: [system:cluster-admins]
RoleBinding[cluster-readers]:
 Role: cluster-reader
 Users: []
 Groups: [system:cluster-readers]
RoleBinding[cluster-status-binding]:
 Role: cluster-status
 Users: []
 Groups: [system:authenticated system:unauthenticated]
RoleBinding[self-provisioners]:
 Role: self-provisioner
 Users: []
 Groups: [system:authenticated]
RoleBinding[system:build-controller]:
 Role: system:build-controller
 Users: [system:serviceaccount:openshift-infra:build-controller]
 Groups: []
RoleBinding[system:deployment-controller]:
 Role: system:deployment-controller
 Users: [system:serviceaccount:openshift-infra:deployment-
controller]
 Groups: []
RoleBinding[system:masters]:
 Role: system:master
 Users: []
 Groups: [system:masters]
RoleBinding[system:node-proxiers]:
 Role: system:node-proxier
 Users: []
 Groups: [system:nodes]
RoleBinding[system:nodes]:
 Role: system:node
 Users: []
 Groups: [system:nodes]
RoleBinding[system:oauth-token-deleters]:
 Role: system:oauth-token-deleter
 Users: []
 Groups: [system:authenticated system:unauthenticated]
RoleBinding[system:registrys]:
 Role: system:registry
 Users: []

CHAPTER 8. MANAGING AUTHORIZATION POLICIES

49

 Groups: [system:registries]
RoleBinding[system:replication-controller]:
 Role: system:replication-controller
 Users: [system:serviceaccount:openshift-infra:replication-
controller]
 Groups: []
RoleBinding[system:routers]:
 Role: system:router
 Users: []
 Groups: [system:routers]
RoleBinding[system:sdn-readers]:
 Role: system:sdn-reader
 Users: []
 Groups: [system:nodes]
RoleBinding[system:webhooks]:
 Role: system:webhook
 Users: []
 Groups: [system:authenticated system:unauthenticated]

8.2.2. Viewing Local Policy

While the list of local roles and their associated rule sets are not viewable within a local policy, all of the
default roles are still applicable and can be added to users or groups, other than the cluster-admin
default role. The local bindings, however, are viewable.

To view the current set of local bindings, which shows the users and groups that are bound to various
roles:

$ oc describe policyBindings :default

By default, the current project is used when viewing local policy. Alternatively, a project can be specified
with the -n flag. This is useful for viewing the local policy of another project, if the user already has the
admindefault role in it.

Example 8.3. Viewing Local Bindings

$ oc describe policyBindings :default -n joe-project
Name: :default
Created: About a minute ago
Labels: <none>
Last Modified: 2015-06-10 21:55:06 +0000 UTC
Policy: <none>
RoleBinding[admins]:
 Role: admin
 Users: [joe]
 Groups: []
RoleBinding[system:deployers]:
 Role: system:deployer
 Users: [system:serviceaccount:joe-project:deployer]
 Groups: []
RoleBinding[system:image-builders]:
 Role: system:image-builder
 Users: [system:serviceaccount:joe-project:builder]
 Groups: []

OpenShift Enterprise 3.0 Administrator Guide

50

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles

RoleBinding[system:image-pullers]:
 Role: system:image-puller
 Users: []
 Groups: [system:serviceaccounts:joe-project]

By default in a local policy, only the binding for the admin role is immediately listed. However, if other
default roles are added to users and groups within a local policy, they become listed as well.

8.3. MANAGING ROLE BINDINGS

Adding, or binding, a role to users or groups gives the user or group the relevant access granted by the
role. You can add and remove roles to and from users and groups using oadm policy commands.

When managing a user or group’s associated roles for a local policy using the following operations, a
project may be specified with the -n flag. If it is not specified, then the current project is used.

Table 8.1. Local Policy Operations

Command Description

$ oadm policy who-can <verb>
<resource>

Indicates which users can perform an action on a
resource.

$ oadm policy add-role-to-user
<role> <username>

Binds a given role to specified users in the current
project.

$ oadm policy remove-role-from-user
<role> <username>

Removes a given role from specified users in the
current project.

$ oadm policy remove-user
<username>

Removes specified users and all of their roles in the
current project.

$ oadm policy add-role-to-group
<role> <groupname>

Binds a given role to specified groups in the current
project.

$ oadm policy remove-role-from-
group <role> <groupname>

Removes a given role from specified groups in the
current project.

$ oadm policy remove-group
<groupname>

Removes specified groups and all of their roles in the
current project.

You can also manage role bindings for the cluster policy using the following operations. The -n flag is
not used used for these operations because the cluster policy uses non-namespaced resources.

Table 8.2. Cluster Policy Operations

CHAPTER 8. MANAGING AUTHORIZATION POLICIES

51

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#users-and-groups

1

Command Description

$ oadm policy add-cluster-role-to-
user <role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oadm policy remove-cluster-role-
from-user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oadm policy add-cluster-role-to-
group <role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

$ oadm policy remove-cluster-role-
from-group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

For example, you can add the admin role to the alice user in joe-project by running:

$ oadm policy add-role-to-user admin alice -n joe-project

You can then view the local bindings and verify the addition in the output:

$ oc describe policyBindings :default -n joe-project
Name: :default
Created: 5 minutes ago
Labels: <none>
Last Modified: 2015-06-10 22:00:44 +0000 UTC
Policy: <none>
RoleBinding[admins]:
 Role: admin

 Users: [alice joe] 1
 Groups: []
RoleBinding[system:deployers]:
 Role: system:deployer
 Users: [system:serviceaccount:joe-project:deployer]
 Groups: []
RoleBinding[system:image-builders]:
 Role: system:image-builder
 Users: [system:serviceaccount:joe-project:builder]
 Groups: []
RoleBinding[system:image-pullers]:
 Role: system:image-puller
 Users: []
 Groups: [system:serviceaccounts:joe-project]

The alice user has been added to the admins RoleBinding.

OpenShift Enterprise 3.0 Administrator Guide

52

1

CHAPTER 9. MANAGING SECURITY CONTEXT CONSTRAINTS

9.1. OVERVIEW

Security context constraints allow administrators to control permissions for pods. To learn more about
this API type please refer to the security context constraints (SCCs) architecture documentation. You
may manage SCCs in your instance as normal API objects using the CLI.

NOTE

You must have cluster-admin privileges to manage SCCs.

9.2. LISTING SECURITY CONTEXT CONSTRAINTS

To get a current list of SCCs:

$ oc get scc
NAME PRIV CAPS HOSTDIR SELINUX RUNASUSER
privileged true [] true RunAsAny RunAsAny
restricted false [] false MustRunAs MustRunAsRange

9.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT

To examine a particular SCC, use oc get, oc describe, oc export, or oc edit.

$ oc edit scc restricted
allowHostDirVolumePlugin: false
allowHostNetwork: false
allowHostPorts: false
allowPrivilegedContainer: false
allowedCapabilities: null
apiVersion: v1
groups:
- system:authenticated
kind: SecurityContextConstraints
metadata:
 creationTimestamp: 2015-09-08T07:37:54Z

 name: restricted 1
 resourceVersion: "58"
 selfxref: /api/v1/securitycontextconstraints/restricted
 uid: 849d9228-55fc-11e5-976b-080027c5bfa9
runAsUser:
 type: MustRunAsRange
seLinuxContext:
 type: MustRunAs

The SCC name specified in the oc edit command.

9.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS

To create a new SCC, first define the SCC in a JSON or YAML file:

CHAPTER 9. MANAGING SECURITY CONTEXT CONSTRAINTS

53

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles

Example 9.1. Security Context Constraint Object Definition

kind: SecurityContextConstraints
apiVersion: v1
metadata:
 name: scc-admin
allowPrivilegedContainer: true
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
users:
- my-admin-user
groups:
- my-admin-group

Although this example definition was written by hand, another way is to modify the definition obtained
from examining a particular SCC.

Then, run oc create passing the file to create it:

$ oc create -f scc_admin.yaml
securitycontextconstraints/scc-admin

$ oc get scc
NAME PRIV CAPS HOSTDIR SELINUX RUNASUSER
privileged true [] true RunAsAny RunAsAny
restricted false [] false MustRunAs MustRunAsRange
scc-admin true [] false RunAsAny RunAsAny

9.5. DELETING SECURITY CONTEXT CONSTRAINTS

To delete an SCC:

$ oc delete scc <scc_name>

NOTE

If you delete the default SCCs, they will not be regenerated upon restart, unless you
delete all SCCs. If any constraint already exists within the system, no regeneration will
take place.

9.6. UPDATING SECURITY CONTEXT CONSTRAINTS

To update an existing SCC:

$ oc edit scc <scc_name>

9.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS

OpenShift Enterprise 3.0 Administrator Guide

54

1

If you would like to reset your security context constraints to the default settings for any reason you may
delete the existing security context constraints and restart your master. The default security context
constraints will only be recreated if no security context constraints exist in the system.

9.8. HOW DO I?

The following describe common scenarios and procedures using SCCs.

9.8.1. Grant Access to the Privileged SCC

In some cases, an administrator might want to allow users or groups outside the administrator group
access to create more privileged pods. To do so, you can:

1. Determine the user or group you would like to have access to the SCC.

2. Run:

$ oc edit scc <name>

3. Add the user or group to the users or groups field of the SCC.

For example, to allow the e2e-user access to the privileged SCC, add their user:

$ oc edit scc privileged

allowHostDirVolumePlugin: true
allowPrivilegedContainer: true
apiVersion: v1
groups:
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
 creationTimestamp: 2015-06-15T20:44:53Z
 name: privileged
 resourceVersion: "58"
 selfxref: /api/v1/securitycontextconstraints/privileged
 uid: 602a0838-139f-11e5-8aa4-080027c5bfa9
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
users:
- system:serviceaccount:openshift-infra:build-controller

- e2e-user 1

The e2e-user added to the users section.

9.8.2. Grant a Service Account Access to the Privileged SCC

First, create a service account. For example, to create service account My_SVCACCT in project
My_Project:

CHAPTER 9. MANAGING SECURITY CONTEXT CONSTRAINTS

55

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-service-accounts

$ cat <<EOF | oc create -n My_Project -f -
kind: ServiceAccount
apiVersion: v1
metadata:

 name: My_SVCACCT 1
EOF

Then, add the service account to the privileged SCC.

$ oc edit scc privileged

Add the following under users:

 - system:serviceaccount:My_Project:My_SVCACCT

9.8.3. Enable Images to Run with USER in the Dockerfile

To relax the security in your cluster so that images are not forced to run as a pre-allocated UID, without
granting everyone access to the privileged SCC:

1. Edit the restricted SCC:

$ oc edit scc restricted

2. Change the runAsUser.Type strategy to RunAsAny.

IMPORTANT

This allows images to run as the root UID if no USER is specified in the Dockerfile.

9.8.4. Use --mount-host on the Registry

It is recommended that persistent storage using PersistentVolume and PersistentVolumeClaim
objects be used for registry deployments. If you are testing and would like to instead use the oadm
registry command with the --mount-host option, you must first create a new service account for
the registry and add it to the privileged SCC. See the Administrator Guide for full instructions.

9.8.5. Provide Additional Capabilities

In some cases, an image may require capabilities that Docker does not provide out of the box. You can
provide the ability to request additional capabilities in the pod specification which will be validated against
an SCC.

IMPORTANT

This allows images to run with elevated capabilities and should be used only if necessary.
You should not edit the default restricted SCC to enable additional capabilities.

When used in conjunction with a non-root user, you must also ensure that the file that requires the
additional capability is granted the capabilities using the setcap command. For example, in the
Dockerfile of the image:

OpenShift Enterprise 3.0 Administrator Guide

56

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#deploy-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#storage-for-the-registry

setcap cap_net_raw,cap_net_admin+p /usr/bin/ping

Further, if a capability is provided by default in Docker, you do not need to modify the pod specification to
request it. For example, NET_RAW is provided by default and capabilities should already be set on ping,
therefore no special steps should be required to run ping.

To provide additional capabilities:

1. Create a new SCC or edit the privileged SCC:

$ oc edit scc <name>

2. Add the allowed capability using the allowedCapabilities field.

3. When creating the pod, request the capability in the securityContext.capabilities.add
field.

9.8.6. Modify Cluster Default Behavior

To modify your cluster so that it does not pre-allocate UIDs, allows containers to run as any user, and
prevents privileged containers:

1. Edit the restricted SCC:

 $ oc edit scc restricted

2. Change runAsUser.Type to RunAsAny.

3. Ensure allowPrivilegedContainer is set to false.

4. Save the changes.

To modify your cluster so that it does not pre-allocate UIDs and does not allow containers to run as root:

1. Edit the restricted SCC:

 $ oc edit scc restricted

2. Change runAsUser.Type to MustRunAsNonRoot.

3. Save the changes.

9.8.7. Use the hostPath Volume Plug-in

To relax the security in your cluster so that pods are allowed to use the hostPath volume plug-in
without granting everyone access to the privileged SCC:

1. Edit the restricted SCC:

$ oc edit scc restricted

2. Add allowHostDirVolumePlugin: true.

CHAPTER 9. MANAGING SECURITY CONTEXT CONSTRAINTS

57

3. Save the changes.

OpenShift Enterprise 3.0 Administrator Guide

58

CHAPTER 10. SCHEDULER

10.1. OVERVIEW

The Kubernetes pod scheduler is responsible for determining placement of new pods onto nodes within
the cluster. It reads data from the pod and tries to find a node that is a good fit based on configured
policies. It is completely independent and exists as a standalone/pluggable solution. It does not modify
the pod and just creates a binding for the pod that ties the pod to the particular node.

10.2. GENERIC SCHEDULER

The existing generic scheduler is the default platform-provided scheduler "engine" that selects a node to
host the pod in a 3-step operation:

1. Filter the nodes

2. Prioritize the filtered list of nodes

3. Select the best fit node

10.2.1. Filter the nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each of the nodes through the list of filter functions called 'predicates'.

10.2.2. Prioritize the filtered list of nodes

This is achieved by passing each node through a series of 'priority' functions that assign it a score
between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler
configuration can also take in a simple "weight" (positive numeric value) for each priority function. The
node score provided by each priority function is multiplied by the "weight" (default weight is 1) and then
combined by just adding the scores for each node provided by all the priority functions. This weight
attribute can be used by administrators to give higher importance to some priority functions.

10.2.3. Select the best fit node

The nodes are sorted based on their scores and the node with the highest score is selected to host the
pod. If multiple nodes have the same high score, then one of them is selected at random.

10.3. AVAILABLE PREDICATES

There are several predicates provided out of the box in Kubernetes. Some of these predicates can be
customized by providing certain parameters. Multiple predicates can be combined to provide additional
filtering of nodes.

10.3.1. Static Predicates

These predicates do not take any configuration parameters or inputs from the user. These are specified
in the scheduler configuration using their exact name.

PodFitsPorts deems a node to be fit for hosting a pod based on the absence of port conflicts.

{"name" : "PodFitsPorts"}

CHAPTER 10. SCHEDULER

59

PodFitsResources determines a fit based on resource availability. The nodes can declare their
resource capacities and then pods can specify what resources they require. Fit is based on requested,
rather than used resources.

{"name" : "PodFitsResources"}

NoDiskConflict determines fit based on non-conflicting disk volumes. It evaluates if a pod can fit due to
the volumes it requests, and those that are already mounted. It is GCE and Amazon EBS specific.

{"name" : "NoDiskConflict"}

MatchNodeSelector determines fit based on node selector query that is defined in the pod.

{"name" : "MatchNodeSelector"}

HostName determines fit based on the presence of the Host parameter and a string match with the
name of the host.

{"name" : "HostName"}

10.3.2. Configurable Predicates

These predicates can be configured by the user to tweak their functioning. They can be given any user-
defined name. The type of the predicate is identified by the argument that they take. Since these are
configurable, multiple predicates of the same type (but different configuration parameters) can be
combined as long as their user-defined names are different.

ServiceAffinity filters out nodes that do not belong to the specified topological level defined by the
provided labels. This predicate takes in a list of labels and ensures affinity within the nodes (that have the
same label values) for pods belonging to the same service. If the pod specifies a value for the labels in
its NodeSelector, then the nodes matching those labels are the ones where the pod is scheduled. If the
pod does not specify the labels in its NodeSelector, then the first pod can be placed on any node based
on availability and all subsequent pods of the service will be scheduled on nodes that have the same
label values.

{"name" : "Zone", "argument" : {"serviceAffinity" : {"labels" :
["zone"]}}}

LabelsPresence checks whether a particular node has a certain label defined or not, regardless of its
value. Matching by label can be useful, for example, where nodes have their physical location or status
defined by labels.

{"name" : "RequireRegion", "argument" : {"labelsPresence" : {"labels" :
["region"], "presence" : true}}}

If "presence" is false, and any of the requested labels match any of the nodes’s labels, it returns
false. Otherwise, it returns true.

If "presence" is true, and any of the requested labels do not match any of the node’s labels, it
returns false. Otherwise, it returns true.

OpenShift Enterprise 3.0 Administrator Guide

60

10.4. AVAILABLE PRIORITY FUNCTIONS

A custom set of priority functions can be specified to configure the scheduler. There are several priority
functions provided out-of-the-box in Kubernetes. Some of these priority functions can be customized by
providing certain parameters. Multiple priority functions can be combined and different weights can be
given to each in order to impact the prioritization. A weight is required to be specified and cannot be 0 or
negative.

10.4.1. Static Priority Functions

These priority functions do not take any configuration parameters or inputs from the user. These are
specified in the scheduler configuration using their exact name as well as the weight.

LeastRequestedPriority favors nodes with fewer requested resources. It calculates the percentage of
memory and CPU requested by pods scheduled on the node, and prioritizes nodes that have the highest
available/remaining capacity.

{"name" : "LeastRequestedPriority", "weight" : 1}

BalancedResourceAllocation favors nodes with balanced resource usage rate. It calculates the
difference between the consumed CPU and memory as a fraction of capacity, and prioritizes the nodes
based on how close the two metrics are to each other. This should always be used together with
LeastRequestedPriority.

{"name" : "BalancedResourceAllocation", "weight" : 1}

ServiceSpreadingPriority spreads pods by minimizing the number of pods belonging to the same
service onto the same machine.

{"name" : "ServiceSpreadingPriority", "weight" : 1}

EqualPriority gives an equal weight of one to all nodes, if no priority configs are provided. It is not
required/recommended outside of testing.

{"name" : "EqualPriority", "weight" : 1}

10.4.2. Configurable Priority Functions

These priority functions can be configured by the user by providing certain parameters. They can be
given any user-defined name. The type of the priority function is identified by the argument that they
take. Since these are configurable, multiple priority functions of the same type (but different configuration
parameters) can be combined as long as their user-defined names are different.

ServiceAntiAffinity takes a label and ensures a good spread of the pods belonging to the same service
across the group of nodes based on the label values. It gives the same score to all nodes that have the
same value for the specified label. It gives a higher score to nodes within a group with the least
concentration of pods.

{"name" : "RackSpread", "weight" : 1, "argument" : {"serviceAntiAffinity"
: {"label" : "rack"}}}

LabelPreference prefers nodes that have a particular label defined or not, regardless of its value.

CHAPTER 10. SCHEDULER

61

{"name" : "RackPreferred", "weight" : 1, "argument" : {"labelPreference" :
{"label" : "rack"}}}

10.5. SCHEDULER POLICY

The selection of the predicate and priority functions defines the policy for the scheduler. Administrators
can provide a JSON file that specifies the predicates and priority functions to configure the scheduler.
The path to the scheduler policy file can be specified in the master configuration file. In the absence of
the scheduler policy file, the default configuration gets applied.

It is important to note that the predicates and priority functions defined in the scheduler configuration file
will completely override the default scheduler policy. If any of the default predicates and priority functions
are required, they have to be explicitly specified in the scheduler configuration file.

10.5.1. Default Scheduler Policy

The default scheduler policy includes the following predicates:

1. PodFitsPorts

2. PodFitsResources

3. NoDiskConflict

4. MatchNodeSelector

5. HostName

The default scheduler policy includes the following priority functions. Each of the priority function has a
weight of '1' applied to it:

1. LeastRequestedPriority

2. BalancedResourceAllocation

3. ServiceSpreadingPriority

10.6. USE CASES

One of the important use cases for scheduling within OpenShift is to support flexible affinity and anti-
affinity policies.

10.6.1. Infrastructure Topological Levels

Administrators can define multiple topological levels for their infrastructure (nodes). This is done by
specifying labels on nodes (eg: region = r1, zone = z1, rack = s1). These label names have no particular
meaning and administrators are free to name their infrastructure levels anything (eg, city/building/room).
Also, administrators can define any number of levels for their infrastructure topology, with three levels
usually being adequate (eg. regions → zones → racks). Lastly, administrators can specify affinity and
anti-affinity rules at each of these levels in any combination.

10.6.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or

OpenShift Enterprise 3.0 Administrator Guide

62

even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same service
will be scheduled onto nodes that belong to the same level. This handles any latency requirements of
applications by allowing administrators to ensure that peer pods do not end up being too geographically
separated. If no node is available within the same affinity group to host the pod, then the pod will not get
scheduled.

10.6.3. Anti Affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level, or
even at multiple levels. Anti-Affinity (or 'spread') at a particular level indicates that all pods that belong to
the same service will be spread across nodes that belong to that level. This ensures that the application
is well spread for high availability purposes. The scheduler will try to balance the service pods across all
applicable nodes as evenly as possible.

10.7. SAMPLE POLICY CONFIGURATIONS

The configuration below specifies the default scheduler configuration, if it were to be specified via the
scheduler policy file.

{
 "kind" : "Policy",
 "version" : "v1",
 "predicates" : [
 {"name" : "PodFitsPorts"},
 {"name" : "PodFitsResources"},
 {"name" : "NoDiskConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "HostName"}
],
 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1}
]
}

IMPORTANT

In all of the sample configurations below, the list of predicates and priority functions is
truncated to include only the ones that pertain to the use case specified. In practice, a
complete/meaningful scheduler policy should include most, if not all, of the default
predicates and priority functions listed above.

Three topological levels defined as region (affinity) -→ zone (affinity) -→ rack (anti-affinity)

{
 "kind" : "Policy",
 "version" : "v1",
 "predicates" : [
 ...
 {"name" : "RegionZoneAffinity", "argument" : {"serviceAffinity" :
{"labels" : ["region", "zone"]}}}
],
 "priorities" : [

CHAPTER 10. SCHEDULER

63

 ...
 {"name" : "RackSpread", "weight" : 1, "argument" :
{"serviceAntiAffinity" : {"label" : "rack"}}}
]
}

Three topological levels defined as city (affinity) → building (anti-affinity) → room (anti-affinity):

{
 "kind" : "Policy",
 "version" : "v1",
 "predicates" : [
 ...
 {"name" : "CityAffinity", "argument" : {"serviceAffinity" : {"labels" :
["city"]}}}
],
 "priorities" : [
 ...
 {"name" : "BuildingSpread", "weight" : 1, "argument" :
{"serviceAntiAffinity" : {"label" : "building"}}},
 {"name" : "RoomSpread", "weight" : 1, "argument" :
{"serviceAntiAffinity" : {"label" : "room"}}}
]
}

Only use nodes with the 'region' label defined and prefer nodes with the 'zone' label defined:

{
 "kind" : "Policy",
 "version" : "v1",
 "predicates" : [
 ...
 {"name" : "RequireRegion", "argument" : {"labelsPresence" : {"labels" :
["region"], "presence" : true}}}

],
 "priorities" : [
 ...
 {"name" : "ZonePreferred", "weight" : 1, "argument" : {"labelPreference"
: {"label" : "zone", "presence" : true}}}
]
}

Configuration example combining static and configurable predicates and priority functions:

{
 "kind" : "Policy",
 "version" : "v1",
 "predicates" : [
 ...
 {"name" : "RegionAffinity", "argument" : {"serviceAffinity" : {"labels"
: ["region"]}}},
 {"name" : "RequireRegion", "argument" : {"labelsPresence" : {"labels" :
["region"], "presence" : true}}},
 {"name" : "BuildingNodesAvoid", "argument" : {"labelsPresence" :

OpenShift Enterprise 3.0 Administrator Guide

64

{"labels" : ["building"], "presence" : false}}},
 {"name" : "PodFitsPorts"},
 {"name" : "MatchNodeSelector"}
],
 "priorities" : [
 ...
 {"name" : "ZoneSpread", "weight" : 2, "argument" :
{"serviceAntiAffinity" : {"label" : "zone"}}},
 {"name" : "ZonePreferred", "weight" : 1, "argument" : {"labelPreference"
: {"label" : "zone", "presence" : true}}},
 {"name" : "ServiceSpreadingPriority", "weight" : 1}
]
}

10.8. SCHEDULER EXTENSIBILITY

As is the case with almost everything else in Kubernetes/OpenShift, the scheduler is built using a plug-in
model and the current implementation itself is a plug-in. There are two ways to extend the scheduler
functionality:

Enhancements

Replacement

10.8.1. Enhancements

The scheduler functionality can be enhanced by adding new predicates and priority functions. They can
either be contributed upstream or maintained separately. These predicates and priority functions would
need to be registered with the scheduler factory and then specified in the scheduler policy file.

10.8.2. Replacement

Since the scheduler is a plug-in, it can be replaced in favor of an alternate implementation. The
scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

CHAPTER 10. SCHEDULER

65

CHAPTER 11. PRUNING OBJECTS

11.1. OVERVIEW

Over time, API objects created in OpenShift can accumulate in the etcd data store through normal user
operations, such as when building and deploying applications.

As an administrator, you can periodically prune older versions of objects from your OpenShift instance
that are no longer needed. For example, by pruning images you can delete older images and layers that
are no longer in use, but are still taking up disk space.

11.2. BASIC PRUNE OPERATIONS

The CLI groups prune operations under a common parent command.

$ oadm prune <object_type> <options>

This specifies:

The <object_type> to perform the action on, such as builds, deployments, or images.

The <options> supported to prune that object type.

11.3. PRUNING DEPLOYMENTS

In order to prune deployments that are no longer required by the system due to age and status,
administrators may run the following command:

$ oadm prune deployments [<options>]

Table 11.1. Prune Deployments CLI Configuration Options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all deployments whose deployment config no longer exists, status
is complete or failed, and replica count is zero.

--keep-complete=<N> Per deployment config, keep the last N deployments whose status is
complete and replica count is zero. (default 5)

--keep-failed=<N> Per deployment config, keep the last N deployments whose status is
failed and replica count is zero. (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to
the current time. (default 60m)

To see what a pruning operation would delete:

OpenShift Enterprise 3.0 Administrator Guide

66

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#master

$ oadm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

11.4. PRUNING BUILDS

In order to prune builds that are no longer required by the system due to age and status, administrators
may run the following command:

$ oadm prune builds [<options>]

Table 11.2. Prune Builds CLI Configuration Options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all builds whose build config no longer exists, status is complete,
failed, error, or canceled.

--keep-complete=<N> Per build config, keep the last N builds whose status is complete. (default
5)

--keep-failed=<N> Per build config, keep the last N builds whose status is failed, error, or
canceled (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to
the current time. (default 60m)

To see what a pruning operation would delete:

$ oadm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

11.5. PRUNING IMAGES

In order to prune images that are no longer required by the system due to age and status, administrators
may run the following command:

$ oadm prune images [<options>]

CHAPTER 11. PRUNING OBJECTS

67

NOTE

Currently, to prune images you must first log in to the CLI as a user with an access token.
The user must also have the cluster rolesystem:image-pruner or greater (for example,
cluster-admin).

Table 11.3. Prune Images CLI Configuration Options

Option Description

--certificate-
authority

The path to a certificate authority file to use when communicating with
the OpenShift-managed registries. Defaults to the certificate authority
data from the current user’s config file.

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--keep-tag-revisions=
<N>

For each image stream, keep up to at most N image revisions per tag.
(default 60m)

--keep-younger-than=
<duration>

Do not prune any image that is younger than <duration> relative to
the current time. Do not prune any image that is referenced by any other
object that is younger than <duration> relative to the current time.
(default 60m)

OpenShift uses the following logic to determine which images and layers to prune:

Remove any image "managed by OpenShift" (i.e., images with the annotation
openshift.io/image.managed) that was created at least --keep-younger-than minutes
ago and is not currently referenced by:

any pod created less than --keep-younger-than minutes ago.

any image stream created less than --keep-younger-than minutes ago.

any running pods.

any pending pods.

any replication controllers.

any deployment configurations.

any build configurations.

any builds.

the --keep-tag-revisions most recent items in stream.status.tags[].items.

There is no support for pruning from external registries.

When an image is pruned, all references to the image are removed from all image streams that
have a reference to the image in status.tags.

Image layers that are no longer referenced by any images are removed as well.

OpenShift Enterprise 3.0 Administrator Guide

68

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/cli_reference/#basic-setup-and-login
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles

To see what a pruning operation would delete:

$ oadm prune images --keep-tag-revisions=3 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune images --keep-tag-revisions=3 --keep-younger-than=60m --
confirm

CHAPTER 11. PRUNING OBJECTS

69

CHAPTER 12. MONITORING ROUTERS

12.1. OVERVIEW

Depending on the underlying implementation, you can monitor a running router in multiple ways. This
topic discusses the HAProxy template router and the components to check to ensure its health.

12.2. VIEWING STATISTICS

The HAProxy router exposes a web listener for the HAProxy statistics. Enter the router’s public IP
address and the correctly configured port (1936 by default) to view the statistics page, and enter the
administrator password when prompted. This password and port are configured during the router
installation, but they can be found by viewing the haproxy.conf file on the container.

12.3. VIEWING LOGS

To view a router log, run the oc log command on the pod. Since the router is running as a plug-in
process that manages the underlying implementation, the log is for the plug-in, not the actual HAProxy
log.

12.4. VIEWING THE ROUTER INTERNALS

routes.json

Routes are processed by the HAProxy router, and are stored both in memory, on disk, and in the
HAProxy configuration file. The internal route representation, which is passed to the template to generate
the HAProxy configuration file, is found in the /var/lib/containers/router/routes.json file. When
troubleshooting a routing issue, view this file to see the data being used to drive configuration.

HAProxy configuration

You can find the HAProxy configuration and the backends that have been created for specific routes in
the /var/lib/haproxy/conf/haproxy.conf file. The mapping files are found in the same directory. The
helper frontend and backends use mapping files when mapping incoming requests to a backend.

Certificates

Certificates are stored in two places:

Certificates for edge terminated and re-encrypt terminated routes are stored in the
/var/lib/containers/router/certs directory.

Certificates that are used for connecting to backends for re-encrypt terminated routes are stored
in the /var/lib/containers/router/cacerts directory.

The files are keyed by the namespace and name of the route. The key, certificate, and CA certificate are
concatenated into a single file. You can use OpenSSL to view the contents of these files.

OpenShift Enterprise 3.0 Administrator Guide

70

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#routers
https://www.openssl.org/

CHAPTER 13. HIGH AVAILABILITY

13.1. OVERVIEW

This topic describes how to set up highly-available services on your OpenShift cluster.

The Kubernetes replication controller ensures that the deployment requirements, in particular the number
of replicas, are satisfied when the appropriate resources are available. When run with two or more
replicas, the router can be resilient to failures, providing a highly-available service. Depending on how the
router instances are discovered (via a service, DNS entry, or IP addresses), this could impose
operational requirements to handle failure cases when one or more router instances are "unreachable".

For some IP-based traffic services, virtual IP addresses (VIPs) should always be serviced for as long as
a single instance is available. This simplifies the operational overhead and handles failure cases
gracefully.

IMPORTANT

Even though a service is highly available, performance can still be affected.

Use cases for high-availability include:

I want my cluster to be assigned a resource set and I want the cluster to automatically manage
those resources.

I want my cluster to be assigned a set of VIPs that the cluster manages and migrates (with zero
or minimal downtime) on failure conditions, and I should not be required to perform any manual
interactions to update the upstream "discovery" sources (e.g., DNS). The cluster should service
all the assigned VIPs when at least a single node is available, despite the current available
resources not being sufficient to reach the desired state.

You can configure a highly-available router or network setup by running multiple instances of the pod
and fronting them with a balancing tier. This can be something as simple as DNS round robin, or as
complex as multiple load-balancing layers.

13.2. CONFIGURING IP FAILOVER

Using IP failover involves switching IP addresses to a redundant or stand-by set of nodes on failure
conditions.

The oadm ipfailover command helps set up the VIP failover configuration. As an administrator, you
can configure IP failover on an entire cluster, or on a subset of nodes, as defined by the labeled selector.
If you are running in production, match the labeled selector with at least two nodes to ensure you have
failover protection and provide a --replicas=<n> value that matches the number of nodes for the
given labeled selector:

$ oadm ipfailover [<Ip_failover_config_name>] <options> --replicas=<n>

The oadm ipfailover command ensures that a failover pod runs on each of the nodes matching the
constraints or label used. This pod uses VRRP (Virtual Router Redundancy Protocol) with Keepalived to
ensure that the service on the watched port is available, and, if needed, Keepalived will automatically
float the VIPs if the service is not available.

CHAPTER 13. HIGH AVAILABILITY

71

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#routers
http://www.keepalived.org/

13.2.1. Virtual IP Addresses

Keepalived manages a set of virtual IP addresses. The administrator must make sure that all these
addresses:

Are accessible on the configured hosts from outside the cluster.

Are not used for any other purpose within the cluster.

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node will serve the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

Option Variable Name Notes

--
virtual
-ips

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. (For example, 1.2.3.4-6,1.2.3.9.)

13.2.2. Configuring a Highly-available Routing Service

The following steps describe how to set up a highly-available router environment with IP failover:

1. Label the nodes for the service. This step can be optional if you run the service on any of the
nodes in your Kubernetes cluster and use VIPs that can float within those nodes. This process
may already exist within a complex cluster, in that nodes may be filtered by any constraints or
requirements specified (e.g., nodes with SSD drives, or higher CPU, memory, or disk
requirements, etc.).
The following example defines a label as router instances that are servicing traffic in the US west
geography ha-router=geo-us-west:

$ oc label nodes openshift-node-{5,6,7,8,9} "ha-router=geo-us-west"

2. OpenShift’s ipfailover internally uses keepalived, so ensure that multicast is enabled on the
nodes labeled above and that the nodes can accept network traffic for 224.0.0.18 (the VRRP
multicast IP address). Depending on your environment’s multicast configuration, you may need
to add an iptables rule to each of the above labeled nodes. If you do need to add the
iptables rules, please also ensure that the rules persist after a system restart:

$ for node in openshift-node-{5,6,7,8,9}; do ssh $node <<EOF

export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ifconfig $interface | grep -i MULTICAST

echo "Check multicast groups ... "
netstat -g -n | grep 224.0.0 | grep $interface

echo "Optionally, add accept rule and persist it ... "

OpenShift Enterprise 3.0 Administrator Guide

72

sudo /sbin/iptables -I INPUT -i $interface -d 224.0.0.18/32 -j
ACCEPT

echo "Please ensure the above rule is added on system restarts."

EOF
done;

3. Depending on your environment policies, you can either reuse the router service account
created previously or create a new ipfailover service account.
Ensure that either the router service account exists as described in Deploying a Router or
create a new ipfailover service account. The example below creates a new service account
with the name ipfailover:

$ echo '
 { "kind": "ServiceAccount",
 "apiVersion": "v1",
 "metadata": { "name": "ipfailover" }
 }
 ' | oc create -f -

4. You can manually edit the privileged SCC and add the ipfailover service account, or you can
script editing the privileged SCC if you have jq installed.

a. To manually edit the privileged SCC, run:

$ oc edit scc privileged

Then add the ipfailover service account in form system:serviceaccount:<project>:
<name> to the users section:

...
users:
- system:serviceaccount:openshift-infra:build-controller
- system:serviceaccount:default:router
- system:serviceaccount:default:ipfailover

b. Alternatively, to script editing privileged SCC if you have jq installed, run:

$ oc get scc privileged -o json |
 jq '.users |= .+
["system:serviceaccount:default:ipfailover"]' |
 oc replace scc -f -

5. Start the router with at least two replicas on nodes matching the labels used in the first step. The
following example runs three instances using the ipfailover service account:

$ oadm router ha-router-us-west --replicas=3 \
 --selector="ha-router=geo-us-west" --labels="ha-router=geo-
us-west" \
 --credentials="$KUBECONFIG" --service-account=ipfailover

CHAPTER 13. HIGH AVAILABILITY

73

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#install-config-install-deploy-router

NOTE

The above command runs fewer router replicas than available nodes, so that, in
the chance of node failures, Kubernetes can still ensure three available instances
until the number of available nodes labeled ha-router=geo-us-west is below
three. Additionally, the router uses the host network as well as ports 80 and 443,
so fewer number of replicas are running to ensure a higher Service Level
Availability (SLA). If there are no constraints on the service being setup for
failover, it is possible to target the service to run on one or more, or even all, of
the labeled nodes.

6. Finally, configure the VIPs and failover for the nodes labeled with ha-router=geo-us-west in the
first step. Ensure the number of replicas match the number of nodes and that they satisfy the
label setup in the first step. The name of the ipfailover configuration (ipf-ha-router-us-west in
the example below) should be different from the name of the router configuration (ha-router-us-
west) as both the router and ipfailover create deployment configuration with those names.
Specify the VIPs addresses and the port number that ipfailover should monitor on the desired
instances:

$ oadm ipfailover ipf-ha-router-us-west --replicas=5 --watch-
port=80 \
 --selector="ha-router=geo-us-west" --virtual-ips="10.245.2.101-
105" \
 --credentials="$KUBECONFIG" --service-account=ipfailover --
create

13.2.3. Configuring a Highly-available Network Service

The following steps describe how to set up a highly-available IP-based network service with IP failover:

1. Label the nodes for the service. This step can be optional if you run the service on any of the
nodes in your Kubernetes cluster and use VIPs that can float within those nodes. This process
may already exist within a complex cluster, in that the nodes may be filtered by any constraints
or requirements specified (e.g., nodes with SSD drives, or higher CPU, memory, or disk
requirements, etc.).
The following example labels a highly-available cache service that is listening on port 9736 as
ha-cache=geo:

$ oc label nodes openshift-node-{6,3,7,9} "ha-cache=geo"

2. OpenShift’s ipfailover internally uses keepalived, so ensure that multicast is enabled on the
nodes labeled above and that the nodes can accept network traffic for 224.0.0.18 (the VRRP
multicast IP address). Depending on your environment’s multicast configuration, you may need
to add an iptables rule to each of the above labeled nodes. If you do need to add the
iptables rules, please also ensure that the rules persist after a system restart:

$ for node in openshift-node-{6,3,7,9}; do ssh $node <<EOF
export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ifconfig $interface | grep -i MULTICAST

echo "Check multicast groups ... "
netstat -g -n | grep 224.0.0 | grep $interface

OpenShift Enterprise 3.0 Administrator Guide

74

echo "Optionally, add accept rule and persist it ... "
sudo /sbin/iptables -I INPUT -i $interface -d 224.0.0.18/32 -j
ACCEPT

echo "Please ensure the above rule is added on system restarts."

EOF
done;

3. Create a new ipfailover service account:

$ echo '
 { "kind": "ServiceAccount",
 "apiVersion": "v1",
 "metadata": { "name": "ipfailover" }
 }
 ' | oc create -f -

4. You can manually edit the privileged SCC and add the ipfailover service account, or you can
script editing the privileged SCC if you have jq installed.

a. To manually edit the privileged SCC, run:

$ oc edit scc privileged

Then add the ipfailover service account in form system:serviceaccount:<project>:
<name> to the users section:

...
users:
- system:serviceaccount:openshift-infra:build-controller
- system:serviceaccount:default:router
- system:serviceaccount:default:ipfailover

b. Alternatively, to script editing privileged SCC if you have jq installed, run:

$ oc get scc privileged -o json |
 jq '.users |= .+
["system:serviceaccount:default:ipfailover"]' |
 oc replace scc -f -

5. Run a geo-cache service with two or more replicas. An example configuration for running a
geo-cache service is provided here.

IMPORTANT

Be sure to replace the myimages/geo-cache Docker image referenced in the file
with your intended image. Also, change the number of replicas to the desired
amount and ensure the label matches the one used in the first step.

$ oc create -n <namespace> -f ./examples/geo-cache.json

6. Finally, configure the VIPs and failover for the nodes labeled with ha-cache=geo in the first step.

CHAPTER 13. HIGH AVAILABILITY

75

https://raw.githubusercontent.com/openshift/openshift-docs/master/admin_guide/examples/geo-cache.json

Ensure the number of replicas match the number of nodes and that they satisfy the label setup in
first step. Specify the VIP addresses and the port number that ipfailover should monitor for the
desired instances:

$ oadm ipfailover ipf-ha-geo-cache --replicas=4 --selector="ha-
cache=geo" \
 --virtual-ips=10.245.2.101-104 --watch-port=9736 \
 --credentials="$KUBECONFIG" --service-account=ipfailover --create

Using the above example, you can now use the VIPs 10.245.2.101 through 10.245.2.104 to send traffic
to the geo-cache service. If a particular geo-cache instance is "unreachable", perhaps due to a node
failure, Keepalived ensures that the VIPs automatically float amongst the group of nodes labeled "ha-
cache=geo" and the service is still reachable via the virtual IP addresses.

OpenShift Enterprise 3.0 Administrator Guide

76

CHAPTER 14. SELF-PROVISIONED PROJECTS

14.1. OVERVIEW

You can allow developers to create their own projects. An accessible endpoint exists that will provision a
project according to a template. This endpoint is made accessible when a developer creates a new
project.

14.2. TEMPLATE FOR NEW PROJECTS

The API server automatically provisions projects based on the template that is defined in the
projectRequestTemplate parameter of the master-config.yaml file. If the parameter is not defined,
the API server creates a default template that creates a project with the requested name, and assigns
the requesting user to the "admin" role for that project.

To create your own custom project template:

1. Start with the current default project template:

$ oadm create-bootstrap-project-template -o yaml > template.yaml

2. Modify the template by adding objects or modifying existing objects, then load the template:

$ oc create -f template.yaml -n default

3. Modify the master-config.yaml file to reference the loaded template:

...
projectConfig:
 projectRequestTemplate: "default/project-request"
 ...

When a project request is submitted, the API substitutes the following parameters into the template:

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.

PROJECT_DESCRIPTION The description of the project. May be empty.

PROJECT_ADMIN_USER The username of the requesting user.

Access to the API is granted to developers with the self-provisioner role and the self-
provisioners cluster role binding. This role is available to all authenticated developers by default.

14.3. DISABLING SELF-PROVISIONING

Deleting the self-provisionerscluster role binding will deny permissions for self-provisioning any

CHAPTER 14. SELF-PROVISIONED PROJECTS

77

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles

new projects. When disabling self-provisioning, set the projectRequestMessage parameter in the
master-config.yaml file instructing developers on how to request a new project. This parameter is a
string that will be presented to the developer in the web console and command line when they attempt to
self-provision a project. For example:

Contact your system administrator at projectname@example.com to request a
project.

or:

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

OpenShift Enterprise 3.0 Administrator Guide

78

CHAPTER 15. PERSISTENT STORAGE USING NFS

15.1. OVERVIEW

You can provision your OpenShift cluster with persistent storage using NFS. Some familiarity with
Kubernetes and NFS is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

For a detailed example, see the guide for WordPress and MySQL using NFS.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

15.2. PROVISIONING

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift.
All that is required for NFS is a distinct list of servers and paths and the PersistentVolume API.

Example 15.1. Persistent Volume Object Definition

15.2.1. Enforcing Disk Quotas

Use disk partitions to enforce disk quotas and size constraints. Each partition can be its own export.
Each export is one persistent volume. Kubernetes enforces unique names for persistent volumes, but
the uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

{
 "apiVersion": "v1",
 "kind": "PersistentVolume",
 "metadata": {
 "name": "pv0001"
 },
 "spec": {
 "capacity": {
 "storage": "5Gi"
 },
 "accessModes": ["ReadWriteOnce"],
 "nfs": {
 "path": "/tmp",
 "server": "172.17.0.2"
 },
 "persistentVolumeReclaimPolicy": "Recycle"
 }
}

CHAPTER 15. PERSISTENT STORAGE USING NFS

79

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#dev-guide-persistent-volumes
https://github.com/openshift/origin/tree/master/examples/wordpress

15.2.2. Volume Security

Users request storage with a PersistentVolumeClaim. This claim only lives in the user’s namespace
and can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each NFS volume must be mountable by all nodes in the cluster.

15.3. RECLAIMING RESOURCES

NFS implements the Kubernetes Recyclable plug-in interface. Automatic processes handle reclamation
tasks based on policies set on each persistent volume.

By default, persistent volumes are set to Retain. NFS volumes which are set to Recycle are scrubbed
(i.e., rm -rf is run on the volume) after being released from their claim (i.e, after the user’s
PersistentVolumeClaim bound to the volume is deleted). Once recycled, the NFS volume can be
bound to a new claim.

15.4. AUTOMATION

As discussed, clusters can be provisioned with persistent storage using NFS in the following way:

Disk partitions can be used to enforce storage quotas.

Security can be enforced by restricting volumes to the namespace that has a claim to them.

Reclamation of discarded resources can be configured for each persistent volume.

They are many ways that you can use scripts to automate the above tasks. You can use an example
Ansible playbook to help you get started.

15.5. SELINUX AND NFS EXPORT SETTINGS

By default, SELinux does not allow writing from a pod to a remote NFS server. The NFS volume mounts
correctly, but is read-only.

To enable writing in SELinux on each node:

setsebool -P virt_use_nfs 1

The -P option makes the bool persistent between reboots.

Additionally, in order to enable arbitrary container users to read and write the volume, each exported
volume on the NFS server itself should conform to the following:

Each export must be:

/<example_fs> *(rw,all_squash)

Each export must be owned by nfsnobody:

chown -R nfsnobody:nfsnobody /<example_fs>

Each export must have the following permissions:

OpenShift Enterprise 3.0 Administrator Guide

80

https://github.com/openshift/openshift-ansible/tree/master/roles/kube_nfs_volumes

chmod 777 /<example_fs>

IMPORTANT

The export definition above allows arbitrary network clients to mount this volume. Exports
can be restricted to a range of IP addresses for hosts that will access the volume. See
man exports for more information.

IMPORTANT

Starting in OpenShift Enterprise 3.1, the export values have changed. See the OpenShift
Enterprise 3.1 documentation for instructions on ensuring proper security for NFS in 3.1.

CHAPTER 15. PERSISTENT STORAGE USING NFS

81

https://docs.openshift.com/enterprise/3.1/install_config/persistent_storage/persistent_storage_nfs.html

CHAPTER 16. IPTABLES

16.1. OVERVIEW

This topic describes how administrators should work with iptables. openshift-sdn takes care of adding the
necessary iptables rules to make it work. Kubernetes and Docker also manage iptables for port
forwarding and services.

16.2. RESTARTING

Docker doesn’t monitor the iptables rules that it adds for exposing ports from containers and hence if
iptables service is restarted, then these rules are lost. So, to safely restart iptables, it is recommended
that the rules are saved and restored.

$ iptables-save > /path/to/iptables.bkp
$ systemctl restart iptables
$ iptables-restore < /path/to/iptables.bkp

OpenShift Enterprise 3.0 Administrator Guide

82

CHAPTER 17. NATIVE CONTAINER ROUTING

17.1. OVERVIEW

This topic describes how to set up container networking using existing switches and routers and the
kernel networking stack in Linux. The setup requires that the network administrator or a script modifies
the router or routers when new nodes are added to the cluster.

NOTE

The procedures outlined in this topic can be adapted to any type of router.

17.2. NETWORK LAYOUT

The following diagram shows the container networking setup described in this topic. It uses one Linux
node with two network interface cards serving as a router, two switches, and three nodes connected to
these switches.

17.3. NETWORK OVERVIEW

The following describes a general network setup:

11.11.0.0/16 is the container network.

The 11.11.x.0/24 subnet is reserved for each node and assigned to the Docker Linux bridge.

Each node has a route to the router for reaching anything in the 11.11.0.0/16 range, except the
local subnet.

The router has routes for each node, so it can be directed to the right node.

Existing nodes do not need any changes when new nodes are added, unless the network
topology is modified.

CHAPTER 17. NATIVE CONTAINER ROUTING

83

IP forwarding is enabled on each node.

17.4. NODE SETUP

1. Assign an unused 11.11.x.0/24 subnet IP address to the Linux bridge on the node:

brctl addbr lbr0
ip addr add 11.11.1.1/24 dev lbr0
ip link set dev lbr0 up

2. Modify the Docker startup script to use the new bridge. By default, the startup script is the
/etc/sysconfig/docker file:

docker -d -b lbr0 --other-options

3. Add a route to the router for the 11.11.0.0/16 network:

ip route add 11.11.0.0/16 via 192.168.2.2 dev p3p1

4. Enable IP forwarding on the node:

sysctl -w net.ipv4.ip_forward=1

17.5. ROUTER SETUP

The following procedure assumes a Linux box with multiple NICs is used as a router. Modify the steps as
required to use the syntax for a particular router:

1. Enable IP forwarding on the router:

sysctl -w net.ipv4.ip_forward=1

2. Add a route for each node added to the cluster:

ip route add <node_subnet> via <node_ip_address> dev <interface
through which node is L2 accessible>
ip route add 11.11.1.0/24 via 192.168.2.1 dev p3p1
ip route add 11.11.2.0/24 via 192.168.3.3 dev p3p2
ip route add 11.11.3.0/24 via 192.168.3.4 dev p3p2

OpenShift Enterprise 3.0 Administrator Guide

84

CHAPTER 18. SECURING BUILDS BY STRATEGY

18.1. OVERVIEW

Builds in OpenShift are run in privileged containers that have access to the Docker daemon socket. As a
security measure, it is recommended to limit who can run builds and the strategy that is used for those
builds. Custom builds are inherently less safe than Source builds, given that they can execute any code
in the build with potentially full access to the node’s Docker socket. Docker build permission should also
be granted with caution as a vulnerability in the Docker build logic could result in a privileges being
granted on the host node.

By default, project administrators (the admin role) and project editors (the edit role) are granted
permission to use all build strategies (Docker, Source-to-Image, and Custom).

You can control who can build with what build strategy using an authorization policy. Each build strategy
has a corresponding build subresource. Granting permission to create on the build subresource allows
the user to create builds of that type.

Table 18.1. Build Strategy Subresources

Strategy Subresource

Docker builds/docker

Source-to-Image builds/source

Custom builds/custom

18.2. DISABLING A BUILD STRATEGY GLOBALLY

To prevent access to a particular build strategy globally, log in as a user with cluster-admin privileges
and edit each of the default roles:

$ oc edit clusterrole admin
$ oc edit clusterrole edit

For each role, remove the line that corresponds to the resource of the strategy to disable:

Example 18.1. Disable the Docker Build Strategy for admin

kind: ClusterRole
metadata:
 name: admin
...

rules:
- attributeRestrictions: null
 resources:
 - builds/custom

 - builds/docker 1
 - builds/source
 - pods/exec

CHAPTER 18. SECURING BUILDS BY STRATEGY

85

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#security-warning
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#custom-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#roles

1 1

 - pods/portforward

...

Delete this line to disable Docker builds globally for users with the admin role.

18.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY

To allow only a set of specific users to create builds with a particular strategy:

1. Remove the build strategy subresource from the default admin and edit roles.

2. Create a separate role for the build strategy. For example, create a dockerstrategy.yaml file
that defines a separate role for the Docker build strategy:

As cluster administrator, create the new cluster role:

$ oc create -f dockerstrategy.yaml

3. Assign the new cluster role to a specific user. For example, to add the new dockerbuilder
cluster role to the user devuser:

$ oadm policy add-cluster-role-to-user dockerbuilder devuser

WARNING

Granting a user access at the cluster level to the builds/docker subresource means
that the user will be able to create builds with the Docker strategy in any project in
which they can create builds.

18.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A
PROJECT

Similar to granting the build strategy role to a user globally, to allow only a set of specific users within a
project to create builds with a particular strategy:

kind: ClusterRole
apiVersion: v1
metadata:
 name: dockerbuilder
rules:
- resources:
 - builds/docker
 verbs:
 - create



OpenShift Enterprise 3.0 Administrator Guide

86

1. Remove the build strategy resource from the default admin and edit roles.

2. Create a separate role for that build strategy.

3. Assign the role to a specific user within a project. For example, to add the new dockerbuilder
role within the project devproject to the user devuser:

$ oadm policy add-role-to-user dockerbuilder devuser -n devproject

CHAPTER 18. SECURING BUILDS BY STRATEGY

87

CHAPTER 19. BUILDING DEPENDENCY TREES

19.1. OVERVIEW

OpenShift uses image change triggers in a build configuration to detect when an image stream tag has
been updated. You can use the oadm build-chain command to build a dependency tree that
identifies which images would be affected by updating an image in a specified image stream.

The build-chain tool can determine which builds to trigger; it analyzes the output of those builds to
determine if they will in turn update another image stream tag. If they do, the tool continues to follow the
dependency tree. Lastly, it outputs a graph specifying the image stream tags that would be impacted by
an update to the top-level tag. The default output syntax for this tool is set to a human-readable format;
the DOT format is also supported.

19.2. USAGE

The following table describes common build-chain usage and general syntax:

Table 19.1. Common build-chain Operations

Description Syntax

Build the dependency tree for the latest tag in
<image-stream>. $ oadm build-chain <image-stream>

Build the dependency tree for the v2 tag in DOT
format, and visualize it using the DOT utility. $ oadm build-chain <image-

stream>:v2 \
 -o dot \
 | dot -T svg -o deps.svg

Build the dependency tree across all projects for the
specified image stream tag found the test project. $ oadm build-chain <image-

stream>:v1 \
 -n test --all

NOTE

You may need to install the graphviz package to use the dot command.

OpenShift Enterprise 3.0 Administrator Guide

88

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#image-change-triggers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#referencing-images-in-image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#builds

CHAPTER 20. CUSTOMIZING THE WEB CONSOLE

20.1. OVERVIEW

Administrators can customize the web console using extensions, which let you run scripts and load
custom stylesheets when the web console loads. You can change the look and feel of nearly any aspect
of the user interface in this way.

20.2. LOADING CUSTOM SCRIPTS AND STYLESHEETS

To add scripts and stylesheets, edit the master configuration file. The scripts and stylesheet files must
exist on the Asset Server and are added with the following options:

assetConfig:
 ...
 extensionScripts:
 - /path/to/script1.js
 - /path/to/script2.js
 - ...
 extensionStylesheets:
 - /path/to/stylesheet1.css
 - /path/to/stylesheet2.css
 - ...

Relative paths are resolved relative to the master configuration file. To pick up configuration changes,
restart the server.

Custom scripts and stylesheets are read once at server start time. To make developing extensions
easier, you can reload scripts and stylesheets on every request by enabling development mode with the
following setting:

assetConfig:
 ...
 extensionDevelopment: true

When set, the web console reloads any changes to existing extension script or stylesheet files when you
refresh the page in your browser. You still must restart the server when adding new extension
stylesheets or scripts, however. This setting is only recommended for testing changes and not for
production.

The following examples show common ways you can customize the web console.

Customizing the Logo

The following style changes the logo in the web console header:

#header-logo {
 background-image: url("https://www.example.com/images/logo.png");
 width: 160px;
 height: 10px;
}

CHAPTER 20. CUSTOMIZING THE WEB CONSOLE

89

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/architecture/#architecture-infrastructure-components-web-console

Replace the example.com URL with a URL to an actual image, and adjust the width and height. The
ideal height is 10px.

Save the style to a file, for example logo.css, and add it to the master configuration file:

assetConfig:
 ...
 extensionStylesheets:
 - /path/to/logo.css

Changing the Header Color

The following style changes the header color to dark blue:

.navbar-header {
 background-color: #2B3856;
}

Save the style to a file, for example theme.css, and add it to the master configuration file:

assetConfig:
 ...
 extensionStylesheets:
 - /path/to/theme.css

Adding a Link to the Header

The following script adds a link into the web console header:

$(".navbar-utility").prepend('System Status');

Save this script to a file, for example nav-link.js, and add it to the master configuration file:

assetConfig:
 ...
 extensionScripts:
 - /path/to/nav-link.js

20.3. SERVING STATIC FILES

You can serve other files from the Asset Server as well. For example, you might want to make the CLI
executable available for download from the web console or add images to use in a custom stylesheet.

Add the directory with the files you want using the following configuration option:

assetConfig:
 ...
 extensions:
 - name: images
 sourceDirectory: /path/to/my_images

OpenShift Enterprise 3.0 Administrator Guide

90

The files under the /path/to/my_images directory will be available under the URL
/<context>/extensions/images in the web console.

To reference these files from a stylesheet, you should generally use a relative path. For example:

#header-logo {
 background-image: url("../extensions/images/my-logo.png");
}

20.3.1. Enabling.adoc5 Mode

The web console has a special mode for supporting certain static web applications that use the.adoc5
history API:

assetConfig:
 ...
 extensions:
 - name: my_extension
 sourceDirectory: /path/to/myExtension
 .adoc5Mode: true

Setting .adoc5Mode* to true enables two behaviors:

1. Any request for a non-existent file under /<context>/extensions/my_extension/ instead serves
/path/to/myExtension/index.adoc rather than a "404 Not Found" page.

2. The element <base href="/"> will be rewritten in /path/to/myExtension/index.adoc to use
the actual base depending on the asset configuration; only this exact string is rewritten.

This is needed for JavaScript frameworks such as AngularJS that require base to be set in index.adoc.

20.4. CUSTOMIZING THE LOGIN PAGE

You can also change the login page for the web console. Run the following command to create a
template you can modify:

$ oadm create-login-template > login-template.adoc

Edit the file to change the styles or add content, but be careful not to remove any required parameters
inside curly braces.

To use your custom login page, set the following option in the master configuration file:

oauthConfig:
 ...
 templates:
 login: /path/to/login-template.adoc

Relative paths are resolved relative to the master configuration file. You must restart the server after
changing this configuration.

20.5. CHANGING THE LOGOUT URL

CHAPTER 20. CUSTOMIZING THE WEB CONSOLE

91

You can change the location a console user is sent to when logging out of the console by modifying the
logoutURL parameter in the /etc/openshift/master/master-config.yaml file:

...
assetConfig:
 logoutURL: "http://www.example.com"
...

This can be useful when authenticating with Request Header and OAuth or OpenID identity providers,
which require visiting an external URL to destroy single sign-on sessions.

OpenShift Enterprise 3.0 Administrator Guide

92

CHAPTER 21. WORKING WITH HTTP PROXIES

21.1. OVERVIEW

Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. Configuring OpenShift to use these proxies can be as simple as setting standard
environment variables in configuration or JSON files.

21.2. CONFIGURING HOSTS FOR PROXIES

1. Add the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables to each host’s
/etc/sysconfig/openshift-master or /etc/sysconfig/openshift-node file depending on the type
of host:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com

2. Restart the master or node host as appropriate:

systemctl restart openshift-master
systemctl restart openshift-node

21.3. PROXYING DOCKER PULL

OpenShift node hosts need to perform push and pull operations to Docker registries. If you have a
registry that does not need a proxy for nodes to access, include the NO_PROXY parameter with the
registry’s host name, the registry service’s IP address, and service name. This blacklists that registry,
leaving the external HTTP proxy as the only option.

1. Edit the /etc/sysconfig/docker file and add the variables in shell format:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com,172.30.123.45,docker-
registry.default.svc.cluster.local

2. Restart the Docker service:

systemctl restart docker

21.4. CONFIGURING S2I BUILDS FOR PROXIES

S2I builds fetch dependencies from various locations. You can use a .sti/environment file to specify
simple shell variables and OpenShift will react accordingly when seeing build images.

The following are the supported proxy environment variables with example values:

HTTP_PROXY=http://USERNAME:PASSWORD@10.0.1.1:8080/
HTTPS_PROXY=https://USERNAME:PASSWORD@10.0.0.1:8080/
NO_PROXY=master.hostname.example.com

CHAPTER 21. WORKING WITH HTTP PROXIES

93

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#environment-files

21.5. CONFIGURING DEFAULT TEMPLATES FOR PROXIES

The example templates available in OpenShift by default do not include settings for HTTP proxies. For
existing applications based on these templates, modify the source section of the application’s build
configuration and add proxy settings:

...
source:
 type: Git
 git:
 uri: https://github.com/openshift/ruby-hello-world
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
...

This is similar to the process for using proxies for Git cloning.

21.6. SETTING PROXY ENVIRONMENT VARIABLES IN PODS

You can set the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables in the
templates.spec.containers stanza in a deployment configuration to pass proxy connection
information. The same can be done for configuring a Pod’s proxy at runtime:

...
containers:
- env:
 - name: "HTTP_PROXY"
 value: "http://USER:PASSWORD@IPADDR:PORT"
...

You can also use the oc env command to update an existing deployment configuration with a new
environment variable:

$ oc env dc/frontend HTTP_PROXY=http://USER:PASSWORD@IPADDR:PORT

If you have a ConfigChange trigger set up in your OpenShift instance, the changes happen
automatically. Otherwise, manually redeploy your application for the changes to take effect.

21.7. GIT REPOSITORY ACCESS

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both fields are
optional.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

...
source:
 type: Git
 git:

OpenShift Enterprise 3.0 Administrator Guide

94

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/installation_and_configuration/#creating-instantapp-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.0/html-single/developer_guide/#triggers

 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
...

CHAPTER 21. WORKING WITH HTTP PROXIES

95

CHAPTER 22. REVISION HISTORY: ADMINISTRATION

22.1. THU MAY 19 2016

Affected Topic Description of Change

Working with HTTP
Proxies

Updated the example in the Configuring Default Templates for Proxies section to
use https for GitHub access.

22.2. WED FEB 17 2016

Affected Topic Description of Change

Persistent Storage Using
NFS

Added an Important box explaining that the export values have changed for
OpenShift Enterprise 3.1.

22.3. MON FEB 08 2016

Affected Topic Description of Change

Aggregating Container
Logs

Fixed RPM package paths for yum localinstall commands.

22.4. TUE JUN 23 2015

OpenShift Enterprise 3.0 release.

OpenShift Enterprise 3.0 Administrator Guide

96

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. MASTER AND NODE CONFIGURATION
	2.1. OVERVIEW
	2.2. CREATING NEW CONFIGURATION FILES
	2.3. LAUNCHING SERVERS USING CONFIGURATION FILES
	2.4. MASTER CONFIGURATION FILES
	2.5. NODE CONFIGURATION FILES

	CHAPTER 3. MANAGING NODES
	3.1. OVERVIEW
	3.2. LISTING NODES
	3.3. ADDING NODES
	3.4. DELETING NODES
	3.5. UPDATING LABELS ON NODES
	3.6. LISTING PODS ON NODES
	3.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
	3.8. EVACUATING PODS ON NODES

	CHAPTER 4. ROUTING FROM EDGE LOAD BALANCERS
	4.1. OVERVIEW
	4.2. INCLUDING THE LOAD BALANCER IN THE SDN
	4.3. ESTABLISHING A TUNNEL USING A RAMP NODE
	4.3.1. Configuring a Highly-Available Ramp Node

	CHAPTER 5. AGGREGATING CONTAINER LOGS
	5.1. OVERVIEW
	5.2. USING A CENTRALIZED FILE SYSTEM
	5.2.1. Installing fluentd (td-agent) on Nodes
	5.2.2. Optional Method to Verify Working Nodes

	CHAPTER 6. CONFIGURING AUTHENTICATION
	6.1. OVERVIEW
	6.2. IDENTITY PROVIDERS
	6.2.1. Allow All
	6.2.2. Deny All
	6.2.3. HTPasswd
	6.2.4. LDAP Authentication
	6.2.5. Basic Authentication (Remote)
	6.2.6. Request Header
	6.2.7. GitHub
	6.2.8. Google
	6.2.9. OpenID Connect

	6.3. TOKEN OPTIONS
	6.4. GRANT OPTIONS
	6.5. SESSION OPTIONS

	CHAPTER 7. SERVICE ACCOUNTS
	7.1. OVERVIEW
	7.2. USERNAMES AND GROUPS
	7.3. ENABLE SERVICE ACCOUNT AUTHENTICATION
	7.4. MANAGED SERVICE ACCOUNTS
	7.5. INFRASTRUCTURE SERVICE ACCOUNTS

	CHAPTER 8. MANAGING AUTHORIZATION POLICIES
	8.1. OVERVIEW
	8.2. VIEWING ROLES AND BINDINGS
	8.2.1. Viewing Cluster Policy
	8.2.2. Viewing Local Policy

	8.3. MANAGING ROLE BINDINGS

	CHAPTER 9. MANAGING SECURITY CONTEXT CONSTRAINTS
	9.1. OVERVIEW
	9.2. LISTING SECURITY CONTEXT CONSTRAINTS
	9.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT
	9.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS
	9.5. DELETING SECURITY CONTEXT CONSTRAINTS
	9.6. UPDATING SECURITY CONTEXT CONSTRAINTS
	9.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS
	9.8. HOW DO I?
	9.8.1. Grant Access to the Privileged SCC
	9.8.2. Grant a Service Account Access to the Privileged SCC
	9.8.3. Enable Images to Run with USER in the Dockerfile
	9.8.4. Use --mount-host on the Registry
	9.8.5. Provide Additional Capabilities
	9.8.6. Modify Cluster Default Behavior
	9.8.7. Use the hostPath Volume Plug-in

	CHAPTER 10. SCHEDULER
	10.1. OVERVIEW
	10.2. GENERIC SCHEDULER
	10.2.1. Filter the nodes
	10.2.2. Prioritize the filtered list of nodes
	10.2.3. Select the best fit node

	10.3. AVAILABLE PREDICATES
	10.3.1. Static Predicates
	10.3.2. Configurable Predicates

	10.4. AVAILABLE PRIORITY FUNCTIONS
	10.4.1. Static Priority Functions
	10.4.2. Configurable Priority Functions

	10.5. SCHEDULER POLICY
	10.5.1. Default Scheduler Policy

	10.6. USE CASES
	10.6.1. Infrastructure Topological Levels
	10.6.2. Affinity
	10.6.3. Anti Affinity

	10.7. SAMPLE POLICY CONFIGURATIONS
	10.8. SCHEDULER EXTENSIBILITY
	10.8.1. Enhancements
	10.8.2. Replacement

	CHAPTER 11. PRUNING OBJECTS
	11.1. OVERVIEW
	11.2. BASIC PRUNE OPERATIONS
	11.3. PRUNING DEPLOYMENTS
	11.4. PRUNING BUILDS
	11.5. PRUNING IMAGES

	CHAPTER 12. MONITORING ROUTERS
	12.1. OVERVIEW
	12.2. VIEWING STATISTICS
	12.3. VIEWING LOGS
	12.4. VIEWING THE ROUTER INTERNALS

	CHAPTER 13. HIGH AVAILABILITY
	13.1. OVERVIEW
	13.2. CONFIGURING IP FAILOVER
	13.2.1. Virtual IP Addresses
	13.2.2. Configuring a Highly-available Routing Service
	13.2.3. Configuring a Highly-available Network Service

	CHAPTER 14. SELF-PROVISIONED PROJECTS
	14.1. OVERVIEW
	14.2. TEMPLATE FOR NEW PROJECTS
	14.3. DISABLING SELF-PROVISIONING

	CHAPTER 15. PERSISTENT STORAGE USING NFS
	15.1. OVERVIEW
	15.2. PROVISIONING
	15.2.1. Enforcing Disk Quotas
	15.2.2. Volume Security

	15.3. RECLAIMING RESOURCES
	15.4. AUTOMATION
	15.5. SELINUX AND NFS EXPORT SETTINGS

	CHAPTER 16. IPTABLES
	16.1. OVERVIEW
	16.2. RESTARTING

	CHAPTER 17. NATIVE CONTAINER ROUTING
	17.1. OVERVIEW
	17.2. NETWORK LAYOUT
	17.3. NETWORK OVERVIEW
	17.4. NODE SETUP
	17.5. ROUTER SETUP

	CHAPTER 18. SECURING BUILDS BY STRATEGY
	18.1. OVERVIEW
	18.2. DISABLING A BUILD STRATEGY GLOBALLY
	18.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY
	18.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

	CHAPTER 19. BUILDING DEPENDENCY TREES
	19.1. OVERVIEW
	19.2. USAGE

	CHAPTER 20. CUSTOMIZING THE WEB CONSOLE
	20.1. OVERVIEW
	20.2. LOADING CUSTOM SCRIPTS AND STYLESHEETS
	20.3. SERVING STATIC FILES
	20.3.1. Enabling.adoc5 Mode

	20.4. CUSTOMIZING THE LOGIN PAGE
	20.5. CHANGING THE LOGOUT URL

	CHAPTER 21. WORKING WITH HTTP PROXIES
	21.1. OVERVIEW
	21.2. CONFIGURING HOSTS FOR PROXIES
	21.3. PROXYING DOCKER PULL
	21.4. CONFIGURING S2I BUILDS FOR PROXIES
	21.5. CONFIGURING DEFAULT TEMPLATES FOR PROXIES
	21.6. SETTING PROXY ENVIRONMENT VARIABLES IN PODS
	21.7. GIT REPOSITORY ACCESS

	CHAPTER 22. REVISION HISTORY: ADMINISTRATION
	22.1. THU MAY 19 2016
	22.2. WED FEB 17 2016
	22.3. MON FEB 08 2016
	22.4. TUE JUN 23 2015

