
OpenShift Dedicated 4

Storage

Configuring storage for OpenShift Dedicated clusters

Last Updated: 2024-04-22

OpenShift Dedicated 4 Storage

Configuring storage for OpenShift Dedicated clusters

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about setting up storage for OpenShift Dedicated clusters.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT DEDICATED STORAGE OVERVIEW
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED STORAGE
1.2. STORAGE TYPES

1.2.1. Ephemeral storage
1.2.2. Persistent storage

1.3. CONTAINER STORAGE INTERFACE (CSI)
1.4. DYNAMIC PROVISIONING

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
2.1. OVERVIEW
2.2. TYPES OF EPHEMERAL STORAGE

Root
Runtime

2.3. EPHEMERAL STORAGE MANAGEMENT
2.3.1. Ephemeral storage limits and requests units
2.3.2. Ephemeral storage requests and limits example
2.3.3. Ephemeral storage configuration effects pod scheduling and eviction

2.4. MONITORING EPHEMERAL STORAGE

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE
3.1. PERSISTENT STORAGE OVERVIEW
3.2. LIFECYCLE OF A VOLUME AND CLAIM

3.2.1. Provision storage
3.2.2. Bind claims
3.2.3. Use pods and claimed PVs
3.2.4. Release a persistent volume
3.2.5. Reclaim policy for persistent volumes
3.2.6. Reclaiming a persistent volume manually
3.2.7. Changing the reclaim policy of a persistent volume

3.3. PERSISTENT VOLUMES
3.3.1. Types of PVs
3.3.2. Capacity
3.3.3. Access modes
3.3.4. Phase

3.3.4.1. Mount options
3.4. PERSISTENT VOLUME CLAIMS

3.4.1. Storage classes
3.4.2. Access modes
3.4.3. Resources
3.4.4. Claims as volumes

3.5. BLOCK VOLUME SUPPORT
3.5.1. Block volume examples

3.6. USING FSGROUP TO REDUCE POD TIMEOUTS

CHAPTER 4. CONFIGURING PERSISTENT STORAGE
4.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

4.1.1. Creating the EBS storage class
4.1.2. Creating the persistent volume claim
4.1.3. Volume format
4.1.4. Maximum number of EBS volumes on a node
4.1.5. Encrypting container persistent volumes on AWS with a KMS key
4.1.6. Additional resources

5
5
6
6
7
7
7

8
8
8
8
8
8
9
9

10
10

11
11
11
11
11

12
12
12
13
13
14
14
14
15
16
17
17
18
19
19
19
19

20
22

24
24
24
24
25
25
25
27

Table of Contents

1

. .

. .

4.2. PERSISTENT STORAGE USING GCE PERSISTENT DISK
4.2.1. Creating the GCE storage class
4.2.2. Creating the persistent volume claim
4.2.3. Volume format

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)
5.1. CONFIGURING CSI VOLUMES

5.1.1. CSI architecture
5.1.1.1. External CSI controllers
5.1.1.2. CSI driver daemon set

5.1.2. CSI drivers supported by OpenShift Dedicated
5.1.3. Dynamic provisioning
5.1.4. Example using the CSI driver

5.2. MANAGING THE DEFAULT STORAGE CLASS
5.2.1. Overview
5.2.2. Managing the default storage class using the web console
5.2.3. Managing the default storage class using the CLI
5.2.4. Absent or multiple default storage classes

5.2.4.1. Multiple default storage classes
5.2.4.2. Absent default storage class

5.2.5. Changing the default storage class
5.3. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR

5.3.1. Overview
5.3.2. About CSI

5.4. SETTING UP AWS ELASTIC FILE SERVICE CSI DRIVER OPERATOR
5.4.1. Overview
5.4.2. About CSI
5.4.3. Setting up the AWS EFS CSI Driver Operator

5.4.3.1. Installing the AWS EFS CSI Driver Operator
5.4.3.2. Installing the AWS EFS CSI Driver

5.4.4. Creating the AWS EFS storage class
5.4.4.1. Creating the AWS EFS storage class using the console
5.4.4.2. Creating the AWS EFS storage class using the CLI

5.4.5. Creating and configuring access to EFS volumes in AWS
5.4.6. Dynamic provisioning for Amazon Elastic File Storage
5.4.7. Creating static PVs with Amazon Elastic File Storage
5.4.8. Amazon Elastic File Storage security
5.4.9. Amazon Elastic File Storage troubleshooting
5.4.10. Uninstalling the AWS EFS CSI Driver Operator
5.4.11. Additional resources

5.5. GCP PD CSI DRIVER OPERATOR
5.5.1. Overview
5.5.2. About CSI
5.5.3. GCP PD CSI driver storage class parameters
5.5.4. Creating a custom-encrypted persistent volume
5.5.5. Additional resources

CHAPTER 6. GENERIC EPHEMERAL VOLUMES
6.1. OVERVIEW
6.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS
6.3. SECURITY
6.4. PERSISTENT VOLUME CLAIM NAMING
6.5. CREATING GENERIC EPHEMERAL VOLUMES

27
27
27
28

29
29
29
29
30
30
31
32
32
32
33
34
34
34
34
34
36
36
36
36
37
37
37
37
38
39
39
39
40
41

42
43
43
44
45
45
45
45
46
46
48

49
49
49
50
50
50

OpenShift Dedicated 4 Storage

2

. .CHAPTER 7. DYNAMIC PROVISIONING
7.1. ABOUT DYNAMIC PROVISIONING
7.2. AVAILABLE DYNAMIC PROVISIONING PLUGINS
7.3. DEFINING A STORAGE CLASS

7.3.1. Basic StorageClass object definition
7.3.2. Storage class annotations
7.3.3. AWS Elastic Block Store (EBS) object definition
7.3.4. GCE PersistentDisk (gcePD) object definition

7.4. CHANGING THE DEFAULT STORAGE CLASS

52
52
52
53
53
54
54
55
55

Table of Contents

3

OpenShift Dedicated 4 Storage

4

CHAPTER 1. OPENSHIFT DEDICATED STORAGE OVERVIEW
OpenShift Dedicated supports multiple types of storage, both for on-premise and cloud providers. You
can manage container storage for persistent and non-persistent data in an OpenShift Dedicated cluster.

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED
STORAGE

This glossary defines common terms that are used in the storage content.

Access modes

Volume access modes describe volume capabilities. You can use access modes to match persistent
volume claim (PVC) and persistent volume (PV). The following are the examples of access modes:

ReadWriteOnce (RWO)

ReadOnlyMany (ROX)

ReadWriteMany (RWX)

ReadWriteOncePod (RWOP)

Config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

Container Storage Interface (CSI)

An API specification for the management of container storage across different container
orchestration (CO) systems.

Dynamic Provisioning

The framework allows you to create storage volumes on-demand, eliminating the need for cluster
administrators to pre-provision persistent storage.

Ephemeral storage

Pods and containers can require temporary or transient local storage for their operation. The lifetime
of this ephemeral storage does not extend beyond the life of the individual pod, and this ephemeral
storage cannot be shared across pods.

fsGroup

The fsGroup defines a file system group ID of a pod.

hostPath

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the
host node’s filesystem into your pod.

KMS key

The Key Management Service (KMS) helps you achieve the required level of encryption of your data
across different services. you can use the KMS key to encrypt, decrypt, and re-encrypt data.

Local volumes

A local volume represents a mounted local storage device such as a disk, partition or directory.

OpenShift Data Foundation

A provider of agnostic persistent storage for OpenShift Container Platform supporting file, block,
and object storage, either in-house or in hybrid clouds

CHAPTER 1. OPENSHIFT DEDICATED STORAGE OVERVIEW

5

Persistent storage

Pods and containers can require permanent storage for their operation. OpenShift Dedicated uses
the Kubernetes persistent volume (PV) framework to allow cluster administrators to provision
persistent storage for a cluster. Developers can use PVC to request PV resources without having
specific knowledge of the underlying storage infrastructure.

Persistent volumes (PV)

OpenShift Dedicated uses the Kubernetes persistent volume (PV) framework to allow cluster
administrators to provision persistent storage for a cluster. Developers can use PVC to request PV
resources without having specific knowledge of the underlying storage infrastructure.

Persistent volume claims (PVCs)

You can use a PVC to mount a PersistentVolume into a Pod. You can access the storage without
knowing the details of the cloud environment.

Pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Dedicated cluster. A pod is the smallest compute unit defined, deployed, and managed.

Reclaim policy

A policy that tells the cluster what to do with the volume after it is released. A volume’s reclaim policy
can be Retain, Recycle, or Delete.

Role-based access control (RBAC)

Role-based access control (RBAC) is a method of regulating access to computer or network
resources based on the roles of individual users within your organization.

Stateless applications

A stateless application is an application program that does not save client data generated in one
session for use in the next session with that client.

Stateful applications

A stateful application is an application program that saves data to persistent disk storage. A server,
client, and applications can use a persistent disk storage. You can use the Statefulset object in
OpenShift Dedicated to manage the deployment and scaling of a set of Pods, and provides
guarantee about the ordering and uniqueness of these Pods.

Static provisioning

A cluster administrator creates a number of PVs. PVs contain the details of storage. PVs exist in the
Kubernetes API and are available for consumption.

Storage

OpenShift Dedicated supports many types of storage, both for on-premise and cloud providers. You
can manage container storage for persistent and non-persistent data in an OpenShift Dedicated
cluster.

Storage class

A storage class provides a way for administrators to describe the classes of storage they offer.
Different classes might map to quality of service levels, backup policies, arbitrary policies determined
by the cluster administrators.

1.2. STORAGE TYPES

OpenShift Dedicated storage is broadly classified into two categories, namely ephemeral storage and
persistent storage.

1.2.1. Ephemeral storage

Pods and containers are ephemeral or transient in nature and designed for stateless applications.

OpenShift Dedicated 4 Storage

6

Pods and containers are ephemeral or transient in nature and designed for stateless applications.
Ephemeral storage allows administrators and developers to better manage the local storage for some of
their operations. For more information about ephemeral storage overview, types, and management, see
Understanding ephemeral storage .

1.2.2. Persistent storage

Stateful applications deployed in containers require persistent storage. OpenShift Dedicated uses a
pre-provisioned storage framework called persistent volumes (PV) to allow cluster administrators to
provision persistent storage. The data inside these volumes can exist beyond the lifecycle of an
individual pod. Developers can use persistent volume claims (PVCs) to request storage requirements.
For more information about persistent storage overview, configuration, and lifecycle, see Understanding
persistent storage.

1.3. CONTAINER STORAGE INTERFACE (CSI)

CSI is an API specification for the management of container storage across different container
orchestration (CO) systems. You can manage the storage volumes within the container native
environments, without having specific knowledge of the underlying storage infrastructure. With the CSI,
storage works uniformly across different container orchestration systems, regardless of the storage
vendors you are using. For more information about CSI, see Using Container Storage Interface (CSI) .

1.4. DYNAMIC PROVISIONING

Dynamic Provisioning allows you to create storage volumes on-demand, eliminating the need for cluster
administrators to pre-provision storage. For more information about dynamic provisioning, see Dynamic
provisioning.

CHAPTER 1. OPENSHIFT DEDICATED STORAGE OVERVIEW

7

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

2.1. OVERVIEW

In addition to persistent storage, pods and containers can require ephemeral or transient local storage
for their operation. The lifetime of this ephemeral storage does not extend beyond the life of the
individual pod, and this ephemeral storage cannot be shared across pods.

Pods use ephemeral local storage for scratch space, caching, and logs. Issues related to the lack of local
storage accounting and isolation include the following:

Pods cannot detect how much local storage is available to them.

Pods cannot request guaranteed local storage.

Local storage is a best-effort resource.

Pods can be evicted due to other pods filling the local storage, after which new pods are not
admitted until sufficient storage is reclaimed.

Unlike persistent volumes, ephemeral storage is unstructured and the space is shared between all pods
running on a node, in addition to other uses by the system, the container runtime, and OpenShift
Dedicated. The ephemeral storage framework allows pods to specify their transient local storage needs.
It also allows OpenShift Dedicated to schedule pods where appropriate, and to protect the node against
excessive use of local storage.

While the ephemeral storage framework allows administrators and developers to better manage local
storage, I/O throughput and latency are not directly effected.

2.2. TYPES OF EPHEMERAL STORAGE

Ephemeral local storage is always made available in the primary partition. There are two basic ways of
creating the primary partition: root and runtime.

Root
This partition holds the kubelet root directory, /var/lib/kubelet/ by default, and /var/log/ directory. This
partition can be shared between user pods, the OS, and Kubernetes system daemons. This partition can
be consumed by pods through EmptyDir volumes, container logs, image layers, and container-writable
layers. Kubelet manages shared access and isolation of this partition. This partition is ephemeral, and
applications cannot expect any performance SLAs, such as disk IOPS, from this partition.

Runtime
This is an optional partition that runtimes can use for overlay file systems. OpenShift Dedicated
attempts to identify and provide shared access along with isolation to this partition. Container image
layers and writable layers are stored here. If the runtime partition exists, the root partition does not hold
any image layer or other writable storage.

2.3. EPHEMERAL STORAGE MANAGEMENT

Cluster administrators can manage ephemeral storage within a project by setting quotas that define the
limit ranges and number of requests for ephemeral storage across all pods in a non-terminal state.
Developers can also set requests and limits on this compute resource at the pod and container level.

You can manage local ephemeral storage by specifying requests and limits. Each container in a pod can

OpenShift Dedicated 4 Storage

8

You can manage local ephemeral storage by specifying requests and limits. Each container in a pod can
specify the following:

spec.containers[].resources.limits.ephemeral-storage

spec.containers[].resources.requests.ephemeral-storage

2.3.1. Ephemeral storage limits and requests units

Limits and requests for ephemeral storage are measured in byte quantities. You can express storage as
a plain integer or as a fixed-point number using one of these suffixes: E, P, T, G, M, k. You can also use
the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

For example, the following quantities all represent approximately the same value: 128974848, 129e6,
129M, and 123Mi.

IMPORTANT

The suffixes for each byte quantity are case-sensitive. Be sure to use the correct case.
Use the case-sensitive "M", such as used in "400M" to set the request at 400 megabytes.
Use the case-sensitive "400Mi" to request 400 mebibytes. If you specify "400m" of
ephemeral storage, the storage requests is only 0.4 bytes.

2.3.2. Ephemeral storage requests and limits example

The following example configuration file shows a pod with two containers:

Each container requests 2GiB of local ephemeral storage.

Each container has a limit of 4GiB of local ephemeral storage.

At the pod level, kubelet works out an overall pod storage limit by adding up the limits of all the
containers in that pod.

In this case, the total storage usage at the pod level is the sum of the disk usage from all
containers plus the pod’s emptyDir volumes.

Therefore, the pod has a request of 4GiB of local ephemeral storage, and a limit of 8GiB of
local ephemeral storage.

Example ephemeral storage configuration with quotas and limits

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: images.my-company.example/app:v4
 resources:
 requests:
 ephemeral-storage: "2Gi" 1
 limits:
 ephemeral-storage: "4Gi" 2

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

9

1

2

Container request for local ephemeral storage.

Container limit for local ephemeral storage.

2.3.3. Ephemeral storage configuration effects pod scheduling and eviction

The settings in the pod spec affect both how the scheduler makes a decision about scheduling pods and
when kubelet evicts pods.

First, the scheduler ensures that the sum of the resource requests of the scheduled containers
is less than the capacity of the node. In this case, the pod can be assigned to a node only if the
node’s available ephemeral storage (allocatable resource) is more than 4GiB.

Second, at the container level, because the first container sets a resource limit, kubelet eviction
manager measures the disk usage of this container and evicts the pod if the storage usage of
the container exceeds its limit (4GiB). The kubelet eviction manager also marks the pod for
eviction if the total usage exceeds the overall pod storage limit (8GiB).

2.4. MONITORING EPHEMERAL STORAGE

You can use /bin/df as a tool to monitor ephemeral storage usage on the volume where ephemeral
container data is located, which is /var/lib/kubelet and /var/lib/containers. The available space for only
/var/lib/kubelet is shown when you use the df command if /var/lib/containers is placed on a separate
disk by the cluster administrator.

To show the human-readable values of used and available space in /var/lib, enter the following
command:

The output shows the ephemeral storage usage in /var/lib:

Example output

 volumeMounts:
 - name: ephemeral
 mountPath: "/tmp"
 - name: log-aggregator
 image: images.my-company.example/log-aggregator:v6
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 volumeMounts:
 - name: ephemeral
 mountPath: "/tmp"
 volumes:
 - name: ephemeral
 emptyDir: {}

$ df -h /var/lib

Filesystem Size Used Avail Use% Mounted on
/dev/disk/by-partuuid/4cd1448a-01 69G 32G 34G 49% /

OpenShift Dedicated 4 Storage

10

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

3.1. PERSISTENT STORAGE OVERVIEW

Managing storage is a distinct problem from managing compute resources. OpenShift Dedicated uses
the Kubernetes persistent volume (PV) framework to allow cluster administrators to provision persistent
storage for a cluster. Developers can use persistent volume claims (PVCs) to request PV resources
without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project, and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Dedicated cluster and claimed from any project. After a PV is bound to a PVC, that PV can
not then be bound to additional PVCs. This has the effect of scoping a bound PV to a single namespace,
that of the binding project.

PVs are defined by a PersistentVolume API object, which represents a piece of existing storage in the
cluster that was either statically provisioned by the cluster administrator or dynamically provisioned
using a StorageClass object. It is a resource in the cluster just like a node is a cluster resource.

PVs are volume plugins like Volumes but have a lifecycle that is independent of any individual pod that
uses the PV. PV objects capture the details of the implementation of the storage, be that NFS, iSCSI, or
a cloud-provider-specific storage system.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage by a
developer. It is similar to a pod in that pods consume node resources and PVCs consume PV resources.
For example, pods can request specific levels of resources, such as CPU and memory, while PVCs can
request specific storage capacity and access modes. For example, they can be mounted once read-
write or many times read-only.

3.2. LIFECYCLE OF A VOLUME AND CLAIM

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

3.2.1. Provision storage

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

3.2.2. Bind claims

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and create a storage class to describe and classify the storage. The control loop in the master watches
for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist, a
provisioner for the storage class creates one.

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To
minimize the excess, OpenShift Dedicated binds to the smallest PV that matches all other criteria.

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

11

Claims remain unbound indefinitely if a matching volume does not exist or can not be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

3.2.3. Use pods and claimed PVs

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a pod.

Once you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule pods and access claimed PVs by including persistentVolumeClaim in the pod’s
volumes block.

NOTE

If you attach persistent volumes that have high file counts to pods, those pods can fail or
can take a long time to start. For more information, see When using Persistent Volumes
with high file counts in OpenShift, why do pods fail to start or take an excessive amount
of time to achieve "Ready" state?.

3.2.4. Release a persistent volume

When you are finished with a volume, you can delete the PVC object from the API, which allows
reclamation of the resource. The volume is considered released when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume and must be
handled according to policy.

3.2.5. Reclaim policy for persistent volumes

The reclaim policy of a persistent volume tells the cluster what to do with the volume after it is released.
A volume’s reclaim policy can be Retain, Recycle, or Delete.

Retain reclaim policy allows manual reclamation of the resource for those volume plugins that
support it.

Recycle reclaim policy recycles the volume back into the pool of unbound persistent volumes
once it is released from its claim.

IMPORTANT

The Recycle reclaim policy is deprecated in OpenShift Dedicated 4. Dynamic
provisioning is recommended for equivalent and better functionality.

Delete reclaim policy deletes both the PersistentVolume object from OpenShift Dedicated
and the associated storage asset in external infrastructure, such as Amazon Elastic Block Store
(Amazon EBS) or VMware vSphere.

NOTE

Dynamically provisioned volumes are always deleted.

OpenShift Dedicated 4 Storage

12

https://access.redhat.com/solutions/6221251

3.2.6. Reclaiming a persistent volume manually

When a persistent volume claim (PVC) is deleted, the persistent volume (PV) still exists and is
considered "released". However, the PV is not yet available for another claim because the data of the
previous claimant remains on the volume.

Procedure

To manually reclaim the PV as a cluster administrator:

1. Delete the PV.

The associated storage asset in the external infrastructure, such as an AWS EBS or GCE PD
volume, still exists after the PV is deleted.

2. Clean up the data on the associated storage asset.

3. Delete the associated storage asset. Alternately, to reuse the same storage asset, create a new
PV with the storage asset definition.

The reclaimed PV is now available for use by another PVC.

3.2.7. Changing the reclaim policy of a persistent volume

To change the reclaim policy of a persistent volume:

1. List the persistent volumes in your cluster:

Example output

2. Choose one of your persistent volumes and change its reclaim policy:

3. Verify that your chosen persistent volume has the right policy:

Example output

$ oc delete pv <pv-name>

$ oc get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim3 manual 3s

$ oc patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

$ oc get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

13

1

2

3

4

In the preceding output, the volume bound to claim default/claim3 now has a Retain reclaim
policy. The volume will not be automatically deleted when a user deletes claim default/claim3.

3.3. PERSISTENT VOLUMES

Each PV contains a spec and status, which is the specification and status of the volume, for example:

PersistentVolume object definition example

Name of the persistent volume.

The amount of storage available to the volume.

The access mode, defining the read-write and mount permissions.

The reclaim policy, indicating how the resource should be handled once it is released.

3.3.1. Types of PVs

OpenShift Dedicated supports the following persistent volume plugins:

AWS Elastic Block Store (EBS)

GCP Persistent Disk

GCP Filestore

3.3.2. Capacity

Generally, a persistent volume (PV) has a specific storage capacity. This is set by using the capacity
attribute of the PV.

CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain Bound
default/claim3 manual 3s

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain 4
 ...
status:
 ...

OpenShift Dedicated 4 Storage

14

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

3.3.3. Access modes

A persistent volume can be mounted on a host in any way supported by the resource provider. Providers
have different capabilities and each PV’s access modes are set to the specific modes supported by that
particular volume. For example, NFS can support multiple read-write clients, but a specific NFS PV
might be exported on the server as read-only. Each PV gets its own set of access modes describing that
specific PV’s capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, you might be granted more, but
never less. For example, if a claim requests RWO, but the only volume available is an NFS PV
(RWO+ROX+RWX), the claim would then match NFS because it supports RWO.

Direct matches are always attempted first. The volume’s modes must match or contain more modes
than you requested. The size must be greater than or equal to what is expected. If two types of volumes,
such as NFS and iSCSI, have the same set of access modes, either of them can match a claim with those
modes. There is no ordering between types of volumes and no way to choose one type over another.

All volumes with the same modes are grouped, and then sorted by size, smallest to largest. The binder
gets the group with matching modes and iterates over each, in size order, until one size matches.

IMPORTANT

Volume access modes describe volume capabilities. They are not enforced constraints.
The storage provider is responsible for runtime errors resulting from invalid use of the
resource. Errors in the provider show up at runtime as mount errors.

The following table lists the access modes:

Table 3.1. Access modes

Access Mode CLI abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadWriteOncePo

d [1]

RWOP The volume can be mounted as read-write by a single pod on a
single node.

1. ReadWriteOncePod access mode for persistent volumes is a Technology Preview feature.

IMPORTANT

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

15

IMPORTANT

ReadWriteOncePod access mode for persistent volumes is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Table 3.2. Supported access modes for persistent volumes

Volume plugin ReadWriteOnce [1] ReadWriteOnceP
od [2]

ReadOnlyMany ReadWriteMany

AWS EBS [3] � � - -

AWS EFS � � � �

GCP Persistent
Disk

 � � - -

GCP Filestore � � � �

1. ReadWriteOnce (RWO) volumes cannot be mounted on multiple nodes. If a node fails, the
system does not allow the attached RWO volume to be mounted on a new node because it is
already assigned to the failed node. If you encounter a multi-attach error message as a result,
force delete the pod on a shutdown or crashed node to avoid data loss in critical workloads, such
as when dynamic persistent volumes are attached.

2. ReadWriteOncePod is a Technology Preview feature.

3. Use a recreate deployment strategy for pods that rely on AWS EBS.

4. Only raw block volumes support the ReadWriteMany (RWX) access mode for Fibre Channel and
iSCSI. For more information, see "Block volume support".

3.3.4. Phase

Volumes can be found in one of the following phases:

Table 3.3. Volume phases

Phase Description

Available A free resource not yet bound to a claim.

OpenShift Dedicated 4 Storage

16

https://access.redhat.com/support/offerings/techpreview/

1

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

Phase Description

You can view the name of the PVC that is bound to the PV by running the following command:

3.3.4.1. Mount options

You can specify mount options while mounting a PV by using the attribute mountOptions.

For example:

Mount options example

Specified mount options are used while mounting the PV to the disk.

The following PV types support mount options:

AWS Elastic Block Store (EBS)

GCE Persistent Disk

3.4. PERSISTENT VOLUME CLAIMS

Each PersistentVolumeClaim object contains a spec and status, which is the specification and status

$ oc get pv <pv-claim>

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 mountOptions: 1
 - nfsvers=4.1
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Retain
 claimRef:
 name: claim1
 namespace: default

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

17

1

2

3

4

Each PersistentVolumeClaim object contains a spec and status, which is the specification and status
of the persistent volume claim (PVC), for example:

PersistentVolumeClaim object definition example

Name of the PVC.

The access mode, defining the read-write and mount permissions.

The amount of storage available to the PVC.

Name of the StorageClass required by the claim.

3.4.1. Storage classes

Claims can optionally request a specific storage class by specifying the storage class’s name in the
storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName
as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the Operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to
"" to be bound to a PV without a storage class.

NOTE

If more than one storage class is marked as default, a PVC can only be created if the
storageClassName is explicitly specified. Therefore, only one storage class should be set
as the default.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: 8Gi 3
 storageClassName: gold 4
status:
 ...

OpenShift Dedicated 4 Storage

18

1

2

3

3.4.2. Access modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

3.4.3. Resources

Claims, such as pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to volumes and claims.

3.4.4. Claims as volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is mounted to the host and into the pod, for example:

Mount volume to the host and into the pod example

Path to mount the volume inside the pod.

Name of the volume to mount. Do not mount to the container root, /, or any path that is the same
in the host and the container. This can corrupt your host system if the container is sufficiently
privileged, such as the host /dev/pts files. It is safe to mount the host by using /host.

Name of the PVC, that exists in the same namespace, to use.

3.5. BLOCK VOLUME SUPPORT

OpenShift Dedicated can statically provision raw block volumes. These volumes do not have a file
system, and can provide performance benefits for applications that either write to the disk directly or
implement their own storage service.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and PVC specification.

IMPORTANT

Pods using raw block volumes must be configured to allow privileged containers.

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html" 1
 name: mypd 2
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim 3

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

19

1

The following table displays which volume plugins support block volumes.

Table 3.4. Block volume support

Volume Plugin Manually provisioned Dynamically
provisioned

Fully supported

Amazon Elastic Block
Store (Amazon EBS)

� � �

Amazon Elastic File
Storage (Amazon EFS)

GCP � � �

3.5.1. Block volume examples

PV example

volumeMode must be set to Block to indicate that this PV is a raw block volume.

PVC example

apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block 1
 persistentVolumeReclaimPolicy: Retain
 fc:
 targetWWNs: ["50060e801049cfd1"]
 lun: 0
 readOnly: false

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block 1
 resources:
 requests:
 storage: 10Gi

OpenShift Dedicated 4 Storage

20

1

1

2

3

volumeMode must be set to Block to indicate that a raw block PVC is requested.

Pod specification example

volumeDevices, instead of volumeMounts, is used for block devices. Only
PersistentVolumeClaim sources can be used with raw block volumes.

devicePath, instead of mountPath, represents the path to the physical device where the raw block
is mapped to the system.

The volume source must be of type persistentVolumeClaim and must match the name of the
PVC as expected.

Table 3.5. Accepted values for volumeMode

Value Default

Filesystem Yes

Block No

Table 3.6. Binding scenarios for block volumes

PV
volumeMode

PVC volumeMode Binding result

Filesystem Filesystem Bind

Unspecified Unspecified Bind

Filesystem Unspecified Bind

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: fc-container
 image: fedora:26
 command: ["/bin/sh", "-c"]
 args: ["tail -f /dev/null"]
 volumeDevices: 1
 - name: data
 devicePath: /dev/xvda 2
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: block-pvc 3

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

21

1

Unspecified Filesystem Bind

Block Block Bind

Unspecified Block No Bind

Block Unspecified No Bind

Filesystem Block No Bind

Block Filesystem No Bind

PV
volumeMode

PVC volumeMode Binding result

IMPORTANT

Unspecified values result in the default value of Filesystem.

3.6. USING FSGROUP TO REDUCE POD TIMEOUTS

If a storage volume contains many files (~1,000,000 or greater), you may experience pod timeouts.

This can occur because, by default, OpenShift Dedicated recursively changes ownership and
permissions for the contents of each volume to match the fsGroup specified in a pod’s securityContext
when that volume is mounted. For large volumes, checking and changing ownership and permissions can
be time consuming, slowing pod startup. You can use the fsGroupChangePolicy field inside a
securityContext to control the way that OpenShift Dedicated checks and manages ownership and
permissions for a volume.

fsGroupChangePolicy defines behavior for changing ownership and permission of the volume before
being exposed inside a pod. This field only applies to volume types that support fsGroup-controlled
ownership and permissions. This field has two possible values:

OnRootMismatch: Only change permissions and ownership if permission and ownership of root
directory does not match with expected permissions of the volume. This can help shorten the
time it takes to change ownership and permission of a volume to reduce pod timeouts.

Always: Always change permission and ownership of the volume when a volume is mounted.

fsGroupChangePolicy example

OnRootMismatch specifies skipping recursive permission change, thus helping to avoid pod
timeout problems.

securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
 fsGroupChangePolicy: "OnRootMismatch" 1
 ...

OpenShift Dedicated 4 Storage

22

NOTE

The fsGroupChangePolicyfield has no effect on ephemeral volume types, such as secret,
configMap, and emptydir.

CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE

23

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

4.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

OpenShift Dedicated clusters are prebuilt with four storage classes that use Amazon Elastic Block Store
(Amazon EBS) volumes. These storage classes are ready to use and some familiarity with Kubernetes
and AWS is assumed.

Following are the four prebuilt storage classes:

Name Provisioner

gp2 kubernetes.io/aws-ebs

gp2-csi ebs.csi.aws.com

gp3 (default) kubernetes.io/aws-ebs

gp3-csi ebs.csi.aws.com

The gp3 storage class is set as default; however, you can select any of the storage classes as the default
storage class.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. You can dynamically provision Amazon EBS volumes. Persistent volumes are
not bound to a single project or namespace; they can be shared across the OpenShift Dedicated cluster.
Persistent volume claims are specific to a project or namespace and can be requested by users. You can
define a KMS key to encrypt container-persistent volumes on AWS. By default, newly created clusters
using OpenShift Dedicated version 4.10 and later use gp3 storage and the AWS EBS CSI driver .

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

4.1.1. Creating the EBS storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

4.1.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Dedicated.

Procedure

1. In the OpenShift Dedicated console, click Storage → Persistent Volume Claims.

OpenShift Dedicated 4 Storage

24

https://github.com/openshift/aws-ebs-csi-driver

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the previously-created storage class from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This selection determines the read and write access for the
storage claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

4.1.3. Volume format

Before OpenShift Dedicated mounts the volume and passes it to a container, it checks that the volume
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This verification enables you to use unformatted AWS volumes as persistent volumes, because
OpenShift Dedicated formats them before the first use.

4.1.4. Maximum number of EBS volumes on a node

By default, OpenShift Dedicated supports a maximum of 39 EBS volumes attached to one node. This
limit is consistent with the AWS volume limits . The volume limit depends on the instance type.

IMPORTANT

As a cluster administrator, you must use either in-tree or Container Storage Interface
(CSI) volumes and their respective storage classes, but never both volume types at the
same time. The maximum attached EBS volume number is counted separately for in-tree
and CSI volumes, which means you could have up to 39 EBS volumes of each type.

For information about accessing additional storage options, such as volume snapshots, that are not
possible with in-tree volume plug-ins, see AWS Elastic Block Store CSI Driver Operator .

4.1.5. Encrypting container persistent volumes on AWS with a KMS key

Defining a KMS key to encrypt container-persistent volumes on AWS is useful when you have explicit
compliance and security guidelines when deploying to AWS.

Prerequisites

Underlying infrastructure must contain storage.

You must create a customer KMS key on AWS.

Procedure

1. Create a storage class:

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

25

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits

1

2

3

Specifies the name of the storage class.

File system that is created on provisioned volumes.

Specifies the full Amazon Resource Name (ARN) of the key to use when encrypting the
container-persistent volume. If you do not provide any key, but the encrypted field is set
to true, then the default KMS key is used. See Finding the key ID and key ARN on AWS in
the AWS documentation.

2. Create a persistent volume claim (PVC) with the storage class specifying the KMS key:

3. Create workload containers to consume the PVC:

$ cat << EOF | oc create -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class-name> 1
parameters:
 fsType: ext4 2
 encrypted: "true"
 kmsKeyId: keyvalue 3
provisioner: ebs.csi.aws.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
EOF

$ cat << EOF | oc create -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mypvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 storageClassName: <storage-class-name>
 resources:
 requests:
 storage: 1Gi
EOF

$ cat << EOF | oc create -f -
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: httpd
 image: quay.io/centos7/httpd-24-centos7
 ports:
 - containerPort: 80
 volumeMounts:
 - mountPath: /mnt/storage

OpenShift Dedicated 4 Storage

26

https://docs.aws.amazon.com/kms/latest/developerguide/find-cmk-id-arn.html

4.1.6. Additional resources

See AWS Elastic Block Store CSI Driver Operator for information about accessing additional
storage options, such as volume snapshots, that are not possible with in-tree volume plugins.

4.2. PERSISTENT STORAGE USING GCE PERSISTENT DISK

OpenShift Dedicated supports GCE Persistent Disk volumes (gcePD). You can provision your
OpenShift Dedicated cluster with persistent storage using GCE. Some familiarity with Kubernetes and
GCE is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

GCE Persistent Disk volumes can be provisioned dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Dedicated cluster. Persistent volume claims are specific to a project or namespace and can
be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

GCE Persistent Disk

4.2.1. Creating the GCE storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

4.2.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Dedicated.

Procedure

1. In the OpenShift Dedicated console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

 name: data
 volumes:
 - name: data
 persistentVolumeClaim:
 claimName: mypvc
EOF

CHAPTER 4. CONFIGURING PERSISTENT STORAGE

27

https://cloud.google.com/compute/docs/disks/

3. Define the desired options on the page that appears.

a. Select the previously-created storage class from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This selection determines the read and write access for the
storage claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

4.2.3. Volume format

Before OpenShift Dedicated mounts the volume and passes it to a container, it checks that the volume
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This verification enables you to use unformatted GCE volumes as persistent volumes, because
OpenShift Dedicated formats them before the first use.

OpenShift Dedicated 4 Storage

28

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

5.1. CONFIGURING CSI VOLUMES

The Container Storage Interface (CSI) allows OpenShift Dedicated to consume storage from storage
back ends that implement the CSI interface as persistent storage.

NOTE

OpenShift Dedicated 4 supports version 1.6.0 of the CSI specification.

5.1.1. CSI architecture

CSI drivers are typically shipped as container images. These containers are not aware of OpenShift
Dedicated where they run. To use CSI-compatible storage back end in OpenShift Dedicated, the cluster
administrator must deploy several components that serve as a bridge between OpenShift Dedicated
and the storage driver.

The following diagram provides a high-level overview about the components running in pods in the
OpenShift Dedicated cluster.

It is possible to run multiple CSI drivers for different storage back ends. Each driver needs its own
external controllers deployment and daemon set with the driver and CSI registrar.

5.1.1.1. External CSI controllers

External CSI controllers is a deployment that deploys one or more pods with five containers:

The snapshotter container watches VolumeSnapshot and VolumeSnapshotContent objects
and is responsible for the creation and deletion of VolumeSnapshotContent object.

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

29

https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/spec

The resizer container is a sidecar container that watches for PersistentVolumeClaim updates
and triggers ControllerExpandVolume operations against a CSI endpoint if you request more
storage on PersistentVolumeClaim object.

An external CSI attacher container translates attach and detach calls from OpenShift
Dedicated to respective ControllerPublish and ControllerUnpublish calls to the CSI driver.

An external CSI provisioner container that translates provision and delete calls from OpenShift
Dedicated to respective CreateVolume and DeleteVolume calls to the CSI driver.

A CSI driver container.

The CSI attacher and CSI provisioner containers communicate with the CSI driver container using UNIX
Domain Sockets, ensuring that no CSI communication leaves the pod. The CSI driver is not accessible
from outside of the pod.

NOTE

The attach, detach, provision, and delete operations typically require the CSI driver to
use credentials to the storage backend. Run the CSI controller pods on infrastructure
nodes so the credentials are never leaked to user processes, even in the event of a
catastrophic security breach on a compute node.

NOTE

The external attacher must also run for CSI drivers that do not support third-party attach
or detach operations. The external attacher will not issue any ControllerPublish or
ControllerUnpublish operations to the CSI driver. However, it still must run to implement
the necessary OpenShift Dedicated attachment API.

5.1.1.2. CSI driver daemon set

The CSI driver daemon set runs a pod on every node that allows OpenShift Dedicated to mount storage
provided by the CSI driver to the node and use it in user workloads (pods) as persistent volumes (PVs).
The pod with the CSI driver installed contains the following containers:

A CSI driver registrar, which registers the CSI driver into the openshift-node service running on
the node. The openshift-node process running on the node then directly connects with the CSI
driver using the UNIX Domain Socket available on the node.

A CSI driver.

The CSI driver deployed on the node should have as few credentials to the storage back end as possible.
OpenShift Dedicated will only use the node plugin set of CSI calls such as
NodePublish/NodeUnpublish and NodeStage/NodeUnstage, if these calls are implemented.

5.1.2. CSI drivers supported by OpenShift Dedicated

OpenShift Dedicated installs certain CSI drivers by default, giving users storage options that are not
possible with in-tree volume plugins.

To create CSI-provisioned persistent volumes that mount to these supported storage assets, OpenShift
Dedicated installs the necessary CSI driver Operator, the CSI driver, and the required storage class by
default. For more details about the default namespace of the Operator and driver, see the
documentation for the specific CSI Driver Operator.

OpenShift Dedicated 4 Storage

30

IMPORTANT

The AWS EFS and GCP Filestore CSI drivers are not installed by default, and must be
installed manually. For instructions on installing the AWS EFS CSI driver, see Setting up
AWS Elastic File Service CSI Driver Operator. For instructions on installing the GCP
Filestore CSI driver, see Google Compute Platform Filestore CSI Driver Operator .

The following table describes the CSI drivers that are supported by OpenShift Dedicated and which CSI
features they support, such as volume snapshots and resize.

Table 5.1. Supported CSI drivers and features in OpenShift Dedicated

CSI driver CSI volume
snapshots

CSI cloning CSI resize Inline ephemeral
volumes

AWS EBS � - � -

AWS EFS - - - -

Google Compute
Platform (GCP)
persistent disk
(PD)

 � � � -

GCP Filestore � - � -

IMPORTANT

If your CSI driver is not listed in the preceding table, you must follow the installation
instructions provided by your CSI storage vendor to use their supported CSI features.

5.1.3. Dynamic provisioning

Dynamic provisioning of persistent storage depends on the capabilities of the CSI driver and underlying
storage back end. The provider of the CSI driver should document how to create a storage class in
OpenShift Dedicated and the parameters available for configuration.

The created storage class can be configured to enable dynamic provisioning.

Procedure

Create a default storage class that ensures all PVCs that do not require any special storage class
are provisioned by the installed CSI driver.

oc create -f - << EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class> 1
 annotations:

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

31

https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html/storage/using-container-storage-interface-csi#osd-persistent-storage-aws-efs-csi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/storage/using-container-storage-interface-csi#persistent-storage-csi-google-cloud-file-overview

1

2

The name of the storage class that will be created.

The name of the CSI driver that has been installed.

5.1.4. Example using the CSI driver

The following example installs a default MySQL template without any changes to the template.

Prerequisites

The CSI driver has been deployed.

A storage class has been created for dynamic provisioning.

Procedure

Create the MySQL template:

Example output

Example output

5.2. MANAGING THE DEFAULT STORAGE CLASS

5.2.1. Overview

Managing the default storage class allows you to accomplish several different objectives:

Enforcing static provisioning by disabling dynamic provisioning.

When you have other preferred storage classes, preventing the storage operator from re-
creating the initial default storage class.

Renaming, or otherwise changing, the default storage class

 storageclass.kubernetes.io/is-default-class: "true"
provisioner: <provisioner-name> 2
parameters:
EOF

oc new-app mysql-persistent

--> Deploying template "openshift/mysql-persistent" to project default
...

oc get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
mysql Bound kubernetes-dynamic-pv-3271ffcb4e1811e8 1Gi
RWO cinder 3s

OpenShift Dedicated 4 Storage

32

1

To accomplish these objectives, you change the setting for the spec.storageClassState field in the
ClusterCSIDriver object. The possible settings for this field are:

Managed: (Default) The Container Storage Interface (CSI) operator is actively managing its
default storage class, so that most manual changes made by a cluster administrator to the
default storage class are removed, and the default storage class is continuously re-created if
you attempt to manually delete it.

Unmanaged: You can modify the default storage class. The CSI operator is not actively
managing storage classes, so that it is not reconciling the default storage class it creates
automatically.

Removed: The CSI operators deletes the default storage class.

5.2.2. Managing the default storage class using the web console

Prerequisites

Access to the OpenShift Dedicated web console.

Access to the cluster with cluster-admin privileges.

Procedure

To manage the default storage class using the web console:

1. Log in to the web console.

2. Click Administration > CustomResourceDefinitions.

3. On the CustomResourceDefinitions page, type clustercsidriver to find the ClusterCSIDriver
object.

4. Click ClusterCSIDriver, and then click the Instances tab.

5. Click the name of the desired instance, and then click the YAML tab.

6. Add the spec.storageClassState field with a value of Managed, Unmanaged, or Removed.

Example

spec.storageClassState field set to "Unmanaged"

7. Click Save.

...
spec:
 driverConfig:
 driverType: ''
 logLevel: Normal
 managementState: Managed
 observedConfig: null
 operatorLogLevel: Normal
 storageClassState: Unmanaged 1
...

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

33

1

5.2.3. Managing the default storage class using the CLI

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To manage the storage class using the CLI, run the following command:

Where ${STATE} is "Removed" or "Managed" or "Unmanaged".

Where $DRIVERNAME is the provisioner name. You can find the provisioner name by running the
command oc get sc.

5.2.4. Absent or multiple default storage classes

5.2.4.1. Multiple default storage classes

Multiple default storage classes can occur if you mark a non-default storage class as default and do not
unset the existing default storage class, or you create a default storage class when a default storage
class is already present. With multiple default storage classes present, any persistent volume claim
(PVC) requesting the default storage class (pvc.spec.storageClassName=nil) gets the most recently
created default storage class, regardless of the default status of that storage class, and the
administrator receives an alert in the alerts dashboard that there are multiple default storage classes,
MultipleDefaultStorageClasses.

5.2.4.2. Absent default storage class

There are two possible scenarios where PVCs can attempt to use a non-existent default storage class:

An administrator removes the default storage class or marks it as non-default, and then a user
creates a PVC requesting the default storage class.

During installation, the installer creates a PVC requesting the default storage class, which has
not yet been created.

In the preceding scenarios, PVCs remain in the pending state indefinitely. To resolve this situation,
create a default storage class or declare one of the existing storage classes as the default. As soon as
the default storage class is created or declared, the PVCs get the new default storage class. If possible,
the PVCs eventually bind to statically or dynamically provisioned PVs as usual, and move out of the
pending state.

5.2.5. Changing the default storage class

Use the following procedure to change the default storage class.

For example, if you have two defined storage classes, gp3 and standard, and you want to change the
default storage class from gp3 to standard.

oc patch clustercsidriver $DRIVERNAME --type=merge -p "{\"spec\":
{\"storageClassState\":\"${STATE}\"}}" 1

OpenShift Dedicated 4 Storage

34

1

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To change the default storage class:

1. List the storage classes:

Example output

(default) indicates the default storage class.

2. Make the desired storage class the default.
For the desired storage class, set the storageclass.kubernetes.io/is-default-class annotation
to true by running the following command:

NOTE

You can have multiple default storage classes for a short time. However, you
should ensure that only one default storage class exists eventually.

With multiple default storage classes present, any persistent volume claim (PVC)
requesting the default storage class (pvc.spec.storageClassName=nil) gets the
most recently created default storage class, regardless of the default status of
that storage class, and the administrator receives an alert in the alerts dashboard
that there are multiple default storage classes, MultipleDefaultStorageClasses.

3. Remove the default storage class setting from the old default storage class.
For the old default storage class, change the value of the storageclass.kubernetes.io/is-
default-class annotation to false by running the following command:

4. Verify the changes:

Example output

$ oc get storageclass

NAME TYPE
gp3 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/aws-ebs

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc patch storageclass gp3 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

$ oc get storageclass

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

35

5.3. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR

5.3.1. Overview

OpenShift Dedicated is capable of provisioning persistent volumes (PVs) using the AWS EBS CSI driver .

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned PVs that mount to AWS EBS storage assets, OpenShift Dedicated installs
the AWS EBS CSI Driver Operator (a Red Hat operator) and the AWS EBS CSI driver by default in the
openshift-cluster-csi-drivers namespace.

The AWS EBS CSI Driver Operator provides a StorageClass by default that you can use to
create PVCs. You can disable this default storage class if desired (see Managing the default
storage class). You also have the option to create the AWS EBS StorageClass as described in
Persistent storage using Amazon Elastic Block Store .

The AWS EBS CSI driver enables you to create and mount AWS EBS PVs.

5.3.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Dedicated users storage options, such as volume snapshots, that are not
possible with in-tree volume plugins.

IMPORTANT

OpenShift Dedicated defaults to using the CSI plugin to provision Amazon Elastic Block
Store (Amazon EBS) storage.

For information about dynamically provisioning AWS EBS persistent volumes in OpenShift Dedicated,
see Persistent storage using Amazon Elastic Block Store .

Additional resources

Persistent storage using Amazon Elastic Block Store

Configuring CSI volumes

5.4. SETTING UP AWS ELASTIC FILE SERVICE CSI DRIVER OPERATOR

IMPORTANT

NAME TYPE
gp3 kubernetes.io/aws-ebs
standard (default) kubernetes.io/aws-ebs

OpenShift Dedicated 4 Storage

36

https://github.com/openshift/aws-ebs-csi-driver
https://github.com/openshift/aws-ebs-csi-driver-operator

IMPORTANT

This procedure is specific to the AWS EFS CSI Driver Operator (a Red Hat operator),
which is only applicable for OpenShift Dedicated 4.10 and later versions.

5.4.1. Overview

OpenShift Dedicated is capable of provisioning persistent volumes (PVs) using the AWS EFS CSI driver .

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
CSI Operator and driver.

After installing the AWS EFS CSI Driver Operator, OpenShift Dedicated installs the AWS EFS CSI
Operator and the AWS EFS CSI driver by default in the openshift-cluster-csi-drivers namespace. This
allows the AWS EFS CSI Driver Operator to create CSI-provisioned PVs that mount to AWS EFS assets.

The AWS EFS CSI Driver Operator , after being installed, does not create a storage class by
default to use to create persistent volume claims (PVCs). However, you can manually create the
AWS EFS StorageClass. The AWS EFS CSI Driver Operator supports dynamic volume
provisioning by allowing storage volumes to be created on-demand. This eliminates the need for
cluster administrators to pre-provision storage.

The AWS EFS CSI driver enables you to create and mount AWS EFS PVs.

NOTE

Amazon Elastic File Storage (Amazon EFS) only supports regional volumes, not zonal
volumes.

5.4.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Dedicated users storage options, such as volume snapshots, that are not
possible with in-tree volume plugins.

5.4.3. Setting up the AWS EFS CSI Driver Operator

1. Install the AWS EFS CSI Driver Operator (a Red Hat operator).

2. Install the AWS EFS CSI Driver Operator.

3. Install the AWS EFS CSI Driver.

5.4.3.1. Installing the AWS EFS CSI Driver Operator

The AWS EFS CSI Driver Operator (a Red Hat operator) is not installed in OpenShift Dedicated by
default. Use the following procedure to install and configure the AWS EFS CSI Driver Operator in your
cluster.

Prerequisites

Access to the OpenShift Dedicated web console.

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

37

https://github.com/openshift/aws-efs-csi-driver-operator
https://github.com/openshift/aws-efs-csi-driver
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/index#persistent-storage-overview_understanding-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/index#persistent-storage-csi
https://github.com/openshift/aws-efs-csi-driver-operator
https://github.com/openshift/aws-efs-csi-driver-operator

Procedure

To install the AWS EFS CSI Driver Operator from the web console:

1. Log in to the web console.

2. Install the AWS EFS CSI Operator:

a. Click Operators → OperatorHub.

b. Locate the AWS EFS CSI Operator by typing AWS EFS CSI in the filter box.

c. Click the AWS EFS CSI Driver Operator button.

IMPORTANT

Be sure to select the AWS EFS CSI Driver Operator and not the AWS EFS
Operator. The AWS EFS Operator is a community Operator and is not
supported by Red Hat.

d. On the AWS EFS CSI Driver Operator page, click Install.

e. On the Install Operator page, ensure that:

All namespaces on the cluster (default) is selected.

Installed Namespace is set to openshift-cluster-csi-drivers.

f. Click Install.
After the installation finishes, the AWS EFS CSI Operator is listed in the Installed
Operators section of the web console.

Next steps

Installing the AWS EFS CSI Driver

5.4.3.2. Installing the AWS EFS CSI Driver

After installing the AWS EFS CSI Driver Operator, you install the AWS EFS CSI Driver.

Prerequisites

Access to the OpenShift Dedicated web console.

Procedure

1. Click Administration → CustomResourceDefinitions → ClusterCSIDriver.

2. On the Instances tab, click Create ClusterCSIDriver.

3. Use the following YAML file:

apiVersion: operator.openshift.io/v1
kind: ClusterCSIDriver
metadata:

OpenShift Dedicated 4 Storage

38

4. Click Create.

5. Wait for the following Conditions to change to a "True" status:

AWSEFSDriverNodeServiceControllerAvailable

AWSEFSDriverControllerServiceControllerAvailable

5.4.4. Creating the AWS EFS storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

The AWS EFS CSI Driver Operator (a Red Hat operator) , after being installed, does not create a storage
class by default. However, you can manually create the AWS EFS storage class.

5.4.4.1. Creating the AWS EFS storage class using the console

Procedure

1. In the OpenShift Dedicated console, click Storage → StorageClasses.

2. On the StorageClasses page, click Create StorageClass.

3. On the StorageClass page, perform the following steps:

a. Enter a name to reference the storage class.

b. Optional: Enter the description.

c. Select the reclaim policy.

d. Select efs.csi.aws.com from the Provisioner drop-down list.

e. Optional: Set the configuration parameters for the selected provisioner.

4. Click Create.

5.4.4.2. Creating the AWS EFS storage class using the CLI

Procedure

Create a StorageClass object:

 name: efs.csi.aws.com
spec:
 managementState: Managed

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: efs-sc
provisioner: efs.csi.aws.com
parameters:
 provisioningMode: efs-ap 1

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

39

https://github.com/openshift/aws-efs-csi-driver-operator

1

2

3

4 5

6

provisioningMode must be efs-ap to enable dynamic provisioning.

fileSystemId must be the ID of the EFS volume created manually.

directoryPerms is the default permission of the root directory of the volume. In this
example, the volume is accessible only by the owner.

gidRangeStart and gidRangeEnd set the range of POSIX Group IDs (GIDs) that are used
to set the GID of the AWS access point. If not specified, the default range is 50000-
7000000. Each provisioned volume, and thus AWS access point, is assigned a unique GID
from this range.

basePath is the directory on the EFS volume that is used to create dynamically
provisioned volumes. In this case, a PV is provisioned as “/dynamic_provisioning/<random
uuid>” on the EFS volume. Only the subdirectory is mounted to pods that use the PV.

NOTE

A cluster admin can create several StorageClass objects, each using a different
EFS volume.

5.4.5. Creating and configuring access to EFS volumes in AWS

This procedure explains how to create and configure EFS volumes in AWS so that you can use them in
OpenShift Dedicated.

Prerequisites

AWS account credentials

Procedure

To create and configure access to an EFS volume in AWS:

1. On the AWS console, open https://console.aws.amazon.com/efs.

2. Click Create file system:

Enter a name for the file system.

For Virtual Private Cloud (VPC), select your OpenShift Dedicated’s' virtual private cloud
(VPC).

Accept default settings for all other selections.

3. Wait for the volume and mount targets to finish being fully created:

a. Go to https://console.aws.amazon.com/efs#/file-systems.

 fileSystemId: fs-a5324911 2
 directoryPerms: "700" 3
 gidRangeStart: "1000" 4
 gidRangeEnd: "2000" 5
 basePath: "/dynamic_provisioning" 6

OpenShift Dedicated 4 Storage

40

https://console.aws.amazon.com/efs
https://console.aws.amazon.com/efs#/file-systems

b. Click your volume, and on the Network tab wait for all mount targets to become available
(~1-2 minutes).

4. On the Network tab, copy the Security Group ID (you will need this in the next step).

5. Go to https://console.aws.amazon.com/ec2/v2/home#SecurityGroups, and find the Security
Group used by the EFS volume.

6. On the Inbound rules tab, click Edit inbound rules, and then add a new rule with the following
settings to allow OpenShift Dedicated nodes to access EFS volumes :

Type: NFS

Protocol: TCP

Port range: 2049

Source: Custom/IP address range of your nodes (for example: “10.0.0.0/16”)
This step allows OpenShift Dedicated to use NFS ports from the cluster.

7. Save the rule.

5.4.6. Dynamic provisioning for Amazon Elastic File Storage

The AWS EFS CSI driver supports a different form of dynamic provisioning than other CSI drivers. It
provisions new PVs as subdirectories of a pre-existing EFS volume. The PVs are independent of each
other. However, they all share the same EFS volume. When the volume is deleted, all PVs provisioned
out of it are deleted too. The EFS CSI driver creates an AWS Access Point for each such subdirectory.
Due to AWS AccessPoint limits, you can only dynamically provision 1000 PVs from a single
StorageClass/EFS volume.

IMPORTANT

Note that PVC.spec.resources is not enforced by EFS.

In the example below, you request 5 GiB of space. However, the created PV is limitless
and can store any amount of data (like petabytes). A broken application, or even a rogue
application, can cause significant expenses when it stores too much data on the volume.

Using monitoring of EFS volume sizes in AWS is strongly recommended.

Prerequisites

You have created Amazon Elastic File Storage (Amazon EFS) volumes.

You have created the AWS EFS storage class.

Procedure

To enable dynamic provisioning:

Create a PVC (or StatefulSet or Template) as usual, referring to the StorageClass created
previously.

apiVersion: v1
kind: PersistentVolumeClaim

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

41

https://console.aws.amazon.com/ec2/v2/home#SecurityGroups
https://github.com/openshift/aws-efs-csi-driver

1

2

If you have problems setting up dynamic provisioning, see Amazon Elastic File Storage troubleshooting .

Additional resources

Creating and configuring access to Amazon EFS volume(s)

Creating the AWS EFS storage class

5.4.7. Creating static PVs with Amazon Elastic File Storage

It is possible to use an Amazon Elastic File Storage (Amazon EFS) volume as a single PV without any
dynamic provisioning. The whole volume is mounted to pods.

Prerequisites

You have created Amazon EFS volumes.

Procedure

Create the PV using the following YAML file:

spec.capacity does not have any meaning and is ignored by the CSI driver. It is used only
when binding to a PVC. Applications can store any amount of data to the volume.

volumeHandle must be the same ID as the EFS volume you created in AWS. If you are

metadata:
 name: test
spec:
 storageClassName: efs-sc
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 5Gi

apiVersion: v1
kind: PersistentVolume
metadata:
 name: efs-pv
spec:
 capacity: 1
 storage: 5Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteMany
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 csi:
 driver: efs.csi.aws.com
 volumeHandle: fs-ae66151a 2
 volumeAttributes:
 encryptInTransit: "false" 3

OpenShift Dedicated 4 Storage

42

3

volumeHandle must be the same ID as the EFS volume you created in AWS. If you are
providing your own access point, volumeHandle should be <EFS volume ID>::<access

If desired, you can disable encryption in transit. Encryption is enabled by default.

If you have problems setting up static PVs, see Amazon Elastic File Storage troubleshooting .

5.4.8. Amazon Elastic File Storage security

The following information is important for Amazon Elastic File Storage (Amazon EFS) security.

When using access points, for example, by using dynamic provisioning as described earlier, Amazon
automatically replaces GIDs on files with the GID of the access point. In addition, EFS considers the user
ID, group ID, and secondary group IDs of the access point when evaluating file system permissions. EFS
ignores the NFS client’s IDs. For more information about access points, see
https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html.

As a consequence, EFS volumes silently ignore FSGroup; OpenShift Dedicated is not able to replace the
GIDs of files on the volume with FSGroup. Any pod that can access a mounted EFS access point can
access any file on it.

Unrelated to this, encryption in transit is enabled by default. For more information, see
https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html.

5.4.9. Amazon Elastic File Storage troubleshooting

The following information provides guidance on how to troubleshoot issues with Amazon Elastic File
Storage (Amazon EFS):

The AWS EFS Operator and CSI driver run in namespace openshift-cluster-csi-drivers.

To initiate gathering of logs of the AWS EFS Operator and CSI driver, run the following
command:

To show AWS EFS Operator errors, view the ClusterCSIDriver status:

If a volume cannot be mounted to a pod (as shown in the output of the following command):

$ oc adm must-gather
[must-gather] OUT Using must-gather plugin-in image: quay.io/openshift-release-
dev/ocp-v4.0-art-
dev@sha256:125f183d13601537ff15b3239df95d47f0a604da2847b561151fedd699f5e3a5
[must-gather] OUT namespace/openshift-must-gather-xm4wq created
[must-gather] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-2bd8x
created
[must-gather] OUT pod for plug-in image quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:125f183d13601537ff15b3239df95d47f0a604da2847b561151fedd699f5e3a5
created

$ oc get clustercsidriver efs.csi.aws.com -o yaml

$ oc describe pod
...
 Type Reason Age From Message

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

43

https://docs.aws.amazon.com/efs/latest/ug/efs-access-points.html
https://docs.aws.amazon.com/efs/latest/ug/encryption-in-transit.html

1 Warning message indicating volume not mounted.

This error is frequently caused by AWS dropping packets between an OpenShift Dedicated
node and Amazon EFS.

Check that the following are correct:

AWS firewall and Security Groups

Networking: port number and IP addresses

5.4.10. Uninstalling the AWS EFS CSI Driver Operator

All EFS PVs are inaccessible after uninstalling the AWS EFS CSI Driver Operator (a Red Hat operator).

Prerequisites

Access to the OpenShift Dedicated web console.

Procedure

To uninstall the AWS EFS CSI Driver Operator from the web console:

1. Log in to the web console.

2. Stop all applications that use AWS EFS PVs.

3. Delete all AWS EFS PVs:

a. Click Storage → PersistentVolumeClaims.

b. Select each PVC that is in use by the AWS EFS CSI Driver Operator, click the drop-down
menu on the far right of the PVC, and then click Delete PersistentVolumeClaims.

4. Uninstall the AWS EFS CSI driver :

NOTE

Before you can uninstall the Operator, you must remove the CSI driver first.

a. Click Administration → CustomResourceDefinitions → ClusterCSIDriver.

b. On the Instances tab, for efs.csi.aws.com, on the far left side, click the drop-down menu,
and then click Delete ClusterCSIDriver.

 ---- ------ ---- ---- -------
 Normal Scheduled 2m13s default-scheduler Successfully assigned default/efs-app to
ip-10-0-135-94.ec2.internal
 Warning FailedMount 13s kubelet MountVolume.SetUp failed for volume "pvc-
d7c097e6-67ec-4fae-b968-7e7056796449" : rpc error: code = DeadlineExceeded desc =
context deadline exceeded 1
 Warning FailedMount 10s kubelet Unable to attach or mount volumes: unmounted
volumes=[persistent-storage], unattached volumes=[persistent-storage kube-api-access-
9j477]: timed out waiting for the condition

OpenShift Dedicated 4 Storage

44

https://github.com/openshift/aws-efs-csi-driver-operator
https://github.com/openshift/aws-efs-csi-driver

c. When prompted, click Delete.

5. Uninstall the AWS EFS CSI Operator:

a. Click Operators → Installed Operators.

b. On the Installed Operators page, scroll or type AWS EFS CSI into the Search by name box
to find the Operator, and then click it.

c. On the upper, right of the Installed Operators > Operator details page, click Actions →
Uninstall Operator.

d. When prompted on the Uninstall Operator window, click the Uninstall button to remove
the Operator from the namespace. Any applications deployed by the Operator on the
cluster need to be cleaned up manually.
After uninstalling, the AWS EFS CSI Driver Operator is no longer listed in the Installed
Operators section of the web console.

NOTE

Before you can destroy a cluster (openshift-install destroy cluster), you must delete
the EFS volume in AWS. An OpenShift Dedicated cluster cannot be destroyed when
there is an EFS volume that uses the cluster’s VPC. Amazon does not allow deletion of
such a VPC.

5.4.11. Additional resources

Configuring CSI volumes

5.5. GCP PD CSI DRIVER OPERATOR

5.5.1. Overview

OpenShift Dedicated can provision persistent volumes (PVs) using the Container Storage Interface
(CSI) driver for Google Cloud Platform (GCP) persistent disk (PD) storage.

Familiarity with persistent storage and configuring CSI volumes is recommended when working with a
Container Storage Interface (CSI) Operator and driver.

To create CSI-provisioned persistent volumes (PVs) that mount to GCP PD storage assets, OpenShift
Dedicated installs the GCP PD CSI Driver Operator and the GCP PD CSI driver by default in the
openshift-cluster-csi-drivers namespace.

GCP PD CSI Driver Operator: By default, the Operator provides a storage class that you can
use to create PVCs. You can disable this default storage class if desired (see Managing the
default storage class). You also have the option to create the GCP PD storage class as
described in Persistent storage using GCE Persistent Disk .

GCP PD driver: The driver enables you to create and mount GCP PD PVs.

5.5.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plugins using a standard interface without ever having to change the core Kubernetes code.

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/index#persistent-storage-csi

CSI Operators give OpenShift Dedicated users storage options, such as volume snapshots, that are not
possible with in-tree volume plugins.

5.5.3. GCP PD CSI driver storage class parameters

The Google Cloud Platform (GCP) persistent disk (PD) Container Storage Interface (CSI) driver uses
the CSI external-provisioner sidecar as a controller. This is a separate helper container that is deployed
with the CSI driver. The sidecar manages persistent volumes (PVs) by triggering the CreateVolume
operation.

The GCP PD CSI driver uses the csi.storage.k8s.io/fstype parameter key to support dynamic
provisioning. The following table describes all the GCP PD CSI storage class parameters that are
supported by OpenShift Dedicated.

Table 5.2. CreateVolume Parameters

Parameter Values Default Description

type pd-ssd or pd-standard pd-standard Allows you to choose between
standard PVs or solid-state-drive
PVs.

replication-
type

none or regional-pd none Allows you to choose between zonal
or regional PVs.

disk-
encryption-
kms-key

Fully qualified resource
identifier for the key to use
to encrypt new disks.

Empty string Uses customer-managed encryption
keys (CMEK) to encrypt new disks.

5.5.4. Creating a custom-encrypted persistent volume

When you create a PersistentVolumeClaim object, OpenShift Dedicated provisions a new persistent
volume (PV) and creates a PersistentVolume object. You can add a custom encryption key in Google
Cloud Platform (GCP) to protect a PV in your cluster by encrypting the newly created PV.

For encryption, the newly attached PV that you create uses customer-managed encryption keys
(CMEK) on a cluster by using a new or existing Google Cloud Key Management Service (KMS) key.

Prerequisites

You are logged in to a running OpenShift Dedicated cluster.

You have created a Cloud KMS key ring and key version.

For more information about CMEK and Cloud KMS resources, see Using customer-managed encryption
keys (CMEK).

Procedure

To create a custom-encrypted PV, complete the following steps:

1. Create a storage class with the Cloud KMS key. The following example enables dynamic
provisioning of encrypted volumes:

OpenShift Dedicated 4 Storage

46

https://cloud.google.com/kubernetes-engine/docs/how-to/using-cmek

1 This field must be the resource identifier for the key that will be used to encrypt new disks.
Values are case-sensitive. For more information about providing key ID values, see
Retrieving a resource’s ID and Getting a Cloud KMS resource ID .

NOTE

You cannot add the disk-encryption-kms-key parameter to an existing storage
class. However, you can delete the storage class and recreate it with the same
name and a different set of parameters. If you do this, the provisioner of the
existing class must be pd.csi.storage.gke.io.

2. Deploy the storage class on your OpenShift Dedicated cluster using the oc command:

Example output

3. Create a file named pvc.yaml that matches the name of your storage class object that you
created in the previous step:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: csi-gce-pd-cmek
provisioner: pd.csi.storage.gke.io
volumeBindingMode: "WaitForFirstConsumer"
allowVolumeExpansion: true
parameters:
 type: pd-standard
 disk-encryption-kms-key: projects/<key-project-id>/locations/<location>/keyRings/<key-
ring>/cryptoKeys/<key> 1

$ oc describe storageclass csi-gce-pd-cmek

Name: csi-gce-pd-cmek
IsDefaultClass: No
Annotations: None
Provisioner: pd.csi.storage.gke.io
Parameters: disk-encryption-kms-key=projects/key-project-
id/locations/location/keyRings/ring-name/cryptoKeys/key-name,type=pd-standard
AllowVolumeExpansion: true
MountOptions: none
ReclaimPolicy: Delete
VolumeBindingMode: WaitForFirstConsumer
Events: none

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: podpvc
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: csi-gce-pd-cmek

CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)

47

https://cloud.google.com/kms/docs/resource-hierarchy#retrieve_resource_id
https://cloud.google.com/kms/docs/getting-resource-ids

NOTE

If you marked the new storage class as default, you can omit the
storageClassName field.

4. Apply the PVC on your cluster:

5. Get the status of your PVC and verify that it is created and bound to a newly provisioned PV:

Example output

NOTE

If your storage class has the volumeBindingMode field set to
WaitForFirstConsumer, you must create a pod to use the PVC before you can
verify it.

Your CMEK-protected PV is now ready to use with your OpenShift Dedicated cluster.

5.5.5. Additional resources

Persistent storage using GCE Persistent Disk

Configuring CSI volumes

 resources:
 requests:
 storage: 6Gi

$ oc apply -f pvc.yaml

$ oc get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
podpvc Bound pvc-e36abf50-84f3-11e8-8538-42010a800002 10Gi RWO csi-
gce-pd-cmek 9s

OpenShift Dedicated 4 Storage

48

CHAPTER 6. GENERIC EPHEMERAL VOLUMES

6.1. OVERVIEW

Generic ephemeral volumes are a type of ephemeral volume that can be provided by all storage drivers
that support persistent volumes and dynamic provisioning. Generic ephemeral volumes are similar to
emptyDir volumes in that they provide a per-pod directory for scratch data, which is usually empty after
provisioning.

Generic ephemeral volumes are specified inline in the pod spec and follow the pod’s lifecycle. They are
created and deleted along with the pod.

Generic ephemeral volumes have the following features:

Storage can be local or network-attached.

Volumes can have a fixed size that pods are not able to exceed.

Volumes might have some initial data, depending on the driver and parameters.

Typical operations on volumes are supported, assuming that the driver supports them, including
snapshotting, cloning, resizing, and storage capacity tracking.

NOTE

Generic ephemeral volumes do not support offline snapshots and resize.

6.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS

The parameters for a volume claim are allowed inside a volume source of a pod. Labels, annotations, and
the whole set of fields for persistent volume claims (PVCs) are supported. When such a pod is created,
the ephemeral volume controller then creates an actual PVC object (from the template shown in the
Creating generic ephemeral volumes procedure) in the same namespace as the pod, and ensures that
the PVC is deleted when the pod is deleted. This triggers volume binding and provisioning in one of two
ways:

Either immediately, if the storage class uses immediate volume binding.
With immediate binding, the scheduler is forced to select a node that has access to the volume
after it is available.

When the pod is tentatively scheduled onto a node (WaitForFirstConsumervolume binding
mode).
This volume binding option is recommended for generic ephemeral volumes because then the
scheduler can choose a suitable node for the pod.

In terms of resource ownership, a pod that has generic ephemeral storage is the owner of the PVCs that
provide that ephemeral storage. When the pod is deleted, the Kubernetes garbage collector deletes the
PVC, which then usually triggers deletion of the volume because the default reclaim policy of storage
classes is to delete volumes. You can create quasi-ephemeral local storage by using a storage class with
a reclaim policy of retain: the storage outlives the pod, and in this case, you must ensure that volume
clean-up happens separately. While these PVCs exist, they can be used like any other PVC. In particular,
they can be referenced as data source in volume cloning or snapshotting. The PVC object also holds the
current status of the volume.

Additional resources

CHAPTER 6. GENERIC EPHEMERAL VOLUMES

49

Additional resources

Creating generic ephemeral volumes

6.3. SECURITY

You can enable the generic ephemeral volume feature to allows users who can create pods to also
create persistent volume claims (PVCs) indirectly. This feature works even if these users do not have
permission to create PVCs directly. Cluster administrators must be aware of this. If this does not fit your
security model, use an admission webhook that rejects objects such as pods that have a generic
ephemeral volume.

The normal namespace quota for PVCs still applies, so even if users are allowed to use this new
mechanism, they cannot use it to circumvent other policies.

6.4. PERSISTENT VOLUME CLAIM NAMING

Automatically created persistent volume claims (PVCs) are named by a combination of the pod name
and the volume name, with a hyphen (-) in the middle. This naming convention also introduces a
potential conflict between different pods, and between pods and manually created PVCs.

For example, pod-a with volume scratch and pod with volume a-scratch both end up with the same
PVC name, pod-a-scratch.

Such conflicts are detected, and a PVC is only used for an ephemeral volume if it was created for the
pod. This check is based on the ownership relationship. An existing PVC is not overwritten or modified,
but this does not resolve the conflict. Without the right PVC, a pod cannot start.

IMPORTANT

Be careful when naming pods and volumes inside the same namespace so that naming
conflicts do not occur.

6.5. CREATING GENERIC EPHEMERAL VOLUMES

Procedure

1. Create the pod object definition and save it to a file.

2. Include the generic ephemeral volume information in the file.

my-example-pod-with-generic-vols.yaml

kind: Pod
apiVersion: v1
metadata:
 name: my-app
spec:
 containers:
 - name: my-frontend
 image: busybox:1.28
 volumeMounts:
 - mountPath: "/mnt/storage"
 name: data
 command: ["sleep", "1000000"]

OpenShift Dedicated 4 Storage

50

1 Generic ephemeral volume claim.

 volumes:
 - name: data 1
 ephemeral:
 volumeClaimTemplate:
 metadata:
 labels:
 type: my-app-ephvol
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: "gp2-csi"
 resources:
 requests:
 storage: 1Gi

CHAPTER 6. GENERIC EPHEMERAL VOLUMES

51

CHAPTER 7. DYNAMIC PROVISIONING

7.1. ABOUT DYNAMIC PROVISIONING

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators
(storage-admin) define and create the StorageClass objects that users can request without needing
any detailed knowledge about the underlying storage volume sources.

The OpenShift Dedicated persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Dedicated. While all of them
can be statically provisioned by an administrator, some types of storage are created dynamically using
the built-in provider and plugin APIs.

7.2. AVAILABLE DYNAMIC PROVISIONING PLUGINS

OpenShift Dedicated provides the following provisioner plugins, which have generic implementations
for dynamic provisioning that use the cluster’s configured provider’s API to create new storage
resources:

Storage type Provisioner plugin name Notes

Amazon Elastic Block Store
(Amazon EBS)

kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Dedicated cluster per GCE
project to avoid PVs from being
created in zones where no node in
the current cluster exists.

IBM Power® Virtual Server Block powervs.csi.ibm.com After installation, the IBM Power®
Virtual Server Block CSI Driver
Operator and IBM Power® Virtual
Server Block CSI Driver
automatically create the required
storage classes for dynamic
provisioning.

IMPORTANT

OpenShift Dedicated 4 Storage

52

1

2

3

4

5

6

IMPORTANT

Any chosen provisioner plugin also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

7.3. DEFINING A STORAGE CLASS

StorageClass objects are currently a globally scoped object and must be created by cluster-admin or
storage-admin users.

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the Operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The following sections describe the basic definition for a StorageClass object and specific examples for
each of the supported plugin types.

7.3.1. Basic StorageClass object definition

The following resource shows the parameters and default values that you use to configure a storage
class. This example uses the AWS ElasticBlockStore (EBS) object definition.

Sample StorageClass definition

(required) The API object type.

(required) The current apiVersion.

(required) The name of the storage class.

(optional) Annotations for the storage class.

(required) The type of provisioner associated with this storage class.

(optional) The parameters required for the specific provisioner, this will change from plugin to
plug-iin.

kind: StorageClass 1
apiVersion: storage.k8s.io/v1 2
metadata:
 name: <storage-class-name> 3
 annotations: 4
 storageclass.kubernetes.io/is-default-class: 'true'
 ...
provisioner: kubernetes.io/aws-ebs 5
parameters: 6
 type: gp3
...

CHAPTER 7. DYNAMIC PROVISIONING

53

7.3.2. Storage class annotations

To set a storage class as the cluster-wide default, add the following annotation to your storage class
metadata:

For example:

This enables any persistent volume claim (PVC) that does not specify a specific storage class to
automatically be provisioned through the default storage class. However, your cluster can have more
than one storage class, but only one of them can be the default storage class.

NOTE

The beta annotation storageclass.beta.kubernetes.io/is-default-class is still working;
however, it will be removed in a future release.

To set a storage class description, add the following annotation to your storage class metadata:

For example:

7.3.3. AWS Elastic Block Store (EBS) object definition

aws-ebs-storageclass.yaml

storageclass.kubernetes.io/is-default-class: "true"

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
...

kubernetes.io/description: My Storage Class Description

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 kubernetes.io/description: My Storage Class Description
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: <storage-class-name> 1
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1 2
 iopsPerGB: "10" 3

OpenShift Dedicated 4 Storage

54

1

2

3

4

5

6

1

2

(required) Name of the storage class. The persistent volume claim uses this storage class for
provisioning the associated persistent volumes.

(required) Select from io1, gp3, sc1, st1. The default is gp3. See the AWS documentation for valid
Amazon Resource Name (ARN) values.

Optional: Only for io1 volumes. I/O operations per second per GiB. The AWS volume plugin
multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap
is 20,000 IOPS, which is the maximum supported by AWS. See the AWS documentation for further
details.

Optional: Denotes whether to encrypt the EBS volume. Valid values are true or false.

Optional: The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted is set to true, then AWS generates a key. See the AWS documentation for a valid ARN
value.

Optional: File system that is created on dynamically provisioned volumes. This value is copied to
the fsType field of dynamically provisioned persistent volumes and the file system is created when
the volume is mounted for the first time. The default value is ext4.

7.3.4. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

Name of the storage class. The persistent volume claim uses this storage class for provisioning the
associated persistent volumes.

Select either pd-standard or pd-ssd. The default is pd-standard.

7.4. CHANGING THE DEFAULT STORAGE CLASS

Use the following procedure to change the default storage class.

For example, if you have two defined storage classes, gp3 and standard, and you want to change the
default storage class from gp3 to standard.

 encrypted: "true" 4
 kmsKeyId: keyvalue 5
 fsType: ext4 6

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class-name> 1
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard 2
 replication-type: none
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
reclaimPolicy: Delete

CHAPTER 7. DYNAMIC PROVISIONING

55

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

1

Prerequisites

Access to the cluster with cluster-admin privileges.

Procedure

To change the default storage class:

1. List the storage classes:

Example output

(default) indicates the default storage class.

2. Make the desired storage class the default.
For the desired storage class, set the storageclass.kubernetes.io/is-default-class annotation
to true by running the following command:

NOTE

You can have multiple default storage classes for a short time. However, you
should ensure that only one default storage class exists eventually.

With multiple default storage classes present, any persistent volume claim (PVC)
requesting the default storage class (pvc.spec.storageClassName=nil) gets the
most recently created default storage class, regardless of the default status of
that storage class, and the administrator receives an alert in the alerts dashboard
that there are multiple default storage classes, MultipleDefaultStorageClasses.

3. Remove the default storage class setting from the old default storage class.
For the old default storage class, change the value of the storageclass.kubernetes.io/is-
default-class annotation to false by running the following command:

4. Verify the changes:

Example output

$ oc get storageclass

NAME TYPE
gp3 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/aws-ebs

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc patch storageclass gp3 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

$ oc get storageclass

OpenShift Dedicated 4 Storage

56

NAME TYPE
gp3 kubernetes.io/aws-ebs
standard (default) kubernetes.io/aws-ebs

CHAPTER 7. DYNAMIC PROVISIONING

57

	Table of Contents
	CHAPTER 1. OPENSHIFT DEDICATED STORAGE OVERVIEW
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED STORAGE
	1.2. STORAGE TYPES
	1.2.1. Ephemeral storage
	1.2.2. Persistent storage

	1.3. CONTAINER STORAGE INTERFACE (CSI)
	1.4. DYNAMIC PROVISIONING

	CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
	2.1. OVERVIEW
	2.2. TYPES OF EPHEMERAL STORAGE
	Root
	Runtime

	2.3. EPHEMERAL STORAGE MANAGEMENT
	2.3.1. Ephemeral storage limits and requests units
	2.3.2. Ephemeral storage requests and limits example
	2.3.3. Ephemeral storage configuration effects pod scheduling and eviction

	2.4. MONITORING EPHEMERAL STORAGE

	CHAPTER 3. UNDERSTANDING PERSISTENT STORAGE
	3.1. PERSISTENT STORAGE OVERVIEW
	3.2. LIFECYCLE OF A VOLUME AND CLAIM
	3.2.1. Provision storage
	3.2.2. Bind claims
	3.2.3. Use pods and claimed PVs
	3.2.4. Release a persistent volume
	3.2.5. Reclaim policy for persistent volumes
	3.2.6. Reclaiming a persistent volume manually
	3.2.7. Changing the reclaim policy of a persistent volume

	3.3. PERSISTENT VOLUMES
	3.3.1. Types of PVs
	3.3.2. Capacity
	3.3.3. Access modes
	3.3.4. Phase
	3.3.4.1. Mount options

	3.4. PERSISTENT VOLUME CLAIMS
	3.4.1. Storage classes
	3.4.2. Access modes
	3.4.3. Resources
	3.4.4. Claims as volumes

	3.5. BLOCK VOLUME SUPPORT
	3.5.1. Block volume examples

	3.6. USING FSGROUP TO REDUCE POD TIMEOUTS

	CHAPTER 4. CONFIGURING PERSISTENT STORAGE
	4.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	4.1.1. Creating the EBS storage class
	4.1.2. Creating the persistent volume claim
	4.1.3. Volume format
	4.1.4. Maximum number of EBS volumes on a node
	4.1.5. Encrypting container persistent volumes on AWS with a KMS key
	4.1.6. Additional resources

	4.2. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	4.2.1. Creating the GCE storage class
	4.2.2. Creating the persistent volume claim
	4.2.3. Volume format

	CHAPTER 5. USING CONTAINER STORAGE INTERFACE (CSI)
	5.1. CONFIGURING CSI VOLUMES
	5.1.1. CSI architecture
	5.1.1.1. External CSI controllers
	5.1.1.2. CSI driver daemon set

	5.1.2. CSI drivers supported by OpenShift Dedicated
	5.1.3. Dynamic provisioning
	5.1.4. Example using the CSI driver

	5.2. MANAGING THE DEFAULT STORAGE CLASS
	5.2.1. Overview
	5.2.2. Managing the default storage class using the web console
	5.2.3. Managing the default storage class using the CLI
	5.2.4. Absent or multiple default storage classes
	5.2.4.1. Multiple default storage classes
	5.2.4.2. Absent default storage class

	5.2.5. Changing the default storage class

	5.3. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR
	5.3.1. Overview
	5.3.2. About CSI

	5.4. SETTING UP AWS ELASTIC FILE SERVICE CSI DRIVER OPERATOR
	5.4.1. Overview
	5.4.2. About CSI
	5.4.3. Setting up the AWS EFS CSI Driver Operator
	5.4.3.1. Installing the AWS EFS CSI Driver Operator
	5.4.3.2. Installing the AWS EFS CSI Driver

	5.4.4. Creating the AWS EFS storage class
	5.4.4.1. Creating the AWS EFS storage class using the console
	5.4.4.2. Creating the AWS EFS storage class using the CLI

	5.4.5. Creating and configuring access to EFS volumes in AWS
	5.4.6. Dynamic provisioning for Amazon Elastic File Storage
	5.4.7. Creating static PVs with Amazon Elastic File Storage
	5.4.8. Amazon Elastic File Storage security
	5.4.9. Amazon Elastic File Storage troubleshooting
	5.4.10. Uninstalling the AWS EFS CSI Driver Operator
	5.4.11. Additional resources

	5.5. GCP PD CSI DRIVER OPERATOR
	5.5.1. Overview
	5.5.2. About CSI
	5.5.3. GCP PD CSI driver storage class parameters
	5.5.4. Creating a custom-encrypted persistent volume
	5.5.5. Additional resources

	CHAPTER 6. GENERIC EPHEMERAL VOLUMES
	6.1. OVERVIEW
	6.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS
	6.3. SECURITY
	6.4. PERSISTENT VOLUME CLAIM NAMING
	6.5. CREATING GENERIC EPHEMERAL VOLUMES

	CHAPTER 7. DYNAMIC PROVISIONING
	7.1. ABOUT DYNAMIC PROVISIONING
	7.2. AVAILABLE DYNAMIC PROVISIONING PLUGINS
	7.3. DEFINING A STORAGE CLASS
	7.3.1. Basic StorageClass object definition
	7.3.2. Storage class annotations
	7.3.3. AWS Elastic Block Store (EBS) object definition
	7.3.4. GCE PersistentDisk (gcePD) object definition

	7.4. CHANGING THE DEFAULT STORAGE CLASS

