
OpenShift Container Platform 4.5

Service Mesh

Service Mesh installation, usage, and release notes

Last Updated: 2021-07-21

OpenShift Container Platform 4.5 Service Mesh

Service Mesh installation, usage, and release notes

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use Service Mesh in OpenShift Container Platform.

. .

Table of Contents

CHAPTER 1. SERVICE MESH 1.X
1.1. SERVICE MESH RELEASE NOTES

1.1.1. Red Hat OpenShift Service Mesh overview
1.1.2. Getting support

1.1.2.1. About the must-gather tool
1.1.2.2. Prerequisites
1.1.2.3. About collecting service mesh data

1.1.3. Red Hat OpenShift Service Mesh supported configurations
1.1.3.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
1.1.3.2. Supported Mixer adapters

1.1.4. New Features
1.1.4.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.16
1.1.4.2. New features Red Hat OpenShift Service Mesh 1.1.16
1.1.4.3. New features Red Hat OpenShift Service Mesh 1.1.15
1.1.4.4. New features Red Hat OpenShift Service Mesh 1.1.14

1.1.4.4.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920
1.1.4.4.2. Updating the path normalization configuration
1.1.4.4.3. Path normalization configuration examples
1.1.4.4.4. Configuring your SMCP for path normalization

1.1.4.5. New features Red Hat OpenShift Service Mesh 1.1.13
1.1.4.6. New features Red Hat OpenShift Service Mesh 1.1.12
1.1.4.7. New features Red Hat OpenShift Service Mesh 1.1.11
1.1.4.8. New features Red Hat OpenShift Service Mesh 1.1.10
1.1.4.9. New features Red Hat OpenShift Service Mesh 1.1.9
1.1.4.10. New features Red Hat OpenShift Service Mesh 1.1.8
1.1.4.11. New features Red Hat OpenShift Service Mesh 1.1.7
1.1.4.12. New features Red Hat OpenShift Service Mesh 1.1.6
1.1.4.13. New features Red Hat OpenShift Service Mesh 1.1.5
1.1.4.14. New features Red Hat OpenShift Service Mesh 1.1.4

1.1.4.14.1. Manual updates required by CVE-2020-8663
1.1.4.14.2. Upgrading from Elasticsearch 5 to Elasticsearch 6

1.1.4.15. New features Red Hat OpenShift Service Mesh 1.1.3
1.1.4.16. New features Red Hat OpenShift Service Mesh 1.1.2
1.1.4.17. New features Red Hat OpenShift Service Mesh 1.1.1
1.1.4.18. New features Red Hat OpenShift Service Mesh 1.1.0

1.1.4.18.1. Manual updates from 1.0 to 1.1
1.1.5. Deprecated features

1.1.5.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5
1.1.6. Known issues

1.1.6.1. Service Mesh known issues
1.1.6.2. Kiali known issues
1.1.6.3. Jaeger known issues

1.1.7. Fixed issues
1.1.7.1. Service Mesh fixed issues
1.1.7.2. Kiali fixed issues

1.2. UNDERSTANDING RED HAT OPENSHIFT SERVICE MESH
1.2.1. Understanding service mesh
1.2.2. Red Hat OpenShift Service Mesh Architecture
1.2.3. Understanding Kiali

1.2.3.1. Kiali overview
1.2.3.2. Kiali architecture

6
6
6
6
6
7
7
7
8
8
8
8
9
9
9
9

10
11
11

12
12
12
12
12
12
12
12
12
13
13
14
15
15
15
16
16
16
16
17
17
18
18
19
19

20
21
21
21
22
22
23

Table of Contents

1

1.2.3.3. Kiali features
1.2.4. Understanding Jaeger

1.2.4.1. Jaeger overview
1.2.4.2. Jaeger architecture
1.2.4.3. Jaeger features

1.2.5. Next steps
1.3. SERVICE MESH AND ISTIO DIFFERENCES

1.3.1. Red Hat OpenShift Service Mesh multitenant installation
1.3.1.1. Multitenancy versus cluster-wide installations
1.3.1.2. Cluster scoped resources

1.3.2. Differences between Istio and Red Hat OpenShift Service Mesh
1.3.2.1. Command line tool
1.3.2.2. Automatic injection
1.3.2.3. Istio Role Based Access Control features
1.3.2.4. OpenSSL
1.3.2.5. Component modifications
1.3.2.6. Envoy, Secret Discovery Service, and certificates
1.3.2.7. Istio Container Network Interface (CNI) plug-in
1.3.2.8. Routes for Istio Gateways

1.3.2.8.1. Catch-all domains
1.3.2.8.2. Subdomains
1.3.2.8.3. Transport layer security

1.3.3. Kiali and service mesh
1.3.4. Jaeger and service mesh

1.4. PREPARING TO INSTALL RED HAT OPENSHIFT SERVICE MESH
1.4.1. Prerequisites
1.4.2. Red Hat OpenShift Service Mesh supported configurations

1.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
1.4.2.2. Supported Mixer adapters

1.4.3. Red Hat OpenShift Service Mesh installation activities
1.4.4. Next steps

1.5. INSTALLING RED HAT OPENSHIFT SERVICE MESH
1.5.1. Prerequisites
1.5.2. Installing the Elasticsearch Operator
1.5.3. Installing the Jaeger Operator
1.5.4. Installing the Kiali Operator
1.5.5. Installing the Red Hat OpenShift Service Mesh Operator
1.5.6. Deploying the Red Hat OpenShift Service Mesh control plane

1.5.6.1. Deploying the control plane from the web console
1.5.6.2. Deploying the control plane from the CLI

1.5.7. Creating the Red Hat OpenShift Service Mesh member roll
1.5.7.1. Creating the member roll from the web console
1.5.7.2. Creating the member roll from the CLI
1.5.7.3. Creating the Red Hat OpenShift Service Mesh members

1.5.8. Adding or removing projects from the service mesh
1.5.8.1. Modifying the member roll from the web console
1.5.8.2. Modifying the member roll from the CLI

1.5.9. Manual updates
1.5.9.1. Updating your application pods

1.5.10. Next steps
1.6. CUSTOMIZING THE RED HAT OPENSHIFT SERVICE MESH INSTALLATION

1.6.1. Prerequisites
1.6.2. Red Hat OpenShift Service Mesh custom resources

23
24
24
24
25
25
25
26
26
26
27
27
27
27
28
28
28
28
28
29
29
29
29
29
30
30
30
31
31
31
31
32
32
32
33
35
35
36
36
37
39
39
40
41

42
42
42
43
43
44
44
44
44

OpenShift Container Platform 4.5 Service Mesh

2

1.6.3. ServiceMeshControlPlane parameters
1.6.3.1. Istio global example
1.6.3.2. Istio gateway configuration
1.6.3.3. Automatic route creation

1.6.3.3.1. Enabling Automatic Route Creation
1.6.3.3.2. Subdomains

1.6.3.4. Istio Mixer configuration
1.6.3.5. Istio Pilot configuration

1.6.4. Configuring Kiali
1.6.4.1. Configuring Kiali for Grafana
1.6.4.2. Configuring Kiali for Jaeger

1.6.5. Configuring Jaeger
1.6.5.1. Configuring Elasticsearch
1.6.5.2. Configuring the Elasticsearch index cleaner job

1.6.6. 3scale configuration
1.6.7. Next steps

1.7. DEPLOYING APPLICATIONS ON RED HAT OPENSHIFT SERVICE MESH
1.7.1. Prerequisites
1.7.2. Creating control plane templates

1.7.2.1. Creating the ConfigMap
1.7.3. Red Hat OpenShift Service Mesh's sidecar injection

1.7.3.1. Setting environment variables on the proxy in applications through annotations
1.7.3.2. Enabling automatic sidecar injection

1.7.4. Updating Mixer policy enforcement
1.7.4.1. Setting the correct network policy

1.7.5. Bookinfo example application
1.7.5.1. Installing the Bookinfo application
1.7.5.2. Adding default destination rules
1.7.5.3. Verifying the Bookinfo installation
1.7.5.4. Removing the Bookinfo application

1.7.5.4.1. Delete the Bookinfo project
1.7.5.4.2. Remove the Bookinfo project from the Service Mesh member roll

1.7.6. Generating example traces and analyzing trace data
1.8. DATA VISUALIZATION AND OBSERVABILITY

1.8.1. Accessing the Kiali console
1.8.2. Visualizing your service

1.8.2.1. Namespace graphs
1.9. CUSTOMIZING SECURITY IN A SERVICE MESH

1.9.1. Enabling mutual Transport Layer Security (mTLS)
1.9.1.1. Enabling strict mTLS across the mesh

1.9.1.1.1. Configuring sidecars for incoming connections for specific services
1.9.1.2. Configuring sidecars for outgoing connections
1.9.1.3. Setting the minimum and maximum protocol versions

1.9.2. Configuring cipher suites and ECDH curves
1.9.3. Adding an external certificate authority key and certificate

1.9.3.1. Adding an existing certificate and key
1.9.3.2. Verifying your certificates
1.9.3.3. Removing the certificates

1.10. TRAFFIC MANAGEMENT
1.10.1. Routing and managing traffic

1.10.1.1. Traffic management with virtual services
1.10.1.1.1. Configuring virtual services

1.10.1.2. Configuring your virtual host

46
46
48
49
50
50
51
52
53
54
54
55
56
58
59
61
61
61
61

62
63
63
64
65
65
65
66
68
69
69
70
70
70
72
73
73
73
74
74
74
74
75
75
76
77
77
78
79
80
80
80
80
81

Table of Contents

3

1.10.1.2.1. Hosts
1.10.1.2.2. Routing rules
1.10.1.2.3. Destination rules

1.10.1.2.3.1. Load balancing options
1.10.1.2.4. Gateways
1.10.1.2.5. Service entries
1.10.1.2.6. Sidecar

1.10.2. Managing ingress traffic
1.10.2.1. Determining the ingress IP and ports

1.10.3. Routing example using the bookinfo application
1.10.3.1. Applying a virtual service
1.10.3.2. Test the new routing configuration
1.10.3.3. Route based on user identity

1.11. USING THE 3SCALE ISTIO ADAPTER
1.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

1.11.1.1. Generating 3scale custom resources
1.11.1.1.1. Generate templates from URL examples

1.11.1.2. Generating manifests from a deployed adapter
1.11.1.3. Routing service traffic through the adapter

1.11.2. Configure the integration settings in 3scale
1.11.3. Caching behavior
1.11.4. Authenticating requests

1.11.4.1. Applying authentication patterns
1.11.4.1.1. API key authentication method
1.11.4.1.2. Application ID and application key pair authentication method
1.11.4.1.3. OpenID authentication method
1.11.4.1.4. Hybrid authentication method

1.11.5. 3scale Adapter metrics
1.12. REMOVING RED HAT OPENSHIFT SERVICE MESH

1.12.1. Removing the Red Hat OpenShift Service Mesh member roll
1.12.2. Removing the Red Hat OpenShift Service Mesh control plane

1.12.2.1. Removing the control plane with the web console
1.12.2.2. Removing the control plane from the CLI

1.12.3. Removing the installed Operators
1.12.3.1. Removing the Red Hat OpenShift Service Mesh Operator
1.12.3.2. Removing the Kiali Operator
1.12.3.3. Removing the Jaeger Operator
1.12.3.4. Removing the Elasticsearch Operator
1.12.3.5. Clean up Operator resources

81
81

82
82
83
84
85
85
86
87
87
88
89
90
90
91

92
92
93
93
94
94
94
94
95
95
96
97
97
97
97
97
98
98
98
99
99

100
100

OpenShift Container Platform 4.5 Service Mesh

4

Table of Contents

5

CHAPTER 1. SERVICE MESH 1.X

1.1. SERVICE MESH RELEASE NOTES

1.1.1. Red Hat OpenShift Service Mesh overview

Red Hat OpenShift Service Mesh is a platform that provides behavioral insight and operational control
over the service mesh, providing a uniform way to connect, secure, and monitor microservice
applications.

The term service mesh describes the network of microservices that make up applications in a distributed
microservice architecture and the interactions between those microservices. As a service mesh grows in
size and complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on
existing distributed applications without requiring any changes to the service code. You add Red Hat
OpenShift Service Mesh support to services by deploying a special sidecar proxy throughout your
environment that intercepts all network communication between microservices. You configure and
manage the service mesh using the control plane features.

Red Hat OpenShift Service Mesh provides an easy way to create a network of deployed services that
provides discovery, load balancing, service-to-service authentication, failure recovery, metrics, and
monitoring. A service mesh also provides more complex operational functionality, including A/B testing,
canary releases, rate limiting, access control, and end-to-end authentication.

1.1.2. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in Red Hat OpenShift Cluster Manager. Insights
provides details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, please submit a
Bugzilla report against the OpenShift Container Platform product for the Documentation component.
Please provide specific details, such as the section name and OpenShift Container Platform version.

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including virtual machines and other data related to Red Hat OpenShift Service Mesh.

For prompt support, supply diagnostic information for both OpenShift Container Platform and Red Hat
OpenShift Service Mesh.

1.1.2.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely

OpenShift Container Platform 4.5 Service Mesh

6

https://istio.io/
http://access.redhat.com
http://bugzilla.redhat.com

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product.

When you run oc adm must-gather, a new pod is created on the cluster. The data is collected on that
pod and saved in a new directory that starts with must-gather.local. This directory is created in the
current working directory.

1.1.2.2. Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

1.1.2.3. About collecting service mesh data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with Red Hat OpenShift Service Mesh.

To collect Red Hat OpenShift Service Mesh data with must-gather, you must specify the Red Hat
OpenShift Service Mesh image.

To collect Red Hat OpenShift Service Mesh data for a specific control plane namespace with must-
gather, you must specify the Red Hat OpenShift Service Mesh image and namespace. In this example,
replace <namespace> with your control plane namespace, such as istio-system.

1.1.3. Red Hat OpenShift Service Mesh supported configurations

The following are the only supported configurations for the Red Hat OpenShift Service Mesh:

Red Hat OpenShift Container Platform version 4.x.

NOTE

OpenShift Online and OpenShift Dedicated are not supported for Red Hat OpenShift
Service Mesh.

The deployment must be contained to a single OpenShift Container Platform cluster that is not
federated.

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container

$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8

$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8
gather <namespace>

CHAPTER 1. SERVICE MESH 1.X

7

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64.

This release only supports configurations where all Service Mesh components are contained in
the OpenShift cluster in which it operates. It does not support management of microservices
that reside outside of the cluster, or in a multi-cluster scenario.

This release only supports configurations that do not integrate external services such as virtual
machines.

1.1.3.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh

The Kiali observability console is only supported on the two most recent releases of the Chrome,
Edge, Firefox, or Safari browsers.

1.1.3.2. Supported Mixer adapters

This release only supports the following Mixer adapter:

3scale Istio Adapter

1.1.4. New Features

Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of
services:

Traffic Management - Control the flow of traffic and API calls between services, make calls
more reliable, and make the network more robust in the face of adverse conditions.

Service Identity and Security - Provide services in the mesh with a verifiable identity and
provide the ability to protect service traffic as it flows over networks of varying degrees of
trustworthiness.

Policy Enforcement - Apply organizational policy to the interaction between services, ensure
access policies are enforced and resources are fairly distributed among consumers. Policy
changes are made by configuring the mesh, not by changing application code.

Telemetry - Gain understanding of the dependencies between services and the nature and flow
of traffic between them, providing the ability to quickly identify issues.

1.1.4.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.16

Component Version

Istio 1.4.8

Jaeger 1.17.8

Kiali 1.12.16

3scale Istio Adapter 1.0.0

OpenShift Container Platform 4.5 Service Mesh

8

1.1.4.2. New features Red Hat OpenShift Service Mesh 1.1.16

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.3. New features Red Hat OpenShift Service Mesh 1.1.15

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.4. New features Red Hat OpenShift Service Mesh 1.1.14

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

IMPORTANT

There are manual steps that must be completed to address CVE-2021-29492 and CVE-
2021-31920.

1.1.4.4.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920

Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or
escaped slash characters (%2F` or %5C`) could potentially bypass an Istio authorization policy when
path-based authorization rules are used.

For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the
request at path /admin. A request sent to the URL path //admin will NOT be rejected by the
authorization policy.

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a
different path from the /admin. However, some backend services choose to normalize the URL paths by
merging multiple slashes into a single slash. This can result in a bypass of the authorization policy
(//admin does not match /admin), and a user can access the resource at path /admin in the backend;
this would represent a security incident.

Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action +
notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected
policy bypasses.

Your cluster is NOT impacted by this vulnerability if:

You don’t have authorization policies.

Your authorization policies don’t define paths or notPaths fields.

Your authorization policies use ALLOW action + paths field or DENY action + notPaths field
patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The
upgrade is optional for these cases.

NOTE

The Red Hat OpenShift Service Mesh configuration location for path normalization is
different from the Istio configuration.

CHAPTER 1. SERVICE MESH 1.X

9

https://tools.ietf.org/html/rfc3986#section-6

1.1.4.4.2. Updating the path normalization configuration

Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also
known as URI normalization, modifies and standardizes the incoming requests' paths so that the
normalized paths can be processed in a standard way. Syntactically different paths may be equivalent
after path normalization.

Istio supports the following normalization schemes on the request paths before evaluating against the
authorization policies and routing the requests:

Table 1.1. Normalization schemes

Option Description Example Notes

NONE No normalization is
done. Anything received
by Envoy will be
forwarded exactly as-is
to any backend service.

../%2Fa../b is evaluated
by the authorization
policies and sent to your
service.

This setting is vulnerable
to CVE-2021-31920.

BASE This is currently the
option used in the
default installation of
Istio. This applies the
normalize_path
option on Envoy proxies,
which follows RFC 3986
with extra normalization
to convert backslashes
to forward slashes.

/a/../b is normalized to
/b. \da is normalized to
/da.

This setting is vulnerable
to CVE-2021-31920.

MERGE_SLASHES Slashes are merged
after the BASE
normalization.

/a//b is normalized to
/a/b.

Update to this setting to
mitigate CVE-2021-
31920.

DECODE_AND_MER
GE_SLASHES

The strictest setting
when you allow all traffic
by default. This setting is
recommended, with the
caveat that you must
thoroughly test your
authorization policies
routes. Percent-
encoded slash and
backslash characters
(%2F, %2f, %5C and
%5c) are decoded to /
or \, before the
MERGE_SLASHES
normalization.

/a%2fb is normalized to
/a/b.

Update to this setting to
mitigate CVE-2021-
31920. This setting is
more secure, but also
has the potential to
break applications. Test
your applications before
deploying to production.

The normalization algorithms are conducted in the following order:

1. Percent-decode %2F, %2f, %5C and %5c.

OpenShift Container Platform 4.5 Service Mesh

10

https://en.wikipedia.org/wiki/URI_normalization
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1

2. The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.

3. Merge slashes.

WARNING

While these normalization options represent recommendations from HTTP
standards and common industry practices, applications may interpret a URL in any
way it chooses to. When using denial policies, ensure that you understand how your
application behaves.

1.1.4.4.3. Path normalization configuration examples

Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the
security of your system. The following examples can be used as a reference for you to configure your
system. The normalized URL paths, or the original URL paths if NONE is selected, will be:

1. Used to check against the authorization policies.

2. Forwarded to the backend application.

Table 1.2. Configuration examples

If your application… Choose…

Relies on the proxy to do normalization BASE, MERGE_SLASHES or
DECODE_AND_MERGE_SLASHES

Normalizes request paths based on RFC 3986 and
does not merge slashes.

BASE

Normalizes request paths based on RFC 3986 and
merges slashes, but does not decode percent-
encoded slashes.

MERGE_SLASHES

Normalizes request paths based on RFC 3986,
decodes percent-encoded slashes, and merges
slashes.

DECODE_AND_MERGE_SLASHES

Processes request paths in a way that is
incompatible with RFC 3986.

NONE

1.1.4.4.4. Configuring your SMCP for path normalization

To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your
ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your
system.

CHAPTER 1. SERVICE MESH 1.X

11

https://tools.ietf.org/html/rfc3986
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986

SMCP v1 pathNormalization

1.1.4.5. New features Red Hat OpenShift Service Mesh 1.1.13

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.6. New features Red Hat OpenShift Service Mesh 1.1.12

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.7. New features Red Hat OpenShift Service Mesh 1.1.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.8. New features Red Hat OpenShift Service Mesh 1.1.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.9. New features Red Hat OpenShift Service Mesh 1.1.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.10. New features Red Hat OpenShift Service Mesh 1.1.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.11. New features Red Hat OpenShift Service Mesh 1.1.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.12. New features Red Hat OpenShift Service Mesh 1.1.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.13. New features Red Hat OpenShift Service Mesh 1.1.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release also added support for configuring cipher suites.

spec:
 global:
 pathNormalization: <option>

OpenShift Container Platform 4.5 Service Mesh

12

1.1.4.14. New features Red Hat OpenShift Service Mesh 1.1.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

NOTE

There are manual steps that must be completed to address CVE-2020-8663.

1.1.4.14.1. Manual updates required by CVE-2020-8663

The fix for CVE-2020-8663: envoy: Resource exhaustion when accepting too many connections
added a configurable limit on downstream connections. The configuration option for this limit must be
configured to mitigate this vulnerability.

IMPORTANT

These manual steps are required to mitigate this CVE whether you are using the 1.1
version or the 1.0 version of Red Hat OpenShift Service Mesh.

This new configuration option is called overload.global_downstream_max_connections, and it is
configurable as a proxy runtime setting. Perform the following steps to configure limits at the Ingress
Gateway.

Procedure

1. Create a file named bootstrap-override.json with the following text to force the proxy to
override the bootstrap template and load runtime configuration from disk:

 {
 "runtime": {
 "symlink_root": "/var/lib/istio/envoy/runtime"
 }
 }

2. Create a secret from the bootstrap-override.json file, replacing <SMCPnamespace> with the
namespace where you created the service mesh control plane (SMCP):

3. Update the SMCP configuration to activate the override.

Updated SMCP configuration example #1

$ oc create secret generic -n <SMCPnamespace> gateway-bootstrap --from-file=bootstrap-
override.json

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 gateways:
 istio-ingressgateway:
 env:
 ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-
override.json

CHAPTER 1. SERVICE MESH 1.X

13

https://bugzilla.redhat.com/show_bug.cgi?id=1844254

4. To set the new configuration option, create a secret that has the desired value for the
overload.global_downstream_max_connections setting. The following example uses a value
of 10000:

5. Update the SMCP again to mount the secret in the location where Envoy is looking for runtime
configuration:

Updated SMCP configuration example #2

1.1.4.14.2. Upgrading from Elasticsearch 5 to Elasticsearch 6

When updating from Elasticsearch 5 to Elasticsearch 6, you must delete your Jaeger instance, then
recreate the Jaeger instance because of an issue with certificates. Re-creating the Jaeger instance
triggers creating a new set of certificates. If you are using persistent storage the same volumes can be
mounted for the new Jaeger instance as long as the Jaeger name and namespace for the new Jaeger
instance are the same as the deleted Jaeger instance.

Procedure if Jaeger is installed as part of Red Hat Service Mesh

1. Determine the name of your Jaeger custom resource file:

You should see something like the following:

 secretVolumes:
 - mountPath: /var/lib/istio/envoy/custom-bootstrap
 name: custom-bootstrap
 secretName: gateway-bootstrap

$ oc create secret generic -n <SMCPnamespace> gateway-settings --from-
literal=overload.global_downstream_max_connections=10000

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 template: default
#Change the version to "v1.0" if you are on the 1.0 stream.
 version: v1.1
 istio:
 gateways:
 istio-ingressgateway:
 env:
 ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-override.json
 secretVolumes:
 - mountPath: /var/lib/istio/envoy/custom-bootstrap
 name: custom-bootstrap
 secretName: gateway-bootstrap
 # below is the new secret mount
 - mountPath: /var/lib/istio/envoy/runtime
 name: gateway-settings
 secretName: gateway-settings

$ oc get jaeger -n istio-system

OpenShift Container Platform 4.5 Service Mesh

14

2. Copy the generated custom resource file into a temporary directory:

3. Delete the Jaeger instance:

4. Recreate the Jaeger instance from your copy of the custom resource file:

5. Delete the copy of the generated custom resource file:

Procedure if Jaeger not installed as part of Red Hat Service Mesh

Before you begin, create a copy of your Jaeger custom resource file.

1. Delete the Jaeger instance by deleting the custom resource file:

For example:

2. Recreate your Jaeger instance from the backup copy of your custom resource file:

3. Validate that your Pods have restarted:

1.1.4.15. New features Red Hat OpenShift Service Mesh 1.1.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.1.4.16. New features Red Hat OpenShift Service Mesh 1.1.2

This release of Red Hat OpenShift Service Mesh addresses a security vulnerability.

1.1.4.17. New features Red Hat OpenShift Service Mesh 1.1.1

This release of Red Hat OpenShift Service Mesh adds support for a disconnected installation.

NAME AGE
jaeger 3d21h

$ oc get jaeger jaeger -oyaml -n istio-system > /tmp/jaeger-cr.yaml

$ oc delete jaeger jaeger -n istio-system

$ oc create -f /tmp/jaeger-cr.yaml -n istio-system

$ rm /tmp/jaeger-cr.yaml

$ oc delete -f <jaeger-cr-file>

$ oc delete -f jaeger-prod-elasticsearch.yaml

$ oc create -f <jaeger-cr-file>

$ oc get pods -n jaeger-system -w

CHAPTER 1. SERVICE MESH 1.X

15

1.1.4.18. New features Red Hat OpenShift Service Mesh 1.1.0

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.4.6 and Jaeger 1.17.1.

1.1.4.18.1. Manual updates from 1.0 to 1.1

If you are updating from Red Hat OpenShift Service Mesh 1.0 to 1.1, you must update the
ServiceMeshControlPlane resource to update the control plane components to the new version.

1. In the web console, click the Red Hat OpenShift Service Mesh Operator.

2. Click the Project menu and choose the project where your ServiceMeshControlPlane is
deployed from the list, for example istio-system.

3. Click the name of your control plane, for example basic-install.

4. Click YAML and add a version field to the spec: of your ServiceMeshControlPlane resource.
For example, to update to Red Hat OpenShift Service Mesh 1.1.0, add version: v1.1.

spec:
 version: v1.1
 ...

The version field specifies the version of Service Mesh to install and defaults to the latest available
version.

NOTE

Note that support for Red Hat OpenShift Service Mesh v1.0 ended in October, 2020. You
must upgrade to either v1.1 or v2.0.

1.1.5. Deprecated features

Some features available in previous releases have been deprecated or removed.

Deprecated functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for
new deployments.

1.1.5.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5

The following custom resources are deprecated in this release and will be removed in a future release.

Policy - The Policy resource is deprecated and will be replaced by the PeerAuthentication
resource in a future release.

MeshPolicy - The MeshPolicy resource is deprecated and will be replaced by the
PeerAuthentication resource in a future release.

v1alpha1 RBAC API -The v1alpha1 RBAC policy is deprecated by the v1beta1
AuthorizationPolicy. RBAC (Role Based Access Control) defines ServiceRole and
ServiceRoleBinding objects.

ServiceRole

OpenShift Container Platform 4.5 Service Mesh

16

ServiceRoleBinding

RbacConfig - RbacConfig implements the Custom Resource Definition for controlling Istio
RBAC behavior.

ClusterRbacConfig(versions prior to Red Hat OpenShift Service Mesh 1.0)

ServiceMeshRbacConfig (Red Hat OpenShift Service Mesh version 1.0 and later)

In Kiali, the login and LDAP strategies are deprecated. A future version will introduce
authentication using OpenID providers.

The following components are also deprecated in this release and will be replaced by the Istiod
component in a future release.

Mixer - access control and usage policies

Pilot - service discovery and proxy configuration

Citadel - certificate generation

Galley - configuration validation and distribution

1.1.6. Known issues

These limitations exist in Red Hat OpenShift Service Mesh:

Red Hat OpenShift Service Mesh does not support IPv6 , as it is not supported by the upstream
Istio project, nor fully supported by OpenShift.

Graph layout - The layout for the Kiali graph can render differently, depending on your
application architecture and the data to display (number of graph nodes and their interactions).
Because it is difficult if not impossible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts. To choose a different layout, you can
choose a different Layout Schema from the Graph Settings menu.

The first time you access related services such as Jaeger and Grafana, from the Kiali console,
you must accept the certificate and re-authenticate using your OpenShift Container Platform
login credentials. This happens due to an issue with how the framework displays embedded
pages in the console.

1.1.6.1. Service Mesh known issues

These are the known issues in Red Hat OpenShift Service Mesh:

Maistra-1502 As a result of CVEs fixes in version 1.0.10, the Istio dashboards are not available
from the Home Dashboard menu in Grafana. The Istio dashboards still exist. To access them,
click the Dashboard menu in the navigation panel and select the Manage tab.

Bug 1821432 Toggle controls in OpenShift Container Platform Control Resource details page do
not update the CR correctly. UI Toggle controls in the Service Mesh Control Plane (SMCP)
Overview page in the OpenShift Container Platform web console sometimes update the wrong
field in the resource. To update a SMCP, edit the YAML content directly or update the resource
from the command line instead of clicking the toggle controls.

Jaeger/Kiali Operator upgrade blocked with operator pending When upgrading the Jaeger or
Kiali Operators with Service Mesh 1.0.x installed, the operator status shows as Pending. There is

CHAPTER 1. SERVICE MESH 1.X

17

https://github.com/istio/old_issues_repo/issues/115
https://issues.redhat.com/browse/MAISTRA-1502
https://bugzilla.redhat.com/show_bug.cgi?id=1821432
https://access.redhat.com/solutions/4970771

a solution in progress and a workaround. See the linked Knowledge Base article for more
information.

Istio-14743 Due to limitations in the version of Istio that this release of Red Hat OpenShift
Service Mesh is based on, there are several applications that are currently incompatible with
Service Mesh. See the linked community issue for details.

MAISTRA-858 The following Envoy log messages describing deprecated options and
configurations associated with Istio 1.1.x are expected:

[2019-06-03 07:03:28.943][19][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option
'envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.

[2019-08-12 22:12:59.001][13][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option
'envoy.api.v2.Listener.use_original_dst' from file lds.proto. This configuration will be
removed from Envoy soon.

MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
If the istio-operator pod is evicted while deploying the control pane, delete the evicted istio-
operator pod.

MAISTRA-681 When the control plane has many namespaces, it can lead to performance issues.

MAISTRA-465 The Maistra Operator fails to create a service for operator metrics.

MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does
not occur. The operator fails to add the maistra.io/member-of before the pods are created,
therefore the pods must be deleted and recreated for sidecar injection to occur.

MAISTRA-193 Unexpected console info messages are visible when health checking is enabled
for citadel.

MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all
gateways to stop functioning.

1.1.6.2. Kiali known issues

These are the known issues in Kiali:

KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached
browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details
page redirects to the wrong location. The only way you would encounter this issue is if you are
accessing Kiali for the first time.

KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks
do not support Internet Explorer. To access the Kiali console, use one of the two most recent
versions of the Chrome, Edge, Firefox or Safari browser.

1.1.6.3. Jaeger known issues

These limitations exist in Jaeger:

While Kafka publisher is included as part of Jaeger, it is not supported.

Apache Spark is not supported.

OpenShift Container Platform 4.5 Service Mesh

18

https://github.com/istio/istio/issues/14743
https://issues.jboss.org/browse/MAISTRA-858
https://www.envoyproxy.io/docs/envoy/latest/intro/deprecated
https://issues.jboss.org/browse/MAISTRA-806
https://issues.jboss.org/browse/MAISTRA-681
https://issues.jboss.org/browse/MAISTRA-465
https://issues.jboss.org/browse/MAISTRA-453
https://issues.jboss.org/browse/MAISTRA-193
https://issues.jboss.org/browse/MAISTRA-158
https://issues.jboss.org/browse/KIALI-2206
https://github.com/kiali/kiali/issues/507

Only self-provisioned Elasticsearch instances are supported. External Elasticsearch instances
are not supported in this release.

These are the known issues in Jaeger:

TRACING-1166 It is not currently possible to use the Jaeger streaming strategy within a
disconnected environment. When a Kafka cluster is being provisioned, it results in a error: Failed
to pull image registry.redhat.io/amq7/amq-streams-kafka-24-
rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076.

TRACING-809 Jaeger Ingester is incompatible with Kafka 2.3. When there are two or more
instances of the Jaeger Ingester and enough traffic it will continuously generate rebalancing
messages in the logs. This is due to a regression in Kafka 2.3 that was fixed in Kafka 2.3.1. For
more information, see Jaegertracing-1819.

1.1.7. Fixed issues

The following issues been resolved in the current release:

1.1.7.1. Service Mesh fixed issues

MAISTRA-2371 Handle tombstones in listerInformer. The updated cache codebase was not
handling tombstones when translating the events from the namespace caches to the
aggregated cache, leading to a panic in the go routine.

MAISTRA-1352 Cert-manager Custom Resource Definitions (CRD) from the control plane
installation have been removed for this release and future releases. If you have already installed
Red Hat OpenShift Service Mesh, the CRDs must be removed manually if cert-manager is not
being used.
To remove the CRDs, run the following commands:

MAISTRA-1649 Headless services conflict when in different namespaces. When deploying
headless services within different namespaces the endpoint configuration is merged and results
in invalid Envoy configurations being pushed to the sidecars.

MAISTRA-1541 Panic in kubernetesenv when the controller is not set on owner reference. If a
pod has an ownerReference which does not specify the controller, this will cause a panic within
the kubernetesenv cache.go code.

TRACING-1300 Failed connection between Agent and Collector when using Istio sidecar. An
update of the Jaeger Operator enabled TLS communication by default between a Jaeger
sidecar agent and the Jaeger Collector.

TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to

$ oc delete crd clusterissuers.certmanager.k8s.io

$ oc delete crd issuers.certmanager.k8s.io

$ oc delete crd certificates.certmanager.k8s.io

$ oc delete crd orders.certmanager.k8s.io

$ oc delete crd challenges.certmanager.k8s.io

CHAPTER 1. SERVICE MESH 1.X

19

https://issues.redhat.com/browse/TRACING-1166
https://issues.redhat.com/browse/TRACING-809
https://github.com/jaegertracing/jaeger/issues/1819
https://issues.redhat.com/browse/MAISTRA-2371
https://issues.redhat.com/browse/MAISTRA-1352
https://issues.redhat.com/projects/MAISTRA/issues/MAISTRA-1649
https://issues.redhat.com/browse/MAISTRA-1541
https://issues.redhat.com/browse/TRACING-1300

TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to
authenticate to the UI using OAuth, I get a 500 error because oauth-proxy sidecar doesn’t trust
the custom CA bundle defined at installation time with the additionalTrustBundle.

OSSM-99 Workloads generated from direct Pod without labels may crash Kiali.

OSSM-93 IstioConfigList can’t filter by two or more names.

OSSM-92 Cancelling unsaved changes on the VS/DR YAML edit page does not cancel the
changes.

OSSM-90 Traces not available on the service details page.

MAISTRA-1001 Closing HTTP/2 connections could lead to segmentation faults in istio-proxy.

MAISTRA-932 Added the requires metadata to add dependency relationship between Jaeger
operator and Elasticsearch operator. Ensures that when the Jaeger operator is installed, it
automatically deploys the Elasticsearch operator if it is not available.

MAISTRA-862 Galley dropped watches and stopped providing configuration to other
components after many namespace deletions and re-creations.

MAISTRA-833 Pilot stopped delivering configuration after many namespace deletions and re-
creations.

MAISTRA-684 The default Jaeger version in the istio-operator is 1.12.0, which does not match
Jaeger version 1.13.1 that shipped in Red Hat OpenShift Service Mesh 0.12.TechPreview.

MAISTRA-622 In Maistra 0.12.0/TP12, permissive mode does not work. The user has the option
to use Plain text mode or Mutual TLS mode, but not permissive.

MAISTRA-572 Jaeger cannot be used with Kiali. In this release Jaeger is configured to use the
OAuth proxy, but is also only configured to work through a browser and does not allow service
access. Kiali cannot properly communicate with the Jaeger endpoint and it considers Jaeger to
be disabled. See also TRACING-591.

MAISTRA-357 In OpenShift 4 Beta on AWS, it is not possible, by default, to access a TCP or
HTTPS service through the ingress gateway on a port other than port 80. The AWS load
balancer has a health check that verifies if port 80 on the service endpoint is active. Without a
service running on port 80, the load balancer health check fails.

MAISTRA-348 OpenShift 4 Beta on AWS does not support ingress gateway traffic on ports
other than 80 or 443. If you configure your ingress gateway to handle TCP traffic with a port
number other than 80 or 443, you have to use the service hostname provided by the AWS load
balancer rather than the OpenShift router as a workaround.

1.1.7.2. Kiali fixed issues

KIALI-3239 If a Kiali Operator pod has failed with a status of “Evicted” it blocks the Kiali
operator from deploying. The workaround is to delete the Evicted pod and redeploy the Kiali
operator.

KIALI-3118 After changes to the ServiceMeshMemberRoll, for example adding or removing
projects, the Kiali pod restarts and then displays errors on the Graph page while the Kiali pod is
restarting.

KIALI-3096 Runtime metrics fail in Service Mesh. There is an OAuth filter between the Service

OpenShift Container Platform 4.5 Service Mesh

20

https://issues.redhat.com/browse/TRACING-1208
https://issues.jboss.org/browse/OSSM-99
https://issues.jboss.org/browse/OSSM-93
https://issues.jboss.org/browse/OSSM-92
https://issues.jboss.org/browse/OSSM-90
https://issues.jboss.org/browse/MAISTRA-1001
https://issues.jboss.org/browse/MAISTRA-932
https://issues.jboss.org/browse/MAISTRA-862
https://issues.jboss.org/browse/MAISTRA-833
https://issues.jboss.org/browse/MAISTRA-684
https://issues.jboss.org/browse/MAISTRA-622
https://issues.jboss.org/browse/MAISTRA-572
https://issues.jboss.org/browse/TRACING-591
https://issues.jboss.org/browse/MAISTRA-357
https://issues.jboss.org/browse/MAISTRA-348
https://issues.jboss.org/browse/KIALI-3239
https://issues.jboss.org/browse/KIALI-3118
https://issues.jboss.org/browse/KIALI-3096

Mesh and Prometheus, requiring a bearer token to be passed to Prometheus before access is
granted. Kiali has been updated to use this token when communicating to the Prometheus
server, but the application metrics are currently failing with 403 errors.

KIALI-3070 This bug only affects custom dashboards, not the default dashboards. When you
select labels in metrics settings and refresh the page, your selections are retained in the menu
but your selections are not displayed on the charts.

KIALI-2686 When the control plane has many namespaces, it can lead to performance issues.

1.2. UNDERSTANDING RED HAT OPENSHIFT SERVICE MESH

Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over
your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can
connect, secure, and monitor microservices in your OpenShift Container Platform environment.

1.2.1. Understanding service mesh

A service mesh is the network of microservices that make up applications in a distributed microservice
architecture and the interactions between those microservices. When a Service Mesh grows in size and
complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on
existing distributed applications without requiring any changes to the service code. You add Red Hat
OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in
the mesh that intercepts all network communication between microservices. You configure and manage
the Service Mesh using the control plane features.

Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that
provide:

Discovery

Load balancing

Service-to-service authentication

Failure recovery

Metrics

Monitoring

Red Hat OpenShift Service Mesh also provides more complex operational functions including:

A/B testing

Canary releases

Rate limiting

Access control

End-to-end authentication

1.2.2. Red Hat OpenShift Service Mesh Architecture

CHAPTER 1. SERVICE MESH 1.X

21

https://issues.jboss.org/browse/KIALI-3070
https://github.com/kiali/kiali/issues/1603
https://istio.io/

Red Hat OpenShift Service Mesh is logically split into a data plane and a control plane:

The data plane is a set of intelligent proxies deployed as sidecars. These proxies intercept and control all
inbound and outbound network communication between microservices in the service mesh. Sidecar
proxies also communicate with Mixer, the general-purpose policy and telemetry hub.

Envoy proxy intercepts all inbound and outbound traffic for all services in the service mesh.
Envoy is deployed as a sidecar to the relevant service in the same pod.

The control plane manages and configures proxies to route traffic, and configures Mixers to enforce
policies and collect telemetry.

Mixer enforces access control and usage policies (such as authorization, rate limits, quotas,
authentication, and request tracing) and collects telemetry data from the Envoy proxy and
other services.

Pilot configures the proxies at runtime. Pilot provides service discovery for the Envoy sidecars,
traffic management capabilities for intelligent routing (for example, A/B tests or canary
deployments), and resiliency (timeouts, retries, and circuit breakers).

Citadel issues and rotates certificates. Citadel provides strong service-to-service and end-user
authentication with built-in identity and credential management. You can use Citadel to
upgrade unencrypted traffic in the service mesh. Operators can enforce policies based on
service identity rather than on network controls using Citadel.

Galley ingests the service mesh configuration, then validates, processes, and distributes the
configuration. Galley protects the other service mesh components from obtaining user
configuration details from OpenShift Container Platform.

Red Hat OpenShift Service Mesh also uses the istio-operator to manage the installation of the control
plane. An Operator is a piece of software that enables you to implement and automate common
activities in your OpenShift cluster. It acts as a controller, allowing you to set or change the desired state
of objects in your cluster.

1.2.3. Understanding Kiali

Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and
how they are connected.

1.2.3.1. Kiali overview

Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps
you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your
service mesh by inferring the topology, and also provides information about the health of your service
mesh.

Kiali provides an interactive graph view of your namespace in real time that provides visibility into
features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights
about components at different levels, from Applications to Services and Workloads, and can display the
interactions with contextual information and charts on the selected graph node or edge. Kiali also
provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual
services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is
available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali
console.

Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.

OpenShift Container Platform 4.5 Service Mesh

22

1.2.3.2. Kiali architecture

Kiali is composed of two components: the Kiali application and the Kiali console.

Kiali application (back end) – This component runs in the container application platform and
communicates with the service mesh components, retrieves and processes data, and exposes
this data to the console. The Kiali application does not need storage. When deploying the
application to a cluster, configurations are set in ConfigMaps and secrets.

Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the
Kiali console, which then queries the back end for data in order to present it to the user.

In addition, Kiali depends on external services and components provided by the container application
platform and Istio.

Red Hat Service Mesh (Istio) - Istio is a Kiali requirement. Istio is the component that provides
and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends
on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations,
which are exposed through Prometheus and the cluster API.

Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift
Service Mesh installation. When Istio telemetry is enabled, metrics data is stored in Prometheus.
Kiali uses this Prometheus data to determine the mesh topology, display metrics, calculate
health, show possible problems, and so on. Kiali communicates directly with Prometheus and
assumes the data schema used by Istio Telemetry. Prometheus is an Istio dependency and a
hard dependency for Kiali, and many of Kiali’s features will not work without Prometheus.

Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) in order to
fetch and resolve service mesh configurations. Kiali queries the cluster API to retrieve, for
example, definitions for namespaces, services, deployments, pods, and other entities. Kiali also
makes queries to resolve relationships between the different cluster entities. The cluster API is
also queried to retrieve Istio configurations like virtual services, destination rules, route rules,
gateways, quotas, and so on.

Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service
Mesh installation. When you install Jaeger as part of the default Red Hat OpenShift Service
Mesh installation, the Kiali console includes a tab to display Jaeger’s tracing data. Note that
tracing data will not be available if you disable Istio’s distributed tracing feature. Also note that
user must have access to the namespace where the control plane is installed in order to view
Jaeger data.

Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift
Service Mesh installation. When available, the metrics pages of Kiali display links to direct the
user to the same metric in Grafana. Note that user must have access to the namespace where
the control plane is installed in order to view links to the Grafana dashboard and view Grafana
data.

1.2.3.3. Kiali features

The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:

Health – Quickly identify issues with applications, services, or workloads.

Topology – Visualize how your applications, services, or workloads communicate via the Kiali
graph.

Metrics – Predefined metrics dashboards let you chart service mesh and application

CHAPTER 1. SERVICE MESH 1.X

23

Metrics – Predefined metrics dashboards let you chart service mesh and application
performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create
your own custom dashboards.

Tracing – Integration with Jaeger lets you follow the path of a request through various
microservices that make up an application.

Validations – Perform advanced validations on the most common Istio objects (Destination
Rules, Service Entries, Virtual Services, and so on).

Configuration – Optional ability to create, update and delete Istio routing configuration using
wizards or directly in the YAML editor in the Kiali Console.

1.2.4. Understanding Jaeger

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate in order to produce a response. The path of this
request is a distributed transaction. Jaeger lets you perform distributed tracing, which follows the path
of a request through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together—usually executed in different processes or hosts—in order to understand a whole chain of
events in a distributed transaction. Distributed tracing lets developers visualize call flows in large service
oriented architectures. It can be invaluable in understanding serialization, parallelism, and sources of
latency.

Jaeger records the execution of individual requests across the whole stack of microservices, and
presents them as traces. A trace is a data/execution path through the system. An end-to-end trace is
comprised of one or more spans.

A span represents a logical unit of work in Jaeger that has an operation name, the start time of the
operation, and the duration. Spans may be nested and ordered to model causal relationships.

1.2.4.1. Jaeger overview

As a service owner, you can use Jaeger to instrument your services to gather insights into your service
architecture. Jaeger is an open source distributed tracing platform that you can use for monitoring,
network profiling, and troubleshooting the interaction between components in modern, cloud-native,
microservices-based applications.

Using Jaeger lets you perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Jaeger is based on the vendor-neutral OpenTracing APIs and instrumentation.

1.2.4.2. Jaeger architecture

Jaeger is made up of several components that work together to collect, store, and display tracing data.

Jaeger Client (Tracer, Reporter, instrumented application, client libraries)- Jaeger clients are
language specific implementations of the OpenTracing API. They can be used to instrument

OpenShift Container Platform 4.5 Service Mesh

24

https://opentracing.io/

applications for distributed tracing either manually or with a variety of existing open source
frameworks, such as Camel (Fuse), Spring Boot (RHOAR), MicroProfile (RHOAR/Thorntail),
Wildfly (EAP), and many more, that are already integrated with OpenTracing.

Jaeger Agent (Server Queue, Processor Workers) - The Jaeger agent is a network daemon
that listens for spans sent over User Datagram Protocol (UDP), which it batches and sends to
the collector. The agent is meant to be placed on the same host as the instrumented
application. This is typically accomplished by having a sidecar in container environments like
Kubernetes.

Jaeger Collector (Queue, Workers) - Similar to the Agent, the Collector is able to receive
spans and place them in an internal queue for processing. This allows the collector to return
immediately to the client/agent instead of waiting for the span to make its way to the storage.

Storage (Data Store) - Collectors require a persistent storage backend. Jaeger has a pluggable
mechanism for span storage. Note that for this release, the only supported storage is
Elasticsearch.

Query (Query Service) - Query is a service that retrieves traces from storage.

Ingester (Ingester Service) - Jaeger can use Apache Kafka as a buffer between the collector
and the actual backing storage (Elasticsearch). Ingester is a service that reads data from Kafka
and writes to another storage backend (Elasticsearch).

Jaeger Console – Jaeger provides a user interface that lets you visualize your distributed
tracing data. On the Search page, you can find traces and explore details of the spans that
make up an individual trace.

1.2.4.3. Jaeger features

Jaeger tracing provides the following capabilities:

Integration with Kiali – When properly configured, you can view Jaeger data from the Kiali
console.

High scalability – The Jaeger backend is designed to have no single points of failure and to scale
with the business needs.

Distributed Context Propagation – Lets you connect data from different components together
to create a complete end-to-end trace.

Backwards compatibility with Zipkin – Jaeger has APIs that enable it to be used as a drop-in
replacement for Zipkin, but Red Hat is not supporting Zipkin compatibility in this release.

1.2.5. Next steps

Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform
environment.

1.3. SERVICE MESH AND ISTIO DIFFERENCES

An installation of Red Hat OpenShift Service Mesh differs from upstream Istio community installations in
multiple ways. The modifications to Red Hat OpenShift Service Mesh are sometimes necessary to
resolve issues, provide additional features, or to handle differences when deploying on OpenShift
Container Platform.

CHAPTER 1. SERVICE MESH 1.X

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#preparing-ossm-installation-v1x

The current release of Red Hat OpenShift Service Mesh differs from the current upstream Istio
community release in the following ways:

1.3.1. Red Hat OpenShift Service Mesh multitenant installation

Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports
multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a
multitenant operator to manage the control plane lifecycle.

Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects
that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.

1.3.1.1. Multitenancy versus cluster-wide installations

The main difference between a multitenant installation and a cluster-wide installation is the scope of
privileges used by the control plane deployments, for example, Galley and Pilot. The components no
longer use cluster-scoped Role Based Access Control (RBAC) resource ClusterRoleBinding.

Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service
account associated with the control plane deployment and each control plane deployment will only
watch those member projects. Each member project has a maistra.io/member-of label added to it,
where the member-of value is the project containing the control plane installation.

Red Hat OpenShift Service Mesh configures each member project to ensure network access between
itself, the control plane, and other member projects. The exact configuration differs depending on how
OpenShift software-defined networking (SDN) is configured. See About OpenShift SDN for additional
details.

If the OpenShift Container Platform cluster is configured to use the SDN plug-in:

NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each
member project allowing ingress to all pods from the other members and the control plane. If
you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the
project.

NOTE

This also restricts ingress to only member projects. If you require ingress from
non-member projects, you need to create a NetworkPolicy to allow that traffic
through.

Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member
project to the NetNamespace of the control plane project (the equivalent of running oc adm
pod-network join-projects --to control-plane-project member-project). If you remove a
member from the Service Mesh, its NetNamespace is isolated from the control plane (the
equivalent of running oc adm pod-network isolate-projects member-project).

Subnet: No additional configuration is performed.

1.3.1.2. Cluster scoped resources

Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the
ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as
described below.

ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication

OpenShift Container Platform 4.5 Service Mesh

26

ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication
policies. This must be created in the same project as the control plane.

ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide
role based access control. This must be created in the same project as the control plane.

1.3.2. Differences between Istio and Red Hat OpenShift Service Mesh

An installation of Red Hat OpenShift Service Mesh differs from an installation of Istio in multiple ways.
The modifications to Red Hat OpenShift Service Mesh are sometimes necessary to resolve issues,
provide additional features, or to handle differences when deploying on OpenShift.

1.3.2.1. Command line tool

The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service Mesh
does not support istioctl.

1.3.2.2. Automatic injection

The upstream Istio community installation automatically injects the sidecar into pods within the projects
you have labeled.

Red Hat OpenShift Service Mesh does not automatically inject the sidecar to any pods, but requires you
to opt in to injection using an annotation without labeling projects. This method requires fewer privileges
and does not conflict with other OpenShift capabilities such as builder pods. To enable automatic
injection you specify the sidecar.istio.io/inject annotation as described in the Automatic sidecar
injection section.

1.3.2.3. Istio Role Based Access Control features

Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a
service. You can identify subjects by user name or by specifying a set of properties and apply access
controls accordingly.

The upstream Istio community installation includes options to perform exact header matches, match
wildcards in headers, or check for a header containing a specific prefix or suffix.

Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular
expression. Specify a property key of request.regex.headers with a regular expression.

Upstream Istio community matching request headers example

Red Hat OpenShift Service Mesh matching request headers by using regular expressions

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: httpbin-client-binding
 namespace: httpbin
spec:
 subjects:
 - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
 properties:
 request.headers[<header>]: "value"

CHAPTER 1. SERVICE MESH 1.X

27

1.3.2.4. OpenSSL

Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that
contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the
OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.

1.3.2.5. Component modifications

A maistra-version label has been added to all resources.

All Ingress resources have been converted to OpenShift Route resources.

Grafana, Tracing (Jaeger), and Kiali are enabled by default and exposed through OpenShift
routes.

Godebug has been removed from all templates

The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-
reader ClusterRole.

1.3.2.6. Envoy, Secret Discovery Service, and certificates

Red Hat OpenShift Service Mesh does not support QUIC-based services.

Deployment of TLS certificates using the Secret Discovery Service (SDS) functionality of Istio is
not currently supported in Red Hat OpenShift Service Mesh. The Istio implementation depends
on a nodeagent container that uses hostPath mounts.

1.3.2.7. Istio Container Network Interface (CNI) plug-in

Red Hat OpenShift Service Mesh includes CNI plug-in, which provides you with an alternate way to
configure application pod networking. The CNI plug-in replaces the init-container network
configuration eliminating the need to grant service accounts and projects access to Security Context
Constraints (SCCs) with elevated privileges.

1.3.2.8. Routes for Istio Gateways

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. For more information see the "Automatic route creation" section.

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: httpbin-client-binding
 namespace: httpbin
spec:
 subjects:
 - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
 properties:
 request.regex.headers[<header>]: "<regular expression>"

OpenShift Container Platform 4.5 Service Mesh

28

1.3.2.8.1. Catch-all domains

Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift
Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means
that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form
<route-name>[-<project>].<suffix>. Refer to the OpenShift documentation for more information about
how default hostnames work and how a cluster administrator can customize it.

1.3.2.8.2. Subdomains

Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn’t come enabled by default
in OpenShift. This means that Red Hat OpenShift Service Mesh will create the route with the
subdomain, but it will only be in effect if OpenShift is configured to enable it.

1.3.2.8.3. Transport layer security

Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the
OpenShift Route will be configured to support TLS.

1.3.3. Kiali and service mesh

Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali
installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide
additional features, or to handle differences when deploying on OpenShift Container Platform.

Kiali has been enabled by default.

Ingress has been enabled by default.

Updates have been made to the Kiali ConfigMap.

Updates have been made to the ClusterRole settings for Kiali.

Users should not manually edit the ConfigMap or the Kiali custom resource files as those
changes might be overwritten by the Service Mesh or Kiali operators. All configuration for Kiali
running on Red Hat OpenShift Service Mesh is done in the ServiceMeshControlPlane custom
resource file and there are limited configuration options. Updating the operator files should be
restricted to those users with cluster-admin privileges.

1.3.4. Jaeger and service mesh

Installing Jaeger with the Service Mesh on OpenShift Container Platform differs from community
Jaeger installations in multiple ways. These modifications are sometimes necessary to resolve issues,
provide additional features, or to handle differences when deploying on OpenShift Container Platform.

Jaeger has been enabled by default for Service Mesh.

Ingress has been enabled by default for Service Mesh.

The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)

Jaeger uses Elasticsearch for storage by default.

The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service
Mesh uses a "jaeger" route that is installed by the Jaeger operator and is already protected by
OAuth.

CHAPTER 1. SERVICE MESH 1.X

29

Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a
sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be
confused with each other. The proxy sidecar creates spans related to the pod’s ingress and
egress traffic. The agent sidecar receives the spans emitted by the application and sends them
to the Jaeger Collector.

1.4. PREPARING TO INSTALL RED HAT OPENSHIFT SERVICE MESH

Before you can install Red Hat OpenShift Service Mesh, review the installation activities, ensure that
you meet the prerequisites:

1.4.1. Prerequisites

Possess an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.5 overview .

Install OpenShift Container Platform 4.5.

Install OpenShift Container Platform 4.5 on AWS

Install OpenShift Container Platform 4.5 on user-provisioned AWS

Install OpenShift Container Platform 4.5 on bare metal

Install OpenShift Container Platform 4.5 on vSphere

NOTE

If you are installing Red Hat OpenShift Service Mesh on a restricted network ,
follow the instructions for your chosen OpenShift Container Platform
infrastructure.

Install the version of the OpenShift Container Platform command line utility (the oc client tool)
that matches your OpenShift Container Platform version and add it to your path.

If you are using OpenShift Container Platform 4.5, see About the CLI.

1.4.2. Red Hat OpenShift Service Mesh supported configurations

The following are the only supported configurations for the Red Hat OpenShift Service Mesh:

Red Hat OpenShift Container Platform version 4.x.

NOTE

OpenShift Online and OpenShift Dedicated are not supported for Red Hat OpenShift
Service Mesh.

The deployment must be contained to a single OpenShift Container Platform cluster that is not
federated.

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container

OpenShift Container Platform 4.5 Service Mesh

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#supported-installation-methods-for-different-platforms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#cli-about-cli_cli-developer-commands

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64.

This release only supports configurations where all Service Mesh components are contained in
the OpenShift cluster in which it operates. It does not support management of microservices
that reside outside of the cluster, or in a multi-cluster scenario.

This release only supports configurations that do not integrate external services such as virtual
machines.

1.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh

The Kiali observability console is only supported on the two most recent releases of the Chrome,
Edge, Firefox, or Safari browsers.

1.4.2.2. Supported Mixer adapters

This release only supports the following Mixer adapter:

3scale Istio Adapter

1.4.3. Red Hat OpenShift Service Mesh installation activities

To install the Red Hat OpenShift Service Mesh Operator, you must first install these Operators:

Elasticsearch - Based on the open source Elasticsearch project that enables you to configure
and manage an Elasticsearch cluster for tracing and logging with Jaeger.

Jaeger - based on the open source Jaeger project, lets you perform tracing to monitor and
troubleshoot transactions in complex distributed systems.

Kiali - based on the open source Kiali project, provides observability for your service mesh. By
using Kiali you can view configurations, monitor traffic, and view and analyze traces in a single
console.

After you install the Elasticsearch, Jaeger, and Kiali Operators, then you install the Red Hat OpenShift
Service Mesh Operator. The Service Mesh Operator defines and monitors the
ServiceMeshControlPlane resources that manage the deployment, updating, and deletion of the
Service Mesh components.

Red Hat OpenShift Service Mesh - based on the open source Istio project, lets you connect,
secure, control, and observe the microservices that make up your applications.

WARNING

Please see Configuring the log store for details on configuring the default Jaeger
parameters for Elasticsearch in a production environment.

1.4.4. Next steps

Install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.

CHAPTER 1. SERVICE MESH 1.X

31

https://www.elastic.co/
https://www.jaegertracing.io/
https://www.kiali.io/
https://istio.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/#configuring-the-log-store
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#installing-ossm-v1x

1.5. INSTALLING RED HAT OPENSHIFT SERVICE MESH

Installing the Service Mesh involves installing the Elasticsearch, Jaeger, Kiali and Service Mesh
Operators, creating and managing a ServiceMeshControlPlane resource to deploy the control plane,
and creating a ServiceMeshMemberRoll resource to specify the namespaces associated with the
Service Mesh.

NOTE

Mixer’s policy enforcement is disabled by default. You must enable it to run policy tasks.
See Update Mixer policy enforcement for instructions on enabling Mixer policy
enforcement.

NOTE

Multi-tenant control plane installations are the default configuration starting with Red
Hat OpenShift Service Mesh 1.0.

NOTE

The Service Mesh documentation uses istio-system as the example project, but you may
deploy the service mesh to any project.

1.5.1. Prerequisites

Follow the Preparing to install Red Hat OpenShift Service Mesh process.

An account with the cluster-admin role.

The Service Mesh installation process uses the OperatorHub to install the ServiceMeshControlPlane
custom resource definition within the openshift-operators project. The Red Hat OpenShift Service
Mesh defines and monitors the ServiceMeshControlPlane related to the deployment, update, and
deletion of the control plane.

Starting with Red Hat OpenShift Service Mesh 1.1.16, you must install the Elasticsearch Operator, the
Jaeger Operator, and the Kiali Operator before the Red Hat OpenShift Service Mesh Operator can
install the control plane.

1.5.2. Installing the Elasticsearch Operator

The default Jaeger deployment uses in-memory storage because it is designed to be installed quickly
for those evaluating Jaeger, giving demonstrations, or using Jaeger in a test environment. If you plan to
use Jaeger in production, you must install a persistent storage option, in this case, Elasticsearch.

Prerequisites

Access to the OpenShift Container Platform web console.

An account with the cluster-admin role.

OpenShift Container Platform 4.5 Service Mesh

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-mixer-policy-1x_deploying-applications-ossm-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#preparing-ossm-installation-v1x
https://operatorhub.io/

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

NOTE

If you have already installed the Elasticsearch Operator as part of OpenShift cluster
logging, you do not need to install the Elasticsearch Operator again. The Jaeger Operator
will create the Elasticsearch instance using the installed Elasticsearch Operator.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → OperatorHub.

3. Type Elasticsearch into the filter box to locate the Elasticsearch Operator.

4. Click the Elasticsearch Operator provided by Red Hat to display information about the
Operator.

5. Click Install.

6. On the Install Operator page, select the A specific namespace on the cluster option and then
select openshift-operators-redhat from the menu.

NOTE

The Elasticsearch installation guide says you must specify the openshift-
operators-redhat namespace for the Elasticsearch operator for Red Hat
OpenShift Service Mesh.

7. Select the Update Channel that matches your OpenShift Container Platform installation. For
example, if you are installing on OpenShift Container Platform version 4.6, select the 4.6 update
channel.

8. Select the Automatic Approval Strategy.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

9. Click Install.

10. On the Installed Operators page, select the openshift-operators-redhat project. Wait until
you see that the Elasticsearch Operator shows a status of "InstallSucceeded" before continuing.

1.5.3. Installing the Jaeger Operator

CHAPTER 1. SERVICE MESH 1.X

33

To install Jaeger you use the OperatorHub to install the Jaeger Operator.

By default the Operator is installed in the openshift-operators project.

Prerequisites

Access to the OpenShift Container Platform web console.

An account with the cluster-admin role.

If you require persistent storage, you must also install the Elasticsearch Operator before
installing the Jaeger Operator.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → OperatorHub.

3. Type Jaeger into the filter to locate the Jaeger Operator.

4. Click the Jaeger Operator provided by Red Hat to display information about the Operator.

5. Click Install.

6. On the Install Operator page, select All namespaces on the cluster (default). This installs the
Operator in the default openshift-operators project and makes the Operator available to all
projects in the cluster.

7. Select the stable Update Channel. This will automatically update Jaeger as new versions are
released. If you select a maintenance channel, for example, 1.17-stable, you will receive bug fixes
and security patches for the length of the support cycle for that version.

Select an Approval Strategy. You can select Automatic or Manual updates. If you choose
Automatic updates for an installed Operator, when a new version of that Operator is
available, the Operator Lifecycle Manager (OLM) automatically upgrades the running
instance of your Operator without human intervention. If you select Manual updates, when a
newer version of an Operator is available, the OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to have the Operator
updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

OpenShift Container Platform 4.5 Service Mesh

34

https://operatorhub.io/

8. Click Install.

9. On the Subscription Overview page, select the openshift-operators project. Wait until you
see that the Jaeger Operator shows a status of "InstallSucceeded" before continuing.

1.5.4. Installing the Kiali Operator

You must install the Kiali Operator for the Red Hat OpenShift Service Mesh Operator to install the
control plane.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Type Kiali into the filter box to find the Kiali Operator.

4. Click the Kiali Operator provided by Red Hat to display information about the Operator.

5. Click Install.

6. On the Install Operator page, select All namespaces on the cluster (default). This installs the
Operator in the default openshift-operators project and makes the Operator available to all
projects in the cluster.

7. Select the stable Update Channel.

8. Select the Automatic Approval Strategy.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

9. Click Install.

10. The Installed Operators page displays the Kiali Operator’s installation progress.

1.5.5. Installing the Red Hat OpenShift Service Mesh Operator

CHAPTER 1. SERVICE MESH 1.X

35

Prerequisites

Access to the OpenShift Container Platform web console.

The Elasticsearch Operator must be installed.

The Jaeger Operator must be installed.

The Kiali Operator must be installed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Type Red Hat OpenShift Service Mesh into the filter box to find the Red Hat OpenShift
Service Mesh Operator.

4. Click the Red Hat OpenShift Service Mesh Operator to display information about the Operator.

5. On the Install Operator page, select All namespaces on the cluster (default). This installs the
Operator in the default openshift-operators project and makes the Operator available to all
projects in the cluster.

6. Click Install.

7. Select the stable Update Channel.

8. Select the Automatic Approval Strategy.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

9. Click Install.

10. The Installed Operators page displays the Red Hat OpenShift Service Mesh Operator’s
installation progress.

1.5.6. Deploying the Red Hat OpenShift Service Mesh control plane

The ServiceMeshControlPlane resource defines the configuration to be used during installation. You
can deploy the default configuration provided by Red Hat or customize the ServiceMeshControlPlane
file to fit your business needs.

You can deploy the Service Mesh control plane by using the OpenShift Container Platform web console
or from the command line using the oc client tool.

1.5.6.1. Deploying the control plane from the web console

Follow this procedure to deploy the Red Hat OpenShift Service Mesh control plane by using the web
console.

OpenShift Container Platform 4.5 Service Mesh

36

Prerequisites

The Red Hat OpenShift Service Mesh Operator must be installed.

Review the instructions for how to customize the Red Hat OpenShift Service Mesh installation.

An account with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a project named istio-system.

a. Navigate to Home → Projects.

b. Click Create Project.

c. Enter istio-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select istio-system from the Project menu. You may have to wait a few moments
for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift Service Mesh Operator. Under Provided APIs, the Operator
provides links to create two resource types:

A ServiceMeshControlPlane resource

A ServiceMeshMemberRoll resource

6. Under Istio Service Mesh Control Plane click Create ServiceMeshControlPlane.

7. On the Create Service Mesh Control Plane page, modify the YAML for the default
ServiceMeshControlPlane template as needed.

NOTE

For additional information about customizing the control plane, see customizing
the Red Hat OpenShift Service Mesh installation. For production, you must
change the default Jaeger template.

8. Click Create to create the control plane. The Operator creates Pods, services, and Service
Mesh control plane components based on your configuration parameters.

9. Click the Istio Service Mesh Control Plane tab.

10. Click the name of the new control plane.

11. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane resources
the Operator created and configured.

1.5.6.2. Deploying the control plane from the CLI

CHAPTER 1. SERVICE MESH 1.X

37

Follow this procedure to deploy the Red Hat OpenShift Service Mesh control plane the command line.

Prerequisites

The Red Hat OpenShift Service Mesh Operator must be installed.

Review the instructions for how to customize the Red Hat OpenShift Service Mesh installation.

An account with the cluster-admin role.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

2. Create a project named istio-system.

3. Create a ServiceMeshControlPlane file named istio-installation.yaml using the example
found in "Customize the Red Hat OpenShift Service Mesh installation". You can customize the
values as needed to match your use case. For production deployments you must change the
default Jaeger template.

4. Run the following command to deploy the control plane:

5. Execute the following command to see the status of the control plane installation.

The installation has finished successfully when the READY column is true.

NAME READY
basic-install True

6. Run the following command to watch the progress of the Pods during the installation process:

$ oc get pods -n istio-system -w

You should see output similar to the following:

Example output

$ oc login https://{HOSTNAME}:6443

$ oc new-project istio-system

$ oc create -n istio-system -f istio-installation.yaml

$ oc get smcp -n istio-system

NAME READY STATUS RESTARTS AGE
grafana-7bf5764d9d-2b2f6 2/2 Running 0 28h
istio-citadel-576b9c5bbd-z84z4 1/1 Running 0 28h
istio-egressgateway-5476bc4656-r4zdv 1/1 Running 0 28h
istio-galley-7d57b47bb7-lqdxv 1/1 Running 0 28h

OpenShift Container Platform 4.5 Service Mesh

38

For a multitenant installation, Red Hat OpenShift Service Mesh supports multiple independent control
planes within the cluster. You can create reusable configurations with ServiceMeshControlPlane
templates. For more information, see Creating control plane templates .

1.5.7. Creating the Red Hat OpenShift Service Mesh member roll

The ServiceMeshMemberRoll lists the projects belonging to the control plane. Only projects listed in
the ServiceMeshMemberRoll are affected by the control plane. A project does not belong to a service
mesh until you add it to the member roll for a particular control plane deployment.

You must create a ServiceMeshMemberRoll resource named default in the same project as the
ServiceMeshControlPlane.

NOTE

The member projects are only updated if the Service Mesh control plane installation
succeeds.

1.5.7.1. Creating the member roll from the web console

Follow this procedure to add one or more projects to the Service Mesh member roll by using the web
console.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

Location of the installed ServiceMeshControlPlane.

List of existing projects to add to the service mesh.

Procedure

1. If you don’t already have projects for your mesh, or you are starting from scratch, create a
project. It must be different from istio-system.

a. Navigate to Home → Projects.

b. Enter a name in the Name field.

c. Click Create.

2. Log in to the OpenShift Container Platform web console.

3. Navigate to Operators → Installed Operators.

4. Click the Project menu and choose the project where your ServiceMeshControlPlane is

istio-ingressgateway-dbb8f7f46-ct6n5 1/1 Running 0 28h
istio-pilot-546bf69578-ccg5x 2/2 Running 0 28h
istio-policy-77fd498655-7pvjw 2/2 Running 0 28h
istio-sidecar-injector-df45bd899-ctxdt 1/1 Running 0 28h
istio-telemetry-66f697d6d5-cj28l 2/2 Running 0 28h
jaeger-896945cbc-7lqrr 2/2 Running 0 11h
kiali-78d9c5b87c-snjzh 1/1 Running 0 22h
prometheus-6dff867c97-gr2n5 2/2 Running 0 28h

CHAPTER 1. SERVICE MESH 1.X

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-control-plane-templates_deploying-applications-ossm-v1x

4. Click the Project menu and choose the project where your ServiceMeshControlPlane is
deployed from the list, for example istio-system.

5. Click the Red Hat OpenShift Service Mesh Operator.

6. Click the All Instances tab.

7. Click Create New, and then select Create Istio Service Mesh Member Roll.

NOTE

It can take a short time for the Operator to finish copying the resources,
therefore you may need to refresh the screen to see the Create Istio Service
Mesh Member Roll button.

8. On the Create Service Mesh Member Roll page, modify the YAML to add your projects as
members. You can add any number of projects, but a project can only belong to one
ServiceMeshMemberRoll resource.

9. Click Create to save the Service Mesh Member Roll.

1.5.7.2. Creating the member roll from the CLI

Follow this procedure to add a project to the ServiceMeshMemberRoll from the command line.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

Location of the installed ServiceMeshControlPlane.

List of projects to add to the service mesh.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Create a ServiceMeshMemberRoll resource in the same project as the
ServiceMeshControlPlane resource, in our example that is istio-system. The resource must
be named default.

Example servicemeshmemberroll-default.yaml

$ oc login

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system

OpenShift Container Platform 4.5 Service Mesh

40

3. Modify the default YAML to add your projects as members. You can add any number of
projects, but a project can only belong to one ServiceMeshMemberRoll resource.

1.5.7.3. Creating the Red Hat OpenShift Service Mesh members

ServiceMeshMember resources can be created by service mesh users who don’t have privileges to add
members to the ServiceMeshMemberRoll directly. While project administrators are automatically given
permission to create the ServiceMeshMember resource in their project, they cannot point it to any
ServiceMeshControlPlane until the service mesh administrator explicitly grants access to the service
mesh. Administrators can grant users permissions to access the mesh by granting them the mesh-user
user role, for example:

$ oc policy add-role-to-user -n <control-plane-namespace> --role-namespace <control-plane-
namespace> mesh-user <user-name>.

Administrators can modify the mesh user role binding in the control plane project to specify the users
and groups that are granted access. The ServiceMeshMember adds the project to the
ServiceMeshMemberRoll within the control plane project it references.

The mesh-users role binding is created automatically after the administrator creates the
ServiceMeshControlPlane resource. An administrator can use the following command to add a role to a
user.

$ oc policy add-role-to-user

The administrator can also create the mesh-user role binding before the administrator creates the
ServiceMeshControlPlane resource. For example, the administrator can create it in the same oc apply
operation as the ServiceMeshControlPlane resource.

This example adds a role binding for alice:

spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
 name: default
spec:
 controlPlaneRef:
 namespace: control-plane-namespace
 name: minimal-install

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 namespace: control-plane-namespace
 name: mesh-users
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role

CHAPTER 1. SERVICE MESH 1.X

41

1.5.8. Adding or removing projects from the service mesh

Follow this procedure to modify an existing Service Mesh ServiceMeshMemberRoll resource using the
web console.

You can add any number of projects, but a project can only belong to one
ServiceMeshMemberRoll resource.

The ServiceMeshMemberRoll resource is deleted when its corresponding
ServiceMeshControlPlane resource is deleted.

1.5.8.1. Modifying the member roll from the web console

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.

Name of the project with the ServiceMeshMemberRoll resource.

Names of the projects you want to add or remove from the mesh.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Click the Project menu and choose the project where your ServiceMeshControlPlane is
deployed from the list, for example istio-system.

4. Click the Red Hat OpenShift Service Mesh Operator.

5. Click the Istio Service Mesh Member Roll tab.

6. Click the default link.

7. Click the YAML tab.

8. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

9. Click Save.

10. Click Reload.

1.5.8.2. Modifying the member roll from the CLI

 name: mesh-user
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: alice

OpenShift Container Platform 4.5 Service Mesh

42

Follow this procedure to modify an existing Service Mesh member roll using the command line.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.

Name of the project with the ServiceMeshMemberRoll resource.

Names of the projects you want to add or remove from the mesh.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Edit the ServiceMeshMemberRoll resource.

3. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

Example servicemeshmemberroll-default.yaml

1.5.9. Manual updates

If you choose to update manually, the Operator Lifecycle Manager (OLM) controls the installation,
upgrade, and role-based access control (RBAC) of Operators in a cluster. OLM runs by default in
OpenShift Container Platform. OLM uses CatalogSources, which use the Operator Registry API, to
query for available Operators as well as upgrades for installed Operators.

For more information about how OpenShift Container Platform handled upgrades, refer to the
Operator Lifecycle Manager documentation.

1.5.9.1. Updating your application pods

If you selected the Automatic Approval Strategy when you were installing your Operators, then the
Operators update the control plane automatically, but not your applications. Existing applications
continue to be part of the mesh and function accordingly. The application administrator must restart
applications to upgrade the sidecar.

If your deployment uses Automatic sidecar injection, you can update the pod template in the

$ oc edit smmr -n <controlplane-namespace>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

CHAPTER 1. SERVICE MESH 1.X

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#olm-overview_olm-understanding-olm

If your deployment uses Automatic sidecar injection, you can update the pod template in the
deployment by adding or modifying an annotation. Run the following command to redeploy the pods:

If your deployment does not use automatic sidecar injection, you must manually update the sidecars by
modifying the sidecar container image specified in the deployment or pod.

1.5.10. Next steps

Customize the Red Hat OpenShift Service Mesh installation .

Prepare to deploy applications on Red Hat OpenShift Service Mesh.

1.6. CUSTOMIZING THE RED HAT OPENSHIFT SERVICE MESH
INSTALLATION

You can customize your Red Hat OpenShift Service Mesh by modifying the default Service Mesh
custom resource or by creating a new custom resource.

1.6.1. Prerequisites

An account with the cluster-admin role.

Completed the Preparing to install Red Hat OpenShift Service Mesh process.

Have installed the operators.

1.6.2. Red Hat OpenShift Service Mesh custom resources

NOTE

The istio-system project is used as an example throughout the Service Mesh
documentation, but you can use other projects as necessary.

A custom resource allows you to extend the API in an Red Hat OpenShift Service Mesh project or
cluster. When you deploy Service Mesh it creates a default ServiceMeshControlPlane that you can
modify to change the project parameters.

The Service Mesh operator extends the API by adding the ServiceMeshControlPlane resource type,
which enables you to create ServiceMeshControlPlane objects within projects. By creating a
ServiceMeshControlPlane object, you instruct the Operator to install a Service Mesh control plane into
the project, configured with the parameters you set in the ServiceMeshControlPlane object.

This example ServiceMeshControlPlane definition contains all of the supported parameters and
deploys Red Hat OpenShift Service Mesh 1.1.16 images based on Red Hat Enterprise Linux (RHEL).

IMPORTANT

The 3scale Istio Adapter is deployed and configured in the custom resource file. It also
requires a working 3scale account (SaaS or On-Premises).

$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

OpenShift Container Platform 4.5 Service Mesh

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#customize-installation-ossm-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#deploying-applications-ossm-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#preparing-ossm-installation-v1x
https://www.3scale.net/signup/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html/infrastructure/onpremises-installation

Example istio-installation.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
 name: basic-install
spec:

 istio:
 global:
 proxy:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi

 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 istio-ingressgateway:
 autoscaleEnabled: false
 ior_enabled: false

 mixer:
 policy:
 autoscaleEnabled: false

 telemetry:
 autoscaleEnabled: false
 resources:
 requests:
 cpu: 100m
 memory: 1G
 limits:
 cpu: 500m
 memory: 4G

 pilot:
 autoscaleEnabled: false
 traceSampling: 100

 kiali:
 enabled: true

 grafana:
 enabled: true

 tracing:
 enabled: true
 jaeger:
 template: all-in-one

CHAPTER 1. SERVICE MESH 1.X

45

1.6.3. ServiceMeshControlPlane parameters

The following examples illustrate use of the ServiceMeshControlPlane parameters and the tables
provide additional information about supported parameters.

IMPORTANT

The resources you configure for Red Hat OpenShift Service Mesh with these parameters,
including CPUs, memory, and the number of pods, are based on the configuration of your
OpenShift cluster. Configure these parameters based on the available resources in your
current cluster configuration.

1.6.3.1. Istio global example

Here is an example that illustrates the Istio global parameters for the ServiceMeshControlPlane and a
description of the available parameters with appropriate values.

NOTE

In order for the 3scale Istio Adapter to work, disablePolicyChecks must be false.

Example global parameters

Table 1.3. Global parameters

Parameter Description Values Default value

disablePolicyChecks This parameter
enables/disables policy
checks.

true/false true

 istio:
 global:
 tag: 1.1.0
 hub: registry.redhat.io/openshift-service-mesh/
 proxy:
 resources:
 requests:
 cpu: 10m
 memory: 128Mi
 limits:
 mtls:
 enabled: false
 disablePolicyChecks: true
 policyCheckFailOpen: false
 imagePullSecrets:
 - MyPullSecret

OpenShift Container Platform 4.5 Service Mesh

46

policyCheckFailOpe
n

This parameter indicates
whether traffic is
allowed to pass through
to the Envoy sidecar
when the Mixer policy
service cannot be
reached.

true/false false

tag The tag that the
Operator uses to pull the
Istio images.

A valid container image
tag.

1.1.0

hub The hub that the
Operator uses to pull
Istio images.

A valid image repository. maistra/ or
registry.redhat.io/op
enshift-service-
mesh/

mtls This parameter controls
whether to
enable/disable Mutual
Transport Layer
Security (mTLS)
between services by
default.

true/false false

imagePullSecrets If access to the registry
providing the Istio
images is secure, list an
imagePullSecret here.

redhat-registry-
pullsecret OR quay-
pullsecret

None

Parameter Description Values Default value

These parameters are specific to the proxy subset of global parameters.

Table 1.4. Proxy parameters

Type Parameter Description Values Default value

Requests cpu The amount of
CPU resources
requested for
Envoy proxy.

CPU resources,
specified in cores
or millicores (for
example, 200m,
0.5, 1) based on
your
environment’s
configuration.

10m

CHAPTER 1. SERVICE MESH 1.X

47

https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

 memory The amount of
memory requested
for Envoy proxy

Available memory
in bytes(for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

128Mi

Limits cpu The maximum
amount of CPU
resources
requested for
Envoy proxy.

CPU resources,
specified in cores
or millicores (for
example, 200m,
0.5, 1) based on
your
environment’s
configuration.

2000m

 memory The maximum
amount of memory
Envoy proxy is
permitted to use.

Available memory
in bytes (for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

1024Mi

Type Parameter Description Values Default value

1.6.3.2. Istio gateway configuration

Here is an example that illustrates the Istio gateway parameters for the ServiceMeshControlPlane and
a description of the available parameters with appropriate values.

Example gateway parameters

Table 1.5. Istio Gateway parameters

Type Parameter Description Values Default value

 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 istio-ingressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 ior_enabled: true

OpenShift Container Platform 4.5 Service Mesh

48

istio-
egressgateway

autoscaleEnabl
ed

This parameter
enables/disables
autoscaling.

true/false true

 autoscaleMin The minimum
number of pods to
deploy for the
egress gateway
based on the
autoscaleEnabl
ed setting.

A valid number of
allocatable pods
based on your
environment’s
configuration.

1

 autoscaleMax The maximum
number of pods to
deploy for the
egress gateway
based on the
autoscaleEnabl
ed setting.

A valid number of
allocatable pods
based on your
environment’s
configuration.

5

istio-
ingressgateway

autoscaleEnabl
ed

This parameter
enables/disables
autoscaling.

true/false true

 autoscaleMin The minimum
number of pods to
deploy for the
ingress gateway
based on the
autoscaleEnabl
ed setting.

A valid number of
allocatable pods
based on your
environment’s
configuration.

1

 autoscaleMax The maximum
number of pods to
deploy for the
ingress gateway
based on the
autoscaleEnabl
ed setting.

A valid number of
allocatable pods
based on your
environment’s
configuration.

5

 ior_enabled Controls whether
Automatic Route
Creation is
enabled.

true/false false

Type Parameter Description Values Default value

1.6.3.3. Automatic route creation

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

CHAPTER 1. SERVICE MESH 1.X

49

1.6.3.3.1. Enabling Automatic Route Creation

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. Enable IOR as part of the control plane deployment.

If the Gateway contains a TLS section, the OpenShift Route will be configured to support TLS.

1. In the ServiceMeshControlPlane resource, add the ior_enabled parameter and set it to true.
For example, see the following resource snippet:

1.6.3.3.2. Subdomains

Red Hat OpenShift Service Mesh creates the route with the subdomain, but OpenShift Container
Platform must be configured to enable it. Subdomains, for example *.domain.com, are supported but
not by default.

If the following gateway is created:

Then, the following OpenShift Routes are created automatically. You can check that the routes are
created with the following command.

Expected output

spec:
 istio:
 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 istio-ingressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 ior_enabled: true

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: gateway1
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - www.bookinfo.com
 - bookinfo.example.com

$ oc -n <your-control-plane-namespace> get routes

OpenShift Container Platform 4.5 Service Mesh

50

If the gateway is deleted, Red Hat OpenShift Service Mesh deletes the routes. However, routes created
manually are never modified by Red Hat OpenShift Service Mesh.

Cluster administrators can refer to Using wildcard routes for instructions on how to enable subdomains.

1.6.3.4. Istio Mixer configuration

Here is an example that illustrates the Mixer parameters for the ServiceMeshControlPlane and a
description of the available parameters with appropriate values.

Example mixer parameters

Table 1.6. Istio Mixer policy parameters

Parameter Description Values Default value

enabled This parameter
enables/disables Mixer.

true/false true

autoscaleEnabled This parameter
enables/disables
autoscaling. Disable this
for small environments.

true/false true

autoscaleMin The minimum number of
pods to deploy based on
the autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

1

autoscaleMax The maximum number
of pods to deploy based
on the
autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

5

Table 1.7. Istio Mixer telemetry parameters

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-lvlfn bookinfo.example.com istio-ingressgateway <all> None
gateway1-scqhv www.bookinfo.com istio-ingressgateway <all> None

mixer:
 enabled: true
 policy:
 autoscaleEnabled: false
 telemetry:
 autoscaleEnabled: false
 resources:
 requests:
 cpu: 10m
 memory: 128Mi
 limits:

CHAPTER 1. SERVICE MESH 1.X

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/networking/#using-wildcard-routes_configuring-ingress

Type Parameter Description Values Default

Requests cpu The percentage of
CPU resources
requested for
Mixer telemetry.

CPU resources in
millicores based
on your
environment’s
configuration.

10m

 memory The amount of
memory requested
for Mixer
telemetry.

Available memory
in bytes (for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

128Mi

Limits cpu The maximum
percentage of
CPU resources
Mixer telemetry is
permitted to use.

CPU resources in
millicores based
on your
environment’s
configuration.

4800m

 memory The maximum
amount of memory
Mixer telemetry is
permitted to use.

Available memory
in bytes (for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

4G

1.6.3.5. Istio Pilot configuration

Here is an example that illustrates the Istio Pilot parameters for the ServiceMeshControlPlane and a
description of the available parameters with appropriate values.

Example pilot parameters

Table 1.8. Istio Pilot parameters

Parameter Description Values Default value

 pilot:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 autoscaleEnabled: false
 traceSampling: 100

OpenShift Container Platform 4.5 Service Mesh

52

cpu The percentage of CPU
resources requested for
Pilot.

CPU resources in
millicores based on your
environment’s
configuration.

10m

memory The amount of memory
requested for Pilot.

Available memory in
bytes (for example,
200Ki, 50Mi, 5Gi) based
on your environment’s
configuration.

128Mi

autoscaleEnabled This parameter
enables/disables
autoscaling. Disable this
for small environments.

true/false true

traceSampling This value controls how
often random sampling
occurs. Note: Increase
for development or
testing.

A valid percentage. 1.0

Parameter Description Values Default value

1.6.4. Configuring Kiali

When the Service Mesh Operator creates the ServiceMeshControlPlane it also processes the Kiali
resource. The Kiali Operator then uses this object when creating Kiali instances.

The default Kiali parameters specified in the ServiceMeshControlPlane are as follows:

Example Kiali parameters

Table 1.9. Kiali parameters

Parameter Description Values Default value

enabled
This parameter
enables/disables Kiali.
Kiali is enabled by
default.

true/false true

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 ingress:
 enabled: true

CHAPTER 1. SERVICE MESH 1.X

53

dashboard
 viewOnlyMode

This parameter
enables/disables view-
only mode for the Kiali
console. When view-
only mode is enabled,
users cannot use the
console to make
changes to the Service
Mesh.

true/false false

ingress
 enabled

This parameter
enables/disables ingress
for Kiali.

true/false true

Parameter Description Values Default value

1.6.4.1. Configuring Kiali for Grafana

When you install Kiali and Grafana as part of Red Hat OpenShift Service Mesh the Operator configures
the following by default:

Grafana is enabled as an external service for Kiali

Grafana authorization for the Kiali console

Grafana URL for the Kiali console

Kiali can automatically detect the Grafana URL. However if you have a custom Grafana installation that
is not easily auto-detectable by Kiali, you must update the URL value in the ServiceMeshControlPlane
resource.

Additional Grafana parameters

1.6.4.2. Configuring Kiali for Jaeger

When you install Kiali and Jaeger as part of Red Hat OpenShift Service Mesh the Operator configures
the following by default:

Jaeger is enabled as an external service for Kiali

Jaeger authorization for the Kiali console

Jaeger URL for the Kiali console

spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 grafanaURL: "https://grafana-istio-system.127.0.0.1.nip.io"
 ingress:
 enabled: true

OpenShift Container Platform 4.5 Service Mesh

54

Kiali can automatically detect the Jaeger URL. However if you have a custom Jaeger installation that is
not easily auto-detectable by Kiali, you must update the URL value in the ServiceMeshControlPlane
resource.

Additional Jaeger parameters

1.6.5. Configuring Jaeger

When the Service Mesh Operator creates the ServiceMeshControlPlane resource it also creates the
Jaeger resource. The Jaeger Operator then uses this object when creating Jaeger instances.

The default Jaeger parameters specified in the ServiceMeshControlPlane are as follows:

Default all-in-one Jaeger parameters

Table 1.10. Jaeger parameters

Parameter Description Values Default value

tracing
 enabled

This parameter
enables/disables tracing
in Service Mesh. Jaeger
is installed by default.

true/false true

spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 jaegerURL: "http://jaeger-query-istio-system.127.0.0.1.nip.io"
 ingress:
 enabled: true

 apiVersion: maistra.io/v1
 kind: ServiceMeshControlPlane
 spec:
 istio:
 tracing:
 enabled: true
 jaeger:
 template: all-in-one

CHAPTER 1. SERVICE MESH 1.X

55

jaeger
 template

This parameter specifies
which Jaeger
deployment strategy to
use.

all-in-one-
For
development,
testing,
demonstrations
, and proof of
concept.

production-
elasticsearch
- For
production use.

all-in-one

Parameter Description Values Default value

NOTE

The default template in the ServiceMeshControlPlane resource is the all-in-one
deployment strategy which uses in-memory storage. For production, the only supported
storage option is Elasticsearch, therefore you must configure the
ServiceMeshControlPlane to request the production-elasticsearch template when you
deploy Service Mesh within a production environment.

1.6.5.1. Configuring Elasticsearch

The default Jaeger deployment strategy uses the all-in-one template so that the installation can be
completed using minimal resources. However, because the all-in-one template uses in-memory storage,
it is only recommended for development, demo, or testing purposes and should NOT be used for
production environments.

If you are deploying Service Mesh and Jaeger in a production environment you must change the
template to the production-elasticsearch template, which uses Elasticsearch for Jaeger’s storage
needs.

Elasticsearch is a memory intensive application. The initial set of nodes specified in the default
OpenShift Container Platform installation may not be large enough to support the Elasticsearch cluster.
You should modify the default Elasticsearch configuration to match your use case and the resources
you have requested for your OpenShift Container Platform installation. You can adjust both the CPU
and memory limits for each component by modifying the resources block with valid CPU and memory
values. Additional nodes must be added to the cluster if you want to run with the recommended amount
(or more) of memory. Ensure that you do not exceed the resources requested for your OpenShift
Container Platform installation.

Default "production" Jaeger parameters with Elasticsearch

 apiVersion: maistra.io/v1
 kind: ServiceMeshControlPlane
 spec:
 istio:
 tracing:
 enabled: true
 ingress:
 enabled: true
 jaeger:

OpenShift Container Platform 4.5 Service Mesh

56

Table 1.11. Elasticsearch parameters

Parameter Description Values Default Value Examples

tracing:
 enabled

This parameter
enables/disables
tracing in Service
Mesh. Jaeger is
installed by
default.

true/false true

ingress:
 enabled

This parameter
enables/disables
ingress for Jaeger.

true/false true

jaeger
 template

This parameter
specifies which
Jaeger
deployment
strategy to use.

all-in-
one/production
-elasticsearch

all-in-one

elasticsearch:
 nodeCount

Number of
Elasticsearch
nodes to create.

Integer value. 1 Proof of concept =
1, Minimum
deployment =3

requests:
 cpu

Number of central
processing units
for requests, based
on your
environment’s
configuration.

Specified in cores
or millicores (for
example, 200m,
0.5, 1).

1Gi Proof of concept =
500m, Minimum
deployment =1

requests:
 memory

Available memory
for requests, based
on your
environment’s
configuration.

Specified in bytes
(for example,
200Ki, 50Mi, 5Gi).

500m Proof of concept =
1Gi, Minimum
deployment =
16Gi*

 template: production-elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy:
 resources:
 requests:
 cpu: "1"
 memory: "16Gi"
 limits:
 cpu: "1"
 memory: "16Gi"

CHAPTER 1. SERVICE MESH 1.X

57

limits:
 cpu

Limit on number
of central
processing units,
based on your
environment’s
configuration.

Specified in cores
or millicores (for
example, 200m,
0.5, 1).

 Proof of concept =
500m, Minimum
deployment =1

limits:
 memory

Available memory
limit based on your
environment’s
configuration.

Specified in bytes
(for example,
200Ki, 50Mi, 5Gi).

 Proof of concept =
1Gi, Minimum
deployment =
16Gi*

* Each Elasticsearch node can operate with a lower memory setting though this is not
recommended for production deployments. For production use, you should have no
less than 16Gi allocated to each pod by default, but preferably allocate as much as you
can, up to 64Gi per pod.

Parameter Description Values Default Value Examples

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator.

4. Click the Istio Service Mesh Control Plane tab.

5. Click the name of your control plane file, for example, basic-install.

6. Click the YAML tab.

7. Edit the Jaeger parameters, replacing the default all-in-one template with parameters for the
production-elasticsearch template, modified for your use case. Ensure that the indentation is
correct.

8. Click Save.

9. Click Reload. OpenShift Container Platform redeploys Jaeger and creates the Elasticsearch
resources based on the specified parameters.

1.6.5.2. Configuring the Elasticsearch index cleaner job

When the Service Mesh Operator creates the ServiceMeshControlPlane it also creates the custom
resource (CR) for Jaeger. The Jaeger operator then uses this CR when creating Jaeger instances.

When using Elasticsearch storage, by default a job is created to clean old traces from it. To configure
the options for this job, you edit the Jaeger custom resource (CR), to customize it for your use case. The
relevant options are listed below.

 apiVersion: jaegertracing.io/v1
 kind: Jaeger
 spec:

OpenShift Container Platform 4.5 Service Mesh

58

Table 1.12. Elasticsearch index cleaner parameters

Parameter Values Description

enabled true/ false Enable or disable the index
cleaner job.

numberOfDays integer value Number of days to wait before
deleting an index.

schedule "55 23 * * *" Cron expression for the job to run

For more information about configuring Elasticsearch with OpenShift Container Platform, see
Configuring the log store.

1.6.6. 3scale configuration

Here is an example that illustrates the 3scale Istio Adapter parameters for the Red Hat OpenShift
Service Mesh custom resource and a description of the available parameters with appropriate values.

Example 3scale parameters

Table 1.13. 3scale parameters

Parameter Description Values Default value

 strategy: production
 storage:
 type: elasticsearch
 esIndexCleaner:
 enabled: false
 numberOfDays: 7
 schedule: "55 23 * * *"

threeScale:
 enabled: false
 PARAM_THREESCALE_LISTEN_ADDR: 3333
 PARAM_THREESCALE_LOG_LEVEL: info
 PARAM_THREESCALE_LOG_JSON: true
 PARAM_THREESCALE_LOG_GRPC: false
 PARAM_THREESCALE_REPORT_METRICS: true
 PARAM_THREESCALE_METRICS_PORT: 8080
 PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
 PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
 PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
 PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
 PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
 PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
 PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60

CHAPTER 1. SERVICE MESH 1.X

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/#configuring-the-log-store

enabled Whether to use the
3scale adapter

true/false false

PARAM_THREESCA
LE_LISTEN_ADDR

Sets the listen address
for the gRPC server

Valid port number 3333

PARAM_THREESCA
LE_LOG_LEVEL

Sets the minimum log
output level.

debug, info, warn,
error, or none

info

PARAM_THREESCA
LE_LOG_JSON

Controls whether the log
is formatted as JSON

true/false true

PARAM_THREESCA
LE_LOG_GRPC

Controls whether the log
contains gRPC info

true/false true

PARAM_THREESCA
LE_REPORT_METRI
CS

Controls whether 3scale
system and backend
metrics are collected
and reported to
Prometheus

true/false true

PARAM_THREESCA
LE_METRICS_PORT

Sets the port that the
3scale /metrics
endpoint can be
scrapped from

Valid port number 8080

PARAM_THREESCA
LE_CACHE_TTL_SE
CONDS

Time period, in seconds,
to wait before purging
expired items from the
cache

Time period in seconds 300

PARAM_THREESCA
LE_CACHE_REFRES
H_SECONDS

Time period before
expiry when cache
elements are attempted
to be refreshed

Time period in seconds 180

PARAM_THREESCA
LE_CACHE_ENTRIE
S_MAX

Max number of items
that can be stored in the
cache at any time. Set to
0 to disable caching

Valid number 1000

PARAM_THREESCA
LE_CACHE_REFRES
H_RETRIES

The number of times
unreachable hosts are
retried during a cache
update loop

Valid number 1

Parameter Description Values Default value

OpenShift Container Platform 4.5 Service Mesh

60

PARAM_THREESCA
LE_ALLOW_INSECU
RE_CONN

Allow to skip certificate
verification when calling
3scale APIs. Enabling
this is not
recommended.

true/false false

PARAM_THREESCA
LE_CLIENT_TIMEOU
T_SECONDS

Sets the number of
seconds to wait before
terminating requests to
3scale System and
Backend

Time period in seconds 10

PARAM_THREESCA
LE_GRPC_CONN_M
AX_SECONDS

Sets the maximum
amount of seconds (+/-
10% jitter) a connection
may exist before it is
closed

Time period in seconds 60

Parameter Description Values Default value

1.6.7. Next steps

Prepare to deploy applications on Red Hat OpenShift Service Mesh.

1.7. DEPLOYING APPLICATIONS ON RED HAT OPENSHIFT SERVICE
MESH

When you deploy an application into the Service Mesh, there are several differences between the
behavior of applications in the upstream community version of Istio and the behavior of applications
within a Red Hat OpenShift Service Mesh installation.

1.7.1. Prerequisites

Review Comparing Red Hat OpenShift Service Mesh and upstream Istio community installations

Review Installing Red Hat OpenShift Service Mesh

1.7.2. Creating control plane templates

You can create reusable configurations with ServiceMeshControlPlane templates. Individual users can
extend the templates they create with their own configurations. Templates can also inherit configuration
information from other templates. For example, you can create an accounting control plane for the
accounting team and a marketing control plane for the marketing team. If you create a development
template and a production template, members of the marketing team and the accounting team can
extend the development and production templates with team specific customization.

When you configure control plane templates, which follow the same syntax as the
ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered
with a default template with default settings for Red Hat OpenShift Service Mesh. To add custom
templates you must create a ConfigMap named smcp-templates in the openshift-operators project
and mount the ConfigMap in the Operator container at /usr/local/share/istio-operator/templates.

CHAPTER 1. SERVICE MESH 1.X

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#deploying-applications-ossm-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-vs-community-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#installing-ossm-v1x

1.7.2.1. Creating the ConfigMap

Follow this procedure to create the ConfigMap.

Prerequisites

An installed, verified Service Mesh Operator.

An account with the cluster-admin role.

Location of the Operator deployment.

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

Procedure

1. Log in to the OpenShift Container Platform CLI as a cluster administrator.

2. From the CLI, run this command to create the ConfigMap named smcp-templates in the
openshift-operators project and replace <templates-directory> with the location of the
ServiceMeshControlPlane files on your local disk:

3. Locate the Operator ClusterServiceVersion name.

Example output

4. Edit the Operator cluster service version to instruct the Operator to use the smcp-templates
ConfigMap.

5. Add a volume mount and volume to the Operator deployment.

$ oc create configmap --from-file=<templates-directory> smcp-templates -n openshift-
operators

$ oc get clusterserviceversion -n openshift-operators | grep 'Service Mesh'

maistra.v1.0.0 Red Hat OpenShift Service Mesh 1.0.0 Succeeded

$ oc edit clusterserviceversion -n openshift-operators maistra.v1.0.0

deployments:
 - name: istio-operator
 spec:
 template:
 spec:
 containers:
 volumeMounts:
 - name: discovery-cache
 mountPath: /home/istio-operator/.kube/cache/discovery
 - name: smcp-templates
 mountPath: /usr/local/share/istio-operator/templates/
 volumes:
 - name: discovery-cache
 emptyDir:

OpenShift Container Platform 4.5 Service Mesh

62

6. Save your changes and exit the editor.

7. You can now use the template parameter in the ServiceMeshControlPlane to specify a
template.

1.7.3. Red Hat OpenShift Service Mesh's sidecar injection

Red Hat OpenShift Service Mesh relies on a proxy sidecar within the application’s pod to provide
Service Mesh capabilities to the application. You can enable automatic sidecar injection or manage it
manually. Red Hat recommends automatic injection using the annotation with no need to label projects.
This ensures that your application contains the appropriate configuration for the Service Mesh upon
deployment. This method requires fewer privileges and does not conflict with other OpenShift
capabilities such as builder pods.

NOTE

The upstream version of Istio injects the sidecar by default if you have labeled the project.
Red Hat OpenShift Service Mesh requires you to opt in to having the sidecar
automatically injected to a deployment, so you are not required to label the project. This
avoids injecting a sidecar if it is not wanted (for example, in build or deploy pods).

The webhook checks the configuration of pods deploying into all projects to see if they
are opting in to injection with the appropriate annotation.

1.7.3.1. Setting environment variables on the proxy in applications through annotations

You can set environment variables on the sidecar proxy for applications by adding pod annotations in
the deployment in the injection-template.yaml file. The environment variables are injected to the
sidecar.

 medium: Memory
 - name: smcp-templates
 configMap:
 name: smcp-templates
...

 apiVersion: maistra.io/v1
 kind: ServiceMeshControlPlane
 metadata:
 name: minimal-install
 spec:
 template: default

apiVersion: apps/v1
kind: Deployment
metadata:
 name: resource
spec:
 replicas: 7
 selector:
 matchLabels:
 app: resource
 template:
 metadata:

CHAPTER 1. SERVICE MESH 1.X

63

WARNING

maistra.io/ labels and annotations should never be included in user-created
resources, because they indicate that the resources are generated and managed by
the Operator. If you are copying content from an Operator-generated resource
when creating your own resources, do not include labels or annotations that start
with maistra.io/ or your resource will be overwritten or deleted by the Operator
during the next reconciliation.

1.7.3.2. Enabling automatic sidecar injection

When deploying an application into the Red Hat OpenShift Service Mesh you must opt in to injection by
specifying the sidecar.istio.io/inject annotation with a value of "true". Opting in ensures that the
sidecar injection does not interfere with other OpenShift features such as builder pods used by
numerous frameworks within the OpenShift ecosystem.

Prerequisites

Identify the deployments for which you want to enable automatic sidecar injection.

Locate the application’s YAML configuration file.

Procedure

1. Open the application’s configuration YAML file in an editor.

2. Add sidecar.istio.io/inject to the configuration YAML with a value of "true" as illustrated here:

Sleep test application example

 annotations:
 sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\":
\"env_value_2\" }"

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: sleep
 name: sleep
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sleep
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true"
 labels:

OpenShift Container Platform 4.5 Service Mesh

64

3. Save the configuration file.

1.7.4. Updating Mixer policy enforcement

In previous versions of Red Hat OpenShift Service Mesh, Mixer’s policy enforcement was enabled by
default. Mixer policy enforcement is now disabled by default. You must enable it before running policy
tasks.

Prerequisites

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Run this command to check the current Mixer policy enforcement status:

3. If disablePolicyChecks: true, edit the Service Mesh ConfigMap:

4. Locate disablePolicyChecks: true within the ConfigMap and change the value to false.

5. Save the configuration and exit the editor.

6. Re-check the Mixer policy enforcement status to ensure it is set to false.

1.7.4.1. Setting the correct network policy

Service Mesh creates network policies in the control plane and member namespaces to allow traffic
between them. Before you deploy, consider the following conditions to ensure the services in your mesh
that were previously exposed through an OpenShift Container Platform route.

Traffic into the mesh must always go through the ingress-gateway for Istio to work properly.

Deploy services external to the mesh in separate namespaces that are not in any mesh.

Non-mesh services that need to be deployed within a service mesh enlisted namespace should
label their deployments maistra.io/expose-route: "true", which ensures OpenShift Container
Platform routes to these services still work.

1.7.5. Bookinfo example application

The upstream Istio project has an example tutorial called Bookinfo, which is composed of four separate

 app: sleep
 spec:
 containers:
 - name: sleep
 image: tutum/curl
 command: ["/bin/sleep","infinity"]
 imagePullPolicy: IfNotPresent

$ oc get cm -n istio-system istio -o jsonpath='{.data.mesh}' | grep disablePolicyChecks

$ oc edit cm -n istio-system istio

CHAPTER 1. SERVICE MESH 1.X

65

The upstream Istio project has an example tutorial called Bookinfo, which is composed of four separate
microservices used to demonstrate various Istio features. The Bookinfo application displays information
about a book, similar to a single catalog entry of an online book store. Displayed on the page is a
description of the book, book details (ISBN, number of pages, and other information), and book reviews.

The Bookinfo application consists of these microservices:

The productpage microservice calls the details and reviews microservices to populate the
page.

The details microservice contains book information.

The reviews microservice contains book reviews. It also calls the ratings microservice.

The ratings microservice contains book ranking information that accompanies a book review.

There are three versions of the reviews microservice:

Version v1 does not call the ratings Service.

Version v2 calls the ratings Service and displays each rating as one to five black stars.

Version v3 calls the ratings Service and displays each rating as one to five red stars.

1.7.5.1. Installing the Bookinfo application

This tutorial walks you through how to create a sample application by creating a project, deploying the
Bookinfo application to that project, and viewing the running application in Service Mesh.

Prerequisites:

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.0.6 installed.

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

NOTE

Red Hat OpenShift Service Mesh implements auto-injection differently than the
upstream Istio project, therefore this procedure uses a version of the bookinfo.yaml file
annotated to enable automatic injection of the Istio sidecar for Red Hat OpenShift
Service Mesh.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights.

2. Click to Home → Projects.

3. Click Create Project.

4. Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click
Create.

Alternatively, you can run this command from the CLI to create the bookinfo project.

OpenShift Container Platform 4.5 Service Mesh

66

https://istio.io/docs/examples/bookinfo

5. Click Operators → Installed Operators.

6. Click the Project menu and use the control plane namespace. In this example, use istio-system.

7. Click the Red Hat OpenShift Service Mesh Operator.

8. Click the Istio Service Mesh Member Roll link.

a. If you have already created a Istio Service Mesh Member Roll, click the name, then click the
YAML tab to open the YAML editor.

b. If you have not created a Istio Service Mesh Member Roll, click Create Service Mesh
Member Roll.

NOTE

You need cluster-admin rights to edit the Istio Service Mesh Member Roll.

9. Edit the default Service Mesh Member Roll YAML and add bookinfo to the members list.

Bookinfo ServiceMeshMemberRoll example

10. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

The installation has finished successfully when the STATUS column is Configured.

11. From the CLI, deploy the Bookinfo application in the `bookinfo` project by applying the
bookinfo.yaml file:

You should see output similar to the following:

$ oc new-project bookinfo

 apiVersion: maistra.io/v1
 kind: ServiceMeshMemberRoll
 metadata:
 name: default
 spec:
 members:
 - bookinfo

$ oc -n <control_plane_project> patch --type='json' smmr default -p '[{"op": "add", "path":
"/spec/members", "value":["'"bookinfo"'"]}]'

NAME READY STATUS AGE
default 1/1 Configured 2m27s

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.0/samples/bookinfo/platform/kube/bookinfo.yaml

service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created

CHAPTER 1. SERVICE MESH 1.X

67

12. Create the ingress gateway by applying the bookinfo-gateway.yaml file:

You should see output similar to the following:

13. Set the value for the GATEWAY_URL parameter:

NOTE

Replace <control_plane_project> with the name of your control plane project. In
this example, the control plane project is istio-system.

1.7.5.2. Adding default destination rules

Before you can use the Bookinfo application, you have to add default destination rules. There are two
preconfigured YAML files, depending on whether or not you enabled mutual transport layer security
(TLS) authentication.

Procedure

1. To add destination rules, run one of the following commands:

If you did not enable mutual TLS:

If you enabled mutual TLS:

You should see output similar to the following:

service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.0/samples/bookinfo/networking/bookinfo-gateway.yaml

gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

$ export GATEWAY_URL=$(oc -n <control_plane_project> get route istio-ingressgateway -o
jsonpath='{.spec.host}')

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.0/samples/bookinfo/networking/destination-rule-all.yaml

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.0/samples/bookinfo/networking/destination-rule-all-mtls.yaml

OpenShift Container Platform 4.5 Service Mesh

68

1.7.5.3. Verifying the Bookinfo installation

To confirm that the sample Bookinfo application was successfully deployed, perform the following
steps.

Prerequisites

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.0.6 installed.

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Run this command to confirm that Bookinfo is deployed:

$ curl -o /dev/null -s -w "%{http_code}\n" http://$GATEWAY_URL/productpage

All pods should have a status of Running. You should see output similar to the following:

3. Run the following command to retrieve the URL for the product page:

4. Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.

1.7.5.4. Removing the Bookinfo application

Follow these steps to remove the Bookinfo application.

Prerequisites

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.0.6 installed.

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m
productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m
reviews-v3-6dfd49b55b-vcwpf 2/2 Running 0 12m

$ oc get pods -n bookinfo

CHAPTER 1. SERVICE MESH 1.X

69

1.7.5.4.1. Delete the Bookinfo project

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click to Home → Projects.

3. Click on the bookinfo menu , and then click Delete Project.

4. Type bookinfo in the confirmation dialog box, and then click Delete.

Alternatively, you can run this command from the CLI to create the bookinfo project.

1.7.5.4.2. Remove the Bookinfo project from the Service Mesh member roll

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click Operators → Installed Operators.

3. Click the Project menu and choose openshift-operators from the list.

4. Click the Istio Service Mesh Member Roll link under Provided APIS for the Red Hat
OpenShift Service Mesh Operator.

5. Click the ServiceMeshMemberRoll menu and select Edit Service Mesh Member Roll.

6. Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.

Alternatively, you can run this command from the CLI to remove the bookinfo project from
the ServiceMeshMemberRoll. Replace <control_plane_project> with the name of your
control plane project.

7. Click Save to update Service Mesh Member Roll.

1.7.6. Generating example traces and analyzing trace data

Jaeger is an open source distributed tracing system. You use Jaeger for monitoring and
troubleshooting microservices-based distributed systems. Using Jaeger you can perform a trace, which
follows the path of a request through various microservices that make up an application. Jaeger is
installed by default as part of the Service Mesh.

This tutorial uses Service Mesh and the bookinfo tutorial to demonstrate how you can use Jaeger to
perform distributed tracing.

NOTE

$ oc delete project bookinfo

$ oc -n <control_plane_project> patch --type='json' smmr default -p '[{"op": "remove",
"path": "/spec/members", "value":["'"bookinfo"'"]}]'

OpenShift Container Platform 4.5 Service Mesh

70

NOTE

The Bookinfo example application allows you to test your Red Hat OpenShift Service
Mesh 2.0.6 installation on OpenShift Container Platform.

Red Hat does not provide support for the Bookinfo application.

This tutorial uses Service Mesh and the Bookinfo tutorial to demonstrate how you can perform a trace
using the Jaeger component of Red Hat OpenShift Service Mesh.

Prerequisites:

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.0.6 installed.

Jaeger enabled during the installation.

Bookinfo example application installed.

Procedure

1. After you have deployed the Bookinfo application you will need to generate calls to the Bookinfo
application so that you have some trace data to analyze. Access
http://<GATEWAY_URL>/productpage and refresh the page a few times to generate some
trace data.

2. The installation process creates a route to access the Jaeger console.

a. In the OpenShift Container Platform console, navigate to Networking → Routes and
search for the Jaeger route, which is the URL listed under Location.

b. Use the CLI to query for details of the route:

NOTE

Replace <control_plane_project> with the name of your control plane
project. In this example, the control plane project is istio-system.

$ export JAEGER_URL=$(oc get route -n <control_plane_project> jaeger -o
jsonpath='{.spec.host}')

3. Launch a browser and navigate to https://<JAEGER_URL>.

4. If necessary, log in using the same user name and password as you use to access the OpenShift
Container Platform console.

5. In the left pane of the Jaeger dashboard, from the Service menu, select "productpage" and click
the Find Traces button at the bottom of the pane. A list of traces is displayed, as shown in the
following image:

CHAPTER 1. SERVICE MESH 1.X

71

http:/productpage
https:

6. Click one of the traces in the list to open a detailed view of that trace. If you click on the top
(most recent) trace, you see the details that correspond to the latest refresh of the
`/productpage.

The trace in the previous figure consists of a few nested spans, each corresponding to a
Bookinfo Service call, all performed in response to a `/productpage request. Overall processing
time was 2.62s, with the details Service taking 3.56ms, the reviews Service taking 2.6s, and the
ratings Service taking 5.32ms. Each of the calls to remote Services is represented by a client-
side and server-side span. For example, the details client-side span is labeled productpage
details.myproject.svc.cluster.local:9080. The span nested underneath it, labeled details
details.myproject.svc.cluster.local:9080, corresponds to the server-side processing of the
request. The trace also shows calls to istio-policy, which reflect authorization checks made by
Istio.

1.8. DATA VISUALIZATION AND OBSERVABILITY

You can view your application’s topology, health and metrics in the Kiali console. If your service is having
issues, the Kiali console offers ways to visualize the data flow through your service. You can view insights
about the mesh components at different levels, including abstract applications, services, and workloads.
It also provides an interactive graph view of your namespace in real time.

You can observe the data flow through your application if you have one installed. If you don’t have your
own application installed, you can see how observability works in Red Hat OpenShift Service Mesh by
installing the Bookinfo sample application.

OpenShift Container Platform 4.5 Service Mesh

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_deploying-applications-ossm-v1x

After installing the Bookinfo sample application, send traffic to the mesh. Enter the following command
a few times:

$ curl http://$GATEWAY_URL/productpage

If your sample application is configured correctly, this command simulates a user visiting the
productpage microservice of the application.

1.8.1. Accessing the Kiali console

To access the console, in the menu bar, click the Application launcher > Kiali.

1. In the OpenShift Container Platform menu bar, click the Application launcher > Kiali.

2. Log in to the Kiali console with the same user name and password as you use to access the
OpenShift Container Platform console.

3. Select the project for your service in the Namespace field. If you have installed the Bookinfo
example, select bookinfo.

Procedure from the command line

1. Run this command from the CLI to obtain the route and Kiali URL:

In the output on the kiali line, use the URL in the HOST/PORT column to open the Kiali console.
Log in to the Kiali console with the same user name and password as you use to access the
OpenShift Container Platform console. Select the project for your service in the Namespace
field.

When you first log in, you see the Overview page which displays all the namespaces in your mesh that
you have permission to view.

1.8.2. Visualizing your service

The Kiali operator works with the telemetry data gathered in Red Hat OpenShift Service Mesh to
provide graphs and real time network diagrams of the applications, services, and workloads in your
namespace.

The Overview page displays all the namespaces that have services in your mesh. You can reveal deeper
insights about the data traveling through your Service mesh or help identify problems with services or
workloads in your service mesh with the following graphs and visualizations.

1.8.2.1. Namespace graphs

The namespace graph is a map of the services, deployments and workflows in your namespace and
arrows that show how data flows through them. To view a namespace graph:

1. Click Graph in the main navigation.

2. Select bookinfo from the Namespace menu.

If your application uses version tags, like the Bookinfo sample application, you can see a Version graph.
Select a graph from the Graph Type drop down menu. There are several graphs to choose from:

$ oc get routes

CHAPTER 1. SERVICE MESH 1.X

73

The App graph shows an aggregate workload for all applications that are labeled the same.

The Versioned App graph shows a node for each version of an app. All versions of an app are
grouped together.

The Workload graph shows a node for each workload in your service mesh. This graph does not
require you to use the app and version labels. If your app does not use version labels, use this the
graph.

The Service graph shows a node for each service in your mesh but excludes all apps and
workloads from the graph. It provides a high level view and aggregates all traffic for defined
services.

To view a summary of metrics, select any node or edge in the graph to display its metric details in the
summary details panel.

1.9. CUSTOMIZING SECURITY IN A SERVICE MESH

If your service mesh application is constructed with a complex array of microservices, you can use Red
Hat OpenShift Service Mesh to customize the security of the communication between those services.
The infrastructure of OpenShift Container Platform along with the traffic management features of
Service Mesh can help you manage the complexity of your applications and provide service and identity
security for microservices.

1.9.1. Enabling mutual Transport Layer Security (mTLS)

Mutual Transport Layer Security (mTLS) is a protocol where two parties authenticate each other at the
same time. It is the default mode of authentication in some protocols (IKE, SSH) and optional in others
(TLS).

MTLS can be used without changes to the application or service code. The TLS is handled entirely by
the service mesh infrastructure and between the two sidecar proxies.

By default, Red Hat OpenShift Service Mesh is set to permissive mode, where the sidecars in Service
Mesh accept both plain-text traffic and connections that are encrypted using mTLS. If a service in your
mesh is communicating with a service outside the mesh, strict mTLS could break communication
between those services. Use permissive mode while you migrate your workloads to Service Mesh.

1.9.1.1. Enabling strict mTLS across the mesh

If your workloads do not communicate with services outside your mesh and communication will not be
interrupted by only accepting encrypted connections, you can enable mTLS across your mesh quickly.
Set spec.istio.global.mtls.enabled to true in your ServiceMeshControlPlane resource. The operator
creates the required resources.

1.9.1.1.1. Configuring sidecars for incoming connections for specific services

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true

OpenShift Container Platform 4.5 Service Mesh

74

You can also configure mTLS for individual services or namespaces by creating a policy.

1.9.1.2. Configuring sidecars for outgoing connections

Create a destination rule to configure Service Mesh to use mTLS when sending requests to other
services in the mesh.

1.9.1.3. Setting the minimum and maximum protocol versions

If your environment has specific requirements for encrypted traffic in your service mesh, you can control
the cryptographic functions that are allowed by setting the spec.istio.global.tls.minProtocolVersion
or spec.istio.global.tls.maxProtocolVersion in your ServiceMeshControlPlane resource. Those
values, configured in your control plane resource, define the minimum and maximum TLS version used
by mesh components when communicating securely over TLS.

The default is TLS_AUTO and does not specify a version of TLS.

Table 1.14. Valid values

Value Description

TLS_AUTO default

TLSv1_0 TLS version 1.0

apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: "default"
 namespace: <NAMESPACE>
spec:
 peers:
 - mtls: {}

apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
 name: "default"
 namespace: <CONTROL_PLANE_NAMESPACE>
spec:
 host: "*.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 tls:
 minProtocolVersion: TLSv1_0

CHAPTER 1. SERVICE MESH 1.X

75

TLSv1_1 TLS version 1.1

TLSv1_2 TLS version 1.2

TLSv1_3 TLS version 1.3

Value Description

1.9.2. Configuring cipher suites and ECDH curves

Cipher suites and Elliptic-curve Diffie–Hellman (ECDH curves) can help you secure your service mesh.
You can define a comma separated list of cipher suites using spec.istio.global.tls.cipherSuites and
ECDH curves using spec.istio.global.tls.ecdhCurves in your ServiceMeshControlPlane resource. If
either of these attributes are empty, then the default values are used.

The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when
negotiating with TLS 1.3.

Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves:
CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.

NOTE

You must include either TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 when you configure the cipher
suite. HTTP/2 support requires at least one of these cipher suites.

The supported cipher suites are:

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

OpenShift Container Platform 4.5 Service Mesh

76

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

The supported ECDH Curves are:

CurveP256

CurveP384

CurveP521

X25519

1.9.3. Adding an external certificate authority key and certificate

By default, Red Hat OpenShift Service Mesh generates self-signed root certificate and key, and uses
them to sign the workload certificates. You can also use the user-defined certificate and key to sign
workload certificates, with user-defined root certificate. This task demonstrates an example to plug
certificates and key into Service Mesh.

Prerequisites

You must have installed Red Hat OpenShift Service Mesh with mutual TLS enabled to configure
certificates.

This example uses the certificates from the Maistra repository. For production, use your own
certificates from your certificate authority.

You must deploy the Bookinfo sample application to verify the results with these instructions.

1.9.3.1. Adding an existing certificate and key

To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the
CA certificate, key, and root certificate. You must use the following exact file names for each of the
corresponding certificates. The CA certificate is called ca-cert.pem, the key is ca-key.pem, and the root
certificate, which signs ca-cert.pem, is called root-cert.pem. If your workload uses intermediate
certificates, you must specify them in a cert-chain.pem file.

Add the certificates to Service Mesh by following these steps. Save the example certificates from the
Maistra repository locally and replace <path> with the path to your certificates.

1. Create a secret cacert that includes the input files ca-cert.pem, ca-key.pem, root-cert.pem
and cert-chain.pem.

CHAPTER 1. SERVICE MESH 1.X

77

https://github.com/maistra/istio/tree/maistra-2.0/samples/certs
https://github.com/maistra/istio/tree/maistra-1.1/samples/certs

2. In the ServiceMeshControlPlane resource set global.mtls.enabled to true and
security.selfSigned set to false. Service Mesh reads the certificates and key from the secret-
mount files.

3. To make sure the workloads add the new certificates promptly, delete the secrets generated by
Service Mesh, named istio.*. In this example, istio.default. Service Mesh issues new certificates
for the workloads.

1.9.3.2. Verifying your certificates

Use the Bookinfo sample application to verify your certificates are mounted correctly. First, retrieve the
mounted certificates. Then, verify the certificates mounted on the pod.

1. Store the pod name in the variable RATINGSPOD.

2. Run the following commands to retrieve the certificates mounted on the proxy.

The file /tmp/pod-root-cert.pem contains the root certificate propagated to the pod.

The file /tmp/pod-cert-chain.pem contains the workload certificate and the CA certificate
propagated to the pod.

3. Verify the root certificate is the same as the one specified by the Operator. Replace <path> with
the path to your certificates.

$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
 --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
 --from-file=<path>/cert-chain.pem

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
 security:
 selfSigned: false

$ oc delete secret istio.default

$ RATINGSPOD=`oc get pods -l app=ratings -o jsonpath='{.items[0].metadata.name}'`

$ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/root-cert.pem > /tmp/pod-root-
cert.pem

$ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/cert-chain.pem > /tmp/pod-
cert-chain.pem

$ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

$ openssl x509 -in /tmp/pod-root-cert.pem -text -noout > /tmp/pod-root-cert.crt.txt

OpenShift Container Platform 4.5 Service Mesh

78

Expect the output to be empty.

4. Verify the CA certificate is the same as the one specified by Operator. Replace <path> with the
path to your certificates.

Expect the output to be empty.

5. Verify the certificate chain from the root certificate to the workload certificate. Replace <path>
with the path to your certificates.

Example output

1.9.3.3. Removing the certificates

To remove the certificates you added, follow these steps.

1. Remove the secret cacerts.

2. Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane
resource.

$ diff /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

$ sed '0,/^-----END CERTIFICATE-----/d' /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-
ca.pem

$ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

$ openssl x509 -in /tmp/pod-cert-chain-ca.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

$ diff /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

$ head -n 21 /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-workload.pem

$ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) /tmp/pod-cert-chain-
workload.pem

/tmp/pod-cert-chain-workload.pem: OK

$ oc delete secret cacerts -n istio-system

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
 security:
 selfSigned: true

CHAPTER 1. SERVICE MESH 1.X

79

1.10. TRAFFIC MANAGEMENT

You can control the flow of traffic and API calls between services in Red Hat OpenShift Service Mesh.
For example, some services in your service mesh may need to communicate within the mesh and others
may need to be hidden. Manage the traffic to hide specific backend services, expose services, create
testing or versioning deployments, or add a security layer on a set of services.

This guide references the Bookinfo sample application to provide examples of routing in an example
application. Install the Bookinfo application to learn how these routing examples work.

1.10.1. Routing and managing traffic

Configure your service mesh by adding your own traffic configuration to Red Hat OpenShift Service
Mesh with a custom resource definitions in a YAML file.

1.10.1.1. Traffic management with virtual services

You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift
Service Mesh with a virtual service. With virtual services, you can:

Address multiple application services through a single virtual service. If your mesh uses
Kubernetes, for example, you can configure a virtual service to handle all services in a specific
namespace. Mapping a single virtual service to many services is particularly useful in facilitating
turning a monolithic application into a composite service built out of distinct microservices
without requiring the consumers of the service to adapt to the transition.

Configure traffic rules in combination with gateways to control ingress and egress traffic.

1.10.1.1.1. Configuring virtual services

Requests are routed to a services within a service mesh with virtual services. Each virtual service consists
of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each
given request to the virtual service to a specific real destination within the mesh.

Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using round-robin load
balancing between all service instances. With a virtual service, you can specify traffic behavior for one or
more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send
the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the
same service or entirely different services.

The following example routes requests to different versions of a service depending on which user
connects to the application. Use this command to apply this example YAML file, or one you create.

$ oc apply -f - <<EOF
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:

OpenShift Container Platform 4.5 Service Mesh

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_deploying-applications-ossm-v1x

1.10.1.2. Configuring your virtual host

The following sections explain each field in the YAML file and explain how you can create a virtual host in
a virtual service.

1.10.1.2.1. Hosts

The hosts field lists the virtual service’s user-addressable destination that these routing rules apply to.
This is the address or addresses the client uses when sending requests to the service.

The virtual service hostname can be an IP address, a DNS name, or, depending on the platform, a short
name that resolves to a fully qualified domain name.

1.10.1.2.2. Routing rules

The http section contains the virtual service’s routing rules, describing match conditions and actions for
routing HTTP/1.1, HTTP2, and gRPC traffic sent to the destination specified in the hosts field. A routing
rule consists of the destination where you want the traffic to go and zero or more match conditions,
depending on your use case.

Match condition

The first routing rule in the example has a condition and begins with the match field. In this example, this
routing applies to all requests from the user jason. Add the headers, end-user, and exact fields to
select the appropriate requests.

Destination

The destination field in the route section specifies the actual destination for traffic that matches this
condition. Unlike the virtual service’s host, the destination’s host must be a real destination that exists in
the Red Hat OpenShift Service Mesh service registry. This can be a mesh service with proxies or a non-

 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v3
EOF

spec:
 hosts:
 - reviews

spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason

CHAPTER 1. SERVICE MESH 1.X

81

mesh service added using a service entry. In this example, the host name is a Kubernetes service name:

1.10.1.2.3. Destination rules

Destination rules are applied after virtual service routing rules are evaluated, so they apply to the
traffic’s real destination. Virtual services route traffic to a destination. Destination rules configure what
happens to traffic at that destination.

1.10.1.2.3.1. Load balancing options

By default, Red Hat OpenShift Service Mesh uses a round-robin load balancing policy, where each
service instance in the instance pool gets a request in turn. Red Hat OpenShift Service Mesh also
supports the following models, which you can specify in destination rules for requests to a particular
service or service subset.

Random: Requests are forwarded at random to instances in the pool.

Weighted: Requests are forwarded to instances in the pool according to a specific percentage.

Least requests: Requests are forwarded to instances with the least number of requests.

Destination rule example

The following example destination rule configures three different subsets for the my-svc destination
service, with different load balancing policies:

spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2

OpenShift Container Platform 4.5 Service Mesh

82

1.10.1.2.4. Gateways

You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic
you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your
service workloads.

Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress
APIs, Red Hat OpenShift Service Mesh gateways let you use the full power and flexibility of traffic
routing. The Red Hat OpenShift Service Mesh gateway resource can layer 4-6 load balancing properties
such as ports to expose, Red Hat OpenShift Service Mesh TLS settings. Instead of adding application-
layer traffic routing (L7) to the same API resource, you can bind a regular Red Hat OpenShift Service
Mesh virtual service to the gateway and manage gateway traffic like any other data plane traffic in a
service mesh.

Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An
egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh, letting you limit
which services have access to external networks, or to enable secure control of egress traffic to add
security to your mesh, for example. You can also use a gateway to configure a purely internal proxy.

Gateway example

The following example shows a possible gateway configuration for external HTTPS ingress traffic:

This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443,
but doesn’t specify any routing for the traffic.

To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual
service. You do this using the virtual service’s gateways field, as shown in the following example:

 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ext-host-gwy
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - ext-host.example.com
 tls:
 mode: SIMPLE
 serverCertificate: /tmp/tls.crt
 privateKey: /tmp/tls.key

CHAPTER 1. SERVICE MESH 1.X

83

You can then configure the virtual service with routing rules for the external traffic.

1.10.1.2.5. Service entries

A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains
internally. After you add the service entry, the Envoy proxies can send traffic to the service as if it was a
service in your mesh. Configuring service entries allows you to manage traffic for services running
outside of the mesh, including the following tasks:

Redirect and forward traffic for external destinations, such as APIs consumed from the web, or
traffic to services in legacy infrastructure.

Define retry, timeout, and fault injection policies for external destinations.

Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.

Logically add services from a different cluster to the mesh to configure a multicluster Red Hat
OpenShift Service Mesh mesh on Kubernetes.

You don’t need to add a service entry for every external service that you want your mesh
services to use. By default, Red Hat OpenShift Service Mesh configures the Envoy proxies to
pass requests through to unknown services. However, you can’t use Red Hat OpenShift Service
Mesh features to control the traffic to destinations that aren’t registered in the mesh.

Service entry examples

The following example mesh-external service entry adds the ext-resource external dependency to the
Red Hat OpenShift Service Mesh service registry:

Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed
domain name.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-svc
spec:
 hosts:
 - ext-host.example.com
 gateways:
 - ext-host-gwy

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: svc-entry
spec:
 hosts:
 - ext-svc.example.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

OpenShift Container Platform 4.5 Service Mesh

84

You can configure virtual services and destination rules to control traffic to a service entry in the same
way you configure traffic for any other service in the mesh. For example, the following destination rule
configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com
external service that is configured using the service entry:

1.10.1.2.6. Sidecar

By default, Red Hat OpenShift Service Mesh configures every Envoy proxy to accept traffic on all the
ports of its associated workload, and to reach every workload in the mesh when forwarding traffic. You
can use a sidecar configuration to do the following:

Fine-tune the set of ports and protocols that an Envoy proxy accepts.

Limit the set of services that the Envoy proxy can reach.

You might want to limit sidecar reachability like this in larger applications, where having every
proxy configured to reach every other service in the mesh can potentially affect mesh
performance due to high memory usage.

Sidecar example

You can specify that you want a sidecar configuration to apply to all workloads in a particular
namespace, or choose specific workloads using a workloadSelector. For example, the following sidecar
configuration configures all services in the bookinfo namespace to only reach services running in the
same namespace and the Red Hat OpenShift Service Mesh control plane (currently needed to use the
Red Hat OpenShift Service Mesh policy and telemetry features):

1.10.2. Managing ingress traffic

In Red Hat OpenShift Service Mesh, the Ingress Gateway enables Service Mesh features such as

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ext-res-dr
spec:
 host: ext-svc.example.com
 trafficPolicy:
 tls:
 mode: MUTUAL
 clientCertificate: /etc/certs/myclientcert.pem
 privateKey: /etc/certs/client_private_key.pem
 caCertificates: /etc/certs/rootcacerts.pem

apiVersion: networking.istio.io/v1alpha3
kind: Sidecar
metadata:
 name: default
 namespace: bookinfo
spec:
 egress:
 - hosts:
 - "./*"
 - "istio-system/*"

CHAPTER 1. SERVICE MESH 1.X

85

In Red Hat OpenShift Service Mesh, the Ingress Gateway enables Service Mesh features such as
monitoring, security, and route rules to be applied to traffic entering the cluster. Configure Service
Mesh to expose a service outside of the service mesh using an Service Mesh gateway.

1.10.2.1. Determining the ingress IP and ports

Run the following command to determine if your Kubernetes cluster is running in an environment that
supports external load balancers:

That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each
item in your namespace.

If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for
the ingress gateway.

If the EXTERNAL-IP value is <none>, or perpetually <pending>, your environment does not provide an
external load balancer for the ingress gateway. You can access the gateway using the service’s node
port.

Choose the instructions for your environment:

Configuring routing with a load balancer

Follow these instructions if your environment has an external load balancer.

Set the ingress IP and ports:

In some environments, the load balancer may be exposed using a host name instead of an IP address.
For that case, the ingress gateway’s EXTERNAL-IP value is not be an IP address. Instead, it’s a host
name, and the previous command fails to set the INGRESS_HOST environment variable.

Use the following command to correct the INGRESS_HOST value:

Configuring routing without a load balancer

Follow these instructions if your environment does not have an external load balancer. You must use a
node port instead.

Set the ingress ports:

$ oc get svc istio-ingressgateway -n istio-system

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="https")].port}')

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')

OpenShift Container Platform 4.5 Service Mesh

86

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

1.10.3. Routing example using the bookinfo application

The Service Mesh Bookinfo sample application consists of four separate microservices, each with
multiple versions. Three different versions, one of the microservices called reviews, have been deployed
and are running concurrently.

Prerequisites:

Deploy the Bookinfo sample application to work with the following examples.

About this task

To illustrate the problem this causes, access the bookinfo app /product page in a browser and refresh
several times.

Sometimes the book review output contains star ratings and other times it does not. Without an explicit
default service version to route to, Service Mesh routes requests to all available versions one after the
other.

This tutorial helps you apply rules that route all traffic to v1 (version 1) of the microservices. Later, you
can apply a rule to route traffic based on the value of an HTTP request header.

1.10.3.1. Applying a virtual service

To route to one version only, apply virtual services that set the default version for the micro-services. In
the following example, the virtual service routes all traffic to v1 of each micro-service

1. Run the following command to apply the virtual services:

2. To test the command was successful, display the defined routes with the following command:

That command returns the following YAML file.

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
1.1/samples/bookinfo/networking/virtual-service-all-v1.yaml

$ oc get virtualservices -o yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: details
 ...
spec:
 hosts:
 - details
 http:
 - route:

CHAPTER 1. SERVICE MESH 1.X

87

You have configured Service Mesh to route to the v1 version of the Bookinfo microservices,
most importantly the reviews service version 1.

1.10.3.2. Test the new routing configuration

You can easily test the new configuration by once again refreshing the /productpage of the Bookinfo
app.

 - destination:
 host: details
 subset: v1

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: productpage
 ...
spec:
 gateways:
 - bookinfo-gateway
 - mesh
 hosts:
 - productpage
 http:
 - route:
 - destination:
 host: productpage
 subset: v1

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: ratings
 ...
spec:
 hosts:
 - ratings
 http:
 - route:
 - destination:
 host: ratings
 subset: v1

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
 ...
spec:
 hosts:
 - reviews
 http:
 - route:
 - destination:
 host: reviews
 subset: v1

OpenShift Container Platform 4.5 Service Mesh

88

1. Open the Bookinfo site in your browser. The URL is http://$GATEWAY_URL/productpage,
where $GATEWAY_URL is the External IP address of the ingress.
The reviews part of the page displays with no rating stars, no matter how many times you
refresh. This is because you configured Service Mesh to route all traffic for the reviews service
to the version reviews:v1 and this version of the service does not access the star ratings
service.

Your service mesh now routes traffic to one version of a service.

1.10.3.3. Route based on user identity

Next, change the route configuration so that all traffic from a specific user is routed to a specific service
version. In this case, all traffic from a user named jason will be routed to the service reviews:v2.

Note that Service Mesh doesn’t have any special, built-in understanding of user identity. This example is
enabled by the fact that the productpage service adds a custom end-user header to all outbound HTTP
requests to the reviews service.

1. Run the following command to enable user-based routing:

2. Confirm the rule is created:

That command returns the following YAML file.

3. On the /productpage of the Bookinfo app, log in as user jason. Refresh the browser. What do
you see? The star ratings appear next to each review.

4. Log in as another user (pick any name you wish). Refresh the browser. Now the stars are gone.

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
1.1/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml

$ oc get virtualservice reviews -o yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
 ...
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v1

CHAPTER 1. SERVICE MESH 1.X

89

http:/productpage

4. Log in as another user (pick any name you wish). Refresh the browser. Now the stars are gone.
This is because traffic is routed to reviews:v1 for all users except Jason.

You have successfully configured Service Mesh to route traffic based on user identity.

1.11. USING THE 3SCALE ISTIO ADAPTER

The 3scale Istio Adapter is an optional adapter that allows you to label a service running within the Red
Hat OpenShift Service Mesh and integrate that service with the 3scale API Management solution. It is
not required for Red Hat OpenShift Service Mesh.

1.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

You can use these examples to configure requests to your services using the 3scale Istio Adapter.

Prerequisites:

Red Hat OpenShift Service Mesh version 1.x

A working 3scale account (SaaS or 3scale 2.5 On-Premises)

Red Hat OpenShift Service Mesh prerequisites

Ensure Mixer policy enforcement is enabled. Update Mixer policy enforcement section provides
instructions to check the current Mixer policy enforcement status and enable policy
enforcement.

NOTE

To configure the 3scale Istio Adapter, refer to Red Hat OpenShift Service Mesh custom
resources for instructions on adding adapter parameters to the custom resource file.

NOTE

Pay particular attention to the kind: handler resource. You must update this with your
3scale credentials and the service ID of the API you want to manage.

1. Modify the handler configuration with your 3scale configuration.

Handler configuration example

Optionally, you can provide a backend_url field within the params section to override the URL provided

 apiVersion: "config.istio.io/v1alpha2"
 kind: handler
 metadata:
 name: threescale
 spec:
 adapter: threescale
 params:
 service_id: "<SERVICE_ID>"
 system_url: "https://<organization>-admin.3scale.net/"
 access_token: "<ACCESS_TOKEN>"
 connection:
 address: "threescale-istio-adapter:3333"

OpenShift Container Platform 4.5 Service Mesh

90

https://www.3scale.net/signup/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/installing_3scale/onpremises-installation

Optionally, you can provide a backend_url field within the params section to override the URL provided
by the 3scale configuration. This may be useful if the adapter runs on the same cluster as the 3scale on-
premise instance, and you wish to leverage the internal cluster DNS.

1. Modify the rule configuration with your 3scale configuration to dispatch the rule to the
threescale handler.

Rule configuration example

1.11.1.1. Generating 3scale custom resources

The adapter includes a tool that allows you to generate the handler, instance, and rule custom
resources.

Table 1.15. Usage

Option Description Required Default value

-h, --help Produces help output
for available options

No

--name Unique name for this
URL, token pair

Yes

-n, --namespace Namespace to generate
templates

No istio-system

-t, --token 3scale access token Yes

-u, --url 3scale Admin Portal URL Yes

--backend-url 3scale backend URL. If
set, it overrides the
value that is read from
system configuration

No

-s, --service 3scale API/Service ID No

 apiVersion: "config.istio.io/v1alpha2"
 kind: rule
 metadata:
 name: threescale
 spec:
 match: destination.labels["service-mesh.3scale.net"] == "true"
 actions:
 - handler: threescale.handler
 instances:
 - threescale-authorization.instance

CHAPTER 1. SERVICE MESH 1.X

91

--auth 3scale authentication
pattern to specify (1=API
Key, 2=App Id/App Key,
3=OIDC)

No Hybrid

-o, --output File to save produced
manifests to

No Standard output

--version Outputs the CLI version
and exits immediately

No

Option Description Required Default value

1.11.1.1.1. Generate templates from URL examples

This example generates templates allowing the token, URL pair to be shared by multiple services
as a single handler:

$ 3scale-gen-config --name=admin-credentials --url="https://<organization>-
admin.3scale.net:443" --token="[redacted]"

This example generates the templates with the service ID embedded in the handler:

$ 3scale-gen-config --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --
service="123456789" --token="[redacted]"

1.11.1.2. Generating manifests from a deployed adapter

1. Run this command to generate manifests from a deployed adapter in the istio-system
namespace:

$ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name"
TOKEN="token"
oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?
(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
-it -- ./3scale-config-gen \
--url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}

2. This will produce sample output to the terminal. Edit these samples if required and create the
objects using the oc create command.

3. When the request reaches the adapter, the adapter needs to know how the service maps to an
API on 3scale. You can provide this information in two ways:

a. Label the workload (recommended)

b. Hard code the handler as service_id

4. Update the workload with the required annotations:

NOTE

OpenShift Container Platform 4.5 Service Mesh

92

NOTE

You only need to update the service ID provided in this example if it is not already
embedded in the handler. The setting in the handler takes precedence.

$ export CREDENTIALS_NAME="replace-me"
export SERVICE_ID="replace-me"
export DEPLOYMENT="replace-me"
patch="$(oc get deployment "${DEPLOYMENT}"
patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":
{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end
}}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-
mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}')"
oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

1.11.1.3. Routing service traffic through the adapter

Follow these steps to drive traffic for your service through the 3scale adapter.

Prerequisites

Credentials and service ID from your 3scale administrator.

Procedure

1. Match the rule destination.labels["service-mesh.3scale.net/credentials"] == "threescale"
that you previously created in the configuration, in the kind: rule resource.

2. Add the above label to PodTemplateSpec on the Deployment of the target workload to
integrate a service. the value, threescale, refers to the name of the generated handler. This
handler stores the access token required to call 3scale.

3. Add the destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" label to
the workload to pass the service ID to the adapter via the instance at request time.

1.11.2. Configure the integration settings in 3scale

Follow this procedure to configure the 3scale integration settings.

NOTE

For 3scale SaaS customers, Red Hat OpenShift Service Mesh is enabled as part of the
Early Access program.

Procedure

1. Navigate to [your_API_name] → Integration → Configuration.

2. At the top of the Integration page click on edit integration settings in the top right corner.

3. Under the Service Mesh heading, click the Istio option.

4. Scroll to the bottom of the page and click Update Service.

CHAPTER 1. SERVICE MESH 1.X

93

1.11.3. Caching behavior

Responses from 3scale System APIs are cached by default within the adapter. Entries will be purged
from the cache when they become older than the cacheTTLSeconds value. Also by default, automatic
refreshing of cached entries will be attempted seconds before they expire, based on the
cacheRefreshSeconds value. You can disable automatic refreshing by setting this value higher than
the cacheTTLSeconds value.

Caching can be disabled entirely by setting cacheEntriesMax to a non-positive value.

By using the refreshing process, cached values whose hosts become unreachable will be retried before
eventually being purged when past their expiry.

1.11.4. Authenticating requests

This release supports the following authentication methods:

Standard API Keys: single randomized strings or hashes acting as an identifier and a secret
token.

Application identifier and key pairs: immutable identifier and mutable secret key strings.

OpenID authentication method: client ID string parsed from the JSON Web Token.

1.11.4.1. Applying authentication patterns

Modify the instance custom resource, as illustrated in the following authentication method examples, to
configure authentication behavior. You can accept the authentication credentials from:

Request headers

Request parameters

Both request headers and query parameters

NOTE

When specifying values from headers, they must be lower case. For example, if you want
to send a header as User-Key, this must be referenced in the configuration as
request.headers["user-key"].

1.11.4.1.1. API key authentication method

Service Mesh looks for the API key in query parameters and request headers as specified in the user
option in the subject custom resource parameter. It checks the values in the order given in the custom
resource file. You can restrict the search for the API key to either query parameters or request headers
by omitting the unwanted option.

In this example, Service Mesh looks for the API key in the user_key query parameter. If the API key is
not in the query parameter, Service Mesh then checks the user-key header.

API key authentication method example

apiVersion: "config.istio.io/v1alpha2"
kind: instance

OpenShift Container Platform 4.5 Service Mesh

94

If you want the adapter to examine a different query parameter or request header, change the name as
appropriate. For example, to check for the API key in a query parameter named “key”, change
request.query_params["user_key"] to request.query_params["key"].

1.11.4.1.2. Application ID and application key pair authentication method

Service Mesh looks for the application ID and application key in query parameters and request headers,
as specified in the properties option in the subject custom resource parameter. The application key is
optional. It checks the values in the order given in the custom resource file. You can restrict the search
for the credentials to either query parameters or request headers by not including the unwanted option.

In this example, Service Mesh looks for the application ID and application key in the query parameters
first, moving on to the request headers if needed.

Application ID and application key pair authentication method example

If you want the adapter to examine a different query parameter or request header, change the name as
appropriate. For example, to check for the application ID in a query parameter named identification,
change request.query_params["app_id"] to request.query_params["identification"].

1.11.4.1.3. OpenID authentication method

To use the OpenID Connect (OIDC) authentication method , use the properties value on the subject
field to set client_id, and optionally app_key.

You can manipulate this object using the methods described previously. In the example configuration
shown below, the client identifier (application ID) is parsed from the JSON Web Token (JWT) under the
label azp. You can modify this as needed.

metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

CHAPTER 1. SERVICE MESH 1.X

95

OpenID authentication method example

For this integration to work correctly, OIDC must still be done in 3scale for the client to be created in the
identity provider (IdP). You should create end-user authentication for the service you want to protect in
the same namespace as that service. The JWT is passed in the Authorization header of the request.

In the sample Policy defined below, replace issuer and jwksUri as appropriate.

OpenID Policy example

1.11.4.1.4. Hybrid authentication method

You can choose to not enforce a particular authentication method and accept any valid credentials for
either method. If both an API key and an application ID/application key pair are provided, Service Mesh
uses the API key.

In this example, Service Mesh checks for an API key in the query parameters, then the request headers. If
there is no API key, it then checks for an application ID and key in the query parameters, then the request
headers.

Hybrid authentication method example

 apiVersion: "config.istio.io/v1alpha2"
 kind: instance
 metadata:
 name: threescale-authorization
 spec:
 template: threescale-authorization
 params:
 Subject:
 properties:
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

 apiVersion: authentication.istio.io/v1alpha1
 kind: Policy
 metadata:
 name: jwt-example
 namespace: bookinfo
 spec:
 origins:
 - jwt:
 issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-
connect/certs
 principalBinding: USE_ORIGIN
 targets:
 - name: productpage

OpenShift Container Platform 4.5 Service Mesh

96

https://istio.io/docs/ops/security/end-user-auth/

1.11.5. 3scale Adapter metrics

The adapter, by default reports various Prometheus metrics that are exposed on port 8080 at the
/metrics endpoint. These metrics provide insight into how the interactions between the adapter and
3scale are performing. The service is labeled to be automatically discovered and scraped by
Prometheus.

1.12. REMOVING RED HAT OPENSHIFT SERVICE MESH

This process allows you to remove Red Hat OpenShift Service Mesh from an existing OpenShift
Container Platform instance. Remove the control plane before removing the operators.

1.12.1. Removing the Red Hat OpenShift Service Mesh member roll

The ServiceMeshMemberRoll resource is automatically deleted when you delete the
ServiceMeshControlPlane resource it is associated with.

1.12.2. Removing the Red Hat OpenShift Service Mesh control plane

You can remove the Service Mesh control plane by using the OpenShift Container Platform web console
or the CLI.

1.12.2.1. Removing the control plane with the web console

Follow this procedure to remove the Red Hat OpenShift Service Mesh control plane by using the web
console.

Prerequisites

The Red Hat OpenShift Service Mesh control plane must be deployed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click the Project menu and choose the istio-system project from the list.

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] |
 properties:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

CHAPTER 1. SERVICE MESH 1.X

97

3. Navigate to Operators → Installed Operators.

4. Click on Service Mesh Control Plane under Provided APIs.

5. Click the ServiceMeshControlPlane menu .

6. Click Delete Service Mesh Control Plane.

7. Click Delete on the confirmation dialog window to remove the ServiceMeshControlPlane.

1.12.2.2. Removing the control plane from the CLI

Follow this procedure to remove the Red Hat OpenShift Service Mesh control plane by using the CLI.

Prerequisites

The Red Hat OpenShift Service Mesh control plane must be deployed.

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

PROCEDURE

When you remove the ServiceMeshControlPlane, Service Mesh tells the Operator to
begin uninstalling everything it installed.

TIP

You can use the shortened smcp alias in place of servicemeshcontrolplane.

1. Log in to the OpenShift Container Platform CLI.

2. Run this command to retrieve the name of the installed ServiceMeshControlPlane:

3. Replace <name_of_custom_resource> with the output from the previous command, and run
this command to remove the custom resource:

1.12.3. Removing the installed Operators

You must remove the Operators to successfully remove Red Hat OpenShift Service Mesh. Once you
remove the Red Hat OpenShift Service Mesh Operator, you must remove the Kiali Operator, the Jaeger
Operator, and the Elasticsearch Operator.

1.12.3.1. Removing the Red Hat OpenShift Service Mesh Operator

Follow this procedure to remove the Red Hat OpenShift Service Mesh Operator.

Prerequisites

$ oc get servicemeshcontrolplanes -n istio-system

$ oc delete servicemeshcontrolplanes -n istio-system <name_of_custom_resource>

OpenShift Container Platform 4.5 Service Mesh

98

Access to the OpenShift Container Platform web console.

The Red Hat OpenShift Service Mesh Operator must be installed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find the Red Hat OpenShift Service Mesh Operator. Then, click on it.

3. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

4. When prompted by the Remove Operator Subscription window, optionally select the Also
completely remove the Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the pods, Deployments, CRDs, and CRs associated with the Operator.

1.12.3.2. Removing the Kiali Operator

Follow this procedure to remove the Kiali Operator.

Prerequisites

Access to the OpenShift Container Platform web console.

The Kiali Operator must be installed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find the Kiali Operator. Then, click on it.

3. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

4. When prompted by the Remove Operator Subscription window, optionally select the Also
completely remove the Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the pods, Deployments, CRDs, and CRs associated with the Operator.

1.12.3.3. Removing the Jaeger Operator

Follow this procedure to remove the Jaeger Operator.

Prerequisites

Access to the OpenShift Container Platform web console.

The Jaeger Operator must be installed.

Procedure

CHAPTER 1. SERVICE MESH 1.X

99

1. Log in to the OpenShift Container Platform web console.

2. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find the Jaeger Operator. Then, click on it.

3. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

4. When prompted by the Remove Operator Subscription window, optionally select the Also
completely remove the Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the pods, Deployments, CRDs, and CRs associated with the Operator.

1.12.3.4. Removing the Elasticsearch Operator

Follow this procedure to remove the Elasticsearch Operator.

Prerequisites

Access to the OpenShift Container Platform web console.

The Elasticsearch Operator must be installed.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find the Elasticsearch Operator. Then, click on it.

3. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

4. When prompted by the Remove Operator Subscription window, optionally select the Also
completely remove the Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the pods, Deployments, CRDs, and CRs associated with the Operator.

1.12.3.5. Clean up Operator resources

Follow this procedure to manually remove resources left behind after removing the Red Hat OpenShift
Service Mesh Operator using the OpenShift console.

Prerequisites

An account with cluster administration access.

Access to the OpenShift Container Platform Command-line Interface (CLI) also known as oc.

Procedure

1. Log in to the OpenShift Container Platform CLI as a cluster administrator.

2. Run the following commands to clean up resources after uninstalling the Operators. If you

OpenShift Container Platform 4.5 Service Mesh

100

2. Run the following commands to clean up resources after uninstalling the Operators. If you
intend to keep using Jaeger as a stand alone service without service mesh, do not delete the
Jaeger resources.

NOTE

The Operators are installed in the openshift-operators namespace by default. If
you installed the Operators in another namespace, replace openshift-operators
with the name of the project where the Red Hat OpenShift Service Mesh
Operator was installed.

$ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-
resources.maistra.io

$ oc delete mutatingwebhookconfigurations/openshift-operators.servicemesh-
resources.maistra.io

$ oc delete -n openshift-operators daemonset/istio-node

$ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni

$ oc delete clusterrole istio-view istio-edit

$ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview
jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view

$ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete

$ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete

$ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete

$ oc delete crds jaegers.jaegertracing.io

$ oc delete svc admission-controller -n <operator-project>

$ oc delete project <istio-system-project>

CHAPTER 1. SERVICE MESH 1.X

101

	Table of Contents
	CHAPTER 1. SERVICE MESH 1.X
	1.1. SERVICE MESH RELEASE NOTES
	1.1.1. Red Hat OpenShift Service Mesh overview
	1.1.2. Getting support
	1.1.2.1. About the must-gather tool
	1.1.2.2. Prerequisites
	1.1.2.3. About collecting service mesh data

	1.1.3. Red Hat OpenShift Service Mesh supported configurations
	1.1.3.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
	1.1.3.2. Supported Mixer adapters

	1.1.4. New Features
	1.1.4.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.16
	1.1.4.2. New features Red Hat OpenShift Service Mesh 1.1.16
	1.1.4.3. New features Red Hat OpenShift Service Mesh 1.1.15
	1.1.4.4. New features Red Hat OpenShift Service Mesh 1.1.14
	1.1.4.5. New features Red Hat OpenShift Service Mesh 1.1.13
	1.1.4.6. New features Red Hat OpenShift Service Mesh 1.1.12
	1.1.4.7. New features Red Hat OpenShift Service Mesh 1.1.11
	1.1.4.8. New features Red Hat OpenShift Service Mesh 1.1.10
	1.1.4.9. New features Red Hat OpenShift Service Mesh 1.1.9
	1.1.4.10. New features Red Hat OpenShift Service Mesh 1.1.8
	1.1.4.11. New features Red Hat OpenShift Service Mesh 1.1.7
	1.1.4.12. New features Red Hat OpenShift Service Mesh 1.1.6
	1.1.4.13. New features Red Hat OpenShift Service Mesh 1.1.5
	1.1.4.14. New features Red Hat OpenShift Service Mesh 1.1.4
	1.1.4.15. New features Red Hat OpenShift Service Mesh 1.1.3
	1.1.4.16. New features Red Hat OpenShift Service Mesh 1.1.2
	1.1.4.17. New features Red Hat OpenShift Service Mesh 1.1.1
	1.1.4.18. New features Red Hat OpenShift Service Mesh 1.1.0

	1.1.5. Deprecated features
	1.1.5.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5

	1.1.6. Known issues
	1.1.6.1. Service Mesh known issues
	1.1.6.2. Kiali known issues
	1.1.6.3. Jaeger known issues

	1.1.7. Fixed issues
	1.1.7.1. Service Mesh fixed issues
	1.1.7.2. Kiali fixed issues

	1.2. UNDERSTANDING RED HAT OPENSHIFT SERVICE MESH
	1.2.1. Understanding service mesh
	1.2.2. Red Hat OpenShift Service Mesh Architecture
	1.2.3. Understanding Kiali
	1.2.3.1. Kiali overview
	1.2.3.2. Kiali architecture
	1.2.3.3. Kiali features

	1.2.4. Understanding Jaeger
	1.2.4.1. Jaeger overview
	1.2.4.2. Jaeger architecture
	1.2.4.3. Jaeger features

	1.2.5. Next steps

	1.3. SERVICE MESH AND ISTIO DIFFERENCES
	1.3.1. Red Hat OpenShift Service Mesh multitenant installation
	1.3.1.1. Multitenancy versus cluster-wide installations
	1.3.1.2. Cluster scoped resources

	1.3.2. Differences between Istio and Red Hat OpenShift Service Mesh
	1.3.2.1. Command line tool
	1.3.2.2. Automatic injection
	1.3.2.3. Istio Role Based Access Control features
	1.3.2.4. OpenSSL
	1.3.2.5. Component modifications
	1.3.2.6. Envoy, Secret Discovery Service, and certificates
	1.3.2.7. Istio Container Network Interface (CNI) plug-in
	1.3.2.8. Routes for Istio Gateways

	1.3.3. Kiali and service mesh
	1.3.4. Jaeger and service mesh

	1.4. PREPARING TO INSTALL RED HAT OPENSHIFT SERVICE MESH
	1.4.1. Prerequisites
	1.4.2. Red Hat OpenShift Service Mesh supported configurations
	1.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
	1.4.2.2. Supported Mixer adapters

	1.4.3. Red Hat OpenShift Service Mesh installation activities
	1.4.4. Next steps

	1.5. INSTALLING RED HAT OPENSHIFT SERVICE MESH
	1.5.1. Prerequisites
	1.5.2. Installing the Elasticsearch Operator
	1.5.3. Installing the Jaeger Operator
	1.5.4. Installing the Kiali Operator
	1.5.5. Installing the Red Hat OpenShift Service Mesh Operator
	1.5.6. Deploying the Red Hat OpenShift Service Mesh control plane
	1.5.6.1. Deploying the control plane from the web console
	1.5.6.2. Deploying the control plane from the CLI

	1.5.7. Creating the Red Hat OpenShift Service Mesh member roll
	1.5.7.1. Creating the member roll from the web console
	1.5.7.2. Creating the member roll from the CLI
	1.5.7.3. Creating the Red Hat OpenShift Service Mesh members

	1.5.8. Adding or removing projects from the service mesh
	1.5.8.1. Modifying the member roll from the web console
	1.5.8.2. Modifying the member roll from the CLI

	1.5.9. Manual updates
	1.5.9.1. Updating your application pods

	1.5.10. Next steps

	1.6. CUSTOMIZING THE RED HAT OPENSHIFT SERVICE MESH INSTALLATION
	1.6.1. Prerequisites
	1.6.2. Red Hat OpenShift Service Mesh custom resources
	1.6.3. ServiceMeshControlPlane parameters
	1.6.3.1. Istio global example
	1.6.3.2. Istio gateway configuration
	1.6.3.3. Automatic route creation
	1.6.3.4. Istio Mixer configuration
	1.6.3.5. Istio Pilot configuration

	1.6.4. Configuring Kiali
	1.6.4.1. Configuring Kiali for Grafana
	1.6.4.2. Configuring Kiali for Jaeger

	1.6.5. Configuring Jaeger
	1.6.5.1. Configuring Elasticsearch
	1.6.5.2. Configuring the Elasticsearch index cleaner job

	1.6.6. 3scale configuration
	1.6.7. Next steps

	1.7. DEPLOYING APPLICATIONS ON RED HAT OPENSHIFT SERVICE MESH
	1.7.1. Prerequisites
	1.7.2. Creating control plane templates
	1.7.2.1. Creating the ConfigMap

	1.7.3. Red Hat OpenShift Service Mesh's sidecar injection
	1.7.3.1. Setting environment variables on the proxy in applications through annotations
	1.7.3.2. Enabling automatic sidecar injection

	1.7.4. Updating Mixer policy enforcement
	1.7.4.1. Setting the correct network policy

	1.7.5. Bookinfo example application
	1.7.5.1. Installing the Bookinfo application
	1.7.5.2. Adding default destination rules
	1.7.5.3. Verifying the Bookinfo installation
	1.7.5.4. Removing the Bookinfo application

	1.7.6. Generating example traces and analyzing trace data

	1.8. DATA VISUALIZATION AND OBSERVABILITY
	1.8.1. Accessing the Kiali console
	1.8.2. Visualizing your service
	1.8.2.1. Namespace graphs

	1.9. CUSTOMIZING SECURITY IN A SERVICE MESH
	1.9.1. Enabling mutual Transport Layer Security (mTLS)
	1.9.1.1. Enabling strict mTLS across the mesh
	1.9.1.2. Configuring sidecars for outgoing connections
	1.9.1.3. Setting the minimum and maximum protocol versions

	1.9.2. Configuring cipher suites and ECDH curves
	1.9.3. Adding an external certificate authority key and certificate
	1.9.3.1. Adding an existing certificate and key
	1.9.3.2. Verifying your certificates
	1.9.3.3. Removing the certificates

	1.10. TRAFFIC MANAGEMENT
	1.10.1. Routing and managing traffic
	1.10.1.1. Traffic management with virtual services
	1.10.1.2. Configuring your virtual host

	1.10.2. Managing ingress traffic
	1.10.2.1. Determining the ingress IP and ports

	1.10.3. Routing example using the bookinfo application
	1.10.3.1. Applying a virtual service
	1.10.3.2. Test the new routing configuration
	1.10.3.3. Route based on user identity

	1.11. USING THE 3SCALE ISTIO ADAPTER
	1.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
	1.11.1.1. Generating 3scale custom resources
	1.11.1.2. Generating manifests from a deployed adapter
	1.11.1.3. Routing service traffic through the adapter

	1.11.2. Configure the integration settings in 3scale
	1.11.3. Caching behavior
	1.11.4. Authenticating requests
	1.11.4.1. Applying authentication patterns

	1.11.5. 3scale Adapter metrics

	1.12. REMOVING RED HAT OPENSHIFT SERVICE MESH
	1.12.1. Removing the Red Hat OpenShift Service Mesh member roll
	1.12.2. Removing the Red Hat OpenShift Service Mesh control plane
	1.12.2.1. Removing the control plane with the web console
	1.12.2.2. Removing the control plane from the CLI

	1.12.3. Removing the installed Operators
	1.12.3.1. Removing the Red Hat OpenShift Service Mesh Operator
	1.12.3.2. Removing the Kiali Operator
	1.12.3.3. Removing the Jaeger Operator
	1.12.3.4. Removing the Elasticsearch Operator
	1.12.3.5. Clean up Operator resources

